1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 #include <linux/swap.h> 15 #include <linux/swapops.h> 16 #include <linux/bootmem_info.h> 17 #include <linux/vmstat.h> 18 #include "internal.h" 19 #include <asm/dma.h> 20 21 /* 22 * Permanent SPARSEMEM data: 23 * 24 * 1) mem_section - memory sections, mem_map's for valid memory 25 */ 26 #ifdef CONFIG_SPARSEMEM_EXTREME 27 struct mem_section **mem_section; 28 #else 29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 30 ____cacheline_internodealigned_in_smp; 31 #endif 32 EXPORT_SYMBOL(mem_section); 33 34 #ifdef NODE_NOT_IN_PAGE_FLAGS 35 /* 36 * If we did not store the node number in the page then we have to 37 * do a lookup in the section_to_node_table in order to find which 38 * node the page belongs to. 39 */ 40 #if MAX_NUMNODES <= 256 41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 42 #else 43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 44 #endif 45 46 int page_to_nid(const struct page *page) 47 { 48 return section_to_node_table[page_to_section(page)]; 49 } 50 EXPORT_SYMBOL(page_to_nid); 51 52 static void set_section_nid(unsigned long section_nr, int nid) 53 { 54 section_to_node_table[section_nr] = nid; 55 } 56 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 57 static inline void set_section_nid(unsigned long section_nr, int nid) 58 { 59 } 60 #endif 61 62 #ifdef CONFIG_SPARSEMEM_EXTREME 63 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 64 { 65 struct mem_section *section = NULL; 66 unsigned long array_size = SECTIONS_PER_ROOT * 67 sizeof(struct mem_section); 68 69 if (slab_is_available()) { 70 section = kzalloc_node(array_size, GFP_KERNEL, nid); 71 } else { 72 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 73 nid); 74 if (!section) 75 panic("%s: Failed to allocate %lu bytes nid=%d\n", 76 __func__, array_size, nid); 77 } 78 79 return section; 80 } 81 82 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 83 { 84 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 85 struct mem_section *section; 86 87 /* 88 * An existing section is possible in the sub-section hotplug 89 * case. First hot-add instantiates, follow-on hot-add reuses 90 * the existing section. 91 * 92 * The mem_hotplug_lock resolves the apparent race below. 93 */ 94 if (mem_section[root]) 95 return 0; 96 97 section = sparse_index_alloc(nid); 98 if (!section) 99 return -ENOMEM; 100 101 mem_section[root] = section; 102 103 return 0; 104 } 105 #else /* !SPARSEMEM_EXTREME */ 106 static inline int sparse_index_init(unsigned long section_nr, int nid) 107 { 108 return 0; 109 } 110 #endif 111 112 /* 113 * During early boot, before section_mem_map is used for an actual 114 * mem_map, we use section_mem_map to store the section's NUMA 115 * node. This keeps us from having to use another data structure. The 116 * node information is cleared just before we store the real mem_map. 117 */ 118 static inline unsigned long sparse_encode_early_nid(int nid) 119 { 120 return ((unsigned long)nid << SECTION_NID_SHIFT); 121 } 122 123 static inline int sparse_early_nid(struct mem_section *section) 124 { 125 return (section->section_mem_map >> SECTION_NID_SHIFT); 126 } 127 128 /* Validate the physical addressing limitations of the model */ 129 static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 130 unsigned long *end_pfn) 131 { 132 unsigned long max_sparsemem_pfn = (DIRECT_MAP_PHYSMEM_END + 1) >> PAGE_SHIFT; 133 134 /* 135 * Sanity checks - do not allow an architecture to pass 136 * in larger pfns than the maximum scope of sparsemem: 137 */ 138 if (*start_pfn > max_sparsemem_pfn) { 139 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 140 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 141 *start_pfn, *end_pfn, max_sparsemem_pfn); 142 WARN_ON_ONCE(1); 143 *start_pfn = max_sparsemem_pfn; 144 *end_pfn = max_sparsemem_pfn; 145 } else if (*end_pfn > max_sparsemem_pfn) { 146 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 147 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 148 *start_pfn, *end_pfn, max_sparsemem_pfn); 149 WARN_ON_ONCE(1); 150 *end_pfn = max_sparsemem_pfn; 151 } 152 } 153 154 /* 155 * There are a number of times that we loop over NR_MEM_SECTIONS, 156 * looking for section_present() on each. But, when we have very 157 * large physical address spaces, NR_MEM_SECTIONS can also be 158 * very large which makes the loops quite long. 159 * 160 * Keeping track of this gives us an easy way to break out of 161 * those loops early. 