1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 #ifdef CONFIG_NUMA 222 static DEFINE_STATIC_KEY_FALSE(strict_numa); 223 #endif 224 225 /* Structure holding parameters for get_partial() call chain */ 226 struct partial_context { 227 gfp_t flags; 228 unsigned int orig_size; 229 void *object; 230 }; 231 232 static inline bool kmem_cache_debug(struct kmem_cache *s) 233 { 234 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 235 } 236 237 void *fixup_red_left(struct kmem_cache *s, void *p) 238 { 239 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 240 p += s->red_left_pad; 241 242 return p; 243 } 244 245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 246 { 247 #ifdef CONFIG_SLUB_CPU_PARTIAL 248 return !kmem_cache_debug(s); 249 #else 250 return false; 251 #endif 252 } 253 254 /* 255 * Issues still to be resolved: 256 * 257 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 258 * 259 * - Variable sizing of the per node arrays 260 */ 261 262 /* Enable to log cmpxchg failures */ 263 #undef SLUB_DEBUG_CMPXCHG 264 265 #ifndef CONFIG_SLUB_TINY 266 /* 267 * Minimum number of partial slabs. These will be left on the partial 268 * lists even if they are empty. kmem_cache_shrink may reclaim them. 269 */ 270 #define MIN_PARTIAL 5 271 272 /* 273 * Maximum number of desirable partial slabs. 274 * The existence of more partial slabs makes kmem_cache_shrink 275 * sort the partial list by the number of objects in use. 276 */ 277 #define MAX_PARTIAL 10 278 #else 279 #define MIN_PARTIAL 0 280 #define MAX_PARTIAL 0 281 #endif 282 283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 284 SLAB_POISON | SLAB_STORE_USER) 285 286 /* 287 * These debug flags cannot use CMPXCHG because there might be consistency 288 * issues when checking or reading debug information 289 */ 290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 291 SLAB_TRACE) 292 293 294 /* 295 * Debugging flags that require metadata to be stored in the slab. These get 296 * disabled when slab_debug=O is used and a cache's min order increases with 297 * metadata. 298 */ 299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 300 301 #define OO_SHIFT 16 302 #define OO_MASK ((1 << OO_SHIFT) - 1) 303 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 304 305 /* Internal SLUB flags */ 306 /* Poison object */ 307 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 308 /* Use cmpxchg_double */ 309 310 #ifdef system_has_freelist_aba 311 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 312 #else 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 314 #endif 315 316 /* 317 * Tracking user of a slab. 318 */ 319 #define TRACK_ADDRS_COUNT 16 320 struct track { 321 unsigned long addr; /* Called from address */ 322 #ifdef CONFIG_STACKDEPOT 323 depot_stack_handle_t handle; 324 #endif 325 int cpu; /* Was running on cpu */ 326 int pid; /* Pid context */ 327 unsigned long when; /* When did the operation occur */ 328 }; 329 330 enum track_item { TRACK_ALLOC, TRACK_FREE }; 331 332 #ifdef SLAB_SUPPORTS_SYSFS 333 static int sysfs_slab_add(struct kmem_cache *); 334 static int sysfs_slab_alias(struct kmem_cache *, const char *); 335 #else 336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 338 { return 0; } 339 #endif 340 341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 342 static void debugfs_slab_add(struct kmem_cache *); 343 #else 344 static inline void debugfs_slab_add(struct kmem_cache *s) { } 345 #endif 346 347 enum stat_item { 348 ALLOC_FASTPATH, /* Allocation from cpu slab */ 349 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 350 FREE_FASTPATH, /* Free to cpu slab */ 351 FREE_SLOWPATH, /* Freeing not to cpu slab */ 352 FREE_FROZEN, /* Freeing to frozen slab */ 353 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 354 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 355 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 356 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 357 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 358 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 359 FREE_SLAB, /* Slab freed to the page allocator */ 360 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 361 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 362 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 363 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 364 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 365 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 366 DEACTIVATE_BYPASS, /* Implicit deactivation */ 367 ORDER_FALLBACK, /* Number of times fallback was necessary */ 368 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 369 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 370 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 371 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 372 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 373 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 374 NR_SLUB_STAT_ITEMS 375 }; 376 377 #ifndef CONFIG_SLUB_TINY 378 /* 379 * When changing the layout, make sure freelist and tid are still compatible 380 * with this_cpu_cmpxchg_double() alignment requirements. 381 */ 382 struct kmem_cache_cpu { 383 union { 384 struct { 385 void **freelist; /* Pointer to next available object */ 386 unsigned long tid; /* Globally unique transaction id */ 387 }; 388 freelist_aba_t freelist_tid; 389 }; 390 struct slab *slab; /* The slab from which we are allocating */ 391 #ifdef CONFIG_SLUB_CPU_PARTIAL 392 struct slab *partial; /* Partially allocated slabs */ 393 #endif 394 local_lock_t lock; /* Protects the fields above */ 395 #ifdef CONFIG_SLUB_STATS 396 unsigned int stat[NR_SLUB_STAT_ITEMS]; 397 #endif 398 }; 399 #endif /* CONFIG_SLUB_TINY */ 400 401 static inline void stat(const struct kmem_cache *s, enum stat_item si) 402 { 403 #ifdef CONFIG_SLUB_STATS 404 /* 405 * The rmw is racy on a preemptible kernel but this is acceptable, so 406 * avoid this_cpu_add()'s irq-disable overhead. 407 */ 408 raw_cpu_inc(s->cpu_slab->stat[si]); 409 #endif 410 } 411 412 static inline 413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 414 { 415 #ifdef CONFIG_SLUB_STATS 416 raw_cpu_add(s->cpu_slab->stat[si], v); 417 #endif 418 } 419 420 /* 421 * The slab lists for all objects. 422 */ 423 struct kmem_cache_node { 424 spinlock_t list_lock; 425 unsigned long nr_partial; 426 struct list_head partial; 427 #ifdef CONFIG_SLUB_DEBUG 428 atomic_long_t nr_slabs; 429 atomic_long_t total_objects; 430 struct list_head full; 431 #endif 432 }; 433 434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 435 { 436 return s->node[node]; 437 } 438 439 /* 440 * Iterator over all nodes. The body will be executed for each node that has 441 * a kmem_cache_node structure allocated (which is true for all online nodes) 442 */ 443 #define for_each_kmem_cache_node(__s, __node, __n) \ 444 for (__node = 0; __node < nr_node_ids; __node++) \ 445 if ((__n = get_node(__s, __node))) 446 447 /* 448 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 449 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 450 * differ during memory hotplug/hotremove operations. 451 * Protected by slab_mutex. 452 */ 453 static nodemask_t slab_nodes; 454 455 #ifndef CONFIG_SLUB_TINY 456 /* 457 * Workqueue used for flush_cpu_slab(). 458 */ 459 static struct workqueue_struct *flushwq; 460 #endif 461 462 /******************************************************************** 463 * Core slab cache functions 464 *******************************************************************/ 465 466 /* 467 * Returns freelist pointer (ptr). With hardening, this is obfuscated 468 * with an XOR of the address where the pointer is held and a per-cache 469 * random number. 470 */ 471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 472 void *ptr, unsigned long ptr_addr) 473 { 474 unsigned long encoded; 475 476 #ifdef CONFIG_SLAB_FREELIST_HARDENED 477 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 478 #else 479 encoded = (unsigned long)ptr; 480 #endif 481 return (freeptr_t){.v = encoded}; 482 } 483 484 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 485 freeptr_t ptr, unsigned long ptr_addr) 486 { 487 void *decoded; 488 489 #ifdef CONFIG_SLAB_FREELIST_HARDENED 490 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 491 #else 492 decoded = (void *)ptr.v; 493 #endif 494 return decoded; 495 } 496 497 static inline void *get_freepointer(struct kmem_cache *s, void *object) 498 { 499 unsigned long ptr_addr; 500 freeptr_t p; 501 502 object = kasan_reset_tag(object); 503 ptr_addr = (unsigned long)object + s->offset; 504 p = *(freeptr_t *)(ptr_addr); 505 return freelist_ptr_decode(s, p, ptr_addr); 506 } 507 508 #ifndef CONFIG_SLUB_TINY 509 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 510 { 511 prefetchw(object + s->offset); 512 } 513 #endif 514 515 /* 516 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 517 * pointer value in the case the current thread loses the race for the next 518 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 519 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 520 * KMSAN will still check all arguments of cmpxchg because of imperfect 521 * handling of inline assembly. 522 * To work around this problem, we apply __no_kmsan_checks to ensure that 523 * get_freepointer_safe() returns initialized memory. 524 */ 525 __no_kmsan_checks 526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 527 { 528 unsigned long freepointer_addr; 529 freeptr_t p; 530 531 if (!debug_pagealloc_enabled_static()) 532 return get_freepointer(s, object); 533 534 object = kasan_reset_tag(object); 535 freepointer_addr = (unsigned long)object + s->offset; 536 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 537 return freelist_ptr_decode(s, p, freepointer_addr); 538 } 539 540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 541 { 542 unsigned long freeptr_addr = (unsigned long)object + s->offset; 543 544 #ifdef CONFIG_SLAB_FREELIST_HARDENED 545 BUG_ON(object == fp); /* naive detection of double free or corruption */ 546 #endif 547 548 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 549 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 550 } 551 552 /* 553 * See comment in calculate_sizes(). 554 */ 555 static inline bool freeptr_outside_object(struct kmem_cache *s) 556 { 557 return s->offset >= s->inuse; 558 } 559 560 /* 561 * Return offset of the end of info block which is inuse + free pointer if 562 * not overlapping with object. 563 */ 564 static inline unsigned int get_info_end(struct kmem_cache *s) 565 { 566 if (freeptr_outside_object(s)) 567 return s->inuse + sizeof(void *); 568 else 569 return s->inuse; 570 } 571 572 /* Loop over all objects in a slab */ 573 #define for_each_object(__p, __s, __addr, __objects) \ 574 for (__p = fixup_red_left(__s, __addr); \ 575 __p < (__addr) + (__objects) * (__s)->size; \ 576 __p += (__s)->size) 577 578 static inline unsigned int order_objects(unsigned int order, unsigned int size) 579 { 580 return ((unsigned int)PAGE_SIZE << order) / size; 581 } 582 583 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 584 unsigned int size) 585 { 586 struct kmem_cache_order_objects x = { 587 (order << OO_SHIFT) + order_objects(order, size) 588 }; 589 590 return x; 591 } 592 593 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 594 { 595 return x.x >> OO_SHIFT; 596 } 597 598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 599 { 600 return x.x & OO_MASK; 601 } 602 603 #ifdef CONFIG_SLUB_CPU_PARTIAL 604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 605 { 606 unsigned int nr_slabs; 607 608 s->cpu_partial = nr_objects; 609 610 /* 611 * We take the number of objects but actually limit the number of 612 * slabs on the per cpu partial list, in order to limit excessive 613 * growth of the list. For simplicity we assume that the slabs will 614 * be half-full. 615 */ 616 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 617 s->cpu_partial_slabs = nr_slabs; 618 } 619 620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 621 { 622 return s->cpu_partial_slabs; 623 } 624 #else 625 static inline void 626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 627 { 628 } 629 630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 631 { 632 return 0; 633 } 634 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 635 636 /* 637 * Per slab locking using the pagelock 638 */ 639 static __always_inline void slab_lock(struct slab *slab) 640 { 641 bit_spin_lock(PG_locked, &slab->__page_flags); 642 } 643 644 static __always_inline void slab_unlock(struct slab *slab) 645 { 646 bit_spin_unlock(PG_locked, &slab->__page_flags); 647 } 648 649 static inline bool 650 __update_freelist_fast(struct slab *slab, 651 void *freelist_old, unsigned long counters_old, 652 void *freelist_new, unsigned long counters_new) 653 { 654 #ifdef system_has_freelist_aba 655 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 656 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 657 658 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 659 #else 660 return false; 661 #endif 662 } 663 664 static inline bool 665 __update_freelist_slow(struct slab *slab, 666 void *freelist_old, unsigned long counters_old, 667 void *freelist_new, unsigned long counters_new) 668 { 669 bool ret = false; 670 671 slab_lock(slab); 672 if (slab->freelist == freelist_old && 673 slab->counters == counters_old) { 674 slab->freelist = freelist_new; 675 slab->counters = counters_new; 676 ret = true; 677 } 678 slab_unlock(slab); 679 680 return ret; 681 } 682 683 /* 684 * Interrupts must be disabled (for the fallback code to work right), typically 685 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 686 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 687 * allocation/ free operation in hardirq context. Therefore nothing can 688 * interrupt the operation. 689 */ 690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 691 void *freelist_old, unsigned long counters_old, 692 void *freelist_new, unsigned long counters_new, 693 const char *n) 694 { 695 bool ret; 696 697 if (USE_LOCKLESS_FAST_PATH()) 698 lockdep_assert_irqs_disabled(); 699 700 if (s->flags & __CMPXCHG_DOUBLE) { 701 ret = __update_freelist_fast(slab, freelist_old, counters_old, 702 freelist_new, counters_new); 703 } else { 704 ret = __update_freelist_slow(slab, freelist_old, counters_old, 705 freelist_new, counters_new); 706 } 707 if (likely(ret)) 708 return true; 709 710 cpu_relax(); 711 stat(s, CMPXCHG_DOUBLE_FAIL); 712 713 #ifdef SLUB_DEBUG_CMPXCHG 714 pr_info("%s %s: cmpxchg double redo ", n, s->name); 715 #endif 716 717 return false; 718 } 719 720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 721 void *freelist_old, unsigned long counters_old, 722 void *freelist_new, unsigned long counters_new, 723 const char *n) 724 { 725 bool ret; 726 727 if (s->flags & __CMPXCHG_DOUBLE) { 728 ret = __update_freelist_fast(slab, freelist_old, counters_old, 729 freelist_new, counters_new); 730 } else { 731 unsigned long flags; 732 733 local_irq_save(flags); 734 ret = __update_freelist_slow(slab, freelist_old, counters_old, 735 freelist_new, counters_new); 736 local_irq_restore(flags); 737 } 738 if (likely(ret)) 739 return true; 740 741 cpu_relax(); 742 stat(s, CMPXCHG_DOUBLE_FAIL); 743 744 #ifdef SLUB_DEBUG_CMPXCHG 745 pr_info("%s %s: cmpxchg double redo ", n, s->name); 746 #endif 747 748 return false; 749 } 750 751 /* 752 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 753 * family will round up the real request size to these fixed ones, so 754 * there could be an extra area than what is requested. Save the original 755 * request size in the meta data area, for better debug and sanity check. 756 */ 757 static inline void set_orig_size(struct kmem_cache *s, 758 void *object, unsigned int orig_size) 759 { 760 void *p = kasan_reset_tag(object); 761 762 if (!slub_debug_orig_size(s)) 763 return; 764 765 p += get_info_end(s); 766 p += sizeof(struct track) * 2; 767 768 *(unsigned int *)p = orig_size; 769 } 770 771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 772 { 773 void *p = kasan_reset_tag(object); 774 775 if (is_kfence_address(object)) 776 return kfence_ksize(object); 777 778 if (!slub_debug_orig_size(s)) 779 return s->object_size; 780 781 p += get_info_end(s); 782 p += sizeof(struct track) * 2; 783 784 return *(unsigned int *)p; 785 } 786 787 #ifdef CONFIG_SLUB_DEBUG 788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 789 static DEFINE_SPINLOCK(object_map_lock); 790 791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 792 struct slab *slab) 793 { 794 void *addr = slab_address(slab); 795 void *p; 796 797 bitmap_zero(obj_map, slab->objects); 798 799 for (p = slab->freelist; p; p = get_freepointer(s, p)) 800 set_bit(__obj_to_index(s, addr, p), obj_map); 801 } 802 803 #if IS_ENABLED(CONFIG_KUNIT) 804 static bool slab_add_kunit_errors(void) 805 { 806 struct kunit_resource *resource; 807 808 if (!kunit_get_current_test()) 809 return false; 810 811 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 812 if (!resource) 813 return false; 814 815 (*(int *)resource->data)++; 816 kunit_put_resource(resource); 817 return true; 818 } 819 820 bool slab_in_kunit_test(void) 821 { 822 struct kunit_resource *resource; 823 824 if (!kunit_get_current_test()) 825 return false; 826 827 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 828 if (!resource) 829 return false; 830 831 kunit_put_resource(resource); 832 return true; 833 } 834 #else 835 static inline bool slab_add_kunit_errors(void) { return false; } 836 #endif 837 838 static inline unsigned int size_from_object(struct kmem_cache *s) 839 { 840 if (s->flags & SLAB_RED_ZONE) 841 return s->size - s->red_left_pad; 842 843 return s->size; 844 } 845 846 static inline void *restore_red_left(struct kmem_cache *s, void *p) 847 { 848 if (s->flags & SLAB_RED_ZONE) 849 p -= s->red_left_pad; 850 851 return p; 852 } 853 854 /* 855 * Debug settings: 856 */ 857 #if defined(CONFIG_SLUB_DEBUG_ON) 858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 859 #else 860 static slab_flags_t slub_debug; 861 #endif 862 863 static char *slub_debug_string; 864 static int disable_higher_order_debug; 865 866 /* 867 * slub is about to manipulate internal object metadata. This memory lies 868 * outside the range of the allocated object, so accessing it would normally 869 * be reported by kasan as a bounds error. metadata_access_enable() is used 870 * to tell kasan that these accesses are OK. 871 */ 872 static inline void metadata_access_enable(void) 873 { 874 kasan_disable_current(); 875 kmsan_disable_current(); 876 } 877 878 static inline void metadata_access_disable(void) 879 { 880 kmsan_enable_current(); 881 kasan_enable_current(); 882 } 883 884 /* 885 * Object debugging 886 */ 887 888 /* Verify that a pointer has an address that is valid within a slab page */ 889 static inline int check_valid_pointer(struct kmem_cache *s, 890 struct slab *slab, void *object) 891 { 892 void *base; 893 894 if (!object) 895 return 1; 896 897 base = slab_address(slab); 898 object = kasan_reset_tag(object); 899 object = restore_red_left(s, object); 900 if (object < base || object >= base + slab->objects * s->size || 901 (object - base) % s->size) { 902 return 0; 903 } 904 905 return 1; 906 } 907 908 static void print_section(char *level, char *text, u8 *addr, 909 unsigned int length) 910 { 911 metadata_access_enable(); 912 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 913 16, 1, kasan_reset_tag((void *)addr), length, 1); 914 metadata_access_disable(); 915 } 916 917 static struct track *get_track(struct kmem_cache *s, void *object, 918 enum track_item alloc) 919 { 920 struct track *p; 921 922 p = object + get_info_end(s); 923 924 return kasan_reset_tag(p + alloc); 925 } 926 927 #ifdef CONFIG_STACKDEPOT 928 static noinline depot_stack_handle_t set_track_prepare(void) 929 { 930 depot_stack_handle_t handle; 931 unsigned long entries[TRACK_ADDRS_COUNT]; 932 unsigned int nr_entries; 933 934 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 935 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 936 937 return handle; 938 } 939 #else 940 static inline depot_stack_handle_t set_track_prepare(void) 941 { 942 return 0; 943 } 944 #endif 945 946 static void set_track_update(struct kmem_cache *s, void *object, 947 enum track_item alloc, unsigned long addr, 948 depot_stack_handle_t handle) 949 { 950 struct track *p = get_track(s, object, alloc); 951 952 #ifdef CONFIG_STACKDEPOT 953 p->handle = handle; 954 #endif 955 p->addr = addr; 956 p->cpu = smp_processor_id(); 957 p->pid = current->pid; 958 p->when = jiffies; 959 } 960 961 static __always_inline void set_track(struct kmem_cache *s, void *object, 962 enum track_item alloc, unsigned long addr) 963 { 964 depot_stack_handle_t handle = set_track_prepare(); 965 966 set_track_update(s, object, alloc, addr, handle); 967 } 968 969 static void init_tracking(struct kmem_cache *s, void *object) 970 { 971 struct track *p; 972 973 if (!(s->flags & SLAB_STORE_USER)) 974 return; 975 976 p = get_track(s, object, TRACK_ALLOC); 977 memset(p, 0, 2*sizeof(struct track)); 978 } 979 980 static void print_track(const char *s, struct track *t, unsigned long pr_time) 981 { 982 depot_stack_handle_t handle __maybe_unused; 983 984 if (!t->addr) 985 return; 986 987 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 988 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 989 #ifdef CONFIG_STACKDEPOT 990 handle = READ_ONCE(t->handle); 991 if (handle) 992 stack_depot_print(handle); 993 else 994 pr_err("object allocation/free stack trace missing\n"); 995 #endif 996 } 997 998 void print_tracking(struct kmem_cache *s, void *object) 999 { 1000 unsigned long pr_time = jiffies; 1001 if (!(s->flags & SLAB_STORE_USER)) 1002 return; 1003 1004 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 1005 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 1006 } 1007 1008 static void print_slab_info(const struct slab *slab) 1009 { 1010 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 1011 slab, slab->objects, slab->inuse, slab->freelist, 1012 &slab->__page_flags); 1013 } 1014 1015 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1016 { 1017 set_orig_size(s, (void *)object, s->object_size); 1018 } 1019 1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1021 { 1022 struct va_format vaf; 1023 va_list args; 1024 1025 va_start(args, fmt); 1026 vaf.fmt = fmt; 1027 vaf.va = &args; 1028 pr_err("=============================================================================\n"); 1029 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1030 pr_err("-----------------------------------------------------------------------------\n\n"); 1031 va_end(args); 1032 } 1033 1034 __printf(2, 3) 1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1036 { 1037 struct va_format vaf; 1038 va_list args; 1039 1040 if (slab_add_kunit_errors()) 1041 return; 1042 1043 va_start(args, fmt); 1044 vaf.fmt = fmt; 1045 vaf.va = &args; 1046 pr_err("FIX %s: %pV\n", s->name, &vaf); 1047 va_end(args); 1048 } 1049 1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1051 { 1052 unsigned int off; /* Offset of last byte */ 1053 u8 *addr = slab_address(slab); 1054 1055 print_tracking(s, p); 1056 1057 print_slab_info(slab); 1058 1059 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1060 p, p - addr, get_freepointer(s, p)); 1061 1062 if (s->flags & SLAB_RED_ZONE) 1063 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1064 s->red_left_pad); 1065 else if (p > addr + 16) 1066 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1067 1068 print_section(KERN_ERR, "Object ", p, 1069 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1070 if (s->flags & SLAB_RED_ZONE) 1071 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1072 s->inuse - s->object_size); 1073 1074 off = get_info_end(s); 1075 1076 if (s->flags & SLAB_STORE_USER) 1077 off += 2 * sizeof(struct track); 1078 1079 if (slub_debug_orig_size(s)) 1080 off += sizeof(unsigned int); 1081 1082 off += kasan_metadata_size(s, false); 1083 1084 if (off != size_from_object(s)) 1085 /* Beginning of the filler is the free pointer */ 1086 print_section(KERN_ERR, "Padding ", p + off, 1087 size_from_object(s) - off); 1088 1089 dump_stack(); 1090 } 1091 1092 static void object_err(struct kmem_cache *s, struct slab *slab, 1093 u8 *object, char *reason) 1094 { 1095 if (slab_add_kunit_errors()) 1096 return; 1097 1098 slab_bug(s, "%s", reason); 1099 print_trailer(s, slab, object); 1100 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1101 } 1102 1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1104 void **freelist, void *nextfree) 1105 { 1106 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1107 !check_valid_pointer(s, slab, nextfree) && freelist) { 1108 object_err(s, slab, *freelist, "Freechain corrupt"); 1109 *freelist = NULL; 1110 slab_fix(s, "Isolate corrupted freechain"); 1111 return true; 1112 } 1113 1114 return false; 1115 } 1116 1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1118 const char *fmt, ...) 1119 { 1120 va_list args; 1121 char buf[100]; 1122 1123 if (slab_add_kunit_errors()) 1124 return; 1125 1126 va_start(args, fmt); 1127 vsnprintf(buf, sizeof(buf), fmt, args); 1128 va_end(args); 1129 slab_bug(s, "%s", buf); 1130 print_slab_info(slab); 1131 dump_stack(); 1132 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1133 } 1134 1135 static void init_object(struct kmem_cache *s, void *object, u8 val) 1136 { 1137 u8 *p = kasan_reset_tag(object); 1138 unsigned int poison_size = s->object_size; 1139 1140 if (s->flags & SLAB_RED_ZONE) { 1141 /* 1142 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1143 * the shadow makes it possible to distinguish uninit-value 1144 * from use-after-free. 1145 */ 1146 memset_no_sanitize_memory(p - s->red_left_pad, val, 1147 s->red_left_pad); 1148 1149 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1150 /* 1151 * Redzone the extra allocated space by kmalloc than 1152 * requested, and the poison size will be limited to 1153 * the original request size accordingly. 