xref: /linux/mm/sparse.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "internal.h"
12 #include <asm/dma.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 
16 /*
17  * Permanent SPARSEMEM data:
18  *
19  * 1) mem_section	- memory sections, mem_map's for valid memory
20  */
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section *mem_section[NR_SECTION_ROOTS]
23 	____cacheline_internodealigned_in_smp;
24 #else
25 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
26 	____cacheline_internodealigned_in_smp;
27 #endif
28 EXPORT_SYMBOL(mem_section);
29 
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
31 /*
32  * If we did not store the node number in the page then we have to
33  * do a lookup in the section_to_node_table in order to find which
34  * node the page belongs to.
35  */
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38 #else
39 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40 #endif
41 
42 int page_to_nid(struct page *page)
43 {
44 	return section_to_node_table[page_to_section(page)];
45 }
46 EXPORT_SYMBOL(page_to_nid);
47 
48 static void set_section_nid(unsigned long section_nr, int nid)
49 {
50 	section_to_node_table[section_nr] = nid;
51 }
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr, int nid)
54 {
55 }
56 #endif
57 
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
60 {
61 	struct mem_section *section = NULL;
62 	unsigned long array_size = SECTIONS_PER_ROOT *
63 				   sizeof(struct mem_section);
64 
65 	if (slab_is_available()) {
66 		if (node_state(nid, N_HIGH_MEMORY))
67 			section = kmalloc_node(array_size, GFP_KERNEL, nid);
68 		else
69 			section = kmalloc(array_size, GFP_KERNEL);
70 	} else
71 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
72 
73 	if (section)
74 		memset(section, 0, array_size);
75 
76 	return section;
77 }
78 
79 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
80 {
81 	static DEFINE_SPINLOCK(index_init_lock);
82 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 	struct mem_section *section;
84 	int ret = 0;
85 
86 	if (mem_section[root])
87 		return -EEXIST;
88 
89 	section = sparse_index_alloc(nid);
90 	if (!section)
91 		return -ENOMEM;
92 	/*
93 	 * This lock keeps two different sections from
94 	 * reallocating for the same index
95 	 */
96 	spin_lock(&index_init_lock);
97 
98 	if (mem_section[root]) {
99 		ret = -EEXIST;
100 		goto out;
101 	}
102 
103 	mem_section[root] = section;
104 out:
105 	spin_unlock(&index_init_lock);
106 	return ret;
107 }
108 #else /* !SPARSEMEM_EXTREME */
109 static inline int sparse_index_init(unsigned long section_nr, int nid)
110 {
111 	return 0;
112 }
113 #endif
114 
115 /*
116  * Although written for the SPARSEMEM_EXTREME case, this happens
117  * to also work for the flat array case because
118  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
119  */
120 int __section_nr(struct mem_section* ms)
121 {
122 	unsigned long root_nr;
123 	struct mem_section* root;
124 
125 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
126 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
127 		if (!root)
128 			continue;
129 
130 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
131 		     break;
132 	}
133 
134 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
135 }
136 
137 /*
138  * During early boot, before section_mem_map is used for an actual
139  * mem_map, we use section_mem_map to store the section's NUMA
140  * node.  This keeps us from having to use another data structure.  The
141  * node information is cleared just before we store the real mem_map.
142  */
143 static inline unsigned long sparse_encode_early_nid(int nid)
144 {
145 	return (nid << SECTION_NID_SHIFT);
146 }
147 
148 static inline int sparse_early_nid(struct mem_section *section)
149 {
150 	return (section->section_mem_map >> SECTION_NID_SHIFT);
151 }
152 
153 /* Validate the physical addressing limitations of the model */
154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155 						unsigned long *end_pfn)
156 {
157 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158 
159 	/*
160 	 * Sanity checks - do not allow an architecture to pass
161 	 * in larger pfns than the maximum scope of sparsemem:
162 	 */
163 	if (*start_pfn > max_sparsemem_pfn) {
164 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 			*start_pfn, *end_pfn, max_sparsemem_pfn);
167 		WARN_ON_ONCE(1);
168 		*start_pfn = max_sparsemem_pfn;
169 		*end_pfn = max_sparsemem_pfn;
170 	} else if (*end_pfn > max_sparsemem_pfn) {
171 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 			*start_pfn, *end_pfn, max_sparsemem_pfn);
174 		WARN_ON_ONCE(1);
175 		*end_pfn = max_sparsemem_pfn;
176 	}
177 }
178 
179 /* Record a memory area against a node. */
180 void __init memory_present(int nid, unsigned long start, unsigned long end)
181 {
182 	unsigned long pfn;
183 
184 	start &= PAGE_SECTION_MASK;
185 	mminit_validate_memmodel_limits(&start, &end);
186 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
187 		unsigned long section = pfn_to_section_nr(pfn);
188 		struct mem_section *ms;
189 
190 		sparse_index_init(section, nid);
191 		set_section_nid(section, nid);
192 
193 		ms = __nr_to_section(section);
194 		if (!ms->section_mem_map)
195 			ms->section_mem_map = sparse_encode_early_nid(nid) |
196 							SECTION_MARKED_PRESENT;
197 	}
198 }
199 
200 /*
201  * Only used by the i386 NUMA architecures, but relatively
202  * generic code.
