1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/bootmem.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 else 71 section = memblock_virt_alloc_node(array_size, nid); 72 73 return section; 74 } 75 76 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 77 { 78 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 79 struct mem_section *section; 80 81 if (mem_section[root]) 82 return -EEXIST; 83 84 section = sparse_index_alloc(nid); 85 if (!section) 86 return -ENOMEM; 87 88 mem_section[root] = section; 89 90 return 0; 91 } 92 #else /* !SPARSEMEM_EXTREME */ 93 static inline int sparse_index_init(unsigned long section_nr, int nid) 94 { 95 return 0; 96 } 97 #endif 98 99 #ifdef CONFIG_SPARSEMEM_EXTREME 100 int __section_nr(struct mem_section* ms) 101 { 102 unsigned long root_nr; 103 struct mem_section *root = NULL; 104 105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 107 if (!root) 108 continue; 109 110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 111 break; 112 } 113 114 VM_BUG_ON(!root); 115 116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 117 } 118 #else 119 int __section_nr(struct mem_section* ms) 120 { 121 return (int)(ms - mem_section[0]); 122 } 123 #endif 124 125 /* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131 static inline unsigned long sparse_encode_early_nid(int nid) 132 { 133 return (nid << SECTION_NID_SHIFT); 134 } 135 136 static inline int sparse_early_nid(struct mem_section *section) 137 { 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139 } 140 141 /* Validate the physical addressing limitations of the model */ 142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144 { 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165 } 166 167 /* 168 * There are a number of times that we loop over NR_MEM_SECTIONS, 169 * looking for section_present() on each. But, when we have very 170 * large physical address spaces, NR_MEM_SECTIONS can also be 171 * very large which makes the loops quite long. 172 * 173 * Keeping track of this gives us an easy way to break out of 174 * those loops early. 175 */ 176 int __highest_present_section_nr; 177 static void section_mark_present(struct mem_section *ms) 178 { 179 int section_nr = __section_nr(ms); 180 181 if (section_nr > __highest_present_section_nr) 182 __highest_present_section_nr = section_nr; 183 184 ms->section_mem_map |= SECTION_MARKED_PRESENT; 185 } 186 187 static inline int next_present_section_nr(int section_nr) 188 { 189 do { 190 section_nr++; 191 if (present_section_nr(section_nr)) 192 return section_nr; 193 } while ((section_nr < NR_MEM_SECTIONS) && 194 (section_nr <= __highest_present_section_nr)); 195 196 return -1; 197 } 198 #define for_each_present_section_nr(start, section_nr) \ 199 for (section_nr = next_present_section_nr(start-1); \ 200 ((section_nr >= 0) && \ 201 (section_nr < NR_MEM_SECTIONS) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205 /* Record a memory area against a node. */ 206 void __init memory_present(int nid, unsigned long start, unsigned long end) 207 { 208 unsigned long pfn; 209 210 #ifdef CONFIG_SPARSEMEM_EXTREME 211 if (unlikely(!mem_section)) { 212 unsigned long size, align; 213 214 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 215 align = 1 << (INTERNODE_CACHE_SHIFT); 216 mem_section = memblock_virt_alloc(size, align); 217 } 218 #endif 219 220 start &= PAGE_SECTION_MASK; 221 mminit_validate_memmodel_limits(&start, &end); 222 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 223 unsigned long section = pfn_to_section_nr(pfn); 224 struct mem_section *ms; 225 226 sparse_index_init(section, nid); 227 set_section_nid(section, nid); 228 229 ms = __nr_to_section(section); 230 if (!ms->section_mem_map) { 231 ms->section_mem_map = sparse_encode_early_nid(nid) | 232 SECTION_IS_ONLINE; 233 section_mark_present(ms); 234 } 235 } 236 } 237 238 /* 239 * Subtle, we encode the real pfn into the mem_map such that 240 * the identity pfn - section_mem_map will return the actual 241 * physical page frame number. 