1 /* 2 * sparse memory mappings. 3 */ 4 #include <linux/mm.h> 5 #include <linux/slab.h> 6 #include <linux/mmzone.h> 7 #include <linux/bootmem.h> 8 #include <linux/compiler.h> 9 #include <linux/highmem.h> 10 #include <linux/export.h> 11 #include <linux/spinlock.h> 12 #include <linux/vmalloc.h> 13 14 #include "internal.h" 15 #include <asm/dma.h> 16 #include <asm/pgalloc.h> 17 #include <asm/pgtable.h> 18 19 /* 20 * Permanent SPARSEMEM data: 21 * 22 * 1) mem_section - memory sections, mem_map's for valid memory 23 */ 24 #ifdef CONFIG_SPARSEMEM_EXTREME 25 struct mem_section *mem_section[NR_SECTION_ROOTS] 26 ____cacheline_internodealigned_in_smp; 27 #else 28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] 29 ____cacheline_internodealigned_in_smp; 30 #endif 31 EXPORT_SYMBOL(mem_section); 32 33 #ifdef NODE_NOT_IN_PAGE_FLAGS 34 /* 35 * If we did not store the node number in the page then we have to 36 * do a lookup in the section_to_node_table in order to find which 37 * node the page belongs to. 38 */ 39 #if MAX_NUMNODES <= 256 40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 41 #else 42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned; 43 #endif 44 45 int page_to_nid(const struct page *page) 46 { 47 return section_to_node_table[page_to_section(page)]; 48 } 49 EXPORT_SYMBOL(page_to_nid); 50 51 static void set_section_nid(unsigned long section_nr, int nid) 52 { 53 section_to_node_table[section_nr] = nid; 54 } 55 #else /* !NODE_NOT_IN_PAGE_FLAGS */ 56 static inline void set_section_nid(unsigned long section_nr, int nid) 57 { 58 } 59 #endif 60 61 #ifdef CONFIG_SPARSEMEM_EXTREME 62 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid) 63 { 64 struct mem_section *section = NULL; 65 unsigned long array_size = SECTIONS_PER_ROOT * 66 sizeof(struct mem_section); 67 68 if (slab_is_available()) { 69 if (node_state(nid, N_HIGH_MEMORY)) 70 section = kzalloc_node(array_size, GFP_KERNEL, nid); 71 else 72 section = kzalloc(array_size, GFP_KERNEL); 73 } else { 74 section = memblock_virt_alloc_node(array_size, nid); 75 } 76 77 return section; 78 } 79 80 static int __meminit sparse_index_init(unsigned long section_nr, int nid) 81 { 82 unsigned long root = SECTION_NR_TO_ROOT(section_nr); 83 struct mem_section *section; 84 85 if (mem_section[root]) 86 return -EEXIST; 87 88 section = sparse_index_alloc(nid); 89 if (!section) 90 return -ENOMEM; 91 92 mem_section[root] = section; 93 94 return 0; 95 } 96 #else /* !SPARSEMEM_EXTREME */ 97 static inline int sparse_index_init(unsigned long section_nr, int nid) 98 { 99 return 0; 100 } 101 #endif 102 103 /* 104 * Although written for the SPARSEMEM_EXTREME case, this happens 105 * to also work for the flat array case because 106 * NR_SECTION_ROOTS==NR_MEM_SECTIONS. 107 */ 108 int __section_nr(struct mem_section* ms) 109 { 110 unsigned long root_nr; 111 struct mem_section* root; 112 113 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) { 114 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT); 115 if (!root) 116 continue; 117 118 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) 119 break; 120 } 121 122 VM_BUG_ON(root_nr == NR_SECTION_ROOTS); 123 124 return (root_nr * SECTIONS_PER_ROOT) + (ms - root); 125 } 126 127 /* 128 * During early boot, before section_mem_map is used for an actual 129 * mem_map, we use section_mem_map to store the section's NUMA 130 * node. This keeps us from having to use another data structure. The 131 * node information is cleared just before we store the real mem_map. 132 */ 133 static inline unsigned long sparse_encode_early_nid(int nid) 134 { 135 return (nid << SECTION_NID_SHIFT); 136 } 137 138 static inline int sparse_early_nid(struct mem_section *section) 139 { 140 return (section->section_mem_map >> SECTION_NID_SHIFT); 141 } 142 143 /* Validate the physical addressing