1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/bootmem_info.h> 17 #include <linux/vmstat.h> 18 #include "internal.h" 19 #include <asm/dma.h> 20 21 /* 22 * Permanent SPARSEMEM data: 23 * 24 * 1) mem_section - memory sections, mem_map's for valid memory 25 */ 26 #ifdef CONFIG_SPARSEMEM_EXTREME 27 struct mem_section **mem_section; 28 #else 29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 30 ____cacheline_internodealigned_in_smp; 31 #endif 32 EXPORT_SYMBOL(mem_section); 33 34 #ifdef NODE_NOT_IN_PAGE_FLAGS 35 /* 36 * If we did not store the node number in the page then we have to 37 * do a lookup in the section_to_node_table in order to find which 38 * node the page belongs to. 39 */ 40 #if MAX_NUMNODES <= 256 41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 42 #else 43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 44 #endif 45 46 int page_to_nid(const struct page *page) 47 { 48 return section_to_node_table[page_to_section(page)]; 49 } 50 EXPORT_SYMBOL(page_to_nid); 51 52 static void set_section_nid(unsigned long section_nr, int nid) 53 { 54 section_to_node_table[section_nr] = nid; 55 } 56 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 57 static inline void set_section_nid(unsigned long section_nr, int nid) 58 { 59 } 60 #endif 61 62 #ifdef CONFIG_SPARSEMEM_EXTREME 63 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 64 { 65 struct mem_section *section = NULL; 66 unsigned long array_size = SECTIONS_PER_ROOT * 67 sizeof(struct mem_section); 68 69 if (slab_is_available()) { 70 section = kzalloc_node(array_size, GFP_KERNEL, nid); 71 } else { 72 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 73 nid); 74 if (!section) 75 panic("%s: Failed to allocate %lu bytes nid=%d\n", 76 __func__, array_size, nid); 77 } 78 79 return section; 80 } 81 82 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 83 { 84 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 85 struct mem_section *section; 86 87 /* 88 * An existing section is possible in the sub-section hotplug 89 * case. First hot-add instantiates, follow-on hot-add reuses 90 * the existing section. 91 * 92 * The mem_hotplug_lock resolves the apparent race below. 93 */ 94 if (mem_section[root]) 95 return 0; 96 97 section = sparse_index_alloc(nid); 98 if (!section) 99 return -ENOMEM; 100 101 mem_section[root] = section; 102 103 return 0; 104 } 105 #else /* !SPARSEMEM_EXTREME */ 106 static inline int sparse_index_init(unsigned long section_nr, int nid) 107 { 108 return 0; 109 } 110 #endif 111 112 /* 113 * During early boot, before section_mem_map is used for an actual 114 * mem_map, we use section_mem_map to store the section's NUMA 115 * node. This keeps us from having to use another data structure. The 116 * node information is cleared just before we store the real mem_map. 117 */ 118 static inline unsigned long sparse_encode_early_nid(int nid) 119 { 120 return ((unsigned long)nid << SECTION_NID_SHIFT); 121 } 122 123 static inline int sparse_early_nid(struct mem_section *section) 124 { 125 return (section->section_mem_map >> SECTION_NID_SHIFT); 126 } 127 128 /* Validate the physical addressing limitations of the model */ 129 static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 130 unsigned long *end_pfn) 131 { 132 unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT; 133 134 /* 135 * Sanity checks - do not allow an architecture to pass 136 * in larger pfns than the maximum scope of sparsemem: 137 */ 138 if (*start_pfn > max_sparsemem_pfn) { 139 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 140 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 141 *start_pfn, *end_pfn, max_sparsemem_pfn); 142 WARN_ON_ONCE(1); 143 *start_pfn = max_sparsemem_pfn; 144 *end_pfn = max_sparsemem_pfn; 145 } else if (*end_pfn > max_sparsemem_pfn) { 146 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 147 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 148 *start_pfn, *end_pfn, max_sparsemem_pfn); 149 WARN_ON_ONCE(1); 150 *end_pfn = max_sparsemem_pfn; 151 } 152 } 153 154 /* 155 * There are a number of times that we loop over NR_MEM_SECTIONS, 156 * looking for section_present() on each. But, when we have very 157 * large physical address spaces, NR_MEM_SECTIONS can also be 158 * very large which makes the loops quite long. 159 * 160 * Keeping track of this gives us an easy way to break out of 161 * those loops early. 