xref: /linux/mm/sparse.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section *mem_section[NR_SECTION_ROOTS]
27 	____cacheline_internodealigned_in_smp;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 	____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33 
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45 
46 int page_to_nid(const struct page *page)
47 {
48 	return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51 
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54 	section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61 
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65 	struct mem_section *section = NULL;
66 	unsigned long array_size = SECTIONS_PER_ROOT *
67 				   sizeof(struct mem_section);
68 
69 	if (slab_is_available())
70 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 	else
72 		section = memblock_virt_alloc_node(array_size, nid);
73 
74 	return section;
75 }
76 
77 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
78 {
79 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 	struct mem_section *section;
81 
82 	if (mem_section[root])
83 		return -EEXIST;
84 
85 	section = sparse_index_alloc(nid);
86 	if (!section)
87 		return -ENOMEM;
88 
89 	mem_section[root] = section;
90 
91 	return 0;
92 }
93 #else /* !SPARSEMEM_EXTREME */
94 static inline int sparse_index_init(unsigned long section_nr, int nid)
95 {
96 	return 0;
97 }
98 #endif
99 
100 #ifdef CONFIG_SPARSEMEM_EXTREME
101 int __section_nr(struct mem_section* ms)
102 {
103 	unsigned long root_nr;
104 	struct mem_section* root;
105 
106 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
107 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
108 		if (!root)
109 			continue;
110 
111 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
112 		     break;
113 	}
114 
115 	VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
116 
117 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
118 }
119 #else
120 int __section_nr(struct mem_section* ms)
121 {
122 	return (int)(ms - mem_section[0]);
123 }
124 #endif
125 
126 /*
127  * During early boot, before section_mem_map is used for an actual
128  * mem_map, we use section_mem_map to store the section's NUMA
129  * node.  This keeps us from having to use another data structure.  The
130  * node information is cleared just before we store the real mem_map.
131  */
132 static inline unsigned long sparse_encode_early_nid(int nid)
133 {
134 	return (nid << SECTION_NID_SHIFT);
135 }
136 
137 static inline int sparse_early_nid(struct mem_section *section)
138 {
139 	return (section->section_mem_map >> SECTION_NID_SHIFT);
140 }
141 
142 /* Validate the physical addressing limitations of the model */
143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
144 						unsigned long *end_pfn)
145 {
146 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
147 
148 	/*
149 	 * Sanity checks - do not allow an architecture to pass
150 	 * in larger pfns than the maximum scope of sparsemem:
151 	 */
152 	if (*start_pfn > max_sparsemem_pfn) {
153 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
154 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
155 			*start_pfn, *end_pfn, max_sparsemem_pfn);
156 		WARN_ON_ONCE(1);
157 		*start_pfn = max_sparsemem_pfn;
158 		*end_pfn = max_sparsemem_pfn;
159 	} else if (*end_pfn > max_sparsemem_pfn) {
160 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
161 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
162 			*start_pfn, *end_pfn, max_sparsemem_pfn);
163 		WARN_ON_ONCE(1);
164 		*end_pfn = max_sparsemem_pfn;
165 	}
166 }
167 
168 /*
169  * There are a number of times that we loop over NR_MEM_SECTIONS,
170  * looking for section_present() on each.  But, when we have very
171  * large physical address spaces, NR_MEM_SECTIONS can also be
172  * very large which makes the loops quite long.
173  *
174  * Keeping track of this gives us an easy way to break out of
175  * those loops early.
