xref: /linux/mm/sparse.c (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available())
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	else
71 		section = memblock_virt_alloc_node(array_size, nid);
72 
73 	return section;
74 }
75 
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 	struct mem_section *section;
80 
81 	if (mem_section[root])
82 		return -EEXIST;
83 
84 	section = sparse_index_alloc(nid);
85 	if (!section)
86 		return -ENOMEM;
87 
88 	mem_section[root] = section;
89 
90 	return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95 	return 0;
96 }
97 #endif
98 
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102 	unsigned long root_nr;
103 	struct mem_section *root = NULL;
104 
105 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 		if (!root)
108 			continue;
109 
110 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 		     break;
112 	}
113 
114 	VM_BUG_ON(!root);
115 
116 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121 	return (int)(ms - mem_section[0]);
122 }
123 #endif
124 
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 	return (nid << SECTION_NID_SHIFT);
134 }
135 
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 	return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140 
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 						unsigned long *end_pfn)
144 {
145 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146 
147 	/*
148 	 * Sanity checks - do not allow an architecture to pass
149 	 * in larger pfns than the maximum scope of sparsemem:
150 	 */
151 	if (*start_pfn > max_sparsemem_pfn) {
152 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 			*start_pfn, *end_pfn, max_sparsemem_pfn);
155 		WARN_ON_ONCE(1);
156 		*start_pfn = max_sparsemem_pfn;
157 		*end_pfn = max_sparsemem_pfn;
158 	} else if (*end_pfn > max_sparsemem_pfn) {
159 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 			*start_pfn, *end_pfn, max_sparsemem_pfn);
162 		WARN_ON_ONCE(1);
163 		*end_pfn = max_sparsemem_pfn;
164 	}
165 }
166 
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179 	int section_nr = __section_nr(ms);
180 
181 	if (section_nr > __highest_present_section_nr)
182 		__highest_present_section_nr = section_nr;
183 
184 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186 
187 static inline int next_present_section_nr(int section_nr)
188 {
189 	do {
190 		section_nr++;
191 		if (present_section_nr(section_nr))
192 			return section_nr;
193 	} while ((section_nr < NR_MEM_SECTIONS) &&
194 		 (section_nr <= __highest_present_section_nr));
195 
196 	return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr)		\
199 	for (section_nr = next_present_section_nr(start-1);	\
200 	     ((section_nr >= 0) &&				\
201 	      (section_nr < NR_MEM_SECTIONS) &&			\
202 	      (section_nr <= __highest_present_section_nr));	\
203 	     section_nr = next_present_section_nr(section_nr))
204 
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
207 {
208 	unsigned long pfn;
209 
210 #ifdef CONFIG_SPARSEMEM_EXTREME
211 	if (unlikely(!mem_section)) {
212 		unsigned long size, align;
213 
214 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215 		align = 1 << (INTERNODE_CACHE_SHIFT);
216 		mem_section = memblock_virt_alloc(size, align);
217 	}
218 #endif
219 
220 	start &= PAGE_SECTION_MASK;
221 	mminit_validate_memmodel_limits(&start, &end);
222 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223 		unsigned long section = pfn_to_section_nr(pfn);
224 		struct mem_section *ms;
225 
226 		sparse_index_init(section, nid);
227 		set_section_nid(section, nid);
228 
229 		ms = __nr_to_section(section);
230 		if (!ms->section_mem_map) {
231 			ms->section_mem_map = sparse_encode_early_nid(nid) |
232 							SECTION_IS_ONLINE;
233 			section_mark_present(ms);
234 		}
235 	}
236 }
237 
238 /*
239  * Subtle, we encode the real pfn into the mem_map such that
240  * the identity pfn - section_mem_map will return the actual
241  * physical page frame number.
