1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/highmem.h> 9 #include <linux/module.h> 10 #include <linux/spinlock.h> 11 #include <linux/vmalloc.h> 12 #include "internal.h" 13 #include <asm/dma.h> 14 #include <asm/pgalloc.h> 15 #include <asm/pgtable.h> 16 17 /* 18 * Permanent SPARSEMEM data: 19 * 20 * 1) mem_section - memory sections, mem_map's for valid memory 21 */ 22 #ifdef CONFIG_SPARSEMEM_EXTREME 23 struct mem_section *mem_section[NR_SECTION_ROOTS] 24 ____cacheline_internodealigned_in_smp; 25 #else 26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 27 ____cacheline_internodealigned_in_smp; 28 #endif 29 EXPORT_SYMBOL(mem_section); 30 31 #ifdef NODE_NOT_IN_PAGE_FLAGS 32 /* 33 * If we did not store the node number in the page then we have to 34 * do a lookup in the section_to_node_table in order to find which 35 * node the page belongs to. 36 */ 37 #if MAX_NUMNODES <= 256 38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 39 #else 40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #endif 42 43 int page_to_nid(struct page *page) 44 { 45 return section_to_node_table[page_to_section(page)]; 46 } 47 EXPORT_SYMBOL(page_to_nid); 48 49 static void set_section_nid(unsigned long section_nr, int nid) 50 { 51 section_to_node_table[section_nr] = nid; 52 } 53 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 54 static inline void set_section_nid(unsigned long section_nr, int nid) 55 { 56 } 57 #endif 58 59 #ifdef CONFIG_SPARSEMEM_EXTREME 60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 61 { 62 struct mem_section *section = NULL; 63 unsigned long array_size = SECTIONS_PER_ROOT * 64 sizeof(struct mem_section); 65 66 if (slab_is_available()) { 67 if (node_state(nid, N_HIGH_MEMORY)) 68 section = kmalloc_node(array_size, GFP_KERNEL, nid); 69 else 70 section = kmalloc(array_size, GFP_KERNEL); 71 } else 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size); 73 74 if (section) 75 memset(section, 0, array_size); 76 77 return section; 78 } 79 80 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 81 { 82 static DEFINE_SPINLOCK(index_init_lock); 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 int ret = 0; 86 87 if (mem_section[root]) 88 return -EEXIST; 89 90 section = sparse_index_alloc(nid); 91 if (!section) 92 return -ENOMEM; 93 /* 94 * This lock keeps two different sections from 95 * reallocating for the same index 96 */ 97 spin_lock(&index_init_lock); 98 99 if (mem_section[root]) { 100 ret = -EEXIST; 101 goto out; 102 } 103 104 mem_section[root] = section; 105 out: 106 spin_unlock(&index_init_lock); 107 return ret; 108 } 109 #else /* !SPARSEMEM_EXTREME */ 110 static inline int sparse_index_init(unsigned long section_nr, int nid) 111 { 112 return 0; 113 } 114 #endif 115 116 /* 117 * Although written for the SPARSEMEM_EXTREME case, this happens 118 * to also work for the flat array case because 119 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 120 */ 121 int __section_nr(struct mem_section* ms) 122 { 123 unsigned long root_nr; 124 struct mem_section* root; 125 126 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 127 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 128 if (!root) 129 continue; 130 131 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 132 break; 133 } 134 135 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 136 } 137 138 /* 139 * During early boot, before section_mem_map is used for an actual 140 * mem_map, we use section_mem_map to store the section's NUMA 141 * node. This keeps us from having to use another data structure. The 142 * node information is cleared just before we store the real mem_map. 143 */ 144 static inline unsigned long sparse_encode_early_nid(int nid) 145 { 146 return (nid << SECTION_NID_SHIFT); 147 } 148 149 static inline int sparse_early_nid(struct mem_section *section) 150 { 151 return (section->section_mem_map >> SECTION_NID_SHIFT); 152 } 153 154 /* Validate the physical addressing limitations of the model */ 155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 156 unsigned long *end_pfn) 157 { 158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 159 160 /* 161 * Sanity checks - do not allow an architecture to pass 162 * in larger pfns than the maximum scope of sparsemem: 163 */ 164 if (*start_pfn > max_sparsemem_pfn) { 165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 167 *start_pfn, *end_pfn, max_sparsemem_pfn); 