xref: /linux/mm/sparse.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include <asm/dma.h>
12 
13 /*
14  * Permanent SPARSEMEM data:
15  *
16  * 1) mem_section	- memory sections, mem_map's for valid memory
17  */
18 #ifdef CONFIG_SPARSEMEM_EXTREME
19 struct mem_section *mem_section[NR_SECTION_ROOTS]
20 	____cacheline_internodealigned_in_smp;
21 #else
22 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
23 	____cacheline_internodealigned_in_smp;
24 #endif
25 EXPORT_SYMBOL(mem_section);
26 
27 #ifdef NODE_NOT_IN_PAGE_FLAGS
28 /*
29  * If we did not store the node number in the page then we have to
30  * do a lookup in the section_to_node_table in order to find which
31  * node the page belongs to.
32  */
33 #if MAX_NUMNODES <= 256
34 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
35 #else
36 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
37 #endif
38 
39 int page_to_nid(struct page *page)
40 {
41 	return section_to_node_table[page_to_section(page)];
42 }
43 EXPORT_SYMBOL(page_to_nid);
44 
45 static void set_section_nid(unsigned long section_nr, int nid)
46 {
47 	section_to_node_table[section_nr] = nid;
48 }
49 #else /* !NODE_NOT_IN_PAGE_FLAGS */
50 static inline void set_section_nid(unsigned long section_nr, int nid)
51 {
52 }
53 #endif
54 
55 #ifdef CONFIG_SPARSEMEM_EXTREME
56 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
57 {
58 	struct mem_section *section = NULL;
59 	unsigned long array_size = SECTIONS_PER_ROOT *
60 				   sizeof(struct mem_section);
61 
62 	if (slab_is_available())
63 		section = kmalloc_node(array_size, GFP_KERNEL, nid);
64 	else
65 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
66 
67 	if (section)
68 		memset(section, 0, array_size);
69 
70 	return section;
71 }
72 
73 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
74 {
75 	static DEFINE_SPINLOCK(index_init_lock);
76 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
77 	struct mem_section *section;
78 	int ret = 0;
79 
80 	if (mem_section[root])
81 		return -EEXIST;
82 
83 	section = sparse_index_alloc(nid);
84 	/*
85 	 * This lock keeps two different sections from
86 	 * reallocating for the same index
87 	 */
88 	spin_lock(&index_init_lock);
89 
90 	if (mem_section[root]) {
91 		ret = -EEXIST;
92 		goto out;
93 	}
94 
95 	mem_section[root] = section;
96 out:
97 	spin_unlock(&index_init_lock);
98 	return ret;
99 }
100 #else /* !SPARSEMEM_EXTREME */
101 static inline int sparse_index_init(unsigned long section_nr, int nid)
102 {
103 	return 0;
104 }
105 #endif
106 
107 /*
108  * Although written for the SPARSEMEM_EXTREME case, this happens
109  * to also work for the flat array case becase
110  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
111  */
112 int __section_nr(struct mem_section* ms)
113 {
114 	unsigned long root_nr;
115 	struct mem_section* root;
116 
117 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119 		if (!root)
120 			continue;
121 
122 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123 		     break;
124 	}
125 
126 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
127 }
128 
129 /*
130  * During early boot, before section_mem_map is used for an actual
131  * mem_map, we use section_mem_map to store the section's NUMA
132  * node.  This keeps us from having to use another data structure.  The
133  * node information is cleared just before we store the real mem_map.
134  */
135 static inline unsigned long sparse_encode_early_nid(int nid)
136 {
137 	return (nid << SECTION_NID_SHIFT);
138 }
139 
140 static inline int sparse_early_nid(struct mem_section *section)
141 {
142 	return (section->section_mem_map >> SECTION_NID_SHIFT);
143 }
144 
145 /* Record a memory area against a node. */
146 void __init memory_present(int nid, unsigned long start, unsigned long end)
147 {
148 	unsigned long pfn;
149 
150 	start &= PAGE_SECTION_MASK;
151 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
152 		unsigned long section = pfn_to_section_nr(pfn);
153 		struct mem_section *ms;
154 
155 		sparse_index_init(section, nid);
156 		set_section_nid(section, nid);
157 
158 		ms = __nr_to_section(section);
159 		if (!ms->section_mem_map)
160 			ms->section_mem_map = sparse_encode_early_nid(nid) |
161 							SECTION_MARKED_PRESENT;
162 	}
163 }
164 
165 /*
166  * Only used by the i386 NUMA architecures, but relatively
167  * generic code.