176  */
177 int __highest_present_section_nr;
178 static void section_mark_present(struct mem_section *ms)
179 {
180 	int section_nr = __section_nr(ms);
181 
182 	if (section_nr > __highest_present_section_nr)
183 		__highest_present_section_nr = section_nr;
184 
185 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
186 }
187 
188 static inline int next_present_section_nr(int section_nr)
189 {
190 	do {
191 		section_nr++;
192 		if (present_section_nr(section_nr))
193 			return section_nr;
194 	} while ((section_nr < NR_MEM_SECTIONS) &&
195 		 (section_nr <= __highest_present_section_nr));
196 
197 	return -1;
198 }
199 #define for_each_present_section_nr(start, section_nr)		\
200 	for (section_nr = next_present_section_nr(start-1);	\
201 	     ((section_nr >= 0) &&				\
202 	      (section_nr < NR_MEM_SECTIONS) &&			\
203 	      (section_nr <= __highest_present_section_nr));	\
204 	     section_nr = next_present_section_nr(section_nr))
205 
206 /* Record a memory area against a node. */
207 void __init memory_present(int nid, unsigned long start, unsigned long end)
208 {
209 	unsigned long pfn;
210 
211 	start &= PAGE_SECTION_MASK;
212 	mminit_validate_memmodel_limits(&start, &end);
213 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
214 		unsigned long section = pfn_to_section_nr(pfn);
215 		struct mem_section *ms;
216 
217 		sparse_index_init(section, nid);
218 		set_section_nid(section, nid);
219 
220 		ms = __nr_to_section(section);
221 		if (!ms->section_mem_map) {
222 			ms->section_mem_map = sparse_encode_early_nid(nid) |
223 							SECTION_IS_ONLINE;
224 			section_mark_present(ms);
225 		}
226 	}
227 }
228 
229 /*
230  * Only used by the i386 NUMA architecures, but relatively
231  * generic code.
232  */
233 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
234 						     unsigned long end_pfn)
235 {
236 	unsigned long pfn;
237 	unsigned long nr_pages = 0;
238 
239 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
240 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
241 		if (nid != early_pfn_to_nid(pfn))
242 			continue;
243 
244 		if (pfn_present(pfn))
245 			nr_pages += PAGES_PER_SECTION;
246 	}
247 
248 	return nr_pages * sizeof(struct page);
249 }
250 
251 /*
252  * Subtle, we encode the real pfn into the mem_map such that
253  * the identity pfn - section_mem_map will return the actual
254  * physical page frame number.
255  */
256 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
257 {
258 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
259 }
260 
261 /*
262  * Decode mem_map from the coded memmap
263  */
264 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
265 {
266 	/* mask off the extra low bits of information */
267 	coded_mem_map &= SECTION_MAP_MASK;
268 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
269 }
270 
271 static int __meminit sparse_init_one_section(struct mem_section *ms,
272 		unsigned long pnum, struct page *mem_map,
273 		unsigned long *pageblock_bitmap)
274 {
275 	if (!present_section(ms))
276 		return -EINVAL;
277 
278 	ms->section_mem_map &= ~SECTION_MAP_MASK;
279 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
280 							SECTION_HAS_MEM_MAP;
281  	ms->pageblock_flags = pageblock_bitmap;
282 
283 	return 1;
284 }
285 
286 unsigned long usemap_size(void)
287 {
288 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
289 }
290 
291 #ifdef CONFIG_MEMORY_HOTPLUG
292 static unsigned long *__kmalloc_section_usemap(void)
293 {
294 	return kmalloc(usemap_size(), GFP_KERNEL);
295 }
296 #endif /* CONFIG_MEMORY_HOTPLUG */
297 
298 #ifdef CONFIG_MEMORY_HOTREMOVE
299 static unsigned long * __init
300 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
301 					 unsigned long size)
302 {
303 	unsigned long goal, limit;
304 	unsigned long *p;
305 	int nid;
306 	/*
307 	 * A page may contain usemaps for other sections preventing the
308 	 * page being freed and making a section unremovable while
309 	 * other sections referencing the usemap remain active. Similarly,
310 	 * a pgdat can prevent a section being removed. If section A
311 	 * contains a pgdat and section B contains the usemap, both
312 	 * sections become inter-dependent. This allocates usemaps
313 	 * from the same section as the pgdat where possible to avoid
314 	 * this problem.