limitations of the model */ 144 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn, 145 unsigned long *end_pfn) 146 { 147 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT); 148 149 /* 150 * Sanity checks - do not allow an architecture to pass 151 * in larger pfns than the maximum scope of sparsemem: 152 */ 153 if (*start_pfn > max_sparsemem_pfn) { 154 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 155 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 156 *start_pfn, *end_pfn, max_sparsemem_pfn); 157 WARN_ON_ONCE(1); 158 *start_pfn = max_sparsemem_pfn; 159 *end_pfn = max_sparsemem_pfn; 160 } else if (*end_pfn > max_sparsemem_pfn) { 161 mminit_dprintk(MMINIT_WARNING, "pfnvalidation", 162 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n", 163 *start_pfn, *end_pfn, max_sparsemem_pfn); 164 WARN_ON_ONCE(1); 165 *end_pfn = max_sparsemem_pfn; 166 } 167 } 168 169 /* Record a memory area against a node. */ 170 void __init memory_present(int nid, unsigned long start, unsigned long end) 171 { 172 unsigned long pfn; 173 174 start &= PAGE_SECTION_MASK; 175 mminit_validate_memmodel_limits(&start, &end); 176 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { 177 unsigned long section = pfn_to_section_nr(pfn); 178 struct mem_section *ms; 179 180 sparse_index_init(section, nid); 181 set_section_nid(section, nid); 182 183 ms = __nr_to_section(section); 184 if (!ms->section_mem_map) 185 ms->section_mem_map = sparse_encode_early_nid(nid) | 186 SECTION_MARKED_PRESENT; 187 } 188 } 189 190 /* 191 * Only used by the i386 NUMA architecures, but relatively 192 * generic code. 193 */ 194 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, 195 unsigned long end_pfn) 196 { 197 unsigned long pfn; 198 unsigned long nr_pages = 0; 199 200 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 201 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 202 if (nid != early_pfn_to_nid(pfn)) 203 continue; 204 205 if (pfn_present(pfn)) 206 nr_pages += PAGES_PER_SECTION; 207 } 208 209 return nr_pages * sizeof(struct page); 210 } 211 212 /* 213 * Subtle, we encode the real pfn into the mem_map such that 214 * the identity pfn - section_mem_map will return the actual 215 * physical page frame number. 216 */ 217 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) 218 { 219 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); 220 } 221 222 /* 223 * Decode mem_map from the coded memmap 224 */ 225 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) 226 { 227 /* mask off the extra low bits of information */ 228 coded_mem_map &= SECTION_MAP_MASK; 229 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); 230 } 231 232 static int __meminit sparse_init_one_section(struct mem_section *ms, 233 unsigned long pnum, struct page *mem_map, 234 unsigned long *pageblock_bitmap) 235 { 236 if (!present_section(ms)) 237 return -EINVAL; 238 239 ms->section_mem_map &= ~SECTION_MAP_MASK; 240 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) | 241 SECTION_HAS_MEM_MAP; 242 ms->pageblock_flags = pageblock_bitmap; 243 244 return 1; 245 } 246 247 unsigned long usemap_size(void) 248 { 249 unsigned long size_bytes; 250 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8; 251 size_bytes = roundup(size_bytes, sizeof(unsigned long)); 252 return size_bytes; 253 } 254 255 #ifdef CONFIG_MEMORY_HOTPLUG 256 static unsigned long *__kmalloc_section_usemap(void) 257 { 258 return kmalloc(usemap_size(), GFP_KERNEL); 259 } 260 #endif /* CONFIG_MEMORY_HOTPLUG */ 261 262 #ifdef CONFIG_MEMORY_HOTREMOVE 263 static unsigned long * __init 264 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 265 unsigned long size) 266 { 267 unsigned long goal, limit; 268 unsigned long *p; 269 int nid; 270 /* 271 * A page may contain usemaps for other sections preventing the 272 * page being freed and making a section unremovable while 273 * other sections referencing the usemap remain active. Similarly, 274 * a pgdat can prevent a section being removed. If section A 275 * contains a pgdat and section B contains the usemap, both 276 * sections become inter-dependent. This allocates usemaps 277 * from the same section as the pgdat where possible to avoid 278 * this problem. 