xref: /linux/mm/sparse-vmemmap.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/bootmem_info.h>
32 
33 #include <asm/dma.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36 
37 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
38 /**
39  * struct vmemmap_remap_walk - walk vmemmap page table
40  *
41  * @remap_pte:		called for each lowest-level entry (PTE).
42  * @nr_walked:		the number of walked pte.
43  * @reuse_page:		the page which is reused for the tail vmemmap pages.
44  * @reuse_addr:		the virtual address of the @reuse_page page.
45  * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
46  *			or is mapped from.
47  */
48 struct vmemmap_remap_walk {
49 	void (*remap_pte)(pte_t *pte, unsigned long addr,
50 			  struct vmemmap_remap_walk *walk);
51 	unsigned long nr_walked;
52 	struct page *reuse_page;
53 	unsigned long reuse_addr;
54 	struct list_head *vmemmap_pages;
55 };
56 
57 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
58 {
59 	pmd_t __pmd;
60 	int i;
61 	unsigned long addr = start;
62 	struct page *page = pmd_page(*pmd);
63 	pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
64 
65 	if (!pgtable)
66 		return -ENOMEM;
67 
68 	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
69 
70 	for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
71 		pte_t entry, *pte;
72 		pgprot_t pgprot = PAGE_KERNEL;
73 
74 		entry = mk_pte(page + i, pgprot);
75 		pte = pte_offset_kernel(&__pmd, addr);
76 		set_pte_at(&init_mm, addr, pte, entry);
77 	}
78 
79 	spin_lock(&init_mm.page_table_lock);
80 	if (likely(pmd_leaf(*pmd))) {
81 		/* Make pte visible before pmd. See comment in pmd_install(). */
82 		smp_wmb();
83 		pmd_populate_kernel(&init_mm, pmd, pgtable);
84 		flush_tlb_kernel_range(start, start + PMD_SIZE);
85 	} else {
86 		pte_free_kernel(&init_mm, pgtable);
87 	}
88 	spin_unlock(&init_mm.page_table_lock);
89 
90 	return 0;
91 }
92 
93 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
94 {
95 	int leaf;
96 
97 	spin_lock(&init_mm.page_table_lock);
98 	leaf = pmd_leaf(*pmd);
99 	spin_unlock(&init_mm.page_table_lock);
100 
101 	if (!leaf)
102 		return 0;
103 
104 	return __split_vmemmap_huge_pmd(pmd, start);
105 }
106 
107 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
108 			      unsigned long end,
109 			      struct vmemmap_remap_walk *walk)
110 {
111 	pte_t *pte = pte_offset_kernel(pmd, addr);
112 
113 	/*
114 	 * The reuse_page is found 'first' in table walk before we start
115 	 * remapping (which is calling @walk->remap_pte).
116 	 */
117 	if (!walk->reuse_page) {
118 		walk->reuse_page = pte_page(*pte);
119 		/*
120 		 * Because the reuse address is part of the range that we are
121 		 * walking, skip the reuse address range.
