xref: /linux/mm/sparse.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/config.h>
5 #include <linux/mm.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <asm/dma.h>
11 
12 /*
13  * Permanent SPARSEMEM data:
14  *
15  * 1) mem_section	- memory sections, mem_map's for valid memory
16  */
17 #ifdef CONFIG_SPARSEMEM_EXTREME
18 struct mem_section *mem_section[NR_SECTION_ROOTS]
19 	____cacheline_maxaligned_in_smp;
20 #else
21 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22 	____cacheline_maxaligned_in_smp;
23 #endif
24 EXPORT_SYMBOL(mem_section);
25 
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 static struct mem_section *sparse_index_alloc(int nid)
28 {
29 	struct mem_section *section = NULL;
30 	unsigned long array_size = SECTIONS_PER_ROOT *
31 				   sizeof(struct mem_section);
32 
33 	section = alloc_bootmem_node(NODE_DATA(nid), array_size);
34 
35 	if (section)
36 		memset(section, 0, array_size);
37 
38 	return section;
39 }
40 
41 static int sparse_index_init(unsigned long section_nr, int nid)
42 {
43 	static spinlock_t index_init_lock = SPIN_LOCK_UNLOCKED;
44 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
45 	struct mem_section *section;
46 	int ret = 0;
47 
48 	if (mem_section[root])
49 		return -EEXIST;
50 
51 	section = sparse_index_alloc(nid);
52 	/*
53 	 * This lock keeps two different sections from
54 	 * reallocating for the same index
55 	 */
56 	spin_lock(&index_init_lock);
57 
58 	if (mem_section[root]) {
59 		ret = -EEXIST;
60 		goto out;
61 	}
62 
63 	mem_section[root] = section;
64 out:
65 	spin_unlock(&index_init_lock);
66 	return ret;
67 }
68 #else /* !SPARSEMEM_EXTREME */
69 static inline int sparse_index_init(unsigned long section_nr, int nid)
70 {
71 	return 0;
72 }
73 #endif
74 
75 /* Record a memory area against a node. */
76 void memory_present(int nid, unsigned long start, unsigned long end)
77 {
78 	unsigned long pfn;
79 
80 	start &= PAGE_SECTION_MASK;
81 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
82 		unsigned long section = pfn_to_section_nr(pfn);
83 		struct mem_section *ms;
84 
85 		sparse_index_init(section, nid);
86 
87 		ms = __nr_to_section(section);
88 		if (!ms->section_mem_map)
89 			ms->section_mem_map = SECTION_MARKED_PRESENT;
90 	}
91 }
92 
93 /*
94  * Only used by the i386 NUMA architecures, but relatively
95  * generic code.
96  */
97 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
98 						     unsigned long end_pfn)
99 {
100 	unsigned long pfn;
101 	unsigned long nr_pages = 0;
102 
103 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
104 		if (nid != early_pfn_to_nid(pfn))
105 			continue;
106 
107 		if (pfn_valid(pfn))
108 			nr_pages += PAGES_PER_SECTION;
109 	}
110 
111 	return nr_pages * sizeof(struct page);
112 }
113 
114 /*
115  * Subtle, we encode the real pfn into the mem_map such that
116  * the identity pfn - section_mem_map will return the actual
117  * physical page frame number.
118  */
119 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
120 {
121 	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
122 }
123 
124 /*
125  * We need this if we ever free the mem_maps.  While not implemented yet,
126  * this function is included for parity with its sibling.
127  */
128 static __attribute((unused))
129 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
130 {
131 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
132 }
133 
134 static int sparse_init_one_section(struct mem_section *ms,
135 		unsigned long pnum, struct page *mem_map)
136 {
137 	if (!valid_section(ms))
138 		return -EINVAL;
139 
140 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
141 
142 	return 1;
143 }
144 
145 static struct page *sparse_early_mem_map_alloc(unsigned long pnum)
146 {
147 	struct page *map;
148 	int nid = early_pfn_to_nid(section_nr_to_pfn(pnum));
149 	struct mem_section *ms = __nr_to_section(pnum);
150 
151 	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
152 	if (map)
153 		return map;
154 
155 	map = alloc_bootmem_node(NODE_DATA(nid),
156 			sizeof(struct page) * PAGES_PER_SECTION);
157 	if (map)
158 		return map;
159 
160 	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
161 	ms->section_mem_map = 0;
162 	return NULL;
163 }
164 
165 /*
166  * Allocate the accumulated non-linear sections, allocate a mem_map
167  * for each and record the physical to section mapping.
168  */
169 void sparse_init(void)
170 {
171 	unsigned long pnum;
172 	struct page *map;
173 
174 	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
175 		if (!valid_section_nr(pnum))
176 			continue;
177 
178 		map = sparse_early_mem_map_alloc(pnum);
179 		if (!map)
180 			continue;
181 		sparse_init_one_section(__nr_to_section(pnum), pnum, map);
182 	}
183 }
184 
185 /*
186  * returns the number of sections whose mem_maps were properly
187  * set.  If this is <=0, then that means that the passed-in
188  * map was not consumed and must be freed.
189  */
190 int sparse_add_one_section(unsigned long start_pfn, int nr_pages, struct page *map)
191 {
192 	struct mem_section *ms = __pfn_to_section(start_pfn);
193 
194 	if (ms->section_mem_map & SECTION_MARKED_PRESENT)
195 		return -EEXIST;
196 
197 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
198 
199 	return sparse_init_one_section(ms, pfn_to_section_nr(start_pfn), map);
200 }
201