xref: /linux/mm/sparse.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
17 #include <linux/vmstat.h>
18 #include "internal.h"
19 #include <asm/dma.h>
20 
21 /*
22  * Permanent SPARSEMEM data:
23  *
24  * 1) mem_section	- memory sections, mem_map's for valid memory
25  */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 	____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33 
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45 
46 int page_to_nid(const struct page *page)
47 {
48 	return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51 
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54 	section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61 
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65 	struct mem_section *section = NULL;
66 	unsigned long array_size = SECTIONS_PER_ROOT *
67 				   sizeof(struct mem_section);
68 
69 	if (slab_is_available()) {
70 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 	} else {
72 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73 					      nid);
74 		if (!section)
75 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 			      __func__, array_size, nid);
77 	}
78 
79 	return section;
80 }
81 
82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85 	struct mem_section *section;
86 
87 	/*
88 	 * An existing section is possible in the sub-section hotplug
89 	 * case. First hot-add instantiates, follow-on hot-add reuses
90 	 * the existing section.
91 	 *
92 	 * The mem_hotplug_lock resolves the apparent race below.
93 	 */
94 	if (mem_section[root])
95 		return 0;
96 
97 	section = sparse_index_alloc(nid);
98 	if (!section)
99 		return -ENOMEM;
100 
101 	mem_section[root] = section;
102 
103 	return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 	return 0;
109 }
110 #endif
111 
112 /*
113  * During early boot, before section_mem_map is used for an actual
114  * mem_map, we use section_mem_map to store the section's NUMA
115  * node.  This keeps us from having to use another data structure.  The
116  * node information is cleared just before we store the real mem_map.
117  */
118 static inline unsigned long sparse_encode_early_nid(int nid)
119 {
120 	return ((unsigned long)nid << SECTION_NID_SHIFT);
121 }
122 
123 static inline int sparse_early_nid(struct mem_section *section)
124 {
125 	return (section->section_mem_map >> SECTION_NID_SHIFT);
126 }
127 
128 /* Validate the physical addressing limitations of the model */
129 static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
130 						unsigned long *end_pfn)
131 {
132 	unsigned long max_sparsemem_pfn = (PHYSMEM_END + 1) >> PAGE_SHIFT;
133 
134 	/*
135 	 * Sanity checks - do not allow an architecture to pass
136 	 * in larger pfns than the maximum scope of sparsemem:
137 	 */
138 	if (*start_pfn > max_sparsemem_pfn) {
139 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
140 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141 			*start_pfn, *end_pfn, max_sparsemem_pfn);
142 		WARN_ON_ONCE(1);
143 		*start_pfn = max_sparsemem_pfn;
144 		*end_pfn = max_sparsemem_pfn;
145 	} else if (*end_pfn > max_sparsemem_pfn) {
146 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
147 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148 			*start_pfn, *end_pfn, max_sparsemem_pfn);
149 		WARN_ON_ONCE(1);
150 		*end_pfn = max_sparsemem_pfn;
151 	}
152 }
153 
154 /*
155  * There are a number of times that we loop over NR_MEM_SECTIONS,
156  * looking for section_present() on each.  But, when we have very
157  * large physical address spaces, NR_MEM_SECTIONS can also be
158  * very large which makes the loops quite long.
159  *
160  * Keeping track of this gives us an easy way to break out of
161  * those loops early.
