1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/bootmem.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 else 71 section = memblock_virt_alloc_node(array_size, nid); 72 73 return section; 74 } 75 76 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 77 { 78 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 79 struct mem_section *section; 80 81 if (mem_section[root]) 82 return -EEXIST; 83 84 section = sparse_index_alloc(nid); 85 if (!section) 86 return -ENOMEM; 87 88 mem_section[root] = section; 89 90 return 0; 91 } 92 #else /* !SPARSEMEM_EXTREME */ 93 static inline int sparse_index_init(unsigned long section_nr, int nid) 94 { 95 return 0; 96 } 97 #endif 98 99 #ifdef CONFIG_SPARSEMEM_EXTREME 100 int __section_nr(struct mem_section* ms) 101 { 102 unsigned long root_nr; 103 struct mem_section *root = NULL; 104 105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 107 if (!root) 108 continue; 109 110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 111 break; 112 } 113 114 VM_BUG_ON(!root); 115 116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 117 } 118 #else 119 int __section_nr(struct mem_section* ms) 120 { 121 return (int)(ms - mem_section[0]); 122 } 123 #endif 124 125 /* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131 static inline unsigned long sparse_encode_early_nid(int nid) 132 { 133 return (nid << SECTION_NID_SHIFT); 134 } 135 136 static inline int sparse_early_nid(struct mem_section *section) 137 { 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139 } 140 141 /* Validate the physical addressing limitations of the model */ 142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144 { 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165 } 166 167 /* 168 * There are a number of times that we loop over NR_MEM_SECTIONS, 169 * looking for section_present() on each. But, when we have very 170 * large physical address spaces, NR_MEM_SECTIONS can also be 171 * very large which makes the loops quite long. 172 * 173 * Keeping track of this gives us an easy way to break out of 174 * those loops early. 175 */ 176 int __highest_present_section_nr; 177 static void section_mark_present(struct mem_section *ms) 178 { 179 int section_nr = __section_nr(ms); 180 181 if (section_nr > __highest_present_section_nr) 182 __highest_present_section_nr = section_nr; 183 184 ms->section_mem_map |= SECTION_MARKED_PRESENT; 185 } 186 187 static inline int next_present_section_nr(int section_nr) 188 { 189 do { 190 section_nr++; 191 if (present_section_nr(section_nr)) 192 return section_nr; 193 } while ((section_nr < NR_MEM_SECTIONS) && 194 (section_nr <= __highest_present_section_nr)); 195 196 return -1; 197 } 198 #define for_each_present_section_nr(start, section_nr) \ 199 for (section_nr = next_present_section_nr(start-1); \ 200 ((section_nr >= 0) && \ 201 (section_nr < NR_MEM_SECTIONS) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205 /* Record a memory area against a node. */ 206 void __init memory_present(int nid, unsigned long start, unsigned long end) 207 { 208 unsigned long pfn; 209 210 #ifdef CONFIG_SPARSEMEM_EXTREME 211 if (unlikely(!mem_section)) { 212 unsigned long size, align; 213 214 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 215 align = 1 << (INTERNODE_CACHE_SHIFT); 216 mem_section = memblock_virt_alloc(size, align); 217 } 218 #endif 219 220 start &= PAGE_SECTION_MASK; 221 mminit_validate_memmodel_limits(&start, &end); 222 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 223 unsigned long section = pfn_to_section_nr(pfn); 224 struct mem_section *ms; 225 226 sparse_index_init(section, nid); 227 set_section_nid(section, nid); 228 229 ms = __nr_to_section(section); 230 if (!ms->section_mem_map) { 231 ms->section_mem_map = sparse_encode_early_nid(nid) | 232 SECTION_IS_ONLINE; 233 section_mark_present(ms); 234 } 235 } 236 } 237 238 /* 239 * Only used by the i386 NUMA architecures, but relatively 240 * generic code. 241 */ 242 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 243 unsigned long end_pfn) 244 { 245 unsigned long pfn; 246 unsigned long nr_pages = 0; 247 248 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 249 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 250 if (nid != early_pfn_to_nid(pfn)) 251 continue; 252 253 if (pfn_present(pfn)) 254 nr_pages += PAGES_PER_SECTION; 255 } 256 257 return nr_pages * sizeof(struct page); 258 } 259 260 /* 261 * Subtle, we encode the real pfn into the mem_map such that 262 * the identity pfn - section_mem_map will return the actual 263 * physical page frame number. 