xref: /linux/mm/sparse.c (revision 94e48d6aafef23143f92eadd010c505c49487576)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 
17 #include "internal.h"
18 #include <asm/dma.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available()) {
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	} else {
71 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72 					      nid);
73 		if (!section)
74 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
75 			      __func__, array_size, nid);
76 	}
77 
78 	return section;
79 }
80 
81 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 {
83 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 	struct mem_section *section;
85 
86 	/*
87 	 * An existing section is possible in the sub-section hotplug
88 	 * case. First hot-add instantiates, follow-on hot-add reuses
89 	 * the existing section.
90 	 *
91 	 * The mem_hotplug_lock resolves the apparent race below.
92 	 */
93 	if (mem_section[root])
94 		return 0;
95 
96 	section = sparse_index_alloc(nid);
97 	if (!section)
98 		return -ENOMEM;
99 
100 	mem_section[root] = section;
101 
102 	return 0;
103 }
104 #else /* !SPARSEMEM_EXTREME */
105 static inline int sparse_index_init(unsigned long section_nr, int nid)
106 {
107 	return 0;
108 }
109 #endif
110 
111 #ifdef CONFIG_SPARSEMEM_EXTREME
112 unsigned long __section_nr(struct mem_section *ms)
113 {
114 	unsigned long root_nr;
115 	struct mem_section *root = NULL;
116 
117 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119 		if (!root)
120 			continue;
121 
122 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123 		     break;
124 	}
125 
126 	VM_BUG_ON(!root);
127 
128 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129 }
130 #else
131 unsigned long __section_nr(struct mem_section *ms)
132 {
133 	return (unsigned long)(ms - mem_section[0]);
134 }
135 #endif
136 
137 /*
138  * During early boot, before section_mem_map is used for an actual
139  * mem_map, we use section_mem_map to store the section's NUMA
140  * node.  This keeps us from having to use another data structure.  The
141  * node information is cleared just before we store the real mem_map.
142  */
143 static inline unsigned long sparse_encode_early_nid(int nid)
144 {
145 	return (nid << SECTION_NID_SHIFT);
146 }
147 
148 static inline int sparse_early_nid(struct mem_section *section)
149 {
150 	return (section->section_mem_map >> SECTION_NID_SHIFT);
151 }
152 
153 /* Validate the physical addressing limitations of the model */
154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155 						unsigned long *end_pfn)
156 {
157 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158 
159 	/*
160 	 * Sanity checks - do not allow an architecture to pass
161 	 * in larger pfns than the maximum scope of sparsemem:
162 	 */
163 	if (*start_pfn > max_sparsemem_pfn) {
164 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 			*start_pfn, *end_pfn, max_sparsemem_pfn);
167 		WARN_ON_ONCE(1);
168 		*start_pfn = max_sparsemem_pfn;
169 		*end_pfn = max_sparsemem_pfn;
170 	} else if (*end_pfn > max_sparsemem_pfn) {
171 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 			*start_pfn, *end_pfn, max_sparsemem_pfn);
174 		WARN_ON_ONCE(1);
175 		*end_pfn = max_sparsemem_pfn;
176 	}
177 }
178 
179 /*
180  * There are a number of times that we loop over NR_MEM_SECTIONS,
181  * looking for section_present() on each.  But, when we have very
182  * large physical address spaces, NR_MEM_SECTIONS can also be
183  * very large which makes the loops quite long.
184  *
185  * Keeping track of this gives us an easy way to break out of
186  * those loops early.