168 WARN_ON_ONCE(1); 169 *start_pfn = max_sparsemem_pfn; 170 *end_pfn = max_sparsemem_pfn; 171 } else if (*end_pfn > max_sparsemem_pfn) { 172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 174 *start_pfn, *end_pfn, max_sparsemem_pfn); 175 WARN_ON_ONCE(1); 176 *end_pfn = max_sparsemem_pfn; 177 } 178 } 179 180 /* Record a memory area against a node. */ 181 void __init memory_present(int nid, unsigned long start, unsigned long end) 182 { 183 unsigned long pfn; 184 185 start &= PAGE_SECTION_MASK; 186 mminit_validate_memmodel_limits(&start, &end); 187 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 188 unsigned long section = pfn_to_section_nr(pfn); 189 struct mem_section *ms; 190 191 sparse_index_init(section, nid); 192 set_section_nid(section, nid); 193 194 ms = __nr_to_section(section); 195 if (!ms->section_mem_map) 196 ms->section_mem_map = sparse_encode_early_nid(nid) | 197 SECTION_MARKED_PRESENT; 198 } 199 } 200 201 /* 202 * Only used by the i386 NUMA architecures, but relatively 203 * generic code. 204 */ 205 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 206 unsigned long end_pfn) 207 { 208 unsigned long pfn; 209 unsigned long nr_pages = 0; 210 211 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 212 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 213 if (nid != early_pfn_to_nid(pfn)) 214 continue; 215 216 if (pfn_present(pfn)) 217 nr_pages += PAGES_PER_SECTION; 218 } 219 220 return nr_pages * sizeof(struct page); 221 } 222 223 /* 224 * Subtle, we encode the real pfn into the mem_map such that 225 * the identity pfn - section_mem_map will return the actual 226 * physical page frame number. 227 */ 228 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 229 { 230 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 231 } 232 233 /* 234 * Decode mem_map from the coded memmap 235 */ 236 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 237 { 238 /* mask off the extra low bits of information */ 239 coded_mem_map &= SECTION_MAP_MASK; 240 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 241 } 242 243 static int __meminit sparse_init_one_section(struct mem_section *ms, 244 unsigned long pnum, struct page *mem_map, 245 unsigned long *pageblock_bitmap) 246 { 247 if (!present_section(ms)) 248 return -EINVAL; 249 250 ms->section_mem_map &= ~SECTION_MAP_MASK; 251 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 252 SECTION_HAS_MEM_MAP; 253 ms->pageblock_flags = pageblock_bitmap; 254 255 return 1; 256 } 257 258 unsigned long usemap_size(void) 259 { 260 unsigned long size_bytes; 261 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 262 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 263 return size_bytes; 264 } 265 266 #ifdef CONFIG_MEMORY_HOTPLUG 267 static unsigned long *__kmalloc_section_usemap(void) 268 { 269 return kmalloc(usemap_size(), GFP_KERNEL); 270 } 271 #endif /* CONFIG_MEMORY_HOTPLUG */ 272 273 #ifdef CONFIG_MEMORY_HOTREMOVE 274 static unsigned long * __init 275 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 276 unsigned long count) 277 { 278 unsigned long section_nr; 279 280 /* 281 * A page may contain usemaps for other sections preventing the 282 * page being freed and making a section unremovable while 283 * other sections referencing the usemap retmain active. Similarly, 284 * a pgdat can prevent a section being removed. If section A 285 * contains a pgdat and section B contains the usemap, both 286 * sections become inter-dependent. This allocates usemaps 287 * from the same section as the pgdat where possible to avoid 288 * this problem. 289 */ 290 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 291 return alloc_bootmem_section(usemap_size() * count, section_nr); 292 } 293 294 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 295 { 296 unsigned long usemap_snr, pgdat_snr; 297 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 298 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 299 struct pglist_data *pgdat = NODE_DATA(nid); 300 int usemap_nid; 301 302 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 303 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 304 if (usemap_snr == pgdat_snr) 305 return; 306 307 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 308 /* skip redundant message */ 309 return; 310 311 old_usemap_snr = usemap_snr; 312 old_pgdat_snr = pgdat_snr; 313 314 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 315 if (usemap_nid != nid) { 316 printk(KERN_INFO 317 "node %d must be removed before remove section %ld\n", 318 nid, usemap_snr); 319 return; 320 } 321 /* 322 * There is a circular dependency. 