1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/bootmem_info.h> 17 18 #include "internal.h" 19 #include <asm/dma.h> 20 21 /* 22 * Permanent SPARSEMEM data: 23 * 24 * 1) mem_section - memory sections, mem_map's for valid memory 25 */ 26 #ifdef CONFIG_SPARSEMEM_EXTREME 27 struct mem_section **mem_section; 28 #else 29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 30 ____cacheline_internodealigned_in_smp; 31 #endif 32 EXPORT_SYMBOL(mem_section); 33 34 #ifdef NODE_NOT_IN_PAGE_FLAGS 35 /* 36 * If we did not store the node number in the page then we have to 37 * do a lookup in the section_to_node_table in order to find which 38 * node the page belongs to. 39 */ 40 #if MAX_NUMNODES <= 256 41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 42 #else 43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 44 #endif 45 46 int page_to_nid(const struct page *page) 47 { 48 return section_to_node_table[page_to_section(page)]; 49 } 50 EXPORT_SYMBOL(page_to_nid); 51 52 static void set_section_nid(unsigned long section_nr, int nid) 53 { 54 section_to_node_table[section_nr] = nid; 55 } 56 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 57 static inline void set_section_nid(unsigned long section_nr, int nid) 58 { 59 } 60 #endif 61 62 #ifdef CONFIG_SPARSEMEM_EXTREME 63 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 64 { 65 struct mem_section *section = NULL; 66 unsigned long array_size = SECTIONS_PER_ROOT * 67 sizeof(struct mem_section); 68 69 if (slab_is_available()) { 70 section = kzalloc_node(array_size, GFP_KERNEL, nid); 71 } else { 72 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 73 nid); 74 if (!section) 75 panic("%s: Failed to allocate %lu bytes nid=%d\n", 76 __func__, array_size, nid); 77 } 78 79 return section; 80 } 81 82 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 83 { 84 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 85 struct mem_section *section; 86 87 /* 88 * An existing section is possible in the sub-section hotplug 89 * case. First hot-add instantiates, follow-on hot-add reuses 90 * the existing section. 91 * 92 * The mem_hotplug_lock resolves the apparent race below. 93 */ 94 if (mem_section[root]) 95 return 0; 96 97 section = sparse_index_alloc(nid); 98 if (!section) 99 return -ENOMEM; 100 101 mem_section[root] = section; 102 103 return 0; 104 } 105 #else /* !SPARSEMEM_EXTREME */ 106 static inline int sparse_index_init(unsigned long section_nr, int nid) 107 { 108 return 0; 109 } 110 #endif 111 112 #ifdef CONFIG_SPARSEMEM_EXTREME 113 unsigned long __section_nr(struct mem_section *ms) 114 { 115 unsigned long root_nr; 116 struct mem_section *root = NULL; 117 118 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 119 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 120 if (!root) 121 continue; 122 123 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 124 break; 125 } 126 127 VM_BUG_ON(!root); 128 129 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 130 } 131 #else 132 unsigned long __section_nr(struct mem_section *ms) 133 { 134 return (unsigned long)(ms - mem_section[0]); 135 } 136 #endif 137 138 /* 139 * During early boot, before section_mem_map is used for an actual 140 * mem_map, we use section_mem_map to store the section's NUMA 141 * node. This keeps us from having to use another data structure. The 142 * node information is cleared just before we store the real mem_map. 143 */ 144 static inline unsigned long sparse_encode_early_nid(int nid) 145 { 146 return (nid << SECTION_NID_SHIFT); 147 } 148 149 static inline int sparse_early_nid(struct mem_section *section) 150 { 151 return (section->section_mem_map >> SECTION_NID_SHIFT); 152 } 153 154 /* Validate the physical addressing limitations of the model */ 155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 156 unsigned long *end_pfn) 157 { 158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 159 160 /* 161 * Sanity checks - do not allow an architecture to pass 162 * in larger pfns than the maximum scope of sparsemem: 163 */ 164 if (*start_pfn > max_sparsemem_pfn) { 