1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 17 #include "internal.h" 18 #include <asm/dma.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 } else { 71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 72 nid); 73 if (!section) 74 panic("%s: Failed to allocate %lu bytes nid=%d\n", 75 __func__, array_size, nid); 76 } 77 78 return section; 79 } 80 81 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 82 { 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 86 /* 87 * An existing section is possible in the sub-section hotplug 88 * case. First hot-add instantiates, follow-on hot-add reuses 89 * the existing section. 90 * 91 * The mem_hotplug_lock resolves the apparent race below. 92 */ 93 if (mem_section[root]) 94 return 0; 95 96 section = sparse_index_alloc(nid); 97 if (!section) 98 return -ENOMEM; 99 100 mem_section[root] = section; 101 102 return 0; 103 } 104 #else /* !SPARSEMEM_EXTREME */ 105 static inline int sparse_index_init(unsigned long section_nr, int nid) 106 { 107 return 0; 108 } 109 #endif 110 111 #ifdef CONFIG_SPARSEMEM_EXTREME 112 unsigned long __section_nr(struct mem_section *ms) 113 { 114 unsigned long root_nr; 115 struct mem_section *root = NULL; 116 117 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 118 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 119 if (!root) 120 continue; 121 122 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 123 break; 124 } 125 126 VM_BUG_ON(!root); 127 128 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 129 } 130 #else 131 unsigned long __section_nr(struct mem_section *ms) 132 { 133 return (unsigned long)(ms - mem_section[0]); 134 } 135 #endif 136 137 /* 138 * During early boot, before section_mem_map is used for an actual 139 * mem_map, we use section_mem_map to store the section's NUMA 140 * node. This keeps us from having to use another data structure. The 141 * node information is cleared just before we store the real mem_map. 142 */ 143 static inline unsigned long sparse_encode_early_nid(int nid) 144 { 145 return (nid << SECTION_NID_SHIFT); 146 } 147 148 static inline int sparse_early_nid(struct mem_section *section) 149 { 150 return (section->section_mem_map >> SECTION_NID_SHIFT); 151 } 152 153 /* Validate the physical addressing limitations of the model */ 154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 155 unsigned long *end_pfn) 156 { 157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 158 159 /* 160 * Sanity checks - do not allow an architecture to pass 161 * in larger pfns than the maximum scope of sparsemem: 162 */ 163 if (*start_pfn > max_sparsemem_pfn) { 164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 166 *start_pfn, *end_pfn, max_sparsemem_pfn); 167 WARN_ON_ONCE(1); 168 *start_pfn = max_sparsemem_pfn; 169 *end_pfn = max_sparsemem_pfn; 170 } else if (*end_pfn > max_sparsemem_pfn) { 171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 173 *start_pfn, *end_pfn, max_sparsemem_pfn); 174 WARN_ON_ONCE(1); 175 *end_pfn = max_sparsemem_pfn; 176 } 177 } 178 179 /* 180 * There are a number of times that we loop over NR_MEM_SECTIONS, 181 * looking for section_present() on each. But, when we have very 182 * large physical address spaces, NR_MEM_SECTIONS can also be 183 * very large which makes the loops quite long. 184 * 185 * Keeping track of this gives us an easy way to break out of 186 * those loops early. 187 */ 188 unsigned long __highest_present_section_nr; 189 static void section_mark_present(struct mem_section *ms) 190 { 191 unsigned long section_nr = __section_nr(ms); 192 193 if (section_nr > __highest_present_section_nr) 194 __highest_present_section_nr = section_nr; 195 196 ms->section_mem_map |= SECTION_MARKED_PRESENT; 197 } 198 199 #define for_each_present_section_nr(start, section_nr) \ 200 for (section_nr = next_present_section_nr(start-1); \ 201 ((section_nr != -1) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205 static inline unsigned long first_present_section_nr(void) 206 { 207 return next_present_section_nr(-1); 208 } 209 210 #ifdef CONFIG_SPARSEMEM_VMEMMAP 211 static void subsection_mask_set(unsigned long *map, unsigned long pfn, 212 unsigned long nr_pages) 213 { 214 int idx = subsection_map_index(pfn); 215 int end = subsection_map_index(pfn + nr_pages - 1); 216 217 bitmap_set(map, idx, end - idx + 1); 218 } 219 220 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 221 { 222 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 223 unsigned long nr, start_sec = pfn_to_section_nr(pfn); 224 225 if (!nr_pages) 226 return; 227 228 for (nr = start_sec; nr <= end_sec; nr++) { 229 struct mem_section *ms; 230 unsigned long pfns; 231 232 pfns = min(nr_pages, PAGES_PER_SECTION 233 - (pfn & ~PAGE_SECTION_MASK)); 234 ms = __nr_to_section(nr); 235 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 236 237 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 238 pfns, subsection_map_index(pfn), 239 subsection_map_index(pfn + pfns - 1)); 240 241 pfn += pfns; 242 nr_pages -= pfns; 243 } 244 } 245 #else 246 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 247 { 248 } 249 #endif 250 251 /* Record a memory area against a node. */ 252 static void __init memory_present(int nid, unsigned long start, unsigned long end) 253 { 254 unsigned long pfn; 255 256 #ifdef CONFIG_SPARSEMEM_EXTREME 257 if (unlikely(!mem_section)) { 258 unsigned long size, align; 259 260 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS; 261 align = 1 << (INTERNODE_CACHE_SHIFT); 262 mem_section = memblock_alloc(size, align); 263 if (!mem_section) 264 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 265 __func__, size, align); 266 } 267 #endif 268 269 start &= PAGE_SECTION_MASK; 270 mminit_validate_memmodel_limits(&start, &end); 271 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 272 unsigned long section = pfn_to_section_nr(pfn); 273 struct mem_section *ms; 274 275 sparse_index_init(section, nid); 276 set_section_nid(section, nid); 277 278 ms = __nr_to_section(section); 279 if (!ms->section_mem_map) { 280 ms->section_mem_map = sparse_encode_early_nid(nid) | 281 SECTION_IS_ONLINE; 282 section_mark_present(ms); 283 } 284 } 285 } 286 287 /* 288 * Mark all memblocks as present using memory_present(). 289 * This is a convenience function that is useful to mark all of the systems 290 * memory as present during initialization. 291 */ 292 static void __init memblocks_present(void) 293 { 294 unsigned long start, end; 295 int i, nid; 296 297 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) 298 memory_present(nid, start, end); 299 } 300 301 /* 302 * Subtle, we encode the real pfn into the mem_map such that 303 * the identity pfn - section_mem_map will return the actual 304 * physical page frame number. 305 */ 306 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 307 { 308 unsigned long coded_mem_map = 309 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 310 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 311 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 312 return coded_mem_map; 313 } 314 315 #ifdef CONFIG_MEMORY_HOTPLUG 316 /* 317 * Decode mem_map from the coded memmap 318 */ 319 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 320 { 321 /* mask off the extra low bits of information */ 322 coded_mem_map &= SECTION_MAP_MASK; 323 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 324 } 325 #endif /* CONFIG_MEMORY_HOTPLUG */ 326 327 static void __meminit sparse_init_one_section(struct mem_section *ms, 328 unsigned long pnum, struct page *mem_map, 329 struct mem_section_usage *usage, unsigned long flags) 330 { 331 ms->section_mem_map &= ~SECTION_MAP_MASK; 332 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 333 | SECTION_HAS_MEM_MAP | flags; 334 ms->usage = usage; 335 } 336 337 static unsigned long usemap_size(void) 338 { 339 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 340 } 341 342 size_t mem_section_usage_size(void) 343 { 344 return sizeof(struct mem_section_usage) + usemap_size(); 345 } 346 347 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat) 348 { 349 #ifndef CONFIG_NUMA 350 return __pa_symbol(pgdat); 351 #else 352 return __pa(pgdat); 353 #endif 354 } 355 356 #ifdef CONFIG_MEMORY_HOTREMOVE 357 static struct mem_section_usage * __init 358 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 359 unsigned long size) 360 { 361 struct mem_section_usage *usage; 362 unsigned long goal, limit; 363 int nid; 364 /* 365 * A page may contain usemaps for other sections preventing the 366 * page being freed and making a section unremovable while 367 * other sections referencing the usemap remain active. Similarly, 368 * a pgdat can prevent a section being removed. If section A 369 * contains a pgdat and section B contains the usemap, both 370 * sections become inter-dependent. This allocates usemaps 371 * from the same section as the pgdat where possible to avoid 372 * this problem. 