1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * sparse memory mappings. 4 */ 5 #include <linux/mm.h> 6 #include <linux/slab.h> 7 #include <linux/mmzone.h> 8 #include <linux/bootmem.h> 9 #include <linux/compiler.h> 10 #include <linux/highmem.h> 11 #include <linux/export.h> 12 #include <linux/spinlock.h> 13 #include <linux/vmalloc.h> 14 15 #include "internal.h" 16 #include <asm/dma.h> 17 #include <asm/pgalloc.h> 18 #include <asm/pgtable.h> 19 20 /* 21 * Permanent SPARSEMEM data: 22 * 23 * 1) mem_section - memory sections, mem_map's for valid memory 24 */ 25 #ifdef CONFIG_SPARSEMEM_EXTREME 26 struct mem_section **mem_section; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static noinline struct mem_section __ref *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) 69 section = kzalloc_node(array_size, GFP_KERNEL, nid); 70 else 71 section = memblock_virt_alloc_node(array_size, nid); 72 73 return section; 74 } 75 76 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 77 { 78 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 79 struct mem_section *section; 80 81 if (mem_section[root]) 82 return -EEXIST; 83 84 section = sparse_index_alloc(nid); 85 if (!section) 86 return -ENOMEM; 87 88 mem_section[root] = section; 89 90 return 0; 91 } 92 #else /* !SPARSEMEM_EXTREME */ 93 static inline int sparse_index_init(unsigned long section_nr, int nid) 94 { 95 return 0; 96 } 97 #endif 98 99 #ifdef CONFIG_SPARSEMEM_EXTREME 100 int __section_nr(struct mem_section* ms) 101 { 102 unsigned long root_nr; 103 struct mem_section *root = NULL; 104 105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 107 if (!root) 108 continue; 109 110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 111 break; 112 } 113 114 VM_BUG_ON(!root); 115 116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 117 } 118 #else 119 int __section_nr(struct mem_section* ms) 120 { 121 return (int)(ms - mem_section[0]); 122 } 123 #endif 124 125 /* 126 * During early boot, before section_mem_map is used for an actual 127 * mem_map, we use section_mem_map to store the section's NUMA 128 * node. This keeps us from having to use another data structure. The 129 * node information is cleared just before we store the real mem_map. 130 */ 131 static inline unsigned long sparse_encode_early_nid(int nid) 132 { 133 return (nid << SECTION_NID_SHIFT); 134 } 135 136 static inline int sparse_early_nid(struct mem_section *section) 137 { 138 return (section->section_mem_map >> SECTION_NID_SHIFT); 139 } 140 141 /* Validate the physical addressing limitations of the model */ 142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 143 unsigned long *end_pfn) 144 { 145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 146 147 /* 148 * Sanity checks - do not allow an architecture to pass 149 * in larger pfns than the maximum scope of sparsemem: 150 */ 151 if (*start_pfn > max_sparsemem_pfn) { 152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 154 *start_pfn, *end_pfn, max_sparsemem_pfn); 155 WARN_ON_ONCE(1); 156 *start_pfn = max_sparsemem_pfn; 157 *end_pfn = max_sparsemem_pfn; 158 } else if (*end_pfn > max_sparsemem_pfn) { 159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 161 *start_pfn, *end_pfn, max_sparsemem_pfn); 162 WARN_ON_ONCE(1); 163 *end_pfn = max_sparsemem_pfn; 164 } 165 } 166 167 /* 168 * There are a number of times that we loop over NR_MEM_SECTIONS, 169 * looking for section_present() on each. But, when we have very 170 * large physical address spaces, NR_MEM_SECTIONS can also be 171 * very large which makes the loops quite long. 172 * 173 * Keeping track of this gives us an easy way to break out of 174 * those loops early. 