162 */ 163 unsigned long __highest_present_section_nr; 164 static void __section_mark_present(struct mem_section *ms, 165 unsigned long section_nr) 166 { 167 if (section_nr > __highest_present_section_nr) 168 __highest_present_section_nr = section_nr; 169 170 ms->section_mem_map |= SECTION_MARKED_PRESENT; 171 } 172 173 #define for_each_present_section_nr(start, section_nr) \ 174 for (section_nr = next_present_section_nr(start-1); \ 175 section_nr != -1; \ 176 section_nr = next_present_section_nr(section_nr)) 177 178 static inline unsigned long first_present_section_nr(void) 179 { 180 return next_present_section_nr(-1); 181 } 182 183 #ifdef CONFIG_SPARSEMEM_VMEMMAP 184 static void subsection_mask_set(unsigned long *map, unsigned long pfn, 185 unsigned long nr_pages) 186 { 187 int idx = subsection_map_index(pfn); 188 int end = subsection_map_index(pfn + nr_pages - 1); 189 190 bitmap_set(map, idx, end - idx + 1); 191 } 192 193 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 194 { 195 int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1); 196 unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn); 197 198 for (nr = start_sec_nr; nr <= end_sec_nr; nr++) { 199 struct mem_section *ms; 200 unsigned long pfns; 201 202 pfns = min(nr_pages, PAGES_PER_SECTION 203 - (pfn & ~PAGE_SECTION_MASK)); 204 ms = __nr_to_section(nr); 205 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 206 207 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 208 pfns, subsection_map_index(pfn), 209 subsection_map_index(pfn + pfns - 1)); 210 211 pfn += pfns; 212 nr_pages -= pfns; 213 } 214 } 215 #else 216 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 217 { 218 } 219 #endif 220 221 /* Record a memory area against a node. */ 222 static void __init memory_present(int nid, unsigned long start, unsigned long end) 223 { 224 unsigned long pfn; 225 226 start &= PAGE_SECTION_MASK; 227 mminit_validate_memmodel_limits(&start, &end); 228 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 229 unsigned long section_nr = pfn_to_section_nr(pfn); 230 struct mem_section *ms; 231 232 sparse_index_init(section_nr, nid); 233 set_section_nid(section_nr, nid); 234 235 ms = __nr_to_section(section_nr); 236 if (!ms->section_mem_map) { 237 ms->section_mem_map = sparse_encode_early_nid(nid) | 238 SECTION_IS_ONLINE; 239 __section_mark_present(ms, section_nr); 240 } 241 } 242 } 243 244 /* 245 * Mark all memblocks as present using memory_present(). 246 * This is a convenience function that is useful to mark all of the systems 247 * memory as present during initialization. 248 */ 249 static void __init memblocks_present(void) 250 { 251 unsigned long start, end; 252 int i, nid; 253 254 #ifdef CONFIG_SPARSEMEM_EXTREME 255 if (unlikely(!mem_section)) { 256 unsigned long size, align; 257 258 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS; 259 align = 1 << (INTERNODE_CACHE_SHIFT); 260 mem_section = memblock_alloc_or_panic(size, align); 261 } 262 #endif 263 264 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) 265 memory_present(nid, start, end); 266 } 267 268 /* 269 * Subtle, we encode the real pfn into the mem_map such that 270 * the identity pfn - section_mem_map will return the actual 271 * physical page frame number. 272 */ 273 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 274 { 275 unsigned long coded_mem_map = 276 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 277 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT); 278 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 279 return coded_mem_map; 280 } 281 282 #ifdef CONFIG_MEMORY_HOTPLUG 283 /* 284 * Decode mem_map from the coded memmap 285 */ 286 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 287 { 288 /* mask off the extra low bits of information */ 289 coded_mem_map &= SECTION_MAP_MASK; 290 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 291 } 292 #endif /* CONFIG_MEMORY_HOTPLUG */ 293 294 static void __meminit sparse_init_one_section(struct mem_section *ms, 295 unsigned long pnum, struct page *mem_map, 296 struct mem_section_usage *usage, unsigned long flags) 297 { 298 ms->section_mem_map &= ~SECTION_MAP_MASK; 299 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 300 | SECTION_HAS_MEM_MAP | flags; 301 ms->usage = usage; 302 } 303 304 static unsigned long usemap_size(void) 305 { 306 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 307 } 308 309 size_t mem_section_usage_size(void) 310 { 311 return sizeof(struct mem_section_usage) + usemap_size(); 312 } 313 314 #ifdef CONFIG_MEMORY_HOTREMOVE 315 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat) 316 { 317 #ifndef CONFIG_NUMA 318 VM_BUG_ON(pgdat != &contig_page_data); 319 return __pa_symbol(&contig_page_data); 320 #else 321 return __pa(pgdat); 322 #endif 323 } 324 325 static struct mem_section_usage * __init 326 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 327 unsigned long size) 328 { 329 struct mem_section_usage *usage; 330 unsigned long goal, limit; 331 int nid; 332 /* 333 * A page may contain usemaps for other sections preventing the 334 * page being freed and making a section unremovable while 335 * other sections referencing the usemap remain active. Similarly, 336 * a pgdat can prevent a section being removed. If section A 337 * contains a pgdat and section B contains the usemap, both 338 * sections become inter-dependent. This allocates usemaps 339 * from the same section as the pgdat where possible to avoid 340 * this problem. 