xref: /linux/mm/sparse.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include "internal.h"
13 #include <asm/dma.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 
17 /*
18  * Permanent SPARSEMEM data:
19  *
20  * 1) mem_section	- memory sections, mem_map's for valid memory
21  */
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
24 	____cacheline_internodealigned_in_smp;
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
27 	____cacheline_internodealigned_in_smp;
28 #endif
29 EXPORT_SYMBOL(mem_section);
30 
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 /*
33  * If we did not store the node number in the page then we have to
34  * do a lookup in the section_to_node_table in order to find which
35  * node the page belongs to.
36  */
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
42 
43 int page_to_nid(const struct page *page)
44 {
45 	return section_to_node_table[page_to_section(page)];
46 }
47 EXPORT_SYMBOL(page_to_nid);
48 
49 static void set_section_nid(unsigned long section_nr, int nid)
50 {
51 	section_to_node_table[section_nr] = nid;
52 }
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr, int nid)
55 {
56 }
57 #endif
58 
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 {
62 	struct mem_section *section = NULL;
63 	unsigned long array_size = SECTIONS_PER_ROOT *
64 				   sizeof(struct mem_section);
65 
66 	if (slab_is_available()) {
67 		if (node_state(nid, N_HIGH_MEMORY))
68 			section = kmalloc_node(array_size, GFP_KERNEL, nid);
69 		else
70 			section = kmalloc(array_size, GFP_KERNEL);
71 	} else
72 		section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73 
74 	if (section)
75 		memset(section, 0, array_size);
76 
77 	return section;
78 }
79 
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
81 {
82 	static DEFINE_SPINLOCK(index_init_lock);
83 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 	struct mem_section *section;
85 	int ret = 0;
86 
87 	if (mem_section[root])
88 		return -EEXIST;
89 
90 	section = sparse_index_alloc(nid);
91 	if (!section)
92 		return -ENOMEM;
93 	/*
94 	 * This lock keeps two different sections from
95 	 * reallocating for the same index
96 	 */
97 	spin_lock(&index_init_lock);
98 
99 	if (mem_section[root]) {
100 		ret = -EEXIST;
101 		goto out;
102 	}
103 
104 	mem_section[root] = section;
105 out:
106 	spin_unlock(&index_init_lock);
107 	return ret;
108 }
109 #else /* !SPARSEMEM_EXTREME */
110 static inline int sparse_index_init(unsigned long section_nr, int nid)
111 {
112 	return 0;
113 }
114 #endif
115 
116 /*
117  * Although written for the SPARSEMEM_EXTREME case, this happens
118  * to also work for the flat array case because
119  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
120  */
121 int __section_nr(struct mem_section* ms)
122 {
123 	unsigned long root_nr;
124 	struct mem_section* root;
125 
126 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
127 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
128 		if (!root)
129 			continue;
130 
131 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
132 		     break;
133 	}
134 
135 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
136 }
137 
138 /*
139  * During early boot, before section_mem_map is used for an actual
140  * mem_map, we use section_mem_map to store the section's NUMA
141  * node.  This keeps us from having to use another data structure.  The
142  * node information is cleared just before we store the real mem_map.
143  */
144 static inline unsigned long sparse_encode_early_nid(int nid)
145 {
146 	return (nid << SECTION_NID_SHIFT);
147 }
148 
149 static inline int sparse_early_nid(struct mem_section *section)
150 {
151 	return (section->section_mem_map >> SECTION_NID_SHIFT);
152 }
153 
154 /* Validate the physical addressing limitations of the model */
155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156 						unsigned long *end_pfn)
157 {
158 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159 
160 	/*
161 	 * Sanity checks - do not allow an architecture to pass
162 	 * in larger pfns than the maximum scope of sparsemem:
163 	 */
164 	if (*start_pfn > max_sparsemem_pfn) {
165 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 			*start_pfn, *end_pfn, max_sparsemem_pfn);
168 		WARN_ON_ONCE(1);
169 		*start_pfn = max_sparsemem_pfn;
170 		*end_pfn = max_sparsemem_pfn;
171 	} else if (*end_pfn > max_sparsemem_pfn) {
172 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 			*start_pfn, *end_pfn, max_sparsemem_pfn);
175 		WARN_ON_ONCE(1);
176 		*end_pfn = max_sparsemem_pfn;
177 	}
178 }
179 
180 /* Record a memory area against a node. */
181 void __init memory_present(int nid, unsigned long start, unsigned long end)
182 {
183 	unsigned long pfn;
184 
185 	start &= PAGE_SECTION_MASK;
186 	mminit_validate_memmodel_limits(&start, &end);
187 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
188 		unsigned long section = pfn_to_section_nr(pfn);
189 		struct mem_section *ms;
190 
191 		sparse_index_init(section, nid);
192 		set_section_nid(section, nid);
193 
194 		ms = __nr_to_section(section);
195 		if (!ms->section_mem_map)
196 			ms->section_mem_map = sparse_encode_early_nid(nid) |
197 							SECTION_MARKED_PRESENT;
198 	}
199 }
200 
201 /*
202  * Only used by the i386 NUMA architecures, but relatively
203  * generic code.
