1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/memblock.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 } else { 71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES, 72 nid); 73 if (!section) 74 panic("%s: Failed to allocate %lu bytes nid=%d\n", 75 __func__, array_size, nid); 76 } 77 78 return section; 79 } 80 81 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 82 { 83 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 84 struct mem_section *section; 85 86 if (mem_section[root]) 87 return -EEXIST; 88 89 section = sparse_index_alloc(nid); 90 if (!section) 91 return -ENOMEM; 92 93 mem_section[root] = section; 94 95 return 0; 96 } 97 #else /* !SPARSEMEM_EXTREME */ 98 static inline int sparse_index_init(unsigned long section_nr, int nid) 99 { 100 return 0; 101 } 102 #endif 103 104 #ifdef CONFIG_SPARSEMEM_EXTREME 105 int __section_nr(struct mem_section* ms) 106 { 107 unsigned long root_nr; 108 struct mem_section *root = NULL; 109 110 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 111 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 112 if (!root) 113 continue; 114 115 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 116 break; 117 } 118 119 VM_BUG_ON(!root); 120 121 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 122 } 123 #else 124 int __section_nr(struct mem_section* ms) 125 { 126 return (int)(ms - mem_section[0]); 127 } 128 #endif 129 130 /* 131 * During early boot, before section_mem_map is used for an actual 132 * mem_map, we use section_mem_map to store the section's NUMA 133 * node. This keeps us from having to use another data structure. The 134 * node information is cleared just before we store the real mem_map. 135 */ 136 static inline unsigned long sparse_encode_early_nid(int nid) 137 { 138 return (nid << SECTION_NID_SHIFT); 139 } 140 141 static inline int sparse_early_nid(struct mem_section *section) 142 { 143 return (section->section_mem_map >> SECTION_NID_SHIFT); 144 } 145 146 /* Validate the physical addressing limitations of the model */ 147 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 148 unsigned long *end_pfn) 149 { 150 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 151 152 /* 153 * Sanity checks - do not allow an architecture to pass 154 * in larger pfns than the maximum scope of sparsemem: 155 */ 156 if (*start_pfn > max_sparsemem_pfn) { 157 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 158 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 159 *start_pfn, *end_pfn, max_sparsemem_pfn); 160 WARN_ON_ONCE(1); 161 *start_pfn = max_sparsemem_pfn; 162 *end_pfn = max_sparsemem_pfn; 163 } else if (*end_pfn > max_sparsemem_pfn) { 164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 165 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 166 *start_pfn, *end_pfn, max_sparsemem_pfn); 167 WARN_ON_ONCE(1); 168 *end_pfn = max_sparsemem_pfn; 169 } 170 } 171 172 /* 173 * There are a number of times that we loop over NR_MEM_SECTIONS, 174 * looking for section_present() on each. But, when we have very 175 * large physical address spaces, NR_MEM_SECTIONS can also be 176 * very large which makes the loops quite long. 177 * 178 * Keeping track of this gives us an easy way to break out of 179 * those loops early. 180 */ 181 int __highest_present_section_nr; 182 static void section_mark_present(struct mem_section *ms) 183 { 184 int section_nr = __section_nr(ms); 185 186 if (section_nr > __highest_present_section_nr) 187 __highest_present_section_nr = section_nr; 188 189 ms->section_mem_map |= SECTION_MARKED_PRESENT; 190 } 191 192 static inline int next_present_section_nr(int section_nr) 193 { 194 do { 195 section_nr++; 196 if (present_section_nr(section_nr)) 197 return section_nr; 198 } while ((section_nr <= __highest_present_section_nr)); 199 200 return -1; 201 } 202 #define for_each_present_section_nr(start, section_nr) \ 203 for (section_nr = next_present_section_nr(start-1); \ 204 ((section_nr != -1) && \ 205 (section_nr <= __highest_present_section_nr)); \ 206 section_nr = next_present_section_nr(section_nr)) 207 208 static inline unsigned long first_present_section_nr(void) 209 { 210 return next_present_section_nr(-1); 211 } 212 213 /* Record a memory area against a node. */ 214 void __init memory_present(int nid, unsigned long start, unsigned long end) 215 { 216 unsigned