162  */
163 unsigned long __highest_present_section_nr;
164 static void __section_mark_present(struct mem_section *ms,
165 		unsigned long section_nr)
166 {
167 	if (section_nr > __highest_present_section_nr)
168 		__highest_present_section_nr = section_nr;
169 
170 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
171 }
172 
173 #define for_each_present_section_nr(start, section_nr)		\
174 	for (section_nr = next_present_section_nr(start-1);	\
175 	     section_nr != -1;								\
176 	     section_nr = next_present_section_nr(section_nr))
177 
178 static inline unsigned long first_present_section_nr(void)
179 {
180 	return next_present_section_nr(-1);
181 }
182 
183 #ifdef CONFIG_SPARSEMEM_VMEMMAP
184 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
185 		unsigned long nr_pages)
186 {
187 	int idx = subsection_map_index(pfn);
188 	int end = subsection_map_index(pfn + nr_pages - 1);
189 
190 	bitmap_set(map, idx, end - idx + 1);
191 }
192 
193 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
194 {
195 	int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
196 	unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
197 
198 	for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
199 		struct mem_section *ms;
200 		unsigned long pfns;
201 
202 		pfns = min(nr_pages, PAGES_PER_SECTION
203 				- (pfn & ~PAGE_SECTION_MASK));
204 		ms = __nr_to_section(nr);
205 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
206 
207 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
208 				pfns, subsection_map_index(pfn),
209 				subsection_map_index(pfn + pfns - 1));
210 
211 		pfn += pfns;
212 		nr_pages -= pfns;
213 	}
214 }
215 #else
216 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
217 {
218 }
219 #endif
220 
221 /* Record a memory area against a node. */
222 static void __init memory_present(int nid, unsigned long start, unsigned long end)
223 {
224 	unsigned long pfn;
225 
226 	start &= PAGE_SECTION_MASK;
227 	mminit_validate_memmodel_limits(&start, &end);
228 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
229 		unsigned long section_nr = pfn_to_section_nr(pfn);
230 		struct mem_section *ms;
231 
232 		sparse_index_init(section_nr, nid);
233 		set_section_nid(section_nr, nid);
234 
235 		ms = __nr_to_section(section_nr);
236 		if (!ms->section_mem_map) {
237 			ms->section_mem_map = sparse_encode_early_nid(nid) |
238 							SECTION_IS_ONLINE;
239 			__section_mark_present(ms, section_nr);
240 		}
241 	}
242 }
243 
244 /*
245  * Mark all memblocks as present using memory_present().
246  * This is a convenience function that is useful to mark all of the systems
247  * memory as present during initialization.
248  */
249 static void __init memblocks_present(void)
250 {
251 	unsigned long start, end;
252 	int i, nid;
253 
254 #ifdef CONFIG_SPARSEMEM_EXTREME
255 	if (unlikely(!mem_section)) {
256 		unsigned long size, align;
257 
258 		size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
259 		align = 1 << (INTERNODE_CACHE_SHIFT);
260 		mem_section = memblock_alloc(size, align);
261 		if (!mem_section)
262 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
263 			      __func__, size, align);
264 	}
265 #endif
266 
267 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
268 		memory_present(nid, start, end);
269 }
270 
271 /*
272  * Subtle, we encode the real pfn into the mem_map such that
273  * the identity pfn - section_mem_map will return the actual
274  * physical page frame number.
275  */
276 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
277 {
278 	unsigned long coded_mem_map =
279 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
280 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
281 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
282 	return coded_mem_map;
283 }
284 
285 #ifdef CONFIG_MEMORY_HOTPLUG
286 /*
287  * Decode mem_map from the coded memmap
288  */
289 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
290 {
291 	/* mask off the extra low bits of information */
292 	coded_mem_map &= SECTION_MAP_MASK;
293 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
294 }
295 #endif /* CONFIG_MEMORY_HOTPLUG */
296 
297 static void __meminit sparse_init_one_section(struct mem_section *ms,
298 		unsigned long pnum, struct page *mem_map,
299 		struct mem_section_usage *usage, unsigned long flags)
300 {
301 	ms->section_mem_map &= ~SECTION_MAP_MASK;
302 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
303 		| SECTION_HAS_MEM_MAP | flags;
304 	ms->usage = usage;
305 }
306 
307 static unsigned long usemap_size(void)
308 {
309 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
310 }
311 
312 size_t mem_section_usage_size(void)
313 {
314 	return sizeof(struct mem_section_usage) + usemap_size();
315 }
316 
317 #ifdef CONFIG_MEMORY_HOTREMOVE
318 static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
319 {
320 #ifndef CONFIG_NUMA
321 	VM_BUG_ON(pgdat != &contig_page_data);
322 	return __pa_symbol(&contig_page_data);
323 #else
324 	return __pa(pgdat);
325 #endif
326 }
327 
328 static struct mem_section_usage * __init
329 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
330 					 unsigned long size)
331 {
332 	struct mem_section_usage *usage;
333 	unsigned long goal, limit;
334 	int nid;
335 	/*
336 	 * A page may contain usemaps for other sections preventing the
337 	 * page being freed and making a section unremovable while
338 	 * other sections referencing the usemap remain active. Similarly,
339 	 * a pgdat can prevent a section being removed. If section A
340 	 * contains a pgdat and section B contains the usemap, both
341 	 * sections become inter-dependent. This allocates usemaps
342 	 * from the same section as the pgdat where possible to avoid
343 	 * this problem.
