xref: /linux/mm/sparse.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include <asm/dma.h>
12 #include <asm/pgalloc.h>
13 #include <asm/pgtable.h>
14 
15 /*
16  * Permanent SPARSEMEM data:
17  *
18  * 1) mem_section	- memory sections, mem_map's for valid memory
19  */
20 #ifdef CONFIG_SPARSEMEM_EXTREME
21 struct mem_section *mem_section[NR_SECTION_ROOTS]
22 	____cacheline_internodealigned_in_smp;
23 #else
24 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
25 	____cacheline_internodealigned_in_smp;
26 #endif
27 EXPORT_SYMBOL(mem_section);
28 
29 #ifdef NODE_NOT_IN_PAGE_FLAGS
30 /*
31  * If we did not store the node number in the page then we have to
32  * do a lookup in the section_to_node_table in order to find which
33  * node the page belongs to.
34  */
35 #if MAX_NUMNODES <= 256
36 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
37 #else
38 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #endif
40 
41 int page_to_nid(struct page *page)
42 {
43 	return section_to_node_table[page_to_section(page)];
44 }
45 EXPORT_SYMBOL(page_to_nid);
46 
47 static void set_section_nid(unsigned long section_nr, int nid)
48 {
49 	section_to_node_table[section_nr] = nid;
50 }
51 #else /* !NODE_NOT_IN_PAGE_FLAGS */
52 static inline void set_section_nid(unsigned long section_nr, int nid)
53 {
54 }
55 #endif
56 
57 #ifdef CONFIG_SPARSEMEM_EXTREME
58 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
59 {
60 	struct mem_section *section = NULL;
61 	unsigned long array_size = SECTIONS_PER_ROOT *
62 				   sizeof(struct mem_section);
63 
64 	if (slab_is_available())
65 		section = kmalloc_node(array_size, GFP_KERNEL, nid);
66 	else
67 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
68 
69 	if (section)
70 		memset(section, 0, array_size);
71 
72 	return section;
73 }
74 
75 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
76 {
77 	static DEFINE_SPINLOCK(index_init_lock);
78 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 	struct mem_section *section;
80 	int ret = 0;
81 
82 	if (mem_section[root])
83 		return -EEXIST;
84 
85 	section = sparse_index_alloc(nid);
86 	/*
87 	 * This lock keeps two different sections from
88 	 * reallocating for the same index
89 	 */
90 	spin_lock(&index_init_lock);
91 
92 	if (mem_section[root]) {
93 		ret = -EEXIST;
94 		goto out;
95 	}
96 
97 	mem_section[root] = section;
98 out:
99 	spin_unlock(&index_init_lock);
100 	return ret;
101 }
102 #else /* !SPARSEMEM_EXTREME */
103 static inline int sparse_index_init(unsigned long section_nr, int nid)
104 {
105 	return 0;
106 }
107 #endif
108 
109 /*
110  * Although written for the SPARSEMEM_EXTREME case, this happens
111  * to also work for the flat array case because
112  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
113  */
114 int __section_nr(struct mem_section* ms)
115 {
116 	unsigned long root_nr;
117 	struct mem_section* root;
118 
119 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121 		if (!root)
122 			continue;
123 
124 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 		     break;
126 	}
127 
128 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129 }
130 
131 /*
132  * During early boot, before section_mem_map is used for an actual
133  * mem_map, we use section_mem_map to store the section's NUMA
134  * node.  This keeps us from having to use another data structure.  The
135  * node information is cleared just before we store the real mem_map.
136  */
137 static inline unsigned long sparse_encode_early_nid(int nid)
138 {
139 	return (nid << SECTION_NID_SHIFT);
140 }
141 
142 static inline int sparse_early_nid(struct mem_section *section)
143 {
144 	return (section->section_mem_map >> SECTION_NID_SHIFT);
145 }
146 
147 /* Record a memory area against a node. */
148 void __init memory_present(int nid, unsigned long start, unsigned long end)
149 {
150 	unsigned long pfn;
151 
152 	start &= PAGE_SECTION_MASK;
153 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
154 		unsigned long section = pfn_to_section_nr(pfn);
155 		struct mem_section *ms;
156 
157 		sparse_index_init(section, nid);
158 		set_section_nid(section, nid);
159 
160 		ms = __nr_to_section(section);
161 		if (!ms->section_mem_map)
162 			ms->section_mem_map = sparse_encode_early_nid(nid) |
163 							SECTION_MARKED_PRESENT;
164 	}
165 }
166 
167 /*
168  * Only used by the i386 NUMA architecures, but relatively
169  * generic code.
170  */
171 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
172 						     unsigned long end_pfn)
173 {
174 	unsigned long pfn;
175 	unsigned long nr_pages = 0;
176 
177 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
178 		if (nid != early_pfn_to_nid(pfn))
179 			continue;
180 
181 		if (pfn_present(pfn))
182 			nr_pages += PAGES_PER_SECTION;
183 	}
184 
185 	return nr_pages * sizeof(struct page);
186 }
187 
188 /*
189  * Subtle, we encode the real pfn into the mem_map such that
190  * the identity pfn - section_mem_map will return the actual
191  * physical page frame number.
192  */
193 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
194 {
195 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
196 }
197 
198 /*
199  * We need this if we ever free the mem_maps.  While not implemented yet,
200  * this function is included for parity with its sibling.