1154 */ 1155 poison_size = get_orig_size(s, object); 1156 } 1157 } 1158 1159 if (s->flags & __OBJECT_POISON) { 1160 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1161 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1162 } 1163 1164 if (s->flags & SLAB_RED_ZONE) 1165 memset_no_sanitize_memory(p + poison_size, val, 1166 s->inuse - poison_size); 1167 } 1168 1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1170 void *from, void *to) 1171 { 1172 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1173 memset(from, data, to - from); 1174 } 1175 1176 #ifdef CONFIG_KMSAN 1177 #define pad_check_attributes noinline __no_kmsan_checks 1178 #else 1179 #define pad_check_attributes 1180 #endif 1181 1182 static pad_check_attributes int 1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1184 u8 *object, char *what, 1185 u8 *start, unsigned int value, unsigned int bytes) 1186 { 1187 u8 *fault; 1188 u8 *end; 1189 u8 *addr = slab_address(slab); 1190 1191 metadata_access_enable(); 1192 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1193 metadata_access_disable(); 1194 if (!fault) 1195 return 1; 1196 1197 end = start + bytes; 1198 while (end > fault && end[-1] == value) 1199 end--; 1200 1201 if (slab_add_kunit_errors()) 1202 goto skip_bug_print; 1203 1204 slab_bug(s, "%s overwritten", what); 1205 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1206 fault, end - 1, fault - addr, 1207 fault[0], value); 1208 1209 skip_bug_print: 1210 restore_bytes(s, what, value, fault, end); 1211 return 0; 1212 } 1213 1214 /* 1215 * Object layout: 1216 * 1217 * object address 1218 * Bytes of the object to be managed. 1219 * If the freepointer may overlay the object then the free 1220 * pointer is at the middle of the object. 1221 * 1222 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1223 * 0xa5 (POISON_END) 1224 * 1225 * object + s->object_size 1226 * Padding to reach word boundary. This is also used for Redzoning. 1227 * Padding is extended by another word if Redzoning is enabled and 1228 * object_size == inuse. 1229 * 1230 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1231 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1232 * 1233 * object + s->inuse 1234 * Meta data starts here. 1235 * 1236 * A. Free pointer (if we cannot overwrite object on free) 1237 * B. Tracking data for SLAB_STORE_USER 1238 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1239 * D. Padding to reach required alignment boundary or at minimum 1240 * one word if debugging is on to be able to detect writes 1241 * before the word boundary. 1242 * 1243 * Padding is done using 0x5a (POISON_INUSE) 1244 * 1245 * object + s->size 1246 * Nothing is used beyond s->size. 1247 * 1248 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1249 * ignored. And therefore no slab options that rely on these boundaries 1250 * may be used with merged slabcaches. 1251 */ 1252 1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1254 { 1255 unsigned long off = get_info_end(s); /* The end of info */ 1256 1257 if (s->flags & SLAB_STORE_USER) { 1258 /* We also have user information there */ 1259 off += 2 * sizeof(struct track); 1260 1261 if (s->flags & SLAB_KMALLOC) 1262 off += sizeof(unsigned int); 1263 } 1264 1265 off += kasan_metadata_size(s, false); 1266 1267 if (size_from_object(s) == off) 1268 return 1; 1269 1270 return check_bytes_and_report(s, slab, p, "Object padding", 1271 p + off, POISON_INUSE, size_from_object(s) - off); 1272 } 1273 1274 /* Check the pad bytes at the end of a slab page */ 1275 static pad_check_attributes void 1276 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1277 { 1278 u8 *start; 1279 u8 *fault; 1280 u8 *end; 1281 u8 *pad; 1282 int length; 1283 int remainder; 1284 1285 if (!(s->flags & SLAB_POISON)) 1286 return; 1287 1288 start = slab_address(slab); 1289 length = slab_size(slab); 1290 end = start + length; 1291 remainder = length % s->size; 1292 if (!remainder) 1293 return; 1294 1295 pad = end - remainder; 1296 metadata_access_enable(); 1297 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1298 metadata_access_disable(); 1299 if (!fault) 1300 return; 1301 while (end > fault && end[-1] == POISON_INUSE) 1302 end--; 1303 1304 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1305 fault, end - 1, fault - start); 1306 print_section(KERN_ERR, "Padding ", pad, remainder); 1307 1308 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1309 } 1310 1311 static int check_object(struct kmem_cache *s, struct slab *slab, 1312 void *object, u8 val) 1313 { 1314 u8 *p = object; 1315 u8 *endobject = object + s->object_size; 1316 unsigned int orig_size, kasan_meta_size; 1317 int ret = 1; 1318 1319 if (s->flags & SLAB_RED_ZONE) { 1320 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1321 object - s->red_left_pad, val, s->red_left_pad)) 1322 ret = 0; 1323 1324 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1325 endobject, val, s->inuse - s->object_size)) 1326 ret = 0; 1327 1328 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1329 orig_size = get_orig_size(s, object); 1330 1331 if (s->object_size > orig_size && 1332 !check_bytes_and_report(s, slab, object, 1333 "kmalloc Redzone", p + orig_size, 1334 val, s->object_size - orig_size)) { 1335 ret = 0; 1336 } 1337 } 1338 } else { 1339 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1340 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1341 endobject, POISON_INUSE, 1342 s->inuse - s->object_size)) 1343 ret = 0; 1344 } 1345 } 1346 1347 if (s->flags & SLAB_POISON) { 1348 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1349 /* 1350 * KASAN can save its free meta data inside of the 1351 * object at offset 0. Thus, skip checking the part of 1352 * the redzone that overlaps with the meta data. 1353 */ 1354 kasan_meta_size = kasan_metadata_size(s, true); 1355 if (kasan_meta_size < s->object_size - 1 && 1356 !check_bytes_and_report(s, slab, p, "Poison", 1357 p + kasan_meta_size, POISON_FREE, 1358 s->object_size - kasan_meta_size - 1)) 1359 ret = 0; 1360 if (kasan_meta_size < s->object_size && 1361 !check_bytes_and_report(s, slab, p, "End Poison", 1362 p + s->object_size - 1, POISON_END, 1)) 1363 ret = 0; 1364 } 1365 /* 1366 * check_pad_bytes cleans up on its own. 1367 */ 1368 if (!check_pad_bytes(s, slab, p)) 1369 ret = 0; 1370 } 1371 1372 /* 1373 * Cannot check freepointer while object is allocated if 1374 * object and freepointer overlap. 1375 */ 1376 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1377 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1378 object_err(s, slab, p, "Freepointer corrupt"); 1379 /* 1380 * No choice but to zap it and thus lose the remainder 1381 * of the free objects in this slab. May cause 1382 * another error because the object count is now wrong. 1383 */ 1384 set_freepointer(s, p, NULL); 1385 ret = 0; 1386 } 1387 1388 if (!ret && !slab_in_kunit_test()) { 1389 print_trailer(s, slab, object); 1390 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1391 } 1392 1393 return ret; 1394 } 1395 1396 static int check_slab(struct kmem_cache *s, struct slab *slab) 1397 { 1398 int maxobj; 1399 1400 if (!folio_test_slab(slab_folio(slab))) { 1401 slab_err(s, slab, "Not a valid slab page"); 1402 return 0; 1403 } 1404 1405 maxobj = order_objects(slab_order(slab), s->size); 1406 if (slab->objects > maxobj) { 1407 slab_err(s, slab, "objects %u > max %u", 1408 slab->objects, maxobj); 1409 return 0; 1410 } 1411 if (slab->inuse > slab->objects) { 1412 slab_err(s, slab, "inuse %u > max %u", 1413 slab->inuse, slab->objects); 1414 return 0; 1415 } 1416 if (slab->frozen) { 1417 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1418 return 0; 1419 } 1420 1421 /* Slab_pad_check fixes things up after itself */ 1422 slab_pad_check(s, slab); 1423 return 1; 1424 } 1425 1426 /* 1427 * Determine if a certain object in a slab is on the freelist. Must hold the 1428 * slab lock to guarantee that the chains are in a consistent state. 1429 */ 1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1431 { 1432 int nr = 0; 1433 void *fp; 1434 void *object = NULL; 1435 int max_objects; 1436 1437 fp = slab->freelist; 1438 while (fp && nr <= slab->objects) { 1439 if (fp == search) 1440 return 1; 1441 if (!check_valid_pointer(s, slab, fp)) { 1442 if (object) { 1443 object_err(s, slab, object, 1444 "Freechain corrupt"); 1445 set_freepointer(s, object, NULL); 1446 } else { 1447 slab_err(s, slab, "Freepointer corrupt"); 1448 slab->freelist = NULL; 1449 slab->inuse = slab->objects; 1450 slab_fix(s, "Freelist cleared"); 1451 return 0; 1452 } 1453 break; 1454 } 1455 object = fp; 1456 fp = get_freepointer(s, object); 1457 nr++; 1458 } 1459 1460 max_objects = order_objects(slab_order(slab), s->size); 1461 if (max_objects > MAX_OBJS_PER_PAGE) 1462 max_objects = MAX_OBJS_PER_PAGE; 1463 1464 if (slab->objects != max_objects) { 1465 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1466 slab->objects, max_objects); 1467 slab->objects = max_objects; 1468 slab_fix(s, "Number of objects adjusted"); 1469 } 1470 if (slab->inuse != slab->objects - nr) { 1471 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1472 slab->inuse, slab->objects - nr); 1473 slab->inuse = slab->objects - nr; 1474 slab_fix(s, "Object count adjusted"); 1475 } 1476 return search == NULL; 1477 } 1478 1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1480 int alloc) 1481 { 1482 if (s->flags & SLAB_TRACE) { 1483 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1484 s->name, 1485 alloc ? "alloc" : "free", 1486 object, slab->inuse, 1487 slab->freelist); 1488 1489 if (!alloc) 1490 print_section(KERN_INFO, "Object ", (void *)object, 1491 s->object_size); 1492 1493 dump_stack(); 1494 } 1495 } 1496 1497 /* 1498 * Tracking of fully allocated slabs for debugging purposes. 1499 */ 1500 static void add_full(struct kmem_cache *s, 1501 struct kmem_cache_node *n, struct slab *slab) 1502 { 1503 if (!(s->flags & SLAB_STORE_USER)) 1504 return; 1505 1506 lockdep_assert_held(&n->list_lock); 1507 list_add(&slab->slab_list, &n->full); 1508 } 1509 1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1511 { 1512 if (!(s->flags & SLAB_STORE_USER)) 1513 return; 1514 1515 lockdep_assert_held(&n->list_lock); 1516 list_del(&slab->slab_list); 1517 } 1518 1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1520 { 1521 return atomic_long_read(&n->nr_slabs); 1522 } 1523 1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1525 { 1526 struct kmem_cache_node *n = get_node(s, node); 1527 1528 atomic_long_inc(&n->nr_slabs); 1529 atomic_long_add(objects, &n->total_objects); 1530 } 1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1532 { 1533 struct kmem_cache_node *n = get_node(s, node); 1534 1535 atomic_long_dec(&n->nr_slabs); 1536 atomic_long_sub(objects, &n->total_objects); 1537 } 1538 1539 /* Object debug checks for alloc/free paths */ 1540 static void setup_object_debug(struct kmem_cache *s, void *object) 1541 { 1542 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1543 return; 1544 1545 init_object(s, object, SLUB_RED_INACTIVE); 1546 init_tracking(s, object); 1547 } 1548 1549 static 1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1551 { 1552 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1553 return; 1554 1555 metadata_access_enable(); 1556 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1557 metadata_access_disable(); 1558 } 1559 1560 static inline int alloc_consistency_checks(struct kmem_cache *s, 1561 struct slab *slab, void *object) 1562 { 1563 if (!check_slab(s, slab)) 1564 return 0; 1565 1566 if (!check_valid_pointer(s, slab, object)) { 1567 object_err(s, slab, object, "Freelist Pointer check fails"); 1568 return 0; 1569 } 1570 1571 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1572 return 0; 1573 1574 return 1; 1575 } 1576 1577 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1578 struct slab *slab, void *object, int orig_size) 1579 { 1580 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1581 if (!alloc_consistency_checks(s, slab, object)) 1582 goto bad; 1583 } 1584 1585 /* Success. Perform special debug activities for allocs */ 1586 trace(s, slab, object, 1); 1587 set_orig_size(s, object, orig_size); 1588 init_object(s, object, SLUB_RED_ACTIVE); 1589 return true; 1590 1591 bad: 1592 if (folio_test_slab(slab_folio(slab))) { 1593 /* 1594 * If this is a slab page then lets do the best we can 1595 * to avoid issues in the future. Marking all objects 1596 * as used avoids touching the remaining objects. 1597 */ 1598 slab_fix(s, "Marking all objects used"); 1599 slab->inuse = slab->objects; 1600 slab->freelist = NULL; 1601 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1602 } 1603 return false; 1604 } 1605 1606 static inline int free_consistency_checks(struct kmem_cache *s, 1607 struct slab *slab, void *object, unsigned long addr) 1608 { 1609 if (!check_valid_pointer(s, slab, object)) { 1610 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1611 return 0; 1612 } 1613 1614 if (on_freelist(s, slab, object)) { 1615 object_err(s, slab, object, "Object already free"); 1616 return 0; 1617 } 1618 1619 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1620 return 0; 1621 1622 if (unlikely(s != slab->slab_cache)) { 1623 if (!folio_test_slab(slab_folio(slab))) { 1624 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1625 object); 1626 } else if (!slab->slab_cache) { 1627 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1628 object); 1629 dump_stack(); 1630 } else 1631 object_err(s, slab, object, 1632 "page slab pointer corrupt."); 1633 return 0; 1634 } 1635 return 1; 1636 } 1637 1638 /* 1639 * Parse a block of slab_debug options. Blocks are delimited by ';' 1640 * 1641 * @str: start of block 1642 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1643 * @slabs: return start of list of slabs, or NULL when there's no list 1644 * @init: assume this is initial parsing and not per-kmem-create parsing 1645 * 1646 * returns the start of next block if there's any, or NULL 1647 */ 1648 static char * 1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1650 { 1651 bool higher_order_disable = false; 1652 1653 /* Skip any completely empty blocks */ 1654 while (*str && *str == ';') 1655 str++; 1656 1657 if (*str == ',') { 1658 /* 1659 * No options but restriction on slabs. This means full 1660 * debugging for slabs matching a pattern. 1661 */ 1662 *flags = DEBUG_DEFAULT_FLAGS; 1663 goto check_slabs; 1664 } 1665 *flags = 0; 1666 1667 /* Determine which debug features should be switched on */ 1668 for (; *str && *str != ',' && *str != ';'; str++) { 1669 switch (tolower(*str)) { 1670 case '-': 1671 *flags = 0; 1672 break; 1673 case 'f': 1674 *flags |= SLAB_CONSISTENCY_CHECKS; 1675 break; 1676 case 'z': 1677 *flags |= SLAB_RED_ZONE; 1678 break; 1679 case 'p': 1680 *flags |= SLAB_POISON; 1681 break; 1682 case 'u': 1683 *flags |= SLAB_STORE_USER; 1684 break; 1685 case 't': 1686 *flags |= SLAB_TRACE; 1687 break; 1688 case 'a': 1689 *flags |= SLAB_FAILSLAB; 1690 break; 1691 case 'o': 1692 /* 1693 * Avoid enabling debugging on caches if its minimum 1694 * order would increase as a result. 1695 */ 1696 higher_order_disable = true; 1697 break; 1698 default: 1699 if (init) 1700 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1701 } 1702 } 1703 check_slabs: 1704 if (*str == ',') 1705 *slabs = ++str; 1706 else 1707 *slabs = NULL; 1708 1709 /* Skip over the slab list */ 1710 while (*str && *str != ';') 1711 str++; 1712 1713 /* Skip any completely empty blocks */ 1714 while (*str && *str == ';') 1715 str++; 1716 1717 if (init && higher_order_disable) 1718 disable_higher_order_debug = 1; 1719 1720 if (*str) 1721 return str; 1722 else 1723 return NULL; 1724 } 1725 1726 static int __init setup_slub_debug(char *str) 1727 { 1728 slab_flags_t flags; 1729 slab_flags_t global_flags; 1730 char *saved_str; 1731 char *slab_list; 1732 bool global_slub_debug_changed = false; 1733 bool slab_list_specified = false; 1734 1735 global_flags = DEBUG_DEFAULT_FLAGS; 1736 if (*str++ != '=' || !*str) 1737 /* 1738 * No options specified. Switch on full debugging. 1739 */ 1740 goto out; 1741 1742 saved_str = str; 1743 while (str) { 1744 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1745 1746 if (!slab_list) { 1747 global_flags = flags; 1748 global_slub_debug_changed = true; 1749 } else { 1750 slab_list_specified = true; 1751 if (flags & SLAB_STORE_USER) 1752 stack_depot_request_early_init(); 1753 } 1754 } 1755 1756 /* 1757 * For backwards compatibility, a single list of flags with list of 1758 * slabs means debugging is only changed for those slabs, so the global 1759 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1760 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1761 * long as there is no option specifying flags without a slab list. 1762 */ 1763 if (slab_list_specified) { 1764 if (!global_slub_debug_changed) 1765 global_flags = slub_debug; 1766 slub_debug_string = saved_str; 1767 } 1768 out: 1769 slub_debug = global_flags; 1770 if (slub_debug & SLAB_STORE_USER) 1771 stack_depot_request_early_init(); 1772 if (slub_debug != 0 || slub_debug_string) 1773 static_branch_enable(&slub_debug_enabled); 1774 else 1775 static_branch_disable(&slub_debug_enabled); 1776 if ((static_branch_unlikely(&init_on_alloc) || 1777 static_branch_unlikely(&init_on_free)) && 1778 (slub_debug & SLAB_POISON)) 1779 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1780 return 1; 1781 } 1782 1783 __setup("slab_debug", setup_slub_debug); 1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1785 1786 /* 1787 * kmem_cache_flags - apply debugging options to the cache 1788 * @flags: flags to set 1789 * @name: name of the cache 1790 * 1791 * Debug option(s) are applied to @flags. In addition to the debug 1792 * option(s), if a slab name (or multiple) is specified i.e. 1793 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1794 * then only the select slabs will receive the debug option(s). 1795 */ 1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1797 { 1798 char *iter; 1799 size_t len; 1800 char *next_block; 1801 slab_flags_t block_flags; 1802 slab_flags_t slub_debug_local = slub_debug; 1803 1804 if (flags & SLAB_NO_USER_FLAGS) 1805 return flags; 1806 1807 /* 1808 * If the slab cache is for debugging (e.g. kmemleak) then 1809 * don't store user (stack trace) information by default, 1810 * but let the user enable it via the command line below. 1811 */ 1812 if (flags & SLAB_NOLEAKTRACE) 1813 slub_debug_local &= ~SLAB_STORE_USER; 1814 1815 len = strlen(name); 1816 next_block = slub_debug_string; 1817 /* Go through all blocks of debug options, see if any matches our slab's name */ 1818 while (next_block) { 1819 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1820 if (!iter) 1821 continue; 1822 /* Found a block that has a slab list, search it */ 1823 while (*iter) { 1824 char *end, *glob; 1825 size_t cmplen; 1826 1827 end = strchrnul(iter, ','); 1828 if (next_block && next_block < end) 1829 end = next_block - 1; 1830 1831 glob = strnchr(iter, end - iter, '*'); 1832 if (glob) 1833 cmplen = glob - iter; 1834 else 1835 cmplen = max_t(size_t, len, (end - iter)); 1836 1837 if (!strncmp(name, iter, cmplen)) { 1838 flags |= block_flags; 1839 return flags; 1840 } 1841 1842 if (!*end || *end == ';') 1843 break; 1844 iter = end + 1; 1845 } 1846 } 1847 1848 return flags | slub_debug_local; 1849 } 1850 #else /* !CONFIG_SLUB_DEBUG */ 1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1852 static inline 1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1854 1855 static inline bool alloc_debug_processing(struct kmem_cache *s, 1856 struct slab *slab, void *object, int orig_size) { return true; } 1857 1858 static inline bool free_debug_processing(struct kmem_cache *s, 1859 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1860 unsigned long addr, depot_stack_handle_t handle) { return true; } 1861 1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1863 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1864 void *object, u8 val) { return 1; } 1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1866 static inline void set_track(struct kmem_cache *s, void *object, 1867 enum track_item alloc, unsigned long addr) {} 1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1869 struct slab *slab) {} 1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1871 struct slab *slab) {} 1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1873 { 1874 return flags; 1875 } 1876 #define slub_debug 0 1877 1878 #define disable_higher_order_debug 0 1879 1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1881 { return 0; } 1882 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1883 int objects) {} 1884 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1885 int objects) {} 1886 #ifndef CONFIG_SLUB_TINY 1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1888 void **freelist, void *nextfree) 1889 { 1890 return false; 1891 } 1892 #endif 1893 #endif /* CONFIG_SLUB_DEBUG */ 1894 1895 #ifdef CONFIG_SLAB_OBJ_EXT 1896 1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1898 1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1900 { 1901 struct slabobj_ext *slab_exts; 1902 struct slab *obj_exts_slab; 1903 1904 obj_exts_slab = virt_to_slab(obj_exts); 1905 slab_exts = slab_obj_exts(obj_exts_slab); 1906 if (slab_exts) { 1907 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1908 obj_exts_slab, obj_exts); 1909 /* codetag should be NULL */ 1910 WARN_ON(slab_exts[offs].ref.ct); 1911 set_codetag_empty(&slab_exts[offs].ref); 1912 } 1913 } 1914 1915 static inline void mark_failed_objexts_alloc(struct slab *slab) 1916 { 1917 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1918 } 1919 1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1921 struct slabobj_ext *vec, unsigned int objects) 1922 { 1923 /* 1924 * If vector previously failed to allocate then we have live 1925 * objects with no tag reference. Mark all references in this 1926 * vector as empty to avoid warnings later on. 1927 */ 1928 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1929 unsigned int i; 1930 1931 for (i = 0; i < objects; i++) 1932 set_codetag_empty(&vec[i].ref); 1933 } 1934 } 1935 1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1937 1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1941 struct slabobj_ext *vec, unsigned int objects) {} 1942 1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1944 1945 /* 1946 * The allocated objcg pointers array is not accounted directly. 1947 * Moreover, it should not come from DMA buffer and is not readily 1948 * reclaimable. So those GFP bits should be masked off. 1949 */ 1950 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1951 __GFP_ACCOUNT | __GFP_NOFAIL) 1952 1953 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1954 gfp_t gfp, bool new_slab) 1955 { 1956 unsigned int objects = objs_per_slab(s, slab); 1957 unsigned long new_exts; 1958 unsigned long old_exts; 1959 struct slabobj_ext *vec; 1960 1961 gfp &= ~OBJCGS_CLEAR_MASK; 1962 /* Prevent recursive extension vector allocation */ 1963 gfp |= __GFP_NO_OBJ_EXT; 1964 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1965 slab_nid(slab)); 1966 if (!vec) { 1967 /* Mark vectors which failed to allocate */ 1968 if (new_slab) 1969 mark_failed_objexts_alloc(slab); 1970 1971 return -ENOMEM; 1972 } 1973 1974 new_exts = (unsigned long)vec; 1975 #ifdef CONFIG_MEMCG 1976 new_exts |= MEMCG_DATA_OBJEXTS; 1977 #endif 1978 old_exts = READ_ONCE(slab->obj_exts); 1979 handle_failed_objexts_alloc(old_exts, vec, objects); 1980 if (new_slab) { 1981 /* 1982 * If the slab is brand new and nobody can yet access its 1983 * obj_exts, no synchronization is required and obj_exts can 1984 * be simply assigned. 1985 */ 1986 slab->obj_exts = new_exts; 1987 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 1988 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 1989 /* 1990 * If the slab is already in use, somebody can allocate and 1991 * assign slabobj_exts in parallel. In this case the existing 1992 * objcg vector should be reused. 1993 */ 1994 mark_objexts_empty(vec); 1995 kfree(vec); 1996 return 0; 1997 } 1998 1999 kmemleak_not_leak(vec); 2000 return 0; 2001 } 2002 2003 static inline void free_slab_obj_exts(struct slab *slab) 2004 { 2005 struct slabobj_ext *obj_exts; 2006 2007 obj_exts = slab_obj_exts(slab); 2008 if (!obj_exts) 2009 return; 2010 2011 /* 2012 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2013 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2014 * warning if slab has extensions but the extension of an object is 2015 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2016 * the extension for obj_exts is expected to be NULL. 2017 */ 2018 mark_objexts_empty(obj_exts); 2019 kfree(obj_exts); 2020 slab->obj_exts = 0; 2021 } 2022 2023 static inline bool need_slab_obj_ext(void) 2024 { 2025 if (mem_alloc_profiling_enabled()) 2026 return true; 2027 2028 /* 2029 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally 2030 * inside memcg_slab_post_alloc_hook. No other users for now. 2031 */ 2032 return false; 2033 } 2034 2035 #else /* CONFIG_SLAB_OBJ_EXT */ 2036 2037 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2038 gfp_t gfp, bool new_slab) 2039 { 2040 return 0; 2041 } 2042 2043 static inline void free_slab_obj_exts(struct slab *slab) 2044 { 2045 } 2046 2047 static inline bool need_slab_obj_ext(void) 2048 { 2049 return false; 2050 } 2051 2052 #endif /* CONFIG_SLAB_OBJ_EXT */ 2053 2054 #ifdef CONFIG_MEM_ALLOC_PROFILING 2055 2056 static inline struct slabobj_ext * 2057 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2058 { 2059 struct slab *slab; 2060 2061 if (!p) 2062 return NULL; 2063 2064 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2065 return NULL; 2066 2067 if (flags & __GFP_NO_OBJ_EXT) 2068 return NULL; 2069 2070 slab = virt_to_slab(p); 2071 if (!slab_obj_exts(slab) && 2072 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2073 "%s, %s: Failed to create slab extension vector!