315 	 */
316 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
317 	limit = goal + (1UL << PA_SECTION_SHIFT);
318 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
319 again:
320 	p = memblock_virt_alloc_try_nid_nopanic(size,
321 						SMP_CACHE_BYTES, goal, limit,
322 						nid);
323 	if (!p && limit) {
324 		limit = 0;
325 		goto again;
326 	}
327 	return p;
328 }
329 
330 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
331 {
332 	unsigned long usemap_snr, pgdat_snr;
333 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
334 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
335 	struct pglist_data *pgdat = NODE_DATA(nid);
336 	int usemap_nid;
337 
338 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
339 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
340 	if (usemap_snr == pgdat_snr)
341 		return;
342 
343 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
344 		/* skip redundant message */
345 		return;
346 
347 	old_usemap_snr = usemap_snr;
348 	old_pgdat_snr = pgdat_snr;
349 
350 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
351 	if (usemap_nid != nid) {
352 		pr_info("node %d must be removed before remove section %ld\n",
353 			nid, usemap_snr);
354 		return;
355 	}
356 	/*
357 	 * There is a circular dependency.
358 	 * Some platforms allow un-removable section because they will just
359 	 * gather other removable sections for dynamic partitioning.
360 	 * Just notify un-removable section's number here.
361 	 */
362 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
363 		usemap_snr, pgdat_snr, nid);
364 }
365 #else
366 static unsigned long * __init
367 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
368 					 unsigned long size)
369 {
370 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
371 }
372 
373 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
374 {
375 }
376 #endif /* CONFIG_MEMORY_HOTREMOVE */
377 
378 static void __init sparse_early_usemaps_alloc_node(void *data,
379 				 unsigned long pnum_begin,
380 				 unsigned long pnum_end,
381 				 unsigned long usemap_count, int nodeid)
382 {
383 	void *usemap;
384 	unsigned long pnum;
385 	unsigned long **usemap_map = (unsigned long **)data;
386 	int size = usemap_size();
387 
388 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
389 							  size * usemap_count);
390 	if (!usemap) {
391 		pr_warn("%s: allocation failed\n", __func__);
392 		return;
393 	}
394 
395 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
396 		if (!present_section_nr(pnum))
397 			continue;
398 		usemap_map[pnum] = usemap;
399 		usemap += size;
400 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
401 	}
402 }
403 
404 #ifndef CONFIG_SPARSEMEM_VMEMMAP
405 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
406 {
407 	struct page *map;
408 	unsigned long size;
409 
410 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
411 	if (map)
412 		return map;
413 
414 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
415 	map = memblock_virt_alloc_try_nid(size,
416 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
417 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
418 	return map;
419 }
420 void __init sparse_mem_maps_populate_node(struct page **map_map,
421 					  unsigned long pnum_begin,
422 					  unsigned long pnum_end,
423 					  unsigned long map_count, int nodeid)
424 {
425 	void *map;
426 	unsigned long pnum;
427 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
428 
429 	map = alloc_remap(nodeid, size * map_count);
430 	if (map) {
431 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
432 			if (!present_section_nr(pnum))
433 				continue;
434 			map_map[pnum] = map;
435 			map += size;
436 		}
437 		return;
438 	}
439 
440 	size = PAGE_ALIGN(size);
441 	map = memblock_virt_alloc_try_nid(size * map_count,
442 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
443 					  BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