279 */ 280 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT); 281 limit = goal + (1UL << PA_SECTION_SHIFT); 282 nid = early_pfn_to_nid(goal >> PAGE_SHIFT); 283 again: 284 p = memblock_virt_alloc_try_nid_nopanic(size, 285 SMP_CACHE_BYTES, goal, limit, 286 nid); 287 if (!p && limit) { 288 limit = 0; 289 goto again; 290 } 291 return p; 292 } 293 294 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 295 { 296 unsigned long usemap_snr, pgdat_snr; 297 static unsigned long old_usemap_snr = NR_MEM_SECTIONS; 298 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS; 299 struct pglist_data *pgdat = NODE_DATA(nid); 300 int usemap_nid; 301 302 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT); 303 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT); 304 if (usemap_snr == pgdat_snr) 305 return; 306 307 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr) 308 /* skip redundant message */ 309 return; 310 311 old_usemap_snr = usemap_snr; 312 old_pgdat_snr = pgdat_snr; 313 314 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr)); 315 if (usemap_nid != nid) { 316 pr_info("node %d must be removed before remove section %ld\n", 317 nid, usemap_snr); 318 return; 319 } 320 /* 321 * There is a circular dependency. 322 * Some platforms allow un-removable section because they will just 323 * gather other removable sections for dynamic partitioning. 324 * Just notify un-removable section's number here. 325 */ 326 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n", 327 usemap_snr, pgdat_snr, nid); 328 } 329 #else 330 static unsigned long * __init 331 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat, 332 unsigned long size) 333 { 334 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id); 335 } 336 337 static void __init check_usemap_section_nr(int nid, unsigned long *usemap) 338 { 339 } 340 #endif /* CONFIG_MEMORY_HOTREMOVE */ 341 342 static void __init sparse_early_usemaps_alloc_node(void *data, 343 unsigned long pnum_begin, 344 unsigned long pnum_end, 345 unsigned long usemap_count, int nodeid) 346 { 347 void *usemap; 348 unsigned long pnum; 349 unsigned long **usemap_map = (unsigned long **)data; 350 int size = usemap_size(); 351 352 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), 353 size * usemap_count); 354 if (!usemap) { 355 pr_warn("%s: allocation failed\n", __func__); 356 return; 357 } 358 359 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 360 if (!present_section_nr(pnum)) 361 continue; 362 usemap_map[pnum] = usemap; 363 usemap += size; 364 check_usemap_section_nr(nodeid, usemap_map[pnum]); 365 } 366 } 367 368 #ifndef CONFIG_SPARSEMEM_VMEMMAP 369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid) 370 { 371 struct page *map; 372 unsigned long size; 373 374 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); 375 if (map) 376 return map; 377 378 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION); 379 map = memblock_virt_alloc_try_nid(size, 380 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 381 BOOTMEM_ALLOC_ACCESSIBLE, nid); 382 return map; 383 } 384 void __init sparse_mem_maps_populate_node(struct page **map_map, 385 unsigned long pnum_begin, 386 unsigned long pnum_end, 387 unsigned long map_count, int nodeid) 388 { 389 void *map; 390 unsigned long pnum; 391 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION; 392 393 map = alloc_remap(nodeid, size * map_count); 394 if (map) { 395 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 