1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/mmzone.h> 6 #include <linux/bootmem.h> 7 #include <linux/highmem.h> 8 #include <linux/module.h> 9 #include <linux/spinlock.h> 10 #include <linux/vmalloc.h> 11 #include "internal.h" 12 #include <asm/dma.h> 13 #include <asm/pgalloc.h> 14 #include <asm/pgtable.h> 15 16 /* 17 * Permanent SPARSEMEM data: 18 * 19 * 1) mem_section - memory sections, mem_map's for valid memory 20 */ 21 #ifdef CONFIG_SPARSEMEM_EXTREME 22 struct mem_section *mem_section[NR_SECTION_ROOTS] 23 ____cacheline_internodealigned_in_smp; 24 #else 25 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 26 ____cacheline_internodealigned_in_smp; 27 #endif 28 EXPORT_SYMBOL(mem_section); 29 30 #ifdef NODE_NOT_IN_PAGE_FLAGS 31 /* 32 * If we did not store the node number in the page then we have to 33 * do a lookup in the section_to_node_table in order to find which 34 * node the page belongs to. 35 */ 36 #if MAX_NUMNODES <= 256 37 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 38 #else 39 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 40 #endif 41 42 int page_to_nid(struct page *page) 43 { 44 return section_to_node_table[page_to_section(page)]; 45 } 46 EXPORT_SYMBOL(page_to_nid); 47 48 static void set_section_nid(unsigned long section_nr, int nid) 49 { 50 section_to_node_table[section_nr] = nid; 51 } 52 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 53 static inline void set_section_nid(unsigned long section_nr, int nid) 54 { 55 } 56 #endif 57 58 #ifdef CONFIG_SPARSEMEM_EXTREME 59 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 60 { 61 struct mem_section *section = NULL; 62 unsigned long array_size = SECTIONS_PER_ROOT * 63 sizeof(struct mem_section); 64 65 if (slab_is_available()) { 66 if (node_state(nid, N_HIGH_MEMORY)) 67 section = kmalloc_node(array_size, GFP_KERNEL, nid); 68 else 69 section = kmalloc(array_size, GFP_KERNEL); 70 } else 71 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 72 73 if (section) 74 memset(section, 0, array_size); 75 76 return section; 77 } 78 79 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 80 { 81 static DEFINE_SPINLOCK(index_init_lock); 82 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 83 struct mem_section *section; 84 int ret = 0; 85 86 if (mem_section[root]) 87 return -EEXIST; 88 89 section = sparse_index_alloc(nid); 90 if (!section) 91 return -ENOMEM; 92 /* 93 * This lock keeps two different sections from 94 * reallocating for the same index 95 */ 96 spin_lock(&index_init_lock); 97 98 if (mem_section[root]) { 99 ret = -EEXIST; 100 goto out; 101 } 102 103 mem_section[root] = section; 104 out: 105 spin_unlock(&index_init_lock); 106 return ret; 107 } 108 #else /* !SPARSEMEM_EXTREME */ 109 static inline int sparse_index_init(unsigned long section_nr, int nid) 110 { 111 return 0; 112 } 113 #endif 114 115 /* 116 * Although written for the SPARSEMEM_EXTREME case, this happens 117 * to also work for the flat array case because 118 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 119 */ 120 int __section_nr(struct mem_section* ms) 121 { 122 unsigned long root_nr; 123 struct mem_section* root; 124 125 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 126 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 127 if (!root) 128 continue; 129 130 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 131 break; 132 } 133 134 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 135 } 136 137 /* 138 * During early boot, before section_mem_map is used for an actual 139 * mem_map, we use section_mem_map to store the section's NUMA 140 * node. This keeps us from having to use another data structure. The 141 * node information is cleared just before we store the real mem_map. 142 */ 143 static inline unsigned long sparse_encode_early_nid(int nid) 144 { 145 return (nid << SECTION_NID_SHIFT); 146 } 147 148 static inline int sparse_early_nid(struct mem_section *section) 149 { 150 return (section->section_mem_map >> SECTION_NID_SHIFT); 151 } 152 153 /* Validate the physical addressing limitations of the model */ 154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 155 unsigned long *end_pfn) 156 { 157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 158 159 /* 160 * Sanity checks - do not allow an architecture to pass 161 * in larger pfns than the maximum scope of sparsemem: 162 */ 163 if (*start_pfn > max_sparsemem_pfn) { 