264 */ 265 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 266 { 267 unsigned long coded_mem_map = 268 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 269 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 270 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 271 return coded_mem_map; 272 } 273 274 /* 275 * Decode mem_map from the coded memmap 276 */ 277 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 278 { 279 /* mask off the extra low bits of information */ 280 coded_mem_map &= SECTION_MAP_MASK; 281 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 282 } 283 284 static int __meminit sparse_init_one_section(struct mem_section *ms, 285 unsigned long pnum, struct page *mem_map, 286 unsigned long *pageblock_bitmap) 287 { 288 if (!present_section(ms)) 289 return -EINVAL; 290 291 ms->section_mem_map &= ~SECTION_MAP_MASK; 292 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 293 SECTION_HAS_MEM_MAP; 294 ms->pageblock_flags = pageblock_bitmap; 295 296 return 1; 297 } 298 299 unsigned long usemap_size(void) 300 { 301 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 302 } 303 304 #ifdef CONFIG_MEMORY_HOTPLUG 305 static unsigned long *__kmalloc_section_usemap(void) 306 { 307 return kmalloc(usemap_size(), GFP_KERNEL); 308 } 309 #endif /* CONFIG_MEMORY_HOTPLUG */ 310 311 #ifdef CONFIG_MEMORY_HOTREMOVE 312 static unsigned long * __init 313 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 314 unsigned long size) 315 { 316 unsigned long goal, limit; 317 unsigned long *p; 318 int nid; 319 /* 320 * A page may contain usemaps for other sections preventing the 321 * page being freed and making a section unremovable while 322 * other sections referencing the usemap remain active. Similarly, 323 * a pgdat can prevent a section being removed. If section A 324 * contains a pgdat and section B contains the usemap, both 325 * sections become inter-dependent. This allocates usemaps 326 * from the same section as the pgdat where possible to avoid 327 * this problem. 328 */ 329 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 330 limit = goal + (1UL << PA_SECTION_SHIFT); 331 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 332 again: 333 p = memblock_virt_alloc_try_nid_nopanic(size, 334 SMP_CACHE_BYTES, goal, limit, 335 nid); 336 if (!p && limit) { 337 limit = 0; 338 goto again; 339 } 340 return p; 341 } 342 343 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 344 { 345 unsigned long usemap_snr, pgdat_snr; 346 static unsigned long old_usemap_snr; 347 static unsigned long old_pgdat_snr; 348 struct pglist_data *pgdat = NODE_DATA(nid); 349 int usemap_nid; 350 351 /* First call */ 352 if (!old_usemap_snr) { 353 old_usemap_snr = NR_MEM_SECTIONS; 354 old_pgdat_snr = NR_MEM_SECTIONS; 355 } 356 357 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 358 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 359 if (usemap_snr == pgdat_snr) 360 return; 361 362 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 363 /* skip redundant message */ 364 return; 365 366 old_usemap_snr = usemap_snr; 367 old_pgdat_snr = pgdat_snr; 368 369 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 370 if (usemap_nid != nid) { 371 pr_info("node %d must be removed before remove section %ld\n", 372 nid, usemap_snr); 373 return; 374 } 375 /* 376 * There is a circular dependency. 377 * Some platforms allow un-removable section because they will just 378 * gather other removable sections for dynamic partitioning. 379 * Just notify un-removable section's number here. 380 */ 381 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 382 usemap_snr, pgdat_snr, nid); 383 } 384 #else 385 static unsigned long * __init 386 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 387 unsigned long size) 388 { 389 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 390 } 391 392 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 393 { 394 } 395 #endif /* CONFIG_MEMORY_HOTREMOVE */ 396 397 static void __init sparse_early_usemaps_alloc_node(void *data, 398 unsigned long pnum_begin, 399 unsigned long pnum_end, 400 unsigned long usemap_count, int nodeid) 401 { 402 void *usemap; 403 unsigned long pnum; 404 unsigned long **usemap_map = (unsigned long **)data; 405 int size = usemap_size(); 406 407 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 408 size * usemap_count); 409 if (!usemap) { 410 pr_warn("%s: allocation failed\n", __func__); 