175 */ 176 int __highest_present_section_nr; 177 static void section_mark_present(struct mem_section *ms) 178 { 179 int section_nr = __section_nr(ms); 180 181 if (section_nr > __highest_present_section_nr) 182 __highest_present_section_nr = section_nr; 183 184 ms->section_mem_map |= SECTION_MARKED_PRESENT; 185 } 186 187 static inline int next_present_section_nr(int section_nr) 188 { 189 do { 190 section_nr++; 191 if (present_section_nr(section_nr)) 192 return section_nr; 193 } while ((section_nr < NR_MEM_SECTIONS) && 194 (section_nr <= __highest_present_section_nr)); 195 196 return -1; 197 } 198 #define for_each_present_section_nr(start, section_nr) \ 199 for (section_nr = next_present_section_nr(start-1); \ 200 ((section_nr >= 0) && \ 201 (section_nr < NR_MEM_SECTIONS) && \ 202 (section_nr <= __highest_present_section_nr)); \ 203 section_nr = next_present_section_nr(section_nr)) 204 205 /* Record a memory area against a node. */ 206 void __init memory_present(int nid, unsigned long start, unsigned long end) 207 { 208 unsigned long pfn; 209 210 #ifdef CONFIG_SPARSEMEM_EXTREME 211 if (unlikely(!mem_section)) { 212 unsigned long size, align; 213 214 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS; 215 align = 1 << (INTERNODE_CACHE_SHIFT); 216 mem_section = memblock_virt_alloc(size, align); 217 } 218 #endif 219 220 start &= PAGE_SECTION_MASK; 221 mminit_validate_memmodel_limits(&start, &end); 222 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 223 unsigned long section = pfn_to_section_nr(pfn); 224 struct mem_section *ms; 225 226 sparse_index_init(section, nid); 227 set_section_nid(section, nid); 228 229 ms = __nr_to_section(section); 230 if (!ms->section_mem_map) { 231 ms->section_mem_map = sparse_encode_early_nid(nid) | 232 SECTION_IS_ONLINE; 233 section_mark_present(ms); 234 } 235 } 236 } 237 238 /* 239 * Only used by the i386 NUMA architecures, but relatively 240 * generic code. 241 */ 242 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 243 unsigned long end_pfn) 244 { 245 unsigned long pfn; 246 unsigned long nr_pages = 0; 247 248 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 249 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 250 if (nid != early_pfn_to_nid(pfn)) 251 continue; 252 253 if (pfn_present(pfn)) 254 nr_pages += PAGES_PER_SECTION; 255 } 256 257 return nr_pages * sizeof(struct page); 258 } 259 260 /* 261 * Subtle, we encode the real pfn into the mem_map such that 262 * the identity pfn - section_mem_map will return the actual 263 * physical page frame number. 264 */ 265 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 266 { 267 unsigned long coded_mem_map = 268 (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 269 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT)); 270 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK); 271 return coded_mem_map; 272 } 273 274 /* 275 * Decode mem_map from the coded memmap 276 */ 277 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 278 { 279 /* mask off the extra low bits of information */ 280 coded_mem_map &= SECTION_MAP_MASK; 281 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 282 } 283 284 static int __meminit sparse_init_one_section(struct mem_section *ms, 285 unsigned long pnum, struct page *mem_map, 286 unsigned long *pageblock_bitmap) 287 { 288 if (!present_section(ms)) 289 return -EINVAL; 290 291 ms->section_mem_map &= ~SECTION_MAP_MASK; 292 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 293 SECTION_HAS_MEM_MAP; 294 ms->pageblock_flags = pageblock_bitmap; 295 296 return 1; 297 } 298 299 unsigned long usemap_size(void) 300 { 301 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long); 302 } 303 304 #ifdef CONFIG_MEMORY_HOTPLUG 305 static unsigned long *__kmalloc_section_usemap(void) 306 { 307 return kmalloc(usemap_size(), GFP_KERNEL); 308 } 309 #endif /* CONFIG_MEMORY_HOTPLUG */ 310 311 #ifdef CONFIG_MEMORY_HOTREMOVE 312 static unsigned long * __init 313 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 314 unsigned long size) 315 { 316 unsigned long goal, limit; 317 unsigned long *p; 318 int nid; 319 /* 320 * A page may contain usemaps for other sections preventing the 321 * page being freed and making a section unremovable while 322 * other sections referencing the usemap remain active. Similarly, 323 * a pgdat can prevent a section being removed. If section A 324 * contains a pgdat and section B contains the usemap, both 325 * sections become inter-dependent. This allocates usemaps 326 * from the same section as the pgdat where possible to avoid 327 * this problem. 