\n", 2074 __func__, s->name)) 2075 return NULL; 2076 2077 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2078 } 2079 2080 static inline void 2081 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2082 { 2083 if (need_slab_obj_ext()) { 2084 struct slabobj_ext *obj_exts; 2085 2086 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2087 /* 2088 * Currently obj_exts is used only for allocation profiling. 2089 * If other users appear then mem_alloc_profiling_enabled() 2090 * check should be added before alloc_tag_add(). 2091 */ 2092 if (likely(obj_exts)) 2093 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2094 } 2095 } 2096 2097 static inline void 2098 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2099 int objects) 2100 { 2101 struct slabobj_ext *obj_exts; 2102 int i; 2103 2104 if (!mem_alloc_profiling_enabled()) 2105 return; 2106 2107 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2108 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2109 return; 2110 2111 obj_exts = slab_obj_exts(slab); 2112 if (!obj_exts) 2113 return; 2114 2115 for (i = 0; i < objects; i++) { 2116 unsigned int off = obj_to_index(s, slab, p[i]); 2117 2118 alloc_tag_sub(&obj_exts[off].ref, s->size); 2119 } 2120 } 2121 2122 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2123 2124 static inline void 2125 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2126 { 2127 } 2128 2129 static inline void 2130 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2131 int objects) 2132 { 2133 } 2134 2135 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2136 2137 2138 #ifdef CONFIG_MEMCG 2139 2140 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2141 2142 static __fastpath_inline 2143 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2144 gfp_t flags, size_t size, void **p) 2145 { 2146 if (likely(!memcg_kmem_online())) 2147 return true; 2148 2149 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2150 return true; 2151 2152 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2153 return true; 2154 2155 if (likely(size == 1)) { 2156 memcg_alloc_abort_single(s, *p); 2157 *p = NULL; 2158 } else { 2159 kmem_cache_free_bulk(s, size, p); 2160 } 2161 2162 return false; 2163 } 2164 2165 static __fastpath_inline 2166 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2167 int objects) 2168 { 2169 struct slabobj_ext *obj_exts; 2170 2171 if (!memcg_kmem_online()) 2172 return; 2173 2174 obj_exts = slab_obj_exts(slab); 2175 if (likely(!obj_exts)) 2176 return; 2177 2178 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2179 } 2180 2181 static __fastpath_inline 2182 bool memcg_slab_post_charge(void *p, gfp_t flags) 2183 { 2184 struct slabobj_ext *slab_exts; 2185 struct kmem_cache *s; 2186 struct folio *folio; 2187 struct slab *slab; 2188 unsigned long off; 2189 2190 folio = virt_to_folio(p); 2191 if (!folio_test_slab(folio)) { 2192 int size; 2193 2194 if (folio_memcg_kmem(folio)) 2195 return true; 2196 2197 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags, 2198 folio_order(folio))) 2199 return false; 2200 2201 /* 2202 * This folio has already been accounted in the global stats but 2203 * not in the memcg stats. So, subtract from the global and use 2204 * the interface which adds to both global and memcg stats. 2205 */ 2206 size = folio_size(folio); 2207 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size); 2208 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size); 2209 return true; 2210 } 2211 2212 slab = folio_slab(folio); 2213 s = slab->slab_cache; 2214 2215 /* 2216 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency 2217 * of slab_obj_exts being allocated from the same slab and thus the slab 2218 * becoming effectively unfreeable. 2219 */ 2220 if (is_kmalloc_normal(s)) 2221 return true; 2222 2223 /* Ignore already charged objects. */ 2224 slab_exts = slab_obj_exts(slab); 2225 if (slab_exts) { 2226 off = obj_to_index(s, slab, p); 2227 if (unlikely(slab_exts[off].objcg)) 2228 return true; 2229 } 2230 2231 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); 2232 } 2233 2234 #else /* CONFIG_MEMCG */ 2235 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2236 struct list_lru *lru, 2237 gfp_t flags, size_t size, 2238 void **p) 2239 { 2240 return true; 2241 } 2242 2243 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2244 void **p, int objects) 2245 { 2246 } 2247 2248 static inline bool memcg_slab_post_charge(void *p, gfp_t flags) 2249 { 2250 return true; 2251 } 2252 #endif /* CONFIG_MEMCG */ 2253 2254 #ifdef CONFIG_SLUB_RCU_DEBUG 2255 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); 2256 2257 struct rcu_delayed_free { 2258 struct rcu_head head; 2259 void *object; 2260 }; 2261 #endif 2262 2263 /* 2264 * Hooks for other subsystems that check memory allocations. In a typical 2265 * production configuration these hooks all should produce no code at all. 2266 * 2267 * Returns true if freeing of the object can proceed, false if its reuse 2268 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned 2269 * to KFENCE. 2270 */ 2271 static __always_inline 2272 bool slab_free_hook(struct kmem_cache *s, void *x, bool init, 2273 bool after_rcu_delay) 2274 { 2275 /* Are the object contents still accessible? */ 2276 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; 2277 2278 kmemleak_free_recursive(x, s->flags); 2279 kmsan_slab_free(s, x); 2280 2281 debug_check_no_locks_freed(x, s->object_size); 2282 2283 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2284 debug_check_no_obj_freed(x, s->object_size); 2285 2286 /* Use KCSAN to help debug racy use-after-free. */ 2287 if (!still_accessible) 2288 __kcsan_check_access(x, s->object_size, 2289 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2290 2291 if (kfence_free(x)) 2292 return false; 2293 2294 /* 2295 * Give KASAN a chance to notice an invalid free operation before we 2296 * modify the object. 2297 */ 2298 if (kasan_slab_pre_free(s, x)) 2299 return false; 2300 2301 #ifdef CONFIG_SLUB_RCU_DEBUG 2302 if (still_accessible) { 2303 struct rcu_delayed_free *delayed_free; 2304 2305 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); 2306 if (delayed_free) { 2307 /* 2308 * Let KASAN track our call stack as a "related work 2309 * creation", just like if the object had been freed 2310 * normally via kfree_rcu(). 2311 * We have to do this manually because the rcu_head is 2312 * not located inside the object. 2313 */ 2314 kasan_record_aux_stack(x); 2315 2316 delayed_free->object = x; 2317 call_rcu(&delayed_free->head, slab_free_after_rcu_debug); 2318 return false; 2319 } 2320 } 2321 #endif /* CONFIG_SLUB_RCU_DEBUG */ 2322 2323 /* 2324 * As memory initialization might be integrated into KASAN, 2325 * kasan_slab_free and initialization memset's must be 2326 * kept together to avoid discrepancies in behavior. 2327 * 2328 * The initialization memset's clear the object and the metadata, 2329 * but don't touch the SLAB redzone. 2330 * 2331 * The object's freepointer is also avoided if stored outside the 2332 * object. 2333 */ 2334 if (unlikely(init)) { 2335 int rsize; 2336 unsigned int inuse, orig_size; 2337 2338 inuse = get_info_end(s); 2339 orig_size = get_orig_size(s, x); 2340 if (!kasan_has_integrated_init()) 2341 memset(kasan_reset_tag(x), 0, orig_size); 2342 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2343 memset((char *)kasan_reset_tag(x) + inuse, 0, 2344 s->size - inuse - rsize); 2345 /* 2346 * Restore orig_size, otherwize kmalloc redzone overwritten 2347 * would be reported 2348 */ 2349 set_orig_size(s, x, orig_size); 2350 2351 } 2352 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2353 return !kasan_slab_free(s, x, init, still_accessible); 2354 } 2355 2356 static __fastpath_inline 2357 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2358 int *cnt) 2359 { 2360 2361 void *object; 2362 void *next = *head; 2363 void *old_tail = *tail; 2364 bool init; 2365 2366 if (is_kfence_address(next)) { 2367 slab_free_hook(s, next, false, false); 2368 return false; 2369 } 2370 2371 /* Head and tail of the reconstructed freelist */ 2372 *head = NULL; 2373 *tail = NULL; 2374 2375 init = slab_want_init_on_free(s); 2376 2377 do { 2378 object = next; 2379 next = get_freepointer(s, object); 2380 2381 /* If object's reuse doesn't have to be delayed */ 2382 if (likely(slab_free_hook(s, object, init, false))) { 2383 /* Move object to the new freelist */ 2384 set_freepointer(s, object, *head); 2385 *head = object; 2386 if (!*tail) 2387 *tail = object; 2388 } else { 2389 /* 2390 * Adjust the reconstructed freelist depth 2391 * accordingly if object's reuse is delayed. 2392 */ 2393 --(*cnt); 2394 } 2395 } while (object != old_tail); 2396 2397 return *head != NULL; 2398 } 2399 2400 static void *setup_object(struct kmem_cache *s, void *object) 2401 { 2402 setup_object_debug(s, object); 2403 object = kasan_init_slab_obj(s, object); 2404 if (unlikely(s->ctor)) { 2405 kasan_unpoison_new_object(s, object); 2406 s->ctor(object); 2407 kasan_poison_new_object(s, object); 2408 } 2409 return object; 2410 } 2411 2412 /* 2413 * Slab allocation and freeing 2414 */ 2415 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2416 struct kmem_cache_order_objects oo) 2417 { 2418 struct folio *folio; 2419 struct slab *slab; 2420 unsigned int order = oo_order(oo); 2421 2422 if (node == NUMA_NO_NODE) 2423 folio = (struct folio *)alloc_frozen_pages(flags, order); 2424 else 2425 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL); 2426 2427 if (!folio) 2428 return NULL; 2429 2430 slab = folio_slab(folio); 2431 __folio_set_slab(folio); 2432 if (folio_is_pfmemalloc(folio)) 2433 slab_set_pfmemalloc(slab); 2434 2435 return slab; 2436 } 2437 2438 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2439 /* Pre-initialize the random sequence cache */ 2440 static int init_cache_random_seq(struct kmem_cache *s) 2441 { 2442 unsigned int count = oo_objects(s->oo); 2443 int err; 2444 2445 /* Bailout if already initialised */ 2446 if (s->random_seq) 2447 return 0; 2448 2449 err = cache_random_seq_create(s, count, GFP_KERNEL); 2450 if (err) { 2451 pr_err("SLUB: Unable to initialize free list for %s\n", 2452 s->name); 2453 return err; 2454 } 2455 2456 /* Transform to an offset on the set of pages */ 2457 if (s->random_seq) { 2458 unsigned int i; 2459 2460 for (i = 0; i < count; i++) 2461 s->random_seq[i] *= s->size; 2462 } 2463 return 0; 2464 } 2465 2466 /* Initialize each random sequence freelist per cache */ 2467 static void __init init_freelist_randomization(void) 2468 { 2469 struct kmem_cache *s; 2470 2471 mutex_lock(&slab_mutex); 2472 2473 list_for_each_entry(s, &slab_caches, list) 2474 init_cache_random_seq(s); 2475 2476 mutex_unlock(&slab_mutex); 2477 } 2478 2479 /* Get the next entry on the pre-computed freelist randomized */ 2480 static void *next_freelist_entry(struct kmem_cache *s, 2481 unsigned long *pos, void *start, 2482 unsigned long page_limit, 2483 unsigned long freelist_count) 2484 { 2485 unsigned int idx; 2486 2487 /* 2488 * If the target page allocation failed, the number of objects on the 2489 * page might be smaller than the usual size defined by the cache. 2490 */ 2491 do { 2492 idx = s->random_seq[*pos]; 2493 *pos += 1; 2494 if (*pos >= freelist_count) 2495 *pos = 0; 2496 } while (unlikely(idx >= page_limit)); 2497 2498 return (char *)start + idx; 2499 } 2500 2501 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2502 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2503 { 2504 void *start; 2505 void *cur; 2506 void *next; 2507 unsigned long idx, pos, page_limit, freelist_count; 2508 2509 if (slab->objects < 2 || !s->random_seq) 2510 return false; 2511 2512 freelist_count = oo_objects(s->oo); 2513 pos = get_random_u32_below(freelist_count); 2514 2515 page_limit = slab->objects * s->size; 2516 start = fixup_red_left(s, slab_address(slab)); 2517 2518 /* First entry is used as the base of the freelist */ 2519 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2520 cur = setup_object(s, cur); 2521 slab->freelist = cur; 2522 2523 for (idx = 1; idx < slab->objects; idx++) { 2524 next = next_freelist_entry(s, &pos, start, page_limit, 2525 freelist_count); 2526 next = setup_object(s, next); 2527 set_freepointer(s, cur, next); 2528 cur = next; 2529 } 2530 set_freepointer(s, cur, NULL); 2531 2532 return true; 2533 } 2534 #else 2535 static inline int init_cache_random_seq(struct kmem_cache *s) 2536 { 2537 return 0; 2538 } 2539 static inline void init_freelist_randomization(void) { } 2540 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2541 { 2542 return false; 2543 } 2544 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2545 2546 static __always_inline void account_slab(struct slab *slab, int order, 2547 struct kmem_cache *s, gfp_t gfp) 2548 { 2549 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2550 alloc_slab_obj_exts(slab, s, gfp, true); 2551 2552 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2553 PAGE_SIZE << order); 2554 } 2555 2556 static __always_inline void unaccount_slab(struct slab *slab, int order, 2557 struct kmem_cache *s) 2558 { 2559 if (memcg_kmem_online() || need_slab_obj_ext()) 2560 free_slab_obj_exts(slab); 2561 2562 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2563 -(PAGE_SIZE << order)); 2564 } 2565 2566 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2567 { 2568 struct slab *slab; 2569 struct kmem_cache_order_objects oo = s->oo; 2570 gfp_t alloc_gfp; 2571 void *start, *p, *next; 2572 int idx; 2573 bool shuffle; 2574 2575 flags &= gfp_allowed_mask; 2576 2577 flags |= s->allocflags; 2578 2579 /* 2580 * Let the initial higher-order allocation fail under memory pressure 2581 * so we fall-back to the minimum order allocation. 2582 */ 2583 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2584 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2585 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2586 2587 slab = alloc_slab_page(alloc_gfp, node, oo); 2588 if (unlikely(!slab)) { 2589 oo = s->min; 2590 alloc_gfp = flags; 2591 /* 2592 * Allocation may have failed due to fragmentation. 2593 * Try a lower order alloc if possible 2594 */ 2595 slab = alloc_slab_page(alloc_gfp, node, oo); 2596 if (unlikely(!slab)) 2597 return NULL; 2598 stat(s, ORDER_FALLBACK); 2599 } 2600 2601 slab->objects = oo_objects(oo); 2602 slab->inuse = 0; 2603 slab->frozen = 0; 2604 2605 account_slab(slab, oo_order(oo), s, flags); 2606 2607 slab->slab_cache = s; 2608 2609 kasan_poison_slab(slab); 2610 2611 start = slab_address(slab); 2612 2613 setup_slab_debug(s, slab, start); 2614 2615 shuffle = shuffle_freelist(s, slab); 2616 2617 if (!shuffle) { 2618 start = fixup_red_left(s, start); 2619 start = setup_object(s, start); 2620 slab->freelist = start; 2621 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2622 next = p + s->size; 2623 next = setup_object(s, next); 2624 set_freepointer(s, p, next); 2625 p = next; 2626 } 2627 set_freepointer(s, p, NULL); 2628 } 2629 2630 return slab; 2631 } 2632 2633 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2634 { 2635 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2636 flags = kmalloc_fix_flags(flags); 2637 2638 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2639 2640 return allocate_slab(s, 2641 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2642 } 2643 2644 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2645 { 2646 struct folio *folio = slab_folio(slab); 2647 int order = folio_order(folio); 2648 int pages = 1 << order; 2649 2650 __slab_clear_pfmemalloc(slab); 2651 folio->mapping = NULL; 2652 __folio_clear_slab(folio); 2653 mm_account_reclaimed_pages(pages); 2654 unaccount_slab(slab, order, s); 2655 free_frozen_pages(&folio->page, order); 2656 } 2657 2658 static void rcu_free_slab(struct rcu_head *h) 2659 { 2660 struct slab *slab = container_of(h, struct slab, rcu_head); 2661 2662 __free_slab(slab->slab_cache, slab); 2663 } 2664 2665 static void free_slab(struct kmem_cache *s, struct slab *slab) 2666 { 2667 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2668 void *p; 2669 2670 slab_pad_check(s, slab); 2671 for_each_object(p, s, slab_address(slab), slab->objects) 2672 check_object(s, slab, p, SLUB_RED_INACTIVE); 2673 } 2674 2675 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2676 call_rcu(&slab->rcu_head, rcu_free_slab); 2677 else 2678 __free_slab(s, slab); 2679 } 2680 2681 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2682 { 2683 dec_slabs_node(s, slab_nid(slab), slab->objects); 2684 free_slab(s, slab); 2685 } 2686 2687 /* 2688 * SLUB reuses PG_workingset bit to keep track of whether it's on 2689 * the per-node partial list. 2690 */ 2691 static inline bool slab_test_node_partial(const struct slab *slab) 2692 { 2693 return folio_test_workingset(slab_folio(slab)); 2694 } 2695 2696 static inline void slab_set_node_partial(struct slab *slab) 2697 { 2698 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2699 } 2700 2701 static inline void slab_clear_node_partial(struct slab *slab) 2702 { 2703 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2704 } 2705 2706 /* 2707 * Management of partially allocated slabs. 2708 */ 2709 static inline void 2710 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2711 { 2712 n->nr_partial++; 2713 if (tail == DEACTIVATE_TO_TAIL) 2714 list_add_tail(&slab->slab_list, &n->partial); 2715 else 2716 list_add(&slab->slab_list, &n->partial); 2717 slab_set_node_partial(slab); 2718 } 2719 2720 static inline void add_partial(struct kmem_cache_node *n, 2721 struct slab *slab, int tail) 2722 { 2723 lockdep_assert_held(&n->list_lock); 2724 __add_partial(n, slab, tail); 2725 } 2726 2727 static inline void remove_partial(struct kmem_cache_node *n, 2728 struct slab *slab) 2729 { 2730 lockdep_assert_held(&n->list_lock); 2731 list_del(&slab->slab_list); 2732 slab_clear_node_partial(slab); 2733 n->nr_partial--; 2734 } 2735 2736 /* 2737 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2738 * slab from the n->partial list. Remove only a single object from the slab, do 2739 * the alloc_debug_processing() checks and leave the slab on the list, or move 2740 * it to full list if it was the last free object. 2741 */ 2742 static void *alloc_single_from_partial(struct kmem_cache *s, 2743 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2744 { 2745 void *object; 2746 2747 lockdep_assert_held(&n->list_lock); 2748 2749 object = slab->freelist; 2750 slab->freelist = get_freepointer(s, object); 2751 slab->inuse++; 2752 2753 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2754 if (folio_test_slab(slab_folio(slab))) 2755 remove_partial(n, slab); 2756 return NULL; 2757 } 2758 2759 if (slab->inuse == slab->objects) { 2760 remove_partial(n, slab); 2761 add_full(s, n, slab); 2762 } 2763 2764 return object; 2765 } 2766 2767 /* 2768 * Called only for kmem_cache_debug() caches to allocate from a freshly 2769 * allocated slab. Allocate a single object instead of whole freelist 2770 * and put the slab to the partial (or full) list. 2771 */ 2772 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2773 struct slab *slab, int orig_size) 2774 { 2775 int nid = slab_nid(slab); 2776 struct kmem_cache_node *n = get_node(s, nid); 2777 unsigned long flags; 2778 void *object; 2779 2780 2781 object = slab->freelist; 2782 slab->freelist = get_freepointer(s, object); 2783 slab->inuse = 1; 2784 2785 if (!alloc_debug_processing(s, slab, object, orig_size)) 2786 /* 2787 * It's not really expected that this would fail on a 2788 * freshly allocated slab, but a concurrent memory 2789 * corruption in theory could cause that. 2790 */ 2791 return NULL; 2792 2793 spin_lock_irqsave(&n->list_lock, flags); 2794 2795 if (slab->inuse == slab->objects) 2796 add_full(s, n, slab); 2797 else 2798 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2799 2800 inc_slabs_node(s, nid, slab->objects); 2801 spin_unlock_irqrestore(&n->list_lock, flags); 2802 2803 return object; 2804 } 2805 2806 #ifdef CONFIG_SLUB_CPU_PARTIAL 2807 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2808 #else 2809 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2810 int drain) { } 2811 #endif 2812 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2813 2814 /* 2815 * Try to allocate a partial slab from a specific node. 2816 */ 2817 static struct slab *get_partial_node(struct kmem_cache *s, 2818 struct kmem_cache_node *n, 2819 struct partial_context *pc) 2820 { 2821 struct slab *slab, *slab2, *partial = NULL; 2822 unsigned long flags; 2823 unsigned int partial_slabs = 0; 2824 2825 /* 2826 * Racy check. If we mistakenly see no partial slabs then we 2827 * just allocate an empty slab. If we mistakenly try to get a 2828 * partial slab and there is none available then get_partial() 2829 * will return NULL. 2830 */ 2831 if (!n || !n->nr_partial) 2832 return NULL; 2833 2834 spin_lock_irqsave(&n->list_lock, flags); 2835 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2836 if (!pfmemalloc_match(slab, pc->flags)) 2837 continue; 2838 2839 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2840 void *object = alloc_single_from_partial(s, n, slab, 2841 pc->orig_size); 2842 if (object) { 2843 partial = slab; 2844 pc->object = object; 2845 break; 2846 } 2847 continue; 2848 } 2849 2850 remove_partial(n, slab); 2851 2852 if (!partial) { 2853 partial = slab; 2854 stat(s, ALLOC_FROM_PARTIAL); 2855 2856 if ((slub_get_cpu_partial(s) == 0)) { 2857 break; 2858 } 2859 } else { 2860 put_cpu_partial(s, slab, 0); 2861 stat(s, CPU_PARTIAL_NODE); 2862 2863 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2864 break; 2865 } 2866 } 2867 } 2868 spin_unlock_irqrestore(&n->list_lock, flags); 2869 return partial; 2870 } 2871 2872 /* 2873 * Get a slab from somewhere. Search in increasing NUMA distances. 2874 */ 2875 static struct slab *get_any_partial(struct kmem_cache *s, 2876 struct partial_context *pc) 2877 { 2878 #ifdef CONFIG_NUMA 2879 struct zonelist *zonelist; 2880 struct zoneref *z; 2881 struct zone *zone; 2882 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2883 struct slab *slab; 2884 unsigned int cpuset_mems_cookie; 2885 2886 /* 2887 * The defrag ratio allows a configuration of the tradeoffs between 2888 * inter node defragmentation and node local allocations. A lower 2889 * defrag_ratio increases the tendency to do local allocations 2890 * instead of attempting to obtain partial slabs from other nodes. 2891 * 2892 * If the defrag_ratio is set to 0 then kmalloc() always 2893 * returns node local objects. If the ratio is higher then kmalloc() 2894 * may return off node objects because partial slabs are obtained 2895 * from other nodes and filled up. 2896 * 2897 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2898 * (which makes defrag_ratio = 1000) then every (well almost) 2899 * allocation will first attempt to defrag slab caches on other nodes. 2900 * This means scanning over all nodes to look for partial slabs which 2901 * may be expensive if we do it every time we are trying to find a slab 2902 * with available objects. 2903 */ 2904 if (!s->remote_node_defrag_ratio || 2905 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2906 return NULL; 2907 2908 do { 2909 cpuset_mems_cookie = read_mems_allowed_begin(); 2910 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2911 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2912 struct kmem_cache_node *n; 2913 2914 n = get_node(s, zone_to_nid(zone)); 2915 2916 if (n && cpuset_zone_allowed(zone, pc->flags) && 2917 n->nr_partial > s->min_partial) { 2918 slab = get_partial_node(s, n, pc); 2919 if (slab) { 2920 /* 2921 * Don't check read_mems_allowed_retry() 2922 * here - if mems_allowed was updated in 2923 * parallel, that was a harmless race 2924 * between allocation and the cpuset 2925 * update 2926 */ 2927 return slab; 2928 } 2929 } 2930 } 2931 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2932 #endif /* CONFIG_NUMA */ 2933 return NULL; 2934 } 2935 2936 /* 2937 * Get a partial slab, lock it and return it. 2938 */ 2939 static struct slab *get_partial(struct kmem_cache *s, int node, 2940 struct partial_context *pc) 2941 { 2942 struct slab *slab; 2943 int searchnode = node; 2944 2945 if (node == NUMA_NO_NODE) 2946 searchnode = numa_mem_id(); 2947 2948 slab = get_partial_node(s, get_node(s, searchnode), pc); 2949 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2950 return slab; 2951 2952 return get_any_partial(s, pc); 2953 } 2954 2955 #ifndef CONFIG_SLUB_TINY 2956 2957 #ifdef CONFIG_PREEMPTION 2958 /* 2959 * Calculate the next globally unique transaction for disambiguation 2960 * during cmpxchg. The transactions start with the cpu number and are then 2961 * incremented by CONFIG_NR_CPUS. 2962 */ 2963 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2964 #else 2965 /* 2966 * No preemption supported therefore also no need to check for 2967 * different cpus. 2968 */ 2969 #define TID_STEP 1 2970 #endif /* CONFIG_PREEMPTION */ 2971 2972 static inline unsigned long next_tid(unsigned long tid) 2973 { 2974 return tid + TID_STEP; 2975 } 2976 2977 #ifdef SLUB_DEBUG_CMPXCHG 2978 static inline unsigned int tid_to_cpu(unsigned long tid) 2979 { 2980 return tid % TID_STEP; 2981 } 2982 2983 static inline unsigned long tid_to_event(unsigned long tid) 2984 { 2985 return tid / TID_STEP; 2986 } 2987 #endif 2988 2989 static inline unsigned int init_tid(int cpu) 2990 { 2991 return cpu; 2992 } 2993 2994 static inline void note_cmpxchg_failure(const char *n, 2995 const struct kmem_cache *s, unsigned long tid) 2996 { 2997 #ifdef SLUB_DEBUG_CMPXCHG 2998 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2999 3000 pr_info("%s %s: cmpxchg redo ", n, s->name); 3001 3002 #ifdef CONFIG_PREEMPTION 3003 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 3004 pr_warn("due to cpu change %d -> %d\n", 3005 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 3006 else 3007 #endif 3008 if (tid_to_event(tid) != tid_to_event(actual_tid)) 3009 pr_warn("due to cpu running other code. Event %ld->%ld\n", 3010 tid_to_event(tid), tid_to_event(actual_tid)); 3011 else 3012 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 3013 actual_tid, tid, next_tid(tid)); 3014 #endif 3015 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 3016 } 3017 3018 static void init_kmem_cache_cpus(struct kmem_cache *s) 3019 { 3020 int cpu; 3021 struct kmem_cache_cpu *c; 3022 3023 for_each_possible_cpu(cpu) { 3024 c = per_cpu_ptr(s->cpu_slab, cpu); 3025 local_lock_init(&c->lock); 3026 c->tid = init_tid(cpu); 3027 } 3028 } 3029 3030 /* 3031 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 3032 * unfreezes the slabs and puts it on the proper list. 3033 * Assumes the slab has been already safely taken away from kmem_cache_cpu 3034 * by the caller. 