162 */ 163 unsigned long __highest_present_section_nr; 164 static void __section_mark_present(struct mem_section *ms, 165 unsigned long section_nr) 166 { 167 if (section_nr > __highest_present_section_nr) 168 __highest_present_section_nr = section_nr; 169 170 ms->section_mem_map |= SECTION_MARKED_PRESENT; 171 } 172 173 #define for_each_present_section_nr(start, section_nr) \ 174 for (section_nr = next_present_section_nr(start-1); \ 175 section_nr != -1; \ 176 section_nr = next_present_section_nr(section_nr)) 177 178 static inline unsigned long first_present_section_nr(void) 179 { 180 return next_present_section_nr(-1); 181 } 182 183 #ifdef CONFIG_SPARSEMEM_VMEMMAP 184 static void subsection_mask_set(unsigned long *map, unsigned long pfn, 185 unsigned long nr_pages) 186 { 187 int idx = subsection_map_index(pfn); 188 int end = subsection_map_index(pfn + nr_pages - 1); 189 190 bitmap_set(map, idx, end - idx + 1); 191 } 192 193 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 194 { 195 int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1); 196 unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn); 197 198 for (nr = start_sec_nr; nr <= end_sec_nr; nr++) { 199 struct mem_section *ms; 200 unsigned long pfns; 201 202 pfns = min(nr_pages, PAGES_PER_SECTION 203 - (pfn & ~PAGE_SECTION_MASK)); 204 ms = __nr_to_section(nr); 205 subsection_mask_set(ms->usage->subsection_map, pfn, pfns); 206 207 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr, 208 pfns, subsection_map_index(pfn), 209 subsection_map_index(pfn + pfns - 1)); 210 211 pfn += pfns; 212 nr_pages -= pfns; 213 } 214 } 215 #else 216 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages) 217 { 218 } 219 #endif 220 221 /* Record a memory area against a node. */ 222 static void __init memory_present(int nid, unsigned long start, unsigned long end) 223 { 224 unsigned long pfn; 225 226 start &= PAGE_SECTION_MASK; 227 mminit_validate_memmodel_limits(&start, &end); 228 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 229 unsigned long section_nr = pfn_to_section_nr(pfn); 230 struct mem_section *ms; 231 232 sparse_index_init(section_nr, nid); 233 set_section_nid(section_nr, nid); 234 235 ms = __nr_to_section(section_nr); 236 if (!ms->section_mem_map) { 237 ms->section_mem_map = sparse_encode_early_nid(nid) | 238 SECTION_IS_ONLINE; 239 __section_mark_present(ms, section_nr); 240 } 241 } 242 } 243 244 /* 245 * Mark all memblocks as present using memory_present(). 246 * This is a convenience function that is useful to mark all of the systems 247 * memory as present during initialization. 248 */ 249 static void __init memblocks_present(void) 250 { 251 unsigned long start, end; 252 int i, nid; 253 254 #ifdef CONFIG_SPARSEMEM_EXTREME 255 if (unlikely(!mem_section)) { 256 unsigned long size, align; 257 258 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS; 259 align = 1 << (INTERNODE_CACHE_SHIFT); 260 mem_section = memblock_alloc_or_panic(size, align); 261 } 262 #endif 263 264 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) 265 memory_present(nid, start, end); 266 } 267 268 /* 269 * Subtle, we encode the real pfn into the mem_map such that 270 * the identity pfn - section_mem_map will return the actual 271 * physical page frame number. 