xref: /linux/mm/sparse-vmemmap.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 
31 #include <asm/dma.h>
32 #include <asm/pgalloc.h>
33 
34 /*
35  * Allocate a block of memory to be used to back the virtual memory map
36  * or to back the page tables that are used to create the mapping.
37  * Uses the main allocators if they are available, else bootmem.
38  */
39 
40 static void * __ref __earlyonly_bootmem_alloc(int node,
41 				unsigned long size,
42 				unsigned long align,
43 				unsigned long goal)
44 {
45 	return memblock_alloc_try_nid_raw(size, align, goal,
46 					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
47 }
48 
49 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
50 {
51 	/* If the main allocator is up use that, fallback to bootmem. */
52 	if (slab_is_available()) {
53 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
54 		int order = get_order(size);
55 		static bool warned;
56 		struct page *page;
57 
58 		page = alloc_pages_node(node, gfp_mask, order);
59 		if (page)
60 			return page_address(page);
61 
62 		if (!warned) {
63 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
64 				   "vmemmap alloc failure: order:%u", order);
65 			warned = true;
66 		}
67 		return NULL;
68 	} else
69 		return __earlyonly_bootmem_alloc(node, size, size,
70 				__pa(MAX_DMA_ADDRESS));
71 }
72 
73 static void * __meminit altmap_alloc_block_buf(unsigned long size,
74 					       struct vmem_altmap *altmap);
75 
76 /* need to make sure size is all the same during early stage */
77 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
78 					 struct vmem_altmap *altmap)
79 {
80 	void *ptr;
81 
82 	if (altmap)
83 		return altmap_alloc_block_buf(size, altmap);
84 
85 	ptr = sparse_buffer_alloc(size);
86 	if (!ptr)
87 		ptr = vmemmap_alloc_block(size, node);
88 	return ptr;
89 }
90 
91 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
92 {
93 	return altmap->base_pfn + altmap->reserve + altmap->alloc
94 		+ altmap->align;
95 }
96 
97 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
98 {
99 	unsigned long allocated = altmap->alloc + altmap->align;
100 
101 	if (altmap->free > allocated)
102 		return altmap->free - allocated;
103 	return 0;
104 }
105 
106 static void * __meminit altmap_alloc_block_buf(unsigned long size,
107 					       struct vmem_altmap *altmap)
108 {
109 	unsigned long pfn, nr_pfns, nr_align;
110 
111 	if (size & ~PAGE_MASK) {
112 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
113 				__func__, size);
114 		return NULL;
115 	}
116 
117 	pfn = vmem_altmap_next_pfn(altmap);
118 	nr_pfns = size >> PAGE_SHIFT;
119 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
120 	nr_align = ALIGN(pfn, nr_align) - pfn;
121 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
122 		return NULL;
123 
124 	altmap->alloc += nr_pfns;
125 	altmap->align += nr_align;
126 	pfn += nr_align;
127 
128 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
129 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
130 	return __va(__pfn_to_phys(pfn));
131 }
132 
133 void __meminit vmemmap_verify(pte_t *pte, int node,
134 				unsigned long start, unsigned long end)
135 {
136 	unsigned long pfn = pte_pfn(ptep_get(pte));
137 	int actual_node = early_pfn_to_nid(pfn);
138 
139 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
140 		pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
141 			start, end - 1);
142 }
143 
144 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
145 				       struct vmem_altmap *altmap,
146 				       struct page *reuse)
147 {
148 	pte_t *pte = pte_offset_kernel(pmd, addr);
149 	if (pte_none(ptep_get(pte))) {
150 		pte_t entry;
151 		void *p;
152 
153 		if (!reuse) {
154 			p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
155 			if (!p)
156 				return NULL;
157 		} else {
158 			/*
159 			 * When a PTE/PMD entry is freed from the init_mm
160 			 * there's a free_pages() call to this page allocated
161 			 * above. Thus this get_page() is paired with the
162 			 * put_page_testzero() on the freeing path.
163 			 * This can only called by certain ZONE_DEVICE path,
164 			 * and through vmemmap_populate_compound_pages() when
165 			 * slab is available.
