xref: /linux/mm/sparse-vmemmap.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 
31 #include <asm/dma.h>
32 #include <asm/pgalloc.h>
33 
34 /*
35  * Allocate a block of memory to be used to back the virtual memory map
36  * or to back the page tables that are used to create the mapping.
37  * Uses the main allocators if they are available, else bootmem.
38  */
39 
40 static void * __ref __earlyonly_bootmem_alloc(int node,
41 				unsigned long size,
42 				unsigned long align,
43 				unsigned long goal)
44 {
45 	return memblock_alloc_try_nid_raw(size, align, goal,
46 					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
47 }
48 
49 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
50 {
51 	/* If the main allocator is up use that, fallback to bootmem. */
52 	if (slab_is_available()) {
53 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
54 		int order = get_order(size);
55 		static bool warned;
56 		struct page *page;
57 
58 		page = alloc_pages_node(node, gfp_mask, order);
59 		if (page)
60 			return page_address(page);
61 
62 		if (!warned) {
63 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
64 				   "vmemmap alloc failure: order:%u", order);
65 			warned = true;
66 		}
67 		return NULL;
68 	} else
69 		return __earlyonly_bootmem_alloc(node, size, size,
70 				__pa(MAX_DMA_ADDRESS));
71 }
72 
73 static void * __meminit altmap_alloc_block_buf(unsigned long size,
74 					       struct vmem_altmap *altmap);
75 
76 /* need to make sure size is all the same during early stage */
77 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
78 					 struct vmem_altmap *altmap)
79 {
80 	void *ptr;
81 
82 	if (altmap)
83 		return altmap_alloc_block_buf(size, altmap);
84 
85 	ptr = sparse_buffer_alloc(size);
86 	if (!ptr)
87 		ptr = vmemmap_alloc_block(size, node);
88 	return ptr;
89 }
90 
91 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
92 {
93 	return altmap->base_pfn + altmap->reserve + altmap->alloc
94 		+ altmap->align;
95 }
96 
97 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
98 {
99 	unsigned long allocated = altmap->alloc + altmap->align;
100 
101 	if (altmap->free > allocated)
102 		return altmap->free - allocated;
103 	return 0;
104 }
105 
106 static void * __meminit altmap_alloc_block_buf(unsigned long size,
107 					       struct vmem_altmap *altmap)
108 {
109 	unsigned long pfn, nr_pfns, nr_align;
110 
111 	if (size & ~PAGE_MASK) {
112 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
113 				__func__, size);
114 		return NULL;
115 	}
116 
117 	pfn = vmem_altmap_next_pfn(altmap);
118 	nr_pfns = size >> PAGE_SHIFT;
119 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
120 	nr_align = ALIGN(pfn, nr_align) - pfn;
121 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
122 		return NULL;
123 
124 	altmap->alloc += nr_pfns;
125 	altmap->align += nr_align;
126 	pfn += nr_align;
127 
128 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
129 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
130 	return __va(__pfn_to_phys(pfn));
131 }
132 
133 void __meminit vmemmap_verify(pte_t *pte, int node,
134 				unsigned long start, unsigned long end)
135 {
136 	unsigned long pfn = pte_pfn(ptep_get(pte));
137 	int actual_node = early_pfn_to_nid(pfn);
138 
139 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
140 		pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
141 			start, end - 1);
142 }
143 
144 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
145 				       struct vmem_altmap *altmap,
146 				       struct page *reuse)
147 {
148 	pte_t *pte = pte_offset_kernel(pmd, addr);
149 	if (pte_none(ptep_get(pte))) {
150 		pte_t entry;
151 		void *p;
152 
153 		if (!reuse) {
154 			p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
155 			if (!p)
156 				return NULL;
157 		} else {
158 			/*
159 			 * When a PTE/PMD entry is freed from the init_mm
160 			 * there's a free_pages() call to this page allocated
161 			 * above. Thus this get_page() is paired with the
162 			 * put_page_testzero() on the freeing path.
163 			 * This can only called by certain ZONE_DEVICE path,
164 			 * and through vmemmap_populate_compound_pages() when
165 			 * slab is available.