165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 167 *start_pfn, *end_pfn, max_sparsemem_pfn); 168 WARN_ON_ONCE(1); 169 *start_pfn = max_sparsemem_pfn; 170 *end_pfn = max_sparsemem_pfn; 171 } else if (*end_pfn > max_sparsemem_pfn) { 172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 174 *start_pfn, *end_pfn, max_sparsemem_pfn); 175 WARN_ON_ONCE(1); 176 *end_pfn = max_sparsemem_pfn; 177 } 178 } 179 180 /* 181 * There are a number of times that we loop over NR_MEM_SECTIONS, 182 * looking for section_present() on each. But, when we have very 183 * large physical address spaces, NR_MEM_SECTIONS can also be 184 * very large which makes the loops quite long. 185 * 186 * Keeping track of this gives us an easy way to break out of 187 * those loops early. 188 */ 189 unsigned long __highest_present_section_nr; 190 static void section_mark_present(struct mem_section *ms) 191 { 192 unsigned long section_nr = __section_nr(ms); 193 194 if (section_nr > __highest_present_section_nr) 195 __highest_present_section_nr = section_nr; 196 197 ms->section_mem_map |= SECTION_MARKED_PRESENT; 198 } 199 200 #define for_each_present_section_nr(start, section_nr) \ 201 for (section_nr = next_present_section_nr(start-1); \ 202 ((section_nr != -1) && \ 203 (section_nr <= __highest_present_section_nr)); \ 204 section_nr = next_present_section_nr(section_nr)) 205 206 static inline unsigned long first_present_section_nr(void) 207 { 208 return next_present_section_nr(-1); 209 } 210 211 #ifdef CONFIG_SPARSEMEM_VMEMMAP 212 static void subsection_mask_set(unsigned long *map, unsigned long pfn, 213 unsigned long nr_pages) 214 { 215 int idx = subsection_map_index(pfn); 216 int end = subsection_map_index(pfn + nr_pages - 1); 217 218 bitmap_set(map, idx, end - idx + 1); 219 } 220 221 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 222 { 223 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1); 224 unsigned long nr, start_sec = pfn_to_section_nr(pfn); 225 226 if (!nr_pages) 227 return; 228 229 for (nr = start_sec; nr <= end_sec; nr++) { 230 struct mem_section *ms; 231 unsigned long pfns; 232 233 pfns = min(nr_pages, PAGES_PER_SECTION 234 - (pfn & ~PAGE_SECTION_MASK)); 235 ms = __nr_to_section(nr); 236 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 237 238 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 239 pfns, subsection_map_index(pfn), 240 subsection_map_index(pfn + pfns - 1)); 241 242 pfn += pfns; 243 nr_pages -= pfns; 244 } 245 } 246 #else 247 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 248 { 249 } 250 #endif 251 252 /* Record a memory area against a node. */ 253 static void __init memory_present(int nid, unsigned long start, unsigned long end) 254 { 255 unsigned long pfn; 256 257 #ifdef CONFIG_SPARSEMEM_EXTREME 258 if (unlikely(!mem_section)) { 259 unsigned long size, align; 260 261 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS; 262 align = 1 << (INTERNODE_CACHE_SHIFT); 263 mem_section = memblock_alloc(size, align); 264 if (!mem_section) 265 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 266 __func__, size, align); 267 } 268 #endif 269 270 start &= PAGE_SECTION_MASK; 271 mminit_validate_memmodel_limits(&start, &end); 272 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 273 unsigned long section = pfn_to_section_nr(pfn); 274 struct mem_section *ms; 275 276 sparse_index_init(section, nid); 277 set_section_nid(section, nid); 278 279 ms = __nr_to_section(section); 280 if (!ms->section_mem_map) { 281 ms->section_mem_map = sparse_encode_early_nid(nid) | 282 SECTION_IS_ONLINE; 283 section_mark_present(ms); 284 } 285 } 286 } 287 288 /* 289 * Mark all memblocks as present using memory_present(). 290 * This is a convenience function that is useful to mark all of the systems 291 * memory as present during initialization. 292 */ 293 static void __init memblocks_present(void) 294 { 295 unsigned long start, end; 296 int i, nid; 297 298 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) 299 memory_present(nid, start, end); 300 } 301 302 /* 303 * Subtle, we encode the real pfn into the mem_map such that 304 * the identity pfn - section_mem_map will return the actual 305 * physical page frame number. 