xref: /linux/mm/sparse.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19 
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section	- memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 	____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32 
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44 
45 int page_to_nid(const struct page *page)
46 {
47 	return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50 
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 	section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60 
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 	struct mem_section *section = NULL;
65 	unsigned long array_size = SECTIONS_PER_ROOT *
66 				   sizeof(struct mem_section);
67 
68 	if (slab_is_available())
69 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 	else
71 		section = memblock_virt_alloc_node(array_size, nid);
72 
73 	return section;
74 }
75 
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 	struct mem_section *section;
80 
81 	if (mem_section[root])
82 		return -EEXIST;
83 
84 	section = sparse_index_alloc(nid);
85 	if (!section)
86 		return -ENOMEM;
87 
88 	mem_section[root] = section;
89 
90 	return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95 	return 0;
96 }
97 #endif
98 
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102 	unsigned long root_nr;
103 	struct mem_section *root = NULL;
104 
105 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 		if (!root)
108 			continue;
109 
110 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 		     break;
112 	}
113 
114 	VM_BUG_ON(!root);
115 
116 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121 	return (int)(ms - mem_section[0]);
122 }
123 #endif
124 
125 /*
126  * During early boot, before section_mem_map is used for an actual
127  * mem_map, we use section_mem_map to store the section's NUMA
128  * node.  This keeps us from having to use another data structure.  The
129  * node information is cleared just before we store the real mem_map.
130  */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 	return (nid << SECTION_NID_SHIFT);
134 }
135 
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 	return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140 
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 						unsigned long *end_pfn)
144 {
145 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146 
147 	/*
148 	 * Sanity checks - do not allow an architecture to pass
149 	 * in larger pfns than the maximum scope of sparsemem:
150 	 */
151 	if (*start_pfn > max_sparsemem_pfn) {
152 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 			*start_pfn, *end_pfn, max_sparsemem_pfn);
155 		WARN_ON_ONCE(1);
156 		*start_pfn = max_sparsemem_pfn;
157 		*end_pfn = max_sparsemem_pfn;
158 	} else if (*end_pfn > max_sparsemem_pfn) {
159 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 			*start_pfn, *end_pfn, max_sparsemem_pfn);
162 		WARN_ON_ONCE(1);
163 		*end_pfn = max_sparsemem_pfn;
164 	}
165 }
166 
167 /*
168  * There are a number of times that we loop over NR_MEM_SECTIONS,
169  * looking for section_present() on each.  But, when we have very
170  * large physical address spaces, NR_MEM_SECTIONS can also be
171  * very large which makes the loops quite long.
172  *
173  * Keeping track of this gives us an easy way to break out of
174  * those loops early.
175  */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179 	int section_nr = __section_nr(ms);
180 
181 	if (section_nr > __highest_present_section_nr)
182 		__highest_present_section_nr = section_nr;
183 
184 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186 
187 static inline int next_present_section_nr(int section_nr)
188 {
189 	do {
190 		section_nr++;
191 		if (present_section_nr(section_nr))
192 			return section_nr;
193 	} while ((section_nr < NR_MEM_SECTIONS) &&
194 		 (section_nr <= __highest_present_section_nr));
195 
196 	return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr)		\
199 	for (section_nr = next_present_section_nr(start-1);	\
200 	     ((section_nr >= 0) &&				\
201 	      (section_nr < NR_MEM_SECTIONS) &&			\
202 	      (section_nr <= __highest_present_section_nr));	\
203 	     section_nr = next_present_section_nr(section_nr))
204 
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
207 {
208 	unsigned long pfn;
209 
210 #ifdef CONFIG_SPARSEMEM_EXTREME
211 	if (unlikely(!mem_section)) {
212 		unsigned long size, align;
213 
214 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
215 		align = 1 << (INTERNODE_CACHE_SHIFT);
216 		mem_section = memblock_virt_alloc(size, align);
217 	}
218 #endif
219 
220 	start &= PAGE_SECTION_MASK;
221 	mminit_validate_memmodel_limits(&start, &end);
222 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
223 		unsigned long section = pfn_to_section_nr(pfn);
224 		struct mem_section *ms;
225 
226 		sparse_index_init(section, nid);
227 		set_section_nid(section, nid);
228 
229 		ms = __nr_to_section(section);
230 		if (!ms->section_mem_map) {
231 			ms->section_mem_map = sparse_encode_early_nid(nid) |
232 							SECTION_IS_ONLINE;
233 			section_mark_present(ms);
234 		}
235 	}
236 }
237 
238 /*
239  * Only used by the i386 NUMA architecures, but relatively
240  * generic code.