444 	if (map) {
445 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
446 			if (!present_section_nr(pnum))
447 				continue;
448 			map_map[pnum] = map;
449 			map += size;
450 		}
451 		return;
452 	}
453 
454 	/* fallback */
455 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
456 		struct mem_section *ms;
457 
458 		if (!present_section_nr(pnum))
459 			continue;
460 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
461 		if (map_map[pnum])
462 			continue;
463 		ms = __nr_to_section(pnum);
464 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
465 		       __func__);
466 		ms->section_mem_map = 0;
467 	}
468 }
469 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
470 
471 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
472 static void __init sparse_early_mem_maps_alloc_node(void *data,
473 				 unsigned long pnum_begin,
474 				 unsigned long pnum_end,
475 				 unsigned long map_count, int nodeid)
476 {
477 	struct page **map_map = (struct page **)data;
478 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
479 					 map_count, nodeid);
480 }
481 #else
482 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
483 {
484 	struct page *map;
485 	struct mem_section *ms = __nr_to_section(pnum);
486 	int nid = sparse_early_nid(ms);
487 
488 	map = sparse_mem_map_populate(pnum, nid);
489 	if (map)
490 		return map;
491 
492 	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
493 	       __func__);
494 	ms->section_mem_map = 0;
495 	return NULL;
496 }
497 #endif
498 
499 void __weak __meminit vmemmap_populate_print_last(void)
500 {
501 }
502 
503 /**
504  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
505  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
506  */
507 static void __init alloc_usemap_and_memmap(void (*alloc_func)
508 					(void *, unsigned long, unsigned long,
509 					unsigned long, int), void *data)
510 {
511 	unsigned long pnum;
512 	unsigned long map_count;
513 	int nodeid_begin = 0;
514 	unsigned long pnum_begin = 0;
515 
516 	for_each_present_section_nr(0, pnum) {
517 		struct mem_section *ms;
518 
519 		ms = __nr_to_section(pnum);
520 		nodeid_begin = sparse_early_nid(ms);
521 		pnum_begin = pnum;
522 		break;
523 	}
524 	map_count = 1;
525 	for_each_present_section_nr(pnum_begin + 1, pnum) {
526 		struct mem_section *ms;
527 		int nodeid;
528 
529 		ms = __nr_to_section(pnum);
530 		nodeid = sparse_early_nid(ms);
531 		if (nodeid == nodeid_begin) {
532 			map_count++;
533 			continue;
534 		}
535 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
536 		alloc_func(data, pnum_begin, pnum,
537 						map_count, nodeid_begin);
538 		/* new start, update count etc*/
539 		nodeid_begin = nodeid;
540 		pnum_begin = pnum;
541 		map_count = 1;
542 	}
543 	/* ok, last chunk */
544 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
545 						map_count, nodeid_begin);
546 }
547 
548 /*
549  * Allocate the accumulated non-linear sections, allocate a mem_map
550  * for each and record the physical to section mapping.
551  */
552 void __init sparse_init(void)
553 {
554 	unsigned long pnum;
555 	struct page *map;
556 	unsigned long *usemap;
557 	unsigned long **usemap_map;
558 	int size;
559 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
560 	int size2;
561 	struct page **map_map;
562 #endif
563 
564 	/* see include/linux/mmzone.h 'struct mem_section' definition */
565 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
566 
567 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
568 	set_pageblock_order();
569 
570 	/*
571 	 * map is using big page (aka 2M in x86 64 bit)
572 	 * usemap is less one page (aka 24 bytes)
573 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
574 	 * make next 2M slip to one more 2M later.
575 	 * then in big system, the memory will have a lot of holes...
576 	 * here try to allocate 2M pages continuously.