201  */
202 static __attribute((unused))
203 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
204 {
205 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
206 }
207 
208 static int __meminit sparse_init_one_section(struct mem_section *ms,
209 		unsigned long pnum, struct page *mem_map,
210 		unsigned long *pageblock_bitmap)
211 {
212 	if (!present_section(ms))
213 		return -EINVAL;
214 
215 	ms->section_mem_map &= ~SECTION_MAP_MASK;
216 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
217 							SECTION_HAS_MEM_MAP;
218  	ms->pageblock_flags = pageblock_bitmap;
219 
220 	return 1;
221 }
222 
223 static unsigned long usemap_size(void)
224 {
225 	unsigned long size_bytes;
226 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
227 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
228 	return size_bytes;
229 }
230 
231 #ifdef CONFIG_MEMORY_HOTPLUG
232 static unsigned long *__kmalloc_section_usemap(void)
233 {
234 	return kmalloc(usemap_size(), GFP_KERNEL);
235 }
236 #endif /* CONFIG_MEMORY_HOTPLUG */
237 
238 static unsigned long *sparse_early_usemap_alloc(unsigned long pnum)
239 {
240 	unsigned long *usemap;
241 	struct mem_section *ms = __nr_to_section(pnum);
242 	int nid = sparse_early_nid(ms);
243 
244 	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
245 	if (usemap)
246 		return usemap;
247 
248 	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
249 	nid = 0;
250 
251 	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
252 	return NULL;
253 }
254 
255 #ifndef CONFIG_SPARSEMEM_VMEMMAP
256 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
257 {
258 	struct page *map;
259 
260 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
261 	if (map)
262 		return map;
263 
264 	map = alloc_bootmem_node(NODE_DATA(nid),
265 			sizeof(struct page) * PAGES_PER_SECTION);
266 	return map;
267 }
268 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
269 
270 struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
271 {
272 	struct page *map;
273 	struct mem_section *ms = __nr_to_section(pnum);
274 	int nid = sparse_early_nid(ms);
275 
276 	map = sparse_mem_map_populate(pnum, nid);
277 	if (map)
278 		return map;
279 
280 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
281 			"some memory will not be available.\n", __FUNCTION__);
282 	ms->section_mem_map = 0;
283 	return NULL;
284 }
285 
286 /*
287  * Allocate the accumulated non-linear sections, allocate a mem_map
288  * for each and record the physical to section mapping.
289  */
290 void __init sparse_init(void)
291 {
292 	unsigned long pnum;
293 	struct page *map;
294 	unsigned long *usemap;
295 
296 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
297 		if (!present_section_nr(pnum))
298 			continue;
299 
300 		map = sparse_early_mem_map_alloc(pnum);
301 		if (!map)
302 			continue;
303 
304 		usemap = sparse_early_usemap_alloc(pnum);
305 		if (!usemap)
306 			continue;
307 
308 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
309 								usemap);
310 	}
311 }
312 
313 #ifdef CONFIG_MEMORY_HOTPLUG
314 #ifdef CONFIG_SPARSEMEM_VMEMMAP
315 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
316 						 unsigned long nr_pages)
317 {
318 	/* This will make the necessary allocations eventually. */
319 	return sparse_mem_map_populate(pnum, nid);
320 }
321 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
322 {
323 	return; /* XXX: Not implemented yet */
324 }
325 #else
326 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
327 {
328 	struct page *page, *ret;
329 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
330 
331 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
332 	if (page)
333 		goto got_map_page;
334 
335 	ret = vmalloc(memmap_size);
336 	if (ret)
337 		goto got_map_ptr;
338 
339 	return NULL;
340 got_map_page:
341 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
342 got_map_ptr:
343 	memset(ret, 0, memmap_size);
344 
345 	return ret;
346 }
347 
348 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
349 						  unsigned long nr_pages)
350 {
351 	return __kmalloc_section_memmap(nr_pages);
352 }
353 
354 static int vaddr_in_vmalloc_area(void *addr)
355 {
356 	if (addr >= (void *)VMALLOC_START &&
357 	    addr < (void *)VMALLOC_END)
358 		return 1;
359 	return 0;
360 }
361 
362 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
363 {
364 	if (vaddr_in_vmalloc_area(memmap))
365 		vfree(memmap);
366 	else
367 		free_pages((unsigned long)memmap,
368 			   get_order(sizeof(struct page) * nr_pages));
369 }
370 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
371 
372 /*
373  * returns the number of sections whose mem_maps were properly
374  * set.  If this is <=0, then that means that the passed-in
375  * map was not consumed and must be freed.
376  */
377 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
378 			   int nr_pages)
379 {
380 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
381 	struct pglist_data *pgdat = zone->zone_pgdat;
382 	struct mem_section *ms;
383 	struct page *memmap;
384 	unsigned long *usemap;
385 	unsigned long flags;
386 	int ret;
387 
388 	/*
389 	 * no locking for this, because it does its own
390 	 * plus, it does a kmalloc
391 	 */
392 	sparse_index_init(section_nr, pgdat->node_id);
393 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
394 	usemap = __kmalloc_section_usemap();
395 
396 	pgdat_resize_lock(pgdat, &flags);
397 
398 	ms = __pfn_to_section(start_pfn);
399 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
400 		ret = -EEXIST;
401 		goto out;
402 	}
403 
404 	if (!usemap) {
405 		ret = -ENOMEM;
406 		goto out;
407 	}
408 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
409 
410 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
411 
412 out:
413 	pgdat_resize_unlock(pgdat, &flags);
414 	if (ret <= 0)
415 		__kfree_section_memmap(memmap, nr_pages);
416 	return ret;
417 }
418 #endif
419