122 		 */
123 		addr += PAGE_SIZE;
124 		pte++;
125 		walk->nr_walked++;
126 	}
127 
128 	for (; addr != end; addr += PAGE_SIZE, pte++) {
129 		walk->remap_pte(pte, addr, walk);
130 		walk->nr_walked++;
131 	}
132 }
133 
134 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
135 			     unsigned long end,
136 			     struct vmemmap_remap_walk *walk)
137 {
138 	pmd_t *pmd;
139 	unsigned long next;
140 
141 	pmd = pmd_offset(pud, addr);
142 	do {
143 		int ret;
144 
145 		ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
146 		if (ret)
147 			return ret;
148 
149 		next = pmd_addr_end(addr, end);
150 		vmemmap_pte_range(pmd, addr, next, walk);
151 	} while (pmd++, addr = next, addr != end);
152 
153 	return 0;
154 }
155 
156 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
157 			     unsigned long end,
158 			     struct vmemmap_remap_walk *walk)
159 {
160 	pud_t *pud;
161 	unsigned long next;
162 
163 	pud = pud_offset(p4d, addr);
164 	do {
165 		int ret;
166 
167 		next = pud_addr_end(addr, end);
168 		ret = vmemmap_pmd_range(pud, addr, next, walk);
169 		if (ret)
170 			return ret;
171 	} while (pud++, addr = next, addr != end);
172 
173 	return 0;
174 }
175 
176 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
177 			     unsigned long end,
178 			     struct vmemmap_remap_walk *walk)
179 {
180 	p4d_t *p4d;
181 	unsigned long next;
182 
183 	p4d = p4d_offset(pgd, addr);
184 	do {
185 		int ret;
186 
187 		next = p4d_addr_end(addr, end);
188 		ret = vmemmap_pud_range(p4d, addr, next, walk);
189 		if (ret)
190 			return ret;
191 	} while (p4d++, addr = next, addr != end);
192 
193 	return 0;
194 }
195 
196 static int vmemmap_remap_range(unsigned long start, unsigned long end,
197 			       struct vmemmap_remap_walk *walk)
198 {
199 	unsigned long addr = start;
200 	unsigned long next;
201 	pgd_t *pgd;
202 
203 	VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
204 	VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
205 
206 	pgd = pgd_offset_k(addr);
207 	do {
208 		int ret;
209 
210 		next = pgd_addr_end(addr, end);
211 		ret = vmemmap_p4d_range(pgd, addr, next, walk);
212 		if (ret)
213 			return ret;
214 	} while (pgd++, addr = next, addr != end);
215 
216 	/*
217 	 * We only change the mapping of the vmemmap virtual address range
218 	 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
219 	 * belongs to the range.
220 	 */
221 	flush_tlb_kernel_range(start + PAGE_SIZE, end);
222 
223 	return 0;
224 }
225 
226 /*
227  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
228  * allocator or buddy allocator. If the PG_reserved flag is set, it means
229  * that it allocated from the memblock allocator, just free it via the
230  * free_bootmem_page(). Otherwise, use __free_page().
231  */
232 static inline void free_vmemmap_page(struct page *page)
233 {
234 	if (PageReserved(page))
235 		free_bootmem_page(page);
236 	else
237 		__free_page(page);
238 }
239 
240 /* Free a list of the vmemmap pages */
241 static void free_vmemmap_page_list(struct list_head *list)
242 {
243 	struct page *page, *next;
244 
245 	list_for_each_entry_safe(page, next, list, lru) {
246 		list_del(&page->lru);
247 		free_vmemmap_page(page);
248 	}
249 }
250 
251 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
252 			      struct vmemmap_remap_walk *walk)
253 {
254 	/*
255 	 * Remap the tail pages as read-only to catch illegal write operation
256 	 * to the tail pages.
257 	 */
258 	pgprot_t pgprot = PAGE_KERNEL_RO;
259 	pte_t entry = mk_pte(walk->reuse_page, pgprot);
260 	struct page *page = pte_page(*pte);
261 
262 	list_add_tail(&page->lru, walk->vmemmap_pages);
263 	set_pte_at(&init_mm, addr, pte, entry);
264 }
265 
266 /*
267  * How many struct page structs need to be reset. When we reuse the head
268  * struct page, the special metadata (e.g. page->flags or page->mapping)
269  * cannot copy to the tail struct page structs. The invalid value will be
270  * checked in the free_tail_pages_check(). In order to avoid the message
271  * of "corrupted mapping in tail page". We need to reset at least 3 (one
272  * head struct page struct and two tail struct page structs) struct page
273  * structs.