164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 166 *start_pfn, *end_pfn, max_sparsemem_pfn); 167 WARN_ON_ONCE(1); 168 *start_pfn = max_sparsemem_pfn; 169 *end_pfn = max_sparsemem_pfn; 170 } else if (*end_pfn > max_sparsemem_pfn) { 171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 173 *start_pfn, *end_pfn, max_sparsemem_pfn); 174 WARN_ON_ONCE(1); 175 *end_pfn = max_sparsemem_pfn; 176 } 177 } 178 179 /* Record a memory area against a node. */ 180 void __init memory_present(int nid, unsigned long start, unsigned long end) 181 { 182 unsigned long pfn; 183 184 start &= PAGE_SECTION_MASK; 185 mminit_validate_memmodel_limits(&start, &end); 186 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 187 unsigned long section = pfn_to_section_nr(pfn); 188 struct mem_section *ms; 189 190 sparse_index_init(section, nid); 191 set_section_nid(section, nid); 192 193 ms = __nr_to_section(section); 194 if (!ms->section_mem_map) 195 ms->section_mem_map = sparse_encode_early_nid(nid) | 196 SECTION_MARKED_PRESENT; 197 } 198 } 199 200 /* 201 * Only used by the i386 NUMA architecures, but relatively 202 * generic code. 203 */ 204 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 205 unsigned long end_pfn) 206 { 207 unsigned long pfn; 208 unsigned long nr_pages = 0; 209 210 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 211 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 212 if (nid != early_pfn_to_nid(pfn)) 213 continue; 214 215 if (pfn_present(pfn)) 216 nr_pages += PAGES_PER_SECTION; 217 } 218 219 return nr_pages * sizeof(struct page); 220 } 221 222 /* 223 * Subtle, we encode the real pfn into the mem_map such that 224 * the identity pfn - section_mem_map will return the actual 225 * physical page frame number. 226 */ 227 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 228 { 229 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 230 } 231 232 /* 233 * Decode mem_map from the coded memmap 234 */ 235 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 236 { 237 /* mask off the extra low bits of information */ 238 coded_mem_map &= SECTION_MAP_MASK; 239 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 240 } 241 242 static int __meminit sparse_init_one_section(struct mem_section *ms, 243 unsigned long pnum, struct page *mem_map, 244 unsigned long *pageblock_bitmap) 245 { 246 if (!present_section(ms)) 247 return -EINVAL; 248 249 ms->section_mem_map &= ~SECTION_MAP_MASK; 250 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 251 SECTION_HAS_MEM_MAP; 252 ms->pageblock_flags = pageblock_bitmap; 253 254 return 1; 255 } 256 257 unsigned long usemap_size(void) 258 { 259 unsigned long size_bytes; 260 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 261 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 262 return size_bytes; 263 } 264 265 #ifdef CONFIG_MEMORY_HOTPLUG 266 static unsigned long *__kmalloc_section_usemap(void) 267 { 268 return kmalloc(usemap_size(), GFP_KERNEL); 269 } 270 #endif /* CONFIG_MEMORY_HOTPLUG */ 271 272 #ifdef CONFIG_MEMORY_HOTREMOVE 273 static unsigned long * __init 274 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 275 unsigned long count) 276 { 277 unsigned long section_nr; 278 279 /* 280 * A page may contain usemaps for other sections preventing the 281 * page being freed and making a section unremovable while 282 * other sections referencing the usemap retmain active. Similarly, 283 * a pgdat can prevent a section being removed. If section A 284 * contains a pgdat and section B contains the usemap, both 285 * sections become inter-dependent. This allocates usemaps 286 * from the same section as the pgdat where possible to avoid 287 * this problem. 288 */ 289 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 290 return alloc_bootmem_section(usemap_size() * count, section_nr); 291 } 292 293 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 294 { 295 unsigned long usemap_snr, pgdat_snr; 296 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 297 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 298 struct pglist_data *pgdat = NODE_DATA(nid); 299 int usemap_nid; 300 301 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 302 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 303 if (usemap_snr == pgdat_snr) 304 return; 305 306 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 307 /* skip redundant message */ 308 return; 309 310 old_usemap_snr = usemap_snr; 311 old_pgdat_snr = pgdat_snr; 312 313 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 314 if (usemap_nid != nid) { 315 printk(KERN_INFO 316 "node %d must be removed before remove section %ld\n", 317 nid, usemap_snr); 318 return; 319 } 320 /* 321 * There is a circular dependency. 