411 return; 412 } 413 414 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 415 if (!present_section_nr(pnum)) 416 continue; 417 usemap_map[pnum] = usemap; 418 usemap += size; 419 check_usemap_section_nr(nodeid, usemap_map[pnum]); 420 } 421 } 422 423 #ifndef CONFIG_SPARSEMEM_VMEMMAP 424 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid, 425 struct vmem_altmap *altmap) 426 { 427 struct page *map; 428 unsigned long size; 429 430 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 431 map = memblock_virt_alloc_try_nid(size, 432 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 433 BOOTMEM_ALLOC_ACCESSIBLE, nid); 434 return map; 435 } 436 void __init sparse_mem_maps_populate_node(struct page **map_map, 437 unsigned long pnum_begin, 438 unsigned long pnum_end, 439 unsigned long map_count, int nodeid) 440 { 441 void *map; 442 unsigned long pnum; 443 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 444 445 size = PAGE_ALIGN(size); 446 map = memblock_virt_alloc_try_nid_raw(size * map_count, 447 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 448 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 449 if (map) { 450 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 451 if (!present_section_nr(pnum)) 452 continue; 453 map_map[pnum] = map; 454 map += size; 455 } 456 return; 457 } 458 459 /* fallback */ 460 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 461 struct mem_section *ms; 462 463 if (!present_section_nr(pnum)) 464 continue; 465 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL); 466 if (map_map[pnum]) 467 continue; 468 ms = __nr_to_section(pnum); 469 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 470 __func__); 471 ms->section_mem_map = 0; 472 } 473 } 474 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 475 476 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 477 static void __init sparse_early_mem_maps_alloc_node(void *data, 478 unsigned long pnum_begin, 479 unsigned long pnum_end, 480 unsigned long map_count, int nodeid) 481 { 482 struct page **map_map = (struct page **)data; 483 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 484 map_count, nodeid); 485 } 486 #else 487 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 488 { 489 struct page *map; 490 struct mem_section *ms = __nr_to_section(pnum); 491 int nid = sparse_early_nid(ms); 492 493 map = sparse_mem_map_populate(pnum, nid, NULL); 494 if (map) 495 return map; 496 497 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 498 __func__); 499 ms->section_mem_map = 0; 500 return NULL; 501 } 502 #endif 503 504 void __weak __meminit vmemmap_populate_print_last(void) 505 { 506 } 507 508 /** 509 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 510 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 511 */ 512 static void __init alloc_usemap_and_memmap(void (*alloc_func) 513 (void *, unsigned long, unsigned long, 514 unsigned long, int), void *data) 515 { 516 unsigned long pnum; 517 unsigned long map_count; 518 int nodeid_begin = 0; 519 unsigned long pnum_begin = 0; 520 521 for_each_present_section_nr(0, pnum) { 522 struct mem_section *ms; 523 524 ms = __nr_to_section(pnum); 525 nodeid_begin = sparse_early_nid(ms); 526 pnum_begin = pnum; 527 break; 528 } 529 map_count = 1; 530 for_each_present_section_nr(pnum_begin + 1, pnum) { 531 struct mem_section *ms; 532 int nodeid; 533 534 ms = __nr_to_section(pnum); 535 nodeid = sparse_early_nid(ms); 536 if (nodeid == nodeid_begin) { 537 map_count++; 538 continue; 539 } 540 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 541 alloc_func(data, pnum_begin, pnum, 542 map_count, nodeid_begin); 543 /* new start, update count etc*/ 544 nodeid_begin = nodeid; 545 pnum_begin = pnum; 546 map_count = 1; 547 } 548 /* ok, last chunk */ 549 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 550 map_count, nodeid_begin); 551 } 552 553 /* 554 * Allocate the accumulated non-linear sections, allocate a mem_map 555 * for each and record the physical to section mapping. 556 */ 557 void __init sparse_init(void) 558 { 559 unsigned long pnum; 560 struct page *map; 561 unsigned long *usemap; 562 unsigned long **usemap_map; 563 int size; 564 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 565 int size2; 566 struct page **map_map; 567 #endif 568 569 /* see include/linux/mmzone.h 'struct mem_section' definition */ 570 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 571 572 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 573 set_pageblock_order(); 574 575 /* 576 * map is using big page (aka 2M in x86 64 bit) 577 * usemap is less one page (aka 24 bytes) 578 * so alloc 2M (with 2M align) and 24 bytes in turn will 579 * make next 2M slip to one more 2M later. 