577 	 *
578 	 * powerpc need to call sparse_init_one_section right after each
579 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
580 	 */
581 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
582 	usemap_map = memblock_virt_alloc(size, 0);
583 	if (!usemap_map)
584 		panic("can not allocate usemap_map\n");
585 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
586 							(void *)usemap_map);
587 
588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
589 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
590 	map_map = memblock_virt_alloc(size2, 0);
591 	if (!map_map)
592 		panic("can not allocate map_map\n");
593 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
594 							(void *)map_map);
595 #endif
596 
597 	for_each_present_section_nr(0, pnum) {
598 		usemap = usemap_map[pnum];
599 		if (!usemap)
600 			continue;
601 
602 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
603 		map = map_map[pnum];
604 #else
605 		map = sparse_early_mem_map_alloc(pnum);
606 #endif
607 		if (!map)
608 			continue;
609 
610 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
611 								usemap);
612 	}
613 
614 	vmemmap_populate_print_last();
615 
616 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
617 	memblock_free_early(__pa(map_map), size2);
618 #endif
619 	memblock_free_early(__pa(usemap_map), size);
620 }
621 
622 #ifdef CONFIG_MEMORY_HOTPLUG
623 
624 /* Mark all memory sections within the pfn range as online */
625 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
626 {
627 	unsigned long pfn;
628 
629 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
630 		unsigned long section_nr = pfn_to_section_nr(pfn);
631 		struct mem_section *ms;
632 
633 		/* onlining code should never touch invalid ranges */
634 		if (WARN_ON(!valid_section_nr(section_nr)))
635 			continue;
636 
637 		ms = __nr_to_section(section_nr);
638 		ms->section_mem_map |= SECTION_IS_ONLINE;
639 	}
640 }
641 
642 #ifdef CONFIG_MEMORY_HOTREMOVE
643 /* Mark all memory sections within the pfn range as online */
644 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
645 {
646 	unsigned long pfn;
647 
648 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
649 		unsigned long section_nr = pfn_to_section_nr(start_pfn);
650 		struct mem_section *ms;
651 
652 		/*
653 		 * TODO this needs some double checking. Offlining code makes
654 		 * sure to check pfn_valid but those checks might be just bogus
655 		 */
656 		if (WARN_ON(!valid_section_nr(section_nr)))
657 			continue;
658 
659 		ms = __nr_to_section(section_nr);
660 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
661 	}
662 }
663 #endif
664 
665 #ifdef CONFIG_SPARSEMEM_VMEMMAP
666 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
667 {
668 	/* This will make the necessary allocations eventually. */
669 	return sparse_mem_map_populate(pnum, nid);
670 }
671 static void __kfree_section_memmap(struct page *memmap)
672 {
673 	unsigned long start = (unsigned long)memmap;
674 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
675 
676 	vmemmap_free(start, end);
677 }
678 #ifdef CONFIG_MEMORY_HOTREMOVE
679 static void free_map_bootmem(struct page *memmap)
680 {
681 	unsigned long start = (unsigned long)memmap;
682 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
683 
684 	vmemmap_free(start, end);
685 }
686 #endif /* CONFIG_MEMORY_HOTREMOVE */
687 #else
688 static struct page *__kmalloc_section_memmap(void)
689 {
690 	struct page *page, *ret;
691 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
692 
693 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
694 	if (page)
695 		goto got_map_page;
696 
697 	ret = vmalloc(memmap_size);
698 	if (ret)
699 		goto got_map_ptr;
700 
701 	return NULL;
702 got_map_page:
703 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
704 got_map_ptr:
705 
706 	return ret;
707 }
708 
709 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
710 {
711 	return __kmalloc_section_memmap();
712 }
713 
714 static void __kfree_section_memmap(struct page *memmap)
715 {
716 	if (is_vmalloc_addr(memmap))
717 		vfree(memmap);
718 	else
719 		free_pages((unsigned long)memmap,
720 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
721 }
722 
723 #ifdef CONFIG_MEMORY_HOTREMOVE
724 static void free_map_bootmem(struct page *memmap)
725 {
726 	unsigned long maps_section_nr, removing_section_nr, i;
727 	unsigned long magic, nr_pages;
728 	struct page *page = virt_to_page(memmap);
729 
730 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
731 		>> PAGE_SHIFT;
732 
733 	for (i = 0; i < nr_pages; i++, page++) {
734 		magic = (unsigned long) page->freelist;
735 
736 		BUG_ON(magic == NODE_INFO);
737 
738 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
739 		removing_section_nr = page_private(page);
740 
741 		/*
742 		 * When this function is called, the removing section is
743 		 * logical offlined state. This means all pages are isolated
744 		 * from page allocator. If removing section's memmap is placed
745 		 * on the same section, it must not be freed.