242 */ 243 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 244 { 245 unsigned long coded_mem_map = 246 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 247 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 248 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 249 return coded_mem_map; 250 } 251 252 /* 253 * Decode mem_map from the coded memmap 254 */ 255 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 256 { 257 /* mask off the extra low bits of information */ 258 coded_mem_map &= SECTION_MAP_MASK; 259 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 260 } 261 262 static int __meminit sparse_init_one_section(struct mem_section *ms, 263 unsigned long pnum, struct page *mem_map, 264 unsigned long *pageblock_bitmap) 265 { 266 if (!present_section(ms)) 267 return -EINVAL; 268 269 ms->section_mem_map &= ~SECTION_MAP_MASK; 270 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 271 SECTION_HAS_MEM_MAP; 272 ms->pageblock_flags = pageblock_bitmap; 273 274 return 1; 275 } 276 277 unsigned long usemap_size(void) 278 { 279 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 280 } 281 282 #ifdef CONFIG_MEMORY_HOTPLUG 283 static unsigned long *__kmalloc_section_usemap(void) 284 { 285 return kmalloc(usemap_size(), GFP_KERNEL); 286 } 287 #endif /* CONFIG_MEMORY_HOTPLUG */ 288 289 #ifdef CONFIG_MEMORY_HOTREMOVE 290 static unsigned long * __init 291 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 292 unsigned long size) 293 { 294 unsigned long goal, limit; 295 unsigned long *p; 296 int nid; 297 /* 298 * A page may contain usemaps for other sections preventing the 299 * page being freed and making a section unremovable while 300 * other sections referencing the usemap remain active. Similarly, 301 * a pgdat can prevent a section being removed. If section A 302 * contains a pgdat and section B contains the usemap, both 303 * sections become inter-dependent. This allocates usemaps 304 * from the same section as the pgdat where possible to avoid 305 * this problem. 306 */ 307 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 308 limit = goal + (1UL << PA_SECTION_SHIFT); 309 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 310 again: 311 p = memblock_virt_alloc_try_nid_nopanic(size, 312 SMP_CACHE_BYTES, goal, limit, 313 nid); 314 if (!p && limit) { 315 limit = 0; 316 goto again; 317 } 318 return p; 319 } 320 321 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 322 { 323 unsigned long usemap_snr, pgdat_snr; 324 static unsigned long old_usemap_snr; 325 static unsigned long old_pgdat_snr; 326 struct pglist_data *pgdat = NODE_DATA(nid); 327 int usemap_nid; 328 329 /* First call */ 330 if (!old_usemap_snr) { 331 old_usemap_snr = NR_MEM_SECTIONS; 332 old_pgdat_snr = NR_MEM_SECTIONS; 333 } 334 335 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 336 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 337 if (usemap_snr == pgdat_snr) 338 return; 339 340 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 341 /* skip redundant message */ 342 return; 343 344 old_usemap_snr = usemap_snr; 345 old_pgdat_snr = pgdat_snr; 346 347 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 348 if (usemap_nid != nid) { 349 pr_info("node %d must be removed before remove section %ld\n", 350 nid, usemap_snr); 351 return; 352 } 353 /* 354 * There is a circular dependency. 355 * Some platforms allow un-removable section because they will just 356 * gather other removable sections for dynamic partitioning. 357 * Just notify un-removable section's number here. 358 */ 359 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 360 usemap_snr, pgdat_snr, nid); 361 } 362 #else 363 static unsigned long * __init 364 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 365 unsigned long size) 366 { 367 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 368 } 369 370 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 371 { 372 } 373 #endif /* CONFIG_MEMORY_HOTREMOVE */ 374 375 static void __init sparse_early_usemaps_alloc_node(void *data, 376 unsigned long pnum_begin, 377 unsigned long pnum_end, 378 unsigned long usemap_count, int nodeid) 379 { 380 void *usemap; 381 unsigned long pnum; 382 unsigned long **usemap_map = (unsigned long **)data; 383 int size = usemap_size(); 384 385 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 386 size * usemap_count); 387 if (!usemap) { 388 pr_warn("%s: allocation failed\n", __func__); 389 return; 390 } 391 392 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 393 if (!present_section_nr(pnum)) 394 continue; 395 usemap_map[pnum] = usemap; 396 usemap += size; 397 check_usemap_section_nr(nodeid, usemap_map[pnum]); 398 } 399 } 400 401 #ifndef CONFIG_SPARSEMEM_VMEMMAP 402 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid, 403 struct vmem_altmap *altmap) 