166 			 */
167 			get_page(reuse);
168 			p = page_to_virt(reuse);
169 		}
170 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
171 		set_pte_at(&init_mm, addr, pte, entry);
172 	}
173 	return pte;
174 }
175 
176 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
177 {
178 	void *p = vmemmap_alloc_block(size, node);
179 
180 	if (!p)
181 		return NULL;
182 	memset(p, 0, size);
183 
184 	return p;
185 }
186 
187 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
188 {
189 	pmd_t *pmd = pmd_offset(pud, addr);
190 	if (pmd_none(*pmd)) {
191 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
192 		if (!p)
193 			return NULL;
194 		kernel_pte_init(p);
195 		pmd_populate_kernel(&init_mm, pmd, p);
196 	}
197 	return pmd;
198 }
199 
200 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
201 {
202 	pud_t *pud = pud_offset(p4d, addr);
203 	if (pud_none(*pud)) {
204 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
205 		if (!p)
206 			return NULL;
207 		pmd_init(p);
208 		pud_populate(&init_mm, pud, p);
209 	}
210 	return pud;
211 }
212 
213 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
214 {
215 	p4d_t *p4d = p4d_offset(pgd, addr);
216 	if (p4d_none(*p4d)) {
217 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
218 		if (!p)
219 			return NULL;
220 		pud_init(p);
221 		p4d_populate(&init_mm, p4d, p);
222 	}
223 	return p4d;
224 }
225 
226 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
227 {
228 	pgd_t *pgd = pgd_offset_k(addr);
229 	if (pgd_none(*pgd)) {
230 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
231 		if (!p)
232 			return NULL;
233 		pgd_populate(&init_mm, pgd, p);
234 	}
235 	return pgd;
236 }
237 
238 static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
239 					      struct vmem_altmap *altmap,
240 					      struct page *reuse)
241 {
242 	pgd_t *pgd;
243 	p4d_t *p4d;
244 	pud_t *pud;
245 	pmd_t *pmd;
246 	pte_t *pte;
247 
248 	pgd = vmemmap_pgd_populate(addr, node);
249 	if (!pgd)
250 		return NULL;
251 	p4d = vmemmap_p4d_populate(pgd, addr, node);
252 	if (!p4d)
253 		return NULL;
254 	pud = vmemmap_pud_populate(p4d, addr, node);
255 	if (!pud)
256 		return NULL;
257 	pmd = vmemmap_pmd_populate(pud, addr, node);
258 	if (!pmd)
259 		return NULL;
260 	pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
261 	if (!pte)
262 		return NULL;
263 	vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
264 
265 	return pte;
266 }
267 
268 static int __meminit vmemmap_populate_range(unsigned long start,
269 					    unsigned long end, int node,
270 					    struct vmem_altmap *altmap,
271 					    struct page *reuse)
272 {
273 	unsigned long addr = start;
274 	pte_t *pte;
275 
276 	for (; addr < end; addr += PAGE_SIZE) {
277 		pte = vmemmap_populate_address(addr, node, altmap, reuse);
278 		if (!pte)
279 			return -ENOMEM;
280 	}
281 
282 	return 0;
283 }
284 
285 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
286 					 int node, struct vmem_altmap *altmap)
287 {
288 	return vmemmap_populate_range(start, end, node, altmap, NULL);
289 }
290 
291 void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
292 				      unsigned long addr, unsigned long next)
293 {
294 }
295 
296 int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
297 				       unsigned long addr, unsigned long next)
298 {
299 	return 0;
300 }
301 
302 int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end,
303 					 int node, struct vmem_altmap *altmap)
304 {
305 	unsigned long addr;
306 	unsigned long next;
307 	pgd_t *pgd;
308 	p4d_t *p4d;
309 	pud_t *pud;
310 	pmd_t *pmd;
311 
312 	for (addr = start; addr < end; addr = next) {
313 		next = pmd_addr_end(addr, end);
314 
315 		pgd = vmemmap_pgd_populate(addr, node);
316 		if (!pgd)
317 			return -ENOMEM;
318 
319 		p4d = vmemmap_p4d_populate(pgd, addr, node);
320 		if (!p4d)
321 			return -ENOMEM;
322 
323 		pud = vmemmap_pud_populate(p4d, addr, node);
324 		if (!pud)
325 			return -ENOMEM;
326 
327 		pmd = pmd_offset(pud, addr);
328 		if (pmd_none(READ_ONCE(*pmd))) {
329 			void *p;
330 
331 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
332 			if (p) {
333 				vmemmap_set_pmd(pmd, p, node, addr, next);
334 				continue;
335 			} else if (altmap) {
336 				/*
337 				 * No fallback: In any case we care about, the
338 				 * altmap should be reasonably sized and aligned
339 				 * such that vmemmap_alloc_block_buf() will always
340 				 * succeed. For consistency with the PTE case,
341 				 * return an error here as failure could indicate
342 				 * a configuration issue with the size of the altmap.