323 * Some platforms allow un-removable section because they will just 324 * gather other removable sections for dynamic partitioning. 325 * Just notify un-removable section's number here. 326 */ 327 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr, 328 pgdat_snr, nid); 329 printk(KERN_CONT 330 " have a circular dependency on usemap and pgdat allocations\n"); 331 } 332 #else 333 static unsigned long * __init 334 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 335 unsigned long count) 336 { 337 return NULL; 338 } 339 340 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 341 { 342 } 343 #endif /* CONFIG_MEMORY_HOTREMOVE */ 344 345 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, 346 unsigned long pnum_begin, 347 unsigned long pnum_end, 348 unsigned long usemap_count, int nodeid) 349 { 350 void *usemap; 351 unsigned long pnum; 352 int size = usemap_size(); 353 354 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 355 usemap_count); 356 if (usemap) { 357 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 358 if (!present_section_nr(pnum)) 359 continue; 360 usemap_map[pnum] = usemap; 361 usemap += size; 362 } 363 return; 364 } 365 366 usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count); 367 if (usemap) { 368 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 369 if (!present_section_nr(pnum)) 370 continue; 371 usemap_map[pnum] = usemap; 372 usemap += size; 373 check_usemap_section_nr(nodeid, usemap_map[pnum]); 374 } 375 return; 376 } 377 378 printk(KERN_WARNING "%s: allocation failed\n", __func__); 379 } 380 381 #ifndef CONFIG_SPARSEMEM_VMEMMAP 382 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 383 { 384 struct page *map; 385 386 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 387 if (map) 388 return map; 389 390 map = alloc_bootmem_pages_node(NODE_DATA(nid), 391 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION)); 392 return map; 393 } 394 void __init sparse_mem_maps_populate_node(struct page **map_map, 395 unsigned long pnum_begin, 396 unsigned long pnum_end, 397 unsigned long map_count, int nodeid) 398 { 399 void *map; 400 unsigned long pnum; 401 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 402 403 map = alloc_remap(nodeid, size * map_count); 404 if (map) { 405 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 406 if (!present_section_nr(pnum)) 407 continue; 408 map_map[pnum] = map; 409 map += size; 410 } 411 return; 412 } 413 414 size = PAGE_ALIGN(size); 415 map = alloc_bootmem_pages_node(NODE_DATA(nodeid), size * map_count); 416 if (map) { 417 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 418 if (!present_section_nr(pnum)) 419 continue; 420 map_map[pnum] = map; 421 map += size; 422 } 423 return; 424 } 425 426 /* fallback */ 427 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 428 struct mem_section *ms; 429 430 if (!present_section_nr(pnum)) 431 continue; 432 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 433 if (map_map[pnum]) 434 continue; 435 ms = __nr_to_section(pnum); 436 printk(KERN_ERR "%s: sparsemem memory map backing failed " 437 "some memory will not be available.\n", __func__); 438 ms->section_mem_map = 0; 439 } 440 } 441 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 442 443 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 444 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, 445 unsigned long pnum_begin, 446 unsigned long pnum_end, 447 unsigned long map_count, int nodeid) 448 { 449 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 450 map_count, nodeid); 451 } 452 #else 453 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 454 { 455 struct page *map; 456 struct mem_section *ms = __nr_to_section(pnum); 457 int nid = sparse_early_nid(ms); 458 459 map = sparse_mem_map_populate(pnum, nid); 460 if (map) 461 return map; 462 463 printk(KERN_ERR "%s: sparsemem memory map backing failed " 464 "some memory will not be available.\n", __func__); 465 ms->section_mem_map = 0; 466 return NULL; 467 } 468 #endif 469 470 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) 471 { 472 } 473 474 /* 475 * Allocate the accumulated non-linear sections, allocate a mem_map 476 * for each and record the physical to section mapping. 