322 * Some platforms allow un-removable section because they will just 323 * gather other removable sections for dynamic partitioning. 324 * Just notify un-removable section's number here. 325 */ 326 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, 327 pgdat_snr, nid); 328 printk(KERN_CONT 329 " have a circular dependency on usemap and pgdat allocations\n"); 330 } 331 #else 332 static unsigned long * __init 333 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 334 unsigned long count) 335 { 336 return NULL; 337 } 338 339 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 340 { 341 } 342 #endif /* CONFIG_MEMORY_HOTREMOVE */ 343 344 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, 345 unsigned long pnum_begin, 346 unsigned long pnum_end, 347 unsigned long usemap_count, int nodeid) 348 { 349 void *usemap; 350 unsigned long pnum; 351 int size = usemap_size(); 352 353 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 354 usemap_count); 355 if (usemap) { 356 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 357 if (!present_section_nr(pnum)) 358 continue; 359 usemap_map[pnum] = usemap; 360 usemap += size; 361 } 362 return; 363 } 364 365 usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count); 366 if (usemap) { 367 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 368 if (!present_section_nr(pnum)) 369 continue; 370 usemap_map[pnum] = usemap; 371 usemap += size; 372 check_usemap_section_nr(nodeid, usemap_map[pnum]); 373 } 374 return; 375 } 376 377 printk(KERN_WARNING "%s: allocation failed\n", __func__); 378 } 379 380 #ifndef CONFIG_SPARSEMEM_VMEMMAP 381 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 382 { 383 struct page *map; 384 385 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 386 if (map) 387 return map; 388 389 map = alloc_bootmem_pages_node(NODE_DATA(nid), 390 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION)); 391 return map; 392 } 393 void __init sparse_mem_maps_populate_node(struct page **map_map, 394 unsigned long pnum_begin, 395 unsigned long pnum_end, 396 unsigned long map_count, int nodeid) 397 { 398 void *map; 399 unsigned long pnum; 400 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 401 402 map = alloc_remap(nodeid, size * map_count); 403 if (map) { 404 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 405 if (!present_section_nr(pnum)) 406 continue; 407 map_map[pnum] = map; 408 map += size; 409 } 410 return; 411 } 412 413 size = PAGE_ALIGN(size); 414 map = alloc_bootmem_pages_node(NODE_DATA(nodeid), size * map_count); 415 if (map) { 416 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 417 if (!present_section_nr(pnum)) 418 continue; 419 map_map[pnum] = map; 420 map += size; 421 } 422 return; 423 } 424 425 /* fallback */ 426 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 427 struct mem_section *ms; 428 429 if (!present_section_nr(pnum)) 430 continue; 431 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 432 if (map_map[pnum]) 433 continue; 434 ms = __nr_to_section(pnum); 435 printk(KERN_ERR "%s: sparsemem memory map backing failed " 436 "some memory will not be available.\n", __func__); 437 ms->section_mem_map = 0; 438 } 439 } 440 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 441 442 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 443 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, 444 unsigned long pnum_begin, 445 unsigned long pnum_end, 446 unsigned long map_count, int nodeid) 447 { 448 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 449 map_count, nodeid); 450 } 451 #else 452 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 453 { 454 struct page *map; 455 struct mem_section *ms = __nr_to_section(pnum); 456 int nid = sparse_early_nid(ms); 457 458 map = sparse_mem_map_populate(pnum, nid); 459 if (map) 460 return map; 461 462 printk(KERN_ERR "%s: sparsemem memory map backing failed " 463 "some memory will not be available.\n", __func__); 464 ms->section_mem_map = 0; 465 return NULL; 466 } 467 #endif 468 469 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) 470 { 471 } 472 473 /* 474 * Allocate the accumulated non-linear sections, allocate a mem_map 475 * for each and record the physical to section mapping. 