long pfn; 217 218 #ifdef CONFIG_SPARSEMEM_EXTREME 219 if (unlikely(!mem_section)) { 220 unsigned long size, align; 221 222 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 223 align = 1 << (INTERNODE_CACHE_SHIFT); 224 mem_section = memblock_alloc(size, align); 225 if (!mem_section) 226 panic("%s: Failed to allocate %lu bytes align=0x%lx\n", 227 __func__, size, align); 228 } 229 #endif 230 231 start &= PAGE_SECTION_MASK; 232 mminit_validate_memmodel_limits(&start, &end); 233 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 234 unsigned long section = pfn_to_section_nr(pfn); 235 struct mem_section *ms; 236 237 sparse_index_init(section, nid); 238 set_section_nid(section, nid); 239 240 ms = __nr_to_section(section); 241 if (!ms->section_mem_map) { 242 ms->section_mem_map = sparse_encode_early_nid(nid) | 243 SECTION_IS_ONLINE; 244 section_mark_present(ms); 245 } 246 } 247 } 248 249 /* 250 * Mark all memblocks as present using memory_present(). This is a 251 * convienence function that is useful for a number of arches 252 * to mark all of the systems memory as present during initialization. 253 */ 254 void __init memblocks_present(void) 255 { 256 struct memblock_region *reg; 257 258 for_each_memblock(memory, reg) { 259 memory_present(memblock_get_region_node(reg), 260 memblock_region_memory_base_pfn(reg), 261 memblock_region_memory_end_pfn(reg)); 262 } 263 } 264 265 /* 266 * Subtle, we encode the real pfn into the mem_map such that 267 * the identity pfn - section_mem_map will return the actual 268 * physical page frame number. 269 */ 270 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 271 { 272 unsigned long coded_mem_map = 273 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 274 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 275 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 276 return coded_mem_map; 277 } 278 279 /* 280 * Decode mem_map from the coded memmap 281 */ 282 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 283 { 284 /* mask off the extra low bits of information */ 285 coded_mem_map &= SECTION_MAP_MASK; 286 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 287 } 288 289 static void __meminit sparse_init_one_section(struct mem_section *ms, 290 unsigned long pnum, struct page *mem_map, 291 unsigned long *pageblock_bitmap) 292 { 293 ms->section_mem_map &= ~SECTION_MAP_MASK; 294 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 295 SECTION_HAS_MEM_MAP; 296 ms->pageblock_flags = pageblock_bitmap; 297 } 298 299 unsigned long usemap_size(void) 300 { 301 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 302 } 303 304 #ifdef CONFIG_MEMORY_HOTPLUG 305 static unsigned long *__kmalloc_section_usemap(void) 306 { 307 return kmalloc(usemap_size(), GFP_KERNEL); 308 } 309 #endif /* CONFIG_MEMORY_HOTPLUG */ 310 311 #ifdef CONFIG_MEMORY_HOTREMOVE 312 static unsigned long * __init 313 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 314 unsigned long size) 315 { 316 unsigned long goal, limit; 317 unsigned long *p; 318 int nid; 319 /* 320 * A page may contain usemaps for other sections preventing the 321 * page being freed and making a section unremovable while 322 * other sections referencing the usemap remain active. Similarly, 323 * a pgdat can prevent a section being removed. If section A 324 * contains a pgdat and section B contains the usemap, both 325 * sections become inter-dependent. This allocates usemaps 326 * from the same section as the pgdat where possible to avoid 327 * this problem. 328 */ 329 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 330 limit = goal + (1UL << PA_SECTION_SHIFT); 331 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 332 again: 333 p = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid); 334 if (!p && limit) { 335 limit = 0; 336 goto again; 337 } 338 return p; 339 } 340 341 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 342 { 343 unsigned long usemap_snr, pgdat_snr; 344 static unsigned long old_usemap_snr; 345 static unsigned long old_pgdat_snr; 346 struct pglist_data *pgdat = NODE_DATA(nid); 347 int usemap_nid; 348 349 /* First call */ 350 if (!old_usemap_snr) { 351 old_usemap_snr = NR_MEM_SECTIONS; 352 old_pgdat_snr = NR_MEM_SECTIONS; 353 } 354 355 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 356 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 357 if (usemap_snr == pgdat_snr) 358 return; 359 360 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 361 /* skip redundant message */ 362 return; 363 364 old_usemap_snr = usemap_snr; 365 old_pgdat_snr = pgdat_snr; 366 367 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 368 if (usemap_nid != nid) { 369 pr_info("node %d must be removed before remove section %ld\n", 370 nid, usemap_snr); 371 return; 372 } 373 /* 374 * There is a circular dependency. 