272 */ 273 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 274 { 275 unsigned long coded_mem_map = 276 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 277 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT); 278 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 279 return coded_mem_map; 280 } 281 282 #ifdef CONFIG_MEMORY_HOTPLUG 283 /* 284 * Decode mem_map from the coded memmap 285 */ 286 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 287 { 288 /* mask off the extra low bits of information */ 289 coded_mem_map &= SECTION_MAP_MASK; 290 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 291 } 292 #endif /* CONFIG_MEMORY_HOTPLUG */ 293 294 static void __meminit sparse_init_one_section(struct mem_section *ms, 295 unsigned long pnum, struct page *mem_map, 296 struct mem_section_usage *usage, unsigned long flags) 297 { 298 ms->section_mem_map &= ~SECTION_MAP_MASK; 299 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) 300 | SECTION_HAS_MEM_MAP | flags; 301 ms->usage = usage; 302 } 303 304 static unsigned long usemap_size(void) 305 { 306 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 307 } 308 309 size_t mem_section_usage_size(void) 310 { 311 return sizeof(struct mem_section_usage) + usemap_size(); 312 } 313 314 #ifdef CONFIG_MEMORY_HOTREMOVE 315 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat) 316 { 317 #ifndef CONFIG_NUMA 318 VM_BUG_ON(pgdat != &contig_page_data); 319 return __pa_symbol(&contig_page_data); 320 #else 321 return __pa(pgdat); 322 #endif 323 } 324 325 static struct mem_section_usage * __init 326 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 327 unsigned long size) 328 { 329 struct mem_section_usage *usage; 330 unsigned long goal, limit; 331 int nid; 332 /* 333 * A page may contain usemaps for other sections preventing the 334 * page being freed and making a section unremovable while 335 * other sections referencing the usemap remain active. Similarly, 336 * a pgdat can prevent a section being removed. If section A 337 * contains a pgdat and section B contains the usemap, both 338 * sections become inter-dependent. This allocates usemaps 339 * from the same section as the pgdat where possible to avoid 340 * this problem. 341 */ 342 goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 343 limit = goal + (1UL << PA_SECTION_SHIFT); 344 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 345 again: 346 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 347 if (!usage && limit) { 348 limit = MEMBLOCK_ALLOC_ACCESSIBLE; 349 goto again; 350 } 351 return usage; 352 } 353 354 static void __init check_usemap_section_nr(int nid, 355 struct mem_section_usage *usage) 356 { 357 unsigned long usemap_snr, pgdat_snr; 358 static unsigned long old_usemap_snr; 359 static unsigned long old_pgdat_snr; 360 struct pglist_data *pgdat = NODE_DATA(nid); 361 int usemap_nid; 362 363 /* First call */ 364 if (!old_usemap_snr) { 365 old_usemap_snr = NR_MEM_SECTIONS; 366 old_pgdat_snr = NR_MEM_SECTIONS; 367 } 368 369 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT); 370 pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT); 371 if (usemap_snr == pgdat_snr) 372 return; 373 374 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 375 /* skip redundant message */ 376 return; 377 378 old_usemap_snr = usemap_snr; 379 old_pgdat_snr = pgdat_snr; 380 381 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 382 if (usemap_nid != nid) { 383 pr_info("node %d must be removed before remove section %ld\n", 384 nid, usemap_snr); 385 return; 386 } 387 /* 388 * There is a circular dependency. 389 * Some platforms allow un-removable section because they will just 390 * gather other removable sections for dynamic partitioning. 391 * Just notify un-removable section's number here. 392 */ 393 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 394 usemap_snr, pgdat_snr, nid); 395 } 396 #else 397 static struct mem_section_usage * __init 398 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 399 unsigned long size) 400 { 401 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 402 } 403 404 static void __init check_usemap_section_nr(int nid, 405 struct mem_section_usage *usage) 406 { 407 } 408 #endif /* CONFIG_MEMORY_HOTREMOVE */ 409 410 #ifdef CONFIG_SPARSEMEM_VMEMMAP 411 unsigned long __init section_map_size(void) 412 { 413 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 414 } 415 416 #else 417 unsigned long __init section_map_size(void) 418 { 419 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 420 } 421 422 struct page __init *__populate_section_memmap(unsigned long pfn, 423 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 424 struct dev_pagemap *pgmap) 425 { 426 unsigned long size = section_map_size(); 427 struct page *map = sparse_buffer_alloc(size); 428 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 429 430 if (map) 431 return map; 432 433 map = memmap_alloc(size, size, addr, nid, false); 434 if (!map) 435 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 436 __func__, size, PAGE_SIZE, nid, &addr); 437 438 return map; 439 } 440 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 441 442 static void *sparsemap_buf __meminitdata; 443 static void *sparsemap_buf_end __meminitdata; 444 445 static inline void __meminit sparse_buffer_free(unsigned long size) 446 { 447 WARN_ON(!sparsemap_buf || size == 0); 448 memblock_free(sparsemap_buf, size); 449 } 450 451 static void __init sparse_buffer_init(unsigned long size, int nid) 452 { 453 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 454 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 455 /* 456 * Pre-allocated buffer is mainly used by __populate_section_memmap 457 * and we want it to be properly aligned to the section size - this is 458 * especially the case for VMEMMAP which maps memmap to PMDs 459 */ 460 sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true); 461 sparsemap_buf_end = sparsemap_buf + size; 462 #ifndef CONFIG_SPARSEMEM_VMEMMAP 463 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE)); 464 #endif 465 } 466 467 static void __init sparse_buffer_fini(void) 468 { 469 unsigned long size = sparsemap_buf_end - sparsemap_buf; 470 471 if (sparsemap_buf && size > 0) 472 sparse_buffer_free(size); 473 sparsemap_buf = NULL; 474 } 475 476 void * __meminit sparse_buffer_alloc(unsigned long size) 477 { 478 void *ptr = NULL; 479 480 if (sparsemap_buf) { 481 ptr = (void *) roundup((unsigned long)sparsemap_buf, size); 482 if (ptr + size > sparsemap_buf_end) 483 ptr = NULL; 484 else { 485 /* Free redundant aligned space */ 486 if ((unsigned long)(ptr - sparsemap_buf) > 0) 487 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf)); 488 sparsemap_buf = ptr + size; 489 } 490 } 491 return ptr; 492 } 493 494 void __weak __meminit vmemmap_populate_print_last(void) 495 { 496 } 497 498 static void *sparse_usagebuf __meminitdata; 499 static void *sparse_usagebuf_end __meminitdata; 500 501 /* 502 * Helper function that is used for generic section initialization, and 503 * can also be used by any hooks added above. 504 */ 505 void __init sparse_init_early_section(int nid, struct page *map, 506 unsigned long pnum, unsigned long flags) 507 { 508 BUG_ON(!sparse_usagebuf || sparse_usagebuf >= sparse_usagebuf_end); 509 check_usemap_section_nr(nid, sparse_usagebuf); 510 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 511 sparse_usagebuf, SECTION_IS_EARLY | flags); 512 sparse_usagebuf = (void *)sparse_usagebuf + mem_section_usage_size(); 513 } 514 515 static int __init sparse_usage_init(int nid, unsigned long map_count) 516 { 517 unsigned long size; 518 519 size = mem_section_usage_size() * map_count; 520 sparse_usagebuf = sparse_early_usemaps_alloc_pgdat_section( 521 NODE_DATA(nid), size); 522 if (!sparse_usagebuf) { 523 sparse_usagebuf_end = NULL; 524 return -ENOMEM; 525 } 526 527 sparse_usagebuf_end = sparse_usagebuf + size; 528 return 0; 529 } 530 531 static void __init sparse_usage_fini(void) 532 { 533 sparse_usagebuf = sparse_usagebuf_end = NULL; 534 } 535 536 /* 537 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 538 * And number of present sections in this node is map_count. 539 */ 540 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 541 unsigned long pnum_end, 542 unsigned long map_count) 543 { 544 unsigned long pnum; 545 struct page *map; 546 struct mem_section *ms; 547 548 if (sparse_usage_init(nid, map_count)) { 549 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 550 goto failed; 551 } 552 553 sparse_buffer_init(map_count * section_map_size(), nid); 554 555 sparse_vmemmap_init_nid_early(nid); 556 557 for_each_present_section_nr(pnum_begin, pnum) { 558 unsigned long pfn = section_nr_to_pfn(pnum); 559 560 if (pnum >= pnum_end) 561 break; 562 563 ms = __nr_to_section(pnum); 564 if (!preinited_vmemmap_section(ms)) { 565 map = __populate_section_memmap(pfn, PAGES_PER_SECTION, 566 nid, NULL, NULL); 567 if (!map) { 568 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 569 __func__, nid); 570 pnum_begin = pnum; 571 sparse_usage_fini(); 572 sparse_buffer_fini(); 573 goto failed; 574 } 575 sparse_init_early_section(nid, map, pnum, 0); 576 } 577 } 578 sparse_usage_fini(); 579 sparse_buffer_fini(); 580 return; 581 failed: 582 /* 583 * We failed to allocate, mark all the following pnums as not present, 584 * except the ones already initialized earlier. 