477 */ 478 void __init sparse_init(void) 479 { 480 unsigned long pnum; 481 struct page *map; 482 unsigned long *usemap; 483 unsigned long **usemap_map; 484 int size; 485 int nodeid_begin = 0; 486 unsigned long pnum_begin = 0; 487 unsigned long usemap_count; 488 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 489 unsigned long map_count; 490 int size2; 491 struct page **map_map; 492 #endif 493 494 /* 495 * map is using big page (aka 2M in x86 64 bit) 496 * usemap is less one page (aka 24 bytes) 497 * so alloc 2M (with 2M align) and 24 bytes in turn will 498 * make next 2M slip to one more 2M later. 499 * then in big system, the memory will have a lot of holes... 500 * here try to allocate 2M pages continously. 501 * 502 * powerpc need to call sparse_init_one_section right after each 503 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 504 */ 505 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 506 usemap_map = alloc_bootmem(size); 507 if (!usemap_map) 508 panic("can not allocate usemap_map\n"); 509 510 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 511 struct mem_section *ms; 512 513 if (!present_section_nr(pnum)) 514 continue; 515 ms = __nr_to_section(pnum); 516 nodeid_begin = sparse_early_nid(ms); 517 pnum_begin = pnum; 518 break; 519 } 520 usemap_count = 1; 521 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 522 struct mem_section *ms; 523 int nodeid; 524 525 if (!present_section_nr(pnum)) 526 continue; 527 ms = __nr_to_section(pnum); 528 nodeid = sparse_early_nid(ms); 529 if (nodeid == nodeid_begin) { 530 usemap_count++; 531 continue; 532 } 533 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 534 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, 535 usemap_count, nodeid_begin); 536 /* new start, update count etc*/ 537 nodeid_begin = nodeid; 538 pnum_begin = pnum; 539 usemap_count = 1; 540 } 541 /* ok, last chunk */ 542 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, 543 usemap_count, nodeid_begin); 544 545 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 546 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 547 map_map = alloc_bootmem(size2); 548 if (!map_map) 549 panic("can not allocate map_map\n"); 550 551 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 552 struct mem_section *ms; 553 554 if (!present_section_nr(pnum)) 555 continue; 556 ms = __nr_to_section(pnum); 557 nodeid_begin = sparse_early_nid(ms); 558 pnum_begin = pnum; 559 break; 560 } 561 map_count = 1; 562 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 563 struct mem_section *ms; 564 int nodeid; 565 566 if (!present_section_nr(pnum)) 567 continue; 568 ms = __nr_to_section(pnum); 569 nodeid = sparse_early_nid(ms); 570 if (nodeid == nodeid_begin) { 571 map_count++; 572 continue; 573 } 574 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 575 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, 576 map_count, nodeid_begin); 577 /* new start, update count etc*/ 578 nodeid_begin = nodeid; 579 pnum_begin = pnum; 580 map_count = 1; 581 } 582 /* ok, last chunk */ 583 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, 584 map_count, nodeid_begin); 585 #endif 586 587 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 588 if (!present_section_nr(pnum)) 589 continue; 590 591 usemap = usemap_map[pnum]; 592 if (!usemap) 593 continue; 594 595 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 596 map = map_map[pnum]; 597 #else 598 map = sparse_early_mem_map_alloc(pnum); 599 #endif 600 if (!map) 601 continue; 602 603 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 604 usemap); 605 } 606 607 vmemmap_populate_print_last(); 608 609 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 610 free_bootmem(__pa(map_map), size2); 611 #endif 612 free_bootmem(__pa(usemap_map), size); 613 } 614 615 #ifdef CONFIG_MEMORY_HOTPLUG 616 #ifdef CONFIG_SPARSEMEM_VMEMMAP 617 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 618 unsigned long nr_pages) 619 { 620 /* This will make the necessary allocations eventually. */ 621 return sparse_mem_map_populate(pnum, nid); 622 } 623 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 624 { 625 return; /* XXX: Not implemented yet */ 626 } 627 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 628 { 629 } 630 #else 631 static struct page *__kmalloc_section_memmap(unsigned long nr_pages) 632 { 633 struct page *page, *ret; 634 unsigned long memmap_size = sizeof(struct page) * nr_pages; 635 636 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 637 if (page) 638 goto got_map_page; 639 640 ret = vmalloc(memmap_size); 641 if (ret) 642 goto got_map_ptr; 643 644 return NULL; 645 got_map_page: 646 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 647 got_map_ptr: 648 memset(ret, 0, memmap_size); 649 650 return ret; 651 } 652 653 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 654 unsigned long nr_pages) 655 { 656 return __kmalloc_section_memmap(nr_pages); 657 } 658 659 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) 660 { 661 if (is_vmalloc_addr(memmap)) 662 vfree(memmap); 663 else 664 free_pages((unsigned long)memmap, 665 get_order(sizeof(struct page) * nr_pages)); 666 } 667 668 static void free_map_bootmem(struct page *page, unsigned long nr_pages) 669 { 670 unsigned long maps_section_nr, removing_section_nr, i; 671 int magic; 672 673 for (i = 0; i < nr_pages; i++, page++) { 674 magic = atomic_read(&page->_mapcount); 675 676 BUG_ON(magic == NODE_INFO); 677 678 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 679 removing_section_nr = page->private; 680 681 /* 682 * When this function is called, the removing section is 683 * logical offlined state. This means all pages are isolated 684 * from page allocator. If removing section's memmap is placed 685 * on the same section, it must not be freed. 686 * If it is freed, page allocator may allocate it which will 687 * be removed physically soon. 688 */ 689 if (maps_section_nr != removing_section_nr) 690 put_page_bootmem(page); 691 } 692 } 693 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 694 695 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 696 { 697 struct page *usemap_page; 698 unsigned long nr_pages; 699 700 if (!usemap) 701 return; 702 703 usemap_page = virt_to_page(usemap); 704 /* 705 * Check to see if allocation came from hot-plug-add 706 */ 707 if (PageSlab(usemap_page)) { 708 kfree(usemap); 709 if (memmap) 710 __kfree_section_memmap(memmap, PAGES_PER_SECTION); 711 return; 712 } 713 714 /* 715 * The usemap came from bootmem. This is packed with other usemaps 716 * on the section which has pgdat at boot time. Just keep it as is now. 717 */ 718 719 if (memmap) { 720 struct page *memmap_page; 721 memmap_page = virt_to_page(memmap); 722 723 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 724 >> PAGE_SHIFT; 725 726 free_map_bootmem(memmap_page, nr_pages); 727 } 728 } 729 730 /* 731 * returns the number of sections whose mem_maps were properly 732 * set. If this is <=0, then that means that the passed-in 733 * map was not consumed and must be freed. 734 */ 735 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn, 736 int nr_pages) 737 { 738 unsigned long section_nr = pfn_to_section_nr(start_pfn); 739 struct pglist_data *pgdat = zone->zone_pgdat; 740 struct mem_section *ms; 741 struct page *memmap; 742 unsigned long *usemap; 743 unsigned long flags; 744 int ret; 745 746 /* 747 * no locking for this, because it does its own 748 * plus, it does a kmalloc 749 */ 750 ret = sparse_index_init(section_nr, pgdat->node_id); 751 if (ret < 0 && ret != -EEXIST) 752 return ret; 753 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages); 754 if (!memmap) 755 return -ENOMEM; 756 usemap = __kmalloc_section_usemap(); 757 if (!usemap) { 758 __kfree_section_memmap(memmap, nr_pages); 759 return -ENOMEM; 760 } 761 762 pgdat_resize_lock(pgdat, &flags); 763 764 ms = __pfn_to_section(start_pfn); 765 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 766 ret = -EEXIST; 767 goto out; 768 } 769 770 ms->section_mem_map |= SECTION_MARKED_PRESENT; 771 772 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 773 774 out: 775 pgdat_resize_unlock(pgdat, &flags); 776 if (ret <= 0) { 777 kfree(usemap); 778 __kfree_section_memmap(memmap, nr_pages); 779 } 780 return ret; 781 } 782 783 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms) 784 { 785 struct page *memmap = NULL; 786 unsigned long *usemap = NULL; 787 788 if (ms->section_mem_map) { 789 usemap = ms->pageblock_flags; 790 memmap = sparse_decode_mem_map(ms->section_mem_map, 791 __section_nr(ms)); 792 ms->section_mem_map = 0; 793 ms->pageblock_flags = NULL; 794 } 795 796 free_section_usemap(memmap, usemap); 797 } 798 #endif 799