203  */
204 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
205 						     unsigned long end_pfn)
206 {
207 	unsigned long pfn;
208 	unsigned long nr_pages = 0;
209 
210 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
211 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
212 		if (nid != early_pfn_to_nid(pfn))
213 			continue;
214 
215 		if (pfn_present(pfn))
216 			nr_pages += PAGES_PER_SECTION;
217 	}
218 
219 	return nr_pages * sizeof(struct page);
220 }
221 
222 /*
223  * Subtle, we encode the real pfn into the mem_map such that
224  * the identity pfn - section_mem_map will return the actual
225  * physical page frame number.
226  */
227 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
228 {
229 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
230 }
231 
232 /*
233  * Decode mem_map from the coded memmap
234  */
235 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
236 {
237 	/* mask off the extra low bits of information */
238 	coded_mem_map &= SECTION_MAP_MASK;
239 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
240 }
241 
242 static int __meminit sparse_init_one_section(struct mem_section *ms,
243 		unsigned long pnum, struct page *mem_map,
244 		unsigned long *pageblock_bitmap)
245 {
246 	if (!present_section(ms))
247 		return -EINVAL;
248 
249 	ms->section_mem_map &= ~SECTION_MAP_MASK;
250 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
251 							SECTION_HAS_MEM_MAP;
252  	ms->pageblock_flags = pageblock_bitmap;
253 
254 	return 1;
255 }
256 
257 unsigned long usemap_size(void)
258 {
259 	unsigned long size_bytes;
260 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
261 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
262 	return size_bytes;
263 }
264 
265 #ifdef CONFIG_MEMORY_HOTPLUG
266 static unsigned long *__kmalloc_section_usemap(void)
267 {
268 	return kmalloc(usemap_size(), GFP_KERNEL);
269 }
270 #endif /* CONFIG_MEMORY_HOTPLUG */
271 
272 #ifdef CONFIG_MEMORY_HOTREMOVE
273 static unsigned long * __init
274 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
275 					 unsigned long count)
276 {
277 	unsigned long section_nr;
278 
279 	/*
280 	 * A page may contain usemaps for other sections preventing the
281 	 * page being freed and making a section unremovable while
282 	 * other sections referencing the usemap retmain active. Similarly,
283 	 * a pgdat can prevent a section being removed. If section A
284 	 * contains a pgdat and section B contains the usemap, both
285 	 * sections become inter-dependent. This allocates usemaps
286 	 * from the same section as the pgdat where possible to avoid
287 	 * this problem.
288 	 */
289 	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
290 	return alloc_bootmem_section(usemap_size() * count, section_nr);
291 }
292 
293 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
294 {
295 	unsigned long usemap_snr, pgdat_snr;
296 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
297 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
298 	struct pglist_data *pgdat = NODE_DATA(nid);
299 	int usemap_nid;
300 
301 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
302 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
303 	if (usemap_snr == pgdat_snr)
304 		return;
305 
306 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
307 		/* skip redundant message */
308 		return;
309 
310 	old_usemap_snr = usemap_snr;
311 	old_pgdat_snr = pgdat_snr;
312 
313 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
314 	if (usemap_nid != nid) {
315 		printk(KERN_INFO
316 		       "node %d must be removed before remove section %ld\n",
317 		       nid, usemap_snr);
318 		return;
319 	}
320 	/*
321 	 * There is a circular dependency.