166 			 */
167 			get_page(reuse);
168 			p = page_to_virt(reuse);
169 		}
170 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
171 		set_pte_at(&init_mm, addr, pte, entry);
172 	}
173 	return pte;
174 }
175 
176 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
177 {
178 	void *p = vmemmap_alloc_block(size, node);
179 
180 	if (!p)
181 		return NULL;
182 	memset(p, 0, size);
183 
184 	return p;
185 }
186 
187 void __weak __meminit kernel_pte_init(void *addr)
188 {
189 }
190 
191 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
192 {
193 	pmd_t *pmd = pmd_offset(pud, addr);
194 	if (pmd_none(*pmd)) {
195 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
196 		if (!p)
197 			return NULL;
198 		kernel_pte_init(p);
199 		pmd_populate_kernel(&init_mm, pmd, p);
200 	}
201 	return pmd;
202 }
203 
204 void __weak __meminit pmd_init(void *addr)
205 {
206 }
207 
208 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
209 {
210 	pud_t *pud = pud_offset(p4d, addr);
211 	if (pud_none(*pud)) {
212 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
213 		if (!p)
214 			return NULL;
215 		pmd_init(p);
216 		pud_populate(&init_mm, pud, p);
217 	}
218 	return pud;
219 }
220 
221 void __weak __meminit pud_init(void *addr)
222 {
223 }
224 
225 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
226 {
227 	p4d_t *p4d = p4d_offset(pgd, addr);
228 	if (p4d_none(*p4d)) {
229 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
230 		if (!p)
231 			return NULL;
232 		pud_init(p);
233 		p4d_populate(&init_mm, p4d, p);
234 	}
235 	return p4d;
236 }
237 
238 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
239 {
240 	pgd_t *pgd = pgd_offset_k(addr);
241 	if (pgd_none(*pgd)) {
242 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
243 		if (!p)
244 			return NULL;
245 		pgd_populate(&init_mm, pgd, p);
246 	}
247 	return pgd;
248 }
249 
250 static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
251 					      struct vmem_altmap *altmap,
252 					      struct page *reuse)
253 {
254 	pgd_t *pgd;
255 	p4d_t *p4d;
256 	pud_t *pud;
257 	pmd_t *pmd;
258 	pte_t *pte;
259 
260 	pgd = vmemmap_pgd_populate(addr, node);
261 	if (!pgd)
262 		return NULL;
263 	p4d = vmemmap_p4d_populate(pgd, addr, node);
264 	if (!p4d)
265 		return NULL;
266 	pud = vmemmap_pud_populate(p4d, addr, node);
267 	if (!pud)
268 		return NULL;
269 	pmd = vmemmap_pmd_populate(pud, addr, node);
270 	if (!pmd)
271 		return NULL;
272 	pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
273 	if (!pte)
274 		return NULL;
275 	vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
276 
277 	return pte;
278 }
279 
280 static int __meminit vmemmap_populate_range(unsigned long start,
281 					    unsigned long end, int node,
282 					    struct vmem_altmap *altmap,
283 					    struct page *reuse)
284 {
285 	unsigned long addr = start;
286 	pte_t *pte;
287 
288 	for (; addr < end; addr += PAGE_SIZE) {
289 		pte = vmemmap_populate_address(addr, node, altmap, reuse);
290 		if (!pte)
291 			return -ENOMEM;
292 	}
293 
294 	return 0;
295 }
296 
297 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
298 					 int node, struct vmem_altmap *altmap)
299 {
300 	return vmemmap_populate_range(start, end, node, altmap, NULL);
301 }
302 
303 void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
304 				      unsigned long addr, unsigned long next)
305 {
306 }
307 
308 int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
309 				       unsigned long addr, unsigned long next)
310 {
311 	return 0;
312 }
313 
314 int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end,
315 					 int node, struct vmem_altmap *altmap)
316 {
317 	unsigned long addr;
318 	unsigned long next;
319 	pgd_t *pgd;
320 	p4d_t *p4d;
321 	pud_t *pud;
322 	pmd_t *pmd;
323 
324 	for (addr = start; addr < end; addr = next) {
325 		next = pmd_addr_end(addr, end);
326 
327 		pgd = vmemmap_pgd_populate(addr, node);
328 		if (!pgd)
329 			return -ENOMEM;
330 
331 		p4d = vmemmap_p4d_populate(pgd, addr, node);
332 		if (!p4d)
333 			return -ENOMEM;
334 
335 		pud = vmemmap_pud_populate(p4d, addr, node);
336 		if (!pud)
337 			return -ENOMEM;
338 
339 		pmd = pmd_offset(pud, addr);
340 		if (pmd_none(READ_ONCE(*pmd))) {
341 			void *p;
342 
343 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
344 			if (p) {
345 				vmemmap_set_pmd(pmd, p, node, addr, next);
346 				continue;
347 			} else if (altmap) {
348 				/*
349 				 * No fallback: In any case we care about, the
350 				 * altmap should be reasonably sized and aligned
351 				 * such that vmemmap_alloc_block_buf() will always
352 				 * succeed. For consistency with the PTE case,
353 				 * return an error here as failure could indicate
354 				 * a configuration issue with the size of the altmap.