306 */ 307 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 308 { 309 unsigned long coded_mem_map = 310 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 311 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 312 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 313 return coded_mem_map; 314 } 315 316 #ifdef CONFIG_MEMORY_HOTPLUG 317 /* 318 * Decode mem_map from the coded memmap 319 */ 320 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 321 { 322 /* mask off the extra low bits of information */ 323 coded_mem_map &= SECTION_MAP_MASK; 324 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 325 } 326 #endif /* CONFIG_MEMORY_HOTPLUG */ 327 328 static void __meminit sparse_init_one_section(struct mem_section *ms, 329 unsigned long pnum, struct page *mem_map, 330 struct mem_section_usage *usage, unsigned long flags) 331 { 332 ms->section_mem_map &= ~SECTION_MAP_MASK; 333 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 334 | SECTION_HAS_MEM_MAP | flags; 335 ms->usage = usage; 336 } 337 338 static unsigned long usemap_size(void) 339 { 340 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 341 } 342 343 size_t mem_section_usage_size(void) 344 { 345 return sizeof(struct mem_section_usage) + usemap_size(); 346 } 347 348 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat) 349 { 350 #ifndef CONFIG_NUMA 351 return __pa_symbol(pgdat); 352 #else 353 return __pa(pgdat); 354 #endif 355 } 356 357 #ifdef CONFIG_MEMORY_HOTREMOVE 358 static struct mem_section_usage * __init 359 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 360 unsigned long size) 361 { 362 struct mem_section_usage *usage; 363 unsigned long goal, limit; 364 int nid; 365 /* 366 * A page may contain usemaps for other sections preventing the 367 * page being freed and making a section unremovable while 368 * other sections referencing the usemap remain active. Similarly, 369 * a pgdat can prevent a section being removed. If section A 370 * contains a pgdat and section B contains the usemap, both 371 * sections become inter-dependent. This allocates usemaps 372 * from the same section as the pgdat where possible to avoid 373 * this problem. 374 */ 375 goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 376 limit = goal + (1UL << PA_SECTION_SHIFT); 377 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 378 again: 379 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 380 if (!usage && limit) { 381 limit = 0; 382 goto again; 383 } 384 return usage; 385 } 386 387 static void __init check_usemap_section_nr(int nid, 388 struct mem_section_usage *usage) 389 { 390 unsigned long usemap_snr, pgdat_snr; 391 static unsigned long old_usemap_snr; 392 static unsigned long old_pgdat_snr; 393 struct pglist_data *pgdat = NODE_DATA(nid); 394 int usemap_nid; 395 396 /* First call */ 397 if (!old_usemap_snr) { 398 old_usemap_snr = NR_MEM_SECTIONS; 399 old_pgdat_snr = NR_MEM_SECTIONS; 400 } 401 402 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 403 pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT); 404 if (usemap_snr == pgdat_snr) 405 return; 406 407 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 408 /* skip redundant message */ 409 return; 410 411 old_usemap_snr = usemap_snr; 412 old_pgdat_snr = pgdat_snr; 413 414 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 415 if (usemap_nid != nid) { 416 pr_info("node %d must be removed before remove section %ld\n", 417 nid, usemap_snr); 418 return; 419 } 420 /* 421 * There is a circular dependency. 422 * Some platforms allow un-removable section because they will just 423 * gather other removable sections for dynamic partitioning. 