242  */
243 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
244 {
245 	unsigned long coded_mem_map =
246 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
247 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
248 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
249 	return coded_mem_map;
250 }
251 
252 /*
253  * Decode mem_map from the coded memmap
254  */
255 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
256 {
257 	/* mask off the extra low bits of information */
258 	coded_mem_map &= SECTION_MAP_MASK;
259 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
260 }
261 
262 static int __meminit sparse_init_one_section(struct mem_section *ms,
263 		unsigned long pnum, struct page *mem_map,
264 		unsigned long *pageblock_bitmap)
265 {
266 	if (!present_section(ms))
267 		return -EINVAL;
268 
269 	ms->section_mem_map &= ~SECTION_MAP_MASK;
270 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
271 							SECTION_HAS_MEM_MAP;
272  	ms->pageblock_flags = pageblock_bitmap;
273 
274 	return 1;
275 }
276 
277 unsigned long usemap_size(void)
278 {
279 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
280 }
281 
282 #ifdef CONFIG_MEMORY_HOTPLUG
283 static unsigned long *__kmalloc_section_usemap(void)
284 {
285 	return kmalloc(usemap_size(), GFP_KERNEL);
286 }
287 #endif /* CONFIG_MEMORY_HOTPLUG */
288 
289 #ifdef CONFIG_MEMORY_HOTREMOVE
290 static unsigned long * __init
291 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
292 					 unsigned long size)
293 {
294 	unsigned long goal, limit;
295 	unsigned long *p;
296 	int nid;
297 	/*
298 	 * A page may contain usemaps for other sections preventing the
299 	 * page being freed and making a section unremovable while
300 	 * other sections referencing the usemap remain active. Similarly,
301 	 * a pgdat can prevent a section being removed. If section A
302 	 * contains a pgdat and section B contains the usemap, both
303 	 * sections become inter-dependent. This allocates usemaps
304 	 * from the same section as the pgdat where possible to avoid
305 	 * this problem.
306 	 */
307 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
308 	limit = goal + (1UL << PA_SECTION_SHIFT);
309 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
310 again:
311 	p = memblock_virt_alloc_try_nid_nopanic(size,
312 						SMP_CACHE_BYTES, goal, limit,
313 						nid);
314 	if (!p && limit) {
315 		limit = 0;
316 		goto again;
317 	}
318 	return p;
319 }
320 
321 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
322 {
323 	unsigned long usemap_snr, pgdat_snr;
324 	static unsigned long old_usemap_snr;
325 	static unsigned long old_pgdat_snr;
326 	struct pglist_data *pgdat = NODE_DATA(nid);
327 	int usemap_nid;
328 
329 	/* First call */
330 	if (!old_usemap_snr) {
331 		old_usemap_snr = NR_MEM_SECTIONS;
332 		old_pgdat_snr = NR_MEM_SECTIONS;
333 	}
334 
335 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
336 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
337 	if (usemap_snr == pgdat_snr)
338 		return;
339 
340 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
341 		/* skip redundant message */
342 		return;
343 
344 	old_usemap_snr = usemap_snr;
345 	old_pgdat_snr = pgdat_snr;
346 
347 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
348 	if (usemap_nid != nid) {
349 		pr_info("node %d must be removed before remove section %ld\n",
350 			nid, usemap_snr);
351 		return;
352 	}
353 	/*
354 	 * There is a circular dependency.
355 	 * Some platforms allow un-removable section because they will just
356 	 * gather other removable sections for dynamic partitioning.
357 	 * Just notify un-removable section's number here.
358 	 */
359 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
360 		usemap_snr, pgdat_snr, nid);
361 }
362 #else
363 static unsigned long * __init
364 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
365 					 unsigned long size)
366 {
367 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
368 }
369 
370 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
371 {
372 }
373 #endif /* CONFIG_MEMORY_HOTREMOVE */
374 
375 static void __init sparse_early_usemaps_alloc_node(void *data,
376 				 unsigned long pnum_begin,
377 				 unsigned long pnum_end,
378 				 unsigned long usemap_count, int nodeid)
379 {
380 	void *usemap;
381 	unsigned long pnum;
382 	unsigned long **usemap_map = (unsigned long **)data;
383 	int size = usemap_size();
384 
385 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
386 							  size * usemap_count);
387 	if (!usemap) {
388 		pr_warn("%s: allocation failed\n", __func__);
389 		return;
390 	}
391 
392 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
393 		if (!present_section_nr(pnum))
394 			continue;
395 		usemap_map[pnum] = usemap;
396 		usemap += size;
397 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
398 	}