404 { 405 struct page *map; 406 unsigned long size; 407 408 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 409 map = memblock_virt_alloc_try_nid(size, 410 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 411 BOOTMEM_ALLOC_ACCESSIBLE, nid); 412 return map; 413 } 414 void __init sparse_mem_maps_populate_node(struct page **map_map, 415 unsigned long pnum_begin, 416 unsigned long pnum_end, 417 unsigned long map_count, int nodeid) 418 { 419 void *map; 420 unsigned long pnum; 421 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 422 423 size = PAGE_ALIGN(size); 424 map = memblock_virt_alloc_try_nid_raw(size * map_count, 425 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 426 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 427 if (map) { 428 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 429 if (!present_section_nr(pnum)) 430 continue; 431 map_map[pnum] = map; 432 map += size; 433 } 434 return; 435 } 436 437 /* fallback */ 438 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 439 struct mem_section *ms; 440 441 if (!present_section_nr(pnum)) 442 continue; 443 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL); 444 if (map_map[pnum]) 445 continue; 446 ms = __nr_to_section(pnum); 447 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 448 __func__); 449 ms->section_mem_map = 0; 450 } 451 } 452 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 453 454 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 455 static void __init sparse_early_mem_maps_alloc_node(void *data, 456 unsigned long pnum_begin, 457 unsigned long pnum_end, 458 unsigned long map_count, int nodeid) 459 { 460 struct page **map_map = (struct page **)data; 461 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 462 map_count, nodeid); 463 } 464 #else 465 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 466 { 467 struct page *map; 468 struct mem_section *ms = __nr_to_section(pnum); 469 int nid = sparse_early_nid(ms); 470 471 map = sparse_mem_map_populate(pnum, nid, NULL); 472 if (map) 473 return map; 474 475 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 476 __func__); 477 ms->section_mem_map = 0; 478 return NULL; 479 } 480 #endif 481 482 void __weak __meminit vmemmap_populate_print_last(void) 483 { 484 } 485 486 /** 487 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 488 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 489 */ 490 static void __init alloc_usemap_and_memmap(void (*alloc_func) 491 (void *, unsigned long, unsigned long, 492 unsigned long, int), void *data) 493 { 494 unsigned long pnum; 495 unsigned long map_count; 496 int nodeid_begin = 0; 497 unsigned long pnum_begin = 0; 498 499 for_each_present_section_nr(0, pnum) { 500 struct mem_section *ms; 501 502 ms = __nr_to_section(pnum); 503 nodeid_begin = sparse_early_nid(ms); 504 pnum_begin = pnum; 505 break; 506 } 507 map_count = 1; 508 for_each_present_section_nr(pnum_begin + 1, pnum) { 509 struct mem_section *ms; 510 int nodeid; 511 512 ms = __nr_to_section(pnum); 513 nodeid = sparse_early_nid(ms); 514 if (nodeid == nodeid_begin) { 515 map_count++; 516 continue; 517 } 518 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 519 alloc_func(data, pnum_begin, pnum, 520 map_count, nodeid_begin); 521 /* new start, update count etc*/ 522 nodeid_begin = nodeid; 523 pnum_begin = pnum; 524 map_count = 1; 525 } 526 /* ok, last chunk */ 527 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 528 map_count, nodeid_begin); 529 } 530 531 /* 532 * Allocate the accumulated non-linear sections, allocate a mem_map 533 * for each and record the physical to section mapping. 534 */ 535 void __init sparse_init(void) 536 { 537 unsigned long pnum; 538 struct page *map; 539 unsigned long *usemap; 540 unsigned long **usemap_map; 541 int size; 542 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 543 int size2; 544 struct page **map_map; 545 #endif 546 547 /* see include/linux/mmzone.h 'struct mem_section' definition */ 548 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 549 550 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 551 set_pageblock_order(); 552 553 /* 554 * map is using big page (aka 2M in x86 64 bit) 555 * usemap is less one page (aka 24 bytes) 556 * so alloc 2M (with 2M align) and 24 bytes in turn will 557 * make next 2M slip to one more 2M later. 558 * then in big system, the memory will have a lot of holes... 