274  */
275 #define NR_RESET_STRUCT_PAGE		3
276 
277 static inline void reset_struct_pages(struct page *start)
278 {
279 	int i;
280 	struct page *from = start + NR_RESET_STRUCT_PAGE;
281 
282 	for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
283 		memcpy(start + i, from, sizeof(*from));
284 }
285 
286 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
287 				struct vmemmap_remap_walk *walk)
288 {
289 	pgprot_t pgprot = PAGE_KERNEL;
290 	struct page *page;
291 	void *to;
292 
293 	BUG_ON(pte_page(*pte) != walk->reuse_page);
294 
295 	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
296 	list_del(&page->lru);
297 	to = page_to_virt(page);
298 	copy_page(to, (void *)walk->reuse_addr);
299 	reset_struct_pages(to);
300 
301 	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
302 }
303 
304 /**
305  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
306  *			to the page which @reuse is mapped to, then free vmemmap
307  *			which the range are mapped to.
308  * @start:	start address of the vmemmap virtual address range that we want
309  *		to remap.
310  * @end:	end address of the vmemmap virtual address range that we want to
311  *		remap.
312  * @reuse:	reuse address.
313  *
314  * Return: %0 on success, negative error code otherwise.
315  */
316 int vmemmap_remap_free(unsigned long start, unsigned long end,
317 		       unsigned long reuse)
318 {
319 	int ret;
320 	LIST_HEAD(vmemmap_pages);
321 	struct vmemmap_remap_walk walk = {
322 		.remap_pte	= vmemmap_remap_pte,
323 		.reuse_addr	= reuse,
324 		.vmemmap_pages	= &vmemmap_pages,
325 	};
326 
327 	/*
328 	 * In order to make remapping routine most efficient for the huge pages,
329 	 * the routine of vmemmap page table walking has the following rules
330 	 * (see more details from the vmemmap_pte_range()):
331 	 *
332 	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
333 	 *   should be continuous.
334 	 * - The @reuse address is part of the range [@reuse, @end) that we are
335 	 *   walking which is passed to vmemmap_remap_range().
336 	 * - The @reuse address is the first in the complete range.
337 	 *
338 	 * So we need to make sure that @start and @reuse meet the above rules.
339 	 */
340 	BUG_ON(start - reuse != PAGE_SIZE);
341 
342 	mmap_read_lock(&init_mm);
343 	ret = vmemmap_remap_range(reuse, end, &walk);
344 	if (ret && walk.nr_walked) {
345 		end = reuse + walk.nr_walked * PAGE_SIZE;
346 		/*
347 		 * vmemmap_pages contains pages from the previous
348 		 * vmemmap_remap_range call which failed.  These
349 		 * are pages which were removed from the vmemmap.
350 		 * They will be restored in the following call.
351 		 */
352 		walk = (struct vmemmap_remap_walk) {
353 			.remap_pte	= vmemmap_restore_pte,
354 			.reuse_addr	= reuse,
355 			.vmemmap_pages	= &vmemmap_pages,
356 		};
357 
358 		vmemmap_remap_range(reuse, end, &walk);
359 	}
360 	mmap_read_unlock(&init_mm);
361 
362 	free_vmemmap_page_list(&vmemmap_pages);
363 
364 	return ret;
365 }
366 
367 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
368 				   gfp_t gfp_mask, struct list_head *list)
369 {
370 	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
371 	int nid = page_to_nid((struct page *)start);
372 	struct page *page, *next;
373 
374 	while (nr_pages--) {
375 		page = alloc_pages_node(nid, gfp_mask, 0);
376 		if (!page)
377 			goto out;
378 		list_add_tail(&page->lru, list);
379 	}
380 
381 	return 0;
382 out:
383 	list_for_each_entry_safe(page, next, list, lru)
384 		__free_pages(page, 0);
385 	return -ENOMEM;
386 }
387 
388 /**
389  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
390  *			 to the page which is from the @vmemmap_pages
391  *			 respectively.
392  * @start:	start address of the vmemmap virtual address range that we want
393  *		to remap.
394  * @end:	end address of the vmemmap virtual address range that we want to
395  *		remap.
396  * @reuse:	reuse address.