580 * then in big system, the memory will have a lot of holes... 581 * here try to allocate 2M pages continuously. 582 * 583 * powerpc need to call sparse_init_one_section right after each 584 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 585 */ 586 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 587 usemap_map = memblock_virt_alloc(size, 0); 588 if (!usemap_map) 589 panic("can not allocate usemap_map\n"); 590 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 591 (void *)usemap_map); 592 593 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 594 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 595 map_map = memblock_virt_alloc(size2, 0); 596 if (!map_map) 597 panic("can not allocate map_map\n"); 598 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 599 (void *)map_map); 600 #endif 601 602 for_each_present_section_nr(0, pnum) { 603 usemap = usemap_map[pnum]; 604 if (!usemap) 605 continue; 606 607 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 608 map = map_map[pnum]; 609 #else 610 map = sparse_early_mem_map_alloc(pnum); 611 #endif 612 if (!map) 613 continue; 614 615 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 616 usemap); 617 } 618 619 vmemmap_populate_print_last(); 620 621 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 622 memblock_free_early(__pa(map_map), size2); 623 #endif 624 memblock_free_early(__pa(usemap_map), size); 625 } 626 627 #ifdef CONFIG_MEMORY_HOTPLUG 628 629 /* Mark all memory sections within the pfn range as online */ 630 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 631 { 632 unsigned long pfn; 633 634 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 635 unsigned long section_nr = pfn_to_section_nr(pfn); 636 struct mem_section *ms; 637 638 /* onlining code should never touch invalid ranges */ 639 if (WARN_ON(!valid_section_nr(section_nr))) 640 continue; 641 642 ms = __nr_to_section(section_nr); 643 ms->section_mem_map |= SECTION_IS_ONLINE; 644 } 645 } 646 647 #ifdef CONFIG_MEMORY_HOTREMOVE 648 /* Mark all memory sections within the pfn range as online */ 649 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 650 { 651 unsigned long pfn; 652 653 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 654 unsigned long section_nr = pfn_to_section_nr(start_pfn); 655 struct mem_section *ms; 656 657 /* 658 * TODO this needs some double checking. Offlining code makes 659 * sure to check pfn_valid but those checks might be just bogus 660 */ 661 if (WARN_ON(!valid_section_nr(section_nr))) 662 continue; 663 664 ms = __nr_to_section(section_nr); 665 ms->section_mem_map &= ~SECTION_IS_ONLINE; 666 } 667 } 668 #endif 669 670 #ifdef CONFIG_SPARSEMEM_VMEMMAP 671 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 672 struct vmem_altmap *altmap) 673 { 674 /* This will make the necessary allocations eventually. */ 675 return sparse_mem_map_populate(pnum, nid, altmap); 676 } 677 static void __kfree_section_memmap(struct page *memmap, 678 struct vmem_altmap *altmap) 679 { 680 unsigned long start = (unsigned long)memmap; 681 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 682 683 vmemmap_free(start, end, altmap); 684 } 685 #ifdef CONFIG_MEMORY_HOTREMOVE 686 static void free_map_bootmem(struct page *memmap) 687 { 688 unsigned long start = (unsigned long)memmap; 689 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 690 691 vmemmap_free(start, end, NULL); 692 } 693 #endif /* CONFIG_MEMORY_HOTREMOVE */ 694 #else 695 static struct page *__kmalloc_section_memmap(void) 696 { 697 struct page *page, *ret; 698 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 699 700 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 701 if (page) 702 goto got_map_page; 703 704 ret = vmalloc(memmap_size); 705 if (ret) 706 goto got_map_ptr; 707 708 return NULL; 709 got_map_page: 710 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 711 got_map_ptr: 712 713 return ret; 714 } 715 716 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 717 struct vmem_altmap *altmap) 718 { 719 return __kmalloc_section_memmap(); 720 } 721 722 static void __kfree_section_memmap(struct page *memmap, 723 struct vmem_altmap *altmap) 724 { 725 if (is_vmalloc_addr(memmap)) 726 vfree(memmap); 727 else 728 free_pages((unsigned long)memmap, 729 