3035 */ 3036 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 3037 void *freelist) 3038 { 3039 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3040 int free_delta = 0; 3041 void *nextfree, *freelist_iter, *freelist_tail; 3042 int tail = DEACTIVATE_TO_HEAD; 3043 unsigned long flags = 0; 3044 struct slab new; 3045 struct slab old; 3046 3047 if (READ_ONCE(slab->freelist)) { 3048 stat(s, DEACTIVATE_REMOTE_FREES); 3049 tail = DEACTIVATE_TO_TAIL; 3050 } 3051 3052 /* 3053 * Stage one: Count the objects on cpu's freelist as free_delta and 3054 * remember the last object in freelist_tail for later splicing. 3055 */ 3056 freelist_tail = NULL; 3057 freelist_iter = freelist; 3058 while (freelist_iter) { 3059 nextfree = get_freepointer(s, freelist_iter); 3060 3061 /* 3062 * If 'nextfree' is invalid, it is possible that the object at 3063 * 'freelist_iter' is already corrupted. So isolate all objects 3064 * starting at 'freelist_iter' by skipping them. 3065 */ 3066 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 3067 break; 3068 3069 freelist_tail = freelist_iter; 3070 free_delta++; 3071 3072 freelist_iter = nextfree; 3073 } 3074 3075 /* 3076 * Stage two: Unfreeze the slab while splicing the per-cpu 3077 * freelist to the head of slab's freelist. 3078 */ 3079 do { 3080 old.freelist = READ_ONCE(slab->freelist); 3081 old.counters = READ_ONCE(slab->counters); 3082 VM_BUG_ON(!old.frozen); 3083 3084 /* Determine target state of the slab */ 3085 new.counters = old.counters; 3086 new.frozen = 0; 3087 if (freelist_tail) { 3088 new.inuse -= free_delta; 3089 set_freepointer(s, freelist_tail, old.freelist); 3090 new.freelist = freelist; 3091 } else { 3092 new.freelist = old.freelist; 3093 } 3094 } while (!slab_update_freelist(s, slab, 3095 old.freelist, old.counters, 3096 new.freelist, new.counters, 3097 "unfreezing slab")); 3098 3099 /* 3100 * Stage three: Manipulate the slab list based on the updated state. 3101 */ 3102 if (!new.inuse && n->nr_partial >= s->min_partial) { 3103 stat(s, DEACTIVATE_EMPTY); 3104 discard_slab(s, slab); 3105 stat(s, FREE_SLAB); 3106 } else if (new.freelist) { 3107 spin_lock_irqsave(&n->list_lock, flags); 3108 add_partial(n, slab, tail); 3109 spin_unlock_irqrestore(&n->list_lock, flags); 3110 stat(s, tail); 3111 } else { 3112 stat(s, DEACTIVATE_FULL); 3113 } 3114 } 3115 3116 #ifdef CONFIG_SLUB_CPU_PARTIAL 3117 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3118 { 3119 struct kmem_cache_node *n = NULL, *n2 = NULL; 3120 struct slab *slab, *slab_to_discard = NULL; 3121 unsigned long flags = 0; 3122 3123 while (partial_slab) { 3124 slab = partial_slab; 3125 partial_slab = slab->next; 3126 3127 n2 = get_node(s, slab_nid(slab)); 3128 if (n != n2) { 3129 if (n) 3130 spin_unlock_irqrestore(&n->list_lock, flags); 3131 3132 n = n2; 3133 spin_lock_irqsave(&n->list_lock, flags); 3134 } 3135 3136 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3137 slab->next = slab_to_discard; 3138 slab_to_discard = slab; 3139 } else { 3140 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3141 stat(s, FREE_ADD_PARTIAL); 3142 } 3143 } 3144 3145 if (n) 3146 spin_unlock_irqrestore(&n->list_lock, flags); 3147 3148 while (slab_to_discard) { 3149 slab = slab_to_discard; 3150 slab_to_discard = slab_to_discard->next; 3151 3152 stat(s, DEACTIVATE_EMPTY); 3153 discard_slab(s, slab); 3154 stat(s, FREE_SLAB); 3155 } 3156 } 3157 3158 /* 3159 * Put all the cpu partial slabs to the node partial list. 3160 */ 3161 static void put_partials(struct kmem_cache *s) 3162 { 3163 struct slab *partial_slab; 3164 unsigned long flags; 3165 3166 local_lock_irqsave(&s->cpu_slab->lock, flags); 3167 partial_slab = this_cpu_read(s->cpu_slab->partial); 3168 this_cpu_write(s->cpu_slab->partial, NULL); 3169 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3170 3171 if (partial_slab) 3172 __put_partials(s, partial_slab); 3173 } 3174 3175 static void put_partials_cpu(struct kmem_cache *s, 3176 struct kmem_cache_cpu *c) 3177 { 3178 struct slab *partial_slab; 3179 3180 partial_slab = slub_percpu_partial(c); 3181 c->partial = NULL; 3182 3183 if (partial_slab) 3184 __put_partials(s, partial_slab); 3185 } 3186 3187 /* 3188 * Put a slab into a partial slab slot if available. 3189 * 3190 * If we did not find a slot then simply move all the partials to the 3191 * per node partial list. 3192 */ 3193 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3194 { 3195 struct slab *oldslab; 3196 struct slab *slab_to_put = NULL; 3197 unsigned long flags; 3198 int slabs = 0; 3199 3200 local_lock_irqsave(&s->cpu_slab->lock, flags); 3201 3202 oldslab = this_cpu_read(s->cpu_slab->partial); 3203 3204 if (oldslab) { 3205 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3206 /* 3207 * Partial array is full. Move the existing set to the 3208 * per node partial list. Postpone the actual unfreezing 3209 * outside of the critical section. 3210 */ 3211 slab_to_put = oldslab; 3212 oldslab = NULL; 3213 } else { 3214 slabs = oldslab->slabs; 3215 } 3216 } 3217 3218 slabs++; 3219 3220 slab->slabs = slabs; 3221 slab->next = oldslab; 3222 3223 this_cpu_write(s->cpu_slab->partial, slab); 3224 3225 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3226 3227 if (slab_to_put) { 3228 __put_partials(s, slab_to_put); 3229 stat(s, CPU_PARTIAL_DRAIN); 3230 } 3231 } 3232 3233 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3234 3235 static inline void put_partials(struct kmem_cache *s) { } 3236 static inline void put_partials_cpu(struct kmem_cache *s, 3237 struct kmem_cache_cpu *c) { } 3238 3239 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3240 3241 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3242 { 3243 unsigned long flags; 3244 struct slab *slab; 3245 void *freelist; 3246 3247 local_lock_irqsave(&s->cpu_slab->lock, flags); 3248 3249 slab = c->slab; 3250 freelist = c->freelist; 3251 3252 c->slab = NULL; 3253 c->freelist = NULL; 3254 c->tid = next_tid(c->tid); 3255 3256 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3257 3258 if (slab) { 3259 deactivate_slab(s, slab, freelist); 3260 stat(s, CPUSLAB_FLUSH); 3261 } 3262 } 3263 3264 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3265 { 3266 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3267 void *freelist = c->freelist; 3268 struct slab *slab = c->slab; 3269 3270 c->slab = NULL; 3271 c->freelist = NULL; 3272 c->tid = next_tid(c->tid); 3273 3274 if (slab) { 3275 deactivate_slab(s, slab, freelist); 3276 stat(s, CPUSLAB_FLUSH); 3277 } 3278 3279 put_partials_cpu(s, c); 3280 } 3281 3282 struct slub_flush_work { 3283 struct work_struct work; 3284 struct kmem_cache *s; 3285 bool skip; 3286 }; 3287 3288 /* 3289 * Flush cpu slab. 3290 * 3291 * Called from CPU work handler with migration disabled. 3292 */ 3293 static void flush_cpu_slab(struct work_struct *w) 3294 { 3295 struct kmem_cache *s; 3296 struct kmem_cache_cpu *c; 3297 struct slub_flush_work *sfw; 3298 3299 sfw = container_of(w, struct slub_flush_work, work); 3300 3301 s = sfw->s; 3302 c = this_cpu_ptr(s->cpu_slab); 3303 3304 if (c->slab) 3305 flush_slab(s, c); 3306 3307 put_partials(s); 3308 } 3309 3310 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3311 { 3312 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3313 3314 return c->slab || slub_percpu_partial(c); 3315 } 3316 3317 static DEFINE_MUTEX(flush_lock); 3318 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3319 3320 static void flush_all_cpus_locked(struct kmem_cache *s) 3321 { 3322 struct slub_flush_work *sfw; 3323 unsigned int cpu; 3324 3325 lockdep_assert_cpus_held(); 3326 mutex_lock(&flush_lock); 3327 3328 for_each_online_cpu(cpu) { 3329 sfw = &per_cpu(slub_flush, cpu); 3330 if (!has_cpu_slab(cpu, s)) { 3331 sfw->skip = true; 3332 continue; 3333 } 3334 INIT_WORK(&sfw->work, flush_cpu_slab); 3335 sfw->skip = false; 3336 sfw->s = s; 3337 queue_work_on(cpu, flushwq, &sfw->work); 3338 } 3339 3340 for_each_online_cpu(cpu) { 3341 sfw = &per_cpu(slub_flush, cpu); 3342 if (sfw->skip) 3343 continue; 3344 flush_work(&sfw->work); 3345 } 3346 3347 mutex_unlock(&flush_lock); 3348 } 3349 3350 static void flush_all(struct kmem_cache *s) 3351 { 3352 cpus_read_lock(); 3353 flush_all_cpus_locked(s); 3354 cpus_read_unlock(); 3355 } 3356 3357 /* 3358 * Use the cpu notifier to insure that the cpu slabs are flushed when 3359 * necessary. 3360 */ 3361 static int slub_cpu_dead(unsigned int cpu) 3362 { 3363 struct kmem_cache *s; 3364 3365 mutex_lock(&slab_mutex); 3366 list_for_each_entry(s, &slab_caches, list) 3367 __flush_cpu_slab(s, cpu); 3368 mutex_unlock(&slab_mutex); 3369 return 0; 3370 } 3371 3372 #else /* CONFIG_SLUB_TINY */ 3373 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3374 static inline void flush_all(struct kmem_cache *s) { } 3375 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3376 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3377 #endif /* CONFIG_SLUB_TINY */ 3378 3379 /* 3380 * Check if the objects in a per cpu structure fit numa 3381 * locality expectations. 3382 */ 3383 static inline int node_match(struct slab *slab, int node) 3384 { 3385 #ifdef CONFIG_NUMA 3386 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3387 return 0; 3388 #endif 3389 return 1; 3390 } 3391 3392 #ifdef CONFIG_SLUB_DEBUG 3393 static int count_free(struct slab *slab) 3394 { 3395 return slab->objects - slab->inuse; 3396 } 3397 3398 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3399 { 3400 return atomic_long_read(&n->total_objects); 3401 } 3402 3403 /* Supports checking bulk free of a constructed freelist */ 3404 static inline bool free_debug_processing(struct kmem_cache *s, 3405 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3406 unsigned long addr, depot_stack_handle_t handle) 3407 { 3408 bool checks_ok = false; 3409 void *object = head; 3410 int cnt = 0; 3411 3412 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3413 if (!check_slab(s, slab)) 3414 goto out; 3415 } 3416 3417 if (slab->inuse < *bulk_cnt) { 3418 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3419 slab->inuse, *bulk_cnt); 3420 goto out; 3421 } 3422 3423 next_object: 3424 3425 if (++cnt > *bulk_cnt) 3426 goto out_cnt; 3427 3428 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3429 if (!free_consistency_checks(s, slab, object, addr)) 3430 goto out; 3431 } 3432 3433 if (s->flags & SLAB_STORE_USER) 3434 set_track_update(s, object, TRACK_FREE, addr, handle); 3435 trace(s, slab, object, 0); 3436 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3437 init_object(s, object, SLUB_RED_INACTIVE); 3438 3439 /* Reached end of constructed freelist yet? */ 3440 if (object != tail) { 3441 object = get_freepointer(s, object); 3442 goto next_object; 3443 } 3444 checks_ok = true; 3445 3446 out_cnt: 3447 if (cnt != *bulk_cnt) { 3448 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3449 *bulk_cnt, cnt); 3450 *bulk_cnt = cnt; 3451 } 3452 3453 out: 3454 3455 if (!checks_ok) 3456 slab_fix(s, "Object at 0x%p not freed", object); 3457 3458 return checks_ok; 3459 } 3460 #endif /* CONFIG_SLUB_DEBUG */ 3461 3462 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3463 static unsigned long count_partial(struct kmem_cache_node *n, 3464 int (*get_count)(struct slab *)) 3465 { 3466 unsigned long flags; 3467 unsigned long x = 0; 3468 struct slab *slab; 3469 3470 spin_lock_irqsave(&n->list_lock, flags); 3471 list_for_each_entry(slab, &n->partial, slab_list) 3472 x += get_count(slab); 3473 spin_unlock_irqrestore(&n->list_lock, flags); 3474 return x; 3475 } 3476 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3477 3478 #ifdef CONFIG_SLUB_DEBUG 3479 #define MAX_PARTIAL_TO_SCAN 10000 3480 3481 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3482 { 3483 unsigned long flags; 3484 unsigned long x = 0; 3485 struct slab *slab; 3486 3487 spin_lock_irqsave(&n->list_lock, flags); 3488 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3489 list_for_each_entry(slab, &n->partial, slab_list) 3490 x += slab->objects - slab->inuse; 3491 } else { 3492 /* 3493 * For a long list, approximate the total count of objects in 3494 * it to meet the limit on the number of slabs to scan. 3495 * Scan from both the list's head and tail for better accuracy. 3496 */ 3497 unsigned long scanned = 0; 3498 3499 list_for_each_entry(slab, &n->partial, slab_list) { 3500 x += slab->objects - slab->inuse; 3501 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3502 break; 3503 } 3504 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3505 x += slab->objects - slab->inuse; 3506 if (++scanned == MAX_PARTIAL_TO_SCAN) 3507 break; 3508 } 3509 x = mult_frac(x, n->nr_partial, scanned); 3510 x = min(x, node_nr_objs(n)); 3511 } 3512 spin_unlock_irqrestore(&n->list_lock, flags); 3513 return x; 3514 } 3515 3516 static noinline void 3517 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3518 { 3519 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3520 DEFAULT_RATELIMIT_BURST); 3521 int cpu = raw_smp_processor_id(); 3522 int node; 3523 struct kmem_cache_node *n; 3524 3525 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3526 return; 3527 3528 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", 3529 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); 3530 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3531 s->name, s->object_size, s->size, oo_order(s->oo), 3532 oo_order(s->min)); 3533 3534 if (oo_order(s->min) > get_order(s->object_size)) 3535 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3536 s->name); 3537 3538 for_each_kmem_cache_node(s, node, n) { 3539 unsigned long nr_slabs; 3540 unsigned long nr_objs; 3541 unsigned long nr_free; 3542 3543 nr_free = count_partial_free_approx(n); 3544 nr_slabs = node_nr_slabs(n); 3545 nr_objs = node_nr_objs(n); 3546 3547 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3548 node, nr_slabs, nr_objs, nr_free); 3549 } 3550 } 3551 #else /* CONFIG_SLUB_DEBUG */ 3552 static inline void 3553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3554 #endif 3555 3556 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3557 { 3558 if (unlikely(slab_test_pfmemalloc(slab))) 3559 return gfp_pfmemalloc_allowed(gfpflags); 3560 3561 return true; 3562 } 3563 3564 #ifndef CONFIG_SLUB_TINY 3565 static inline bool 3566 __update_cpu_freelist_fast(struct kmem_cache *s, 3567 void *freelist_old, void *freelist_new, 3568 unsigned long tid) 3569 { 3570 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3571 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3572 3573 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3574 &old.full, new.full); 3575 } 3576 3577 /* 3578 * Check the slab->freelist and either transfer the freelist to the 3579 * per cpu freelist or deactivate the slab. 3580 * 3581 * The slab is still frozen if the return value is not NULL. 3582 * 3583 * If this function returns NULL then the slab has been unfrozen. 3584 */ 3585 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3586 { 3587 struct slab new; 3588 unsigned long counters; 3589 void *freelist; 3590 3591 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3592 3593 do { 3594 freelist = slab->freelist; 3595 counters = slab->counters; 3596 3597 new.counters = counters; 3598 3599 new.inuse = slab->objects; 3600 new.frozen = freelist != NULL; 3601 3602 } while (!__slab_update_freelist(s, slab, 3603 freelist, counters, 3604 NULL, new.counters, 3605 "get_freelist")); 3606 3607 return freelist; 3608 } 3609 3610 /* 3611 * Freeze the partial slab and return the pointer to the freelist. 3612 */ 3613 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3614 { 3615 struct slab new; 3616 unsigned long counters; 3617 void *freelist; 3618 3619 do { 3620 freelist = slab->freelist; 3621 counters = slab->counters; 3622 3623 new.counters = counters; 3624 VM_BUG_ON(new.frozen); 3625 3626 new.inuse = slab->objects; 3627 new.frozen = 1; 3628 3629 } while (!slab_update_freelist(s, slab, 3630 freelist, counters, 3631 NULL, new.counters, 3632 "freeze_slab")); 3633 3634 return freelist; 3635 } 3636 3637 /* 3638 * Slow path. The lockless freelist is empty or we need to perform 3639 * debugging duties. 3640 * 3641 * Processing is still very fast if new objects have been freed to the 3642 * regular freelist. In that case we simply take over the regular freelist 3643 * as the lockless freelist and zap the regular freelist. 3644 * 3645 * If that is not working then we fall back to the partial lists. We take the 3646 * first element of the freelist as the object to allocate now and move the 3647 * rest of the freelist to the lockless freelist. 3648 * 3649 * And if we were unable to get a new slab from the partial slab lists then 3650 * we need to allocate a new slab. This is the slowest path since it involves 3651 * a call to the page allocator and the setup of a new slab. 3652 * 3653 * Version of __slab_alloc to use when we know that preemption is 3654 * already disabled (which is the case for bulk allocation). 3655 */ 3656 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3657 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3658 { 3659 void *freelist; 3660 struct slab *slab; 3661 unsigned long flags; 3662 struct partial_context pc; 3663 bool try_thisnode = true; 3664 3665 stat(s, ALLOC_SLOWPATH); 3666 3667 reread_slab: 3668 3669 slab = READ_ONCE(c->slab); 3670 if (!slab) { 3671 /* 3672 * if the node is not online or has no normal memory, just 3673 * ignore the node constraint 3674 */ 3675 if (unlikely(node != NUMA_NO_NODE && 3676 !node_isset(node, slab_nodes))) 3677 node = NUMA_NO_NODE; 3678 goto new_slab; 3679 } 3680 3681 if (unlikely(!node_match(slab, node))) { 3682 /* 3683 * same as above but node_match() being false already 3684 * implies node != NUMA_NO_NODE 3685 */ 3686 if (!node_isset(node, slab_nodes)) { 3687 node = NUMA_NO_NODE; 3688 } else { 3689 stat(s, ALLOC_NODE_MISMATCH); 3690 goto deactivate_slab; 3691 } 3692 } 3693 3694 /* 3695 * By rights, we should be searching for a slab page that was 3696 * PFMEMALLOC but right now, we are losing the pfmemalloc 3697 * information when the page leaves the per-cpu allocator 3698 */ 3699 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3700 goto deactivate_slab; 3701 3702 /* must check again c->slab in case we got preempted and it changed */ 3703 local_lock_irqsave(&s->cpu_slab->lock, flags); 3704 if (unlikely(slab != c->slab)) { 3705 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3706 goto reread_slab; 3707 } 3708 freelist = c->freelist; 3709 if (freelist) 3710 goto load_freelist; 3711 3712 freelist = get_freelist(s, slab); 3713 3714 if (!freelist) { 3715 c->slab = NULL; 3716 c->tid = next_tid(c->tid); 3717 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3718 stat(s, DEACTIVATE_BYPASS); 3719 goto new_slab; 3720 } 3721 3722 stat(s, ALLOC_REFILL); 3723 3724 load_freelist: 3725 3726 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3727 3728 /* 3729 * freelist is pointing to the list of objects to be used. 3730 * slab is pointing to the slab from which the objects are obtained. 3731 * That slab must be frozen for per cpu allocations to work. 3732 */ 3733 VM_BUG_ON(!c->slab->frozen); 3734 c->freelist = get_freepointer(s, freelist); 3735 c->tid = next_tid(c->tid); 3736 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3737 return freelist; 3738 3739 deactivate_slab: 3740 3741 local_lock_irqsave(&s->cpu_slab->lock, flags); 3742 if (slab != c->slab) { 3743 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3744 goto reread_slab; 3745 } 3746 freelist = c->freelist; 3747 c->slab = NULL; 3748 c->freelist = NULL; 3749 c->tid = next_tid(c->tid); 3750 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3751 deactivate_slab(s, slab, freelist); 3752 3753 new_slab: 3754 3755 #ifdef CONFIG_SLUB_CPU_PARTIAL 3756 while (slub_percpu_partial(c)) { 3757 local_lock_irqsave(&s->cpu_slab->lock, flags); 3758 if (unlikely(c->slab)) { 3759 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3760 goto reread_slab; 3761 } 3762 if (unlikely(!slub_percpu_partial(c))) { 3763 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3764 /* we were preempted and partial list got empty */ 3765 goto new_objects; 3766 } 3767 3768 slab = slub_percpu_partial(c); 3769 slub_set_percpu_partial(c, slab); 3770 3771 if (likely(node_match(slab, node) && 3772 pfmemalloc_match(slab, gfpflags))) { 3773 c->slab = slab; 3774 freelist = get_freelist(s, slab); 3775 VM_BUG_ON(!freelist); 3776 stat(s, CPU_PARTIAL_ALLOC); 3777 goto load_freelist; 3778 } 3779 3780 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3781 3782 slab->next = NULL; 3783 __put_partials(s, slab); 3784 } 3785 #endif 3786 3787 new_objects: 3788 3789 pc.flags = gfpflags; 3790 /* 3791 * When a preferred node is indicated but no __GFP_THISNODE 3792 * 3793 * 1) try to get a partial slab from target node only by having 3794 * __GFP_THISNODE in pc.flags for get_partial() 3795 * 2) if 1) failed, try to allocate a new slab from target node with 3796 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3797 * 3) if 2) failed, retry with original gfpflags which will allow 3798 * get_partial() try partial lists of other nodes before potentially 3799 * allocating new page from other nodes 3800 */ 3801 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3802 && try_thisnode)) 3803 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3804 3805 pc.orig_size = orig_size; 3806 slab = get_partial(s, node, &pc); 3807 if (slab) { 3808 if (kmem_cache_debug(s)) { 3809 freelist = pc.object; 3810 /* 3811 * For debug caches here we had to go through 3812 * alloc_single_from_partial() so just store the 3813 * tracking info and return the object. 3814 */ 3815 if (s->flags & SLAB_STORE_USER) 3816 set_track(s, freelist, TRACK_ALLOC, addr); 3817 3818 return freelist; 3819 } 3820 3821 freelist = freeze_slab(s, slab); 3822 goto retry_load_slab; 3823 } 3824 3825 slub_put_cpu_ptr(s->cpu_slab); 3826 slab = new_slab(s, pc.flags, node); 3827 c = slub_get_cpu_ptr(s->cpu_slab); 3828 3829 if (unlikely(!slab)) { 3830 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3831 && try_thisnode) { 3832 try_thisnode = false; 3833 goto new_objects; 3834 } 3835 slab_out_of_memory(s, gfpflags, node); 3836 return NULL; 3837 } 3838 3839 stat(s, ALLOC_SLAB); 3840 3841 if (kmem_cache_debug(s)) { 3842 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3843 3844 if (unlikely(!freelist)) 3845 goto new_objects; 3846 3847 if (s->flags & SLAB_STORE_USER) 3848 set_track(s, freelist, TRACK_ALLOC, addr); 3849 3850 return freelist; 3851 } 3852 3853 /* 3854 * No other reference to the slab yet so we can 3855 * muck around with it freely without cmpxchg 3856 */ 3857 freelist = slab->freelist; 3858 slab->freelist = NULL; 3859 slab->inuse = slab->objects; 3860 slab->frozen = 1; 3861 3862 inc_slabs_node(s, slab_nid(slab), slab->objects); 3863 3864 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3865 /* 3866 * For !pfmemalloc_match() case we don't load freelist so that 3867 * we don't make further mismatched allocations easier. 3868 */ 3869 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3870 return freelist; 3871 } 3872 3873 retry_load_slab: 3874 3875 local_lock_irqsave(&s->cpu_slab->lock, flags); 3876 if (unlikely(c->slab)) { 3877 void *flush_freelist = c->freelist; 3878 struct slab *flush_slab = c->slab; 3879 3880 c->slab = NULL; 3881 c->freelist = NULL; 3882 c->tid = next_tid(c->tid); 3883 3884 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3885 3886 deactivate_slab(s, flush_slab, flush_freelist); 3887 3888 stat(s, CPUSLAB_FLUSH); 3889 3890 goto retry_load_slab; 3891 } 3892 c->slab = slab; 3893 3894 goto load_freelist; 3895 } 3896 3897 /* 3898 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3899 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3900 * pointer. 3901 */ 3902 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3903 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3904 { 3905 void *p; 3906 3907 #ifdef CONFIG_PREEMPT_COUNT 3908 /* 3909 * We may have been preempted and rescheduled on a different 3910 * cpu before disabling preemption. Need to reload cpu area 3911 * pointer. 3912 */ 3913 c = slub_get_cpu_ptr(s->cpu_slab); 3914 #endif 3915 3916 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3917 #ifdef CONFIG_PREEMPT_COUNT 3918 slub_put_cpu_ptr(s->cpu_slab); 3919 #endif 3920 return p; 3921 } 3922 3923 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3924 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3925 { 3926 struct kmem_cache_cpu *c; 3927 struct slab *slab; 3928 unsigned long tid; 3929 void *object; 3930 3931 redo: 3932 /* 3933 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3934 * enabled. We may switch back and forth between cpus while 3935 * reading from one cpu area. That does not matter as long 3936 * as we end up on the original cpu again when doing the cmpxchg. 