424 * Just notify un-removable section's number here. 425 */ 426 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 427 usemap_snr, pgdat_snr, nid); 428 } 429 #else 430 static struct mem_section_usage * __init 431 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 432 unsigned long size) 433 { 434 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 435 } 436 437 static void __init check_usemap_section_nr(int nid, 438 struct mem_section_usage *usage) 439 { 440 } 441 #endif /* CONFIG_MEMORY_HOTREMOVE */ 442 443 #ifdef CONFIG_SPARSEMEM_VMEMMAP 444 static unsigned long __init section_map_size(void) 445 { 446 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 447 } 448 449 #else 450 static unsigned long __init section_map_size(void) 451 { 452 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 453 } 454 455 struct page __init *__populate_section_memmap(unsigned long pfn, 456 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 457 { 458 unsigned long size = section_map_size(); 459 struct page *map = sparse_buffer_alloc(size); 460 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 461 462 if (map) 463 return map; 464 465 map = memblock_alloc_try_nid_raw(size, size, addr, 466 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 467 if (!map) 468 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 469 __func__, size, PAGE_SIZE, nid, &addr); 470 471 return map; 472 } 473 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 474 475 static void *sparsemap_buf __meminitdata; 476 static void *sparsemap_buf_end __meminitdata; 477 478 static inline void __meminit sparse_buffer_free(unsigned long size) 479 { 480 WARN_ON(!sparsemap_buf || size == 0); 481 memblock_free_early(__pa(sparsemap_buf), size); 482 } 483 484 static void __init sparse_buffer_init(unsigned long size, int nid) 485 { 486 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 487 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 488 /* 489 * Pre-allocated buffer is mainly used by __populate_section_memmap 490 * and we want it to be properly aligned to the section size - this is 491 * especially the case for VMEMMAP which maps memmap to PMDs 492 */ 493 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(), 494 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid); 495 sparsemap_buf_end = sparsemap_buf + size; 496 } 497 498 static void __init sparse_buffer_fini(void) 499 { 500 unsigned long size = sparsemap_buf_end - sparsemap_buf; 501 502 if (sparsemap_buf && size > 0) 503 sparse_buffer_free(size); 504 sparsemap_buf = NULL; 505 } 506 507 void * __meminit sparse_buffer_alloc(unsigned long size) 508 { 509 void *ptr = NULL; 510 511 if (sparsemap_buf) { 512 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 513 if (ptr + size > sparsemap_buf_end) 514 ptr = NULL; 515 else { 516 /* Free redundant aligned space */ 517 if ((unsigned long)(ptr - sparsemap_buf) > 0) 518 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 519 sparsemap_buf = ptr + size; 520 } 521 } 522 return ptr; 523 } 524 525 void __weak __meminit vmemmap_populate_print_last(void) 526 { 527 } 528 529 /* 530 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 531 * And number of present sections in this node is map_count. 532 */ 533 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 534 unsigned long pnum_end, 535 unsigned long map_count) 536 { 537 struct mem_section_usage *usage; 538 unsigned long pnum; 539 struct page *map; 540 541 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 542 mem_section_usage_size() * map_count); 543 if (!usage) { 544 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 545 goto failed; 546 } 547 sparse_buffer_init(map_count * section_map_size(), nid); 548 for_each_present_section_nr(pnum_begin, pnum) { 549 unsigned long pfn = section_nr_to_pfn(pnum); 550 551 if (pnum >= pnum_end) 552 break; 553 554 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 555 nid, NULL); 556 if (!map) { 557 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 558 __func__, nid); 559 pnum_begin = pnum; 560 sparse_buffer_fini(); 561 goto failed; 562 } 563 check_usemap_section_nr(nid, usage); 564 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 565 SECTION_IS_EARLY); 566 usage = (void *) usage + mem_section_usage_size(); 567 } 568 sparse_buffer_fini(); 569 return; 570 failed: 571 /* We failed to allocate, mark all the following pnums as not present */ 572 for_each_present_section_nr(pnum_begin, pnum) { 573 struct mem_section *ms; 574 575 if (pnum >= pnum_end) 576 break; 577 ms = __nr_to_section(pnum); 578 ms->section_mem_map = 0; 579 } 580 } 581 582 /* 583 * Allocate the accumulated non-linear sections, allocate a mem_map 584 * for each and record the physical to section mapping. 