355 				 */
356 				return -ENOMEM;
357 			}
358 		} else if (vmemmap_check_pmd(pmd, node, addr, next))
359 			continue;
360 		if (vmemmap_populate_basepages(addr, next, node, altmap))
361 			return -ENOMEM;
362 	}
363 	return 0;
364 }
365 
366 #ifndef vmemmap_populate_compound_pages
367 /*
368  * For compound pages bigger than section size (e.g. x86 1G compound
369  * pages with 2M subsection size) fill the rest of sections as tail
370  * pages.
371  *
372  * Note that memremap_pages() resets @nr_range value and will increment
373  * it after each range successful onlining. Thus the value or @nr_range
374  * at section memmap populate corresponds to the in-progress range
375  * being onlined here.
376  */
377 static bool __meminit reuse_compound_section(unsigned long start_pfn,
378 					     struct dev_pagemap *pgmap)
379 {
380 	unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
381 	unsigned long offset = start_pfn -
382 		PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
383 
384 	return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
385 }
386 
387 static pte_t * __meminit compound_section_tail_page(unsigned long addr)
388 {
389 	pte_t *pte;
390 
391 	addr -= PAGE_SIZE;
392 
393 	/*
394 	 * Assuming sections are populated sequentially, the previous section's
395 	 * page data can be reused.
396 	 */
397 	pte = pte_offset_kernel(pmd_off_k(addr), addr);
398 	if (!pte)
399 		return NULL;
400 
401 	return pte;
402 }
403 
404 static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
405 						     unsigned long start,
406 						     unsigned long end, int node,
407 						     struct dev_pagemap *pgmap)
408 {
409 	unsigned long size, addr;
410 	pte_t *pte;
411 	int rc;
412 
413 	if (reuse_compound_section(start_pfn, pgmap)) {
414 		pte = compound_section_tail_page(start);
415 		if (!pte)
416 			return -ENOMEM;
417 
418 		/*
419 		 * Reuse the page that was populated in the prior iteration
420 		 * with just tail struct pages.
421 		 */
422 		return vmemmap_populate_range(start, end, node, NULL,
423 					      pte_page(ptep_get(pte)));
424 	}
425 
426 	size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
427 	for (addr = start; addr < end; addr += size) {
428 		unsigned long next, last = addr + size;
429 
430 		/* Populate the head page vmemmap page */
431 		pte = vmemmap_populate_address(addr, node, NULL, NULL);
432 		if (!pte)
433 			return -ENOMEM;
434 
435 		/* Populate the tail pages vmemmap page */
436 		next = addr + PAGE_SIZE;
437 		pte = vmemmap_populate_address(next, node, NULL, NULL);
438 		if (!pte)
439 			return -ENOMEM;
440 
441 		/*
442 		 * Reuse the previous page for the rest of tail pages
443 		 * See layout diagram in Documentation/mm/vmemmap_dedup.rst
444 		 */
445 		next += PAGE_SIZE;
446 		rc = vmemmap_populate_range(next, last, node, NULL,
447 					    pte_page(ptep_get(pte)));
448 		if (rc)
449 			return -ENOMEM;
450 	}
451 
452 	return 0;
453 }
454 
455 #endif
456 
457 struct page * __meminit __populate_section_memmap(unsigned long pfn,
458 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
459 		struct dev_pagemap *pgmap)
460 {
461 	unsigned long start = (unsigned long) pfn_to_page(pfn);
462 	unsigned long end = start + nr_pages * sizeof(struct page);
463 	int r;
464 
465 	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
466 		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
467 		return NULL;
468 
469 	if (vmemmap_can_optimize(altmap, pgmap))
470 		r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
471 	else
472 		r = vmemmap_populate(start, end, nid, altmap);
473 
474 	if (r < 0)
475 		return NULL;
476 
477 	if (system_state == SYSTEM_BOOTING)
478 		memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
479 	else
480 		memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
481 
482 	return pfn_to_page(pfn);
483 }
484