187  */
188 unsigned long __highest_present_section_nr;
189 static void section_mark_present(struct mem_section *ms)
190 {
191 	unsigned long section_nr = __section_nr(ms);
192 
193 	if (section_nr > __highest_present_section_nr)
194 		__highest_present_section_nr = section_nr;
195 
196 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
197 }
198 
199 #define for_each_present_section_nr(start, section_nr)		\
200 	for (section_nr = next_present_section_nr(start-1);	\
201 	     ((section_nr != -1) &&				\
202 	      (section_nr <= __highest_present_section_nr));	\
203 	     section_nr = next_present_section_nr(section_nr))
204 
205 static inline unsigned long first_present_section_nr(void)
206 {
207 	return next_present_section_nr(-1);
208 }
209 
210 #ifdef CONFIG_SPARSEMEM_VMEMMAP
211 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
212 		unsigned long nr_pages)
213 {
214 	int idx = subsection_map_index(pfn);
215 	int end = subsection_map_index(pfn + nr_pages - 1);
216 
217 	bitmap_set(map, idx, end - idx + 1);
218 }
219 
220 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221 {
222 	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
223 	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
224 
225 	if (!nr_pages)
226 		return;
227 
228 	for (nr = start_sec; nr <= end_sec; nr++) {
229 		struct mem_section *ms;
230 		unsigned long pfns;
231 
232 		pfns = min(nr_pages, PAGES_PER_SECTION
233 				- (pfn & ~PAGE_SECTION_MASK));
234 		ms = __nr_to_section(nr);
235 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
236 
237 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
238 				pfns, subsection_map_index(pfn),
239 				subsection_map_index(pfn + pfns - 1));
240 
241 		pfn += pfns;
242 		nr_pages -= pfns;
243 	}
244 }
245 #else
246 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
247 {
248 }
249 #endif
250 
251 /* Record a memory area against a node. */
252 static void __init memory_present(int nid, unsigned long start, unsigned long end)
253 {
254 	unsigned long pfn;
255 
256 #ifdef CONFIG_SPARSEMEM_EXTREME
257 	if (unlikely(!mem_section)) {
258 		unsigned long size, align;
259 
260 		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
261 		align = 1 << (INTERNODE_CACHE_SHIFT);
262 		mem_section = memblock_alloc(size, align);
263 		if (!mem_section)
264 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265 			      __func__, size, align);
266 	}
267 #endif
268 
269 	start &= PAGE_SECTION_MASK;
270 	mminit_validate_memmodel_limits(&start, &end);
271 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
272 		unsigned long section = pfn_to_section_nr(pfn);
273 		struct mem_section *ms;
274 
275 		sparse_index_init(section, nid);
276 		set_section_nid(section, nid);
277 
278 		ms = __nr_to_section(section);
279 		if (!ms->section_mem_map) {
280 			ms->section_mem_map = sparse_encode_early_nid(nid) |
281 							SECTION_IS_ONLINE;
282 			section_mark_present(ms);
283 		}
284 	}
285 }
286 
287 /*
288  * Mark all memblocks as present using memory_present().
289  * This is a convenience function that is useful to mark all of the systems
290  * memory as present during initialization.
291  */
292 static void __init memblocks_present(void)
293 {
294 	unsigned long start, end;
295 	int i, nid;
296 
297 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
298 		memory_present(nid, start, end);
299 }
300 
301 /*
302  * Subtle, we encode the real pfn into the mem_map such that
303  * the identity pfn - section_mem_map will return the actual
304  * physical page frame number.
305  */
306 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
307 {
308 	unsigned long coded_mem_map =
309 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
310 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
311 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
312 	return coded_mem_map;
313 }
314 
315 #ifdef CONFIG_MEMORY_HOTPLUG
316 /*
317  * Decode mem_map from the coded memmap
318  */
319 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
320 {
321 	/* mask off the extra low bits of information */
322 	coded_mem_map &= SECTION_MAP_MASK;
323 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
324 }
325 #endif /* CONFIG_MEMORY_HOTPLUG */
326 
327 static void __meminit sparse_init_one_section(struct mem_section *ms,
328 		unsigned long pnum, struct page *mem_map,
329 		struct mem_section_usage *usage, unsigned long flags)
330 {
331 	ms->section_mem_map &= ~SECTION_MAP_MASK;
332 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
333 		| SECTION_HAS_MEM_MAP | flags;
334 	ms->usage = usage;
335 }
336 
337 static unsigned long usemap_size(void)
338 {
339 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
340 }
341 
342 size_t mem_section_usage_size(void)
343 {
344 	return sizeof(struct mem_section_usage) + usemap_size();
345 }
346 
347 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
348 {
349 #ifndef CONFIG_NUMA
350 	return __pa_symbol(pgdat);
351 #else
352 	return __pa(pgdat);
353 #endif
354 }
355 
356 #ifdef CONFIG_MEMORY_HOTREMOVE
357 static struct mem_section_usage * __init
358 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
359 					 unsigned long size)
360 {
361 	struct mem_section_usage *usage;
362 	unsigned long goal, limit;
363 	int nid;
364 	/*
365 	 * A page may contain usemaps for other sections preventing the
366 	 * page being freed and making a section unremovable while
367 	 * other sections referencing the usemap remain active. Similarly,
368 	 * a pgdat can prevent a section being removed. If section A
369 	 * contains a pgdat and section B contains the usemap, both
370 	 * sections become inter-dependent. This allocates usemaps
371 	 * from the same section as the pgdat where possible to avoid
372 	 * this problem.