241  */
242 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
243 						     unsigned long end_pfn)
244 {
245 	unsigned long pfn;
246 	unsigned long nr_pages = 0;
247 
248 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
249 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
250 		if (nid != early_pfn_to_nid(pfn))
251 			continue;
252 
253 		if (pfn_present(pfn))
254 			nr_pages += PAGES_PER_SECTION;
255 	}
256 
257 	return nr_pages * sizeof(struct page);
258 }
259 
260 /*
261  * Subtle, we encode the real pfn into the mem_map such that
262  * the identity pfn - section_mem_map will return the actual
263  * physical page frame number.
264  */
265 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
266 {
267 	unsigned long coded_mem_map =
268 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
269 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
270 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
271 	return coded_mem_map;
272 }
273 
274 /*
275  * Decode mem_map from the coded memmap
276  */
277 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
278 {
279 	/* mask off the extra low bits of information */
280 	coded_mem_map &= SECTION_MAP_MASK;
281 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
282 }
283 
284 static int __meminit sparse_init_one_section(struct mem_section *ms,
285 		unsigned long pnum, struct page *mem_map,
286 		unsigned long *pageblock_bitmap)
287 {
288 	if (!present_section(ms))
289 		return -EINVAL;
290 
291 	ms->section_mem_map &= ~SECTION_MAP_MASK;
292 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
293 							SECTION_HAS_MEM_MAP;
294  	ms->pageblock_flags = pageblock_bitmap;
295 
296 	return 1;
297 }
298 
299 unsigned long usemap_size(void)
300 {
301 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
302 }
303 
304 #ifdef CONFIG_MEMORY_HOTPLUG
305 static unsigned long *__kmalloc_section_usemap(void)
306 {
307 	return kmalloc(usemap_size(), GFP_KERNEL);
308 }
309 #endif /* CONFIG_MEMORY_HOTPLUG */
310 
311 #ifdef CONFIG_MEMORY_HOTREMOVE
312 static unsigned long * __init
313 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
314 					 unsigned long size)
315 {
316 	unsigned long goal, limit;
317 	unsigned long *p;
318 	int nid;
319 	/*
320 	 * A page may contain usemaps for other sections preventing the
321 	 * page being freed and making a section unremovable while
322 	 * other sections referencing the usemap remain active. Similarly,
323 	 * a pgdat can prevent a section being removed. If section A
324 	 * contains a pgdat and section B contains the usemap, both
325 	 * sections become inter-dependent. This allocates usemaps
326 	 * from the same section as the pgdat where possible to avoid
327 	 * this problem.
328 	 */
329 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
330 	limit = goal + (1UL << PA_SECTION_SHIFT);
331 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
332 again:
333 	p = memblock_virt_alloc_try_nid_nopanic(size,
334 						SMP_CACHE_BYTES, goal, limit,
335 						nid);
336 	if (!p && limit) {
337 		limit = 0;
338 		goto again;
339 	}
340 	return p;
341 }
342 
343 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
344 {
345 	unsigned long usemap_snr, pgdat_snr;
346 	static unsigned long old_usemap_snr;
347 	static unsigned long old_pgdat_snr;
348 	struct pglist_data *pgdat = NODE_DATA(nid);
349 	int usemap_nid;
350 
351 	/* First call */
352 	if (!old_usemap_snr) {
353 		old_usemap_snr = NR_MEM_SECTIONS;
354 		old_pgdat_snr = NR_MEM_SECTIONS;
355 	}
356 
357 	usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
358 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
359 	if (usemap_snr == pgdat_snr)
360 		return;
361 
362 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
363 		/* skip redundant message */
364 		return;
365 
366 	old_usemap_snr = usemap_snr;
367 	old_pgdat_snr = pgdat_snr;
368 
369 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
370 	if (usemap_nid != nid) {
371 		pr_info("node %d must be removed before remove section %ld\n",
372 			nid, usemap_snr);
373 		return;
374 	}
375 	/*
376 	 * There is a circular dependency.