341 */ 342 goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 343 limit = goal + (1UL << PA_SECTION_SHIFT); 344 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 345 again: 346 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 347 if (!usage && limit) { 348 limit = MEMBLOCK_ALLOC_ACCESSIBLE; 349 goto again; 350 } 351 return usage; 352 } 353 354 static void __init check_usemap_section_nr(int nid, 355 struct mem_section_usage *usage) 356 { 357 unsigned long usemap_snr, pgdat_snr; 358 static unsigned long old_usemap_snr; 359 static unsigned long old_pgdat_snr; 360 struct pglist_data *pgdat = NODE_DATA(nid); 361 int usemap_nid; 362 363 /* First call */ 364 if (!old_usemap_snr) { 365 old_usemap_snr = NR_MEM_SECTIONS; 366 old_pgdat_snr = NR_MEM_SECTIONS; 367 } 368 369 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 370 pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT); 371 if (usemap_snr == pgdat_snr) 372 return; 373 374 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 375 /* skip redundant message */ 376 return; 377 378 old_usemap_snr = usemap_snr; 379 old_pgdat_snr = pgdat_snr; 380 381 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 382 if (usemap_nid != nid) { 383 pr_info("node %d must be removed before remove section %ld\n", 384 nid, usemap_snr); 385 return; 386 } 387 /* 388 * There is a circular dependency. 389 * Some platforms allow un-removable section because they will just 390 * gather other removable sections for dynamic partitioning. 391 * Just notify un-removable section's number here. 392 */ 393 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 394 usemap_snr, pgdat_snr, nid); 395 } 396 #else 397 static struct mem_section_usage * __init 398 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 399 unsigned long size) 400 { 401 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 402 } 403 404 static void __init check_usemap_section_nr(int nid, 405 struct mem_section_usage *usage) 406 { 407 } 408 #endif /* CONFIG_MEMORY_HOTREMOVE */ 409 410 #ifdef CONFIG_SPARSEMEM_VMEMMAP 411 static unsigned long __init section_map_size(void) 412 { 413 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 414 } 415 416 #else 417 static unsigned long __init section_map_size(void) 418 { 419 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 420 } 421 422 struct page __init *__populate_section_memmap(unsigned long pfn, 423 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 424 struct dev_pagemap *pgmap) 425 { 426 unsigned long size = section_map_size(); 427 struct page *map = sparse_buffer_alloc(size); 428 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 429 430 if (map) 431 return map; 432 433 map = memmap_alloc(size, size, addr, nid, false); 434 if (!map) 435 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 436 __func__, size, PAGE_SIZE, nid, &addr); 437 438 return map; 439 } 440 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 441 442 static void *sparsemap_buf __meminitdata; 443 static void *sparsemap_buf_end __meminitdata; 444 445 static inline void __meminit sparse_buffer_free(unsigned long size) 446 { 447 WARN_ON(!sparsemap_buf || size == 0); 448 memblock_free(sparsemap_buf, size); 449 } 450 451 static void __init sparse_buffer_init(unsigned long size, int nid) 452 { 453 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 454 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 455 /* 456 * Pre-allocated buffer is mainly used by __populate_section_memmap 457 * and we want it to be properly aligned to the section size - this is 458 * especially the case for VMEMMAP which maps memmap to PMDs 459 */ 460 sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true); 461 sparsemap_buf_end = sparsemap_buf + size; 462 #ifndef CONFIG_SPARSEMEM_VMEMMAP 463 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE)); 464 #endif 465 } 466 467 static void __init sparse_buffer_fini(void) 468 { 469 unsigned long size = sparsemap_buf_end - sparsemap_buf; 470 471 if (sparsemap_buf && size > 0) 