1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Virtual Memory Map support 4 * 5 * (C) 2007 sgi. Christoph Lameter. 6 * 7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, 8 * virt_to_page, page_address() to be implemented as a base offset 9 * calculation without memory access. 10 * 11 * However, virtual mappings need a page table and TLBs. Many Linux 12 * architectures already map their physical space using 1-1 mappings 13 * via TLBs. For those arches the virtual memory map is essentially 14 * for free if we use the same page size as the 1-1 mappings. In that 15 * case the overhead consists of a few additional pages that are 16 * allocated to create a view of memory for vmemmap. 17 * 18 * The architecture is expected to provide a vmemmap_populate() function 19 * to instantiate the mapping. 20 */ 21 #include <linux/mm.h> 22 #include <linux/mmzone.h> 23 #include <linux/memblock.h> 24 #include <linux/memremap.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sched.h> 30 31 #include <asm/dma.h> 32 #include <asm/pgalloc.h> 33 34 /* 35 * Allocate a block of memory to be used to back the virtual memory map 36 * or to back the page tables that are used to create the mapping. 37 * Uses the main allocators if they are available, else bootmem. 38 */ 39 40 static void * __ref __earlyonly_bootmem_alloc(int node, 41 unsigned long size, 42 unsigned long align, 43 unsigned long goal) 44 { 45 return memblock_alloc_try_nid_raw(size, align, goal, 46 MEMBLOCK_ALLOC_ACCESSIBLE, node); 47 } 48 49 void * __meminit vmemmap_alloc_block(unsigned long size, int node) 50 { 51 /* If the main allocator is up use that, fallback to bootmem. */ 52 if (slab_is_available()) { 53 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 54 int order = get_order(size); 55 static bool warned; 56 struct page *page; 57 58 page = alloc_pages_node(node, gfp_mask, order); 59 if (page) 60 return page_address(page); 61 62 if (!warned) { 63 warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, 64 "vmemmap alloc failure: order:%u", order); 65 warned = true; 66 } 67 return NULL; 68 } else 69 return __earlyonly_bootmem_alloc(node, size, size, 70 __pa(MAX_DMA_ADDRESS)); 71 } 72 73 static void * __meminit altmap_alloc_block_buf(unsigned long size, 74 struct vmem_altmap *altmap); 75 76 /* need to make sure size is all the same during early stage */ 77 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, 78 struct vmem_altmap *altmap) 79 { 80 void *ptr; 81 82 if (altmap) 83 return altmap_alloc_block_buf(size, altmap); 84 85 ptr = sparse_buffer_alloc(size); 86 if (!ptr) 87 ptr = vmemmap_alloc_block(size, node); 88 return ptr; 89 } 90 91 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) 92 { 93 return altmap->base_pfn + altmap->reserve + altmap->alloc 94 + altmap->align; 95 } 96 97 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) 98 { 99 unsigned long allocated = altmap->alloc + altmap->align; 100 101 if (altmap->free > allocated) 102 return altmap->free - allocated; 103 return 0; 104 } 105 106 static void * __meminit altmap_alloc_block_buf(unsigned long size, 107 struct vmem_altmap *altmap) 108 { 109 unsigned long pfn, nr_pfns, nr_align; 110 111 if (size & ~PAGE_MASK) { 112 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", 113 __func__, size); 114 return NULL; 115 } 116 117 pfn = vmem_altmap_next_pfn(altmap); 118 nr_pfns = size >> PAGE_SHIFT; 119 nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); 120 nr_align = ALIGN(pfn, nr_align) - pfn; 121 if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) 122 return NULL; 123 124 altmap->alloc += nr_pfns; 125 altmap->align += nr_align; 126 pfn += nr_align; 127 128 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", 129 __func__, pfn, altmap->alloc, altmap->align, nr_pfns); 130 return __va(__pfn_to_phys(pfn)); 131 } 132 133 void __meminit vmemmap_verify(pte_t *pte, int node, 134 unsigned long start, unsigned long end) 135 { 136 unsigned long pfn = pte_pfn(ptep_get(pte)); 137 int actual_node = early_pfn_to_nid(pfn); 138 139 if (node_distance(actual_node, node) > LOCAL_DISTANCE) 140 pr_warn_once("[%lx-%lx] potential offnode page_structs\n", 141 start, end - 1); 142 } 143 144 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 145 struct vmem_altmap *altmap, 146 struct page *reuse) 147 { 148 pte_t *pte = pte_offset_kernel(pmd, addr); 149 if (pte_none(ptep_get(pte))) { 150 pte_t entry; 151 void *p; 152 153 if (!reuse) { 154 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); 155 if (!p) 156 return NULL; 157 } else { 158 /* 159 * When a PTE/PMD entry is freed from the init_mm 160 * there's a free_pages() call to this page allocated 161 * above. Thus this get_page() is paired with the 162 * put_page_testzero() on the freeing path. 163 * This can only called by certain ZONE_DEVICE path, 164 * and through vmemmap_populate_compound_pages() when 165 * slab is available. 