xref: /linux/mm/sparse.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include "internal.h"
12 #include <asm/dma.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 
16 /*
17  * Permanent SPARSEMEM data:
18  *
19  * 1) mem_section	- memory sections, mem_map's for valid memory
20  */
21 #ifdef CONFIG_SPARSEMEM_EXTREME
22 struct mem_section *mem_section[NR_SECTION_ROOTS]
23 	____cacheline_internodealigned_in_smp;
24 #else
25 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
26 	____cacheline_internodealigned_in_smp;
27 #endif
28 EXPORT_SYMBOL(mem_section);
29 
30 #ifdef NODE_NOT_IN_PAGE_FLAGS
31 /*
32  * If we did not store the node number in the page then we have to
33  * do a lookup in the section_to_node_table in order to find which
34  * node the page belongs to.
35  */
36 #if MAX_NUMNODES <= 256
37 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38 #else
39 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40 #endif
41 
42 int page_to_nid(struct page *page)
43 {
44 	return section_to_node_table[page_to_section(page)];
45 }
46 EXPORT_SYMBOL(page_to_nid);
47 
48 static void set_section_nid(unsigned long section_nr, int nid)
49 {
50 	section_to_node_table[section_nr] = nid;
51 }
52 #else /* !NODE_NOT_IN_PAGE_FLAGS */
53 static inline void set_section_nid(unsigned long section_nr, int nid)
54 {
55 }
56 #endif
57 
58 #ifdef CONFIG_SPARSEMEM_EXTREME
59 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
60 {
61 	struct mem_section *section = NULL;
62 	unsigned long array_size = SECTIONS_PER_ROOT *
63 				   sizeof(struct mem_section);
64 
65 	if (slab_is_available()) {
66 		if (node_state(nid, N_HIGH_MEMORY))
67 			section = kmalloc_node(array_size, GFP_KERNEL, nid);
68 		else
69 			section = kmalloc(array_size, GFP_KERNEL);
70 	} else
71 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
72 
73 	if (section)
74 		memset(section, 0, array_size);
75 
76 	return section;
77 }
78 
79 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
80 {
81 	static DEFINE_SPINLOCK(index_init_lock);
82 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 	struct mem_section *section;
84 	int ret = 0;
85 
86 	if (mem_section[root])
87 		return -EEXIST;
88 
89 	section = sparse_index_alloc(nid);
90 	if (!section)
91 		return -ENOMEM;
92 	/*
93 	 * This lock keeps two different sections from
94 	 * reallocating for the same index
95 	 */
96 	spin_lock(&index_init_lock);
97 
98 	if (mem_section[root]) {
99 		ret = -EEXIST;
100 		goto out;
101 	}
102 
103 	mem_section[root] = section;
104 out:
105 	spin_unlock(&index_init_lock);
106 	return ret;
107 }
108 #else /* !SPARSEMEM_EXTREME */
109 static inline int sparse_index_init(unsigned long section_nr, int nid)
110 {
111 	return 0;
112 }
113 #endif
114 
115 /*
116  * Although written for the SPARSEMEM_EXTREME case, this happens
117  * to also work for the flat array case because
118  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
119  */
120 int __section_nr(struct mem_section* ms)
121 {
122 	unsigned long root_nr;
123 	struct mem_section* root;
124 
125 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
126 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
127 		if (!root)
128 			continue;
129 
130 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
131 		     break;
132 	}
133 
134 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
135 }
136 
137 /*
138  * During early boot, before section_mem_map is used for an actual
139  * mem_map, we use section_mem_map to store the section's NUMA
140  * node.  This keeps us from having to use another data structure.  The
141  * node information is cleared just before we store the real mem_map.