559 * here try to allocate 2M pages continuously. 560 * 561 * powerpc need to call sparse_init_one_section right after each 562 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 563 */ 564 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 565 usemap_map = memblock_virt_alloc(size, 0); 566 if (!usemap_map) 567 panic("can not allocate usemap_map\n"); 568 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 569 (void *)usemap_map); 570 571 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 572 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 573 map_map = memblock_virt_alloc(size2, 0); 574 if (!map_map) 575 panic("can not allocate map_map\n"); 576 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 577 (void *)map_map); 578 #endif 579 580 for_each_present_section_nr(0, pnum) { 581 usemap = usemap_map[pnum]; 582 if (!usemap) 583 continue; 584 585 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 586 map = map_map[pnum]; 587 #else 588 map = sparse_early_mem_map_alloc(pnum); 589 #endif 590 if (!map) 591 continue; 592 593 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 594 usemap); 595 } 596 597 vmemmap_populate_print_last(); 598 599 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 600 memblock_free_early(__pa(map_map), size2); 601 #endif 602 memblock_free_early(__pa(usemap_map), size); 603 } 604 605 #ifdef CONFIG_MEMORY_HOTPLUG 606 607 /* Mark all memory sections within the pfn range as online */ 608 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 609 { 610 unsigned long pfn; 611 612 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 613 unsigned long section_nr = pfn_to_section_nr(pfn); 614 struct mem_section *ms; 615 616 /* onlining code should never touch invalid ranges */ 617 if (WARN_ON(!valid_section_nr(section_nr))) 618 continue; 619 620 ms = __nr_to_section(section_nr); 621 ms->section_mem_map |= SECTION_IS_ONLINE; 622 } 623 } 624 625 #ifdef CONFIG_MEMORY_HOTREMOVE 626 /* Mark all memory sections within the pfn range as online */ 627 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 628 { 629 unsigned long pfn; 630 631 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 632 unsigned long section_nr = pfn_to_section_nr(start_pfn); 633 struct mem_section *ms; 634 635 /* 636 * TODO this needs some double checking. Offlining code makes 637 * sure to check pfn_valid but those checks might be just bogus 638 */ 639 if (WARN_ON(!valid_section_nr(section_nr))) 640 continue; 641 642 ms = __nr_to_section(section_nr); 643 ms->section_mem_map &= ~SECTION_IS_ONLINE; 644 } 645 } 646 #endif 647 648 #ifdef CONFIG_SPARSEMEM_VMEMMAP 649 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 650 struct vmem_altmap *altmap) 651 { 652 /* This will make the necessary allocations eventually. */ 653 return sparse_mem_map_populate(pnum, nid, altmap); 654 } 655 static void __kfree_section_memmap(struct page *memmap, 656 struct vmem_altmap *altmap) 657 { 658 unsigned long start = (unsigned long)memmap; 659 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 660 661 vmemmap_free(start, end, altmap); 662 } 663 #ifdef CONFIG_MEMORY_HOTREMOVE 664 static void free_map_bootmem(struct page *memmap) 665 { 666 unsigned long start = (unsigned long)memmap; 667 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 668 669 vmemmap_free(start, end, NULL); 670 } 671 #endif /* CONFIG_MEMORY_HOTREMOVE */ 672 #else 673 static struct page *__kmalloc_section_memmap(void) 674 { 675 struct page *page, *ret; 676 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 677 678 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 679 if (page) 680 goto got_map_page; 681 682 ret = vmalloc(memmap_size); 683 if (ret) 684 goto got_map_ptr; 685 686 return NULL; 687 got_map_page: 688 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 689 got_map_ptr: 690 691 return ret; 692 } 693 694 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 695 struct vmem_altmap *altmap) 696 { 697 return __kmalloc_section_memmap(); 698 } 699 700 static void __kfree_section_memmap(struct page *memmap, 701 struct vmem_altmap *altmap) 702 { 703 if (is_vmalloc_addr(memmap)) 704 vfree(memmap); 705 else 706 free_pages((unsigned long)memmap, 707 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 708 } 709 710 #ifdef CONFIG_MEMORY_HOTREMOVE 711 static void free_map_bootmem(struct page *memmap) 712 { 713 unsigned long maps_section_nr, removing_section_nr, i; 714 unsigned long magic, nr_pages; 715 struct page *page = virt_to_page(memmap); 716 717 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 718 >> PAGE_SHIFT; 719 720 for (i = 0; i < nr_pages; i++, page++) { 721 magic = (unsigned long) page->freelist; 722 723 BUG_ON(magic == NODE_INFO); 724 725 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 726 removing_section_nr = page_private(page); 727 728 /* 729 * When this function is called, the removing section is 730 * logical offlined state. This means all pages are isolated 731 * from page allocator. If removing section's memmap is placed 732 * on the same section, it must not be freed. 