377 	 * Some platforms allow un-removable section because they will just
378 	 * gather other removable sections for dynamic partitioning.
379 	 * Just notify un-removable section's number here.
380 	 */
381 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
382 		usemap_snr, pgdat_snr, nid);
383 }
384 #else
385 static unsigned long * __init
386 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
387 					 unsigned long size)
388 {
389 	return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
390 }
391 
392 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
393 {
394 }
395 #endif /* CONFIG_MEMORY_HOTREMOVE */
396 
397 static void __init sparse_early_usemaps_alloc_node(void *data,
398 				 unsigned long pnum_begin,
399 				 unsigned long pnum_end,
400 				 unsigned long usemap_count, int nodeid)
401 {
402 	void *usemap;
403 	unsigned long pnum;
404 	unsigned long **usemap_map = (unsigned long **)data;
405 	int size = usemap_size();
406 
407 	usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
408 							  size * usemap_count);
409 	if (!usemap) {
410 		pr_warn("%s: allocation failed\n", __func__);
411 		return;
412 	}
413 
414 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
415 		if (!present_section_nr(pnum))
416 			continue;
417 		usemap_map[pnum] = usemap;
418 		usemap += size;
419 		check_usemap_section_nr(nodeid, usemap_map[pnum]);
420 	}
421 }
422 
423 #ifndef CONFIG_SPARSEMEM_VMEMMAP
424 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
425 		struct vmem_altmap *altmap)
426 {
427 	struct page *map;
428 	unsigned long size;
429 
430 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
431 	if (map)
432 		return map;
433 
434 	size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
435 	map = memblock_virt_alloc_try_nid(size,
436 					  PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
437 					  BOOTMEM_ALLOC_ACCESSIBLE, nid);
438 	return map;
439 }
440 void __init sparse_mem_maps_populate_node(struct page **map_map,
441 					  unsigned long pnum_begin,
442 					  unsigned long pnum_end,
443 					  unsigned long map_count, int nodeid)
444 {
445 	void *map;
446 	unsigned long pnum;
447 	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
448 
449 	map = alloc_remap(nodeid, size * map_count);
450 	if (map) {
451 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
452 			if (!present_section_nr(pnum))
453 				continue;
454 			map_map[pnum] = map;
455 			map += size;
456 		}
457 		return;
458 	}
459 
460 	size = PAGE_ALIGN(size);
461 	map = memblock_virt_alloc_try_nid_raw(size * map_count,
462 					      PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
463 					      BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
464 	if (map) {
465 		for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
466 			if (!present_section_nr(pnum))
467 				continue;
468 			map_map[pnum] = map;
469 			map += size;
470 		}
471 		return;
472 	}
473 
474 	/* fallback */
475 	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
476 		struct mem_section *ms;
477 
478 		if (!present_section_nr(pnum))
479 			continue;
480 		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
481 		if (map_map[pnum])
482 			continue;
483 		ms = __nr_to_section(pnum);
484 		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
485 		       __func__);