328 */ 329 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 330 limit = goal + (1UL << PA_SECTION_SHIFT); 331 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 332 again: 333 p = memblock_virt_alloc_try_nid_nopanic(size, 334 SMP_CACHE_BYTES, goal, limit, 335 nid); 336 if (!p && limit) { 337 limit = 0; 338 goto again; 339 } 340 return p; 341 } 342 343 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 344 { 345 unsigned long usemap_snr, pgdat_snr; 346 static unsigned long old_usemap_snr; 347 static unsigned long old_pgdat_snr; 348 struct pglist_data *pgdat = NODE_DATA(nid); 349 int usemap_nid; 350 351 /* First call */ 352 if (!old_usemap_snr) { 353 old_usemap_snr = NR_MEM_SECTIONS; 354 old_pgdat_snr = NR_MEM_SECTIONS; 355 } 356 357 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 358 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 359 if (usemap_snr == pgdat_snr) 360 return; 361 362 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 363 /* skip redundant message */ 364 return; 365 366 old_usemap_snr = usemap_snr; 367 old_pgdat_snr = pgdat_snr; 368 369 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 370 if (usemap_nid != nid) { 371 pr_info("node %d must be removed before remove section %ld\n", 372 nid, usemap_snr); 373 return; 374 } 375 /* 376 * There is a circular dependency. 377 * Some platforms allow un-removable section because they will just 378 * gather other removable sections for dynamic partitioning. 379 * Just notify un-removable section's number here. 380 */ 381 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 382 usemap_snr, pgdat_snr, nid); 383 } 384 #else 385 static unsigned long * __init 386 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 387 unsigned long size) 388 { 389 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 390 } 391 392 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 393 { 394 } 395 #endif /* CONFIG_MEMORY_HOTREMOVE */ 396 397 static void __init sparse_early_usemaps_alloc_node(void *data, 398 unsigned long pnum_begin, 399 unsigned long pnum_end, 400 unsigned long usemap_count, int nodeid) 401 { 402 void *usemap; 403 unsigned long pnum; 404 unsigned long **usemap_map = (unsigned long **)data; 405 int size = usemap_size(); 406 407 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 408 size * usemap_count); 409 if (!usemap) { 410 pr_warn("%s: allocation failed\n", __func__); 411 return; 412 } 413 414 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 415 if (!present_section_nr(pnum)) 416 continue; 417 usemap_map[pnum] = usemap; 418 usemap += size; 419 check_usemap_section_nr(nodeid, usemap_map[pnum]); 420 } 421 } 422 423 #ifndef CONFIG_SPARSEMEM_VMEMMAP 424 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 425 { 426 struct page *map; 427 unsigned long size; 428 429 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 430 if (map) 431 return map; 432 433 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 434 map = memblock_virt_alloc_try_nid(size, 435 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 436 BOOTMEM_ALLOC_ACCESSIBLE, nid); 437 return map; 438 } 439 void __init sparse_mem_maps_populate_node(struct page **map_map, 440 unsigned long pnum_begin, 441 unsigned long pnum_end, 442 unsigned long map_count, int nodeid) 443 { 444 void *map; 445 unsigned long pnum; 446 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 447 448 map = alloc_remap(nodeid, size * map_count); 449 if (map) { 450 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 451 if (!present_section_nr(pnum)) 452 continue; 453 map_map[pnum] = map; 454 map += size; 455 } 456 return; 457 } 458 459 size = PAGE_ALIGN(size); 460 map = memblock_virt_alloc_try_nid_raw(size * map_count, 461 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 462 