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 730 } 731 732 #ifdef CONFIG_MEMORY_HOTREMOVE 733 static void free_map_bootmem(struct page *memmap) 734 { 735 unsigned long maps_section_nr, removing_section_nr, i; 736 unsigned long magic, nr_pages; 737 struct page *page = virt_to_page(memmap); 738 739 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 740 >> PAGE_SHIFT; 741 742 for (i = 0; i < nr_pages; i++, page++) { 743 magic = (unsigned long) page->freelist; 744 745 BUG_ON(magic == NODE_INFO); 746 747 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 748 removing_section_nr = page_private(page); 749 750 /* 751 * When this function is called, the removing section is 752 * logical offlined state. This means all pages are isolated 753 * from page allocator. If removing section's memmap is placed 754 * on the same section, it must not be freed. 755 * If it is freed, page allocator may allocate it which will 756 * be removed physically soon. 757 */ 758 if (maps_section_nr != removing_section_nr) 759 put_page_bootmem(page); 760 } 761 } 762 #endif /* CONFIG_MEMORY_HOTREMOVE */ 763 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 764 765 /* 766 * returns the number of sections whose mem_maps were properly 767 * set. If this is <=0, then that means that the passed-in 768 * map was not consumed and must be freed. 769 */ 770 int __meminit sparse_add_one_section(struct pglist_data *pgdat, 771 unsigned long start_pfn, struct vmem_altmap *altmap) 772 { 773 unsigned long section_nr = pfn_to_section_nr(start_pfn); 774 struct mem_section *ms; 775 struct page *memmap; 776 unsigned long *usemap; 777 unsigned long flags; 778 int ret; 779 780 /* 781 * no locking for this, because it does its own 782 * plus, it does a kmalloc 783 */ 784 ret = sparse_index_init(section_nr, pgdat->node_id); 785 if (ret < 0 && ret != -EEXIST) 786 return ret; 787 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap); 788 if (!memmap) 789 return -ENOMEM; 790 usemap = __kmalloc_section_usemap(); 791 if (!usemap) { 792 __kfree_section_memmap(memmap, altmap); 793 return -ENOMEM; 794 } 795 796 pgdat_resize_lock(pgdat, &flags); 797 798 ms = __pfn_to_section(start_pfn); 799 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 800 ret = -EEXIST; 801 goto out; 802 } 803 804 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION); 805 806 section_mark_present(ms); 807 808 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 809 810 out: 811 pgdat_resize_unlock(pgdat, &flags); 812 if (ret <= 0) { 813 kfree(usemap); 814 __kfree_section_memmap(memmap, altmap); 815 } 816 return ret; 817 } 818 819 #ifdef CONFIG_MEMORY_HOTREMOVE 820 #ifdef CONFIG_MEMORY_FAILURE 821 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 822 { 823 int i; 824 825 if (!memmap) 826 return; 827 828 for (i = 0; i < nr_pages; i++) { 829 if (PageHWPoison(&memmap[i])) { 830 atomic_long_sub(1, &num_poisoned_pages); 831 ClearPageHWPoison(&memmap[i]); 832 } 833 } 834 } 835 #else 836 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 837 { 838 } 839 #endif 840 841 static void free_section_usemap(struct page *memmap, unsigned long *usemap, 842 struct vmem_altmap *altmap) 843 { 844 struct page *usemap_page; 845 846 if (!usemap) 847 return; 848 849 usemap_page = virt_to_page(usemap); 850 /* 851 * Check to see if allocation came from hot-plug-add 852 */ 853 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 854 kfree(usemap); 855 if (memmap) 856 __kfree_section_memmap(memmap, altmap); 857 return; 858 } 859 860 /* 861 * The usemap came from bootmem. This is packed with other usemaps 862 * on the section which has pgdat at boot time. Just keep it as is now. 863 */ 864 865 if (memmap) 866 free_map_bootmem(memmap); 867 } 868 869 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 870 unsigned long map_offset, struct vmem_altmap *altmap) 871 { 872 struct page *memmap = NULL; 873 unsigned long *usemap = NULL, flags; 874 struct pglist_data *pgdat = zone->zone_pgdat; 875 876 pgdat_resize_lock(pgdat, &flags); 877 if (ms->section_mem_map) { 878 usemap = ms->pageblock_flags; 879 memmap = sparse_decode_mem_map(ms->section_mem_map, 880 __section_nr(ms)); 881 ms->section_mem_map = 0; 882 ms->pageblock_flags = NULL; 883 } 884 pgdat_resize_unlock(pgdat, &flags); 885 886 clear_hwpoisoned_pages(memmap + map_offset, 887 PAGES_PER_SECTION - map_offset); 888 free_section_usemap(memmap, usemap, altmap); 889 } 890 #endif /* CONFIG_MEMORY_HOTREMOVE */ 891 #endif /* CONFIG_MEMORY_HOTPLUG */ 892