486 		ms->section_mem_map = 0;
487 	}
488 }
489 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
490 
491 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
492 static void __init sparse_early_mem_maps_alloc_node(void *data,
493 				 unsigned long pnum_begin,
494 				 unsigned long pnum_end,
495 				 unsigned long map_count, int nodeid)
496 {
497 	struct page **map_map = (struct page **)data;
498 	sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
499 					 map_count, nodeid);
500 }
501 #else
502 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
503 {
504 	struct page *map;
505 	struct mem_section *ms = __nr_to_section(pnum);
506 	int nid = sparse_early_nid(ms);
507 
508 	map = sparse_mem_map_populate(pnum, nid, NULL);
509 	if (map)
510 		return map;
511 
512 	pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
513 	       __func__);
514 	ms->section_mem_map = 0;
515 	return NULL;
516 }
517 #endif
518 
519 void __weak __meminit vmemmap_populate_print_last(void)
520 {
521 }
522 
523 /**
524  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
525  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
526  */
527 static void __init alloc_usemap_and_memmap(void (*alloc_func)
528 					(void *, unsigned long, unsigned long,
529 					unsigned long, int), void *data)
530 {
531 	unsigned long pnum;
532 	unsigned long map_count;
533 	int nodeid_begin = 0;
534 	unsigned long pnum_begin = 0;
535 
536 	for_each_present_section_nr(0, pnum) {
537 		struct mem_section *ms;
538 
539 		ms = __nr_to_section(pnum);
540 		nodeid_begin = sparse_early_nid(ms);
541 		pnum_begin = pnum;
542 		break;
543 	}
544 	map_count = 1;
545 	for_each_present_section_nr(pnum_begin + 1, pnum) {
546 		struct mem_section *ms;
547 		int nodeid;
548 
549 		ms = __nr_to_section(pnum);
550 		nodeid = sparse_early_nid(ms);
551 		if (nodeid == nodeid_begin) {
552 			map_count++;
553 			continue;
554 		}
555 		/* ok, we need to take cake of from pnum_begin to pnum - 1*/
556 		alloc_func(data, pnum_begin, pnum,
557 						map_count, nodeid_begin);
558 		/* new start, update count etc*/
559 		nodeid_begin = nodeid;
560 		pnum_begin = pnum;
561 		map_count = 1;
562 	}
563 	/* ok, last chunk */
564 	alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
565 						map_count, nodeid_begin);
566 }
567 
568 /*
569  * Allocate the accumulated non-linear sections, allocate a mem_map
570  * for each and record the physical to section mapping.
571  */
572 void __init sparse_init(void)
573 {
574 	unsigned long pnum;
575 	struct page *map;
576 	unsigned long *usemap;
577 	unsigned long **usemap_map;
578 	int size;
579 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
580 	int size2;
581 	struct page **map_map;
582 #endif
583 
584 	/* see include/linux/mmzone.h 'struct mem_section' definition */
585 	BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
586 
587 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
588 	set_pageblock_order();
589 
590 	/*
591 	 * map is using big page (aka 2M in x86 64 bit)
592 	 * usemap is less one page (aka 24 bytes)
593 	 * so alloc 2M (with 2M align) and 24 bytes in turn will
594 	 * make next 2M slip to one more 2M later.
595 	 * then in big system, the memory will have a lot of holes...
596 	 * here try to allocate 2M pages continuously.