396 if (!present_section_nr(pnum)) 397 continue; 398 map_map[pnum] = map; 399 map += size; 400 } 401 return; 402 } 403 404 size = PAGE_ALIGN(size); 405 map = memblock_virt_alloc_try_nid(size * map_count, 406 PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 407 BOOTMEM_ALLOC_ACCESSIBLE, nodeid); 408 if (map) { 409 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 410 if (!present_section_nr(pnum)) 411 continue; 412 map_map[pnum] = map; 413 map += size; 414 } 415 return; 416 } 417 418 /* fallback */ 419 for (pnum = pnum_begin; pnum < pnum_end; pnum++) { 420 struct mem_section *ms; 421 422 if (!present_section_nr(pnum)) 423 continue; 424 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid); 425 if (map_map[pnum]) 426 continue; 427 ms = __nr_to_section(pnum); 428 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 429 __func__); 430 ms->section_mem_map = 0; 431 } 432 } 433 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 434 435 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 436 static void __init sparse_early_mem_maps_alloc_node(void *data, 437 unsigned long pnum_begin, 438 unsigned long pnum_end, 439 unsigned long map_count, int nodeid) 440 { 441 struct page **map_map = (struct page **)data; 442 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, 443 map_count, nodeid); 444 } 445 #else 446 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum) 447 { 448 struct page *map; 449 struct mem_section *ms = __nr_to_section(pnum); 450 int nid = sparse_early_nid(ms); 451 452 map = sparse_mem_map_populate(pnum, nid); 453 if (map) 454 return map; 455 456 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n", 457 __func__); 458 ms->section_mem_map = 0; 459 return NULL; 460 } 461 #endif 462 463 void __weak __meminit vmemmap_populate_print_last(void) 464 { 465 } 466 467 /** 468 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap 469 * @map: usemap_map for pageblock flags or mmap_map for vmemmap 470 */ 471 static void __init alloc_usemap_and_memmap(void (*alloc_func) 472 (void *, unsigned long, unsigned long, 473 unsigned long, int), void *data) 474 { 475 unsigned long pnum; 476 unsigned long map_count; 477 int nodeid_begin = 0; 478 unsigned long pnum_begin = 0; 479 480 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 481 struct mem_section *ms; 482 483 if (!present_section_nr(pnum)) 484 continue; 485 ms = __nr_to_section(pnum); 486 nodeid_begin = sparse_early_nid(ms); 487 pnum_begin = pnum; 488 break; 489 } 490 map_count = 1; 491 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { 492 struct mem_section *ms; 493 int nodeid; 494 495 if (!present_section_nr(pnum)) 496 continue; 497 ms = __nr_to_section(pnum); 498 nodeid = sparse_early_nid(ms); 499 if (nodeid == nodeid_begin) { 500 map_count++; 501 continue; 502 } 503 /* ok, we need to take cake of from pnum_begin to pnum - 1*/ 504 alloc_func(data, pnum_begin, pnum, 505 map_count, nodeid_begin); 506 /* new start, update count etc*/ 507 nodeid_begin = nodeid; 508 pnum_begin = pnum; 509 map_count = 1; 510 } 511 /* ok, last chunk */ 512 alloc_func(data, pnum_begin, NR_MEM_SECTIONS, 513 map_count, nodeid_begin); 514 } 515 516 /* 517 * Allocate the accumulated non-linear sections, allocate a mem_map 518 * for each and record the physical to section mapping. 519 */ 520 void __init sparse_init(void) 521 { 522 unsigned long pnum; 523 struct page *map; 524 unsigned long *usemap; 525 unsigned long **usemap_map; 526 int size; 527 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 528 int size2; 529 struct page **map_map; 530 #endif 531 532 /* see include/linux/mmzone.h 'struct mem_section' definition */ 533 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section))); 534 535 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */ 536 set_pageblock_order(); 537 538 /* 539 * map is using big page (aka 2M in x86 64 bit) 540 * usemap is less one page (aka 24 bytes) 541 * so alloc 2M (with 2M align) and 24 bytes in turn will 542 * make next 2M slip to one more 2M later. 