373 	 */
374 	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
375 	limit = goal + (1UL << PA_SECTION_SHIFT);
376 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
377 again:
378 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
379 	if (!usage && limit) {
380 		limit = 0;
381 		goto again;
382 	}
383 	return usage;
384 }
385 
386 static void __init check_usemap_section_nr(int nid,
387 		struct mem_section_usage *usage)
388 {
389 	unsigned long usemap_snr, pgdat_snr;
390 	static unsigned long old_usemap_snr;
391 	static unsigned long old_pgdat_snr;
392 	struct pglist_data *pgdat = NODE_DATA(nid);
393 	int usemap_nid;
394 
395 	/* First call */
396 	if (!old_usemap_snr) {
397 		old_usemap_snr = NR_MEM_SECTIONS;
398 		old_pgdat_snr = NR_MEM_SECTIONS;
399 	}
400 
401 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
402 	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
403 	if (usemap_snr == pgdat_snr)
404 		return;
405 
406 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
407 		/* skip redundant message */
408 		return;
409 
410 	old_usemap_snr = usemap_snr;
411 	old_pgdat_snr = pgdat_snr;
412 
413 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
414 	if (usemap_nid != nid) {
415 		pr_info("node %d must be removed before remove section %ld\n",
416 			nid, usemap_snr);
417 		return;
418 	}
419 	/*
420 	 * There is a circular dependency.
421 	 * Some platforms allow un-removable section because they will just
422 	 * gather other removable sections for dynamic partitioning.
423 	 * Just notify un-removable section's number here.
424 	 */
425 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
426 		usemap_snr, pgdat_snr, nid);
427 }
428 #else
429 static struct mem_section_usage * __init
430 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
431 					 unsigned long size)
432 {
433 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
434 }
435 
436 static void __init check_usemap_section_nr(int nid,
437 		struct mem_section_usage *usage)
438 {
439 }
440 #endif /* CONFIG_MEMORY_HOTREMOVE */
441 
442 #ifdef CONFIG_SPARSEMEM_VMEMMAP
443 static unsigned long __init section_map_size(void)
444 {
445 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
446 }
447 
448 #else
449 static unsigned long __init section_map_size(void)
450 {
451 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
452 }
453 
454 struct page __init *__populate_section_memmap(unsigned long pfn,
455 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
456 {
457 	unsigned long size = section_map_size();
458 	struct page *map = sparse_buffer_alloc(size);
459 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
460 
461 	if (map)
462 		return map;
463 
464 	map = memblock_alloc_try_nid_raw(size, size, addr,
465 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
466 	if (!map)
467 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
468 		      __func__, size, PAGE_SIZE, nid, &addr);
469 
470 	return map;
471 }
472 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
473 
474 static void *sparsemap_buf __meminitdata;
475 static void *sparsemap_buf_end __meminitdata;
476 
477 static inline void __meminit sparse_buffer_free(unsigned long size)
478 {
479 	WARN_ON(!sparsemap_buf || size == 0);
480 	memblock_free_early(__pa(sparsemap_buf), size);
481 }
482 
483 static void __init sparse_buffer_init(unsigned long size, int nid)
484 {
485 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
486 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
487 	/*
488 	 * Pre-allocated buffer is mainly used by __populate_section_memmap
489 	 * and we want it to be properly aligned to the section size - this is
490 	 * especially the case for VMEMMAP which maps memmap to PMDs
491 	 */
492 	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
493 					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
494 	sparsemap_buf_end = sparsemap_buf + size;
495 }
496 
497 static void __init sparse_buffer_fini(void)
498 {
499 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
500 
501 	if (sparsemap_buf && size > 0)
502 		sparse_buffer_free(size);
503 	sparsemap_buf = NULL;
504 }
505 
506 void * __meminit sparse_buffer_alloc(unsigned long size)
507 {
508 	void *ptr = NULL;
509 
510 	if (sparsemap_buf) {
511 		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
512 		if (ptr + size > sparsemap_buf_end)
513 			ptr = NULL;
514 		else {
515 			/* Free redundant aligned space */
516 			if ((unsigned long)(ptr - sparsemap_buf) > 0)
517 				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
518 			sparsemap_buf = ptr + size;
519 		}
520 	}
521 	return ptr;
522 }
523 
524 void __weak __meminit vmemmap_populate_print_last(void)
525 {
526 }
527 
528 /*
529  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
530  * And number of present sections in this node is map_count.