204  */
205 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
206 						     unsigned long end_pfn)
207 {
208 	unsigned long pfn;
209 	unsigned long nr_pages = 0;
210 
211 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
212 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
213 		if (nid != early_pfn_to_nid(pfn))
214 			continue;
215 
216 		if (pfn_present(pfn))
217 			nr_pages += PAGES_PER_SECTION;
218 	}
219 
220 	return nr_pages * sizeof(struct page);
221 }
222 
223 /*
224  * Subtle, we encode the real pfn into the mem_map such that
225  * the identity pfn - section_mem_map will return the actual
226  * physical page frame number.
227  */
228 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
229 {
230 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
231 }
232 
233 /*
234  * Decode mem_map from the coded memmap
235  */
236 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
237 {
238 	/* mask off the extra low bits of information */
239 	coded_mem_map &= SECTION_MAP_MASK;
240 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
241 }
242 
243 static int __meminit sparse_init_one_section(struct mem_section *ms,
244 		unsigned long pnum, struct page *mem_map,
245 		unsigned long *pageblock_bitmap)
246 {
247 	if (!present_section(ms))
248 		return -EINVAL;
249 
250 	ms->section_mem_map &= ~SECTION_MAP_MASK;
251 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
252 							SECTION_HAS_MEM_MAP;
253  	ms->pageblock_flags = pageblock_bitmap;
254 
255 	return 1;
256 }
257 
258 unsigned long usemap_size(void)
259 {
260 	unsigned long size_bytes;
261 	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
262 	size_bytes = roundup(size_bytes, sizeof(unsigned long));
263 	return size_bytes;
264 }
265 
266 #ifdef CONFIG_MEMORY_HOTPLUG
267 static unsigned long *__kmalloc_section_usemap(void)
268 {
269 	return kmalloc(usemap_size(), GFP_KERNEL);
270 }
271 #endif /* CONFIG_MEMORY_HOTPLUG */
272 
273 #ifdef CONFIG_MEMORY_HOTREMOVE
274 static unsigned long * __init
275 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
276 					 unsigned long size)
277 {
278 	pg_data_t *host_pgdat;
279 	unsigned long goal;
280 	/*
281 	 * A page may contain usemaps for other sections preventing the
282 	 * page being freed and making a section unremovable while
283 	 * other sections referencing the usemap retmain active. Similarly,
284 	 * a pgdat can prevent a section being removed. If section A
285 	 * contains a pgdat and section B contains the usemap, both
286 	 * sections become inter-dependent. This allocates usemaps
287 	 * from the same section as the pgdat where possible to avoid
288 	 * this problem.
289 	 */
290 	goal = __pa(pgdat) & PAGE_SECTION_MASK;
291 	host_pgdat = NODE_DATA(early_pfn_to_nid(goal >> PAGE_SHIFT));
292 	return __alloc_bootmem_node_nopanic(host_pgdat, size,
293 					    SMP_CACHE_BYTES, goal);
294 }
295 
296 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
297 {
298 	unsigned long usemap_snr, pgdat_snr;
299 	static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
300 	static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
301 	struct pglist_data *pgdat = NODE_DATA(nid);
302 	int usemap_nid;
303 
304 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
305 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
306 	if (usemap_snr == pgdat_snr)
307 		return;
308 
309 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
310 		/* skip redundant message */
311 		return;
312 
313 	old_usemap_snr = usemap_snr;
314 	old_pgdat_snr = pgdat_snr;
315 
316 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
317 	if (usemap_nid != nid) {
318 		printk(KERN_INFO
319 		       "node %d must be removed before remove section %ld\n",
320 		       nid, usemap_snr);
321 		return;
322 	}
323 	/*
324 	 * There is a circular dependency.
