1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Virtual Memory Map support 4 * 5 * (C) 2007 sgi. Christoph Lameter. 6 * 7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn, 8 * virt_to_page, page_address() to be implemented as a base offset 9 * calculation without memory access. 10 * 11 * However, virtual mappings need a page table and TLBs. Many Linux 12 * architectures already map their physical space using 1-1 mappings 13 * via TLBs. For those arches the virtual memory map is essentially 14 * for free if we use the same page size as the 1-1 mappings. In that 15 * case the overhead consists of a few additional pages that are 16 * allocated to create a view of memory for vmemmap. 17 * 18 * The architecture is expected to provide a vmemmap_populate() function 19 * to instantiate the mapping. 20 */ 21 #include <linux/mm.h> 22 #include <linux/mmzone.h> 23 #include <linux/memblock.h> 24 #include <linux/memremap.h> 25 #include <linux/highmem.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sched.h> 30 31 #include <asm/dma.h> 32 #include <asm/pgalloc.h> 33 34 /* 35 * Allocate a block of memory to be used to back the virtual memory map 36 * or to back the page tables that are used to create the mapping. 37 * Uses the main allocators if they are available, else bootmem. 38 */ 39 40 static void * __ref __earlyonly_bootmem_alloc(int node, 41 unsigned long size, 42 unsigned long align, 43 unsigned long goal) 44 { 45 return memblock_alloc_try_nid_raw(size, align, goal, 46 MEMBLOCK_ALLOC_ACCESSIBLE, node); 47 } 48 49 void * __meminit vmemmap_alloc_block(unsigned long size, int node) 50 { 51 /* If the main allocator is up use that, fallback to bootmem. */ 52 if (slab_is_available()) { 53 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN; 54 int order = get_order(size); 55 static bool warned; 56 struct page *page; 57 58 page = alloc_pages_node(node, gfp_mask, order); 59 if (page) 60 return page_address(page); 61 62 if (!warned) { 63 warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL, 64 "vmemmap alloc failure: order:%u", order); 65 warned = true; 66 } 67 return NULL; 68 } else 69 return __earlyonly_bootmem_alloc(node, size, size, 70 __pa(MAX_DMA_ADDRESS)); 71 } 72 73 static void * __meminit altmap_alloc_block_buf(unsigned long size, 74 struct vmem_altmap *altmap); 75 76 /* need to make sure size is all the same during early stage */ 77 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node, 78 struct vmem_altmap *altmap) 79 { 80 void *ptr; 81 82 if (altmap) 83 return altmap_alloc_block_buf(size, altmap); 84 85 ptr = sparse_buffer_alloc(size); 86 if (!ptr) 87 ptr = vmemmap_alloc_block(size, node); 88 return ptr; 89 } 90 91 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap) 92 { 93 return altmap->base_pfn + altmap->reserve + altmap->alloc 94 + altmap->align; 95 } 96 97 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap) 98 { 99 unsigned long allocated = altmap->alloc + altmap->align; 100 101 if (altmap->free > allocated) 102 return altmap->free - allocated; 103 return 0; 104 } 105 106 static void * __meminit altmap_alloc_block_buf(unsigned long size, 107 struct vmem_altmap *altmap) 108 { 109 unsigned long pfn, nr_pfns, nr_align; 110 111 if (size & ~PAGE_MASK) { 112 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n", 113 __func__, size); 114 return NULL; 115 } 116 117 pfn = vmem_altmap_next_pfn(altmap); 118 nr_pfns = size >> PAGE_SHIFT; 119 nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG); 120 nr_align = ALIGN(pfn, nr_align) - pfn; 121 if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap)) 122 return NULL; 123 124 altmap->alloc += nr_pfns; 125 altmap->align += nr_align; 126 pfn += nr_align; 127 128 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n", 129 __func__, pfn, altmap->alloc, altmap->align, nr_pfns); 130 return __va(__pfn_to_phys(pfn)); 131 } 132 133 void __meminit vmemmap_verify(pte_t *pte, int node, 134 unsigned long start, unsigned long end) 135 { 136 unsigned long pfn = pte_pfn(ptep_get(pte)); 137 int actual_node = early_pfn_to_nid(pfn); 138 139 if (node_distance(actual_node, node) > LOCAL_DISTANCE) 140 pr_warn_once("[%lx-%lx] potential offnode page_structs\n", 141 start, end - 1); 142 } 143 144 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 145 struct vmem_altmap *altmap, 146 struct page *reuse) 147 { 148 pte_t *pte = pte_offset_kernel(pmd, addr); 149 if (pte_none(ptep_get(pte))) { 150 pte_t entry; 151 void *p; 152 153 if (!reuse) { 154 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap); 155 if (!p) 156 return NULL; 157 } else { 158 /* 159 * When a PTE/PMD entry is freed from the init_mm 160 * there's a free_pages() call to this page allocated 161 * above. Thus this get_page() is paired with the 162 * put_page_testzero() on the freeing path. 163 * This can only called by certain ZONE_DEVICE path, 164 * and through vmemmap_populate_compound_pages() when 165 * slab is available. 