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 463 if (map) { 464 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 465 if (!present_section_nr(pnum)) 466 continue; 467 map_map[pnum] = map; 468 map += size; 469 } 470 return; 471 } 472 473 /* fallback */ 474 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 475 struct mem_section *ms; 476 477 if (!present_section_nr(pnum)) 478 continue; 479 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 480 if (map_map[pnum]) 481 continue; 482 ms = __nr_to_section(pnum); 483 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 484 __func__); 485 ms->section_mem_map = 0; 486 } 487 } 488 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 489 490 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 491 static void __init sparse_early_mem_maps_alloc_node(void *data, 492 unsigned long pnum_begin, 493 unsigned long pnum_end, 494 unsigned long map_count, int nodeid) 495 { 496 struct page **map_map = (struct page **)data; 497 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 498 map_count, nodeid); 499 } 500 #else 501 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 502 { 503 struct page *map; 504 struct mem_section *ms = __nr_to_section(pnum); 505 int nid = sparse_early_nid(ms); 506 507 map = sparse_mem_map_populate(pnum, nid); 508 if (map) 509 return map; 510 511 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 512 __func__); 513 ms->section_mem_map = 0; 514 return NULL; 515 } 516 #endif 517 518 void __weak __meminit vmemmap_populate_print_last(void) 519 { 520 } 521 522 /** 523 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 524 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 525 */ 526 static void __init alloc_usemap_and_memmap(void (*alloc_func) 527 (void *, unsigned long, unsigned long, 528 unsigned long, int), void *data) 529 { 530 unsigned long pnum; 531 unsigned long map_count; 532 int nodeid_begin = 0; 533 unsigned long pnum_begin = 0; 534 535 for_each_present_section_nr(0, pnum) { 536 struct mem_section *ms; 537 538 ms = __nr_to_section(pnum); 539 nodeid_begin = sparse_early_nid(ms); 540 pnum_begin = pnum; 541 break; 542 } 543 map_count = 1; 544 for_each_present_section_nr(pnum_begin + 1, pnum) { 545 struct mem_section *ms; 546 int nodeid; 547 548 ms = __nr_to_section(pnum); 549 nodeid = sparse_early_nid(ms); 550 if (nodeid == nodeid_begin) { 551 map_count++; 552 continue; 553 } 554 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 555 alloc_func(data, pnum_begin, pnum, 556 map_count, nodeid_begin); 557 /* new start, update count etc*/ 558 nodeid_begin = nodeid; 559 pnum_begin = pnum; 560 map_count = 1; 561 } 562 /* ok, last chunk */ 563 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 564 map_count, nodeid_begin); 565 } 566 567 /* 568 * Allocate the accumulated non-linear sections, allocate a mem_map 569 * for each and record the physical to section mapping. 570 */ 571 void __init sparse_init(void) 572 { 573 unsigned long pnum; 574 struct page *map; 575 unsigned long *usemap; 576 unsigned long **usemap_map; 577 int size; 578 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 579 int size2; 580 struct page **map_map; 581 #endif 582 583 /* see include/linux/mmzone.h 'struct mem_section' definition */ 584 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 585 586 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 587 set_pageblock_order(); 588 589 /* 590 * map is using big page (aka 2M in x86 64 bit) 591 * usemap is less one page (aka 24 bytes) 592 * so alloc 2M (with 2M align) and 24 bytes in turn will 593 * make next 2M slip to one more 2M later. 594 * then in big system, the memory will have a lot of holes... 595 * here try to allocate 2M pages continuously. 