397  * @gfp_mask:	GFP flag for allocating vmemmap pages.
398  *
399  * Return: %0 on success, negative error code otherwise.
400  */
401 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
402 			unsigned long reuse, gfp_t gfp_mask)
403 {
404 	LIST_HEAD(vmemmap_pages);
405 	struct vmemmap_remap_walk walk = {
406 		.remap_pte	= vmemmap_restore_pte,
407 		.reuse_addr	= reuse,
408 		.vmemmap_pages	= &vmemmap_pages,
409 	};
410 
411 	/* See the comment in the vmemmap_remap_free(). */
412 	BUG_ON(start - reuse != PAGE_SIZE);
413 
414 	if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
415 		return -ENOMEM;
416 
417 	mmap_read_lock(&init_mm);
418 	vmemmap_remap_range(reuse, end, &walk);
419 	mmap_read_unlock(&init_mm);
420 
421 	return 0;
422 }
423 #endif /* CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP */
424 
425 /*
426  * Allocate a block of memory to be used to back the virtual memory map
427  * or to back the page tables that are used to create the mapping.
428  * Uses the main allocators if they are available, else bootmem.
429  */
430 
431 static void * __ref __earlyonly_bootmem_alloc(int node,
432 				unsigned long size,
433 				unsigned long align,
434 				unsigned long goal)
435 {
436 	return memblock_alloc_try_nid_raw(size, align, goal,
437 					       MEMBLOCK_ALLOC_ACCESSIBLE, node);
438 }
439 
440 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
441 {
442 	/* If the main allocator is up use that, fallback to bootmem. */
443 	if (slab_is_available()) {
444 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
445 		int order = get_order(size);
446 		static bool warned;
447 		struct page *page;
448 
449 		page = alloc_pages_node(node, gfp_mask, order);
450 		if (page)
451 			return page_address(page);
452 
453 		if (!warned) {
454 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
455 				   "vmemmap alloc failure: order:%u", order);
456 			warned = true;
457 		}
458 		return NULL;
459 	} else
460 		return __earlyonly_bootmem_alloc(node, size, size,
461 				__pa(MAX_DMA_ADDRESS));
462 }
463 
464 static void * __meminit altmap_alloc_block_buf(unsigned long size,
465 					       struct vmem_altmap *altmap);
466 
467 /* need to make sure size is all the same during early stage */
468 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
469 					 struct vmem_altmap *altmap)
470 {
471 	void *ptr;
472 
473 	if (altmap)
474 		return altmap_alloc_block_buf(size, altmap);
475 
476 	ptr = sparse_buffer_alloc(size);
477 	if (!ptr)
478 		ptr = vmemmap_alloc_block(size, node);
479 	return ptr;
480 }
481 
482 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
483 {
484 	return altmap->base_pfn + altmap->reserve + altmap->alloc
485 		+ altmap->align;
486 }
487 
488 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
489 {
490 	unsigned long allocated = altmap->alloc + altmap->align;
491 
492 	if (altmap->free > allocated)
493 		return altmap->free - allocated;
494 	return 0;
495 }
496 
497 static void * __meminit altmap_alloc_block_buf(unsigned long size,
498 					       struct vmem_altmap *altmap)
499 {
500 	unsigned long pfn, nr_pfns, nr_align;
501 
502 	if (size & ~PAGE_MASK) {
503 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
504 				__func__, size);
505 		return NULL;
506 	}
507 
508 	pfn = vmem_altmap_next_pfn(altmap);
509 	nr_pfns = size >> PAGE_SHIFT;
510 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
511 	nr_align = ALIGN(pfn, nr_align) - pfn;
512 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
513 		return NULL;
514 
515 	altmap->alloc += nr_pfns;
516 	altmap->align += nr_align;
517 	pfn += nr_align;
518 
519 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
520 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
521 	return __va(__pfn_to_phys(pfn));
522 }
523 
524 void __meminit vmemmap_verify(pte_t *pte, int node,
525 				unsigned long start, unsigned long end)
526 {
527 	unsigned long pfn = pte_pfn(*pte);
528 	int actual_node = early_pfn_to_nid(pfn);
529 
530 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
531 		pr_warn("[%lx-%lx] potential offnode page_structs\n",
532 			start, end - 1);
533 }
534 
535 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
536 				       struct vmem_altmap *altmap,
537 				       struct page *reuse)
538 {
539 	pte_t *pte = pte_offset_kernel(pmd, addr);
540 	if (pte_none(*pte)) {
541 		pte_t entry;
542 		void *p;
543 
544 		if (!reuse) {
545 			p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
546 			if (!p)
547 				return NULL;
548 		} else {
549 			/*
550 			 * When a PTE/PMD entry is freed from the init_mm
551 			 * there's a a free_pages() call to this page allocated
552 			 * above. Thus this get_page() is paired with the
553 			 * put_page_testzero() on the freeing path.