166 */ 167 get_page(reuse); 168 p = page_to_virt(reuse); 169 } 170 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL); 171 set_pte_at(&init_mm, addr, pte, entry); 172 } 173 return pte; 174 } 175 176 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node) 177 { 178 void *p = vmemmap_alloc_block(size, node); 179 180 if (!p) 181 return NULL; 182 memset(p, 0, size); 183 184 return p; 185 } 186 187 void __weak __meminit kernel_pte_init(void *addr) 188 { 189 } 190 191 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node) 192 { 193 pmd_t *pmd = pmd_offset(pud, addr); 194 if (pmd_none(*pmd)) { 195 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 196 if (!p) 197 return NULL; 198 kernel_pte_init(p); 199 pmd_populate_kernel(&init_mm, pmd, p); 200 } 201 return pmd; 202 } 203 204 void __weak __meminit pmd_init(void *addr) 205 { 206 } 207 208 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node) 209 { 210 pud_t *pud = pud_offset(p4d, addr); 211 if (pud_none(*pud)) { 212 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 213 if (!p) 214 return NULL; 215 pmd_init(p); 216 pud_populate(&init_mm, pud, p); 217 } 218 return pud; 219 } 220 221 void __weak __meminit pud_init(void *addr) 222 { 223 } 224 225 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node) 226 { 227 p4d_t *p4d = p4d_offset(pgd, addr); 228 if (p4d_none(*p4d)) { 229 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 230 if (!p) 231 return NULL; 232 pud_init(p); 233 p4d_populate(&init_mm, p4d, p); 234 } 235 return p4d; 236 } 237 238 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node) 239 { 240 pgd_t *pgd = pgd_offset_k(addr); 241 if (pgd_none(*pgd)) { 242 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node); 243 if (!p) 244 return NULL; 245 pgd_populate(&init_mm, pgd, p); 246 } 247 return pgd; 248 } 249 250 static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node, 251 struct vmem_altmap *altmap, 252 struct page *reuse) 253 { 254 pgd_t *pgd; 255 p4d_t *p4d; 256 pud_t *pud; 257 pmd_t *pmd; 258 pte_t *pte; 259 260 pgd = vmemmap_pgd_populate(addr, node); 261 if (!pgd) 262 return NULL; 263 p4d = vmemmap_p4d_populate(pgd, addr, node); 264 if (!p4d) 265 return NULL; 266 pud = vmemmap_pud_populate(p4d, addr, node); 267 if (!pud) 268 return NULL; 269 pmd = vmemmap_pmd_populate(pud, addr, node); 270 if (!pmd) 271 return NULL; 272 pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse); 273 if (!pte) 274 return NULL; 275 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE); 276 277 return pte; 278 } 279 280 static int __meminit vmemmap_populate_range(unsigned long start, 281 unsigned long end, int node, 282 struct vmem_altmap *altmap, 283 struct page *reuse) 284 { 285 unsigned long addr = start; 286 pte_t *pte; 287 288 for (; addr < end; addr += PAGE_SIZE) { 289 pte = vmemmap_populate_address(addr, node, altmap, reuse); 290 if (!pte) 291 return -ENOMEM; 292 } 293 294 return 0; 295 } 296 297 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end, 298 int node, struct vmem_altmap *altmap) 299 { 300 return vmemmap_populate_range(start, end, node, altmap, NULL); 301 } 302 303 void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 304 unsigned long addr, unsigned long next) 305 { 306 } 307 308 int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node, 309 unsigned long addr, unsigned long next) 310 { 311 return 0; 312 } 313 314 int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end, 315 int node, struct vmem_altmap *altmap) 316 { 317 unsigned long addr; 318 unsigned long next; 319 pgd_t *pgd; 320 p4d_t *p4d; 321 pud_t *pud; 322 pmd_t *pmd; 323 324 for (addr = start; addr < end; addr = next) { 325 next = pmd_addr_end(addr, end); 326 327 pgd = vmemmap_pgd_populate(addr, node); 328 if (!pgd) 329 return -ENOMEM; 330 331 p4d = vmemmap_p4d_populate(pgd, addr, node); 332 if (!p4d) 333 return -ENOMEM; 334 335 pud = vmemmap_pud_populate(p4d, addr, node); 336 if (!pud) 337 return -ENOMEM; 338 339 pmd = pmd_offset(pud, addr); 340 if (pmd_none(READ_ONCE(*pmd))) { 341 void *p; 342 343 p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap); 344 if (p) { 345 vmemmap_set_pmd(pmd, p, node, addr, next); 346 continue; 347 } else if (altmap) { 348 /* 349 * No fallback: In any case we care about, the 350 * altmap should be reasonably sized and aligned 351 * such that vmemmap_alloc_block_buf() will always 352 * succeed. For consistency with the PTE case, 353 * return an error here as failure could indicate 354 * a configuration issue with the size of the altmap. 355 */ 356 return -ENOMEM; 357 } 358 } else if (vmemmap_check_pmd(pmd, node, addr, next)) 359 continue; 360 if (vmemmap_populate_basepages(addr, next, node, altmap)) 361 return -ENOMEM; 362 } 363 return 0; 364 } 365 366 #ifndef vmemmap_populate_compound_pages 367 /* 368 * For compound pages bigger than section size (e.g. x86 1G compound 369 * pages with 2M subsection size) fill the rest of sections as tail 370 * pages. 371 * 372 * Note that memremap_pages() resets @nr_range value and will increment 373 * it after each range successful onlining. Thus the value or @nr_range 374 * at section memmap populate corresponds to the in-progress range 375 * being onlined here. 376 */ 377 static bool __meminit reuse_compound_section(unsigned long start_pfn, 378 struct dev_pagemap *pgmap) 379 { 380 unsigned long nr_pages = pgmap_vmemmap_nr(pgmap); 381 unsigned long offset = start_pfn - 382 PHYS_PFN(pgmap->ranges[pgmap->nr_range].start); 383 384 return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION; 385 } 386 387 static pte_t * __meminit compound_section_tail_page(unsigned long addr) 388 { 389 pte_t *pte; 390 391 addr -= PAGE_SIZE; 392 393 /* 394 * Assuming sections are populated sequentially, the previous section's 395 * page data can be reused. 396 */ 397 pte = pte_offset_kernel(pmd_off_k(addr), addr); 398 if (!pte) 399 return NULL; 400 401 return pte; 402 } 403 404 static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn, 405 unsigned long start, 406 unsigned long end, int node, 407 struct dev_pagemap *pgmap) 408 { 409 unsigned long size, addr; 410 pte_t *pte; 411 int rc; 412 413 if (reuse_compound_section(start_pfn, pgmap)) { 414 pte = compound_section_tail_page(start); 415 if (!pte) 416 return -ENOMEM; 417 418 /* 419 * Reuse the page that was populated in the prior iteration 420 * with just tail struct pages. 421 */ 422 return vmemmap_populate_range(start, end, node, NULL, 423 pte_page(ptep_get(pte))); 424 } 425 426 size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page)); 427 for (addr = start; addr < end; addr += size) { 428 unsigned long next, last = addr + size; 429 430 /* Populate the head page vmemmap page */ 431 pte = vmemmap_populate_address(addr, node, NULL, NULL); 432 if (!pte) 433 return -ENOMEM; 434 435 /* Populate the tail pages vmemmap page */ 436 next = addr + PAGE_SIZE; 437 pte = vmemmap_populate_address(next, node, NULL, NULL); 438 if (!pte) 439 return -ENOMEM; 440 441 /* 442 * Reuse the previous page for the rest of tail pages 443 * See layout diagram in Documentation/mm/vmemmap_dedup.rst 444 */ 445 next += PAGE_SIZE; 446 rc = vmemmap_populate_range(next, last, node, NULL, 447 pte_page(ptep_get(pte))); 448 if (rc) 449 return -ENOMEM; 450 } 451 452 return 0; 453 } 454 455 #endif 456 457 struct page * __meminit __populate_section_memmap(unsigned long pfn, 458 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 459 struct dev_pagemap *pgmap) 460 { 461 unsigned long start = (unsigned long) pfn_to_page(pfn); 462 unsigned long end = start + nr_pages * sizeof(struct page); 463 int r; 464 465 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) || 466 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION))) 467 return NULL; 468 469 if (vmemmap_can_optimize(altmap, pgmap)) 470 r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap); 471 else 472 r = vmemmap_populate(start, end, nid, altmap); 473 474 if (r < 0) 475 return NULL; 476 477 if (system_state == SYSTEM_BOOTING) 478 memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); 479 else 480 memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE)); 481 482 return pfn_to_page(pfn); 483 } 484