375 * Some platforms allow un-removable section because they will just 376 * gather other removable sections for dynamic partitioning. 377 * Just notify un-removable section's number here. 378 */ 379 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 380 usemap_snr, pgdat_snr, nid); 381 } 382 #else 383 static unsigned long * __init 384 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 385 unsigned long size) 386 { 387 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id); 388 } 389 390 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 391 { 392 } 393 #endif /* CONFIG_MEMORY_HOTREMOVE */ 394 395 #ifdef CONFIG_SPARSEMEM_VMEMMAP 396 static unsigned long __init section_map_size(void) 397 { 398 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE); 399 } 400 401 #else 402 static unsigned long __init section_map_size(void) 403 { 404 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 405 } 406 407 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid, 408 struct vmem_altmap *altmap) 409 { 410 unsigned long size = section_map_size(); 411 struct page *map = sparse_buffer_alloc(size); 412 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 413 414 if (map) 415 return map; 416 417 map = memblock_alloc_try_nid(size, 418 PAGE_SIZE, addr, 419 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 420 if (!map) 421 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n", 422 __func__, size, PAGE_SIZE, nid, &addr); 423 424 return map; 425 } 426 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 427 428 static void *sparsemap_buf __meminitdata; 429 static void *sparsemap_buf_end __meminitdata; 430 431 static void __init sparse_buffer_init(unsigned long size, int nid) 432 { 433 phys_addr_t addr = __pa(MAX_DMA_ADDRESS); 434 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */ 435 sparsemap_buf = 436 memblock_alloc_try_nid_raw(size, PAGE_SIZE, 437 addr, 438 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 439 sparsemap_buf_end = sparsemap_buf + size; 440 } 441 442 static void __init sparse_buffer_fini(void) 443 { 444 unsigned long size = sparsemap_buf_end - sparsemap_buf; 445 446 if (sparsemap_buf && size > 0) 447 memblock_free_early(__pa(sparsemap_buf), size); 448 sparsemap_buf = NULL; 449 } 450 451 void * __meminit sparse_buffer_alloc(unsigned long size) 452 { 453 void *ptr = NULL; 454 455 if (sparsemap_buf) { 456 ptr = PTR_ALIGN(sparsemap_buf, size); 457 if (ptr + size > sparsemap_buf_end) 458 ptr = NULL; 459 else 460 sparsemap_buf = ptr + size; 461 } 462 return ptr; 463 } 464 465 void __weak __meminit vmemmap_populate_print_last(void) 466 { 467 } 468 469 /* 470 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end) 471 * And number of present sections in this node is map_count. 472 */ 473 static void __init sparse_init_nid(int nid, unsigned long pnum_begin, 474 unsigned long pnum_end, 475 unsigned long map_count) 476 { 477 unsigned long pnum, usemap_longs, *usemap; 478 struct page *map; 479 480 usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS); 481 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid), 482 usemap_size() * 483 map_count); 484 if (!usemap) { 485 pr_err("%s: node[%d] usemap allocation failed", __func__, nid); 486 goto failed; 487 } 488 sparse_buffer_init(map_count * section_map_size(), nid); 489 for_each_present_section_nr(pnum_begin, pnum) { 490 if (pnum >= pnum_end) 491 break; 492 493 map = sparse_mem_map_populate(pnum, nid, NULL); 494 if (!map) { 495 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.", 496 __func__, nid); 497 pnum_begin = pnum; 498 goto failed; 499 } 500 check_usemap_section_nr(nid, usemap); 501 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap); 502 usemap += usemap_longs; 503 } 504 sparse_buffer_fini(); 505 return; 506 failed: 507 /* We failed to allocate, mark all the following pnums as not present */ 508 for_each_present_section_nr(pnum_begin, pnum) { 509 struct mem_section *ms; 510 511 if (pnum >= pnum_end) 512 break; 513 ms = __nr_to_section(pnum); 514 ms->section_mem_map = 0; 515 } 516 } 517 518 /* 519 * Allocate the accumulated non-linear sections, allocate a mem_map 520 * for each and record the physical to section mapping. 