585 */ 586 for_each_present_section_nr(pnum_begin, pnum) { 587 if (pnum >= pnum_end) 588 break; 589 ms = __nr_to_section(pnum); 590 if (!preinited_vmemmap_section(ms)) 591 ms->section_mem_map = 0; 592 ms->section_mem_map = 0; 593 } 594 } 595 596 /* 597 * Allocate the accumulated non-linear sections, allocate a mem_map 598 * for each and record the physical to section mapping. 599 */ 600 void __init sparse_init(void) 601 { 602 unsigned long pnum_end, pnum_begin, map_count = 1; 603 int nid_begin; 604 605 /* see include/linux/mmzone.h 'struct mem_section' definition */ 606 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 607 memblocks_present(); 608 609 pnum_begin = first_present_section_nr(); 610 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 611 612 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 613 set_pageblock_order(); 614 615 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 616 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 617 618 if (nid == nid_begin) { 619 map_count++; 620 continue; 621 } 622 /* Init node with sections in range [pnum_begin, pnum_end) */ 623 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 624 nid_begin = nid; 625 pnum_begin = pnum_end; 626 map_count = 1; 627 } 628 /* cover the last node */ 629 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 630 vmemmap_populate_print_last(); 631 } 632 633 #ifdef CONFIG_MEMORY_HOTPLUG 634 635 /* Mark all memory sections within the pfn range as online */ 636 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 637 { 638 unsigned long pfn; 639 640 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 641 unsigned long section_nr = pfn_to_section_nr(pfn); 642 struct mem_section *ms; 643 644 /* onlining code should never touch invalid ranges */ 645 if (WARN_ON(!valid_section_nr(section_nr))) 646 continue; 647 648 ms = __nr_to_section(section_nr); 649 ms->section_mem_map |= SECTION_IS_ONLINE; 650 } 651 } 652 653 /* Mark all memory sections within the pfn range as offline */ 654 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 655 { 656 unsigned long pfn; 657 658 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 659 unsigned long section_nr = pfn_to_section_nr(pfn); 660 struct mem_section *ms; 661 662 /* 663 * TODO this needs some double checking. Offlining code makes 664 * sure to check pfn_valid but those checks might be just bogus 665 */ 666 if (WARN_ON(!valid_section_nr(section_nr))) 667 continue; 668 669 ms = __nr_to_section(section_nr); 670 ms->section_mem_map &= ~SECTION_IS_ONLINE; 671 } 672 } 673 674 #ifdef CONFIG_SPARSEMEM_VMEMMAP 675 static struct page * __meminit populate_section_memmap(unsigned long pfn, 676 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 677 struct dev_pagemap *pgmap) 678 { 679 return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap); 680 } 681 682 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 683 struct vmem_altmap *altmap) 684 { 685 unsigned long start = (unsigned long) pfn_to_page(pfn); 686 unsigned long end = start + nr_pages * sizeof(struct page); 687 688 memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE))); 689 vmemmap_free(start, end, altmap); 690 } 691 static void free_map_bootmem(struct page *memmap) 692 { 693 unsigned long start = (unsigned long)memmap; 694 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 695 696 vmemmap_free(start, end, NULL); 697 } 698 699 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 700 { 701 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 702 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 }; 703 struct mem_section *ms = __pfn_to_section(pfn); 704 unsigned long *subsection_map = ms->usage 705 ? &ms->usage->subsection_map[0] : NULL; 706 707 