325 	 * Some platforms allow un-removable section because they will just
326 	 * gather other removable sections for dynamic partitioning.
327 	 * Just notify un-removable section's number here.
328 	 */
329 	printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
330 	       pgdat_snr, nid);
331 	printk(KERN_CONT
332 	       " have a circular dependency on usemap and pgdat allocations\n");
333 }
334 #else
335 static unsigned long * __init
336 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
337 					 unsigned long size)
338 {
339 	return alloc_bootmem_node_nopanic(pgdat, size);
340 }
341 
342 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
343 {
344 }
345 #endif /* CONFIG_MEMORY_HOTREMOVE */
346 
347 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
348 				 unsigned long pnum_begin,
349 				 unsigned long pnum_end,
350 				 unsigned long usemap_count, int nodeid)
351 {
352 	void *usemap;
353 	unsigned long pnum;
354 	int size = usemap_size();
355 
356 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
357 							  size * usemap_count);
358 	if (!usemap) {
359 		printk(KERN_WARNING "%s: allocation failed\n", __func__);
360 		return;
361 	}
362 
363 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
364 		if (!present_section_nr(pnum))
365 			continue;
366 		usemap_map[pnum] = usemap;
367 		usemap += size;
368 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
369 	}
370 }
371 
372 #ifndef CONFIG_SPARSEMEM_VMEMMAP
373 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
374 {
375 	struct page *map;
376 	unsigned long size;
377 
378 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
379 	if (map)
380 		return map;
381 
382 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
383 	map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
384 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
385 	return map;
386 }
387 void __init sparse_mem_maps_populate_node(struct page **map_map,
388 					  unsigned long pnum_begin,
389 					  unsigned long pnum_end,
390 					  unsigned long map_count, int nodeid)
391 {
392 	void *map;
393 	unsigned long pnum;
394 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
395 
396 	map = alloc_remap(nodeid, size * map_count);
397 	if (map) {
398 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
399 			if (!present_section_nr(pnum))
400 				continue;
401 			map_map[pnum] = map;
402 			map += size;
403 		}
404 		return;
405 	}
406 
407 	size = PAGE_ALIGN(size);
408 	map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
409 					 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
410 	if (map) {
411 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
412 			if (!present_section_nr(pnum))
413 				continue;
414 			map_map[pnum] = map;
415 			map += size;
416 		}
417 		return;
418 	}
419 
420 	/* fallback */
421 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
422 		struct mem_section *ms;
423 
424 		if (!present_section_nr(pnum))
425 			continue;
426 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
427 		if (map_map[pnum])
428 			continue;
429 		ms = __nr_to_section(pnum);
430 		printk(KERN_ERR "%s: sparsemem memory map backing failed "
431 			"some memory will not be available.\n", __func__);
432 		ms->section_mem_map = 0;
433 	}
434 }
435 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
436 
437 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
438 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
439 				 unsigned long pnum_begin,
440 				 unsigned long pnum_end,
441 				 unsigned long map_count, int nodeid)
442 {
443 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
444 					 map_count, nodeid);
445 }
446 #else
447 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
448 {
449 	struct page *map;
450 	struct mem_section *ms = __nr_to_section(pnum);
451 	int nid = sparse_early_nid(ms);
452 
453 	map = sparse_mem_map_populate(pnum, nid);
454 	if (map)
455 		return map;
456 
457 	printk(KERN_ERR "%s: sparsemem memory map backing failed "
458 			"some memory will not be available.\n", __func__);
459 	ms->section_mem_map = 0;
460 	return NULL;
461 }
462 #endif
463 
464 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
465 {
466 }
467 
468 /*
469  * Allocate the accumulated non-linear sections, allocate a mem_map
470  * for each and record the physical to section mapping.
471  */
472 void __init sparse_init(void)
473 {
474 	unsigned long pnum;
475 	struct page *map;
476 	unsigned long *usemap;
477 	unsigned long **usemap_map;
478 	int size;
479 	int nodeid_begin = 0;
480 	unsigned long pnum_begin = 0;
481 	unsigned long usemap_count;
482 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
483 	unsigned long map_count;
484 	int size2;
485 	struct page **map_map;
486 #endif
487 
488 	/*
489 	 * map is using big page (aka 2M in x86 64 bit)
490 	 * usemap is less one page (aka 24 bytes)
491 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
492 	 * make next 2M slip to one more 2M later.