585 */ 586 void __init sparse_init(void) 587 { 588 unsigned long pnum_end, pnum_begin, map_count = 1; 589 int nid_begin; 590 591 memblocks_present(); 592 593 pnum_begin = first_present_section_nr(); 594 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 595 596 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 597 set_pageblock_order(); 598 599 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 600 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 601 602 if (nid == nid_begin) { 603 map_count++; 604 continue; 605 } 606 /* Init node with sections in range [pnum_begin, pnum_end) */ 607 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 608 nid_begin = nid; 609 pnum_begin = pnum_end; 610 map_count = 1; 611 } 612 /* cover the last node */ 613 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 614 vmemmap_populate_print_last(); 615 } 616 617 #ifdef CONFIG_MEMORY_HOTPLUG 618 619 /* Mark all memory sections within the pfn range as online */ 620 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 621 { 622 unsigned long pfn; 623 624 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 625 unsigned long section_nr = pfn_to_section_nr(pfn); 626 struct mem_section *ms; 627 628 /* onlining code should never touch invalid ranges */ 629 if (WARN_ON(!valid_section_nr(section_nr))) 630 continue; 631 632 ms = __nr_to_section(section_nr); 633 ms->section_mem_map |= SECTION_IS_ONLINE; 634 } 635 } 636 637 /* Mark all memory sections within the pfn range as offline */ 638 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 639 { 640 unsigned long pfn; 641 642 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 643 unsigned long section_nr = pfn_to_section_nr(pfn); 644 struct mem_section *ms; 645 646 /* 647 * TODO this needs some double checking. Offlining code makes 648 * sure to check pfn_valid but those checks might be just bogus 649 */ 650 if (WARN_ON(!valid_section_nr(section_nr))) 651 continue; 652 653 ms = __nr_to_section(section_nr); 654 ms->section_mem_map &= ~SECTION_IS_ONLINE; 655 } 656 } 657 658 #ifdef CONFIG_SPARSEMEM_VMEMMAP 659 static struct page * __meminit populate_section_memmap(unsigned long pfn, 660 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 661 { 662 return __populate_section_memmap(pfn, nr_pages, nid, altmap); 663 } 664 665 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 666 struct vmem_altmap *altmap) 667 { 668 unsigned long start = (unsigned long) pfn_to_page(pfn); 669 unsigned long end = start + nr_pages * sizeof(struct page); 670 671 vmemmap_free(start, end, altmap); 672 } 673 static void free_map_bootmem(struct page *memmap) 674 { 675 unsigned long start = (unsigned long)memmap; 676 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 677 678 vmemmap_free(start, end, NULL); 679 } 680 681 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 682 { 683 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 684 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 685 struct mem_section *ms = __pfn_to_section(pfn); 686 unsigned long *subsection_map = ms->usage 687 ? &ms->usage->subsection_map[0] : NULL; 688 689 subsection_mask_set(map, pfn, nr_pages); 690 if (subsection_map) 691 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 692 693 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 694 "section already deactivated (%#lx + %ld)\n", 695 pfn, nr_pages)) 696 return -EINVAL; 697 698 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 699 return 0; 700 } 701 702 static bool is_subsection_map_empty(struct mem_section *ms) 703 { 704 return bitmap_empty(&ms->usage->subsection_map[0], 705 SUBSECTIONS_PER_SECTION); 706 } 707 708 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 709 { 710 