531  */
532 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
533 				   unsigned long pnum_end,
534 				   unsigned long map_count)
535 {
536 	struct mem_section_usage *usage;
537 	unsigned long pnum;
538 	struct page *map;
539 
540 	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
541 			mem_section_usage_size() * map_count);
542 	if (!usage) {
543 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
544 		goto failed;
545 	}
546 	sparse_buffer_init(map_count * section_map_size(), nid);
547 	for_each_present_section_nr(pnum_begin, pnum) {
548 		unsigned long pfn = section_nr_to_pfn(pnum);
549 
550 		if (pnum >= pnum_end)
551 			break;
552 
553 		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
554 				nid, NULL);
555 		if (!map) {
556 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
557 			       __func__, nid);
558 			pnum_begin = pnum;
559 			sparse_buffer_fini();
560 			goto failed;
561 		}
562 		check_usemap_section_nr(nid, usage);
563 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
564 				SECTION_IS_EARLY);
565 		usage = (void *) usage + mem_section_usage_size();
566 	}
567 	sparse_buffer_fini();
568 	return;
569 failed:
570 	/* We failed to allocate, mark all the following pnums as not present */
571 	for_each_present_section_nr(pnum_begin, pnum) {
572 		struct mem_section *ms;
573 
574 		if (pnum >= pnum_end)
575 			break;
576 		ms = __nr_to_section(pnum);
577 		ms->section_mem_map = 0;
578 	}
579 }
580 
581 /*
582  * Allocate the accumulated non-linear sections, allocate a mem_map
583  * for each and record the physical to section mapping.
584  */
585 void __init sparse_init(void)
586 {
587 	unsigned long pnum_end, pnum_begin, map_count = 1;
588 	int nid_begin;
589 
590 	memblocks_present();
591 
592 	pnum_begin = first_present_section_nr();
593 	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
594 
595 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
596 	set_pageblock_order();
597 
598 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
599 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
600 
601 		if (nid == nid_begin) {
602 			map_count++;
603 			continue;
604 		}
605 		/* Init node with sections in range [pnum_begin, pnum_end) */
606 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
607 		nid_begin = nid;
608 		pnum_begin = pnum_end;
609 		map_count = 1;
610 	}
611 	/* cover the last node */
612 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
613 	vmemmap_populate_print_last();
614 }
615 
616 #ifdef CONFIG_MEMORY_HOTPLUG
617 
618 /* Mark all memory sections within the pfn range as online */
619 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
620 {
621 	unsigned long pfn;
622 
623 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
624 		unsigned long section_nr = pfn_to_section_nr(pfn);
625 		struct mem_section *ms;
626 
627 		/* onlining code should never touch invalid ranges */
628 		if (WARN_ON(!valid_section_nr(section_nr)))
629 			continue;
630 
631 		ms = __nr_to_section(section_nr);
632 		ms->section_mem_map |= SECTION_IS_ONLINE;
633 	}
634 }
635 
636 /* Mark all memory sections within the pfn range as offline */
637 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
638 {
639 	unsigned long pfn;
640 
641 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
642 		unsigned long section_nr = pfn_to_section_nr(pfn);
643 		struct mem_section *ms;
644 
645 		/*
646 		 * TODO this needs some double checking. Offlining code makes
647 		 * sure to check pfn_valid but those checks might be just bogus
648 		 */
649 		if (WARN_ON(!valid_section_nr(section_nr)))
650 			continue;
651 
652 		ms = __nr_to_section(section_nr);
653 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
654 	}
655 }
656 
657 #ifdef CONFIG_SPARSEMEM_VMEMMAP
658 static struct page * __meminit populate_section_memmap(unsigned long pfn,
659 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
660 {
661 	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
662 }
663 
664 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
665 		struct vmem_altmap *altmap)
666 {
667 	unsigned long start = (unsigned long) pfn_to_page(pfn);
668 	unsigned long end = start + nr_pages * sizeof(struct page);
669 
670 	vmemmap_free(start, end, altmap);
671 }
672 static void free_map_bootmem(struct page *memmap)
673 {
674 	unsigned long start = (unsigned long)memmap;
675 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
676 
677 	vmemmap_free(start, end, NULL);
678 }
679 
680 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
681 {
682 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
683 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
684 	struct mem_section *ms = __pfn_to_section(pfn);
685 	unsigned long *subsection_map = ms->usage