344 	 */
345 	goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
346 	limit = goal + (1UL << PA_SECTION_SHIFT);
347 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
348 again:
349 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
350 	if (!usage && limit) {
351 		limit = MEMBLOCK_ALLOC_ACCESSIBLE;
352 		goto again;
353 	}
354 	return usage;
355 }
356 
357 static void __init check_usemap_section_nr(int nid,
358 		struct mem_section_usage *usage)
359 {
360 	unsigned long usemap_snr, pgdat_snr;
361 	static unsigned long old_usemap_snr;
362 	static unsigned long old_pgdat_snr;
363 	struct pglist_data *pgdat = NODE_DATA(nid);
364 	int usemap_nid;
365 
366 	/* First call */
367 	if (!old_usemap_snr) {
368 		old_usemap_snr = NR_MEM_SECTIONS;
369 		old_pgdat_snr = NR_MEM_SECTIONS;
370 	}
371 
372 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
373 	pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
374 	if (usemap_snr == pgdat_snr)
375 		return;
376 
377 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
378 		/* skip redundant message */
379 		return;
380 
381 	old_usemap_snr = usemap_snr;
382 	old_pgdat_snr = pgdat_snr;
383 
384 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
385 	if (usemap_nid != nid) {
386 		pr_info("node %d must be removed before remove section %ld\n",
387 			nid, usemap_snr);
388 		return;
389 	}
390 	/*
391 	 * There is a circular dependency.
392 	 * Some platforms allow un-removable section because they will just
393 	 * gather other removable sections for dynamic partitioning.
394 	 * Just notify un-removable section's number here.
395 	 */
396 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
397 		usemap_snr, pgdat_snr, nid);
398 }
399 #else
400 static struct mem_section_usage * __init
401 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
402 					 unsigned long size)
403 {
404 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
405 }
406 
407 static void __init check_usemap_section_nr(int nid,
408 		struct mem_section_usage *usage)
409 {
410 }
411 #endif /* CONFIG_MEMORY_HOTREMOVE */
412 
413 #ifdef CONFIG_SPARSEMEM_VMEMMAP
414 static unsigned long __init section_map_size(void)
415 {
416 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
417 }
418 
419 #else
420 static unsigned long __init section_map_size(void)
421 {
422 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
423 }
424 
425 struct page __init *__populate_section_memmap(unsigned long pfn,
426 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
427 		struct dev_pagemap *pgmap)
428 {
429 	unsigned long size = section_map_size();
430 	struct page *map = sparse_buffer_alloc(size);
431 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
432 
433 	if (map)
434 		return map;
435 
436 	map = memmap_alloc(size, size, addr, nid, false);
437 	if (!map)
438 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
439 		      __func__, size, PAGE_SIZE, nid, &addr);
440 
441 	return map;
442 }
443 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
444 
445 static void *sparsemap_buf __meminitdata;
446 static void *sparsemap_buf_end __meminitdata;
447 
448 static inline void __meminit sparse_buffer_free(unsigned long size)
449 {
450 	WARN_ON(!sparsemap_buf || size == 0);
451 	memblock_free(sparsemap_buf, size);
452 }
453 
454 static void __init sparse_buffer_init(unsigned long size, int nid)
455 {
456 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
458 	/*
459 	 * Pre-allocated buffer is mainly used by __populate_section_memmap
460 	 * and we want it to be properly aligned to the section size - this is
461 	 * especially the case for VMEMMAP which maps memmap to PMDs
462 	 */
463 	sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
464 	sparsemap_buf_end = sparsemap_buf + size;
465 #ifndef CONFIG_SPARSEMEM_VMEMMAP
466 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
467 #endif
468 }
469 
470 static void __init sparse_buffer_fini(void)
471 {
472 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
473 
474 	if (sparsemap_buf && size > 0)
475 		sparse_buffer_free(size);
476 	sparsemap_buf = NULL;
477 }
478 
479 void * __meminit sparse_buffer_alloc(unsigned long size)
480 {
481 	void *ptr = NULL;
482 
483 	if (sparsemap_buf) {
484 		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
485 		if (ptr + size > sparsemap_buf_end)
486 			ptr = NULL;
487 		else {
488 			/* Free redundant aligned space */
489 			if ((unsigned long)(ptr - sparsemap_buf) > 0)
490 				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
491 			sparsemap_buf = ptr + size;
492 		}
493 	}
494 	return ptr;
495 }
496 
497 void __weak __meminit vmemmap_populate_print_last(void)
498 {
499 }
500 
501 /*
502  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
503  * And number of present sections in this node is map_count.