597 	 *
598 	 * powerpc need to call sparse_init_one_section right after each
599 	 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
600 	 */
601 	size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
602 	usemap_map = memblock_virt_alloc(size, 0);
603 	if (!usemap_map)
604 		panic("can not allocate usemap_map\n");
605 	alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
606 							(void *)usemap_map);
607 
608 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
609 	size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
610 	map_map = memblock_virt_alloc(size2, 0);
611 	if (!map_map)
612 		panic("can not allocate map_map\n");
613 	alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
614 							(void *)map_map);
615 #endif
616 
617 	for_each_present_section_nr(0, pnum) {
618 		usemap = usemap_map[pnum];
619 		if (!usemap)
620 			continue;
621 
622 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
623 		map = map_map[pnum];
624 #else
625 		map = sparse_early_mem_map_alloc(pnum);
626 #endif
627 		if (!map)
628 			continue;
629 
630 		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
631 								usemap);
632 	}
633 
634 	vmemmap_populate_print_last();
635 
636 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
637 	memblock_free_early(__pa(map_map), size2);
638 #endif
639 	memblock_free_early(__pa(usemap_map), size);
640 }
641 
642 #ifdef CONFIG_MEMORY_HOTPLUG
643 
644 /* Mark all memory sections within the pfn range as online */
645 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
646 {
647 	unsigned long pfn;
648 
649 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
650 		unsigned long section_nr = pfn_to_section_nr(pfn);
651 		struct mem_section *ms;
652 
653 		/* onlining code should never touch invalid ranges */
654 		if (WARN_ON(!valid_section_nr(section_nr)))
655 			continue;
656 
657 		ms = __nr_to_section(section_nr);
658 		ms->section_mem_map |= SECTION_IS_ONLINE;
659 	}
660 }
661 
662 #ifdef CONFIG_MEMORY_HOTREMOVE
663 /* Mark all memory sections within the pfn range as online */
664 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
665 {
666 	unsigned long pfn;
667 
668 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
669 		unsigned long section_nr = pfn_to_section_nr(start_pfn);
670 		struct mem_section *ms;
671 
672 		/*
673 		 * TODO this needs some double checking. Offlining code makes
674 		 * sure to check pfn_valid but those checks might be just bogus
675 		 */
676 		if (WARN_ON(!valid_section_nr(section_nr)))
677 			continue;
678 
679 		ms = __nr_to_section(section_nr);
680 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
681 	}
682 }
683 #endif
684 
685 #ifdef CONFIG_SPARSEMEM_VMEMMAP
686 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
687 		struct vmem_altmap *altmap)
688 {
689 	/* This will make the necessary allocations eventually. */
690 	return sparse_mem_map_populate(pnum, nid, altmap);
691 }
692 static void __kfree_section_memmap(struct page *memmap,
693 		struct vmem_altmap *altmap)
694 {
695 	unsigned long start = (unsigned long)memmap;
696 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
697 
698 	vmemmap_free(start, end, altmap);
699 }
700 #ifdef CONFIG_MEMORY_HOTREMOVE
701 static void free_map_bootmem(struct page *memmap)
702 {
703 	unsigned long start = (unsigned long)memmap;
704 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
705 
706 	vmemmap_free(start, end, NULL);
707 }
708 #endif /* CONFIG_MEMORY_HOTREMOVE */
709 #else
710 static struct page *__kmalloc_section_memmap(void)
711 {
712 	struct page *page, *ret;
713 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
714 
715 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
716 	if (page)
717 		goto got_map_page;
718 
719 	ret = vmalloc(memmap_size);
720 	if (ret)
721 		goto got_map_ptr;
722 
723 	return NULL;
724 got_map_page:
725 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
726 got_map_ptr:
727 
728 	return ret;
729 }
730 
731 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
732 		struct vmem_altmap *altmap)
733 {
734 	return __kmalloc_section_memmap();
735 }
736 
737 static void __kfree_section_memmap(struct page *memmap,
738 		struct vmem_altmap *altmap)
739 {
740 	if (is_vmalloc_addr(memmap))
741 		vfree(memmap);
742 	else
743 		free_pages((unsigned long)memmap,
744 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
745 }
746 
747 #ifdef CONFIG_MEMORY_HOTREMOVE
748 static void free_map_bootmem(struct page *memmap)
749 {
750 	unsigned long maps_section_nr, removing_section_nr, i;
751 	unsigned long magic, nr_pages;
752 	struct page *page = virt_to_page(memmap);
753 
754 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
755 		>> PAGE_SHIFT;
756 
757 	for (i = 0; i < nr_pages; i++, page++) {
758 		magic = (unsigned long) page->freelist;
759 
760 		BUG_ON(magic == NODE_INFO);
761 
762 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
763 		removing_section_nr = page_private(page);
764 
765 		/*
766 		 * When this function is called, the removing section is
767 		 * logical offlined state. This means all pages are isolated
768 		 * from page allocator. If removing section's memmap is placed
769 		 * on the same section, it must not be freed.
770 		 * If it is freed, page allocator may allocate it which will
771 		 * be removed physically soon.