521 */ 522 void __init sparse_init(void) 523 { 524 unsigned long pnum_begin = first_present_section_nr(); 525 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin)); 526 unsigned long pnum_end, map_count = 1; 527 528 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 529 set_pageblock_order(); 530 531 for_each_present_section_nr(pnum_begin + 1, pnum_end) { 532 int nid = sparse_early_nid(__nr_to_section(pnum_end)); 533 534 if (nid == nid_begin) { 535 map_count++; 536 continue; 537 } 538 /* Init node with sections in range [pnum_begin, pnum_end) */ 539 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 540 nid_begin = nid; 541 pnum_begin = pnum_end; 542 map_count = 1; 543 } 544 /* cover the last node */ 545 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count); 546 vmemmap_populate_print_last(); 547 } 548 549 #ifdef CONFIG_MEMORY_HOTPLUG 550 551 /* Mark all memory sections within the pfn range as online */ 552 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 553 { 554 unsigned long pfn; 555 556 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 557 unsigned long section_nr = pfn_to_section_nr(pfn); 558 struct mem_section *ms; 559 560 /* onlining code should never touch invalid ranges */ 561 if (WARN_ON(!valid_section_nr(section_nr))) 562 continue; 563 564 ms = __nr_to_section(section_nr); 565 ms->section_mem_map |= SECTION_IS_ONLINE; 566 } 567 } 568 569 #ifdef CONFIG_MEMORY_HOTREMOVE 570 /* Mark all memory sections within the pfn range as online */ 571 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 572 { 573 unsigned long pfn; 574 575 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 576 unsigned long section_nr = pfn_to_section_nr(pfn); 577 struct mem_section *ms; 578 579 /* 580 * TODO this needs some double checking. Offlining code makes 581 * sure to check pfn_valid but those checks might be just bogus 582 */ 583 if (WARN_ON(!valid_section_nr(section_nr))) 584 continue; 585 586 ms = __nr_to_section(section_nr); 587 ms->section_mem_map &= ~SECTION_IS_ONLINE; 588 } 589 } 590 #endif 591 592 #ifdef CONFIG_SPARSEMEM_VMEMMAP 593 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 594 struct vmem_altmap *altmap) 595 { 596 /* This will make the necessary allocations eventually. */ 597 return sparse_mem_map_populate(pnum, nid, altmap); 598 } 599 static void __kfree_section_memmap(struct page *memmap, 600 struct vmem_altmap *altmap) 601 { 602 unsigned long start = (unsigned long)memmap; 603 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 604 605 vmemmap_free(start, end, altmap); 606 } 607 #ifdef CONFIG_MEMORY_HOTREMOVE 608 static void free_map_bootmem(struct page *memmap) 609 { 610 unsigned long start = (unsigned long)memmap; 611 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 612 613 vmemmap_free(start, end, NULL); 614 } 615 #endif /* CONFIG_MEMORY_HOTREMOVE */ 616 #else 617 static struct page *__kmalloc_section_memmap(void) 618 { 619 struct page *page, *ret; 620 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 621 622 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 623 if (page) 624 goto got_map_page; 625 626 ret = vmalloc(memmap_size); 627 if (ret) 628 goto got_map_ptr; 629 630 return NULL; 631 got_map_page: 632 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 633 got_map_ptr: 634 635 return ret; 636 } 637 638 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid, 639 struct vmem_altmap *altmap) 640 { 641 return __kmalloc_section_memmap(); 642 } 643 644 static void __kfree_section_memmap(struct page *memmap, 645 struct vmem_altmap *altmap) 646 { 647 if (is_vmalloc_addr(memmap)) 648 vfree(memmap); 649 else 650 free_pages((unsigned long)memmap, 651 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 652 } 653 654 #ifdef CONFIG_MEMORY_HOTREMOVE 655 static void free_map_bootmem(struct page *memmap) 656 { 657 unsigned long maps_section_nr, removing_section_nr, i; 658 unsigned long magic, nr_pages; 659 struct page *page = virt_to_page(memmap); 660 661 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 662 >> PAGE_SHIFT; 663 664 for (i = 0; i < nr_pages; i++, page++) { 665 magic = (unsigned long) page->freelist; 666 667 BUG_ON(magic == NODE_INFO); 668 669 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 670 removing_section_nr = page_private(page); 671 672 /* 673 * When this function is called, the removing section is 674 * logical offlined state. This means all pages are isolated 675 * from page allocator. If removing section's memmap is placed 676 * on the same section, it must not be freed. 