543 * then in big system, the memory will have a lot of holes... 544 * here try to allocate 2M pages continuously. 545 * 546 * powerpc need to call sparse_init_one_section right after each 547 * sparse_early_mem_map_alloc, so allocate usemap_map at first. 548 */ 549 size = sizeof(unsigned long *) * NR_MEM_SECTIONS; 550 usemap_map = memblock_virt_alloc(size, 0); 551 if (!usemap_map) 552 panic("can not allocate usemap_map\n"); 553 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, 554 (void *)usemap_map); 555 556 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 557 size2 = sizeof(struct page *) * NR_MEM_SECTIONS; 558 map_map = memblock_virt_alloc(size2, 0); 559 if (!map_map) 560 panic("can not allocate map_map\n"); 561 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, 562 (void *)map_map); 563 #endif 564 565 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { 566 if (!present_section_nr(pnum)) 567 continue; 568 569 usemap = usemap_map[pnum]; 570 if (!usemap) 571 continue; 572 573 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 574 map = map_map[pnum]; 575 #else 576 map = sparse_early_mem_map_alloc(pnum); 577 #endif 578 if (!map) 579 continue; 580 581 sparse_init_one_section(__nr_to_section(pnum), pnum, map, 582 usemap); 583 } 584 585 vmemmap_populate_print_last(); 586 587 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER 588 memblock_free_early(__pa(map_map), size2); 589 #endif 590 memblock_free_early(__pa(usemap_map), size); 591 } 592 593 #ifdef CONFIG_MEMORY_HOTPLUG 594 #ifdef CONFIG_SPARSEMEM_VMEMMAP 595 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 596 { 597 /* This will make the necessary allocations eventually. */ 598 return sparse_mem_map_populate(pnum, nid); 599 } 600 static void __kfree_section_memmap(struct page *memmap) 601 { 602 unsigned long start = (unsigned long)memmap; 603 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 604 605 vmemmap_free(start, end); 606 } 607 #ifdef CONFIG_MEMORY_HOTREMOVE 608 static void free_map_bootmem(struct page *memmap) 609 { 610 unsigned long start = (unsigned long)memmap; 611 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION); 612 613 vmemmap_free(start, end); 614 } 615 #endif /* CONFIG_MEMORY_HOTREMOVE */ 616 #else 617 static struct page *__kmalloc_section_memmap(void) 618 { 619 struct page *page, *ret; 620 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION; 621 622 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size)); 623 if (page) 624 goto got_map_page; 625 626 ret = vmalloc(memmap_size); 627 if (ret) 628 goto got_map_ptr; 629 630 return NULL; 631 got_map_page: 632 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); 633 got_map_ptr: 634 635 return ret; 636 } 637 638 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid) 639 { 640 return __kmalloc_section_memmap(); 641 } 642 643 static void __kfree_section_memmap(struct page *memmap) 644 { 645 if (is_vmalloc_addr(memmap)) 646 vfree(memmap); 647 else 648 free_pages((unsigned long)memmap, 649 get_order(sizeof(struct page) * PAGES_PER_SECTION)); 650 } 651 652 #ifdef CONFIG_MEMORY_HOTREMOVE 653 static void free_map_bootmem(struct page *memmap) 654 { 655 unsigned long maps_section_nr, removing_section_nr, i; 656 unsigned long magic, nr_pages; 657 struct page *page = virt_to_page(memmap); 658 659 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page)) 660 >> PAGE_SHIFT; 661 662 for (i = 0; i < nr_pages; i++, page++) { 663 magic = (unsigned long) page->lru.next; 664 665 BUG_ON(magic == NODE_INFO); 666 667 maps_section_nr = pfn_to_section_nr(page_to_pfn(page)); 668 removing_section_nr = page->private; 669 670 /* 671 * When this function is called, the removing section is 672 * logical offlined state. This means all pages are isolated 673 * from page allocator. If removing section's memmap is placed 674 * on the same section, it must not be freed. 