472 sparse_buffer_free(size); 473 sparsemap_buf = NULL; 474 } 475 476 void * __meminit sparse_buffer_alloc(unsigned long size) 477 { 478 void *ptr = NULL; 479 480 if (sparsemap_buf) { 481 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 482 if (ptr + size > sparsemap_buf_end) 483 ptr = NULL; 484 else { 485 /* Free redundant aligned space */ 486 if ((unsigned long)(ptr - sparsemap_buf) > 0) 487 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 488 sparsemap_buf = ptr + size; 489 } 490 } 491 return ptr; 492 } 493 494 void __weak __meminit vmemmap_populate_print_last(void) 495 { 496 } 497 498 /* 499 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 500 * And number of present sections in this node is map_count. 501 */ 502 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 503 unsigned long pnum_end, 504 unsigned long map_count) 505 { 506 struct mem_section_usage *usage; 507 unsigned long pnum; 508 struct page *map; 509 510 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 511 mem_section_usage_size() * map_count); 512 if (!usage) { 513 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 514 goto failed; 515 } 516 sparse_buffer_init(map_count * section_map_size(), nid); 517 for_each_present_section_nr(pnum_begin, pnum) { 518 unsigned long pfn = section_nr_to_pfn(pnum); 519 520 if (pnum >= pnum_end) 521 break; 522 523 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 524 nid, NULL, NULL); 525 if (!map) { 526 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 527 __func__, nid); 528 pnum_begin = pnum; 529 sparse_buffer_fini(); 530 goto failed; 531 } 532 check_usemap_section_nr(nid, usage); 533 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage, 534 SECTION_IS_EARLY); 535 usage = (void *) usage + mem_section_usage_size(); 536 } 537 sparse_buffer_fini(); 538 return; 539 failed: 540 /* We failed to allocate, mark all the following pnums as not present */ 541 for_each_present_section_nr(pnum_begin, pnum) { 542 struct mem_section *ms; 543 544 if (pnum >= pnum_end) 545 break; 546 ms = __nr_to_section(pnum); 547 ms->section_mem_map = 0; 548 } 549 } 550 551 /* 552 * Allocate the accumulated non-linear sections, allocate a mem_map 553 * for each and record the physical to section mapping. 554 */ 555 void __init sparse_init(void) 556 { 557 unsigned long pnum_end, pnum_begin, map_count = 1; 558 int nid_begin; 559 560 /* see include/linux/mmzone.h 'struct mem_section' definition */ 561 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 562 memblocks_present(); 563 564 pnum_begin = first_present_section_nr(); 565 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 566 567 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 568 set_pageblock_order(); 569 570 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 571 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 572 573 if (nid == nid_begin) { 574 map_count++; 575 continue; 576 } 577 /* Init node with sections in range [pnum_begin, pnum_end) */ 578 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 579 nid_begin = nid; 580 pnum_begin = pnum_end; 581 map_count = 1; 582 } 583 /* cover the last node */ 584 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 585 vmemmap_populate_print_last(); 586 } 587 588 #ifdef CONFIG_MEMORY_HOTPLUG 589 590 /* Mark all memory sections within the pfn range as online */ 591 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 592 { 593 unsigned long pfn; 594 595 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 596 unsigned long section_nr = pfn_to_section_nr(pfn); 597 struct mem_section *ms; 598 599 /* onlining code should never touch invalid ranges */ 600 if (WARN_ON(!valid_section_nr(section_nr))) 601 continue; 602 603 ms = __nr_to_section(section_nr); 604 ms->section_mem_map |= SECTION_IS_ONLINE; 605 } 606 } 607 608 /* Mark all memory sections within the pfn range as offline */ 609 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 610 { 611 unsigned long pfn; 612 613 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 614 unsigned long section_nr = pfn_to_section_nr(pfn); 615 struct mem_section *ms; 616 617 /* 618 * TODO this needs some double checking. Offlining code makes 619 * sure to check pfn_valid but those checks might be just bogus 620 */ 621 if (WARN_ON(!valid_section_nr(section_nr))) 622 continue; 623 624 ms = __nr_to_section(section_nr); 625 ms->section_mem_map &= ~SECTION_IS_ONLINE; 626 } 627 } 628 629 #ifdef CONFIG_SPARSEMEM_VMEMMAP 630 static struct page * __meminit populate_section_memmap(unsigned long pfn, 631 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 632 struct dev_pagemap *pgmap) 