554 			 * This can only called by certain ZONE_DEVICE path,
555 			 * and through vmemmap_populate_compound_pages() when
556 			 * slab is available.
557 			 */
558 			get_page(reuse);
559 			p = page_to_virt(reuse);
560 		}
561 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
562 		set_pte_at(&init_mm, addr, pte, entry);
563 	}
564 	return pte;
565 }
566 
567 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
568 {
569 	void *p = vmemmap_alloc_block(size, node);
570 
571 	if (!p)
572 		return NULL;
573 	memset(p, 0, size);
574 
575 	return p;
576 }
577 
578 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
579 {
580 	pmd_t *pmd = pmd_offset(pud, addr);
581 	if (pmd_none(*pmd)) {
582 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
583 		if (!p)
584 			return NULL;
585 		pmd_populate_kernel(&init_mm, pmd, p);
586 	}
587 	return pmd;
588 }
589 
590 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
591 {
592 	pud_t *pud = pud_offset(p4d, addr);
593 	if (pud_none(*pud)) {
594 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
595 		if (!p)
596 			return NULL;
597 		pud_populate(&init_mm, pud, p);
598 	}
599 	return pud;
600 }
601 
602 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
603 {
604 	p4d_t *p4d = p4d_offset(pgd, addr);
605 	if (p4d_none(*p4d)) {
606 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
607 		if (!p)
608 			return NULL;
609 		p4d_populate(&init_mm, p4d, p);
610 	}
611 	return p4d;
612 }
613 
614 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
615 {
616 	pgd_t *pgd = pgd_offset_k(addr);
617 	if (pgd_none(*pgd)) {
618 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
619 		if (!p)
620 			return NULL;
621 		pgd_populate(&init_mm, pgd, p);
622 	}
623 	return pgd;
624 }
625 
626 static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
627 					      struct vmem_altmap *altmap,
628 					      struct page *reuse)
629 {
630 	pgd_t *pgd;
631 	p4d_t *p4d;
632 	pud_t *pud;
633 	pmd_t *pmd;
634 	pte_t *pte;
635 
636 	pgd = vmemmap_pgd_populate(addr, node);
637 	if (!pgd)
638 		return NULL;
639 	p4d = vmemmap_p4d_populate(pgd, addr, node);
640 	if (!p4d)
641 		return NULL;
642 	pud = vmemmap_pud_populate(p4d, addr, node);
643 	if (!pud)
644 		return NULL;
645 	pmd = vmemmap_pmd_populate(pud, addr, node);
646 	if (!pmd)
647 		return NULL;
648 	pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
649 	if (!pte)
650 		return NULL;
651 	vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
652 
653 	return pte;
654 }
655 
656 static int __meminit vmemmap_populate_range(unsigned long start,
657 					    unsigned long end, int node,
658 					    struct vmem_altmap *altmap,
659 					    struct page *reuse)
660 {
661 	unsigned long addr = start;
662 	pte_t *pte;
663 
664 	for (; addr < end; addr += PAGE_SIZE) {
665 		pte = vmemmap_populate_address(addr, node, altmap, reuse);
666 		if (!pte)
667 			return -ENOMEM;
668 	}
669 
670 	return 0;
671 }
672 
673 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
674 					 int node, struct vmem_altmap *altmap)
675 {
676 	return vmemmap_populate_range(start, end, node, altmap, NULL);
677 }
678 
679 /*
680  * For compound pages bigger than section size (e.g. x86 1G compound
681  * pages with 2M subsection size) fill the rest of sections as tail
682  * pages.