373 */ 374 goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 375 limit = goal + (1UL << PA_SECTION_SHIFT); 376 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 377 again: 378 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 379 if (!usage && limit) { 380 limit = 0; 381 goto again; 382 } 383 return usage; 384 } 385 386 static void __init check_usemap_section_nr(int nid, 387 struct mem_section_usage *usage) 388 { 389 unsigned long usemap_snr, pgdat_snr; 390 static unsigned long old_usemap_snr; 391 static unsigned long old_pgdat_snr; 392 struct pglist_data *pgdat = NODE_DATA(nid); 393 int usemap_nid; 394 395 /* First call */ 396 if (!old_usemap_snr) { 397 old_usemap_snr = NR_MEM_SECTIONS; 398 old_pgdat_snr = NR_MEM_SECTIONS; 399 } 400 401 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 402 pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT); 403 if (usemap_snr == pgdat_snr) 404 return; 405 406 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 407 /* skip redundant message */ 408 return; 409 410 old_usemap_snr = usemap_snr; 411 old_pgdat_snr = pgdat_snr; 412 413 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 414 if (usemap_nid != nid) { 415 pr_info("node %d must be removed before remove section %ld\n", 416 nid, usemap_snr); 417 return; 418 } 419 /* 420 * There is a circular dependency. 421 * Some platforms allow un-removable section because they will just 422 * gather other removable sections for dynamic partitioning. 423 * Just notify un-removable section's number here. 424 */ 425 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 426 usemap_snr, pgdat_snr, nid); 427 } 428 #else 429 static struct mem_section_usage * __init 430 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 431 unsigned long size) 432 { 433 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 434 } 435 436 static void __init check_usemap_section_nr(int nid, 437 struct mem_section_usage *usage) 438 { 439 } 440 #endif /* CONFIG_MEMORY_HOTREMOVE */ 441 442 #ifdef CONFIG_SPARSEMEM_VMEMMAP 443 static unsigned long __init section_map_size(void) 444 { 445 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 446 } 447 448 #else 449 static unsigned long __init section_map_size(void) 450 { 451 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 452 } 453 454 struct page __init *__populate_section_memmap(unsigned long pfn, 455 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 456 { 457 unsigned long size = section_map_size(); 458 struct page *map = sparse_buffer_alloc(size); 459 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 460 461 if (map) 462 return map; 463 464 map = memblock_alloc_try_nid_raw(size, size, addr, 465 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 466 if (!map) 467 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 468 __func__, size, PAGE_SIZE, nid, &addr); 469 470 return map; 471 } 472 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 473 474 static void *sparsemap_buf __meminitdata; 475 static void *sparsemap_buf_end __meminitdata; 476 477 static inline void __meminit sparse_buffer_free(unsigned long size) 478 { 479 WARN_ON(!sparsemap_buf || size == 0); 480 memblock_free_early(__pa(sparsemap_buf), size); 481 } 482 483 static void __init sparse_buffer_init(unsigned long size, int nid) 484 { 485 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 486 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 487 /* 488 * Pre-allocated buffer is mainly used by __populate_section_memmap 489 * and we want it to be properly aligned to the section size - this is 490 * especially the case for VMEMMAP which maps memmap to PMDs 491 */ 492 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), 493 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 494 sparsemap_buf_end = sparsemap_buf + size; 495 } 496 497 static void __init sparse_buffer_fini(void) 498 { 499 unsigned long size = sparsemap_buf_end - sparsemap_buf; 500 501 if (sparsemap_buf && size > 0) 502 sparse_buffer_free(size); 503 sparsemap_buf = NULL; 504 } 505 506 void * __meminit sparse_buffer_alloc(unsigned long size) 507 { 508 void *ptr = NULL; 509 510 if (sparsemap_buf) { 511 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 512 if (ptr + size > sparsemap_buf_end) 513 ptr = NULL; 514 else { 515 /* Free redundant aligned space */ 516 if ((unsigned long)(ptr - sparsemap_buf) > 0) 517 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 518 sparsemap_buf = ptr + size; 519 } 520 } 521 return ptr; 522 } 523 524 void __weak __meminit vmemmap_populate_print_last(void) 525 { 526 } 527 528 /* 529 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 530 * And number of present sections in this node is map_count. 