142  */
143 static inline unsigned long sparse_encode_early_nid(int nid)
144 {
145 	return (nid << SECTION_NID_SHIFT);
146 }
147 
148 static inline int sparse_early_nid(struct mem_section *section)
149 {
150 	return (section->section_mem_map >> SECTION_NID_SHIFT);
151 }
152 
153 /* Validate the physical addressing limitations of the model */
154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155 						unsigned long *end_pfn)
156 {
157 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158 
159 	/*
160 	 * Sanity checks - do not allow an architecture to pass
161 	 * in larger pfns than the maximum scope of sparsemem:
162 	 */
163 	if (*start_pfn > max_sparsemem_pfn) {
164 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 			*start_pfn, *end_pfn, max_sparsemem_pfn);
167 		WARN_ON_ONCE(1);
168 		*start_pfn = max_sparsemem_pfn;
169 		*end_pfn = max_sparsemem_pfn;
170 	} else if (*end_pfn > max_sparsemem_pfn) {
171 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 			*start_pfn, *end_pfn, max_sparsemem_pfn);
174 		WARN_ON_ONCE(1);
175 		*end_pfn = max_sparsemem_pfn;
176 	}
177 }
178 
179 /* Record a memory area against a node. */
180 void __init memory_present(int nid, unsigned long start, unsigned long end)
181 {
182 	unsigned long pfn;
183 
184 	start &= PAGE_SECTION_MASK;
185 	mminit_validate_memmodel_limits(&start, &end);
186 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
187 		unsigned long section = pfn_to_section_nr(pfn);
188 		struct mem_section *ms;
189 
190 		sparse_index_init(section, nid);
191 		set_section_nid(section, nid);
192 
193 		ms = __nr_to_section(section);
194 		if (!ms->section_mem_map)
195 			ms->section_mem_map = sparse_encode_early_nid(nid) |
196 							SECTION_MARKED_PRESENT;
197 	}
198 }
199 
200 /*
201  * Only used by the i386 NUMA architecures, but relatively
202  * generic code.
203  */
204 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
205 						     unsigned long end_pfn)
206 {
207 	unsigned long pfn;
208 	unsigned long nr_pages = 0;
209 
210 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
211 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
212 		if (nid != early_pfn_to_nid(pfn))
213 			continue;
214 
215 		if (pfn_present(pfn))
216 			nr_pages += PAGES_PER_SECTION;
217 	}
218 
219 	return nr_pages * sizeof(struct page);
220 }
221 
222 /*
223  * Subtle, we encode the real pfn into the mem_map such that
224  * the identity pfn - section_mem_map will return the actual
225  * physical page frame number.
226  */
227 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
228 {
229 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
230 }
231 
232 /*
233  * Decode mem_map from the coded memmap
234  */
235 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
236 {
237 	/* mask off the extra low bits of information */
238 	coded_mem_map &= SECTION_MAP_MASK;
239 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
240 }
241 
242 static int __meminit sparse_init_one_section(struct mem_section *ms,
243 		unsigned long pnum, struct page *mem_map,
244 		unsigned long *pageblock_bitmap)
245 {
246 	if (!present_section(ms))
247 		return -EINVAL;
248 
249 	ms->section_mem_map &= ~SECTION_MAP_MASK;
250 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
251 							SECTION_HAS_MEM_MAP;
252  	ms->pageblock_flags = pageblock_bitmap;
253 
254 	return 1;
255 }
256 
257 unsigned long usemap_size(void)
258 {
259 	unsigned long size_bytes;
260 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
261 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
262 	return size_bytes;
263 }
264 
265 #ifdef CONFIG_MEMORY_HOTPLUG
266 static unsigned long *__kmalloc_section_usemap(void)
267 {
268 	return kmalloc(usemap_size(), GFP_KERNEL);
269 }
270 #endif /* CONFIG_MEMORY_HOTPLUG */
271 
272 #ifdef CONFIG_MEMORY_HOTREMOVE
273 static unsigned long * __init
274 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
275 {
276 	unsigned long section_nr;
277 
278 	/*
279 	 * A page may contain usemaps for other sections preventing the
280 	 * page being freed and making a section unremovable while
281 	 * other sections referencing the usemap retmain active. Similarly,
282 	 * a pgdat can prevent a section being removed. If section A
283 	 * contains a pgdat and section B contains the usemap, both
284 	 * sections become inter-dependent. This allocates usemaps
285 	 * from the same section as the pgdat where possible to avoid
286 	 * this problem.
287 	 */
288 	section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
289 	return alloc_bootmem_section(usemap_size(), section_nr);
290 }
291 
292 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
293 {
294 	unsigned long usemap_snr, pgdat_snr;
295 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
296 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
297 	struct pglist_data *pgdat = NODE_DATA(nid);
298 	int usemap_nid;
299 
300 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
301 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
302 	if (usemap_snr == pgdat_snr)
303 		return;
304 
305 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
306 		/* skip redundant message */
307 		return;
308 
309 	old_usemap_snr = usemap_snr;
310 	old_pgdat_snr = pgdat_snr;
311 
312 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
313 	if (usemap_nid != nid) {
314 		printk(KERN_INFO
315 		       "node %d must be removed before remove section %ld\n",
316 		       nid, usemap_snr);
317 		return;
318 	}
319 	/*
320 	 * There is a circular dependency.