633 { 634 return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap); 635 } 636 637 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 638 struct vmem_altmap *altmap) 639 { 640 unsigned long start = (unsigned long) pfn_to_page(pfn); 641 unsigned long end = start + nr_pages * sizeof(struct page); 642 643 memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE))); 644 vmemmap_free(start, end, altmap); 645 } 646 static void free_map_bootmem(struct page *memmap) 647 { 648 unsigned long start = (unsigned long)memmap; 649 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 650 651 vmemmap_free(start, end, NULL); 652 } 653 654 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 655 { 656 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 657 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 658 struct mem_section *ms = __pfn_to_section(pfn); 659 unsigned long *subsection_map = ms->usage 660 ? &ms->usage->subsection_map[0] : NULL; 661 662 subsection_mask_set(map, pfn, nr_pages); 663 if (subsection_map) 664 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 665 666 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 667 "section already deactivated (%#lx + %ld)\n", 668 pfn, nr_pages)) 669 return -EINVAL; 670 671 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 672 return 0; 673 } 674 675 static bool is_subsection_map_empty(struct mem_section *ms) 676 { 677 return bitmap_empty(&ms->usage->subsection_map[0], 678 SUBSECTIONS_PER_SECTION); 679 } 680 681 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 682 { 683 struct mem_section *ms = __pfn_to_section(pfn); 684 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 685 unsigned long *subsection_map; 686 int rc = 0; 687 688 subsection_mask_set(map, pfn, nr_pages); 689 690 subsection_map = &ms->usage->subsection_map[0]; 691 692 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 693 rc = -EINVAL; 694 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 695 rc = -EEXIST; 696 else 697 bitmap_or(subsection_map, map, subsection_map, 698 SUBSECTIONS_PER_SECTION); 699 700 return rc; 701 } 702 #else 703 static struct page * __meminit populate_section_memmap(unsigned long pfn, 704 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 705 struct dev_pagemap *pgmap) 706 { 707 return kvmalloc_node(array_size(sizeof(struct page), 708 PAGES_PER_SECTION), GFP_KERNEL, nid); 709 } 710 711 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 712 struct vmem_altmap *altmap) 713 { 714 kvfree(pfn_to_page(pfn)); 715 } 716 717 static void free_map_bootmem(struct page *memmap) 718 { 719 unsigned long maps_section_nr, removing_section_nr, i; 720 unsigned long type, nr_pages; 721 struct page *page = virt_to_page(memmap); 722 723 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 724 >> PAGE_SHIFT; 725 726 for (i = 0; i < nr_pages; i++, page++) { 727 type = bootmem_type(page); 728 729 BUG_ON(type == NODE_INFO); 730 731 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 732 removing_section_nr = bootmem_info(page); 733 734 /* 735 * When this function is called, the removing section is 736 * logical offlined state. This means all pages are isolated 737 * from page allocator. If removing section's memmap is placed 738 * on the same section, it must not be freed. 739 * If it is freed, page allocator may allocate it which will 740 * be removed physically soon. 741 */ 742 if (maps_section_nr != removing_section_nr) 743 put_page_bootmem(page); 744 } 745 } 746 747 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 748 { 749 return 0; 750 } 751 752 static bool is_subsection_map_empty(struct mem_section *ms) 753 { 754 return true; 755 } 756 757 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 758 { 759 return 0; 760 } 761 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 762 763 /* 764 * To deactivate a memory region, there are 3 cases to handle across 765 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 766 * 767 * 1. deactivation of a partial hot-added section (only possible in 768 * the SPARSEMEM_VMEMMAP=y case). 769 * a) section was present at memory init. 770 * b) section was hot-added post memory init. 771 * 2. deactivation of a complete hot-added section. 772 * 3. deactivation of a complete section from memory init. 773 * 774 * For 1, when subsection_map does not empty we will not be freeing the 775 * usage map, but still need to free the vmemmap range. 