686 		? &ms->usage->subsection_map[0] : NULL;
687 
688 	subsection_mask_set(map, pfn, nr_pages);
689 	if (subsection_map)
690 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
691 
692 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
693 				"section already deactivated (%#lx + %ld)\n",
694 				pfn, nr_pages))
695 		return -EINVAL;
696 
697 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
698 	return 0;
699 }
700 
701 static bool is_subsection_map_empty(struct mem_section *ms)
702 {
703 	return bitmap_empty(&ms->usage->subsection_map[0],
704 			    SUBSECTIONS_PER_SECTION);
705 }
706 
707 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
708 {
709 	struct mem_section *ms = __pfn_to_section(pfn);
710 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
711 	unsigned long *subsection_map;
712 	int rc = 0;
713 
714 	subsection_mask_set(map, pfn, nr_pages);
715 
716 	subsection_map = &ms->usage->subsection_map[0];
717 
718 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
719 		rc = -EINVAL;
720 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
721 		rc = -EEXIST;
722 	else
723 		bitmap_or(subsection_map, map, subsection_map,
724 				SUBSECTIONS_PER_SECTION);
725 
726 	return rc;
727 }
728 #else
729 struct page * __meminit populate_section_memmap(unsigned long pfn,
730 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
731 {
732 	return kvmalloc_node(array_size(sizeof(struct page),
733 					PAGES_PER_SECTION), GFP_KERNEL, nid);
734 }
735 
736 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
737 		struct vmem_altmap *altmap)
738 {
739 	kvfree(pfn_to_page(pfn));
740 }
741 
742 static void free_map_bootmem(struct page *memmap)
743 {
744 	unsigned long maps_section_nr, removing_section_nr, i;
745 	unsigned long magic, nr_pages;
746 	struct page *page = virt_to_page(memmap);
747 
748 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
749 		>> PAGE_SHIFT;
750 
751 	for (i = 0; i < nr_pages; i++, page++) {
752 		magic = (unsigned long) page->freelist;
753 
754 		BUG_ON(magic == NODE_INFO);
755 
756 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
757 		removing_section_nr = page_private(page);
758 
759 		/*
760 		 * When this function is called, the removing section is
761 		 * logical offlined state. This means all pages are isolated
762 		 * from page allocator. If removing section's memmap is placed
763 		 * on the same section, it must not be freed.
764 		 * If it is freed, page allocator may allocate it which will
765 		 * be removed physically soon.
766 		 */
767 		if (maps_section_nr != removing_section_nr)
768 			put_page_bootmem(page);
769 	}
770 }
771 
772 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
773 {
774 	return 0;
775 }
776 
777 static bool is_subsection_map_empty(struct mem_section *ms)
778 {
779 	return true;
780 }
781 
782 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
783 {
784 	return 0;
785 }
786 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
787 
788 /*
789  * To deactivate a memory region, there are 3 cases to handle across
790  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
791  *
792  * 1. deactivation of a partial hot-added section (only possible in
793  *    the SPARSEMEM_VMEMMAP=y case).
794  *      a) section was present at memory init.
795  *      b) section was hot-added post memory init.
796  * 2. deactivation of a complete hot-added section.
797  * 3. deactivation of a complete section from memory init.
798  *
799  * For 1, when subsection_map does not empty we will not be freeing the
800  * usage map, but still need to free the vmemmap range.
801  *
802  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
803  */
804 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
805 		struct vmem_altmap *altmap)
806 {
807 	struct mem_section *ms = __pfn_to_section(pfn);
808 	bool section_is_early = early_section(ms);
809 	struct page *memmap = NULL;
810 	bool empty;
811 
812 	if (clear_subsection_map(pfn, nr_pages))
813 		return;
814 
815 	empty = is_subsection_map_empty(ms);
816 	if (empty) {
817 		unsigned long section_nr = pfn_to_section_nr(pfn);
818 
819 		/*
820 		 * When removing an early section, the usage map is kept (as the
821 		 * usage maps of other sections fall into the same page). It
822 		 * will be re-used when re-adding the section - which is then no
823 		 * longer an early section. If the usage map is PageReserved, it
824 		 * was allocated during boot.
825 		 */
826 		if (!PageReserved(virt_to_page(ms->usage))) {
827 			kfree(ms->usage);
828 			ms->usage = NULL;
829 		}
830 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
831 		/*
832 		 * Mark the section invalid so that valid_section()
833 		 * return false. This prevents code from dereferencing
834 		 * ms->usage array.