struct mem_section *ms = __pfn_to_section(pfn); 711 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 712 unsigned long *subsection_map; 713 int rc = 0; 714 715 subsection_mask_set(map, pfn, nr_pages); 716 717 subsection_map = &ms->usage->subsection_map[0]; 718 719 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 720 rc = -EINVAL; 721 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 722 rc = -EEXIST; 723 else 724 bitmap_or(subsection_map, map, subsection_map, 725 SUBSECTIONS_PER_SECTION); 726 727 return rc; 728 } 729 #else 730 struct page * __meminit populate_section_memmap(unsigned long pfn, 731 unsigned long nr_pages, int nid, struct vmem_altmap *altmap) 732 { 733 return kvmalloc_node(array_size(sizeof(struct page), 734 PAGES_PER_SECTION), GFP_KERNEL, nid); 735 } 736 737 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 738 struct vmem_altmap *altmap) 739 { 740 kvfree(pfn_to_page(pfn)); 741 } 742 743 static void free_map_bootmem(struct page *memmap) 744 { 745 unsigned long maps_section_nr, removing_section_nr, i; 746 unsigned long magic, nr_pages; 747 struct page *page = virt_to_page(memmap); 748 749 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 750 >> PAGE_SHIFT; 751 752 for (i = 0; i < nr_pages; i++, page++) { 753 magic = (unsigned long) page->freelist; 754 755 BUG_ON(magic == NODE_INFO); 756 757 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 758 removing_section_nr = page_private(page); 759 760 /* 761 * When this function is called, the removing section is 762 * logical offlined state. This means all pages are isolated 763 * from page allocator. If removing section's memmap is placed 764 * on the same section, it must not be freed. 765 * If it is freed, page allocator may allocate it which will 766 * be removed physically soon. 767 */ 768 if (maps_section_nr != removing_section_nr) 769 put_page_bootmem(page); 770 } 771 } 772 773 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 774 { 775 return 0; 776 } 777 778 static bool is_subsection_map_empty(struct mem_section *ms) 779 { 780 return true; 781 } 782 783 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 784 { 785 return 0; 786 } 787 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 788 789 /* 790 * To deactivate a memory region, there are 3 cases to handle across 791 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 792 * 793 * 1. deactivation of a partial hot-added section (only possible in 794 * the SPARSEMEM_VMEMMAP=y case). 795 * a) section was present at memory init. 796 * b) section was hot-added post memory init. 797 * 2. deactivation of a complete hot-added section. 798 * 3. deactivation of a complete section from memory init. 799 * 800 * For 1, when subsection_map does not empty we will not be freeing the 801 * usage map, but still need to free the vmemmap range. 802 * 803 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 804 */ 805 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 806 struct vmem_altmap *altmap) 807 { 808 struct mem_section *ms = __pfn_to_section(pfn); 809 bool section_is_early = early_section(ms); 810 struct page *memmap = NULL; 811 bool empty; 812 813 if (clear_subsection_map(pfn, nr_pages)) 814 return; 815 816 empty = is_subsection_map_empty(ms); 817 if (empty) { 818 unsigned long section_nr = pfn_to_section_nr(pfn); 819 820 /* 821 * When removing an early section, the usage map is kept (as the 822 * usage maps of other sections fall into the same page). It 823 * will be re-used when re-adding the section - which is then no 824 * longer an early section. If the usage map is PageReserved, it 825 * was allocated during boot. 826 */ 827 if (!PageReserved(virt_to_page(ms->usage))) { 828 kfree(ms->usage); 829 ms->usage = NULL; 830 } 831 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 832 /* 833 * Mark the section invalid so that valid_section() 834 * return false. This prevents code from dereferencing 835 * ms->usage array. 836 */ 837 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 838 } 839 840 /* 841 * The memmap of early sections is always fully populated. See 842 * section_activate() and pfn_valid() . 