subsection_mask_set(map, pfn, nr_pages); 708 if (subsection_map) 709 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION); 710 711 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION), 712 "section already deactivated (%#lx + %ld)\n", 713 pfn, nr_pages)) 714 return -EINVAL; 715 716 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION); 717 return 0; 718 } 719 720 static bool is_subsection_map_empty(struct mem_section *ms) 721 { 722 return bitmap_empty(&ms->usage->subsection_map[0], 723 SUBSECTIONS_PER_SECTION); 724 } 725 726 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 727 { 728 struct mem_section *ms = __pfn_to_section(pfn); 729 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 }; 730 unsigned long *subsection_map; 731 int rc = 0; 732 733 subsection_mask_set(map, pfn, nr_pages); 734 735 subsection_map = &ms->usage->subsection_map[0]; 736 737 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION)) 738 rc = -EINVAL; 739 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION)) 740 rc = -EEXIST; 741 else 742 bitmap_or(subsection_map, map, subsection_map, 743 SUBSECTIONS_PER_SECTION); 744 745 return rc; 746 } 747 #else 748 static struct page * __meminit populate_section_memmap(unsigned long pfn, 749 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 750 struct dev_pagemap *pgmap) 751 { 752 return kvmalloc_node(array_size(sizeof(struct page), 753 PAGES_PER_SECTION), GFP_KERNEL, nid); 754 } 755 756 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages, 757 struct vmem_altmap *altmap) 758 { 759 kvfree(pfn_to_page(pfn)); 760 } 761 762 static void free_map_bootmem(struct page *memmap) 763 { 764 unsigned long maps_section_nr, removing_section_nr, i; 765 unsigned long type, nr_pages; 766 struct page *page = virt_to_page(memmap); 767 768 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 769 >> PAGE_SHIFT; 770 771 for (i = 0; i < nr_pages; i++, page++) { 772 type = bootmem_type(page); 773 774 BUG_ON(type == NODE_INFO); 775 776 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 777 removing_section_nr = bootmem_info(page); 778 779 /* 780 * When this function is called, the removing section is 781 * logical offlined state. This means all pages are isolated 782 * from page allocator. If removing section's memmap is placed 783 * on the same section, it must not be freed. 784 * If it is freed, page allocator may allocate it which will 785 * be removed physically soon. 786 */ 787 if (maps_section_nr != removing_section_nr) 788 put_page_bootmem(page); 789 } 790 } 791 792 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages) 793 { 794 return 0; 795 } 796 797 static bool is_subsection_map_empty(struct mem_section *ms) 798 { 799 return true; 800 } 801 802 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages) 803 { 804 return 0; 805 } 806 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 807 808 /* 809 * To deactivate a memory region, there are 3 cases to handle across 810 * two configurations (SPARSEMEM_VMEMMAP={y,n}): 811 * 812 * 1. deactivation of a partial hot-added section (only possible in 813 * the SPARSEMEM_VMEMMAP=y case). 814 * a) section was present at memory init. 815 * b) section was hot-added post memory init. 816 * 2. deactivation of a complete hot-added section. 817 * 3. deactivation of a complete section from memory init. 818 * 819 * For 1, when subsection_map does not empty we will not be freeing the 820 * usage map, but still need to free the vmemmap range. 821 * 822 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified 823 */ 824 static void section_deactivate(unsigned long pfn, unsigned long nr_pages, 825 struct vmem_altmap *altmap) 826 { 827 struct mem_section *ms = __pfn_to_section(pfn); 828 bool section_is_early = early_section(ms); 829 struct page *memmap = NULL; 830 bool empty; 831 832 if (clear_subsection_map(pfn, nr_pages)) 833 return; 834 835 empty = is_subsection_map_empty(ms); 836 if (empty) { 837 unsigned long section_nr = pfn_to_section_nr(pfn); 838 839 /* 840 * Mark the section invalid so that valid_section() 841 * return false. This prevents code from dereferencing 842 * ms->usage array. 