3937 * 3938 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3939 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3940 * the tid. If we are preempted and switched to another cpu between the 3941 * two reads, it's OK as the two are still associated with the same cpu 3942 * and cmpxchg later will validate the cpu. 3943 */ 3944 c = raw_cpu_ptr(s->cpu_slab); 3945 tid = READ_ONCE(c->tid); 3946 3947 /* 3948 * Irqless object alloc/free algorithm used here depends on sequence 3949 * of fetching cpu_slab's data. tid should be fetched before anything 3950 * on c to guarantee that object and slab associated with previous tid 3951 * won't be used with current tid. If we fetch tid first, object and 3952 * slab could be one associated with next tid and our alloc/free 3953 * request will be failed. In this case, we will retry. So, no problem. 3954 */ 3955 barrier(); 3956 3957 /* 3958 * The transaction ids are globally unique per cpu and per operation on 3959 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3960 * occurs on the right processor and that there was no operation on the 3961 * linked list in between. 3962 */ 3963 3964 object = c->freelist; 3965 slab = c->slab; 3966 3967 #ifdef CONFIG_NUMA 3968 if (static_branch_unlikely(&strict_numa) && 3969 node == NUMA_NO_NODE) { 3970 3971 struct mempolicy *mpol = current->mempolicy; 3972 3973 if (mpol) { 3974 /* 3975 * Special BIND rule support. If existing slab 3976 * is in permitted set then do not redirect 3977 * to a particular node. 3978 * Otherwise we apply the memory policy to get 3979 * the node we need to allocate on. 3980 */ 3981 if (mpol->mode != MPOL_BIND || !slab || 3982 !node_isset(slab_nid(slab), mpol->nodes)) 3983 3984 node = mempolicy_slab_node(); 3985 } 3986 } 3987 #endif 3988 3989 if (!USE_LOCKLESS_FAST_PATH() || 3990 unlikely(!object || !slab || !node_match(slab, node))) { 3991 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3992 } else { 3993 void *next_object = get_freepointer_safe(s, object); 3994 3995 /* 3996 * The cmpxchg will only match if there was no additional 3997 * operation and if we are on the right processor. 3998 * 3999 * The cmpxchg does the following atomically (without lock 4000 * semantics!) 4001 * 1. Relocate first pointer to the current per cpu area. 4002 * 2. Verify that tid and freelist have not been changed 4003 * 3. If they were not changed replace tid and freelist 4004 * 4005 * Since this is without lock semantics the protection is only 4006 * against code executing on this cpu *not* from access by 4007 * other cpus. 4008 */ 4009 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 4010 note_cmpxchg_failure("slab_alloc", s, tid); 4011 goto redo; 4012 } 4013 prefetch_freepointer(s, next_object); 4014 stat(s, ALLOC_FASTPATH); 4015 } 4016 4017 return object; 4018 } 4019 #else /* CONFIG_SLUB_TINY */ 4020 static void *__slab_alloc_node(struct kmem_cache *s, 4021 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4022 { 4023 struct partial_context pc; 4024 struct slab *slab; 4025 void *object; 4026 4027 pc.flags = gfpflags; 4028 pc.orig_size = orig_size; 4029 slab = get_partial(s, node, &pc); 4030 4031 if (slab) 4032 return pc.object; 4033 4034 slab = new_slab(s, gfpflags, node); 4035 if (unlikely(!slab)) { 4036 slab_out_of_memory(s, gfpflags, node); 4037 return NULL; 4038 } 4039 4040 object = alloc_single_from_new_slab(s, slab, orig_size); 4041 4042 return object; 4043 } 4044 #endif /* CONFIG_SLUB_TINY */ 4045 4046 /* 4047 * If the object has been wiped upon free, make sure it's fully initialized by 4048 * zeroing out freelist pointer. 4049 * 4050 * Note that we also wipe custom freelist pointers. 4051 */ 4052 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 4053 void *obj) 4054 { 4055 if (unlikely(slab_want_init_on_free(s)) && obj && 4056 !freeptr_outside_object(s)) 4057 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 4058 0, sizeof(void *)); 4059 } 4060 4061 static __fastpath_inline 4062 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 4063 { 4064 flags &= gfp_allowed_mask; 4065 4066 might_alloc(flags); 4067 4068 if (unlikely(should_failslab(s, flags))) 4069 return NULL; 4070 4071 return s; 4072 } 4073 4074 static __fastpath_inline 4075 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 4076 gfp_t flags, size_t size, void **p, bool init, 4077 unsigned int orig_size) 4078 { 4079 unsigned int zero_size = s->object_size; 4080 bool kasan_init = init; 4081 size_t i; 4082 gfp_t init_flags = flags & gfp_allowed_mask; 4083 4084 /* 4085 * For kmalloc object, the allocated memory size(object_size) is likely 4086 * larger than the requested size(orig_size). If redzone check is 4087 * enabled for the extra space, don't zero it, as it will be redzoned 4088 * soon. The redzone operation for this extra space could be seen as a 4089 * replacement of current poisoning under certain debug option, and 4090 * won't break other sanity checks. 4091 */ 4092 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 4093 (s->flags & SLAB_KMALLOC)) 4094 zero_size = orig_size; 4095 4096 /* 4097 * When slab_debug is enabled, avoid memory initialization integrated 4098 * into KASAN and instead zero out the memory via the memset below with 4099 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 4100 * cause false-positive reports. This does not lead to a performance 4101 * penalty on production builds, as slab_debug is not intended to be 4102 * enabled there. 4103 */ 4104 if (__slub_debug_enabled()) 4105 kasan_init = false; 4106 4107 /* 4108 * As memory initialization might be integrated into KASAN, 4109 * kasan_slab_alloc and initialization memset must be 4110 * kept together to avoid discrepancies in behavior. 4111 * 4112 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 4113 */ 4114 for (i = 0; i < size; i++) { 4115 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 4116 if (p[i] && init && (!kasan_init || 4117 !kasan_has_integrated_init())) 4118 memset(p[i], 0, zero_size); 4119 kmemleak_alloc_recursive(p[i], s->object_size, 1, 4120 s->flags, init_flags); 4121 kmsan_slab_alloc(s, p[i], init_flags); 4122 alloc_tagging_slab_alloc_hook(s, p[i], flags); 4123 } 4124 4125 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4126 } 4127 4128 /* 4129 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4130 * have the fastpath folded into their functions. So no function call 4131 * overhead for requests that can be satisfied on the fastpath. 4132 * 4133 * The fastpath works by first checking if the lockless freelist can be used. 4134 * If not then __slab_alloc is called for slow processing. 4135 * 4136 * Otherwise we can simply pick the next object from the lockless free list. 4137 */ 4138 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4139 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4140 { 4141 void *object; 4142 bool init = false; 4143 4144 s = slab_pre_alloc_hook(s, gfpflags); 4145 if (unlikely(!s)) 4146 return NULL; 4147 4148 object = kfence_alloc(s, orig_size, gfpflags); 4149 if (unlikely(object)) 4150 goto out; 4151 4152 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4153 4154 maybe_wipe_obj_freeptr(s, object); 4155 init = slab_want_init_on_alloc(gfpflags, s); 4156 4157 out: 4158 /* 4159 * When init equals 'true', like for kzalloc() family, only 4160 * @orig_size bytes might be zeroed instead of s->object_size 4161 * In case this fails due to memcg_slab_post_alloc_hook(), 4162 * object is set to NULL 4163 */ 4164 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4165 4166 return object; 4167 } 4168 4169 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4170 { 4171 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4172 s->object_size); 4173 4174 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4175 4176 return ret; 4177 } 4178 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4179 4180 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4181 gfp_t gfpflags) 4182 { 4183 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4184 s->object_size); 4185 4186 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4187 4188 return ret; 4189 } 4190 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4191 4192 bool kmem_cache_charge(void *objp, gfp_t gfpflags) 4193 { 4194 if (!memcg_kmem_online()) 4195 return true; 4196 4197 return memcg_slab_post_charge(objp, gfpflags); 4198 } 4199 EXPORT_SYMBOL(kmem_cache_charge); 4200 4201 /** 4202 * kmem_cache_alloc_node - Allocate an object on the specified node 4203 * @s: The cache to allocate from. 4204 * @gfpflags: See kmalloc(). 4205 * @node: node number of the target node. 4206 * 4207 * Identical to kmem_cache_alloc but it will allocate memory on the given 4208 * node, which can improve the performance for cpu bound structures. 4209 * 4210 * Fallback to other node is possible if __GFP_THISNODE is not set. 4211 * 4212 * Return: pointer to the new object or %NULL in case of error 4213 */ 4214 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4215 { 4216 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4217 4218 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4219 4220 return ret; 4221 } 4222 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4223 4224 /* 4225 * To avoid unnecessary overhead, we pass through large allocation requests 4226 * directly to the page allocator. We use __GFP_COMP, because we will need to 4227 * know the allocation order to free the pages properly in kfree. 4228 */ 4229 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4230 { 4231 struct folio *folio; 4232 void *ptr = NULL; 4233 unsigned int order = get_order(size); 4234 4235 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4236 flags = kmalloc_fix_flags(flags); 4237 4238 flags |= __GFP_COMP; 4239 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4240 if (folio) { 4241 ptr = folio_address(folio); 4242 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4243 PAGE_SIZE << order); 4244 } 4245 4246 ptr = kasan_kmalloc_large(ptr, size, flags); 4247 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4248 kmemleak_alloc(ptr, size, 1, flags); 4249 kmsan_kmalloc_large(ptr, size, flags); 4250 4251 return ptr; 4252 } 4253 4254 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4255 { 4256 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4257 4258 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4259 flags, NUMA_NO_NODE); 4260 return ret; 4261 } 4262 EXPORT_SYMBOL(__kmalloc_large_noprof); 4263 4264 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4265 { 4266 void *ret = ___kmalloc_large_node(size, flags, node); 4267 4268 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4269 flags, node); 4270 return ret; 4271 } 4272 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4273 4274 static __always_inline 4275 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4276 unsigned long caller) 4277 { 4278 struct kmem_cache *s; 4279 void *ret; 4280 4281 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4282 ret = __kmalloc_large_node_noprof(size, flags, node); 4283 trace_kmalloc(caller, ret, size, 4284 PAGE_SIZE << get_order(size), flags, node); 4285 return ret; 4286 } 4287 4288 if (unlikely(!size)) 4289 return ZERO_SIZE_PTR; 4290 4291 s = kmalloc_slab(size, b, flags, caller); 4292 4293 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4294 ret = kasan_kmalloc(s, ret, size, flags); 4295 trace_kmalloc(caller, ret, size, s->size, flags, node); 4296 return ret; 4297 } 4298 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4299 { 4300 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4301 } 4302 EXPORT_SYMBOL(__kmalloc_node_noprof); 4303 4304 void *__kmalloc_noprof(size_t size, gfp_t flags) 4305 { 4306 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4307 } 4308 EXPORT_SYMBOL(__kmalloc_noprof); 4309 4310 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4311 int node, unsigned long caller) 4312 { 4313 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4314 4315 } 4316 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4317 4318 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4319 { 4320 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4321 _RET_IP_, size); 4322 4323 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4324 4325 ret = kasan_kmalloc(s, ret, size, gfpflags); 4326 return ret; 4327 } 4328 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4329 4330 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4331 int node, size_t size) 4332 { 4333 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4334 4335 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4336 4337 ret = kasan_kmalloc(s, ret, size, gfpflags); 4338 return ret; 4339 } 4340 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4341 4342 static noinline void free_to_partial_list( 4343 struct kmem_cache *s, struct slab *slab, 4344 void *head, void *tail, int bulk_cnt, 4345 unsigned long addr) 4346 { 4347 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4348 struct slab *slab_free = NULL; 4349 int cnt = bulk_cnt; 4350 unsigned long flags; 4351 depot_stack_handle_t handle = 0; 4352 4353 if (s->flags & SLAB_STORE_USER) 4354 handle = set_track_prepare(); 4355 4356 spin_lock_irqsave(&n->list_lock, flags); 4357 4358 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4359 void *prior = slab->freelist; 4360 4361 /* Perform the actual freeing while we still hold the locks */ 4362 slab->inuse -= cnt; 4363 set_freepointer(s, tail, prior); 4364 slab->freelist = head; 4365 4366 /* 4367 * If the slab is empty, and node's partial list is full, 4368 * it should be discarded anyway no matter it's on full or 4369 * partial list. 4370 */ 4371 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4372 slab_free = slab; 4373 4374 if (!prior) { 4375 /* was on full list */ 4376 remove_full(s, n, slab); 4377 if (!slab_free) { 4378 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4379 stat(s, FREE_ADD_PARTIAL); 4380 } 4381 } else if (slab_free) { 4382 remove_partial(n, slab); 4383 stat(s, FREE_REMOVE_PARTIAL); 4384 } 4385 } 4386 4387 if (slab_free) { 4388 /* 4389 * Update the counters while still holding n->list_lock to 4390 * prevent spurious validation warnings 4391 */ 4392 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4393 } 4394 4395 spin_unlock_irqrestore(&n->list_lock, flags); 4396 4397 if (slab_free) { 4398 stat(s, FREE_SLAB); 4399 free_slab(s, slab_free); 4400 } 4401 } 4402 4403 /* 4404 * Slow path handling. This may still be called frequently since objects 4405 * have a longer lifetime than the cpu slabs in most processing loads. 4406 * 4407 * So we still attempt to reduce cache line usage. Just take the slab 4408 * lock and free the item. If there is no additional partial slab 4409 * handling required then we can return immediately. 4410 */ 4411 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4412 void *head, void *tail, int cnt, 4413 unsigned long addr) 4414 4415 { 4416 void *prior; 4417 int was_frozen; 4418 struct slab new; 4419 unsigned long counters; 4420 struct kmem_cache_node *n = NULL; 4421 unsigned long flags; 4422 bool on_node_partial; 4423 4424 stat(s, FREE_SLOWPATH); 4425 4426 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4427 free_to_partial_list(s, slab, head, tail, cnt, addr); 4428 return; 4429 } 4430 4431 do { 4432 if (unlikely(n)) { 4433 spin_unlock_irqrestore(&n->list_lock, flags); 4434 n = NULL; 4435 } 4436 prior = slab->freelist; 4437 counters = slab->counters; 4438 set_freepointer(s, tail, prior); 4439 new.counters = counters; 4440 was_frozen = new.frozen; 4441 new.inuse -= cnt; 4442 if ((!new.inuse || !prior) && !was_frozen) { 4443 /* Needs to be taken off a list */ 4444 if (!kmem_cache_has_cpu_partial(s) || prior) { 4445 4446 n = get_node(s, slab_nid(slab)); 4447 /* 4448 * Speculatively acquire the list_lock. 4449 * If the cmpxchg does not succeed then we may 4450 * drop the list_lock without any processing. 4451 * 4452 * Otherwise the list_lock will synchronize with 4453 * other processors updating the list of slabs. 4454 */ 4455 spin_lock_irqsave(&n->list_lock, flags); 4456 4457 on_node_partial = slab_test_node_partial(slab); 4458 } 4459 } 4460 4461 } while (!slab_update_freelist(s, slab, 4462 prior, counters, 4463 head, new.counters, 4464 "__slab_free")); 4465 4466 if (likely(!n)) { 4467 4468 if (likely(was_frozen)) { 4469 /* 4470 * The list lock was not taken therefore no list 4471 * activity can be necessary. 4472 */ 4473 stat(s, FREE_FROZEN); 4474 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4475 /* 4476 * If we started with a full slab then put it onto the 4477 * per cpu partial list. 4478 */ 4479 put_cpu_partial(s, slab, 1); 4480 stat(s, CPU_PARTIAL_FREE); 4481 } 4482 4483 return; 4484 } 4485 4486 /* 4487 * This slab was partially empty but not on the per-node partial list, 4488 * in which case we shouldn't manipulate its list, just return. 4489 */ 4490 if (prior && !on_node_partial) { 4491 spin_unlock_irqrestore(&n->list_lock, flags); 4492 return; 4493 } 4494 4495 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4496 goto slab_empty; 4497 4498 /* 4499 * Objects left in the slab. If it was not on the partial list before 4500 * then add it. 4501 */ 4502 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4503 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4504 stat(s, FREE_ADD_PARTIAL); 4505 } 4506 spin_unlock_irqrestore(&n->list_lock, flags); 4507 return; 4508 4509 slab_empty: 4510 if (prior) { 4511 /* 4512 * Slab on the partial list. 4513 */ 4514 remove_partial(n, slab); 4515 stat(s, FREE_REMOVE_PARTIAL); 4516 } 4517 4518 spin_unlock_irqrestore(&n->list_lock, flags); 4519 stat(s, FREE_SLAB); 4520 discard_slab(s, slab); 4521 } 4522 4523 #ifndef CONFIG_SLUB_TINY 4524 /* 4525 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4526 * can perform fastpath freeing without additional function calls. 4527 * 4528 * The fastpath is only possible if we are freeing to the current cpu slab 4529 * of this processor. This typically the case if we have just allocated 4530 * the item before. 4531 * 4532 * If fastpath is not possible then fall back to __slab_free where we deal 4533 * with all sorts of special processing. 4534 * 4535 * Bulk free of a freelist with several objects (all pointing to the 4536 * same slab) possible by specifying head and tail ptr, plus objects 4537 * count (cnt). Bulk free indicated by tail pointer being set. 4538 */ 4539 static __always_inline void do_slab_free(struct kmem_cache *s, 4540 struct slab *slab, void *head, void *tail, 4541 int cnt, unsigned long addr) 4542 { 4543 struct kmem_cache_cpu *c; 4544 unsigned long tid; 4545 void **freelist; 4546 4547 redo: 4548 /* 4549 * Determine the currently cpus per cpu slab. 4550 * The cpu may change afterward. However that does not matter since 4551 * data is retrieved via this pointer. If we are on the same cpu 4552 * during the cmpxchg then the free will succeed. 4553 */ 4554 c = raw_cpu_ptr(s->cpu_slab); 4555 tid = READ_ONCE(c->tid); 4556 4557 /* Same with comment on barrier() in __slab_alloc_node() */ 4558 barrier(); 4559 4560 if (unlikely(slab != c->slab)) { 4561 __slab_free(s, slab, head, tail, cnt, addr); 4562 return; 4563 } 4564 4565 if (USE_LOCKLESS_FAST_PATH()) { 4566 freelist = READ_ONCE(c->freelist); 4567 4568 set_freepointer(s, tail, freelist); 4569 4570 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4571 note_cmpxchg_failure("slab_free", s, tid); 4572 goto redo; 4573 } 4574 } else { 4575 /* Update the free list under the local lock */ 4576 local_lock(&s->cpu_slab->lock); 4577 c = this_cpu_ptr(s->cpu_slab); 4578 if (unlikely(slab != c->slab)) { 4579 local_unlock(&s->cpu_slab->lock); 4580 goto redo; 4581 } 4582 tid = c->tid; 4583 freelist = c->freelist; 4584 4585 set_freepointer(s, tail, freelist); 4586 c->freelist = head; 4587 c->tid = next_tid(tid); 4588 4589 local_unlock(&s->cpu_slab->lock); 4590 } 4591 stat_add(s, FREE_FASTPATH, cnt); 4592 } 4593 #else /* CONFIG_SLUB_TINY */ 4594 static void do_slab_free(struct kmem_cache *s, 4595 struct slab *slab, void *head, void *tail, 4596 int cnt, unsigned long addr) 4597 { 4598 __slab_free(s, slab, head, tail, cnt, addr); 4599 } 4600 #endif /* CONFIG_SLUB_TINY */ 4601 4602 static __fastpath_inline 4603 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4604 unsigned long addr) 4605 { 4606 memcg_slab_free_hook(s, slab, &object, 1); 4607 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4608 4609 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4610 do_slab_free(s, slab, object, object, 1, addr); 4611 } 4612 4613 #ifdef CONFIG_MEMCG 4614 /* Do not inline the rare memcg charging failed path into the allocation path */ 4615 static noinline 4616 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4617 { 4618 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4619 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4620 } 4621 #endif 4622 4623 static __fastpath_inline 4624 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4625 void *tail, void **p, int cnt, unsigned long addr) 4626 { 4627 memcg_slab_free_hook(s, slab, p, cnt); 4628 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4629 /* 4630 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4631 * to remove objects, whose reuse must be delayed. 4632 */ 4633 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4634 do_slab_free(s, slab, head, tail, cnt, addr); 4635 } 4636 4637 #ifdef CONFIG_SLUB_RCU_DEBUG 4638 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) 4639 { 4640 struct rcu_delayed_free *delayed_free = 4641 container_of(rcu_head, struct rcu_delayed_free, head); 4642 void *object = delayed_free->object; 4643 struct slab *slab = virt_to_slab(object); 4644 struct kmem_cache *s; 4645 4646 kfree(delayed_free); 4647 4648 if (WARN_ON(is_kfence_address(object))) 4649 return; 4650 4651 /* find the object and the cache again */ 4652 if (WARN_ON(!slab)) 4653 return; 4654 s = slab->slab_cache; 4655 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) 4656 return; 4657 4658 /* resume freeing */ 4659 if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) 4660 do_slab_free(s, slab, object, object, 1, _THIS_IP_); 4661 } 4662 #endif /* CONFIG_SLUB_RCU_DEBUG */ 4663 4664 #ifdef CONFIG_KASAN_GENERIC 4665 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4666 { 4667 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4668 } 4669 #endif 4670 4671 static inline struct kmem_cache *virt_to_cache(const void *obj) 4672 { 4673 struct slab *slab; 4674 4675 slab = virt_to_slab(obj); 4676 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4677 return NULL; 4678 return slab->slab_cache; 4679 } 4680 4681 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4682 { 4683 struct kmem_cache *cachep; 4684 4685 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4686 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4687 return s; 4688 4689 cachep = virt_to_cache(x); 4690 if (WARN(cachep && cachep != s, 4691 "%s: Wrong slab cache. %s but object is from %s\n", 4692 __func__, s->name, cachep->name)) 4693 print_tracking(cachep, x); 4694 return cachep; 4695 } 4696 4697 /** 4698 * kmem_cache_free - Deallocate an object 4699 * @s: The cache the allocation was from. 4700 * @x: The previously allocated object. 4701 * 4702 * Free an object which was previously allocated from this 4703 * cache. 4704 */ 4705 void kmem_cache_free(struct kmem_cache *s, void *x) 4706 { 4707 s = cache_from_obj(s, x); 4708 if (!s) 4709 return; 4710 trace_kmem_cache_free(_RET_IP_, x, s); 4711 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4712 } 4713 EXPORT_SYMBOL(kmem_cache_free); 4714 4715 static void free_large_kmalloc(struct folio *folio, void *object) 4716 { 4717 unsigned int order = folio_order(folio); 4718 4719 if (WARN_ON_ONCE(order == 0)) 4720 pr_warn_once("object pointer: 0x%p\n", object); 4721 4722 kmemleak_free(object); 4723 kasan_kfree_large(object); 4724 kmsan_kfree_large(object); 4725 4726 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4727 -(PAGE_SIZE << order)); 4728 folio_put(folio); 4729 } 4730 4731 /** 4732 * kfree - free previously allocated memory 4733 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4734 * 4735 * If @object is NULL, no operation is performed. 4736 */ 4737 void kfree(const void *object) 4738 { 4739 struct folio *folio; 4740 struct slab *slab; 4741 struct kmem_cache *s; 4742 void *x = (void *)object; 4743 4744 trace_kfree(_RET_IP_, object); 4745 4746 if (unlikely(ZERO_OR_NULL_PTR(object))) 4747 return; 4748 4749 folio = virt_to_folio(object); 4750 if (unlikely(!folio_test_slab(folio))) { 4751 free_large_kmalloc(folio, (void *)object); 4752 return; 4753 } 4754 4755 slab = folio_slab(folio); 4756 s = slab->slab_cache; 4757 slab_free(s, slab, x, _RET_IP_); 4758 } 4759 EXPORT_SYMBOL(kfree); 4760 4761 static __always_inline __realloc_size(2) void * 4762 __do_krealloc(const void *p, size_t new_size, gfp_t flags) 4763 { 4764 void *ret; 4765 size_t ks = 0; 4766 int orig_size = 0; 4767 struct kmem_cache *s = NULL; 4768 4769 if (unlikely(ZERO_OR_NULL_PTR(p))) 4770 goto alloc_new; 4771 4772 /* Check for double-free. */ 4773 if (!kasan_check_byte(p)) 4774 return NULL; 4775 4776 if (is_kfence_address(p)) { 4777 ks = orig_size = kfence_ksize(p); 4778 } else { 4779 struct folio *folio; 4780 4781 folio = virt_to_folio(p); 4782 if (unlikely(!folio_test_slab(folio))) { 4783 /* Big kmalloc object */ 4784 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE); 4785 WARN_ON(p != folio_address(folio)); 4786 ks = folio_size(folio); 4787 } else { 4788 s = folio_slab(folio)->slab_cache; 4789 orig_size = get_orig_size(s, (void *)p); 4790 ks = s->object_size; 4791 } 4792 } 4793 4794 /* If the old object doesn't fit, allocate a bigger one */ 4795 if (new_size > ks) 4796 goto alloc_new; 4797 4798 /* Zero out spare memory. */ 4799 if (want_init_on_alloc(flags)) { 4800 kasan_disable_current(); 4801 if (orig_size && orig_size < new_size) 4802 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); 4803 else 4804 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); 4805 kasan_enable_current(); 4806 } 4807 4808 /* Setup kmalloc redzone when needed */ 4809 if (s && slub_debug_orig_size(s)) { 4810 set_orig_size(s, (void *)p, new_size); 4811 if (s->flags & SLAB_RED_ZONE && new_size < ks) 4812 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, 4813 SLUB_RED_ACTIVE, ks - new_size); 4814 } 4815 4816 p = kasan_krealloc(p, new_size, flags); 4817 return (void *)p; 4818 4819 alloc_new: 4820 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_); 4821 if (ret && p) { 4822 /* Disable KASAN checks as the object's redzone is accessed. */ 4823 kasan_disable_current(); 4824 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); 4825 kasan_enable_current(); 4826 } 4827 4828 return ret; 4829 } 4830 4831 /** 4832 * krealloc - reallocate memory. The contents will remain unchanged. 