843 */ 844 if (!section_is_early) 845 depopulate_section_memmap(pfn, nr_pages, altmap); 846 else if (memmap) 847 free_map_bootmem(memmap); 848 849 if (empty) 850 ms->section_mem_map = (unsigned long)NULL; 851 } 852 853 static struct page * __meminit section_activate(int nid, unsigned long pfn, 854 unsigned long nr_pages, struct vmem_altmap *altmap) 855 { 856 struct mem_section *ms = __pfn_to_section(pfn); 857 struct mem_section_usage *usage = NULL; 858 struct page *memmap; 859 int rc = 0; 860 861 if (!ms->usage) { 862 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 863 if (!usage) 864 return ERR_PTR(-ENOMEM); 865 ms->usage = usage; 866 } 867 868 rc = fill_subsection_map(pfn, nr_pages); 869 if (rc) { 870 if (usage) 871 ms->usage = NULL; 872 kfree(usage); 873 return ERR_PTR(rc); 874 } 875 876 /* 877 * The early init code does not consider partially populated 878 * initial sections, it simply assumes that memory will never be 879 * referenced. If we hot-add memory into such a section then we 880 * do not need to populate the memmap and can simply reuse what 881 * is already there. 882 */ 883 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 884 return pfn_to_page(pfn); 885 886 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap); 887 if (!memmap) { 888 section_deactivate(pfn, nr_pages, altmap); 889 return ERR_PTR(-ENOMEM); 890 } 891 892 return memmap; 893 } 894 895 /** 896 * sparse_add_section - add a memory section, or populate an existing one 897 * @nid: The node to add section on 898 * @start_pfn: start pfn of the memory range 899 * @nr_pages: number of pfns to add in the section 900 * @altmap: device page map 901 * 902 * This is only intended for hotplug. 903 * 904 * Note that only VMEMMAP supports sub-section aligned hotplug, 905 * the proper alignment and size are gated by check_pfn_span(). 906 * 907 * 908 * Return: 909 * * 0 - On success. 910 * * -EEXIST - Section has been present. 911 * * -ENOMEM - Out of memory. 912 */ 913 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 914 unsigned long nr_pages, struct vmem_altmap *altmap) 915 { 916 unsigned long section_nr = pfn_to_section_nr(start_pfn); 917 struct mem_section *ms; 918 struct page *memmap; 919 int ret; 920 921 ret = sparse_index_init(section_nr, nid); 922 if (ret < 0) 923 return ret; 924 925 memmap = section_activate(nid, start_pfn, nr_pages, altmap); 926 if (IS_ERR(memmap)) 927 return PTR_ERR(memmap); 928 929 /* 930 * Poison uninitialized struct pages in order to catch invalid flags 931 * combinations. 932 */ 933 page_init_poison(memmap, sizeof(struct page) * nr_pages); 934 935 ms = __nr_to_section(section_nr); 936 set_section_nid(section_nr, nid); 937 section_mark_present(ms); 938 939 /* Align memmap to section boundary in the subsection case */ 940 if (section_nr_to_pfn(section_nr) != start_pfn) 941 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 942 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 943 944 return 0; 945 } 946 947 #ifdef CONFIG_MEMORY_FAILURE 948 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 949 { 950 int i; 951 952 /* 953 * A further optimization is to have per section refcounted 954 * num_poisoned_pages. But that would need more space per memmap, so 955 * for now just do a quick global check to speed up this routine in the 956 * absence of bad pages. 957 */ 958 if (atomic_long_read(&num_poisoned_pages) == 0) 959 return; 960 961 for (i = 0; i < nr_pages; i++) { 962 if (PageHWPoison(&memmap[i])) { 963 num_poisoned_pages_dec(); 964 ClearPageHWPoison(&memmap[i]); 965 } 966 } 967 } 968 #else 969 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 970 { 971 } 972 #endif 973 974 void sparse_remove_section(struct mem_section *ms, unsigned long pfn, 975 unsigned long nr_pages, unsigned long map_offset, 976 struct vmem_altmap *altmap) 977 { 978 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset, 979 nr_pages - map_offset); 980 section_deactivate(pfn, nr_pages, altmap); 981 } 982 #endif /* CONFIG_MEMORY_HOTPLUG */ 983