843 */ 844 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP; 845 846 /* 847 * When removing an early section, the usage map is kept (as the 848 * usage maps of other sections fall into the same page). It 849 * will be re-used when re-adding the section - which is then no 850 * longer an early section. If the usage map is PageReserved, it 851 * was allocated during boot. 852 */ 853 if (!PageReserved(virt_to_page(ms->usage))) { 854 kfree_rcu(ms->usage, rcu); 855 WRITE_ONCE(ms->usage, NULL); 856 } 857 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 858 } 859 860 /* 861 * The memmap of early sections is always fully populated. See 862 * section_activate() and pfn_valid() . 863 */ 864 if (!section_is_early) 865 depopulate_section_memmap(pfn, nr_pages, altmap); 866 else if (memmap) 867 free_map_bootmem(memmap); 868 869 if (empty) 870 ms->section_mem_map = (unsigned long)NULL; 871 } 872 873 static struct page * __meminit section_activate(int nid, unsigned long pfn, 874 unsigned long nr_pages, struct vmem_altmap *altmap, 875 struct dev_pagemap *pgmap) 876 { 877 struct mem_section *ms = __pfn_to_section(pfn); 878 struct mem_section_usage *usage = NULL; 879 struct page *memmap; 880 int rc; 881 882 if (!ms->usage) { 883 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL); 884 if (!usage) 885 return ERR_PTR(-ENOMEM); 886 ms->usage = usage; 887 } 888 889 rc = fill_subsection_map(pfn, nr_pages); 890 if (rc) { 891 if (usage) 892 ms->usage = NULL; 893 kfree(usage); 894 return ERR_PTR(rc); 895 } 896 897 /* 898 * The early init code does not consider partially populated 899 * initial sections, it simply assumes that memory will never be 900 * referenced. If we hot-add memory into such a section then we 901 * do not need to populate the memmap and can simply reuse what 902 * is already there. 903 */ 904 if (nr_pages < PAGES_PER_SECTION && early_section(ms)) 905 return pfn_to_page(pfn); 906 907 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap); 908 if (!memmap) { 909 section_deactivate(pfn, nr_pages, altmap); 910 return ERR_PTR(-ENOMEM); 911 } 912 913 return memmap; 914 } 915 916 /** 917 * sparse_add_section - add a memory section, or populate an existing one 918 * @nid: The node to add section on 919 * @start_pfn: start pfn of the memory range 920 * @nr_pages: number of pfns to add in the section 921 * @altmap: alternate pfns to allocate the memmap backing store 922 * @pgmap: alternate compound page geometry for devmap mappings 923 * 924 * This is only intended for hotplug. 925 * 926 * Note that only VMEMMAP supports sub-section aligned hotplug, 927 * the proper alignment and size are gated by check_pfn_span(). 928 * 929 * 930 * Return: 931 * * 0 - On success. 932 * * -EEXIST - Section has been present. 933 * * -ENOMEM - Out of memory. 934 */ 935 int __meminit sparse_add_section(int nid, unsigned long start_pfn, 936 unsigned long nr_pages, struct vmem_altmap *altmap, 937 struct dev_pagemap *pgmap) 938 { 939 unsigned long section_nr = pfn_to_section_nr(start_pfn); 940 struct mem_section *ms; 941 struct page *memmap; 942 int ret; 943 944 ret = sparse_index_init(section_nr, nid); 945 if (ret < 0) 946 return ret; 947 948 memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap); 949 if (IS_ERR(memmap)) 950 return PTR_ERR(memmap); 951 952 /* 953 * Poison uninitialized struct pages in order to catch invalid flags 954 * combinations. 955 */ 956 if (!altmap || !altmap->inaccessible) 957 page_init_poison(memmap, sizeof(struct page) * nr_pages); 958 959 ms = __nr_to_section(section_nr); 960 set_section_nid(section_nr, nid); 961 __section_mark_present(ms, section_nr); 962 963 /* Align memmap to section boundary in the subsection case */ 964 if (section_nr_to_pfn(section_nr) != start_pfn) 965 memmap = pfn_to_page(section_nr_to_pfn(section_nr)); 966 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0); 967 968 return 0; 969 } 970 971 void sparse_remove_section(unsigned long pfn, unsigned long nr_pages, 972 struct vmem_altmap *altmap) 973 { 974 struct mem_section *ms = __pfn_to_section(pfn); 975 976 if (WARN_ON_ONCE(!valid_section(ms))) 977 return; 978 979 section_deactivate(pfn, nr_pages, altmap); 980 } 981 #endif /* CONFIG_MEMORY_HOTPLUG */ 982