675 * If it is freed, page allocator may allocate it which will 676 * be removed physically soon. 677 */ 678 if (maps_section_nr != removing_section_nr) 679 put_page_bootmem(page); 680 } 681 } 682 #endif /* CONFIG_MEMORY_HOTREMOVE */ 683 #endif /* CONFIG_SPARSEMEM_VMEMMAP */ 684 685 /* 686 * returns the number of sections whose mem_maps were properly 687 * set. If this is <=0, then that means that the passed-in 688 * map was not consumed and must be freed. 689 */ 690 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn) 691 { 692 unsigned long section_nr = pfn_to_section_nr(start_pfn); 693 struct pglist_data *pgdat = zone->zone_pgdat; 694 struct mem_section *ms; 695 struct page *memmap; 696 unsigned long *usemap; 697 unsigned long flags; 698 int ret; 699 700 /* 701 * no locking for this, because it does its own 702 * plus, it does a kmalloc 703 */ 704 ret = sparse_index_init(section_nr, pgdat->node_id); 705 if (ret < 0 && ret != -EEXIST) 706 return ret; 707 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id); 708 if (!memmap) 709 return -ENOMEM; 710 usemap = __kmalloc_section_usemap(); 711 if (!usemap) { 712 __kfree_section_memmap(memmap); 713 return -ENOMEM; 714 } 715 716 pgdat_resize_lock(pgdat, &flags); 717 718 ms = __pfn_to_section(start_pfn); 719 if (ms->section_mem_map & SECTION_MARKED_PRESENT) { 720 ret = -EEXIST; 721 goto out; 722 } 723 724 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION); 725 726 ms->section_mem_map |= SECTION_MARKED_PRESENT; 727 728 ret = sparse_init_one_section(ms, section_nr, memmap, usemap); 729 730 out: 731 pgdat_resize_unlock(pgdat, &flags); 732 if (ret <= 0) { 733 kfree(usemap); 734 __kfree_section_memmap(memmap); 735 } 736 return ret; 737 } 738 739 #ifdef CONFIG_MEMORY_HOTREMOVE 740 #ifdef CONFIG_MEMORY_FAILURE 741 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 742 { 743 int i; 744 745 if (!memmap) 746 return; 747 748 for (i = 0; i < nr_pages; i++) { 749 if (PageHWPoison(&memmap[i])) { 750 atomic_long_sub(1, &num_poisoned_pages); 751 ClearPageHWPoison(&memmap[i]); 752 } 753 } 754 } 755 #else 756 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 757 { 758 } 759 #endif 760 761 static void free_section_usemap(struct page *memmap, unsigned long *usemap) 762 { 763 struct page *usemap_page; 764 765 if (!usemap) 766 return; 767 768 usemap_page = virt_to_page(usemap); 769 /* 770 * Check to see if allocation came from hot-plug-add 771 */ 772 if (PageSlab(usemap_page) || PageCompound(usemap_page)) { 773 kfree(usemap); 774 if (memmap) 775 __kfree_section_memmap(memmap); 776 return; 777 } 778 779 /* 780 * The usemap came from bootmem. This is packed with other usemaps 781 * on the section which has pgdat at boot time. Just keep it as is now. 782 */ 783 784 if (memmap) 785 free_map_bootmem(memmap); 786 } 787 788 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms, 789 unsigned long map_offset) 790 { 791 struct page *memmap = NULL; 792 unsigned long *usemap = NULL, flags; 793 struct pglist_data *pgdat = zone->zone_pgdat; 794 795 pgdat_resize_lock(pgdat, &flags); 796 if (ms->section_mem_map) { 797 usemap = ms->pageblock_flags; 798 memmap = sparse_decode_mem_map(ms->section_mem_map, 799 __section_nr(ms)); 800 ms->section_mem_map = 0; 801 ms->pageblock_flags = NULL; 802 } 803 pgdat_resize_unlock(pgdat, &flags); 804 805 clear_hwpoisoned_pages(memmap + map_offset, 806 PAGES_PER_SECTION - map_offset); 807 free_section_usemap(memmap, usemap); 808 } 809 #endif /* CONFIG_MEMORY_HOTREMOVE */ 810 #endif /* CONFIG_MEMORY_HOTPLUG */ 811