4833 * @p: object to reallocate memory for. 4834 * @new_size: how many bytes of memory are required. 4835 * @flags: the type of memory to allocate. 4836 * 4837 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 4838 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 4839 * 4840 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4841 * initial memory allocation, every subsequent call to this API for the same 4842 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4843 * __GFP_ZERO is not fully honored by this API. 4844 * 4845 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket 4846 * size of an allocation (but not the exact size it was allocated with) and 4847 * hence implements the following semantics for shrinking and growing buffers 4848 * with __GFP_ZERO. 4849 * 4850 * new bucket 4851 * 0 size size 4852 * |--------|----------------| 4853 * | keep | zero | 4854 * 4855 * Otherwise, the original allocation size 'orig_size' could be used to 4856 * precisely clear the requested size, and the new size will also be stored 4857 * as the new 'orig_size'. 4858 * 4859 * In any case, the contents of the object pointed to are preserved up to the 4860 * lesser of the new and old sizes. 4861 * 4862 * Return: pointer to the allocated memory or %NULL in case of error 4863 */ 4864 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags) 4865 { 4866 void *ret; 4867 4868 if (unlikely(!new_size)) { 4869 kfree(p); 4870 return ZERO_SIZE_PTR; 4871 } 4872 4873 ret = __do_krealloc(p, new_size, flags); 4874 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 4875 kfree(p); 4876 4877 return ret; 4878 } 4879 EXPORT_SYMBOL(krealloc_noprof); 4880 4881 struct detached_freelist { 4882 struct slab *slab; 4883 void *tail; 4884 void *freelist; 4885 int cnt; 4886 struct kmem_cache *s; 4887 }; 4888 4889 /* 4890 * This function progressively scans the array with free objects (with 4891 * a limited look ahead) and extract objects belonging to the same 4892 * slab. It builds a detached freelist directly within the given 4893 * slab/objects. This can happen without any need for 4894 * synchronization, because the objects are owned by running process. 4895 * The freelist is build up as a single linked list in the objects. 4896 * The idea is, that this detached freelist can then be bulk 4897 * transferred to the real freelist(s), but only requiring a single 4898 * synchronization primitive. Look ahead in the array is limited due 4899 * to performance reasons. 4900 */ 4901 static inline 4902 int build_detached_freelist(struct kmem_cache *s, size_t size, 4903 void **p, struct detached_freelist *df) 4904 { 4905 int lookahead = 3; 4906 void *object; 4907 struct folio *folio; 4908 size_t same; 4909 4910 object = p[--size]; 4911 folio = virt_to_folio(object); 4912 if (!s) { 4913 /* Handle kalloc'ed objects */ 4914 if (unlikely(!folio_test_slab(folio))) { 4915 free_large_kmalloc(folio, object); 4916 df->slab = NULL; 4917 return size; 4918 } 4919 /* Derive kmem_cache from object */ 4920 df->slab = folio_slab(folio); 4921 df->s = df->slab->slab_cache; 4922 } else { 4923 df->slab = folio_slab(folio); 4924 df->s = cache_from_obj(s, object); /* Support for memcg */ 4925 } 4926 4927 /* Start new detached freelist */ 4928 df->tail = object; 4929 df->freelist = object; 4930 df->cnt = 1; 4931 4932 if (is_kfence_address(object)) 4933 return size; 4934 4935 set_freepointer(df->s, object, NULL); 4936 4937 same = size; 4938 while (size) { 4939 object = p[--size]; 4940 /* df->slab is always set at this point */ 4941 if (df->slab == virt_to_slab(object)) { 4942 /* Opportunity build freelist */ 4943 set_freepointer(df->s, object, df->freelist); 4944 df->freelist = object; 4945 df->cnt++; 4946 same--; 4947 if (size != same) 4948 swap(p[size], p[same]); 4949 continue; 4950 } 4951 4952 /* Limit look ahead search */ 4953 if (!--lookahead) 4954 break; 4955 } 4956 4957 return same; 4958 } 4959 4960 /* 4961 * Internal bulk free of objects that were not initialised by the post alloc 4962 * hooks and thus should not be processed by the free hooks 4963 */ 4964 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4965 { 4966 if (!size) 4967 return; 4968 4969 do { 4970 struct detached_freelist df; 4971 4972 size = build_detached_freelist(s, size, p, &df); 4973 if (!df.slab) 4974 continue; 4975 4976 if (kfence_free(df.freelist)) 4977 continue; 4978 4979 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4980 _RET_IP_); 4981 } while (likely(size)); 4982 } 4983 4984 /* Note that interrupts must be enabled when calling this function. */ 4985 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4986 { 4987 if (!size) 4988 return; 4989 4990 do { 4991 struct detached_freelist df; 4992 4993 size = build_detached_freelist(s, size, p, &df); 4994 if (!df.slab) 4995 continue; 4996 4997 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4998 df.cnt, _RET_IP_); 4999 } while (likely(size)); 5000 } 5001 EXPORT_SYMBOL(kmem_cache_free_bulk); 5002 5003 #ifndef CONFIG_SLUB_TINY 5004 static inline 5005 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 5006 void **p) 5007 { 5008 struct kmem_cache_cpu *c; 5009 unsigned long irqflags; 5010 int i; 5011 5012 /* 5013 * Drain objects in the per cpu slab, while disabling local 5014 * IRQs, which protects against PREEMPT and interrupts 5015 * handlers invoking normal fastpath. 5016 */ 5017 c = slub_get_cpu_ptr(s->cpu_slab); 5018 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5019 5020 for (i = 0; i < size; i++) { 5021 void *object = kfence_alloc(s, s->object_size, flags); 5022 5023 if (unlikely(object)) { 5024 p[i] = object; 5025 continue; 5026 } 5027 5028 object = c->freelist; 5029 if (unlikely(!object)) { 5030 /* 5031 * We may have removed an object from c->freelist using 5032 * the fastpath in the previous iteration; in that case, 5033 * c->tid has not been bumped yet. 5034 * Since ___slab_alloc() may reenable interrupts while 5035 * allocating memory, we should bump c->tid now. 5036 */ 5037 c->tid = next_tid(c->tid); 5038 5039 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5040 5041 /* 5042 * Invoking slow path likely have side-effect 5043 * of re-populating per CPU c->freelist 5044 */ 5045 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 5046 _RET_IP_, c, s->object_size); 5047 if (unlikely(!p[i])) 5048 goto error; 5049 5050 c = this_cpu_ptr(s->cpu_slab); 5051 maybe_wipe_obj_freeptr(s, p[i]); 5052 5053 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5054 5055 continue; /* goto for-loop */ 5056 } 5057 c->freelist = get_freepointer(s, object); 5058 p[i] = object; 5059 maybe_wipe_obj_freeptr(s, p[i]); 5060 stat(s, ALLOC_FASTPATH); 5061 } 5062 c->tid = next_tid(c->tid); 5063 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5064 slub_put_cpu_ptr(s->cpu_slab); 5065 5066 return i; 5067 5068 error: 5069 slub_put_cpu_ptr(s->cpu_slab); 5070 __kmem_cache_free_bulk(s, i, p); 5071 return 0; 5072 5073 } 5074 #else /* CONFIG_SLUB_TINY */ 5075 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 5076 size_t size, void **p) 5077 { 5078 int i; 5079 5080 for (i = 0; i < size; i++) { 5081 void *object = kfence_alloc(s, s->object_size, flags); 5082 5083 if (unlikely(object)) { 5084 p[i] = object; 5085 continue; 5086 } 5087 5088 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 5089 _RET_IP_, s->object_size); 5090 if (unlikely(!p[i])) 5091 goto error; 5092 5093 maybe_wipe_obj_freeptr(s, p[i]); 5094 } 5095 5096 return i; 5097 5098 error: 5099 __kmem_cache_free_bulk(s, i, p); 5100 return 0; 5101 } 5102 #endif /* CONFIG_SLUB_TINY */ 5103 5104 /* Note that interrupts must be enabled when calling this function. */ 5105 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 5106 void **p) 5107 { 5108 int i; 5109 5110 if (!size) 5111 return 0; 5112 5113 s = slab_pre_alloc_hook(s, flags); 5114 if (unlikely(!s)) 5115 return 0; 5116 5117 i = __kmem_cache_alloc_bulk(s, flags, size, p); 5118 if (unlikely(i == 0)) 5119 return 0; 5120 5121 /* 5122 * memcg and kmem_cache debug support and memory initialization. 5123 * Done outside of the IRQ disabled fastpath loop. 5124 */ 5125 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 5126 slab_want_init_on_alloc(flags, s), s->object_size))) { 5127 return 0; 5128 } 5129 return i; 5130 } 5131 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 5132 5133 5134 /* 5135 * Object placement in a slab is made very easy because we always start at 5136 * offset 0. If we tune the size of the object to the alignment then we can 5137 * get the required alignment by putting one properly sized object after 5138 * another. 5139 * 5140 * Notice that the allocation order determines the sizes of the per cpu 5141 * caches. Each processor has always one slab available for allocations. 5142 * Increasing the allocation order reduces the number of times that slabs 5143 * must be moved on and off the partial lists and is therefore a factor in 5144 * locking overhead. 5145 */ 5146 5147 /* 5148 * Minimum / Maximum order of slab pages. This influences locking overhead 5149 * and slab fragmentation. A higher order reduces the number of partial slabs 5150 * and increases the number of allocations possible without having to 5151 * take the list_lock. 5152 */ 5153 static unsigned int slub_min_order; 5154 static unsigned int slub_max_order = 5155 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 5156 static unsigned int slub_min_objects; 5157 5158 /* 5159 * Calculate the order of allocation given an slab object size. 5160 * 5161 * The order of allocation has significant impact on performance and other 5162 * system components. Generally order 0 allocations should be preferred since 5163 * order 0 does not cause fragmentation in the page allocator. Larger objects 5164 * be problematic to put into order 0 slabs because there may be too much 5165 * unused space left. We go to a higher order if more than 1/16th of the slab 5166 * would be wasted. 5167 * 5168 * In order to reach satisfactory performance we must ensure that a minimum 5169 * number of objects is in one slab. Otherwise we may generate too much 5170 * activity on the partial lists which requires taking the list_lock. This is 5171 * less a concern for large slabs though which are rarely used. 5172 * 5173 * slab_max_order specifies the order where we begin to stop considering the 5174 * number of objects in a slab as critical. If we reach slab_max_order then 5175 * we try to keep the page order as low as possible. So we accept more waste 5176 * of space in favor of a small page order. 5177 * 5178 * Higher order allocations also allow the placement of more objects in a 5179 * slab and thereby reduce object handling overhead. If the user has 5180 * requested a higher minimum order then we start with that one instead of 5181 * the smallest order which will fit the object. 5182 */ 5183 static inline unsigned int calc_slab_order(unsigned int size, 5184 unsigned int min_order, unsigned int max_order, 5185 unsigned int fract_leftover) 5186 { 5187 unsigned int order; 5188 5189 for (order = min_order; order <= max_order; order++) { 5190 5191 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 5192 unsigned int rem; 5193 5194 rem = slab_size % size; 5195 5196 if (rem <= slab_size / fract_leftover) 5197 break; 5198 } 5199 5200 return order; 5201 } 5202 5203 static inline int calculate_order(unsigned int size) 5204 { 5205 unsigned int order; 5206 unsigned int min_objects; 5207 unsigned int max_objects; 5208 unsigned int min_order; 5209 5210 min_objects = slub_min_objects; 5211 if (!min_objects) { 5212 /* 5213 * Some architectures will only update present cpus when 5214 * onlining them, so don't trust the number if it's just 1. But 5215 * we also don't want to use nr_cpu_ids always, as on some other 5216 * architectures, there can be many possible cpus, but never 5217 * onlined. Here we compromise between trying to avoid too high 5218 * order on systems that appear larger than they are, and too 5219 * low order on systems that appear smaller than they are. 5220 */ 5221 unsigned int nr_cpus = num_present_cpus(); 5222 if (nr_cpus <= 1) 5223 nr_cpus = nr_cpu_ids; 5224 min_objects = 4 * (fls(nr_cpus) + 1); 5225 } 5226 /* min_objects can't be 0 because get_order(0) is undefined */ 5227 max_objects = max(order_objects(slub_max_order, size), 1U); 5228 min_objects = min(min_objects, max_objects); 5229 5230 min_order = max_t(unsigned int, slub_min_order, 5231 get_order(min_objects * size)); 5232 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 5233 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 5234 5235 /* 5236 * Attempt to find best configuration for a slab. This works by first 5237 * attempting to generate a layout with the best possible configuration 5238 * and backing off gradually. 5239 * 5240 * We start with accepting at most 1/16 waste and try to find the 5241 * smallest order from min_objects-derived/slab_min_order up to 5242 * slab_max_order that will satisfy the constraint. Note that increasing 5243 * the order can only result in same or less fractional waste, not more. 5244 * 5245 * If that fails, we increase the acceptable fraction of waste and try 5246 * again. The last iteration with fraction of 1/2 would effectively 5247 * accept any waste and give us the order determined by min_objects, as 5248 * long as at least single object fits within slab_max_order. 5249 */ 5250 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 5251 order = calc_slab_order(size, min_order, slub_max_order, 5252 fraction); 5253 if (order <= slub_max_order) 5254 return order; 5255 } 5256 5257 /* 5258 * Doh this slab cannot be placed using slab_max_order. 5259 */ 5260 order = get_order(size); 5261 if (order <= MAX_PAGE_ORDER) 5262 return order; 5263 return -ENOSYS; 5264 } 5265 5266 static void 5267 init_kmem_cache_node(struct kmem_cache_node *n) 5268 { 5269 n->nr_partial = 0; 5270 spin_lock_init(&n->list_lock); 5271 INIT_LIST_HEAD(&n->partial); 5272 #ifdef CONFIG_SLUB_DEBUG 5273 atomic_long_set(&n->nr_slabs, 0); 5274 atomic_long_set(&n->total_objects, 0); 5275 INIT_LIST_HEAD(&n->full); 5276 #endif 5277 } 5278 5279 #ifndef CONFIG_SLUB_TINY 5280 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5281 { 5282 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 5283 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 5284 sizeof(struct kmem_cache_cpu)); 5285 5286 /* 5287 * Must align to double word boundary for the double cmpxchg 5288 * instructions to work; see __pcpu_double_call_return_bool(). 5289 */ 5290 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 5291 2 * sizeof(void *)); 5292 5293 if (!s->cpu_slab) 5294 return 0; 5295 5296 init_kmem_cache_cpus(s); 5297 5298 return 1; 5299 } 5300 #else 5301 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5302 { 5303 return 1; 5304 } 5305 #endif /* CONFIG_SLUB_TINY */ 5306 5307 static struct kmem_cache *kmem_cache_node; 5308 5309 /* 5310 * No kmalloc_node yet so do it by hand. We know that this is the first 5311 * slab on the node for this slabcache. There are no concurrent accesses 5312 * possible. 5313 * 5314 * Note that this function only works on the kmem_cache_node 5315 * when allocating for the kmem_cache_node. This is used for bootstrapping 5316 * memory on a fresh node that has no slab structures yet. 5317 */ 5318 static void early_kmem_cache_node_alloc(int node) 5319 { 5320 struct slab *slab; 5321 struct kmem_cache_node *n; 5322 5323 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5324 5325 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5326 5327 BUG_ON(!slab); 5328 if (slab_nid(slab) != node) { 5329 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5330 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5331 } 5332 5333 n = slab->freelist; 5334 BUG_ON(!n); 5335 #ifdef CONFIG_SLUB_DEBUG 5336 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5337 #endif 5338 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5339 slab->freelist = get_freepointer(kmem_cache_node, n); 5340 slab->inuse = 1; 5341 kmem_cache_node->node[node] = n; 5342 init_kmem_cache_node(n); 5343 inc_slabs_node(kmem_cache_node, node, slab->objects); 5344 5345 /* 5346 * No locks need to be taken here as it has just been 5347 * initialized and there is no concurrent access. 5348 */ 5349 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5350 } 5351 5352 static void free_kmem_cache_nodes(struct kmem_cache *s) 5353 { 5354 int node; 5355 struct kmem_cache_node *n; 5356 5357 for_each_kmem_cache_node(s, node, n) { 5358 s->node[node] = NULL; 5359 kmem_cache_free(kmem_cache_node, n); 5360 } 5361 } 5362 5363 void __kmem_cache_release(struct kmem_cache *s) 5364 { 5365 cache_random_seq_destroy(s); 5366 #ifndef CONFIG_SLUB_TINY 5367 free_percpu(s->cpu_slab); 5368 #endif 5369 free_kmem_cache_nodes(s); 5370 } 5371 5372 static int init_kmem_cache_nodes(struct kmem_cache *s) 5373 { 5374 int node; 5375 5376 for_each_node_mask(node, slab_nodes) { 5377 struct kmem_cache_node *n; 5378 5379 if (slab_state == DOWN) { 5380 early_kmem_cache_node_alloc(node); 5381 continue; 5382 } 5383 n = kmem_cache_alloc_node(kmem_cache_node, 5384 GFP_KERNEL, node); 5385 5386 if (!n) { 5387 free_kmem_cache_nodes(s); 5388 return 0; 5389 } 5390 5391 init_kmem_cache_node(n); 5392 s->node[node] = n; 5393 } 5394 return 1; 5395 } 5396 5397 static void set_cpu_partial(struct kmem_cache *s) 5398 { 5399 #ifdef CONFIG_SLUB_CPU_PARTIAL 5400 unsigned int nr_objects; 5401 5402 /* 5403 * cpu_partial determined the maximum number of objects kept in the 5404 * per cpu partial lists of a processor. 5405 * 5406 * Per cpu partial lists mainly contain slabs that just have one 5407 * object freed. If they are used for allocation then they can be 5408 * filled up again with minimal effort. The slab will never hit the 5409 * per node partial lists and therefore no locking will be required. 5410 * 5411 * For backwards compatibility reasons, this is determined as number 5412 * of objects, even though we now limit maximum number of pages, see 5413 * slub_set_cpu_partial() 5414 */ 5415 if (!kmem_cache_has_cpu_partial(s)) 5416 nr_objects = 0; 5417 else if (s->size >= PAGE_SIZE) 5418 nr_objects = 6; 5419 else if (s->size >= 1024) 5420 nr_objects = 24; 5421 else if (s->size >= 256) 5422 nr_objects = 52; 5423 else 5424 nr_objects = 120; 5425 5426 slub_set_cpu_partial(s, nr_objects); 5427 #endif 5428 } 5429 5430 /* 5431 * calculate_sizes() determines the order and the distribution of data within 5432 * a slab object. 5433 */ 5434 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) 5435 { 5436 slab_flags_t flags = s->flags; 5437 unsigned int size = s->object_size; 5438 unsigned int order; 5439 5440 /* 5441 * Round up object size to the next word boundary. We can only 5442 * place the free pointer at word boundaries and this determines 5443 * the possible location of the free pointer. 5444 */ 5445 size = ALIGN(size, sizeof(void *)); 5446 5447 #ifdef CONFIG_SLUB_DEBUG 5448 /* 5449 * Determine if we can poison the object itself. If the user of 5450 * the slab may touch the object after free or before allocation 5451 * then we should never poison the object itself. 5452 */ 5453 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5454 !s->ctor) 5455 s->flags |= __OBJECT_POISON; 5456 else 5457 s->flags &= ~__OBJECT_POISON; 5458 5459 5460 /* 5461 * If we are Redzoning then check if there is some space between the 5462 * end of the object and the free pointer. If not then add an 5463 * additional word to have some bytes to store Redzone information. 5464 */ 5465 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5466 size += sizeof(void *); 5467 #endif 5468 5469 /* 5470 * With that we have determined the number of bytes in actual use 5471 * by the object and redzoning. 5472 */ 5473 s->inuse = size; 5474 5475 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || 5476 (flags & SLAB_POISON) || s->ctor || 5477 ((flags & SLAB_RED_ZONE) && 5478 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5479 /* 5480 * Relocate free pointer after the object if it is not 5481 * permitted to overwrite the first word of the object on 5482 * kmem_cache_free. 5483 * 5484 * This is the case if we do RCU, have a constructor or 5485 * destructor, are poisoning the objects, or are 5486 * redzoning an object smaller than sizeof(void *) or are 5487 * redzoning an object with slub_debug_orig_size() enabled, 5488 * in which case the right redzone may be extended. 5489 * 5490 * The assumption that s->offset >= s->inuse means free 5491 * pointer is outside of the object is used in the 5492 * freeptr_outside_object() function. If that is no 5493 * longer true, the function needs to be modified. 5494 */ 5495 s->offset = size; 5496 size += sizeof(void *); 5497 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { 5498 s->offset = args->freeptr_offset; 5499 } else { 5500 /* 5501 * Store freelist pointer near middle of object to keep 5502 * it away from the edges of the object to avoid small 5503 * sized over/underflows from neighboring allocations. 5504 */ 5505 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5506 } 5507 5508 #ifdef CONFIG_SLUB_DEBUG 5509 if (flags & SLAB_STORE_USER) { 5510 /* 5511 * Need to store information about allocs and frees after 5512 * the object. 5513 */ 5514 size += 2 * sizeof(struct track); 5515 5516 /* Save the original kmalloc request size */ 5517 if (flags & SLAB_KMALLOC) 5518 size += sizeof(unsigned int); 5519 } 5520 #endif 5521 5522 kasan_cache_create(s, &size, &s->flags); 5523 #ifdef CONFIG_SLUB_DEBUG 5524 if (flags & SLAB_RED_ZONE) { 5525 /* 5526 * Add some empty padding so that we can catch 5527 * overwrites from earlier objects rather than let 5528 * tracking information or the free pointer be 5529 * corrupted if a user writes before the start 5530 * of the object. 5531 */ 5532 size += sizeof(void *); 5533 5534 s->red_left_pad = sizeof(void *); 5535 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5536 size += s->red_left_pad; 5537 } 5538 #endif 5539 5540 /* 5541 * SLUB stores one object immediately after another beginning from 5542 * offset 0. In order to align the objects we have to simply size 5543 * each object to conform to the alignment. 5544 */ 5545 size = ALIGN(size, s->align); 5546 s->size = size; 5547 s->reciprocal_size = reciprocal_value(size); 5548 order = calculate_order(size); 5549 5550 if ((int)order < 0) 5551 return 0; 5552 5553 s->allocflags = __GFP_COMP; 5554 5555 if (s->flags & SLAB_CACHE_DMA) 5556 s->allocflags |= GFP_DMA; 5557 5558 if (s->flags & SLAB_CACHE_DMA32) 5559 s->allocflags |= GFP_DMA32; 5560 5561 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5562 s->allocflags |= __GFP_RECLAIMABLE; 5563 5564 /* 5565 * Determine the number of objects per slab 5566 */ 5567 s->oo = oo_make(order, size); 5568 s->min = oo_make(get_order(size), size); 5569 5570 return !!oo_objects(s->oo); 5571 } 5572 5573 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5574 const char *text) 5575 { 5576 #ifdef CONFIG_SLUB_DEBUG 5577 void *addr = slab_address(slab); 5578 void *p; 5579 5580 slab_err(s, slab, text, s->name); 5581 5582 spin_lock(&object_map_lock); 5583 __fill_map(object_map, s, slab); 5584 5585 for_each_object(p, s, addr, slab->objects) { 5586 5587 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5588 if (slab_add_kunit_errors()) 5589 continue; 5590 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5591 print_tracking(s, p); 5592 } 5593 } 5594 spin_unlock(&object_map_lock); 5595 #endif 5596 } 5597 5598 /* 5599 * Attempt to free all partial slabs on a node. 5600 * This is called from __kmem_cache_shutdown(). We must take list_lock 5601 * because sysfs file might still access partial list after the shutdowning. 5602 */ 5603 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5604 { 5605 LIST_HEAD(discard); 5606 struct slab *slab, *h; 5607 5608 BUG_ON(irqs_disabled()); 5609 spin_lock_irq(&n->list_lock); 5610 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5611 if (!slab->inuse) { 5612 remove_partial(n, slab); 5613 list_add(&slab->slab_list, &discard); 5614 } else { 5615 list_slab_objects(s, slab, 5616 "Objects remaining in %s on __kmem_cache_shutdown()"); 5617 } 5618 } 5619 spin_unlock_irq(&n->list_lock); 5620 5621 list_for_each_entry_safe(slab, h, &discard, slab_list) 5622 discard_slab(s, slab); 5623 } 5624 5625 bool __kmem_cache_empty(struct kmem_cache *s) 5626 { 5627 int node; 5628 struct kmem_cache_node *n; 5629 5630 for_each_kmem_cache_node(s, node, n) 5631 if (n->nr_partial || node_nr_slabs(n)) 5632 return false; 5633 return true; 5634 } 5635 5636 /* 5637 * Release all resources used by a slab cache. 