531 */ 532 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 533 unsigned long pnum_end, 534 unsigned long map_count) 535 { 536 struct mem_section_usage *usage; 537 unsigned long pnum; 538 struct page *map; 539 540 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 541 mem_section_usage_size() * map_count); 542 if (!usage) { 543 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 544 goto failed; 545 } 546 sparse_buffer_init(map_count * section_map_size(), nid); 547 for_each_present_section_nr(pnum_begin, pnum) { 548 unsigned long pfn = section_nr_to_pfn(pnum); 549 550 if (pnum >= pnum_end) 551 break; 552 553 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 554 nid, NULL); 555 if (!map) { 556 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 557 __func__, nid); 558 pnum_begin = pnum; 559 sparse_buffer_fini(); 560 goto failed; 561 } 562 check_usemap_section_nr(nid, usage); 563 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 564 SECTION_IS_EARLY); 565 usage = (void *) usage + mem_section_usage_size(); 566 } 567 sparse_buffer_fini(); 568 return; 569 failed: 570 /* We failed to allocate, mark all the following pnums as not present */ 571 for_each_present_section_nr(pnum_begin, pnum) { 572 struct mem_section *ms; 573 574 if (pnum >= pnum_end) 575 break; 576 ms = __nr_to_section(pnum); 577 ms->section_mem_map = 0; 578 } 579 } 580 581 /* 582 * Allocate the accumulated non-linear sections, allocate a mem_map 583 * for each and record the physical to section mapping. 584 */ 585 void __init sparse_init(void) 586 { 587 unsigned long pnum_end, pnum_begin, map_count = 1; 588 int nid_begin; 589 590 memblocks_present(); 591 592 pnum_begin = first_present_section_nr(); 593 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 594 595 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 596 set_pageblock_order(); 597 598 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 599 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 600 601 if (nid == nid_begin) { 602 map_count++; 603 continue; 604 } 605 /* Init node with sections in range [pnum_begin, pnum_end) */ 606 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 607 nid_begin = nid; 608 pnum_begin = pnum_end; 609 map_count = 1; 610 } 611 /* cover the last node */ 612 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 613 vmemmap_populate_print_last(); 614 } 615 616 #ifdef CONFIG_MEMORY_HOTPLUG 617 618 /* Mark all memory sections within the pfn range as online */ 619 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 620 { 621 unsigned long pfn; 622 623 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 624 unsigned long section_nr = pfn_to_section_nr(pfn); 625 struct mem_section *ms; 626 627 /* onlining code should never touch invalid ranges */ 628 if (WARN_ON(!valid_section_nr(section_nr))) 629 continue; 630 631 ms = __nr_to_section(section_nr); 632 ms->section_mem_map |= SECTION_IS_ONLINE; 633 } 634 } 635 636 /* Mark all memory sections within the pfn range as offline */ 637 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 638 { 639 unsigned long pfn; 640 641 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 642 unsigned long section_nr = pfn_to_section_nr(pfn); 643 struct mem_section *ms; 644 645 /* 646 * TODO this needs some double checking. Offlining code makes 647 * sure to check pfn_valid but those checks might be just bogus 648 */ 649 if (WARN_ON(!valid_section_nr(section_nr))) 650 continue; 651 652 ms = __nr_to_section(section_nr); 653 ms->section_mem_map &= ~SECTION_IS_ONLINE; 654 } 655 } 656 657 #ifdef CONFIG_SPARSEMEM_VMEMMAP 658 static struct page * __meminit populate_section_memmap(unsigned long pfn, 659 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 660 { 661 return __populate_section_memmap(pfn, nr_pages, nid, altmap); 662 } 663 664 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 665 struct vmem_altmap *altmap) 666 { 667 unsigned long start = (unsigned long) pfn_to_page(pfn); 668 unsigned long end = start + nr_pages * sizeof(struct page); 669 670 vmemmap_free(start, end, altmap); 671 } 672 static void free_map_bootmem(struct page *memmap) 673 { 674 unsigned long start = (unsigned long)memmap; 675 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 676 677 vmemmap_free(start, end, NULL); 678 } 679 680 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 681 { 682 