493 	 * then in big system, the memory will have a lot of holes...
494 	 * here try to allocate 2M pages continuously.
495 	 *
496 	 * powerpc need to call sparse_init_one_section right after each
497 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
498 	 */
499 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
500 	usemap_map = alloc_bootmem(size);
501 	if (!usemap_map)
502 		panic("can not allocate usemap_map\n");
503 
504 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
505 		struct mem_section *ms;
506 
507 		if (!present_section_nr(pnum))
508 			continue;
509 		ms = __nr_to_section(pnum);
510 		nodeid_begin = sparse_early_nid(ms);
511 		pnum_begin = pnum;
512 		break;
513 	}
514 	usemap_count = 1;
515 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
516 		struct mem_section *ms;
517 		int nodeid;
518 
519 		if (!present_section_nr(pnum))
520 			continue;
521 		ms = __nr_to_section(pnum);
522 		nodeid = sparse_early_nid(ms);
523 		if (nodeid == nodeid_begin) {
524 			usemap_count++;
525 			continue;
526 		}
527 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
528 		sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
529 						 usemap_count, nodeid_begin);
530 		/* new start, update count etc*/
531 		nodeid_begin = nodeid;
532 		pnum_begin = pnum;
533 		usemap_count = 1;
534 	}
535 	/* ok, last chunk */
536 	sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
537 					 usemap_count, nodeid_begin);
538 
539 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
540 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
541 	map_map = alloc_bootmem(size2);
542 	if (!map_map)
543 		panic("can not allocate map_map\n");
544 
545 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
546 		struct mem_section *ms;
547 
548 		if (!present_section_nr(pnum))
549 			continue;
550 		ms = __nr_to_section(pnum);
551 		nodeid_begin = sparse_early_nid(ms);
552 		pnum_begin = pnum;
553 		break;
554 	}
555 	map_count = 1;
556 	for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
557 		struct mem_section *ms;
558 		int nodeid;
559 
560 		if (!present_section_nr(pnum))
561 			continue;
562 		ms = __nr_to_section(pnum);
563 		nodeid = sparse_early_nid(ms);
564 		if (nodeid == nodeid_begin) {
565 			map_count++;
566 			continue;
567 		}
568 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
569 		sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
570 						 map_count, nodeid_begin);
571 		/* new start, update count etc*/
572 		nodeid_begin = nodeid;
573 		pnum_begin = pnum;
574 		map_count = 1;
575 	}
576 	/* ok, last chunk */
577 	sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
578 					 map_count, nodeid_begin);
579 #endif
580 
581 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
582 		if (!present_section_nr(pnum))
583 			continue;
584 
585 		usemap = usemap_map[pnum];
586 		if (!usemap)
587 			continue;
588 
589 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
590 		map = map_map[pnum];
591 #else
592 		map = sparse_early_mem_map_alloc(pnum);
593 #endif
594 		if (!map)
595 			continue;
596 
597 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
598 								usemap);
599 	}
600 
601 	vmemmap_populate_print_last();
602 
603 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
604 	free_bootmem(__pa(map_map), size2);
605 #endif
606 	free_bootmem(__pa(usemap_map), size);
607 }
608 
609 #ifdef CONFIG_MEMORY_HOTPLUG
610 #ifdef CONFIG_SPARSEMEM_VMEMMAP
611 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
612 						 unsigned long nr_pages)
613 {
614 	/* This will make the necessary allocations eventually. */
615 	return sparse_mem_map_populate(pnum, nid);
616 }
617 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
618 {
619 	return; /* XXX: Not implemented yet */
620 }
621 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
622 {
623 }
624 #else
625 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
626 {
627 	struct page *page, *ret;
628 	unsigned long memmap_size = sizeof(struct page) * nr_pages;
629 
630 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
631 	if (page)
632 		goto got_map_page;
633 
634 	ret = vmalloc(memmap_size);
635 	if (ret)
636 		goto got_map_ptr;
637 
638 	return NULL;
639 got_map_page:
640 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
641 got_map_ptr:
642 	memset(ret, 0, memmap_size);
643 
644 	return ret;
645 }
646 
647 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
648 						  unsigned long nr_pages)
649 {
650 	return __kmalloc_section_memmap(nr_pages);
651 }
652 
653 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
654 {
655 	if (is_vmalloc_addr(memmap))
656 		vfree(memmap);
657 	else
658 		free_pages((unsigned long)memmap,
659 			   get_order(sizeof(struct page) * nr_pages));
660 }
661 
662 static void free_map_bootmem(struct page *page, unsigned long nr_pages)
663 {
664 	unsigned long maps_section_nr, removing_section_nr, i;
665 	unsigned long magic;
666 
667 	for (i = 0; i < nr_pages; i++, page++) {
668 		magic = (unsigned long) page->lru.next;
669 
670 		BUG_ON(magic == NODE_INFO);
671 
672 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
673 		removing_section_nr = page->private;
674 
675 		/*
676 		 * When this function is called, the removing section is
677 		 * logical offlined state. This means all pages are isolated
678 		 * from page allocator. If removing section's memmap is placed
679 		 * on the same section, it must not be freed.