504  */
505 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
506 				   unsigned long pnum_end,
507 				   unsigned long map_count)
508 {
509 	struct mem_section_usage *usage;
510 	unsigned long pnum;
511 	struct page *map;
512 
513 	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
514 			mem_section_usage_size() * map_count);
515 	if (!usage) {
516 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
517 		goto failed;
518 	}
519 	sparse_buffer_init(map_count * section_map_size(), nid);
520 	for_each_present_section_nr(pnum_begin, pnum) {
521 		unsigned long pfn = section_nr_to_pfn(pnum);
522 
523 		if (pnum >= pnum_end)
524 			break;
525 
526 		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
527 				nid, NULL, NULL);
528 		if (!map) {
529 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
530 			       __func__, nid);
531 			pnum_begin = pnum;
532 			sparse_buffer_fini();
533 			goto failed;
534 		}
535 		check_usemap_section_nr(nid, usage);
536 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
537 				SECTION_IS_EARLY);
538 		usage = (void *) usage + mem_section_usage_size();
539 	}
540 	sparse_buffer_fini();
541 	return;
542 failed:
543 	/* We failed to allocate, mark all the following pnums as not present */
544 	for_each_present_section_nr(pnum_begin, pnum) {
545 		struct mem_section *ms;
546 
547 		if (pnum >= pnum_end)
548 			break;
549 		ms = __nr_to_section(pnum);
550 		ms->section_mem_map = 0;
551 	}
552 }
553 
554 /*
555  * Allocate the accumulated non-linear sections, allocate a mem_map
556  * for each and record the physical to section mapping.
557  */
558 void __init sparse_init(void)
559 {
560 	unsigned long pnum_end, pnum_begin, map_count = 1;
561 	int nid_begin;
562 
563 	/* see include/linux/mmzone.h 'struct mem_section' definition */
564 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
565 	memblocks_present();
566 
567 	pnum_begin = first_present_section_nr();
568 	nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
569 
570 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
571 	set_pageblock_order();
572 
573 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
574 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
575 
576 		if (nid == nid_begin) {
577 			map_count++;
578 			continue;
579 		}
580 		/* Init node with sections in range [pnum_begin, pnum_end) */
581 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
582 		nid_begin = nid;
583 		pnum_begin = pnum_end;
584 		map_count = 1;
585 	}
586 	/* cover the last node */
587 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
588 	vmemmap_populate_print_last();
589 }
590 
591 #ifdef CONFIG_MEMORY_HOTPLUG
592 
593 /* Mark all memory sections within the pfn range as online */
594 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
595 {
596 	unsigned long pfn;
597 
598 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
599 		unsigned long section_nr = pfn_to_section_nr(pfn);
600 		struct mem_section *ms;
601 
602 		/* onlining code should never touch invalid ranges */
603 		if (WARN_ON(!valid_section_nr(section_nr)))
604 			continue;
605 
606 		ms = __nr_to_section(section_nr);
607 		ms->section_mem_map |= SECTION_IS_ONLINE;
608 	}
609 }
610 
611 /* Mark all memory sections within the pfn range as offline */
612 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
613 {
614 	unsigned long pfn;
615 
616 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
617 		unsigned long section_nr = pfn_to_section_nr(pfn);
618 		struct mem_section *ms;
619 
620 		/*
621 		 * TODO this needs some double checking. Offlining code makes
622 		 * sure to check pfn_valid but those checks might be just bogus
623 		 */
624 		if (WARN_ON(!valid_section_nr(section_nr)))
625 			continue;
626 
627 		ms = __nr_to_section(section_nr);
628 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
629 	}
630 }
631 
632 #ifdef CONFIG_SPARSEMEM_VMEMMAP
633 static struct page * __meminit populate_section_memmap(unsigned long pfn,
634 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
635 		struct dev_pagemap *pgmap)
636 {
637 	return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
638 }
639 
640 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
641 		struct vmem_altmap *altmap)
642 {
643 	unsigned long start = (unsigned long) pfn_to_page(pfn);
644 	unsigned long end = start + nr_pages * sizeof(struct page);
645 
646 	memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
647 	vmemmap_free(start, end, altmap);
648 }
649 static void free_map_bootmem(struct page *memmap)
650 {
651 	unsigned long start = (unsigned long)memmap;
652 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
653 
654 	vmemmap_free(start, end, NULL);
655 }
656 
657 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
658 {
659 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