321 	 * Some platforms allow un-removable section because they will just
322 	 * gather other removable sections for dynamic partitioning.
323 	 * Just notify un-removable section's number here.
324 	 */
325 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
326 	       pgdat_snr, nid);
327 	printk(KERN_CONT
328 	       " have a circular dependency on usemap and pgdat allocations\n");
329 }
330 #else
331 static unsigned long * __init
332 sparse_early_usemap_alloc_pgdat_section(struct pglist_data *pgdat)
333 {
334 	return NULL;
335 }
336 
337 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
338 {
339 }
340 #endif /* CONFIG_MEMORY_HOTREMOVE */
341 
342 static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
343 {
344 	unsigned long *usemap;
345 	struct mem_section *ms = __nr_to_section(pnum);
346 	int nid = sparse_early_nid(ms);
347 
348 	usemap = sparse_early_usemap_alloc_pgdat_section(NODE_DATA(nid));
349 	if (usemap)
350 		return usemap;
351 
352 	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
353 	if (usemap) {
354 		check_usemap_section_nr(nid, usemap);
355 		return usemap;
356 	}
357 
358 	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
359 	nid = 0;
360 
361 	printk(KERN_WARNING "%s: allocation failed\n", __func__);
362 	return NULL;
363 }
364 
365 #ifndef CONFIG_SPARSEMEM_VMEMMAP
366 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
367 {
368 	struct page *map;
369 
370 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
371 	if (map)
372 		return map;
373 
374 	map = alloc_bootmem_pages_node(NODE_DATA(nid),
375 		       PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
376 	return map;
377 }
378 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
379 
380 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
381 {
382 	struct page *map;
383 	struct mem_section *ms = __nr_to_section(pnum);
384 	int nid = sparse_early_nid(ms);
385 
386 	map = sparse_mem_map_populate(pnum, nid);
387 	if (map)
388 		return map;
389 
390 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
391 			"some memory will not be available.\n", __func__);
392 	ms->section_mem_map = 0;
393 	return NULL;
394 }
395 
396 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
397 {
398 }
399 /*
400  * Allocate the accumulated non-linear sections, allocate a mem_map
401  * for each and record the physical to section mapping.
402  */
403 void __init sparse_init(void)
404 {
405 	unsigned long pnum;
406 	struct page *map;
407 	unsigned long *usemap;
408 	unsigned long **usemap_map;
409 	int size;
410 
411 	/*
412 	 * map is using big page (aka 2M in x86 64 bit)
413 	 * usemap is less one page (aka 24 bytes)
414 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
415 	 * make next 2M slip to one more 2M later.
416 	 * then in big system, the memory will have a lot of holes...
417 	 * here try to allocate 2M pages continously.
418 	 *
419 	 * powerpc need to call sparse_init_one_section right after each
420 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
421 	 */
422 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
423 	usemap_map = alloc_bootmem(size);
424 	if (!usemap_map)
425 		panic("can not allocate usemap_map\n");
426 
427 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
428 		if (!present_section_nr(pnum))
429 			continue;
430 		usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
431 	}
432 
433 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
434 		if (!present_section_nr(pnum))
435 			continue;
436 
437 		usemap = usemap_map[pnum];
438 		if (!usemap)
439 			continue;
440 
441 		map = sparse_early_mem_map_alloc(pnum);
442 		if (!map)
443 			continue;
444 
445 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
446 								usemap);
447 	}
448 
449 	vmemmap_populate_print_last();
450 
451 	free_bootmem(__pa(usemap_map), size);
452 }
453 
454 #ifdef CONFIG_MEMORY_HOTPLUG
455 #ifdef CONFIG_SPARSEMEM_VMEMMAP
456 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
457 						 unsigned long nr_pages)
458 {
459 	/* This will make the necessary allocations eventually. */
460 	return sparse_mem_map_populate(pnum, nid);
461 }
462 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
463 {
464 	return; /* XXX: Not implemented yet */
465 }
466 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
467 {
468 }
469 #else
470 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
471 {
472 	struct page *page, *ret;
473 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
474 
475 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
476 	if (page)
477 		goto got_map_page;
478 
479 	ret = vmalloc(memmap_size);
480 	if (ret)
481 		goto got_map_ptr;
482 
483 	return NULL;
484 got_map_page:
485 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
486 got_map_ptr:
487 	memset(ret, 0, memmap_size);
488 
489 	return ret;
490 }
491 
492 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
493 						  unsigned long nr_pages)
494 {
495 	return __kmalloc_section_memmap(nr_pages);
496 }
497 
498 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
499 {
500 	if (is_vmalloc_addr(memmap))
501 		vfree(memmap);
502 	else
503 		free_pages((unsigned long)memmap,
504 			   get_order(sizeof(struct page) * nr_pages));
505 }
506 
507 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
508 {
509 	unsigned long maps_section_nr, removing_section_nr, i;
510 	int magic;
511 
512 	for (i = 0; i < nr_pages; i++, page++) {
513 		magic = atomic_read(&page->_mapcount);
514 
515 		BUG_ON(magic == NODE_INFO);
516 
517 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
518 		removing_section_nr = page->private;
519 
520 		/*
521 		 * When this function is called, the removing section is
522 		 * logical offlined state. This means all pages are isolated
523 		 * from page allocator. If removing section's memmap is placed
524 		 * on the same section, it must not be freed.