476 */ 477 void __init sparse_init(void) 478 { 479 unsigned long pnum; 480 struct page *map; 481 unsigned long *usemap; 482 unsigned long **usemap_map; 483 int size; 484 int nodeid_begin = 0; 485 unsigned long pnum_begin = 0; 486 unsigned long usemap_count; 487 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 488 unsigned long map_count; 489 int size2; 490 struct page **map_map; 491 #endif 492 493 /* 494 * map is using big page (aka 2M in x86 64 bit) 495 * usemap is less one page (aka 24 bytes) 496 * so alloc 2M (with 2M align) and 24 bytes in turn will 497 * make next 2M slip to one more 2M later. 498 * then in big system, the memory will have a lot of holes... 499 * here try to allocate 2M pages continously. 500 * 501 * powerpc need to call sparse_init_one_section right after each 502 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 503 */ 504 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 505 usemap_map = alloc_bootmem(size); 506 if (!usemap_map) 507 panic("can not allocate usemap_map\n"); 508 509 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 510 struct mem_section *ms; 511 512 if (!present_section_nr(pnum)) 513 continue; 514 ms = __nr_to_section(pnum); 515 nodeid_begin = sparse_early_nid(ms); 516 pnum_begin = pnum; 517 break; 518 } 519 usemap_count = 1; 520 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 521 struct mem_section *ms; 522 int nodeid; 523 524 if (!present_section_nr(pnum)) 525 continue; 526 ms = __nr_to_section(pnum); 527 nodeid = sparse_early_nid(ms); 528 if (nodeid == nodeid_begin) { 529 usemap_count++; 530 continue; 531 } 532 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 533 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, 534 usemap_count, nodeid_begin); 535 /* new start, update count etc*/ 536 nodeid_begin = nodeid; 537 pnum_begin = pnum; 538 usemap_count = 1; 539 } 540 /* ok, last chunk */ 541 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, 542 usemap_count, nodeid_begin); 543 544 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 545 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 546 map_map = alloc_bootmem(size2); 547 if (!map_map) 548 panic("can not allocate map_map\n"); 549 550 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 551 struct mem_section *ms; 552 553 if (!present_section_nr(pnum)) 554 continue; 555 ms = __nr_to_section(pnum); 556 nodeid_begin = sparse_early_nid(ms); 557 pnum_begin = pnum; 558 break; 559 } 560 map_count = 1; 561 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 562 struct mem_section *ms; 563 int nodeid; 564 565 if (!present_section_nr(pnum)) 566 continue; 567 ms = __nr_to_section(pnum); 568 nodeid = sparse_early_nid(ms); 569 if (nodeid == nodeid_begin) { 570 map_count++; 571 continue; 572 } 573 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 574 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, 575 map_count, nodeid_begin); 576 /* new start, update count etc*/ 577 nodeid_begin = nodeid; 578 pnum_begin = pnum; 579 map_count = 1; 580 } 581 /* ok, last chunk */ 582 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, 583 map_count, nodeid_begin); 584 #endif 585 586 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 587 if (!present_section_nr(pnum)) 588 continue; 589 590 usemap = usemap_map[pnum]; 591 if (!usemap) 592 continue; 593 594 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 595 map = map_map[pnum]; 596 #else 597 map = sparse_early_mem_map_alloc(pnum); 598 #endif 599 if (!map) 600 continue; 601 602 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 603 usemap); 604 } 605 606 vmemmap_populate_print_last(); 607 608 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 609 free_bootmem(__pa(map_map), size2); 610 #endif 611 free_bootmem(__pa(usemap_map), size); 612 } 613 614 #ifdef CONFIG_MEMORY_HOTPLUG 615 #ifdef CONFIG_SPARSEMEM_VMEMMAP 616 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 617 unsigned long nr_pages) 618 { 619 /* This will make the necessary allocations eventually. */ 620 return sparse_mem_map_populate(pnum, nid); 621 } 622 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 623 { 624 return; /* XXX: Not implemented yet */ 625 } 626 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 627 { 628 } 629 #else 630 static struct page *__kmalloc_section_memmap(unsigned long nr_pages) 631 { 632 struct page *page, *ret; 633 unsigned long memmap_size = sizeof(struct page) * nr_pages; 634 635 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 636 if (page) 637 goto got_map_page; 638 639 ret = vmalloc(memmap_size); 640 if (ret) 641 goto got_map_ptr; 642 643 return NULL; 644 got_map_page: 645 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 646 got_map_ptr: 647 memset(ret, 0, memmap_size); 648 649 return ret; 650 } 651 652 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 653 unsigned long nr_pages) 654 { 655 return __kmalloc_section_memmap(nr_pages); 656 } 657 658 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 659 { 660 if (is_vmalloc_addr(memmap)) 661 vfree(memmap); 662 else 663 free_pages((unsigned long)memmap, 664 get_order(sizeof(struct page) * nr_pages)); 665 } 666 667 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 668 { 669 unsigned long maps_section_nr, removing_section_nr, i; 670 int magic; 671 672 for (i = 0; i < nr_pages; i++, page++) { 673 magic = atomic_read(&page->_mapcount); 674 675 BUG_ON(magic == NODE_INFO); 676 677 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 678 removing_section_nr = page->private; 679 680 /* 681 * When this function is called, the removing section is 682 * logical offlined state. This means all pages are isolated 683 * from page allocator. If removing section's memmap is placed 684 * on the same section, it must not be freed. 685 * If it is freed, page allocator may allocate it which will 686 * be removed physically soon. 687 */ 688 if (maps_section_nr != removing_section_nr) 689 put_page_bootmem(page); 690 } 691 } 692 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 693 694 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 695 { 696 struct page *usemap_page; 697 unsigned long nr_pages; 698 699 if (!usemap) 700 return; 701 702 usemap_page = virt_to_page(usemap); 703 /* 704 * Check to see if allocation came from hot-plug-add 705 */ 706 if (PageSlab(usemap_page)) { 707 kfree(usemap); 708 if (memmap) 709 __kfree_section_memmap(memmap, PAGES_PER_SECTION); 710 return; 711 } 712 713 /* 714 * The usemap came from bootmem. This is packed with other usemaps 715 * on the section which has pgdat at boot time. Just keep it as is now. 716 */ 717 718 if (memmap) { 719 struct page *memmap_page; 720 memmap_page = virt_to_page(memmap); 721 722 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 723 >> PAGE_SHIFT; 724 725 free_map_bootmem(memmap_page, nr_pages); 726 } 727 } 728 729 /* 730 * returns the number of sections whose mem_maps were properly 731 * set. If this is <=0, then that means that the passed-in 732 * map was not consumed and must be freed. 733 */ 734 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, 735 int nr_pages) 736 { 737 unsigned long section_nr = pfn_to_section_nr(start_pfn); 738 struct pglist_data *pgdat = zone->zone_pgdat; 739 struct mem_section *ms; 740 struct page *memmap; 741 unsigned long *usemap; 742 unsigned long flags; 743 int ret; 744 745 /* 746 * no locking for this, because it does its own 747 * plus, it does a kmalloc 748 */ 749 ret = sparse_index_init(section_nr, pgdat->node_id); 750 if (ret < 0 && ret != -EEXIST) 751 return ret; 752 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); 753 if (!memmap) 754 return -ENOMEM; 755 usemap = __kmalloc_section_usemap(); 756 if (!usemap) { 757 __kfree_section_memmap(memmap, nr_pages); 758 return -ENOMEM; 759 } 760 761 pgdat_resize_lock(pgdat, &flags); 762 763 ms = __pfn_to_section(start_pfn); 764 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 765 ret = -EEXIST; 766 goto out; 767 } 768 769 ms->section_mem_map |= SECTION_MARKED_PRESENT; 770 771 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 772 773 out: 774 pgdat_resize_unlock(pgdat, &flags); 775 if (ret <= 0) { 776 kfree(usemap); 777 __kfree_section_memmap(memmap, nr_pages); 778 } 779 return ret; 780 } 781 782 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) 783 { 784 struct page *memmap = NULL; 785 unsigned long *usemap = NULL; 786 787 if (ms->section_mem_map) { 788 usemap = ms->pageblock_flags; 789 memmap = sparse_decode_mem_map(ms->section_mem_map, 790 __section_nr(ms)); 791 ms->section_mem_map = 0; 792 ms->pageblock_flags = NULL; 793 } 794 795 free_section_usemap(memmap, usemap); 796 } 797 #endif 798