835 		 */
836 		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
837 	}
838 
839 	/*
840 	 * The memmap of early sections is always fully populated. See
841 	 * section_activate() and pfn_valid() .
842 	 */
843 	if (!section_is_early)
844 		depopulate_section_memmap(pfn, nr_pages, altmap);
845 	else if (memmap)
846 		free_map_bootmem(memmap);
847 
848 	if (empty)
849 		ms->section_mem_map = (unsigned long)NULL;
850 }
851 
852 static struct page * __meminit section_activate(int nid, unsigned long pfn,
853 		unsigned long nr_pages, struct vmem_altmap *altmap)
854 {
855 	struct mem_section *ms = __pfn_to_section(pfn);
856 	struct mem_section_usage *usage = NULL;
857 	struct page *memmap;
858 	int rc = 0;
859 
860 	if (!ms->usage) {
861 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
862 		if (!usage)
863 			return ERR_PTR(-ENOMEM);
864 		ms->usage = usage;
865 	}
866 
867 	rc = fill_subsection_map(pfn, nr_pages);
868 	if (rc) {
869 		if (usage)
870 			ms->usage = NULL;
871 		kfree(usage);
872 		return ERR_PTR(rc);
873 	}
874 
875 	/*
876 	 * The early init code does not consider partially populated
877 	 * initial sections, it simply assumes that memory will never be
878 	 * referenced.  If we hot-add memory into such a section then we
879 	 * do not need to populate the memmap and can simply reuse what
880 	 * is already there.
881 	 */
882 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
883 		return pfn_to_page(pfn);
884 
885 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
886 	if (!memmap) {
887 		section_deactivate(pfn, nr_pages, altmap);
888 		return ERR_PTR(-ENOMEM);
889 	}
890 
891 	return memmap;
892 }
893 
894 /**
895  * sparse_add_section - add a memory section, or populate an existing one
896  * @nid: The node to add section on
897  * @start_pfn: start pfn of the memory range
898  * @nr_pages: number of pfns to add in the section
899  * @altmap: device page map
900  *
901  * This is only intended for hotplug.
902  *
903  * Note that only VMEMMAP supports sub-section aligned hotplug,
904  * the proper alignment and size are gated by check_pfn_span().
905  *
906  *
907  * Return:
908  * * 0		- On success.
909  * * -EEXIST	- Section has been present.
910  * * -ENOMEM	- Out of memory.
911  */
912 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
913 		unsigned long nr_pages, struct vmem_altmap *altmap)
914 {
915 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
916 	struct mem_section *ms;
917 	struct page *memmap;
918 	int ret;
919 
920 	ret = sparse_index_init(section_nr, nid);
921 	if (ret < 0)
922 		return ret;
923 
924 	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
925 	if (IS_ERR(memmap))
926 		return PTR_ERR(memmap);
927 
928 	/*
929 	 * Poison uninitialized struct pages in order to catch invalid flags
930 	 * combinations.
931 	 */
932 	page_init_poison(memmap, sizeof(struct page) * nr_pages);
933 
934 	ms = __nr_to_section(section_nr);
935 	set_section_nid(section_nr, nid);
936 	section_mark_present(ms);
937 
938 	/* Align memmap to section boundary in the subsection case */
939 	if (section_nr_to_pfn(section_nr) != start_pfn)
940 		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
941 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
942 
943 	return 0;
944 }
945 
946 #ifdef CONFIG_MEMORY_FAILURE
947 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
948 {
949 	int i;
950 
951 	/*
952 	 * A further optimization is to have per section refcounted
953 	 * num_poisoned_pages.  But that would need more space per memmap, so
954 	 * for now just do a quick global check to speed up this routine in the
955 	 * absence of bad pages.
956 	 */
957 	if (atomic_long_read(&num_poisoned_pages) == 0)
958 		return;
959 
960 	for (i = 0; i < nr_pages; i++) {
961 		if (PageHWPoison(&memmap[i])) {
962 			num_poisoned_pages_dec();
963 			ClearPageHWPoison(&memmap[i]);
964 		}
965 	}
966 }
967 #else
968 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
969 {
970 }
971 #endif
972 
973 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
974 		unsigned long nr_pages, unsigned long map_offset,
975 		struct vmem_altmap *altmap)
976 {
977 	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
978 			nr_pages - map_offset);
979 	section_deactivate(pfn, nr_pages, altmap);
980 }
981 #endif /* CONFIG_MEMORY_HOTPLUG */
982