166 */ 167 get_page(reuse); 168 p = page_to_virt(reuse); 169 } 170 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); 171 set_pte_at(&init_mm, addr, pte, entry); 172 } 173 return pte; 174 } 175 176 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) 177 { 178 void *p = vmemmap_alloc_block(size, node); 179 180 if (!p) 181 return NULL; 182 memset(p, 0, size); 183 184 return p; 185 } 186 187 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) 188 { 189 pmd_t *pmd = pmd_offset(pud, addr); 190 if (pmd_none(*pmd)) { 191 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 192 if (!p) 193 return NULL; 194 kernel_pte_init(p); 195 pmd_populate_kernel(&init_mm, pmd, p); 196 } 197 return pmd; 198 } 199 200 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) 201 { 202 pud_t *pud = pud_offset(p4d, addr); 203 if (pud_none(*pud)) { 204 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 205 if (!p) 206 return NULL; 207 pmd_init(p); 208 pud_populate(&init_mm, pud, p); 209 } 210 return pud; 211 } 212 213 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) 214 { 215 p4d_t *p4d = p4d_offset(pgd, addr); 216 if (p4d_none(*p4d)) { 217 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 218 if (!p) 219 return NULL; 220 pud_init(p); 221 p4d_populate(&init_mm, p4d, p); 222 } 223 return p4d; 224 } 225 226 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) 227 { 228 pgd_t *pgd = pgd_offset_k(addr); 229 if (pgd_none(*pgd)) { 230 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 231 if (!p) 232 return NULL; 233 pgd_populate(&init_mm, pgd, p); 234 } 235 return pgd; 236 } 237 238 static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, 239 struct vmem_altmap *altmap, 240 struct page *reuse) 241 { 242 pgd_t *pgd; 243 p4d_t *p4d; 244 pud_t *pud; 245 pmd_t *pmd; 246 pte_t *pte; 247 248 pgd = vmemmap_pgd_populate(addr, node); 249 if (!pgd) 250 return NULL; 251 p4d = vmemmap_p4d_populate(pgd, addr, node); 252 if (!p4d) 253 return NULL; 254 pud = vmemmap_pud_populate(p4d, addr, node); 255 if (!pud) 256 return NULL; 257 pmd = vmemmap_pmd_populate(pud, addr, node); 258 if (!pmd) 259 return NULL; 260 pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse); 261 if (!pte) 262 return NULL; 263 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 264 265 return pte; 266 } 267 268 static int __meminit vmemmap_populate_range(unsigned long start, 269 unsigned long end, int node, 270 struct vmem_altmap *altmap, 271 struct page *reuse) 272 { 273 unsigned long addr = start; 274 pte_t *pte; 275 276 for (; addr < end; addr += PAGE_SIZE) { 277 pte = vmemmap_populate_address(addr, node, altmap, reuse); 278 if (!pte) 279 return -ENOMEM; 280 } 281 282 return 0; 283 } 284 285 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, 286 int node, struct vmem_altmap *altmap) 287 { 288 return vmemmap_populate_range(start, end, node, altmap, NULL); 289 } 290 291 void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 292 unsigned long addr, unsigned long next) 293 { 294 } 295 296 int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node, 297 unsigned long addr, unsigned long next) 298 { 299 return 0; 300 } 301 302 int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end, 303 int node, struct vmem_altmap *altmap) 304 { 305 unsigned long addr; 306 unsigned long next; 307 pgd_t *pgd; 308 p4d_t *p4d; 309 pud_t *pud; 310 pmd_t *pmd; 311 312 for (addr = start; addr < end; addr = next) { 313 next = pmd_addr_end(addr, end); 314 315 pgd = vmemmap_pgd_populate(addr, node); 316 if (!pgd) 317 return -ENOMEM; 318 319 p4d = vmemmap_p4d_populate(pgd, addr, node); 320 if (!p4d) 321 return -ENOMEM; 322 323 pud = vmemmap_pud_populate(p4d, addr, node); 324 if (!pud) 325 return -ENOMEM; 326 327 pmd = pmd_offset(pud, addr); 328 if (pmd_none(READ_ONCE(*pmd))) { 329 void *p; 330 331 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); 332 if (p) { 333 vmemmap_set_pmd(pmd, p, node, addr, next); 334 continue; 335 } else if (altmap) { 336 /* 337 * No fallback: In any case we care about, the 338 * altmap should be reasonably sized and aligned 339 * such that vmemmap_alloc_block_buf() will always 340 * succeed. For consistency with the PTE case, 341 * return an error here as failure could indicate 342 * a configuration issue with the size of the altmap. 