322 	 * Some platforms allow un-removable section because they will just
323 	 * gather other removable sections for dynamic partitioning.
324 	 * Just notify un-removable section's number here.
325 	 */
326 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
327 	       pgdat_snr, nid);
328 	printk(KERN_CONT
329 	       " have a circular dependency on usemap and pgdat allocations\n");
330 }
331 #else
332 static unsigned long * __init
333 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
334 					 unsigned long count)
335 {
336 	return NULL;
337 }
338 
339 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
340 {
341 }
342 #endif /* CONFIG_MEMORY_HOTREMOVE */
343 
344 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
345 				 unsigned long pnum_begin,
346 				 unsigned long pnum_end,
347 				 unsigned long usemap_count, int nodeid)
348 {
349 	void *usemap;
350 	unsigned long pnum;
351 	int size = usemap_size();
352 
353 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
354 								 usemap_count);
355 	if (usemap) {
356 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
357 			if (!present_section_nr(pnum))
358 				continue;
359 			usemap_map[pnum] = usemap;
360 			usemap += size;
361 		}
362 		return;
363 	}
364 
365 	usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
366 	if (usemap) {
367 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
368 			if (!present_section_nr(pnum))
369 				continue;
370 			usemap_map[pnum] = usemap;
371 			usemap += size;
372 			check_usemap_section_nr(nodeid, usemap_map[pnum]);
373 		}
374 		return;
375 	}
376 
377 	printk(KERN_WARNING "%s: allocation failed\n", __func__);
378 }
379 
380 #ifndef CONFIG_SPARSEMEM_VMEMMAP
381 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
382 {
383 	struct page *map;
384 
385 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
386 	if (map)
387 		return map;
388 
389 	map = alloc_bootmem_pages_node(NODE_DATA(nid),
390 		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
391 	return map;
392 }
393 void __init sparse_mem_maps_populate_node(struct page **map_map,
394 					  unsigned long pnum_begin,
395 					  unsigned long pnum_end,
396 					  unsigned long map_count, int nodeid)
397 {
398 	void *map;
399 	unsigned long pnum;
400 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
401 
402 	map = alloc_remap(nodeid, size * map_count);
403 	if (map) {
404 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
405 			if (!present_section_nr(pnum))
406 				continue;
407 			map_map[pnum] = map;
408 			map += size;
409 		}
410 		return;
411 	}
412 
413 	size = PAGE_ALIGN(size);
414 	map = alloc_bootmem_pages_node(NODE_DATA(nodeid), size * map_count);
415 	if (map) {
416 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
417 			if (!present_section_nr(pnum))
418 				continue;
419 			map_map[pnum] = map;
420 			map += size;
421 		}
422 		return;
423 	}
424 
425 	/* fallback */
426 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
427 		struct mem_section *ms;
428 
429 		if (!present_section_nr(pnum))
430 			continue;
431 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
432 		if (map_map[pnum])
433 			continue;
434 		ms = __nr_to_section(pnum);
435 		printk(KERN_ERR "%s: sparsemem memory map backing failed "
436 			"some memory will not be available.\n", __func__);
437 		ms->section_mem_map = 0;
438 	}
439 }
440 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
441 
442 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
443 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
444 				 unsigned long pnum_begin,
445 				 unsigned long pnum_end,
446 				 unsigned long map_count, int nodeid)
447 {
448 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
449 					 map_count, nodeid);
450 }
451 #else
452 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
453 {
454 	struct page *map;
455 	struct mem_section *ms = __nr_to_section(pnum);
456 	int nid = sparse_early_nid(ms);
457 
458 	map = sparse_mem_map_populate(pnum, nid);
459 	if (map)
460 		return map;
461 
462 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
463 			"some memory will not be available.\n", __func__);
464 	ms->section_mem_map = 0;
465 	return NULL;
466 }
467 #endif
468 
469 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
470 {
471 }
472 
473 /*
474  * Allocate the accumulated non-linear sections, allocate a mem_map
475  * for each and record the physical to section mapping.