683  *
684  * Note that memremap_pages() resets @nr_range value and will increment
685  * it after each range successful onlining. Thus the value or @nr_range
686  * at section memmap populate corresponds to the in-progress range
687  * being onlined here.
688  */
689 static bool __meminit reuse_compound_section(unsigned long start_pfn,
690 					     struct dev_pagemap *pgmap)
691 {
692 	unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
693 	unsigned long offset = start_pfn -
694 		PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
695 
696 	return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
697 }
698 
699 static pte_t * __meminit compound_section_tail_page(unsigned long addr)
700 {
701 	pte_t *pte;
702 
703 	addr -= PAGE_SIZE;
704 
705 	/*
706 	 * Assuming sections are populated sequentially, the previous section's
707 	 * page data can be reused.
708 	 */
709 	pte = pte_offset_kernel(pmd_off_k(addr), addr);
710 	if (!pte)
711 		return NULL;
712 
713 	return pte;
714 }
715 
716 static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
717 						     unsigned long start,
718 						     unsigned long end, int node,
719 						     struct dev_pagemap *pgmap)
720 {
721 	unsigned long size, addr;
722 	pte_t *pte;
723 	int rc;
724 
725 	if (reuse_compound_section(start_pfn, pgmap)) {
726 		pte = compound_section_tail_page(start);
727 		if (!pte)
728 			return -ENOMEM;
729 
730 		/*
731 		 * Reuse the page that was populated in the prior iteration
732 		 * with just tail struct pages.
733 		 */
734 		return vmemmap_populate_range(start, end, node, NULL,
735 					      pte_page(*pte));
736 	}
737 
738 	size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
739 	for (addr = start; addr < end; addr += size) {
740 		unsigned long next = addr, last = addr + size;
741 
742 		/* Populate the head page vmemmap page */
743 		pte = vmemmap_populate_address(addr, node, NULL, NULL);
744 		if (!pte)
745 			return -ENOMEM;
746 
747 		/* Populate the tail pages vmemmap page */
748 		next = addr + PAGE_SIZE;
749 		pte = vmemmap_populate_address(next, node, NULL, NULL);
750 		if (!pte)
751 			return -ENOMEM;
752 
753 		/*
754 		 * Reuse the previous page for the rest of tail pages
755 		 * See layout diagram in Documentation/vm/vmemmap_dedup.rst
756 		 */
757 		next += PAGE_SIZE;
758 		rc = vmemmap_populate_range(next, last, node, NULL,
759 					    pte_page(*pte));
760 		if (rc)
761 			return -ENOMEM;
762 	}
763 
764 	return 0;
765 }
766 
767 struct page * __meminit __populate_section_memmap(unsigned long pfn,
768 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
769 		struct dev_pagemap *pgmap)
770 {
771 	unsigned long start = (unsigned long) pfn_to_page(pfn);
772 	unsigned long end = start + nr_pages * sizeof(struct page);
773 	int r;
774 
775 	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
776 		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
777 		return NULL;
778 
779 	if (is_power_of_2(sizeof(struct page)) &&
780 	    pgmap && pgmap_vmemmap_nr(pgmap) > 1 && !altmap)
781 		r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
782 	else
783 		r = vmemmap_populate(start, end, nid, altmap);
784 
785 	if (r < 0)
786 		return NULL;
787 
788 	return pfn_to_page(pfn);
789 }
790