5638 */ 5639 int __kmem_cache_shutdown(struct kmem_cache *s) 5640 { 5641 int node; 5642 struct kmem_cache_node *n; 5643 5644 flush_all_cpus_locked(s); 5645 /* Attempt to free all objects */ 5646 for_each_kmem_cache_node(s, node, n) { 5647 free_partial(s, n); 5648 if (n->nr_partial || node_nr_slabs(n)) 5649 return 1; 5650 } 5651 return 0; 5652 } 5653 5654 #ifdef CONFIG_PRINTK 5655 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5656 { 5657 void *base; 5658 int __maybe_unused i; 5659 unsigned int objnr; 5660 void *objp; 5661 void *objp0; 5662 struct kmem_cache *s = slab->slab_cache; 5663 struct track __maybe_unused *trackp; 5664 5665 kpp->kp_ptr = object; 5666 kpp->kp_slab = slab; 5667 kpp->kp_slab_cache = s; 5668 base = slab_address(slab); 5669 objp0 = kasan_reset_tag(object); 5670 #ifdef CONFIG_SLUB_DEBUG 5671 objp = restore_red_left(s, objp0); 5672 #else 5673 objp = objp0; 5674 #endif 5675 objnr = obj_to_index(s, slab, objp); 5676 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5677 objp = base + s->size * objnr; 5678 kpp->kp_objp = objp; 5679 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5680 || (objp - base) % s->size) || 5681 !(s->flags & SLAB_STORE_USER)) 5682 return; 5683 #ifdef CONFIG_SLUB_DEBUG 5684 objp = fixup_red_left(s, objp); 5685 trackp = get_track(s, objp, TRACK_ALLOC); 5686 kpp->kp_ret = (void *)trackp->addr; 5687 #ifdef CONFIG_STACKDEPOT 5688 { 5689 depot_stack_handle_t handle; 5690 unsigned long *entries; 5691 unsigned int nr_entries; 5692 5693 handle = READ_ONCE(trackp->handle); 5694 if (handle) { 5695 nr_entries = stack_depot_fetch(handle, &entries); 5696 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5697 kpp->kp_stack[i] = (void *)entries[i]; 5698 } 5699 5700 trackp = get_track(s, objp, TRACK_FREE); 5701 handle = READ_ONCE(trackp->handle); 5702 if (handle) { 5703 nr_entries = stack_depot_fetch(handle, &entries); 5704 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5705 kpp->kp_free_stack[i] = (void *)entries[i]; 5706 } 5707 } 5708 #endif 5709 #endif 5710 } 5711 #endif 5712 5713 /******************************************************************** 5714 * Kmalloc subsystem 5715 *******************************************************************/ 5716 5717 static int __init setup_slub_min_order(char *str) 5718 { 5719 get_option(&str, (int *)&slub_min_order); 5720 5721 if (slub_min_order > slub_max_order) 5722 slub_max_order = slub_min_order; 5723 5724 return 1; 5725 } 5726 5727 __setup("slab_min_order=", setup_slub_min_order); 5728 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5729 5730 5731 static int __init setup_slub_max_order(char *str) 5732 { 5733 get_option(&str, (int *)&slub_max_order); 5734 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5735 5736 if (slub_min_order > slub_max_order) 5737 slub_min_order = slub_max_order; 5738 5739 return 1; 5740 } 5741 5742 __setup("slab_max_order=", setup_slub_max_order); 5743 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5744 5745 static int __init setup_slub_min_objects(char *str) 5746 { 5747 get_option(&str, (int *)&slub_min_objects); 5748 5749 return 1; 5750 } 5751 5752 __setup("slab_min_objects=", setup_slub_min_objects); 5753 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5754 5755 #ifdef CONFIG_NUMA 5756 static int __init setup_slab_strict_numa(char *str) 5757 { 5758 if (nr_node_ids > 1) { 5759 static_branch_enable(&strict_numa); 5760 pr_info("SLUB: Strict NUMA enabled.\n"); 5761 } else { 5762 pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); 5763 } 5764 5765 return 1; 5766 } 5767 5768 __setup("slab_strict_numa", setup_slab_strict_numa); 5769 #endif 5770 5771 5772 #ifdef CONFIG_HARDENED_USERCOPY 5773 /* 5774 * Rejects incorrectly sized objects and objects that are to be copied 5775 * to/from userspace but do not fall entirely within the containing slab 5776 * cache's usercopy region. 5777 * 5778 * Returns NULL if check passes, otherwise const char * to name of cache 5779 * to indicate an error. 5780 */ 5781 void __check_heap_object(const void *ptr, unsigned long n, 5782 const struct slab *slab, bool to_user) 5783 { 5784 struct kmem_cache *s; 5785 unsigned int offset; 5786 bool is_kfence = is_kfence_address(ptr); 5787 5788 ptr = kasan_reset_tag(ptr); 5789 5790 /* Find object and usable object size. */ 5791 s = slab->slab_cache; 5792 5793 /* Reject impossible pointers. */ 5794 if (ptr < slab_address(slab)) 5795 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5796 to_user, 0, n); 5797 5798 /* Find offset within object. */ 5799 if (is_kfence) 5800 offset = ptr - kfence_object_start(ptr); 5801 else 5802 offset = (ptr - slab_address(slab)) % s->size; 5803 5804 /* Adjust for redzone and reject if within the redzone. */ 5805 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5806 if (offset < s->red_left_pad) 5807 usercopy_abort("SLUB object in left red zone", 5808 s->name, to_user, offset, n); 5809 offset -= s->red_left_pad; 5810 } 5811 5812 /* Allow address range falling entirely within usercopy region. */ 5813 if (offset >= s->useroffset && 5814 offset - s->useroffset <= s->usersize && 5815 n <= s->useroffset - offset + s->usersize) 5816 return; 5817 5818 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5819 } 5820 #endif /* CONFIG_HARDENED_USERCOPY */ 5821 5822 #define SHRINK_PROMOTE_MAX 32 5823 5824 /* 5825 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5826 * up most to the head of the partial lists. New allocations will then 5827 * fill those up and thus they can be removed from the partial lists. 5828 * 5829 * The slabs with the least items are placed last. This results in them 5830 * being allocated from last increasing the chance that the last objects 5831 * are freed in them. 5832 */ 5833 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5834 { 5835 int node; 5836 int i; 5837 struct kmem_cache_node *n; 5838 struct slab *slab; 5839 struct slab *t; 5840 struct list_head discard; 5841 struct list_head promote[SHRINK_PROMOTE_MAX]; 5842 unsigned long flags; 5843 int ret = 0; 5844 5845 for_each_kmem_cache_node(s, node, n) { 5846 INIT_LIST_HEAD(&discard); 5847 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5848 INIT_LIST_HEAD(promote + i); 5849 5850 spin_lock_irqsave(&n->list_lock, flags); 5851 5852 /* 5853 * Build lists of slabs to discard or promote. 5854 * 5855 * Note that concurrent frees may occur while we hold the 5856 * list_lock. slab->inuse here is the upper limit. 5857 */ 5858 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5859 int free = slab->objects - slab->inuse; 5860 5861 /* Do not reread slab->inuse */ 5862 barrier(); 5863 5864 /* We do not keep full slabs on the list */ 5865 BUG_ON(free <= 0); 5866 5867 if (free == slab->objects) { 5868 list_move(&slab->slab_list, &discard); 5869 slab_clear_node_partial(slab); 5870 n->nr_partial--; 5871 dec_slabs_node(s, node, slab->objects); 5872 } else if (free <= SHRINK_PROMOTE_MAX) 5873 list_move(&slab->slab_list, promote + free - 1); 5874 } 5875 5876 /* 5877 * Promote the slabs filled up most to the head of the 5878 * partial list. 5879 */ 5880 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5881 list_splice(promote + i, &n->partial); 5882 5883 spin_unlock_irqrestore(&n->list_lock, flags); 5884 5885 /* Release empty slabs */ 5886 list_for_each_entry_safe(slab, t, &discard, slab_list) 5887 free_slab(s, slab); 5888 5889 if (node_nr_slabs(n)) 5890 ret = 1; 5891 } 5892 5893 return ret; 5894 } 5895 5896 int __kmem_cache_shrink(struct kmem_cache *s) 5897 { 5898 flush_all(s); 5899 return __kmem_cache_do_shrink(s); 5900 } 5901 5902 static int slab_mem_going_offline_callback(void *arg) 5903 { 5904 struct kmem_cache *s; 5905 5906 mutex_lock(&slab_mutex); 5907 list_for_each_entry(s, &slab_caches, list) { 5908 flush_all_cpus_locked(s); 5909 __kmem_cache_do_shrink(s); 5910 } 5911 mutex_unlock(&slab_mutex); 5912 5913 return 0; 5914 } 5915 5916 static void slab_mem_offline_callback(void *arg) 5917 { 5918 struct memory_notify *marg = arg; 5919 int offline_node; 5920 5921 offline_node = marg->status_change_nid_normal; 5922 5923 /* 5924 * If the node still has available memory. we need kmem_cache_node 5925 * for it yet. 5926 */ 5927 if (offline_node < 0) 5928 return; 5929 5930 mutex_lock(&slab_mutex); 5931 node_clear(offline_node, slab_nodes); 5932 /* 5933 * We no longer free kmem_cache_node structures here, as it would be 5934 * racy with all get_node() users, and infeasible to protect them with 5935 * slab_mutex. 5936 */ 5937 mutex_unlock(&slab_mutex); 5938 } 5939 5940 static int slab_mem_going_online_callback(void *arg) 5941 { 5942 struct kmem_cache_node *n; 5943 struct kmem_cache *s; 5944 struct memory_notify *marg = arg; 5945 int nid = marg->status_change_nid_normal; 5946 int ret = 0; 5947 5948 /* 5949 * If the node's memory is already available, then kmem_cache_node is 5950 * already created. Nothing to do. 5951 */ 5952 if (nid < 0) 5953 return 0; 5954 5955 /* 5956 * We are bringing a node online. No memory is available yet. We must 5957 * allocate a kmem_cache_node structure in order to bring the node 5958 * online. 5959 */ 5960 mutex_lock(&slab_mutex); 5961 list_for_each_entry(s, &slab_caches, list) { 5962 /* 5963 * The structure may already exist if the node was previously 5964 * onlined and offlined. 5965 */ 5966 if (get_node(s, nid)) 5967 continue; 5968 /* 5969 * XXX: kmem_cache_alloc_node will fallback to other nodes 5970 * since memory is not yet available from the node that 5971 * is brought up. 5972 */ 5973 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5974 if (!n) { 5975 ret = -ENOMEM; 5976 goto out; 5977 } 5978 init_kmem_cache_node(n); 5979 s->node[nid] = n; 5980 } 5981 /* 5982 * Any cache created after this point will also have kmem_cache_node 5983 * initialized for the new node. 5984 */ 5985 node_set(nid, slab_nodes); 5986 out: 5987 mutex_unlock(&slab_mutex); 5988 return ret; 5989 } 5990 5991 static int slab_memory_callback(struct notifier_block *self, 5992 unsigned long action, void *arg) 5993 { 5994 int ret = 0; 5995 5996 switch (action) { 5997 case MEM_GOING_ONLINE: 5998 ret = slab_mem_going_online_callback(arg); 5999 break; 6000 case MEM_GOING_OFFLINE: 6001 ret = slab_mem_going_offline_callback(arg); 6002 break; 6003 case MEM_OFFLINE: 6004 case MEM_CANCEL_ONLINE: 6005 slab_mem_offline_callback(arg); 6006 break; 6007 case MEM_ONLINE: 6008 case MEM_CANCEL_OFFLINE: 6009 break; 6010 } 6011 if (ret) 6012 ret = notifier_from_errno(ret); 6013 else 6014 ret = NOTIFY_OK; 6015 return ret; 6016 } 6017 6018 /******************************************************************** 6019 * Basic setup of slabs 6020 *******************************************************************/ 6021 6022 /* 6023 * Used for early kmem_cache structures that were allocated using 6024 * the page allocator. Allocate them properly then fix up the pointers 6025 * that may be pointing to the wrong kmem_cache structure. 6026 */ 6027 6028 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 6029 { 6030 int node; 6031 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 6032 struct kmem_cache_node *n; 6033 6034 memcpy(s, static_cache, kmem_cache->object_size); 6035 6036 /* 6037 * This runs very early, and only the boot processor is supposed to be 6038 * up. Even if it weren't true, IRQs are not up so we couldn't fire 6039 * IPIs around. 6040 */ 6041 __flush_cpu_slab(s, smp_processor_id()); 6042 for_each_kmem_cache_node(s, node, n) { 6043 struct slab *p; 6044 6045 list_for_each_entry(p, &n->partial, slab_list) 6046 p->slab_cache = s; 6047 6048 #ifdef CONFIG_SLUB_DEBUG 6049 list_for_each_entry(p, &n->full, slab_list) 6050 p->slab_cache = s; 6051 #endif 6052 } 6053 list_add(&s->list, &slab_caches); 6054 return s; 6055 } 6056 6057 void __init kmem_cache_init(void) 6058 { 6059 static __initdata struct kmem_cache boot_kmem_cache, 6060 boot_kmem_cache_node; 6061 int node; 6062 6063 if (debug_guardpage_minorder()) 6064 slub_max_order = 0; 6065 6066 /* Print slub debugging pointers without hashing */ 6067 if (__slub_debug_enabled()) 6068 no_hash_pointers_enable(NULL); 6069 6070 kmem_cache_node = &boot_kmem_cache_node; 6071 kmem_cache = &boot_kmem_cache; 6072 6073 /* 6074 * Initialize the nodemask for which we will allocate per node 6075 * structures. Here we don't need taking slab_mutex yet. 6076 */ 6077 for_each_node_state(node, N_NORMAL_MEMORY) 6078 node_set(node, slab_nodes); 6079 6080 create_boot_cache(kmem_cache_node, "kmem_cache_node", 6081 sizeof(struct kmem_cache_node), 6082 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6083 6084 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 6085 6086 /* Able to allocate the per node structures */ 6087 slab_state = PARTIAL; 6088 6089 create_boot_cache(kmem_cache, "kmem_cache", 6090 offsetof(struct kmem_cache, node) + 6091 nr_node_ids * sizeof(struct kmem_cache_node *), 6092 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6093 6094 kmem_cache = bootstrap(&boot_kmem_cache); 6095 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 6096 6097 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 6098 setup_kmalloc_cache_index_table(); 6099 create_kmalloc_caches(); 6100 6101 /* Setup random freelists for each cache */ 6102 init_freelist_randomization(); 6103 6104 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 6105 slub_cpu_dead); 6106 6107 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 6108 cache_line_size(), 6109 slub_min_order, slub_max_order, slub_min_objects, 6110 nr_cpu_ids, nr_node_ids); 6111 } 6112 6113 void __init kmem_cache_init_late(void) 6114 { 6115 #ifndef CONFIG_SLUB_TINY 6116 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 6117 WARN_ON(!flushwq); 6118 #endif 6119 } 6120 6121 struct kmem_cache * 6122 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 6123 slab_flags_t flags, void (*ctor)(void *)) 6124 { 6125 struct kmem_cache *s; 6126 6127 s = find_mergeable(size, align, flags, name, ctor); 6128 if (s) { 6129 if (sysfs_slab_alias(s, name)) 6130 pr_err("SLUB: Unable to add cache alias %s to sysfs\n", 6131 name); 6132 6133 s->refcount++; 6134 6135 /* 6136 * Adjust the object sizes so that we clear 6137 * the complete object on kzalloc. 6138 */ 6139 s->object_size = max(s->object_size, size); 6140 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 6141 } 6142 6143 return s; 6144 } 6145 6146 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 6147 unsigned int size, struct kmem_cache_args *args, 6148 slab_flags_t flags) 6149 { 6150 int err = -EINVAL; 6151 6152 s->name = name; 6153 s->size = s->object_size = size; 6154 6155 s->flags = kmem_cache_flags(flags, s->name); 6156 #ifdef CONFIG_SLAB_FREELIST_HARDENED 6157 s->random = get_random_long(); 6158 #endif 6159 s->align = args->align; 6160 s->ctor = args->ctor; 6161 #ifdef CONFIG_HARDENED_USERCOPY 6162 s->useroffset = args->useroffset; 6163 s->usersize = args->usersize; 6164 #endif 6165 6166 if (!calculate_sizes(args, s)) 6167 goto out; 6168 if (disable_higher_order_debug) { 6169 /* 6170 * Disable debugging flags that store metadata if the min slab 6171 * order increased. 6172 */ 6173 if (get_order(s->size) > get_order(s->object_size)) { 6174 s->flags &= ~DEBUG_METADATA_FLAGS; 6175 s->offset = 0; 6176 if (!calculate_sizes(args, s)) 6177 goto out; 6178 } 6179 } 6180 6181 #ifdef system_has_freelist_aba 6182 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 6183 /* Enable fast mode */ 6184 s->flags |= __CMPXCHG_DOUBLE; 6185 } 6186 #endif 6187 6188 /* 6189 * The larger the object size is, the more slabs we want on the partial 6190 * list to avoid pounding the page allocator excessively. 6191 */ 6192 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 6193 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 6194 6195 set_cpu_partial(s); 6196 6197 #ifdef CONFIG_NUMA 6198 s->remote_node_defrag_ratio = 1000; 6199 #endif 6200 6201 /* Initialize the pre-computed randomized freelist if slab is up */ 6202 if (slab_state >= UP) { 6203 if (init_cache_random_seq(s)) 6204 goto out; 6205 } 6206 6207 if (!init_kmem_cache_nodes(s)) 6208 goto out; 6209 6210 if (!alloc_kmem_cache_cpus(s)) 6211 goto out; 6212 6213 err = 0; 6214 6215 /* Mutex is not taken during early boot */ 6216 if (slab_state <= UP) 6217 goto out; 6218 6219 /* 6220 * Failing to create sysfs files is not critical to SLUB functionality. 6221 * If it fails, proceed with cache creation without these files. 6222 */ 6223 if (sysfs_slab_add(s)) 6224 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); 6225 6226 if (s->flags & SLAB_STORE_USER) 6227 debugfs_slab_add(s); 6228 6229 out: 6230 if (err) 6231 __kmem_cache_release(s); 6232 return err; 6233 } 6234 6235 #ifdef SLAB_SUPPORTS_SYSFS 6236 static int count_inuse(struct slab *slab) 6237 { 6238 return slab->inuse; 6239 } 6240 6241 static int count_total(struct slab *slab) 6242 { 6243 return slab->objects; 6244 } 6245 #endif 6246 6247 #ifdef CONFIG_SLUB_DEBUG 6248 static void validate_slab(struct kmem_cache *s, struct slab *slab, 6249 unsigned long *obj_map) 6250 { 6251 void *p; 6252 void *addr = slab_address(slab); 6253 6254 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 6255 return; 6256 6257 /* Now we know that a valid freelist exists */ 6258 __fill_map(obj_map, s, slab); 6259 for_each_object(p, s, addr, slab->objects) { 6260 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 6261 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 6262 6263 if (!check_object(s, slab, p, val)) 6264 break; 6265 } 6266 } 6267 6268 static int validate_slab_node(struct kmem_cache *s, 6269 struct kmem_cache_node *n, unsigned long *obj_map) 6270 { 6271 unsigned long count = 0; 6272 struct slab *slab; 6273 unsigned long flags; 6274 6275 spin_lock_irqsave(&n->list_lock, flags); 6276 6277 list_for_each_entry(slab, &n->partial, slab_list) { 6278 validate_slab(s, slab, obj_map); 6279 count++; 6280 } 6281 if (count != n->nr_partial) { 6282 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 6283 s->name, count, n->nr_partial); 6284 slab_add_kunit_errors(); 6285 } 6286 6287 if (!(s->flags & SLAB_STORE_USER)) 6288 goto out; 6289 6290 list_for_each_entry(slab, &n->full, slab_list) { 6291 validate_slab(s, slab, obj_map); 6292 count++; 6293 } 6294 if (count != node_nr_slabs(n)) { 6295 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 6296 s->name, count, node_nr_slabs(n)); 6297 slab_add_kunit_errors(); 6298 } 6299 6300 out: 6301 spin_unlock_irqrestore(&n->list_lock, flags); 6302 return count; 6303 } 6304 6305 long validate_slab_cache(struct kmem_cache *s) 6306 { 6307 int node; 6308 unsigned long count = 0; 6309 struct kmem_cache_node *n; 6310 unsigned long *obj_map; 6311 6312 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6313 if (!obj_map) 6314 return -ENOMEM; 6315 6316 flush_all(s); 6317 for_each_kmem_cache_node(s, node, n) 6318 count += validate_slab_node(s, n, obj_map); 6319 6320 bitmap_free(obj_map); 6321 6322 return count; 6323 } 6324 EXPORT_SYMBOL(validate_slab_cache); 6325 6326 #ifdef CONFIG_DEBUG_FS 6327 /* 6328 * Generate lists of code addresses where slabcache objects are allocated 6329 * and freed. 6330 */ 6331 6332 struct location { 6333 depot_stack_handle_t handle; 6334 unsigned long count; 6335 unsigned long addr; 6336 unsigned long waste; 6337 long long sum_time; 6338 long min_time; 6339 long max_time; 6340 long min_pid; 6341 long max_pid; 6342 DECLARE_BITMAP(cpus, NR_CPUS); 6343 nodemask_t nodes; 6344 }; 6345 6346 struct loc_track { 6347 unsigned long max; 6348 unsigned long count; 6349 struct location *loc; 6350 loff_t idx; 6351 }; 6352 6353 static struct dentry *slab_debugfs_root; 6354 6355 static void free_loc_track(struct loc_track *t) 6356 { 6357 if (t->max) 6358 free_pages((unsigned long)t->loc, 6359 get_order(sizeof(struct location) * t->max)); 6360 } 6361 6362 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6363 { 6364 struct location *l; 6365 int order; 6366 6367 order = get_order(sizeof(struct location) * max); 6368 6369 l = (void *)__get_free_pages(flags, order); 6370 if (!l) 6371 return 0; 6372 6373 if (t->count) { 6374 memcpy(l, t->loc, sizeof(struct location) * t->count); 6375 free_loc_track(t); 6376 } 6377 t->max = max; 6378 t->loc = l; 6379 return 1; 6380 } 6381 6382 static int add_location(struct loc_track *t, struct kmem_cache *s, 6383 const struct track *track, 6384 unsigned int orig_size) 6385 { 6386 long start, end, pos; 6387 struct location *l; 6388 unsigned long caddr, chandle, cwaste; 6389 unsigned long age = jiffies - track->when; 6390 depot_stack_handle_t handle = 0; 6391 unsigned int waste = s->object_size - orig_size; 6392 6393 #ifdef CONFIG_STACKDEPOT 6394 handle = READ_ONCE(track->handle); 6395 #endif 6396 start = -1; 6397 end = t->count; 6398 6399 for ( ; ; ) { 6400 pos = start + (end - start + 1) / 2; 6401 6402 /* 6403 * There is nothing at "end". If we end up there 6404 * we need to add something to before end. 6405 */ 6406 if (pos == end) 6407 break; 6408 6409 l = &t->loc[pos]; 6410 caddr = l->addr; 6411 chandle = l->handle; 6412 cwaste = l->waste; 6413 if ((track->addr == caddr) && (handle == chandle) && 6414 (waste == cwaste)) { 6415 6416 l->count++; 6417 if (track->when) { 6418 l->sum_time += age; 6419 if (age < l->min_time) 6420 l->min_time = age; 6421 if (age > l->max_time) 6422 l->max_time = age; 6423 6424 if (track->pid < l->min_pid) 6425 l->min_pid = track->pid; 6426 if (track->pid > l->max_pid) 6427 l->max_pid = track->pid; 6428 6429 cpumask_set_cpu(track->cpu, 6430 to_cpumask(l->cpus)); 6431 } 6432 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6433 return 1; 6434 } 6435 6436 if (track->addr < caddr) 6437 end = pos; 6438 else if (track->addr == caddr && handle < chandle) 6439 end = pos; 6440 else if (track->addr == caddr && handle == chandle && 6441 waste < cwaste) 6442 end = pos; 6443 else 6444 start = pos; 6445 } 6446 6447 /* 6448 * Not found. Insert new tracking element. 6449 */ 6450 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6451 return 0; 6452 6453 l = t->loc + pos; 6454 if (pos < t->count) 6455 memmove(l + 1, l, 6456 (t->count - pos) * sizeof(struct location)); 6457 t->count++; 6458 l->count = 1; 6459 l->addr = track->addr; 6460 l->sum_time = age; 6461 l->min_time = age; 6462 l->max_time = age; 6463 l->min_pid = track->pid; 6464 l->max_pid = track->pid; 6465 l->handle = handle; 6466 l->waste = waste; 6467 cpumask_clear(to_cpumask(l->cpus)); 6468 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6469 nodes_clear(l->nodes); 6470 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6471 return 1; 6472 } 6473 6474 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6475 struct slab *slab, enum track_item alloc, 6476 unsigned long *obj_map) 6477 { 6478 void *addr = slab_address(slab); 6479 bool is_alloc = (alloc == TRACK_ALLOC); 6480 void *p; 6481 6482 __fill_map(obj_map, s, slab); 6483 6484 for_each_object(p, s, addr, slab->objects) 6485 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6486 add_location(t, s, get_track(s, p, alloc), 6487 is_alloc ? get_orig_size(s, p) : 6488 s->object_size); 6489 } 6490 #endif /* CONFIG_DEBUG_FS */ 6491 #endif /* CONFIG_SLUB_DEBUG */ 6492 6493 #ifdef SLAB_SUPPORTS_SYSFS 6494 enum slab_stat_type { 6495 SL_ALL, /* All slabs */ 6496 SL_PARTIAL, /* Only partially allocated slabs */ 6497 SL_CPU, /* Only slabs used for cpu caches */ 6498 SL_OBJECTS, /* Determine allocated objects not slabs */ 6499 SL_TOTAL /* Determine object capacity not slabs */ 6500 }; 6501 6502 #define SO_ALL (1 << SL_ALL) 6503 #define SO_PARTIAL (1 << SL_PARTIAL) 6504 #define SO_CPU (1 << SL_CPU) 6505 #define SO_OBJECTS (1 << SL_OBJECTS) 6506 #define SO_TOTAL (1 << SL_TOTAL) 6507 6508 static ssize_t show_slab_objects(struct kmem_cache *s, 6509 char *buf, unsigned long flags) 6510 { 6511 unsigned long total = 0; 6512 int node; 6513 int x; 6514 unsigned long *nodes; 6515 int len = 0; 6516 6517 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6518 if (!nodes) 6519 return -ENOMEM; 6520 6521 if (flags & SO_CPU) { 6522 int cpu; 6523 6524 for_each_possible_cpu(cpu) { 6525 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6526 cpu); 6527 int node; 6528 struct slab *slab; 6529 6530 slab = READ_ONCE(c->slab); 6531 if (!slab) 6532 continue; 6533 6534 node = slab_nid(slab); 6535 if (flags & SO_TOTAL) 6536 x = slab->objects; 6537 else if (flags & SO_OBJECTS) 6538 x = slab->inuse; 6539 else 6540 x = 1; 6541 6542 total += x; 6543 nodes[node] += x; 6544 6545 #ifdef CONFIG_SLUB_CPU_PARTIAL 6546 slab = slub_percpu_partial_read_once(c); 6547 if (slab) { 6548 node = slab_nid(slab); 6549 if (flags & SO_TOTAL) 6550 WARN_ON_ONCE(1); 6551 else if (flags & SO_OBJECTS) 6552 WARN_ON_ONCE(1); 6553 else 6554 x = data_race(slab->slabs); 6555 total += x; 6556 nodes[node] += x; 6557 } 6558 #endif 6559 } 6560 } 6561 6562 /* 6563 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6564 * already held which will conflict with an existing lock order: 6565 * 6566 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6567 * 6568 * We don't really need mem_hotplug_lock (to hold off 6569 * slab_mem_going_offline_callback) here because slab's memory hot 6570 * unplug code doesn't destroy the kmem_cache->node[] data. 6571 */ 6572 6573 #ifdef CONFIG_SLUB_DEBUG 6574 if (flags & SO_ALL) { 6575 struct kmem_cache_node *n; 6576 6577 for_each_kmem_cache_node(s, node, n) { 6578 6579 if (flags & SO_TOTAL) 6580 x = node_nr_objs(n); 6581 else if (flags & SO_OBJECTS) 6582 x = node_nr_objs(n) - count_partial(n, count_free); 6583 else 6584 x = node_nr_slabs(n); 6585 total += x; 6586 nodes[node] += x; 6587 } 6588 6589 } else 6590 #endif 6591 if (flags & SO_PARTIAL) { 6592 struct kmem_cache_node *n; 6593 6594 for_each_kmem_cache_node(s, node, n) { 6595 if (flags & SO_TOTAL) 6596 x = count_partial(n, count_total); 6597 else if (flags & SO_OBJECTS) 6598 x = count_partial(n, count_inuse); 6599 else 6600 x = n->nr_partial; 6601 total += x; 6602 nodes[node] += x; 6603 } 6604 } 6605 6606 len += sysfs_emit_at(buf, len, "%lu", total); 6607 #ifdef CONFIG_NUMA 6608 for (node = 0; node < nr_node_ids; node++) { 6609 if (nodes[node]) 6610 len += sysfs_emit_at(buf, len, " N%d=%lu", 6611 node, nodes[node]); 6612 } 6613 #endif 6614 len += sysfs_emit_at(buf, len, "\n"); 6615 kfree(nodes); 6616 6617 return len; 6618 } 6619 6620 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6621 