596 * 597 * powerpc need to call sparse_init_one_section right after each 598 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 599 */ 600 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 601 usemap_map = memblock_virt_alloc(size, 0); 602 if (!usemap_map) 603 panic("can not allocate usemap_map\n"); 604 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 605 (void *)usemap_map); 606 607 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 608 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 609 map_map = memblock_virt_alloc(size2, 0); 610 if (!map_map) 611 panic("can not allocate map_map\n"); 612 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 613 (void *)map_map); 614 #endif 615 616 for_each_present_section_nr(0, pnum) { 617 usemap = usemap_map[pnum]; 618 if (!usemap) 619 continue; 620 621 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 622 map = map_map[pnum]; 623 #else 624 map = sparse_early_mem_map_alloc(pnum); 625 #endif 626 if (!map) 627 continue; 628 629 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 630 usemap); 631 } 632 633 vmemmap_populate_print_last(); 634 635 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 636 memblock_free_early(__pa(map_map), size2); 637 #endif 638 memblock_free_early(__pa(usemap_map), size); 639 } 640 641 #ifdef CONFIG_MEMORY_HOTPLUG 642 643 /* Mark all memory sections within the pfn range as online */ 644 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 645 { 646 unsigned long pfn; 647 648 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 649 unsigned long section_nr = pfn_to_section_nr(pfn); 650 struct mem_section *ms; 651 652 /* onlining code should never touch invalid ranges */ 653 if (WARN_ON(!valid_section_nr(section_nr))) 654 continue; 655 656 ms = __nr_to_section(section_nr); 657 ms->section_mem_map |= SECTION_IS_ONLINE; 658 } 659 } 660 661 #ifdef CONFIG_MEMORY_HOTREMOVE 662 /* Mark all memory sections within the pfn range as online */ 663 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn) 664 { 665 unsigned long pfn; 666 667 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 668 unsigned long section_nr = pfn_to_section_nr(start_pfn); 669 struct mem_section *ms; 670 671 /* 672 * TODO this needs some double checking. Offlining code makes 673 * sure to check pfn_valid but those checks might be just bogus 674 */ 675 if (WARN_ON(!valid_section_nr(section_nr))) 676 continue; 677 678 ms = __nr_to_section(section_nr); 679 ms->section_mem_map &= ~SECTION_IS_ONLINE; 680 } 681 } 682 #endif 683 684 #ifdef CONFIG_SPARSEMEM_VMEMMAP 685 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 686 { 687 /* This will make the necessary allocations eventually. */ 688 return sparse_mem_map_populate(pnum, nid); 689 } 690 static void __kfree_section_memmap(struct page *memmap) 691 { 692 unsigned long start = (unsigned long)memmap; 693 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 694 695 vmemmap_free(start, end); 696 } 697 #ifdef CONFIG_MEMORY_HOTREMOVE 698 static void free_map_bootmem(struct page *memmap) 699 { 700 unsigned long start = (unsigned long)memmap; 701 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 702 703 vmemmap_free(start, end); 704 } 705 #endif /* CONFIG_MEMORY_HOTREMOVE */ 706 #else 707 static struct page *__kmalloc_section_memmap(void) 708 { 709 struct page *page, *ret; 710 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 711 712 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 713 if (page) 714 goto got_map_page; 715 716 ret = vmalloc(memmap_size); 717 if (ret) 718 goto got_map_ptr; 719 720 return NULL; 721 got_map_page: 722 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 723 got_map_ptr: 724 725 return ret; 726 } 727 728 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 729 { 730 return __kmalloc_section_memmap(); 731 } 732 733 static void __kfree_section_memmap(struct page *memmap) 734 { 735 if (is_vmalloc_addr(memmap)) 736 vfree(memmap); 737 else 738 free_pages((unsigned long)memmap, 739 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 740 } 741 742 #ifdef CONFIG_MEMORY_HOTREMOVE 743 static void free_map_bootmem(struct page *memmap) 744 { 745 unsigned long maps_section_nr, removing_section_nr, i; 746 unsigned long magic, nr_pages; 747 struct page *page = virt_to_page(memmap); 748 749 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 750 >> PAGE_SHIFT; 751 752 for (i = 0; i < nr_pages; i++, page++) { 753 magic = (unsigned long) page->freelist; 754 755 BUG_ON(magic == NODE_INFO); 756 757 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 758 removing_section_nr = page_private(page); 759 760 /* 761 * When this function is called, the removing section is 762 * logical offlined state. This means all pages are isolated 763 * from page allocator. If removing section's memmap is placed 764 * on the same section, it must not be freed. 