xref: /linux/mm/sparse.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/config.h>
5 #include <linux/mm.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include <asm/dma.h>
13 
14 /*
15  * Permanent SPARSEMEM data:
16  *
17  * 1) mem_section	- memory sections, mem_map's for valid memory
18  */
19 #ifdef CONFIG_SPARSEMEM_EXTREME
20 struct mem_section *mem_section[NR_SECTION_ROOTS]
21 	____cacheline_internodealigned_in_smp;
22 #else
23 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
24 	____cacheline_internodealigned_in_smp;
25 #endif
26 EXPORT_SYMBOL(mem_section);
27 
28 #ifdef CONFIG_SPARSEMEM_EXTREME
29 static struct mem_section *sparse_index_alloc(int nid)
30 {
31 	struct mem_section *section = NULL;
32 	unsigned long array_size = SECTIONS_PER_ROOT *
33 				   sizeof(struct mem_section);
34 
35 	if (slab_is_available())
36 		section = kmalloc_node(array_size, GFP_KERNEL, nid);
37 	else
38 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
39 
40 	if (section)
41 		memset(section, 0, array_size);
42 
43 	return section;
44 }
45 
46 static int sparse_index_init(unsigned long section_nr, int nid)
47 {
48 	static DEFINE_SPINLOCK(index_init_lock);
49 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
50 	struct mem_section *section;
51 	int ret = 0;
52 
53 	if (mem_section[root])
54 		return -EEXIST;
55 
56 	section = sparse_index_alloc(nid);
57 	/*
58 	 * This lock keeps two different sections from
59 	 * reallocating for the same index
60 	 */
61 	spin_lock(&index_init_lock);
62 
63 	if (mem_section[root]) {
64 		ret = -EEXIST;
65 		goto out;
66 	}
67 
68 	mem_section[root] = section;
69 out:
70 	spin_unlock(&index_init_lock);
71 	return ret;
72 }
73 #else /* !SPARSEMEM_EXTREME */
74 static inline int sparse_index_init(unsigned long section_nr, int nid)
75 {
76 	return 0;
77 }
78 #endif
79 
80 /*
81  * Although written for the SPARSEMEM_EXTREME case, this happens
82  * to also work for the flat array case becase
83  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
84  */
85 int __section_nr(struct mem_section* ms)
86 {
87 	unsigned long root_nr;
88 	struct mem_section* root;
89 
90 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
91 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
92 		if (!root)
93 			continue;
94 
95 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
96 		     break;
97 	}
98 
99 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
100 }
101 
102 /*
103  * During early boot, before section_mem_map is used for an actual
104  * mem_map, we use section_mem_map to store the section's NUMA
105  * node.  This keeps us from having to use another data structure.  The
106  * node information is cleared just before we store the real mem_map.
107  */
108 static inline unsigned long sparse_encode_early_nid(int nid)
109 {
110 	return (nid << SECTION_NID_SHIFT);
111 }
112 
113 static inline int sparse_early_nid(struct mem_section *section)
114 {
115 	return (section->section_mem_map >> SECTION_NID_SHIFT);
116 }
117 
118 /* Record a memory area against a node. */
119 void memory_present(int nid, unsigned long start, unsigned long end)
120 {
121 	unsigned long pfn;
122 
123 	start &= PAGE_SECTION_MASK;
124 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
125 		unsigned long section = pfn_to_section_nr(pfn);
126 		struct mem_section *ms;
127 
128 		sparse_index_init(section, nid);
129 
130 		ms = __nr_to_section(section);
131 		if (!ms->section_mem_map)
132 			ms->section_mem_map = sparse_encode_early_nid(nid) |
133 							SECTION_MARKED_PRESENT;
134 	}
135 }
136 
137 /*
138  * Only used by the i386 NUMA architecures, but relatively
139  * generic code.
140  */
141 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
142 						     unsigned long end_pfn)
143 {
144 	unsigned long pfn;
145 	unsigned long nr_pages = 0;
146 
147 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
148 		if (nid != early_pfn_to_nid(pfn))
149 			continue;
150 
151 		if (pfn_valid(pfn))
152 			nr_pages += PAGES_PER_SECTION;
153 	}
154 
155 	return nr_pages * sizeof(struct page);
156 }
157 
158 /*
159  * Subtle, we encode the real pfn into the mem_map such that
160  * the identity pfn - section_mem_map will return the actual
161  * physical page frame number.