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 683 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 684 struct mem_section *ms = __pfn_to_section(pfn); 685 unsigned long *subsection_map = ms->usage 686 ? &ms->usage->subsection_map[0] : NULL; 687 688 subsection_mask_set(map, pfn, nr_pages); 689 if (subsection_map) 690 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 691 692 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 693 "section already deactivated (%#lx + %ld)\n", 694 pfn, nr_pages)) 695 return -EINVAL; 696 697 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 698 return 0; 699 } 700 701 static bool is_subsection_map_empty(struct mem_section *ms) 702 { 703 return bitmap_empty(&ms->usage->subsection_map[0], 704 SUBSECTIONS_PER_SECTION); 705 } 706 707 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 708 { 709 struct mem_section *ms = __pfn_to_section(pfn); 710 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 711 unsigned long *subsection_map; 712 int rc = 0; 713 714 subsection_mask_set(map, pfn, nr_pages); 715 716 subsection_map = &ms->usage->subsection_map[0]; 717 718 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 719 rc = -EINVAL; 720 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 721 rc = -EEXIST; 722 else 723 bitmap_or(subsection_map, map, subsection_map, 724 SUBSECTIONS_PER_SECTION); 725 726 return rc; 727 } 728 #else 729 struct page * __meminit populate_section_memmap(unsigned long pfn, 730 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 731 { 732 return kvmalloc_node(array_size(sizeof(struct page), 733 PAGES_PER_SECTION), GFP_KERNEL, nid); 734 } 735 736 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 737 struct vmem_altmap *altmap) 738 { 739 kvfree(pfn_to_page(pfn)); 740 } 741 742 static void free_map_bootmem(struct page *memmap) 743 { 744 unsigned long maps_section_nr, removing_section_nr, i; 745 unsigned long magic, nr_pages; 746 struct page *page = virt_to_page(memmap); 747 748 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 749 >> PAGE_SHIFT; 750 751 for (i = 0; i < nr_pages; i++, page++) { 752 magic = (unsigned long) page->freelist; 753 754 BUG_ON(magic == NODE_INFO); 755 756 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 757 removing_section_nr = page_private(page); 758 759 /* 760 * When this function is called, the removing section is 761 * logical offlined state. This means all pages are isolated 762 * from page allocator. If removing section's memmap is placed 763 * on the same section, it must not be freed. 764 * If it is freed, page allocator may allocate it which will 765 * be removed physically soon. 766 */ 767 if (maps_section_nr != removing_section_nr) 768 put_page_bootmem(page); 769 } 770 } 771 772 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 773 { 774 return 0; 775 } 776 777 static bool is_subsection_map_empty(struct mem_section *ms) 778 { 779 return true; 780 } 781 782 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 783 { 784 return 0; 785 } 786 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 787 788 /* 789 * To deactivate a memory region, there are 3 cases to handle across 790 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 791 * 792 * 1. deactivation of a partial hot-added section (only possible in 793 * the SPARSEMEM_VMEMMAP=y case). 794 * a) section was present at memory init. 795 * b) section was hot-added post memory init. 796 * 2. deactivation of a complete hot-added section. 797 * 3. deactivation of a complete section from memory init. 798 * 799 * For 1, when subsection_map does not empty we will not be freeing the 800 * usage map, but still need to free the vmemmap range. 801 * 802 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 803 */ 804 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 805 struct vmem_altmap *altmap) 806 { 807 struct mem_section *ms = __pfn_to_section(pfn); 808 bool section_is_early = early_section(ms); 809 struct page *memmap = NULL; 810 bool empty; 811 812 if (clear_subsection_map(pfn, nr_pages)) 813 return; 814 815 empty = is_subsection_map_empty(ms); 816 if (empty) { 817 unsigned long section_nr = pfn_to_section_nr(pfn); 818 819 /* 820 * When removing an early section, the usage map is kept (as the 821 * usage maps of other sections fall into the same page). It 822 * will be re-used when re-adding the section - which is then no 823 * longer an early section. If the usage map is PageReserved, it 824 * was allocated during boot. 825 */ 826 if (!PageReserved(virt_to_page(ms->usage))) { 827 kfree(ms->usage); 828 ms->usage = NULL; 829 } 830 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 831 /* 832 * Mark the section invalid so that valid_section() 833 * return false. This prevents code from dereferencing 834 * ms->usage array. 