476  */
477 void __init sparse_init(void)
478 {
479 	unsigned long pnum;
480 	struct page *map;
481 	unsigned long *usemap;
482 	unsigned long **usemap_map;
483 	int size;
484 	int nodeid_begin = 0;
485 	unsigned long pnum_begin = 0;
486 	unsigned long usemap_count;
487 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
488 	unsigned long map_count;
489 	int size2;
490 	struct page **map_map;
491 #endif
492 
493 	/*
494 	 * map is using big page (aka 2M in x86 64 bit)
495 	 * usemap is less one page (aka 24 bytes)
496 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
497 	 * make next 2M slip to one more 2M later.
498 	 * then in big system, the memory will have a lot of holes...
499 	 * here try to allocate 2M pages continously.
500 	 *
501 	 * powerpc need to call sparse_init_one_section right after each
502 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
503 	 */
504 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
505 	usemap_map = alloc_bootmem(size);
506 	if (!usemap_map)
507 		panic("can not allocate usemap_map\n");
508 
509 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
510 		struct mem_section *ms;
511 
512 		if (!present_section_nr(pnum))
513 			continue;
514 		ms = __nr_to_section(pnum);
515 		nodeid_begin = sparse_early_nid(ms);
516 		pnum_begin = pnum;
517 		break;
518 	}
519 	usemap_count = 1;
520 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
521 		struct mem_section *ms;
522 		int nodeid;
523 
524 		if (!present_section_nr(pnum))
525 			continue;
526 		ms = __nr_to_section(pnum);
527 		nodeid = sparse_early_nid(ms);
528 		if (nodeid == nodeid_begin) {
529 			usemap_count++;
530 			continue;
531 		}
532 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
533 		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
534 						 usemap_count, nodeid_begin);
535 		/* new start, update count etc*/
536 		nodeid_begin = nodeid;
537 		pnum_begin = pnum;
538 		usemap_count = 1;
539 	}
540 	/* ok, last chunk */
541 	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
542 					 usemap_count, nodeid_begin);
543 
544 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
545 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
546 	map_map = alloc_bootmem(size2);
547 	if (!map_map)
548 		panic("can not allocate map_map\n");
549 
550 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
551 		struct mem_section *ms;
552 
553 		if (!present_section_nr(pnum))
554 			continue;
555 		ms = __nr_to_section(pnum);
556 		nodeid_begin = sparse_early_nid(ms);
557 		pnum_begin = pnum;
558 		break;
559 	}
560 	map_count = 1;
561 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
562 		struct mem_section *ms;
563 		int nodeid;
564 
565 		if (!present_section_nr(pnum))
566 			continue;
567 		ms = __nr_to_section(pnum);
568 		nodeid = sparse_early_nid(ms);
569 		if (nodeid == nodeid_begin) {
570 			map_count++;
571 			continue;
572 		}
573 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
574 		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
575 						 map_count, nodeid_begin);
576 		/* new start, update count etc*/
577 		nodeid_begin = nodeid;
578 		pnum_begin = pnum;
579 		map_count = 1;
580 	}
581 	/* ok, last chunk */
582 	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
583 					 map_count, nodeid_begin);
584 #endif
585 
586 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
587 		if (!present_section_nr(pnum))
588 			continue;
589 
590 		usemap = usemap_map[pnum];
591 		if (!usemap)
592 			continue;
593 
594 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
595 		map = map_map[pnum];
596 #else
597 		map = sparse_early_mem_map_alloc(pnum);
598 #endif
599 		if (!map)
600 			continue;
601 
602 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
603 								usemap);
604 	}
605 
606 	vmemmap_populate_print_last();
607 
608 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
609 	free_bootmem(__pa(map_map), size2);
610 #endif
611 	free_bootmem(__pa(usemap_map), size);
612 }
613 
614 #ifdef CONFIG_MEMORY_HOTPLUG
615 #ifdef CONFIG_SPARSEMEM_VMEMMAP
616 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
617 						 unsigned long nr_pages)
618 {
619 	/* This will make the necessary allocations eventually. */
620 	return sparse_mem_map_populate(pnum, nid);
621 }
622 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
623 {
624 	return; /* XXX: Not implemented yet */
625 }
626 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
627 {
628 }
629 #else
630 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
631 {
632 	struct page *page, *ret;
633 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
634 
635 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
636 	if (page)
637 		goto got_map_page;
638 
639 	ret = vmalloc(memmap_size);
640 	if (ret)
641 		goto got_map_ptr;
642 
643 	return NULL;
644 got_map_page:
645 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
646 got_map_ptr:
647 	memset(ret, 0, memmap_size);
648 
649 	return ret;
650 }
651 
652 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
653 						  unsigned long nr_pages)
654 {
655 	return __kmalloc_section_memmap(nr_pages);
656 }
657 
658 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
659 {
660 	if (is_vmalloc_addr(memmap))
661 		vfree(memmap);
662 	else
663 		free_pages((unsigned long)memmap,
664 			   get_order(sizeof(struct page) * nr_pages));
665 }
666 
667 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
668 {
669 	unsigned long maps_section_nr, removing_section_nr, i;
670 	int magic;
671 
672 	for (i = 0; i < nr_pages; i++, page++) {
673 		magic = atomic_read(&page->_mapcount);
674 
675 		BUG_ON(magic == NODE_INFO);
676 
677 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
678 		removing_section_nr = page->private;
679 
680 		/*
681 		 * When this function is called, the removing section is
682 		 * logical offlined state. This means all pages are isolated
683 		 * from page allocator. If removing section's memmap is placed
684 		 * on the same section, it must not be freed.