525 		 * If it is freed, page allocator may allocate it which will
526 		 * be removed physically soon.
527 		 */
528 		if (maps_section_nr != removing_section_nr)
529 			put_page_bootmem(page);
530 	}
531 }
532 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
533 
534 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
535 {
536 	struct page *usemap_page;
537 	unsigned long nr_pages;
538 
539 	if (!usemap)
540 		return;
541 
542 	usemap_page = virt_to_page(usemap);
543 	/*
544 	 * Check to see if allocation came from hot-plug-add
545 	 */
546 	if (PageSlab(usemap_page)) {
547 		kfree(usemap);
548 		if (memmap)
549 			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
550 		return;
551 	}
552 
553 	/*
554 	 * The usemap came from bootmem. This is packed with other usemaps
555 	 * on the section which has pgdat at boot time. Just keep it as is now.
556 	 */
557 
558 	if (memmap) {
559 		struct page *memmap_page;
560 		memmap_page = virt_to_page(memmap);
561 
562 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
563 			>> PAGE_SHIFT;
564 
565 		free_map_bootmem(memmap_page, nr_pages);
566 	}
567 }
568 
569 /*
570  * returns the number of sections whose mem_maps were properly
571  * set.  If this is <=0, then that means that the passed-in
572  * map was not consumed and must be freed.
573  */
574 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
575 			   int nr_pages)
576 {
577 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
578 	struct pglist_data *pgdat = zone->zone_pgdat;
579 	struct mem_section *ms;
580 	struct page *memmap;
581 	unsigned long *usemap;
582 	unsigned long flags;
583 	int ret;
584 
585 	/*
586 	 * no locking for this, because it does its own
587 	 * plus, it does a kmalloc
588 	 */
589 	ret = sparse_index_init(section_nr, pgdat->node_id);
590 	if (ret < 0 && ret != -EEXIST)
591 		return ret;
592 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
593 	if (!memmap)
594 		return -ENOMEM;
595 	usemap = __kmalloc_section_usemap();
596 	if (!usemap) {
597 		__kfree_section_memmap(memmap, nr_pages);
598 		return -ENOMEM;
599 	}
600 
601 	pgdat_resize_lock(pgdat, &flags);
602 
603 	ms = __pfn_to_section(start_pfn);
604 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
605 		ret = -EEXIST;
606 		goto out;
607 	}
608 
609 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
610 
611 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
612 
613 out:
614 	pgdat_resize_unlock(pgdat, &flags);
615 	if (ret <= 0) {
616 		kfree(usemap);
617 		__kfree_section_memmap(memmap, nr_pages);
618 	}
619 	return ret;
620 }
621 
622 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
623 {
624 	struct page *memmap = NULL;
625 	unsigned long *usemap = NULL;
626 
627 	if (ms->section_mem_map) {
628 		usemap = ms->pageblock_flags;
629 		memmap = sparse_decode_mem_map(ms->section_mem_map,
630 						__section_nr(ms));
631 		ms->section_mem_map = 0;
632 		ms->pageblock_flags = NULL;
633 	}
634 
635 	free_section_usemap(memmap, usemap);
636 }
637 #endif
638