343 				 */
344 				return -ENOMEM;
345 			}
346 		} else if (vmemmap_check_pmd(pmd, node, addr, next))
347 			continue;
348 		if (vmemmap_populate_basepages(addr, next, node, altmap))
349 			return -ENOMEM;
350 	}
351 	return 0;
352 }
353 
354 #ifndef vmemmap_populate_compound_pages
355 /*
356  * For compound pages bigger than section size (e.g. x86 1G compound
357  * pages with 2M subsection size) fill the rest of sections as tail
358  * pages.
359  *
360  * Note that memremap_pages() resets @nr_range value and will increment
361  * it after each range successful onlining. Thus the value or @nr_range
362  * at section memmap populate corresponds to the in-progress range
363  * being onlined here.
364  */
365 static bool __meminit reuse_compound_section(unsigned long start_pfn,
366 					     struct dev_pagemap *pgmap)
367 {
368 	unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
369 	unsigned long offset = start_pfn -
370 		PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
371 
372 	return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
373 }
374 
375 static pte_t * __meminit compound_section_tail_page(unsigned long addr)
376 {
377 	pte_t *pte;
378 
379 	addr -= PAGE_SIZE;
380 
381 	/*
382 	 * Assuming sections are populated sequentially, the previous section's
383 	 * page data can be reused.
384 	 */
385 	pte = pte_offset_kernel(pmd_off_k(addr), addr);
386 	if (!pte)
387 		return NULL;
388 
389 	return pte;
390 }
391 
392 static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
393 						     unsigned long start,
394 						     unsigned long end, int node,
395 						     struct dev_pagemap *pgmap)
396 {
397 	unsigned long size, addr;
398 	pte_t *pte;
399 	int rc;
400 
401 	if (reuse_compound_section(start_pfn, pgmap)) {
402 		pte = compound_section_tail_page(start);
403 		if (!pte)
404 			return -ENOMEM;
405 
406 		/*
407 		 * Reuse the page that was populated in the prior iteration
408 		 * with just tail struct pages.
409 		 */
410 		return vmemmap_populate_range(start, end, node, NULL,
411 					      pte_page(ptep_get(pte)));
412 	}
413 
414 	size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
415 	for (addr = start; addr < end; addr += size) {
416 		unsigned long next, last = addr + size;
417 
418 		/* Populate the head page vmemmap page */
419 		pte = vmemmap_populate_address(addr, node, NULL, NULL);
420 		if (!pte)
421 			return -ENOMEM;
422 
423 		/* Populate the tail pages vmemmap page */
424 		next = addr + PAGE_SIZE;
425 		pte = vmemmap_populate_address(next, node, NULL, NULL);
426 		if (!pte)
427 			return -ENOMEM;
428 
429 		/*
430 		 * Reuse the previous page for the rest of tail pages
431 		 * See layout diagram in Documentation/mm/vmemmap_dedup.rst
432 		 */
433 		next += PAGE_SIZE;
434 		rc = vmemmap_populate_range(next, last, node, NULL,
435 					    pte_page(ptep_get(pte)));
436 		if (rc)
437 			return -ENOMEM;
438 	}
439 
440 	return 0;
441 }
442 
443 #endif
444 
445 struct page * __meminit __populate_section_memmap(unsigned long pfn,
446 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
447 		struct dev_pagemap *pgmap)
448 {
449 	unsigned long start = (unsigned long) pfn_to_page(pfn);
450 	unsigned long end = start + nr_pages * sizeof(struct page);
451 	int r;
452 
453 	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
454 		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
455 		return NULL;
456 
457 	if (vmemmap_can_optimize(altmap, pgmap))
458 		r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
459 	else
460 		r = vmemmap_populate(start, end, nid, altmap);
461 
462 	if (r < 0)
463 		return NULL;
464 
465 	if (system_state == SYSTEM_BOOTING)
466 		memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
467 	else
468 		memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
469 
470 	return pfn_to_page(pfn);
471 }
472