776 * 777 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 778 */ 779 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 780 struct vmem_altmap *altmap) 781 { 782 struct mem_section *ms = __pfn_to_section(pfn); 783 bool section_is_early = early_section(ms); 784 struct page *memmap = NULL; 785 bool empty; 786 787 if (clear_subsection_map(pfn, nr_pages)) 788 return; 789 790 empty = is_subsection_map_empty(ms); 791 if (empty) { 792 unsigned long section_nr = pfn_to_section_nr(pfn); 793 794 /* 795 * Mark the section invalid so that valid_section() 796 * return false. This prevents code from dereferencing 797 * ms->usage array. 798 */ 799 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 800 801 /* 802 * When removing an early section, the usage map is kept (as the 803 * usage maps of other sections fall into the same page). It 804 * will be re-used when re-adding the section - which is then no 805 * longer an early section. If the usage map is PageReserved, it 806 * was allocated during boot. 807 */ 808 if (!PageReserved(virt_to_page(ms->usage))) { 809 kfree_rcu(ms->usage, rcu); 810 WRITE_ONCE(ms->usage, NULL); 811 } 812 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 813 } 814 815 /* 816 * The memmap of early sections is always fully populated. See 817 * section_activate() and pfn_valid() . 818 */ 819 if (!section_is_early) 820 depopulate_section_memmap(pfn, nr_pages, altmap); 821 else if (memmap) 822 free_map_bootmem(memmap); 823 824 if (empty) 825 ms->section_mem_map = (unsigned long)NULL; 826 } 827 828 static struct page * __meminit section_activate(int nid, unsigned long pfn, 829 unsigned long nr_pages, struct vmem_altmap *altmap, 830 struct dev_pagemap *pgmap) 831 { 832 struct mem_section *ms = __pfn_to_section(pfn); 833 struct mem_section_usage *usage = NULL; 834 struct page *memmap; 835 int rc; 836 837 if (!ms->usage) { 838 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 839 if (!usage) 840 return ERR_PTR(-ENOMEM); 841 ms->usage = usage; 842 } 843 844 rc = fill_subsection_map(pfn, nr_pages); 845 if (rc) { 846 if (usage) 847 ms->usage = NULL; 848 kfree(usage); 849 return ERR_PTR(rc); 850 } 851 852 /* 853 * The early init code does not consider partially populated 854 * initial sections, it simply assumes that memory will never be 855 * referenced. If we hot-add memory into such a section then we 856 * do not need to populate the memmap and can simply reuse what 857 * is already there. 858 */ 859 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 860 return pfn_to_page(pfn); 861 862 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap); 863 if (!memmap) { 864 section_deactivate(pfn, nr_pages, altmap); 865 return ERR_PTR(-ENOMEM); 866 } 867 868 return memmap; 869 } 870 871 /** 872 * sparse_add_section - add a memory section, or populate an existing one 873 * @nid: The node to add section on 874 * @start_pfn: start pfn of the memory range 875 * @nr_pages: number of pfns to add in the section 876 * @altmap: alternate pfns to allocate the memmap backing store 877 * @pgmap: alternate compound page geometry for devmap mappings 878 * 879 * This is only intended for hotplug. 880 * 881 * Note that only VMEMMAP supports sub-section aligned hotplug, 882 * the proper alignment and size are gated by check_pfn_span(). 883 * 884 * 885 * Return: 886 * * 0 - On success. 887 * * -EEXIST - Section has been present. 888 * * -ENOMEM - Out of memory. 889 */ 890 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 891 unsigned long nr_pages, struct vmem_altmap *altmap, 892 struct dev_pagemap *pgmap) 893 { 894 unsigned long section_nr = pfn_to_section_nr(start_pfn); 895 struct mem_section *ms; 896 struct page *memmap; 897 int ret; 898 899 ret = sparse_index_init(section_nr, nid); 900 if (ret < 0) 901 return ret; 902 903 memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap); 904 if (IS_ERR(memmap)) 905 return PTR_ERR(memmap); 906 907 /* 908 * Poison uninitialized struct pages in order to catch invalid flags 909 * combinations. 910 */ 911 if (!altmap || !altmap->inaccessible) 912 page_init_poison(memmap, sizeof(struct page) * nr_pages); 913 914 ms = __nr_to_section(section_nr); 915 set_section_nid(section_nr, nid); 916 __section_mark_present(ms, section_nr); 917 918 /* Align memmap to section boundary in the subsection case */ 919 if (section_nr_to_pfn(section_nr) != start_pfn) 920 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 921 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 922 923 return 0; 924 } 925 926 void sparse_remove_section(unsigned long pfn, unsigned long nr_pages, 927 struct vmem_altmap *altmap) 928 { 929 struct mem_section *ms = __pfn_to_section(pfn); 930 931 if (WARN_ON_ONCE(!valid_section(ms))) 932 return; 933 934 section_deactivate(pfn, nr_pages, altmap); 935 } 936 #endif /* CONFIG_MEMORY_HOTPLUG */ 937