746 		 * If it is freed, page allocator may allocate it which will
747 		 * be removed physically soon.
748 		 */
749 		if (maps_section_nr != removing_section_nr)
750 			put_page_bootmem(page);
751 	}
752 }
753 #endif /* CONFIG_MEMORY_HOTREMOVE */
754 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
755 
756 /*
757  * returns the number of sections whose mem_maps were properly
758  * set.  If this is <=0, then that means that the passed-in
759  * map was not consumed and must be freed.
760  */
761 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
762 {
763 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
764 	struct mem_section *ms;
765 	struct page *memmap;
766 	unsigned long *usemap;
767 	unsigned long flags;
768 	int ret;
769 
770 	/*
771 	 * no locking for this, because it does its own
772 	 * plus, it does a kmalloc
773 	 */
774 	ret = sparse_index_init(section_nr, pgdat->node_id);
775 	if (ret < 0 && ret != -EEXIST)
776 		return ret;
777 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
778 	if (!memmap)
779 		return -ENOMEM;
780 	usemap = __kmalloc_section_usemap();
781 	if (!usemap) {
782 		__kfree_section_memmap(memmap);
783 		return -ENOMEM;
784 	}
785 
786 	pgdat_resize_lock(pgdat, &flags);
787 
788 	ms = __pfn_to_section(start_pfn);
789 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
790 		ret = -EEXIST;
791 		goto out;
792 	}
793 
794 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
795 
796 	section_mark_present(ms);
797 
798 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
799 
800 out:
801 	pgdat_resize_unlock(pgdat, &flags);
802 	if (ret <= 0) {
803 		kfree(usemap);
804 		__kfree_section_memmap(memmap);
805 	}
806 	return ret;
807 }
808 
809 #ifdef CONFIG_MEMORY_HOTREMOVE
810 #ifdef CONFIG_MEMORY_FAILURE
811 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
812 {
813 	int i;
814 
815 	if (!memmap)
816 		return;
817 
818 	for (i = 0; i < nr_pages; i++) {
819 		if (PageHWPoison(&memmap[i])) {
820 			atomic_long_sub(1, &num_poisoned_pages);
821 			ClearPageHWPoison(&memmap[i]);
822 		}
823 	}
824 }
825 #else
826 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
827 {
828 }
829 #endif
830 
831 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
832 {
833 	struct page *usemap_page;
834 
835 	if (!usemap)
836 		return;
837 
838 	usemap_page = virt_to_page(usemap);
839 	/*
840 	 * Check to see if allocation came from hot-plug-add
841 	 */
842 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
843 		kfree(usemap);
844 		if (memmap)
845 			__kfree_section_memmap(memmap);
846 		return;
847 	}
848 
849 	/*
850 	 * The usemap came from bootmem. This is packed with other usemaps
851 	 * on the section which has pgdat at boot time. Just keep it as is now.
852 	 */
853 
854 	if (memmap)
855 		free_map_bootmem(memmap);
856 }
857 
858 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
859 		unsigned long map_offset)
860 {
861 	struct page *memmap = NULL;
862 	unsigned long *usemap = NULL, flags;
863 	struct pglist_data *pgdat = zone->zone_pgdat;
864 
865 	pgdat_resize_lock(pgdat, &flags);
866 	if (ms->section_mem_map) {
867 		usemap = ms->pageblock_flags;
868 		memmap = sparse_decode_mem_map(ms->section_mem_map,
869 						__section_nr(ms));
870 		ms->section_mem_map = 0;
871 		ms->pageblock_flags = NULL;
872 	}
873 	pgdat_resize_unlock(pgdat, &flags);
874 
875 	clear_hwpoisoned_pages(memmap + map_offset,
876 			PAGES_PER_SECTION - map_offset);
877 	free_section_usemap(memmap, usemap);
878 }
879 #endif /* CONFIG_MEMORY_HOTREMOVE */
880 #endif /* CONFIG_MEMORY_HOTPLUG */
881