685 		 * If it is freed, page allocator may allocate it which will
686 		 * be removed physically soon.
687 		 */
688 		if (maps_section_nr != removing_section_nr)
689 			put_page_bootmem(page);
690 	}
691 }
692 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
693 
694 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
695 {
696 	struct page *usemap_page;
697 	unsigned long nr_pages;
698 
699 	if (!usemap)
700 		return;
701 
702 	usemap_page = virt_to_page(usemap);
703 	/*
704 	 * Check to see if allocation came from hot-plug-add
705 	 */
706 	if (PageSlab(usemap_page)) {
707 		kfree(usemap);
708 		if (memmap)
709 			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
710 		return;
711 	}
712 
713 	/*
714 	 * The usemap came from bootmem. This is packed with other usemaps
715 	 * on the section which has pgdat at boot time. Just keep it as is now.
716 	 */
717 
718 	if (memmap) {
719 		struct page *memmap_page;
720 		memmap_page = virt_to_page(memmap);
721 
722 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
723 			>> PAGE_SHIFT;
724 
725 		free_map_bootmem(memmap_page, nr_pages);
726 	}
727 }
728 
729 /*
730  * returns the number of sections whose mem_maps were properly
731  * set.  If this is <=0, then that means that the passed-in
732  * map was not consumed and must be freed.
733  */
734 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
735 			   int nr_pages)
736 {
737 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
738 	struct pglist_data *pgdat = zone->zone_pgdat;
739 	struct mem_section *ms;
740 	struct page *memmap;
741 	unsigned long *usemap;
742 	unsigned long flags;
743 	int ret;
744 
745 	/*
746 	 * no locking for this, because it does its own
747 	 * plus, it does a kmalloc
748 	 */
749 	ret = sparse_index_init(section_nr, pgdat->node_id);
750 	if (ret < 0 && ret != -EEXIST)
751 		return ret;
752 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
753 	if (!memmap)
754 		return -ENOMEM;
755 	usemap = __kmalloc_section_usemap();
756 	if (!usemap) {
757 		__kfree_section_memmap(memmap, nr_pages);
758 		return -ENOMEM;
759 	}
760 
761 	pgdat_resize_lock(pgdat, &flags);
762 
763 	ms = __pfn_to_section(start_pfn);
764 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
765 		ret = -EEXIST;
766 		goto out;
767 	}
768 
769 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
770 
771 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
772 
773 out:
774 	pgdat_resize_unlock(pgdat, &flags);
775 	if (ret <= 0) {
776 		kfree(usemap);
777 		__kfree_section_memmap(memmap, nr_pages);
778 	}
779 	return ret;
780 }
781 
782 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
783 {
784 	struct page *memmap = NULL;
785 	unsigned long *usemap = NULL;
786 
787 	if (ms->section_mem_map) {
788 		usemap = ms->pageblock_flags;
789 		memmap = sparse_decode_mem_map(ms->section_mem_map,
790 						__section_nr(ms));
791 		ms->section_mem_map = 0;
792 		ms->pageblock_flags = NULL;
793 	}
794 
795 	free_section_usemap(memmap, usemap);
796 }
797 #endif
798