399 }
400 
401 #ifndef CONFIG_SPARSEMEM_VMEMMAP
402 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
403 		struct vmem_altmap *altmap)
404 {
405 	struct page *map;
406 	unsigned long size;
407 
408 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
409 	map = memblock_virt_alloc_try_nid(size,
410 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
411 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
412 	return map;
413 }
414 void __init sparse_mem_maps_populate_node(struct page **map_map,
415 					  unsigned long pnum_begin,
416 					  unsigned long pnum_end,
417 					  unsigned long map_count, int nodeid)
418 {
419 	void *map;
420 	unsigned long pnum;
421 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
422 
423 	size = PAGE_ALIGN(size);
424 	map = memblock_virt_alloc_try_nid_raw(size * map_count,
425 					      PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
426 					      BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
427 	if (map) {
428 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
429 			if (!present_section_nr(pnum))
430 				continue;
431 			map_map[pnum] = map;
432 			map += size;
433 		}
434 		return;
435 	}
436 
437 	/* fallback */
438 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
439 		struct mem_section *ms;
440 
441 		if (!present_section_nr(pnum))
442 			continue;
443 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
444 		if (map_map[pnum])
445 			continue;
446 		ms = __nr_to_section(pnum);
447 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
448 		       __func__);
449 		ms->section_mem_map = 0;
450 	}
451 }
452 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
453 
454 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
455 static void __init sparse_early_mem_maps_alloc_node(void *data,
456 				 unsigned long pnum_begin,
457 				 unsigned long pnum_end,
458 				 unsigned long map_count, int nodeid)
459 {
460 	struct page **map_map = (struct page **)data;
461 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
462 					 map_count, nodeid);
463 }
464 #else
465 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
466 {
467 	struct page *map;
468 	struct mem_section *ms = __nr_to_section(pnum);
469 	int nid = sparse_early_nid(ms);
470 
471 	map = sparse_mem_map_populate(pnum, nid, NULL);
472 	if (map)
473 		return map;
474 
475 	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
476 	       __func__);
477 	ms->section_mem_map = 0;
478 	return NULL;
479 }
480 #endif
481 
482 void __weak __meminit vmemmap_populate_print_last(void)
483 {
484 }
485 
486 /**
487  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
488  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
489  */
490 static void __init alloc_usemap_and_memmap(void (*alloc_func)
491 					(void *, unsigned long, unsigned long,
492 					unsigned long, int), void *data)
493 {
494 	unsigned long pnum;
495 	unsigned long map_count;
496 	int nodeid_begin = 0;
497 	unsigned long pnum_begin = 0;
498 
499 	for_each_present_section_nr(0, pnum) {
500 		struct mem_section *ms;
501 
502 		ms = __nr_to_section(pnum);
503 		nodeid_begin = sparse_early_nid(ms);
504 		pnum_begin = pnum;
505 		break;
506 	}
507 	map_count = 1;
508 	for_each_present_section_nr(pnum_begin + 1, pnum) {
509 		struct mem_section *ms;
510 		int nodeid;
511 
512 		ms = __nr_to_section(pnum);
513 		nodeid = sparse_early_nid(ms);
514 		if (nodeid == nodeid_begin) {
515 			map_count++;
516 			continue;
517 		}
518 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
519 		alloc_func(data, pnum_begin, pnum,
520 						map_count, nodeid_begin);
521 		/* new start, update count etc*/
522 		nodeid_begin = nodeid;
523 		pnum_begin = pnum;
524 		map_count = 1;
525 	}
526 	/* ok, last chunk */
527 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
528 						map_count, nodeid_begin);
529 }
530 
531 /*
532  * Allocate the accumulated non-linear sections, allocate a mem_map
533  * for each and record the physical to section mapping.
534  */
535 void __init sparse_init(void)
536 {
537 	unsigned long pnum;
538 	struct page *map;
539 	unsigned long *usemap;
540 	unsigned long **usemap_map;
541 	int size;
542 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
543 	int size2;
544 	struct page **map_map;
545 #endif
546 
547 	/* see include/linux/mmzone.h 'struct mem_section' definition */
548 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
549 
550 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
551 	set_pageblock_order();
552 
553 	/*
554 	 * map is using big page (aka 2M in x86 64 bit)
555 	 * usemap is less one page (aka 24 bytes)
556 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
557 	 * make next 2M slip to one more 2M later.
558 	 * then in big system, the memory will have a lot of holes...
559 	 * here try to allocate 2M pages continuously.