343 */ 344 return -ENOMEM; 345 } 346 } else if (vmemmap_check_pmd(pmd, node, addr, next)) 347 continue; 348 if (vmemmap_populate_basepages(addr, next, node, altmap)) 349 return -ENOMEM; 350 } 351 return 0; 352 } 353 354 #ifndef vmemmap_populate_compound_pages 355 /* 356 * For compound pages bigger than section size (e.g. x86 1G compound 357 * pages with 2M subsection size) fill the rest of sections as tail 358 * pages. 359 * 360 * Note that memremap_pages() resets @nr_range value and will increment 361 * it after each range successful onlining. Thus the value or @nr_range 362 * at section memmap populate corresponds to the in-progress range 363 * being onlined here. 364 */ 365 static bool __meminit reuse_compound_section(unsigned long start_pfn, 366 struct dev_pagemap *pgmap) 367 { 368 unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); 369 unsigned long offset = start_pfn - 370 PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); 371 372 return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; 373 } 374 375 static pte_t * __meminit compound_section_tail_page(unsigned long addr) 376 { 377 pte_t *pte; 378 379 addr -= PAGE_SIZE; 380 381 /* 382 * Assuming sections are populated sequentially, the previous section's 383 * page data can be reused. 384 */ 385 pte = pte_offset_kernel(pmd_off_k(addr), addr); 386 if (!pte) 387 return NULL; 388 389 return pte; 390 } 391 392 static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, 393 unsigned long start, 394 unsigned long end, int node, 395 struct dev_pagemap *pgmap) 396 { 397 unsigned long size, addr; 398 pte_t *pte; 399 int rc; 400 401 if (reuse_compound_section(start_pfn, pgmap)) { 402 pte = compound_section_tail_page(start); 403 if (!pte) 404 return -ENOMEM; 405 406 /* 407 * Reuse the page that was populated in the prior iteration 408 * with just tail struct pages. 409 */ 410 return vmemmap_populate_range(start, end, node, NULL, 411 pte_page(ptep_get(pte))); 412 } 413 414 size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); 415 for (addr = start; addr < end; addr += size) { 416 unsigned long next, last = addr + size; 417 418 /* Populate the head page vmemmap page */ 419 pte = vmemmap_populate_address(addr, node, NULL, NULL); 420 if (!pte) 421 return -ENOMEM; 422 423 /* Populate the tail pages vmemmap page */ 424 next = addr + PAGE_SIZE; 425 pte = vmemmap_populate_address(next, node, NULL, NULL); 426 if (!pte) 427 return -ENOMEM; 428 429 /* 430 * Reuse the previous page for the rest of tail pages 431 * See layout diagram in Documentation/mm/vmemmap_dedup.rst 432 */ 433 next += PAGE_SIZE; 434 rc = vmemmap_populate_range(next, last, node, NULL, 435 pte_page(ptep_get(pte))); 436 if (rc) 437 return -ENOMEM; 438 } 439 440 return 0; 441 } 442 443 #endif 444 445 struct page * __meminit __populate_section_memmap(unsigned long pfn, 446 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 447 struct dev_pagemap *pgmap) 448 { 449 unsigned long start = (unsigned long) pfn_to_page(pfn); 450 unsigned long end = start + nr_pages * sizeof(struct page); 451 int r; 452 453 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || 454 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) 455 return NULL; 456 457 if (vmemmap_can_optimize(altmap, pgmap)) 458 r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); 459 else 460 r = vmemmap_populate(start, end, nid, altmap); 461 462 if (r < 0) 463 return NULL; 464 465 if (system_state == SYSTEM_BOOTING) 466 memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); 467 else 468 memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); 469 470 return pfn_to_page(pfn); 471 } 472