660 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
661 	struct mem_section *ms = __pfn_to_section(pfn);
662 	unsigned long *subsection_map = ms->usage
663 		? &ms->usage->subsection_map[0] : NULL;
664 
665 	subsection_mask_set(map, pfn, nr_pages);
666 	if (subsection_map)
667 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
668 
669 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
670 				"section already deactivated (%#lx + %ld)\n",
671 				pfn, nr_pages))
672 		return -EINVAL;
673 
674 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
675 	return 0;
676 }
677 
678 static bool is_subsection_map_empty(struct mem_section *ms)
679 {
680 	return bitmap_empty(&ms->usage->subsection_map[0],
681 			    SUBSECTIONS_PER_SECTION);
682 }
683 
684 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
685 {
686 	struct mem_section *ms = __pfn_to_section(pfn);
687 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
688 	unsigned long *subsection_map;
689 	int rc = 0;
690 
691 	subsection_mask_set(map, pfn, nr_pages);
692 
693 	subsection_map = &ms->usage->subsection_map[0];
694 
695 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
696 		rc = -EINVAL;
697 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
698 		rc = -EEXIST;
699 	else
700 		bitmap_or(subsection_map, map, subsection_map,
701 				SUBSECTIONS_PER_SECTION);
702 
703 	return rc;
704 }
705 #else
706 static struct page * __meminit populate_section_memmap(unsigned long pfn,
707 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
708 		struct dev_pagemap *pgmap)
709 {
710 	return kvmalloc_node(array_size(sizeof(struct page),
711 					PAGES_PER_SECTION), GFP_KERNEL, nid);
712 }
713 
714 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
715 		struct vmem_altmap *altmap)
716 {
717 	kvfree(pfn_to_page(pfn));
718 }
719 
720 static void free_map_bootmem(struct page *memmap)
721 {
722 	unsigned long maps_section_nr, removing_section_nr, i;
723 	unsigned long magic, nr_pages;
724 	struct page *page = virt_to_page(memmap);
725 
726 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
727 		>> PAGE_SHIFT;
728 
729 	for (i = 0; i < nr_pages; i++, page++) {
730 		magic = page->index;
731 
732 		BUG_ON(magic == NODE_INFO);
733 
734 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
735 		removing_section_nr = page_private(page);
736 
737 		/*
738 		 * When this function is called, the removing section is
739 		 * logical offlined state. This means all pages are isolated
740 		 * from page allocator. If removing section's memmap is placed
741 		 * on the same section, it must not be freed.
742 		 * If it is freed, page allocator may allocate it which will
743 		 * be removed physically soon.
744 		 */
745 		if (maps_section_nr != removing_section_nr)
746 			put_page_bootmem(page);
747 	}
748 }
749 
750 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
751 {
752 	return 0;
753 }
754 
755 static bool is_subsection_map_empty(struct mem_section *ms)
756 {
757 	return true;
758 }
759 
760 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
761 {
762 	return 0;
763 }
764 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
765 
766 /*
767  * To deactivate a memory region, there are 3 cases to handle across
768  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
769  *
770  * 1. deactivation of a partial hot-added section (only possible in
771  *    the SPARSEMEM_VMEMMAP=y case).
772  *      a) section was present at memory init.
773  *      b) section was hot-added post memory init.
774  * 2. deactivation of a complete hot-added section.
775  * 3. deactivation of a complete section from memory init.
776  *
777  * For 1, when subsection_map does not empty we will not be freeing the
778  * usage map, but still need to free the vmemmap range.
779  *
780  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
781  */
782 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
783 		struct vmem_altmap *altmap)
784 {
785 	struct mem_section *ms = __pfn_to_section(pfn);
786 	bool section_is_early = early_section(ms);
787 	struct page *memmap = NULL;
788 	bool empty;
789 
790 	if (clear_subsection_map(pfn, nr_pages))
791 		return;
792 
793 	empty = is_subsection_map_empty(ms);
794 	if (empty) {
795 		unsigned long section_nr = pfn_to_section_nr(pfn);
796 
797 		/*
798 		 * Mark the section invalid so that valid_section()
799 		 * return false. This prevents code from dereferencing
800 		 * ms->usage array.
801 		 */
802 		ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
803 
804 		/*
805 		 * When removing an early section, the usage map is kept (as the
806 		 * usage maps of other sections fall into the same page). It
807 		 * will be re-used when re-adding the section - which is then no
808 		 * longer an early section. If the usage map is PageReserved, it
809 		 * was allocated during boot.