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6622 6623 struct slab_attribute { 6624 struct attribute attr; 6625 ssize_t (*show)(struct kmem_cache *s, char *buf); 6626 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6627 }; 6628 6629 #define SLAB_ATTR_RO(_name) \ 6630 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6631 6632 #define SLAB_ATTR(_name) \ 6633 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6634 6635 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6636 { 6637 return sysfs_emit(buf, "%u\n", s->size); 6638 } 6639 SLAB_ATTR_RO(slab_size); 6640 6641 static ssize_t align_show(struct kmem_cache *s, char *buf) 6642 { 6643 return sysfs_emit(buf, "%u\n", s->align); 6644 } 6645 SLAB_ATTR_RO(align); 6646 6647 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6648 { 6649 return sysfs_emit(buf, "%u\n", s->object_size); 6650 } 6651 SLAB_ATTR_RO(object_size); 6652 6653 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6654 { 6655 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6656 } 6657 SLAB_ATTR_RO(objs_per_slab); 6658 6659 static ssize_t order_show(struct kmem_cache *s, char *buf) 6660 { 6661 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6662 } 6663 SLAB_ATTR_RO(order); 6664 6665 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6666 { 6667 return sysfs_emit(buf, "%lu\n", s->min_partial); 6668 } 6669 6670 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6671 size_t length) 6672 { 6673 unsigned long min; 6674 int err; 6675 6676 err = kstrtoul(buf, 10, &min); 6677 if (err) 6678 return err; 6679 6680 s->min_partial = min; 6681 return length; 6682 } 6683 SLAB_ATTR(min_partial); 6684 6685 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6686 { 6687 unsigned int nr_partial = 0; 6688 #ifdef CONFIG_SLUB_CPU_PARTIAL 6689 nr_partial = s->cpu_partial; 6690 #endif 6691 6692 return sysfs_emit(buf, "%u\n", nr_partial); 6693 } 6694 6695 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6696 size_t length) 6697 { 6698 unsigned int objects; 6699 int err; 6700 6701 err = kstrtouint(buf, 10, &objects); 6702 if (err) 6703 return err; 6704 if (objects && !kmem_cache_has_cpu_partial(s)) 6705 return -EINVAL; 6706 6707 slub_set_cpu_partial(s, objects); 6708 flush_all(s); 6709 return length; 6710 } 6711 SLAB_ATTR(cpu_partial); 6712 6713 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6714 { 6715 if (!s->ctor) 6716 return 0; 6717 return sysfs_emit(buf, "%pS\n", s->ctor); 6718 } 6719 SLAB_ATTR_RO(ctor); 6720 6721 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6722 { 6723 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6724 } 6725 SLAB_ATTR_RO(aliases); 6726 6727 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6728 { 6729 return show_slab_objects(s, buf, SO_PARTIAL); 6730 } 6731 SLAB_ATTR_RO(partial); 6732 6733 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6734 { 6735 return show_slab_objects(s, buf, SO_CPU); 6736 } 6737 SLAB_ATTR_RO(cpu_slabs); 6738 6739 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6740 { 6741 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6742 } 6743 SLAB_ATTR_RO(objects_partial); 6744 6745 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6746 { 6747 int objects = 0; 6748 int slabs = 0; 6749 int cpu __maybe_unused; 6750 int len = 0; 6751 6752 #ifdef CONFIG_SLUB_CPU_PARTIAL 6753 for_each_online_cpu(cpu) { 6754 struct slab *slab; 6755 6756 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6757 6758 if (slab) 6759 slabs += data_race(slab->slabs); 6760 } 6761 #endif 6762 6763 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6764 objects = (slabs * oo_objects(s->oo)) / 2; 6765 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6766 6767 #ifdef CONFIG_SLUB_CPU_PARTIAL 6768 for_each_online_cpu(cpu) { 6769 struct slab *slab; 6770 6771 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6772 if (slab) { 6773 slabs = data_race(slab->slabs); 6774 objects = (slabs * oo_objects(s->oo)) / 2; 6775 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6776 cpu, objects, slabs); 6777 } 6778 } 6779 #endif 6780 len += sysfs_emit_at(buf, len, "\n"); 6781 6782 return len; 6783 } 6784 SLAB_ATTR_RO(slabs_cpu_partial); 6785 6786 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6787 { 6788 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6789 } 6790 SLAB_ATTR_RO(reclaim_account); 6791 6792 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6793 { 6794 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6795 } 6796 SLAB_ATTR_RO(hwcache_align); 6797 6798 #ifdef CONFIG_ZONE_DMA 6799 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6800 { 6801 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6802 } 6803 SLAB_ATTR_RO(cache_dma); 6804 #endif 6805 6806 #ifdef CONFIG_HARDENED_USERCOPY 6807 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6808 { 6809 return sysfs_emit(buf, "%u\n", s->usersize); 6810 } 6811 SLAB_ATTR_RO(usersize); 6812 #endif 6813 6814 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6815 { 6816 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6817 } 6818 SLAB_ATTR_RO(destroy_by_rcu); 6819 6820 #ifdef CONFIG_SLUB_DEBUG 6821 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6822 { 6823 return show_slab_objects(s, buf, SO_ALL); 6824 } 6825 SLAB_ATTR_RO(slabs); 6826 6827 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6828 { 6829 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6830 } 6831 SLAB_ATTR_RO(total_objects); 6832 6833 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6834 { 6835 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6836 } 6837 SLAB_ATTR_RO(objects); 6838 6839 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6840 { 6841 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6842 } 6843 SLAB_ATTR_RO(sanity_checks); 6844 6845 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6846 { 6847 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6848 } 6849 SLAB_ATTR_RO(trace); 6850 6851 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6852 { 6853 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6854 } 6855 6856 SLAB_ATTR_RO(red_zone); 6857 6858 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6859 { 6860 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6861 } 6862 6863 SLAB_ATTR_RO(poison); 6864 6865 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6866 { 6867 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6868 } 6869 6870 SLAB_ATTR_RO(store_user); 6871 6872 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6873 { 6874 return 0; 6875 } 6876 6877 static ssize_t validate_store(struct kmem_cache *s, 6878 const char *buf, size_t length) 6879 { 6880 int ret = -EINVAL; 6881 6882 if (buf[0] == '1' && kmem_cache_debug(s)) { 6883 ret = validate_slab_cache(s); 6884 if (ret >= 0) 6885 ret = length; 6886 } 6887 return ret; 6888 } 6889 SLAB_ATTR(validate); 6890 6891 #endif /* CONFIG_SLUB_DEBUG */ 6892 6893 #ifdef CONFIG_FAILSLAB 6894 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6895 { 6896 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6897 } 6898 6899 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6900 size_t length) 6901 { 6902 if (s->refcount > 1) 6903 return -EINVAL; 6904 6905 if (buf[0] == '1') 6906 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6907 else 6908 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6909 6910 return length; 6911 } 6912 SLAB_ATTR(failslab); 6913 #endif 6914 6915 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6916 { 6917 return 0; 6918 } 6919 6920 static ssize_t shrink_store(struct kmem_cache *s, 6921 const char *buf, size_t length) 6922 { 6923 if (buf[0] == '1') 6924 kmem_cache_shrink(s); 6925 else 6926 return -EINVAL; 6927 return length; 6928 } 6929 SLAB_ATTR(shrink); 6930 6931 #ifdef CONFIG_NUMA 6932 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6933 { 6934 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6935 } 6936 6937 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6938 const char *buf, size_t length) 6939 { 6940 unsigned int ratio; 6941 int err; 6942 6943 err = kstrtouint(buf, 10, &ratio); 6944 if (err) 6945 return err; 6946 if (ratio > 100) 6947 return -ERANGE; 6948 6949 s->remote_node_defrag_ratio = ratio * 10; 6950 6951 return length; 6952 } 6953 SLAB_ATTR(remote_node_defrag_ratio); 6954 #endif 6955 6956 #ifdef CONFIG_SLUB_STATS 6957 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6958 { 6959 unsigned long sum = 0; 6960 int cpu; 6961 int len = 0; 6962 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6963 6964 if (!data) 6965 return -ENOMEM; 6966 6967 for_each_online_cpu(cpu) { 6968 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6969 6970 data[cpu] = x; 6971 sum += x; 6972 } 6973 6974 len += sysfs_emit_at(buf, len, "%lu", sum); 6975 6976 #ifdef CONFIG_SMP 6977 for_each_online_cpu(cpu) { 6978 if (data[cpu]) 6979 len += sysfs_emit_at(buf, len, " C%d=%u", 6980 cpu, data[cpu]); 6981 } 6982 #endif 6983 kfree(data); 6984 len += sysfs_emit_at(buf, len, "\n"); 6985 6986 return len; 6987 } 6988 6989 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6990 { 6991 int cpu; 6992 6993 for_each_online_cpu(cpu) 6994 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6995 } 6996 6997 #define STAT_ATTR(si, text) \ 6998 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6999 { \ 7000 return show_stat(s, buf, si); \ 7001 } \ 7002 static ssize_t text##_store(struct kmem_cache *s, \ 7003 const char *buf, size_t length) \ 7004 { \ 7005 if (buf[0] != '0') \ 7006 return -EINVAL; \ 7007 clear_stat(s, si); \ 7008 return length; \ 7009 } \ 7010 SLAB_ATTR(text); \ 7011 7012 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 7013 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 7014 STAT_ATTR(FREE_FASTPATH, free_fastpath); 7015 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 7016 STAT_ATTR(FREE_FROZEN, free_frozen); 7017 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 7018 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 7019 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 7020 STAT_ATTR(ALLOC_SLAB, alloc_slab); 7021 STAT_ATTR(ALLOC_REFILL, alloc_refill); 7022 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 7023 STAT_ATTR(FREE_SLAB, free_slab); 7024 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 7025 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 7026 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 7027 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 7028 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 7029 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 7030 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 7031 STAT_ATTR(ORDER_FALLBACK, order_fallback); 7032 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 7033 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 7034 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 7035 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 7036 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 7037 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 7038 #endif /* CONFIG_SLUB_STATS */ 7039 7040 #ifdef CONFIG_KFENCE 7041 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 7042 { 7043 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 7044 } 7045 7046 static ssize_t skip_kfence_store(struct kmem_cache *s, 7047 const char *buf, size_t length) 7048 { 7049 int ret = length; 7050 7051 if (buf[0] == '0') 7052 s->flags &= ~SLAB_SKIP_KFENCE; 7053 else if (buf[0] == '1') 7054 s->flags |= SLAB_SKIP_KFENCE; 7055 else 7056 ret = -EINVAL; 7057 7058 return ret; 7059 } 7060 SLAB_ATTR(skip_kfence); 7061 #endif 7062 7063 static struct attribute *slab_attrs[] = { 7064 &slab_size_attr.attr, 7065 &object_size_attr.attr, 7066 &objs_per_slab_attr.attr, 7067 &order_attr.attr, 7068 &min_partial_attr.attr, 7069 &cpu_partial_attr.attr, 7070 &objects_partial_attr.attr, 7071 &partial_attr.attr, 7072 &cpu_slabs_attr.attr, 7073 &ctor_attr.attr, 7074 &aliases_attr.attr, 7075 &align_attr.attr, 7076 &hwcache_align_attr.attr, 7077 &reclaim_account_attr.attr, 7078 &destroy_by_rcu_attr.attr, 7079 &shrink_attr.attr, 7080 &slabs_cpu_partial_attr.attr, 7081 #ifdef CONFIG_SLUB_DEBUG 7082 &total_objects_attr.attr, 7083 &objects_attr.attr, 7084 &slabs_attr.attr, 7085 &sanity_checks_attr.attr, 7086 &trace_attr.attr, 7087 &red_zone_attr.attr, 7088 &poison_attr.attr, 7089 &store_user_attr.attr, 7090 &validate_attr.attr, 7091 #endif 7092 #ifdef CONFIG_ZONE_DMA 7093 &cache_dma_attr.attr, 7094 #endif 7095 #ifdef CONFIG_NUMA 7096 &remote_node_defrag_ratio_attr.attr, 7097 #endif 7098 #ifdef CONFIG_SLUB_STATS 7099 &alloc_fastpath_attr.attr, 7100 &alloc_slowpath_attr.attr, 7101 &free_fastpath_attr.attr, 7102 &free_slowpath_attr.attr, 7103 &free_frozen_attr.attr, 7104 &free_add_partial_attr.attr, 7105 &free_remove_partial_attr.attr, 7106 &alloc_from_partial_attr.attr, 7107 &alloc_slab_attr.attr, 7108 &alloc_refill_attr.attr, 7109 &alloc_node_mismatch_attr.attr, 7110 &free_slab_attr.attr, 7111 &cpuslab_flush_attr.attr, 7112 &deactivate_full_attr.attr, 7113 &deactivate_empty_attr.attr, 7114 &deactivate_to_head_attr.attr, 7115 &deactivate_to_tail_attr.attr, 7116 &deactivate_remote_frees_attr.attr, 7117 &deactivate_bypass_attr.attr, 7118 &order_fallback_attr.attr, 7119 &cmpxchg_double_fail_attr.attr, 7120 &cmpxchg_double_cpu_fail_attr.attr, 7121 &cpu_partial_alloc_attr.attr, 7122 &cpu_partial_free_attr.attr, 7123 &cpu_partial_node_attr.attr, 7124 &cpu_partial_drain_attr.attr, 7125 #endif 7126 #ifdef CONFIG_FAILSLAB 7127 &failslab_attr.attr, 7128 #endif 7129 #ifdef CONFIG_HARDENED_USERCOPY 7130 &usersize_attr.attr, 7131 #endif 7132 #ifdef CONFIG_KFENCE 7133 &skip_kfence_attr.attr, 7134 #endif 7135 7136 NULL 7137 }; 7138 7139 static const struct attribute_group slab_attr_group = { 7140 .attrs = slab_attrs, 7141 }; 7142 7143 static ssize_t slab_attr_show(struct kobject *kobj, 7144 struct attribute *attr, 7145 char *buf) 7146 { 7147 struct slab_attribute *attribute; 7148 struct kmem_cache *s; 7149 7150 attribute = to_slab_attr(attr); 7151 s = to_slab(kobj); 7152 7153 if (!attribute->show) 7154 return -EIO; 7155 7156 return attribute->show(s, buf); 7157 } 7158 7159 static ssize_t slab_attr_store(struct kobject *kobj, 7160 struct attribute *attr, 7161 const char *buf, size_t len) 7162 { 7163 struct slab_attribute *attribute; 7164 struct kmem_cache *s; 7165 7166 attribute = to_slab_attr(attr); 7167 s = to_slab(kobj); 7168 7169 if (!attribute->store) 7170 return -EIO; 7171 7172 return attribute->store(s, buf, len); 7173 } 7174 7175 static void kmem_cache_release(struct kobject *k) 7176 { 7177 slab_kmem_cache_release(to_slab(k)); 7178 } 7179 7180 static const struct sysfs_ops slab_sysfs_ops = { 7181 .show = slab_attr_show, 7182 .store = slab_attr_store, 7183 }; 7184 7185 static const struct kobj_type slab_ktype = { 7186 .sysfs_ops = &slab_sysfs_ops, 7187 .release = kmem_cache_release, 7188 }; 7189 7190 static struct kset *slab_kset; 7191 7192 static inline struct kset *cache_kset(struct kmem_cache *s) 7193 { 7194 return slab_kset; 7195 } 7196 7197 #define ID_STR_LENGTH 32 7198 7199 /* Create a unique string id for a slab cache: 7200 * 7201 * Format :[flags-]size 7202 */ 7203 static char *create_unique_id(struct kmem_cache *s) 7204 { 7205 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 7206 char *p = name; 7207 7208 if (!name) 7209 return ERR_PTR(-ENOMEM); 7210 7211 *p++ = ':'; 7212 /* 7213 * First flags affecting slabcache operations. We will only 7214 * get here for aliasable slabs so we do not need to support 7215 * too many flags. The flags here must cover all flags that 7216 * are matched during merging to guarantee that the id is 7217 * unique. 7218 */ 7219 if (s->flags & SLAB_CACHE_DMA) 7220 *p++ = 'd'; 7221 if (s->flags & SLAB_CACHE_DMA32) 7222 *p++ = 'D'; 7223 if (s->flags & SLAB_RECLAIM_ACCOUNT) 7224 *p++ = 'a'; 7225 if (s->flags & SLAB_CONSISTENCY_CHECKS) 7226 *p++ = 'F'; 7227 if (s->flags & SLAB_ACCOUNT) 7228 *p++ = 'A'; 7229 if (p != name + 1) 7230 *p++ = '-'; 7231 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 7232 7233 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 7234 kfree(name); 7235 return ERR_PTR(-EINVAL); 7236 } 7237 kmsan_unpoison_memory(name, p - name); 7238 return name; 7239 } 7240 7241 static int sysfs_slab_add(struct kmem_cache *s) 7242 { 7243 int err; 7244 const char *name; 7245 struct kset *kset = cache_kset(s); 7246 int unmergeable = slab_unmergeable(s); 7247 7248 if (!unmergeable && disable_higher_order_debug && 7249 (slub_debug & DEBUG_METADATA_FLAGS)) 7250 unmergeable = 1; 7251 7252 if (unmergeable) { 7253 /* 7254 * Slabcache can never be merged so we can use the name proper. 7255 * This is typically the case for debug situations. In that 7256 * case we can catch duplicate names easily. 7257 */ 7258 sysfs_remove_link(&slab_kset->kobj, s->name); 7259 name = s->name; 7260 } else { 7261 /* 7262 * Create a unique name for the slab as a target 7263 * for the symlinks. 7264 */ 7265 name = create_unique_id(s); 7266 if (IS_ERR(name)) 7267 return PTR_ERR(name); 7268 } 7269 7270 s->kobj.kset = kset; 7271 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 7272 if (err) 7273 goto out; 7274 7275 err = sysfs_create_group(&s->kobj, &slab_attr_group); 7276 if (err) 7277 goto out_del_kobj; 7278 7279 if (!unmergeable) { 7280 /* Setup first alias */ 7281 sysfs_slab_alias(s, s->name); 7282 } 7283 out: 7284 if (!unmergeable) 7285 kfree(name); 7286 return err; 7287 out_del_kobj: 7288 kobject_del(&s->kobj); 7289 goto out; 7290 } 7291 7292 void sysfs_slab_unlink(struct kmem_cache *s) 7293 { 7294 if (s->kobj.state_in_sysfs) 7295 kobject_del(&s->kobj); 7296 } 7297 7298 void sysfs_slab_release(struct kmem_cache *s) 7299 { 7300 kobject_put(&s->kobj); 7301 } 7302 7303 /* 7304 * Need to buffer aliases during bootup until sysfs becomes 7305 * available lest we lose that information. 7306 */ 7307 struct saved_alias { 7308 struct kmem_cache *s; 7309 const char *name; 7310 struct saved_alias *next; 7311 }; 7312 7313 static struct saved_alias *alias_list; 7314 7315 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 7316 { 7317 struct saved_alias *al; 7318 7319 if (slab_state == FULL) { 7320 /* 7321 * If we have a leftover link then remove it. 7322 */ 7323 sysfs_remove_link(&slab_kset->kobj, name); 7324 /* 7325 * The original cache may have failed to generate sysfs file. 7326 * In that case, sysfs_create_link() returns -ENOENT and 7327 * symbolic link creation is skipped. 7328 */ 7329 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7330 } 7331 7332 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7333 if (!al) 7334 return -ENOMEM; 7335 7336 al->s = s; 7337 al->name = name; 7338 al->next = alias_list; 7339 alias_list = al; 7340 kmsan_unpoison_memory(al, sizeof(*al)); 7341 return 0; 7342 } 7343 7344 static int __init slab_sysfs_init(void) 7345 { 7346 struct kmem_cache *s; 7347 int err; 7348 7349 mutex_lock(&slab_mutex); 7350 7351 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7352 if (!slab_kset) { 7353 mutex_unlock(&slab_mutex); 7354 pr_err("Cannot register slab subsystem.\n"); 7355 return -ENOMEM; 7356 } 7357 7358 slab_state = FULL; 7359 7360 list_for_each_entry(s, &slab_caches, list) { 7361 err = sysfs_slab_add(s); 7362 if (err) 7363 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7364 s->name); 7365 } 7366 7367 while (alias_list) { 7368 struct saved_alias *al = alias_list; 7369 7370 alias_list = alias_list->next; 7371 err = sysfs_slab_alias(al->s, al->name); 7372 if (err) 7373 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7374 al->name); 7375 kfree(al); 7376 } 7377 7378 mutex_unlock(&slab_mutex); 7379 return 0; 7380 } 7381 late_initcall(slab_sysfs_init); 7382 #endif /* SLAB_SUPPORTS_SYSFS */ 7383 7384 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7385 static int slab_debugfs_show(struct seq_file *seq, void *v) 7386 { 7387 struct loc_track *t = seq->private; 7388 struct location *l; 7389 unsigned long idx; 7390 7391 idx = (unsigned long) t->idx; 7392 if (idx < t->count) { 7393 l = &t->loc[idx]; 7394 7395 seq_printf(seq, "%7ld ", l->count); 7396 7397 if (l->addr) 7398 seq_printf(seq, "%pS", (void *)l->addr); 7399 else 7400 seq_puts(seq, "<not-available>"); 7401 7402 if (l->waste) 7403 seq_printf(seq, " waste=%lu/%lu", 7404 l->count * l->waste, l->waste); 7405 7406 if (l->sum_time != l->min_time) { 7407 seq_printf(seq, " age=%ld/%llu/%ld", 7408 l->min_time, div_u64(l->sum_time, l->count), 7409 l->max_time); 7410 } else 7411 seq_printf(seq, " age=%ld", l->min_time); 7412 7413 if (l->min_pid != l->max_pid) 7414 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7415 else 7416 seq_printf(seq, " pid=%ld", 7417 l->min_pid); 7418 7419 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7420 seq_printf(seq, " cpus=%*pbl", 7421 cpumask_pr_args(to_cpumask(l->cpus))); 7422 7423 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7424 seq_printf(seq, " nodes=%*pbl", 7425 nodemask_pr_args(&l->nodes)); 7426 7427 #ifdef CONFIG_STACKDEPOT 7428 { 7429 depot_stack_handle_t handle; 7430 unsigned long *entries; 7431 unsigned int nr_entries, j; 7432 7433 handle = READ_ONCE(l->handle); 7434 if (handle) { 7435 nr_entries = stack_depot_fetch(handle, &entries); 7436 seq_puts(seq, "\n"); 7437 for (j = 0; j < nr_entries; j++) 7438 seq_printf(seq, " %pS\n", (void *)entries[j]); 7439 } 7440 } 7441 #endif 7442 seq_puts(seq, "\n"); 7443 } 7444 7445 if (!idx && !t->count) 7446 seq_puts(seq, "No data\n"); 7447 7448 return 0; 7449 } 7450 7451 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7452 { 7453 } 7454 7455 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7456 { 7457 struct loc_track *t = seq->private; 7458 7459 t->idx = ++(*ppos); 7460 if (*ppos <= t->count) 7461 return ppos; 7462 7463 return NULL; 7464 } 7465 7466 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7467 { 7468 struct location *loc1 = (struct location *)a; 7469 struct location *loc2 = (struct location *)b; 7470 7471 if (loc1->count > loc2->count) 7472 return -1; 7473 else 7474 return 1; 7475 } 7476 7477 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7478 { 7479 struct loc_track *t = seq->private; 7480 7481 t->idx = *ppos; 7482 return ppos; 7483 } 7484 7485 static const struct seq_operations slab_debugfs_sops = { 7486 .start = slab_debugfs_start, 7487 .next = slab_debugfs_next, 7488 .stop = slab_debugfs_stop, 7489 .show = slab_debugfs_show, 7490 }; 7491 7492 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7493 { 7494 7495 struct kmem_cache_node *n; 7496 enum track_item alloc; 7497 int node; 7498 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7499 sizeof(struct loc_track)); 7500 struct kmem_cache *s = file_inode(filep)->i_private; 7501 unsigned long *obj_map; 7502 7503 if (!t) 7504 return -ENOMEM; 7505 7506 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7507 if (!obj_map) { 7508 seq_release_private(inode, filep); 7509 return -ENOMEM; 7510 } 7511 7512 alloc = debugfs_get_aux_num(filep); 7513 7514 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7515 bitmap_free(obj_map); 7516 seq_release_private(inode, filep); 7517 return -ENOMEM; 7518 } 7519 7520 for_each_kmem_cache_node(s, node, n) { 7521 unsigned long flags; 7522 struct slab *slab; 7523 7524 if (!node_nr_slabs(n)) 7525 continue; 7526 7527 spin_lock_irqsave(&n->list_lock, flags); 7528 list_for_each_entry(slab, &n->partial, slab_list) 7529 process_slab(t, s, slab, alloc, obj_map); 7530 list_for_each_entry(slab, &n->full, slab_list) 7531 process_slab(t, s, slab, alloc, obj_map); 7532 spin_unlock_irqrestore(&n->list_lock, flags); 7533 } 7534 7535 /* Sort locations by count */ 7536 sort_r(t->loc, t->count, sizeof(struct location), 7537 cmp_loc_by_count, NULL, NULL); 7538 7539 bitmap_free(obj_map); 7540 return 0; 7541 } 7542 7543 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7544 { 7545 struct seq_file *seq = file->private_data; 7546 struct loc_track *t = seq->private; 7547 7548 free_loc_track(t); 7549 return seq_release_private(inode, file); 7550 } 7551 7552 static const struct file_operations slab_debugfs_fops = { 7553 .open = slab_debug_trace_open, 7554 .read = seq_read, 7555 .llseek = seq_lseek, 7556 .release = slab_debug_trace_release, 7557 }; 7558 7559 static void debugfs_slab_add(struct kmem_cache *s) 7560 { 7561 struct dentry *slab_cache_dir; 7562 7563 if (unlikely(!slab_debugfs_root)) 7564 return; 7565 7566 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7567 7568 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s, 7569 TRACK_ALLOC, &slab_debugfs_fops); 7570 7571 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s, 7572 TRACK_FREE, &slab_debugfs_fops); 7573 } 7574 7575 void debugfs_slab_release(struct kmem_cache *s) 7576 { 7577 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7578 } 7579 7580 static int __init slab_debugfs_init(void) 7581 { 7582 struct kmem_cache *s; 7583 7584 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7585 7586 list_for_each_entry(s, &slab_caches, list) 7587 if (s->flags & SLAB_STORE_USER) 7588 debugfs_slab_add(s); 7589 7590 return 0; 7591 7592 } 7593 __initcall(slab_debugfs_init); 7594 #endif 7595 /* 7596 * The /proc/slabinfo ABI 7597 */ 7598 #ifdef CONFIG_SLUB_DEBUG 7599 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7600 { 7601 unsigned long nr_slabs = 0; 7602 unsigned long nr_objs = 0; 7603 unsigned long nr_free = 0; 7604 int node; 7605 struct kmem_cache_node *n; 7606 7607 for_each_kmem_cache_node(s, node, n) { 7608 nr_slabs += node_nr_slabs(n); 7609 nr_objs += node_nr_objs(n); 7610 nr_free += count_partial_free_approx(n); 7611 } 7612 7613 sinfo->active_objs = nr_objs - nr_free; 7614 sinfo->num_objs = nr_objs; 7615 sinfo->active_slabs = nr_slabs; 7616 sinfo->num_slabs = nr_slabs; 7617 sinfo->objects_per_slab = oo_objects(s->oo); 7618 sinfo->cache_order = oo_order(s->oo); 7619 } 7620 #endif /* CONFIG_SLUB_DEBUG */ 7621