835 */ 836 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 837 } 838 839 /* 840 * The memmap of early sections is always fully populated. See 841 * section_activate() and pfn_valid() . 842 */ 843 if (!section_is_early) 844 depopulate_section_memmap(pfn, nr_pages, altmap); 845 else if (memmap) 846 free_map_bootmem(memmap); 847 848 if (empty) 849 ms->section_mem_map = (unsigned long)NULL; 850 } 851 852 static struct page * __meminit section_activate(int nid, unsigned long pfn, 853 unsigned long nr_pages, struct vmem_altmap *altmap) 854 { 855 struct mem_section *ms = __pfn_to_section(pfn); 856 struct mem_section_usage *usage = NULL; 857 struct page *memmap; 858 int rc = 0; 859 860 if (!ms->usage) { 861 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 862 if (!usage) 863 return ERR_PTR(-ENOMEM); 864 ms->usage = usage; 865 } 866 867 rc = fill_subsection_map(pfn, nr_pages); 868 if (rc) { 869 if (usage) 870 ms->usage = NULL; 871 kfree(usage); 872 return ERR_PTR(rc); 873 } 874 875 /* 876 * The early init code does not consider partially populated 877 * initial sections, it simply assumes that memory will never be 878 * referenced. If we hot-add memory into such a section then we 879 * do not need to populate the memmap and can simply reuse what 880 * is already there. 881 */ 882 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 883 return pfn_to_page(pfn); 884 885 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); 886 if (!memmap) { 887 section_deactivate(pfn, nr_pages, altmap); 888 return ERR_PTR(-ENOMEM); 889 } 890 891 return memmap; 892 } 893 894 /** 895 * sparse_add_section - add a memory section, or populate an existing one 896 * @nid: The node to add section on 897 * @start_pfn: start pfn of the memory range 898 * @nr_pages: number of pfns to add in the section 899 * @altmap: device page map 900 * 901 * This is only intended for hotplug. 902 * 903 * Note that only VMEMMAP supports sub-section aligned hotplug, 904 * the proper alignment and size are gated by check_pfn_span(). 905 * 906 * 907 * Return: 908 * * 0 - On success. 909 * * -EEXIST - Section has been present. 910 * * -ENOMEM - Out of memory. 911 */ 912 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 913 unsigned long nr_pages, struct vmem_altmap *altmap) 914 { 915 unsigned long section_nr = pfn_to_section_nr(start_pfn); 916 struct mem_section *ms; 917 struct page *memmap; 918 int ret; 919 920 ret = sparse_index_init(section_nr, nid); 921 if (ret < 0) 922 return ret; 923 924 memmap = section_activate(nid, start_pfn, nr_pages, altmap); 925 if (IS_ERR(memmap)) 926 return PTR_ERR(memmap); 927 928 /* 929 * Poison uninitialized struct pages in order to catch invalid flags 930 * combinations. 931 */ 932 page_init_poison(memmap, sizeof(struct page) * nr_pages); 933 934 ms = __nr_to_section(section_nr); 935 set_section_nid(section_nr, nid); 936 section_mark_present(ms); 937 938 /* Align memmap to section boundary in the subsection case */ 939 if (section_nr_to_pfn(section_nr) != start_pfn) 940 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 941 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 942 943 return 0; 944 } 945 946 #ifdef CONFIG_MEMORY_FAILURE 947 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 948 { 949 int i; 950 951 /* 952 * A further optimization is to have per section refcounted 953 * num_poisoned_pages. But that would need more space per memmap, so 954 * for now just do a quick global check to speed up this routine in the 955 * absence of bad pages. 956 */ 957 if (atomic_long_read(&num_poisoned_pages) == 0) 958 return; 959 960 for (i = 0; i < nr_pages; i++) { 961 if (PageHWPoison(&memmap[i])) { 962 num_poisoned_pages_dec(); 963 ClearPageHWPoison(&memmap[i]); 964 } 965 } 966 } 967 #else 968 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 969 { 970 } 971 #endif 972 973 void sparse_remove_section(struct mem_section *ms, unsigned long pfn, 974 unsigned long nr_pages, unsigned long map_offset, 975 struct vmem_altmap *altmap) 976 { 977 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, 978 nr_pages - map_offset); 979 section_deactivate(pfn, nr_pages, altmap); 980 } 981 #endif /* CONFIG_MEMORY_HOTPLUG */ 982