560 	 *
561 	 * powerpc need to call sparse_init_one_section right after each
562 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
563 	 */
564 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
565 	usemap_map = memblock_virt_alloc(size, 0);
566 	if (!usemap_map)
567 		panic("can not allocate usemap_map\n");
568 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
569 							(void *)usemap_map);
570 
571 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
572 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
573 	map_map = memblock_virt_alloc(size2, 0);
574 	if (!map_map)
575 		panic("can not allocate map_map\n");
576 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
577 							(void *)map_map);
578 #endif
579 
580 	for_each_present_section_nr(0, pnum) {
581 		usemap = usemap_map[pnum];
582 		if (!usemap)
583 			continue;
584 
585 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
586 		map = map_map[pnum];
587 #else
588 		map = sparse_early_mem_map_alloc(pnum);
589 #endif
590 		if (!map)
591 			continue;
592 
593 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
594 								usemap);
595 	}
596 
597 	vmemmap_populate_print_last();
598 
599 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
600 	memblock_free_early(__pa(map_map), size2);
601 #endif
602 	memblock_free_early(__pa(usemap_map), size);
603 }
604 
605 #ifdef CONFIG_MEMORY_HOTPLUG
606 
607 /* Mark all memory sections within the pfn range as online */
608 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
609 {
610 	unsigned long pfn;
611 
612 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
613 		unsigned long section_nr = pfn_to_section_nr(pfn);
614 		struct mem_section *ms;
615 
616 		/* onlining code should never touch invalid ranges */
617 		if (WARN_ON(!valid_section_nr(section_nr)))
618 			continue;
619 
620 		ms = __nr_to_section(section_nr);
621 		ms->section_mem_map |= SECTION_IS_ONLINE;
622 	}
623 }
624 
625 #ifdef CONFIG_MEMORY_HOTREMOVE
626 /* Mark all memory sections within the pfn range as online */
627 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
628 {
629 	unsigned long pfn;
630 
631 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
632 		unsigned long section_nr = pfn_to_section_nr(start_pfn);
633 		struct mem_section *ms;
634 
635 		/*
636 		 * TODO this needs some double checking. Offlining code makes
637 		 * sure to check pfn_valid but those checks might be just bogus
638 		 */
639 		if (WARN_ON(!valid_section_nr(section_nr)))
640 			continue;
641 
642 		ms = __nr_to_section(section_nr);
643 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
644 	}
645 }
646 #endif
647 
648 #ifdef CONFIG_SPARSEMEM_VMEMMAP
649 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
650 		struct vmem_altmap *altmap)
651 {
652 	/* This will make the necessary allocations eventually. */
653 	return sparse_mem_map_populate(pnum, nid, altmap);
654 }
655 static void __kfree_section_memmap(struct page *memmap,
656 		struct vmem_altmap *altmap)
657 {
658 	unsigned long start = (unsigned long)memmap;
659 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
660 
661 	vmemmap_free(start, end, altmap);
662 }
663 #ifdef CONFIG_MEMORY_HOTREMOVE
664 static void free_map_bootmem(struct page *memmap)
665 {
666 	unsigned long start = (unsigned long)memmap;
667 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668 
669 	vmemmap_free(start, end, NULL);
670 }
671 #endif /* CONFIG_MEMORY_HOTREMOVE */
672 #else
673 static struct page *__kmalloc_section_memmap(void)
674 {
675 	struct page *page, *ret;
676 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
677 
678 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
679 	if (page)
680 		goto got_map_page;
681 
682 	ret = vmalloc(memmap_size);
683 	if (ret)
684 		goto got_map_ptr;
685 
686 	return NULL;
687 got_map_page:
688 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
689 got_map_ptr:
690 
691 	return ret;
692 }
693 
694 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
695 		struct vmem_altmap *altmap)
696 {
697 	return __kmalloc_section_memmap();
698 }
699 
700 static void __kfree_section_memmap(struct page *memmap,
701 		struct vmem_altmap *altmap)
702 {
703 	if (is_vmalloc_addr(memmap))
704 		vfree(memmap);
705 	else
706 		free_pages((unsigned long)memmap,
707 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
708 }
709 
710 #ifdef CONFIG_MEMORY_HOTREMOVE
711 static void free_map_bootmem(struct page *memmap)
712 {
713 	unsigned long maps_section_nr, removing_section_nr, i;
714 	unsigned long magic, nr_pages;
715 	struct page *page = virt_to_page(memmap);
716 
717 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
718 		>> PAGE_SHIFT;
719 
720 	for (i = 0; i < nr_pages; i++, page++) {
721 		magic = (unsigned long) page->freelist;
722 
723 		BUG_ON(magic == NODE_INFO);
724 
725 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
726 		removing_section_nr = page_private(page);
727 
728 		/*
729 		 * When this function is called, the removing section is
730 		 * logical offlined state. This means all pages are isolated
731 		 * from page allocator. If removing section's memmap is placed
732 		 * on the same section, it must not be freed.