680 		 * If it is freed, page allocator may allocate it which will
681 		 * be removed physically soon.
682 		 */
683 		if (maps_section_nr != removing_section_nr)
684 			put_page_bootmem(page);
685 	}
686 }
687 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
688 
689 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
690 {
691 	struct page *usemap_page;
692 	unsigned long nr_pages;
693 
694 	if (!usemap)
695 		return;
696 
697 	usemap_page = virt_to_page(usemap);
698 	/*
699 	 * Check to see if allocation came from hot-plug-add
700 	 */
701 	if (PageSlab(usemap_page)) {
702 		kfree(usemap);
703 		if (memmap)
704 			__kfree_section_memmap(memmap, PAGES_PER_SECTION);
705 		return;
706 	}
707 
708 	/*
709 	 * The usemap came from bootmem. This is packed with other usemaps
710 	 * on the section which has pgdat at boot time. Just keep it as is now.
711 	 */
712 
713 	if (memmap) {
714 		struct page *memmap_page;
715 		memmap_page = virt_to_page(memmap);
716 
717 		nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
718 			>> PAGE_SHIFT;
719 
720 		free_map_bootmem(memmap_page, nr_pages);
721 	}
722 }
723 
724 /*
725  * returns the number of sections whose mem_maps were properly
726  * set.  If this is <=0, then that means that the passed-in
727  * map was not consumed and must be freed.
728  */
729 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
730 			   int nr_pages)
731 {
732 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
733 	struct pglist_data *pgdat = zone->zone_pgdat;
734 	struct mem_section *ms;
735 	struct page *memmap;
736 	unsigned long *usemap;
737 	unsigned long flags;
738 	int ret;
739 
740 	/*
741 	 * no locking for this, because it does its own
742 	 * plus, it does a kmalloc
743 	 */
744 	ret = sparse_index_init(section_nr, pgdat->node_id);
745 	if (ret < 0 && ret != -EEXIST)
746 		return ret;
747 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
748 	if (!memmap)
749 		return -ENOMEM;
750 	usemap = __kmalloc_section_usemap();
751 	if (!usemap) {
752 		__kfree_section_memmap(memmap, nr_pages);
753 		return -ENOMEM;
754 	}
755 
756 	pgdat_resize_lock(pgdat, &flags);
757 
758 	ms = __pfn_to_section(start_pfn);
759 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
760 		ret = -EEXIST;
761 		goto out;
762 	}
763 
764 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
765 
766 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
767 
768 out:
769 	pgdat_resize_unlock(pgdat, &flags);
770 	if (ret <= 0) {
771 		kfree(usemap);
772 		__kfree_section_memmap(memmap, nr_pages);
773 	}
774 	return ret;
775 }
776 
777 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
778 {
779 	struct page *memmap = NULL;
780 	unsigned long *usemap = NULL;
781 
782 	if (ms->section_mem_map) {
783 		usemap = ms->pageblock_flags;
784 		memmap = sparse_decode_mem_map(ms->section_mem_map,
785 						__section_nr(ms));
786 		ms->section_mem_map = 0;
787 		ms->pageblock_flags = NULL;
788 	}
789 
790 	free_section_usemap(memmap, usemap);
791 }
792 #endif
793