677 * If it is freed, page allocator may allocate it which will 678 * be removed physically soon. 679 */ 680 if (maps_section_nr != removing_section_nr) 681 put_page_bootmem(page); 682 } 683 } 684 #endif /* CONFIG_MEMORY_HOTREMOVE */ 685 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 686 687 /* 688 * returns the number of sections whose mem_maps were properly 689 * set. If this is <=0, then that means that the passed-in 690 * map was not consumed and must be freed. 691 */ 692 int __meminit sparse_add_one_section(int nid, unsigned long start_pfn, 693 struct vmem_altmap *altmap) 694 { 695 unsigned long section_nr = pfn_to_section_nr(start_pfn); 696 struct mem_section *ms; 697 struct page *memmap; 698 unsigned long *usemap; 699 int ret; 700 701 /* 702 * no locking for this, because it does its own 703 * plus, it does a kmalloc 704 */ 705 ret = sparse_index_init(section_nr, nid); 706 if (ret < 0 && ret != -EEXIST) 707 return ret; 708 ret = 0; 709 memmap = kmalloc_section_memmap(section_nr, nid, altmap); 710 if (!memmap) 711 return -ENOMEM; 712 usemap = __kmalloc_section_usemap(); 713 if (!usemap) { 714 __kfree_section_memmap(memmap, altmap); 715 return -ENOMEM; 716 } 717 718 ms = __pfn_to_section(start_pfn); 719 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 720 ret = -EEXIST; 721 goto out; 722 } 723 724 /* 725 * Poison uninitialized struct pages in order to catch invalid flags 726 * combinations. 727 */ 728 page_init_poison(memmap, sizeof(struct page) * PAGES_PER_SECTION); 729 730 section_mark_present(ms); 731 sparse_init_one_section(ms, section_nr, memmap, usemap); 732 733 out: 734 if (ret < 0) { 735 kfree(usemap); 736 __kfree_section_memmap(memmap, altmap); 737 } 738 return ret; 739 } 740 741 #ifdef CONFIG_MEMORY_HOTREMOVE 742 #ifdef CONFIG_MEMORY_FAILURE 743 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 744 { 745 int i; 746 747 if (!memmap) 748 return; 749 750 /* 751 * A further optimization is to have per section refcounted 752 * num_poisoned_pages. But that would need more space per memmap, so 753 * for now just do a quick global check to speed up this routine in the 754 * absence of bad pages. 755 */ 756 if (atomic_long_read(&num_poisoned_pages) == 0) 757 return; 758 759 for (i = 0; i < nr_pages; i++) { 760 if (PageHWPoison(&memmap[i])) { 761 atomic_long_sub(1, &num_poisoned_pages); 762 ClearPageHWPoison(&memmap[i]); 763 } 764 } 765 } 766 #else 767 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 768 { 769 } 770 #endif 771 772 static void free_section_usemap(struct page *memmap, unsigned long *usemap, 773 struct vmem_altmap *altmap) 774 { 775 struct page *usemap_page; 776 777 if (!usemap) 778 return; 779 780 usemap_page = virt_to_page(usemap); 781 /* 782 * Check to see if allocation came from hot-plug-add 783 */ 784 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 785 kfree(usemap); 786 if (memmap) 787 __kfree_section_memmap(memmap, altmap); 788 return; 789 } 790 791 /* 792 * The usemap came from bootmem. This is packed with other usemaps 793 * on the section which has pgdat at boot time. Just keep it as is now. 794 */ 795 796 if (memmap) 797 free_map_bootmem(memmap); 798 } 799 800 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 801 unsigned long map_offset, struct vmem_altmap *altmap) 802 { 803 struct page *memmap = NULL; 804 unsigned long *usemap = NULL; 805 806 if (ms->section_mem_map) { 807 usemap = ms->pageblock_flags; 808 memmap = sparse_decode_mem_map(ms->section_mem_map, 809 __section_nr(ms)); 810 ms->section_mem_map = 0; 811 ms->pageblock_flags = NULL; 812 } 813 814 clear_hwpoisoned_pages(memmap + map_offset, 815 PAGES_PER_SECTION - map_offset); 816 free_section_usemap(memmap, usemap, altmap); 817 } 818 #endif /* CONFIG_MEMORY_HOTREMOVE */ 819 #endif /* CONFIG_MEMORY_HOTPLUG */ 820