168  */
169 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
170 						     unsigned long end_pfn)
171 {
172 	unsigned long pfn;
173 	unsigned long nr_pages = 0;
174 
175 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
176 		if (nid != early_pfn_to_nid(pfn))
177 			continue;
178 
179 		if (pfn_valid(pfn))
180 			nr_pages += PAGES_PER_SECTION;
181 	}
182 
183 	return nr_pages * sizeof(struct page);
184 }
185 
186 /*
187  * Subtle, we encode the real pfn into the mem_map such that
188  * the identity pfn - section_mem_map will return the actual
189  * physical page frame number.
190  */
191 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
192 {
193 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
194 }
195 
196 /*
197  * We need this if we ever free the mem_maps.  While not implemented yet,
198  * this function is included for parity with its sibling.
199  */
200 static __attribute((unused))
201 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
202 {
203 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
204 }
205 
206 static int __meminit sparse_init_one_section(struct mem_section *ms,
207 		unsigned long pnum, struct page *mem_map)
208 {
209 	if (!valid_section(ms))
210 		return -EINVAL;
211 
212 	ms->section_mem_map &= ~SECTION_MAP_MASK;
213 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
214 
215 	return 1;
216 }
217 
218 __attribute__((weak)) __init
219 void *alloc_bootmem_high_node(pg_data_t *pgdat, unsigned long size)
220 {
221 	return NULL;
222 }
223 
224 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
225 {
226 	struct page *map;
227 	struct mem_section *ms = __nr_to_section(pnum);
228 	int nid = sparse_early_nid(ms);
229 
230 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
231 	if (map)
232 		return map;
233 
234   	map = alloc_bootmem_high_node(NODE_DATA(nid),
235                        sizeof(struct page) * PAGES_PER_SECTION);
236 	if (map)
237 		return map;
238 
239 	map = alloc_bootmem_node(NODE_DATA(nid),
240 			sizeof(struct page) * PAGES_PER_SECTION);
241 	if (map)
242 		return map;
243 
244 	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
245 	ms->section_mem_map = 0;
246 	return NULL;
247 }
248 
249 /*
250  * Allocate the accumulated non-linear sections, allocate a mem_map
251  * for each and record the physical to section mapping.
252  */
253 void __init sparse_init(void)
254 {
255 	unsigned long pnum;
256 	struct page *map;
257 
258 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
259 		if (!valid_section_nr(pnum))
260 			continue;
261 
262 		map = sparse_early_mem_map_alloc(pnum);
263 		if (!map)
264 			continue;
265 		sparse_init_one_section(__nr_to_section(pnum), pnum, map);
266 	}
267 }
268 
269 #ifdef CONFIG_MEMORY_HOTPLUG
270 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
271 {
272 	struct page *page, *ret;
273 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
274 
275 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
276 	if (page)
277 		goto got_map_page;
278 
279 	ret = vmalloc(memmap_size);
280 	if (ret)
281 		goto got_map_ptr;
282 
283 	return NULL;
284 got_map_page:
285 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
286 got_map_ptr:
287 	memset(ret, 0, memmap_size);
288 
289 	return ret;
290 }
291 
292 static int vaddr_in_vmalloc_area(void *addr)
293 {
294 	if (addr >= (void *)VMALLOC_START &&
295 	    addr < (void *)VMALLOC_END)
296 		return 1;
297 	return 0;
298 }
299 
300 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
301 {
302 	if (vaddr_in_vmalloc_area(memmap))
303 		vfree(memmap);
304 	else
305 		free_pages((unsigned long)memmap,
306 			   get_order(sizeof(struct page) * nr_pages));
307 }
308 
309 /*
310  * returns the number of sections whose mem_maps were properly
311  * set.  If this is <=0, then that means that the passed-in
312  * map was not consumed and must be freed.
313  */
314 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
315 			   int nr_pages)
316 {
317 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
318 	struct pglist_data *pgdat = zone->zone_pgdat;
319 	struct mem_section *ms;
320 	struct page *memmap;
321 	unsigned long flags;
322 	int ret;
323 
324 	/*
325 	 * no locking for this, because it does its own
326 	 * plus, it does a kmalloc
327 	 */
328 	sparse_index_init(section_nr, pgdat->node_id);
329 	memmap = __kmalloc_section_memmap(nr_pages);
330 
331 	pgdat_resize_lock(pgdat, &flags);
332 
333 	ms = __pfn_to_section(start_pfn);
334 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
335 		ret = -EEXIST;
336 		goto out;
337 	}
338 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
339 
340 	ret = sparse_init_one_section(ms, section_nr, memmap);
341 
342 out:
343 	pgdat_resize_unlock(pgdat, &flags);
344 	if (ret <= 0)
345 		__kfree_section_memmap(memmap, nr_pages);
346 	return ret;
347 }
348 #endif
349