733 		 * If it is freed, page allocator may allocate it which will
734 		 * be removed physically soon.
735 		 */
736 		if (maps_section_nr != removing_section_nr)
737 			put_page_bootmem(page);
738 	}
739 }
740 #endif /* CONFIG_MEMORY_HOTREMOVE */
741 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
742 
743 /*
744  * returns the number of sections whose mem_maps were properly
745  * set.  If this is <=0, then that means that the passed-in
746  * map was not consumed and must be freed.
747  */
748 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
749 		unsigned long start_pfn, struct vmem_altmap *altmap)
750 {
751 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
752 	struct mem_section *ms;
753 	struct page *memmap;
754 	unsigned long *usemap;
755 	unsigned long flags;
756 	int ret;
757 
758 	/*
759 	 * no locking for this, because it does its own
760 	 * plus, it does a kmalloc
761 	 */
762 	ret = sparse_index_init(section_nr, pgdat->node_id);
763 	if (ret < 0 && ret != -EEXIST)
764 		return ret;
765 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
766 	if (!memmap)
767 		return -ENOMEM;
768 	usemap = __kmalloc_section_usemap();
769 	if (!usemap) {
770 		__kfree_section_memmap(memmap, altmap);
771 		return -ENOMEM;
772 	}
773 
774 	pgdat_resize_lock(pgdat, &flags);
775 
776 	ms = __pfn_to_section(start_pfn);
777 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
778 		ret = -EEXIST;
779 		goto out;
780 	}
781 
782 #ifdef CONFIG_DEBUG_VM
783 	/*
784 	 * Poison uninitialized struct pages in order to catch invalid flags
785 	 * combinations.
786 	 */
787 	memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
788 #endif
789 
790 	section_mark_present(ms);
791 
792 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
793 
794 out:
795 	pgdat_resize_unlock(pgdat, &flags);
796 	if (ret <= 0) {
797 		kfree(usemap);
798 		__kfree_section_memmap(memmap, altmap);
799 	}
800 	return ret;
801 }
802 
803 #ifdef CONFIG_MEMORY_HOTREMOVE
804 #ifdef CONFIG_MEMORY_FAILURE
805 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
806 {
807 	int i;
808 
809 	if (!memmap)
810 		return;
811 
812 	for (i = 0; i < nr_pages; i++) {
813 		if (PageHWPoison(&memmap[i])) {
814 			atomic_long_sub(1, &num_poisoned_pages);
815 			ClearPageHWPoison(&memmap[i]);
816 		}
817 	}
818 }
819 #else
820 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
821 {
822 }
823 #endif
824 
825 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
826 		struct vmem_altmap *altmap)
827 {
828 	struct page *usemap_page;
829 
830 	if (!usemap)
831 		return;
832 
833 	usemap_page = virt_to_page(usemap);
834 	/*
835 	 * Check to see if allocation came from hot-plug-add
836 	 */
837 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
838 		kfree(usemap);
839 		if (memmap)
840 			__kfree_section_memmap(memmap, altmap);
841 		return;
842 	}
843 
844 	/*
845 	 * The usemap came from bootmem. This is packed with other usemaps
846 	 * on the section which has pgdat at boot time. Just keep it as is now.
847 	 */
848 
849 	if (memmap)
850 		free_map_bootmem(memmap);
851 }
852 
853 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
854 		unsigned long map_offset, struct vmem_altmap *altmap)
855 {
856 	struct page *memmap = NULL;
857 	unsigned long *usemap = NULL, flags;
858 	struct pglist_data *pgdat = zone->zone_pgdat;
859 
860 	pgdat_resize_lock(pgdat, &flags);
861 	if (ms->section_mem_map) {
862 		usemap = ms->pageblock_flags;
863 		memmap = sparse_decode_mem_map(ms->section_mem_map,
864 						__section_nr(ms));
865 		ms->section_mem_map = 0;
866 		ms->pageblock_flags = NULL;
867 	}
868 	pgdat_resize_unlock(pgdat, &flags);
869 
870 	clear_hwpoisoned_pages(memmap + map_offset,
871 			PAGES_PER_SECTION - map_offset);
872 	free_section_usemap(memmap, usemap, altmap);
873 }
874 #endif /* CONFIG_MEMORY_HOTREMOVE */
875 #endif /* CONFIG_MEMORY_HOTPLUG */
876