765 * If it is freed, page allocator may allocate it which will 766 * be removed physically soon. 767 */ 768 if (maps_section_nr != removing_section_nr) 769 put_page_bootmem(page); 770 } 771 } 772 #endif /* CONFIG_MEMORY_HOTREMOVE */ 773 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 774 775 /* 776 * returns the number of sections whose mem_maps were properly 777 * set. If this is <=0, then that means that the passed-in 778 * map was not consumed and must be freed. 779 */ 780 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn) 781 { 782 unsigned long section_nr = pfn_to_section_nr(start_pfn); 783 struct mem_section *ms; 784 struct page *memmap; 785 unsigned long *usemap; 786 unsigned long flags; 787 int ret; 788 789 /* 790 * no locking for this, because it does its own 791 * plus, it does a kmalloc 792 */ 793 ret = sparse_index_init(section_nr, pgdat->node_id); 794 if (ret < 0 && ret != -EEXIST) 795 return ret; 796 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id); 797 if (!memmap) 798 return -ENOMEM; 799 usemap = __kmalloc_section_usemap(); 800 if (!usemap) { 801 __kfree_section_memmap(memmap); 802 return -ENOMEM; 803 } 804 805 pgdat_resize_lock(pgdat, &flags); 806 807 ms = __pfn_to_section(start_pfn); 808 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 809 ret = -EEXIST; 810 goto out; 811 } 812 813 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION); 814 815 section_mark_present(ms); 816 817 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 818 819 out: 820 pgdat_resize_unlock(pgdat, &flags); 821 if (ret <= 0) { 822 kfree(usemap); 823 __kfree_section_memmap(memmap); 824 } 825 return ret; 826 } 827 828 #ifdef CONFIG_MEMORY_HOTREMOVE 829 #ifdef CONFIG_MEMORY_FAILURE 830 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 831 { 832 int i; 833 834 if (!memmap) 835 return; 836 837 for (i = 0; i < nr_pages; i++) { 838 if (PageHWPoison(&memmap[i])) { 839 atomic_long_sub(1, &num_poisoned_pages); 840 ClearPageHWPoison(&memmap[i]); 841 } 842 } 843 } 844 #else 845 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 846 { 847 } 848 #endif 849 850 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 851 { 852 struct page *usemap_page; 853 854 if (!usemap) 855 return; 856 857 usemap_page = virt_to_page(usemap); 858 /* 859 * Check to see if allocation came from hot-plug-add 860 */ 861 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 862 kfree(usemap); 863 if (memmap) 864 __kfree_section_memmap(memmap); 865 return; 866 } 867 868 /* 869 * The usemap came from bootmem. This is packed with other usemaps 870 * on the section which has pgdat at boot time. Just keep it as is now. 871 */ 872 873 if (memmap) 874 free_map_bootmem(memmap); 875 } 876 877 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 878 unsigned long map_offset) 879 { 880 struct page *memmap = NULL; 881 unsigned long *usemap = NULL, flags; 882 struct pglist_data *pgdat = zone->zone_pgdat; 883 884 pgdat_resize_lock(pgdat, &flags); 885 if (ms->section_mem_map) { 886 usemap = ms->pageblock_flags; 887 memmap = sparse_decode_mem_map(ms->section_mem_map, 888 __section_nr(ms)); 889 ms->section_mem_map = 0; 890 ms->pageblock_flags = NULL; 891 } 892 pgdat_resize_unlock(pgdat, &flags); 893 894 clear_hwpoisoned_pages(memmap + map_offset, 895 PAGES_PER_SECTION - map_offset); 896 free_section_usemap(memmap, usemap); 897 } 898 #endif /* CONFIG_MEMORY_HOTREMOVE */ 899 #endif /* CONFIG_MEMORY_HOTPLUG */ 900