810 		 */
811 		if (!PageReserved(virt_to_page(ms->usage))) {
812 			kfree_rcu(ms->usage, rcu);
813 			WRITE_ONCE(ms->usage, NULL);
814 		}
815 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
816 	}
817 
818 	/*
819 	 * The memmap of early sections is always fully populated. See
820 	 * section_activate() and pfn_valid() .
821 	 */
822 	if (!section_is_early)
823 		depopulate_section_memmap(pfn, nr_pages, altmap);
824 	else if (memmap)
825 		free_map_bootmem(memmap);
826 
827 	if (empty)
828 		ms->section_mem_map = (unsigned long)NULL;
829 }
830 
831 static struct page * __meminit section_activate(int nid, unsigned long pfn,
832 		unsigned long nr_pages, struct vmem_altmap *altmap,
833 		struct dev_pagemap *pgmap)
834 {
835 	struct mem_section *ms = __pfn_to_section(pfn);
836 	struct mem_section_usage *usage = NULL;
837 	struct page *memmap;
838 	int rc;
839 
840 	if (!ms->usage) {
841 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
842 		if (!usage)
843 			return ERR_PTR(-ENOMEM);
844 		ms->usage = usage;
845 	}
846 
847 	rc = fill_subsection_map(pfn, nr_pages);
848 	if (rc) {
849 		if (usage)
850 			ms->usage = NULL;
851 		kfree(usage);
852 		return ERR_PTR(rc);
853 	}
854 
855 	/*
856 	 * The early init code does not consider partially populated
857 	 * initial sections, it simply assumes that memory will never be
858 	 * referenced.  If we hot-add memory into such a section then we
859 	 * do not need to populate the memmap and can simply reuse what
860 	 * is already there.
861 	 */
862 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
863 		return pfn_to_page(pfn);
864 
865 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
866 	if (!memmap) {
867 		section_deactivate(pfn, nr_pages, altmap);
868 		return ERR_PTR(-ENOMEM);
869 	}
870 
871 	return memmap;
872 }
873 
874 /**
875  * sparse_add_section - add a memory section, or populate an existing one
876  * @nid: The node to add section on
877  * @start_pfn: start pfn of the memory range
878  * @nr_pages: number of pfns to add in the section
879  * @altmap: alternate pfns to allocate the memmap backing store
880  * @pgmap: alternate compound page geometry for devmap mappings
881  *
882  * This is only intended for hotplug.
883  *
884  * Note that only VMEMMAP supports sub-section aligned hotplug,
885  * the proper alignment and size are gated by check_pfn_span().
886  *
887  *
888  * Return:
889  * * 0		- On success.
890  * * -EEXIST	- Section has been present.
891  * * -ENOMEM	- Out of memory.
892  */
893 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
894 		unsigned long nr_pages, struct vmem_altmap *altmap,
895 		struct dev_pagemap *pgmap)
896 {
897 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
898 	struct mem_section *ms;
899 	struct page *memmap;
900 	int ret;
901 
902 	ret = sparse_index_init(section_nr, nid);
903 	if (ret < 0)
904 		return ret;
905 
906 	memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
907 	if (IS_ERR(memmap))
908 		return PTR_ERR(memmap);
909 
910 	/*
911 	 * Poison uninitialized struct pages in order to catch invalid flags
912 	 * combinations.
913 	 */
914 	if (!altmap || !altmap->inaccessible)
915 		page_init_poison(memmap, sizeof(struct page) * nr_pages);
916 
917 	ms = __nr_to_section(section_nr);
918 	set_section_nid(section_nr, nid);
919 	__section_mark_present(ms, section_nr);
920 
921 	/* Align memmap to section boundary in the subsection case */
922 	if (section_nr_to_pfn(section_nr) != start_pfn)
923 		memmap = pfn_to_page(section_nr_to_pfn(section_nr));
924 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
925 
926 	return 0;
927 }
928 
929 void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
930 			   struct vmem_altmap *altmap)
931 {
932 	struct mem_section *ms = __pfn_to_section(pfn);
933 
934 	if (WARN_ON_ONCE(!valid_section(ms)))
935 		return;
936 
937 	section_deactivate(pfn, nr_pages, altmap);
938 }
939 #endif /* CONFIG_MEMORY_HOTPLUG */
940