733 * If it is freed, page allocator may allocate it which will 734 * be removed physically soon. 735 */ 736 if (maps_section_nr != removing_section_nr) 737 put_page_bootmem(page); 738 } 739 } 740 #endif /* CONFIG_MEMORY_HOTREMOVE */ 741 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 742 743 /* 744 * returns the number of sections whose mem_maps were properly 745 * set. If this is <=0, then that means that the passed-in 746 * map was not consumed and must be freed. 747 */ 748 int __meminit sparse_add_one_section(struct pglist_data *pgdat, 749 unsigned long start_pfn, struct vmem_altmap *altmap) 750 { 751 unsigned long section_nr = pfn_to_section_nr(start_pfn); 752 struct mem_section *ms; 753 struct page *memmap; 754 unsigned long *usemap; 755 unsigned long flags; 756 int ret; 757 758 /* 759 * no locking for this, because it does its own 760 * plus, it does a kmalloc 761 */ 762 ret = sparse_index_init(section_nr, pgdat->node_id); 763 if (ret < 0 && ret != -EEXIST) 764 return ret; 765 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap); 766 if (!memmap) 767 return -ENOMEM; 768 usemap = __kmalloc_section_usemap(); 769 if (!usemap) { 770 __kfree_section_memmap(memmap, altmap); 771 return -ENOMEM; 772 } 773 774 pgdat_resize_lock(pgdat, &flags); 775 776 ms = __pfn_to_section(start_pfn); 777 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 778 ret = -EEXIST; 779 goto out; 780 } 781 782 #ifdef CONFIG_DEBUG_VM 783 /* 784 * Poison uninitialized struct pages in order to catch invalid flags 785 * combinations. 786 */ 787 memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION); 788 #endif 789 790 section_mark_present(ms); 791 792 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 793 794 out: 795 pgdat_resize_unlock(pgdat, &flags); 796 if (ret <= 0) { 797 kfree(usemap); 798 __kfree_section_memmap(memmap, altmap); 799 } 800 return ret; 801 } 802 803 #ifdef CONFIG_MEMORY_HOTREMOVE 804 #ifdef CONFIG_MEMORY_FAILURE 805 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 806 { 807 int i; 808 809 if (!memmap) 810 return; 811 812 for (i = 0; i < nr_pages; i++) { 813 if (PageHWPoison(&memmap[i])) { 814 atomic_long_sub(1, &num_poisoned_pages); 815 ClearPageHWPoison(&memmap[i]); 816 } 817 } 818 } 819 #else 820 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 821 { 822 } 823 #endif 824 825 static void free_section_usemap(struct page *memmap, unsigned long *usemap, 826 struct vmem_altmap *altmap) 827 { 828 struct page *usemap_page; 829 830 if (!usemap) 831 return; 832 833 usemap_page = virt_to_page(usemap); 834 /* 835 * Check to see if allocation came from hot-plug-add 836 */ 837 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 838 kfree(usemap); 839 if (memmap) 840 __kfree_section_memmap(memmap, altmap); 841 return; 842 } 843 844 /* 845 * The usemap came from bootmem. This is packed with other usemaps 846 * on the section which has pgdat at boot time. Just keep it as is now. 847 */ 848 849 if (memmap) 850 free_map_bootmem(memmap); 851 } 852 853 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 854 unsigned long map_offset, struct vmem_altmap *altmap) 855 { 856 struct page *memmap = NULL; 857 unsigned long *usemap = NULL, flags; 858 struct pglist_data *pgdat = zone->zone_pgdat; 859 860 pgdat_resize_lock(pgdat, &flags); 861 if (ms->section_mem_map) { 862 usemap = ms->pageblock_flags; 863 memmap = sparse_decode_mem_map(ms->section_mem_map, 864 __section_nr(ms)); 865 ms->section_mem_map = 0; 866 ms->pageblock_flags = NULL; 867 } 868 pgdat_resize_unlock(pgdat, &flags); 869 870 clear_hwpoisoned_pages(memmap + map_offset, 871 PAGES_PER_SECTION - map_offset); 872 free_section_usemap(memmap, usemap, altmap); 873 } 874 #endif /* CONFIG_MEMORY_HOTREMOVE */ 875 #endif /* CONFIG_MEMORY_HOTPLUG */ 876