162  */
163 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
164 {
165 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
166 }
167 
168 /*
169  * We need this if we ever free the mem_maps.  While not implemented yet,
170  * this function is included for parity with its sibling.
171  */
172 static __attribute((unused))
173 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
174 {
175 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
176 }
177 
178 static int sparse_init_one_section(struct mem_section *ms,
179 		unsigned long pnum, struct page *mem_map)
180 {
181 	if (!valid_section(ms))
182 		return -EINVAL;
183 
184 	ms->section_mem_map &= ~SECTION_MAP_MASK;
185 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
186 
187 	return 1;
188 }
189 
190 static struct page *sparse_early_mem_map_alloc(unsigned long pnum)
191 {
192 	struct page *map;
193 	struct mem_section *ms = __nr_to_section(pnum);
194 	int nid = sparse_early_nid(ms);
195 
196 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
197 	if (map)
198 		return map;
199 
200 	map = alloc_bootmem_node(NODE_DATA(nid),
201 			sizeof(struct page) * PAGES_PER_SECTION);
202 	if (map)
203 		return map;
204 
205 	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
206 	ms->section_mem_map = 0;
207 	return NULL;
208 }
209 
210 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
211 {
212 	struct page *page, *ret;
213 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
214 
215 	page = alloc_pages(GFP_KERNEL, get_order(memmap_size));
216 	if (page)
217 		goto got_map_page;
218 
219 	ret = vmalloc(memmap_size);
220 	if (ret)
221 		goto got_map_ptr;
222 
223 	return NULL;
224 got_map_page:
225 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
226 got_map_ptr:
227 	memset(ret, 0, memmap_size);
228 
229 	return ret;
230 }
231 
232 static int vaddr_in_vmalloc_area(void *addr)
233 {
234 	if (addr >= (void *)VMALLOC_START &&
235 	    addr < (void *)VMALLOC_END)
236 		return 1;
237 	return 0;
238 }
239 
240 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
241 {
242 	if (vaddr_in_vmalloc_area(memmap))
243 		vfree(memmap);
244 	else
245 		free_pages((unsigned long)memmap,
246 			   get_order(sizeof(struct page) * nr_pages));
247 }
248 
249 /*
250  * Allocate the accumulated non-linear sections, allocate a mem_map
251  * for each and record the physical to section mapping.
252  */
253 void sparse_init(void)
254 {
255 	unsigned long pnum;
256 	struct page *map;
257 
258 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
259 		if (!valid_section_nr(pnum))
260 			continue;
261 
262 		map = sparse_early_mem_map_alloc(pnum);
263 		if (!map)
264 			continue;
265 		sparse_init_one_section(__nr_to_section(pnum), pnum, map);
266 	}
267 }
268 
269 /*
270  * returns the number of sections whose mem_maps were properly
271  * set.  If this is <=0, then that means that the passed-in
272  * map was not consumed and must be freed.
273  */
274 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
275 			   int nr_pages)
276 {
277 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
278 	struct pglist_data *pgdat = zone->zone_pgdat;
279 	struct mem_section *ms;
280 	struct page *memmap;
281 	unsigned long flags;
282 	int ret;
283 
284 	/*
285 	 * no locking for this, because it does its own
286 	 * plus, it does a kmalloc
287 	 */
288 	sparse_index_init(section_nr, pgdat->node_id);
289 	memmap = __kmalloc_section_memmap(nr_pages);
290 
291 	pgdat_resize_lock(pgdat, &flags);
292 
293 	ms = __pfn_to_section(start_pfn);
294 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
295 		ret = -EEXIST;
296 		goto out;
297 	}
298 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
299 
300 	ret = sparse_init_one_section(ms, section_nr, memmap);
301 
302 out:
303 	pgdat_resize_unlock(pgdat, &flags);
304 	if (ret <= 0)
305 		__kfree_section_memmap(memmap, nr_pages);
306 	return ret;
307 }
308