772 		 */
773 		if (maps_section_nr != removing_section_nr)
774 			put_page_bootmem(page);
775 	}
776 }
777 #endif /* CONFIG_MEMORY_HOTREMOVE */
778 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
779 
780 /*
781  * returns the number of sections whose mem_maps were properly
782  * set.  If this is <=0, then that means that the passed-in
783  * map was not consumed and must be freed.
784  */
785 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
786 		unsigned long start_pfn, struct vmem_altmap *altmap)
787 {
788 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
789 	struct mem_section *ms;
790 	struct page *memmap;
791 	unsigned long *usemap;
792 	unsigned long flags;
793 	int ret;
794 
795 	/*
796 	 * no locking for this, because it does its own
797 	 * plus, it does a kmalloc
798 	 */
799 	ret = sparse_index_init(section_nr, pgdat->node_id);
800 	if (ret < 0 && ret != -EEXIST)
801 		return ret;
802 	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
803 	if (!memmap)
804 		return -ENOMEM;
805 	usemap = __kmalloc_section_usemap();
806 	if (!usemap) {
807 		__kfree_section_memmap(memmap, altmap);
808 		return -ENOMEM;
809 	}
810 
811 	pgdat_resize_lock(pgdat, &flags);
812 
813 	ms = __pfn_to_section(start_pfn);
814 	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
815 		ret = -EEXIST;
816 		goto out;
817 	}
818 
819 	memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
820 
821 	section_mark_present(ms);
822 
823 	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
824 
825 out:
826 	pgdat_resize_unlock(pgdat, &flags);
827 	if (ret <= 0) {
828 		kfree(usemap);
829 		__kfree_section_memmap(memmap, altmap);
830 	}
831 	return ret;
832 }
833 
834 #ifdef CONFIG_MEMORY_HOTREMOVE
835 #ifdef CONFIG_MEMORY_FAILURE
836 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
837 {
838 	int i;
839 
840 	if (!memmap)
841 		return;
842 
843 	for (i = 0; i < nr_pages; i++) {
844 		if (PageHWPoison(&memmap[i])) {
845 			atomic_long_sub(1, &num_poisoned_pages);
846 			ClearPageHWPoison(&memmap[i]);
847 		}
848 	}
849 }
850 #else
851 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
852 {
853 }
854 #endif
855 
856 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
857 		struct vmem_altmap *altmap)
858 {
859 	struct page *usemap_page;
860 
861 	if (!usemap)
862 		return;
863 
864 	usemap_page = virt_to_page(usemap);
865 	/*
866 	 * Check to see if allocation came from hot-plug-add
867 	 */
868 	if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
869 		kfree(usemap);
870 		if (memmap)
871 			__kfree_section_memmap(memmap, altmap);
872 		return;
873 	}
874 
875 	/*
876 	 * The usemap came from bootmem. This is packed with other usemaps
877 	 * on the section which has pgdat at boot time. Just keep it as is now.
878 	 */
879 
880 	if (memmap)
881 		free_map_bootmem(memmap);
882 }
883 
884 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
885 		unsigned long map_offset, struct vmem_altmap *altmap)
886 {
887 	struct page *memmap = NULL;
888 	unsigned long *usemap = NULL, flags;
889 	struct pglist_data *pgdat = zone->zone_pgdat;
890 
891 	pgdat_resize_lock(pgdat, &flags);
892 	if (ms->section_mem_map) {
893 		usemap = ms->pageblock_flags;
894 		memmap = sparse_decode_mem_map(ms->section_mem_map,
895 						__section_nr(ms));
896 		ms->section_mem_map = 0;
897 		ms->pageblock_flags = NULL;
898 	}
899 	pgdat_resize_unlock(pgdat, &flags);
900 
901 	clear_hwpoisoned_pages(memmap + map_offset,
902 			PAGES_PER_SECTION - map_offset);
903 	free_section_usemap(memmap, usemap, altmap);
904 }
905 #endif /* CONFIG_MEMORY_HOTREMOVE */
906 #endif /* CONFIG_MEMORY_HOTPLUG */
907