xref: /linux/mm/slub.c (revision fd7a253311412b3fc7c85586552c90eca61e7d23)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
27 #include <linux/fault-inject.h>
28 
29 /*
30  * Lock order:
31  *   1. slab_lock(page)
32  *   2. slab->list_lock
33  *
34  *   The slab_lock protects operations on the object of a particular
35  *   slab and its metadata in the page struct. If the slab lock
36  *   has been taken then no allocations nor frees can be performed
37  *   on the objects in the slab nor can the slab be added or removed
38  *   from the partial or full lists since this would mean modifying
39  *   the page_struct of the slab.
40  *
41  *   The list_lock protects the partial and full list on each node and
42  *   the partial slab counter. If taken then no new slabs may be added or
43  *   removed from the lists nor make the number of partial slabs be modified.
44  *   (Note that the total number of slabs is an atomic value that may be
45  *   modified without taking the list lock).
46  *
47  *   The list_lock is a centralized lock and thus we avoid taking it as
48  *   much as possible. As long as SLUB does not have to handle partial
49  *   slabs, operations can continue without any centralized lock. F.e.
50  *   allocating a long series of objects that fill up slabs does not require
51  *   the list lock.
52  *
53  *   The lock order is sometimes inverted when we are trying to get a slab
54  *   off a list. We take the list_lock and then look for a page on the list
55  *   to use. While we do that objects in the slabs may be freed. We can
56  *   only operate on the slab if we have also taken the slab_lock. So we use
57  *   a slab_trylock() on the slab. If trylock was successful then no frees
58  *   can occur anymore and we can use the slab for allocations etc. If the
59  *   slab_trylock() does not succeed then frees are in progress in the slab and
60  *   we must stay away from it for a while since we may cause a bouncing
61  *   cacheline if we try to acquire the lock. So go onto the next slab.
62  *   If all pages are busy then we may allocate a new slab instead of reusing
63  *   a partial slab. A new slab has noone operating on it and thus there is
64  *   no danger of cacheline contention.
65  *
66  *   Interrupts are disabled during allocation and deallocation in order to
67  *   make the slab allocator safe to use in the context of an irq. In addition
68  *   interrupts are disabled to ensure that the processor does not change
69  *   while handling per_cpu slabs, due to kernel preemption.
70  *
71  * SLUB assigns one slab for allocation to each processor.
72  * Allocations only occur from these slabs called cpu slabs.
73  *
74  * Slabs with free elements are kept on a partial list and during regular
75  * operations no list for full slabs is used. If an object in a full slab is
76  * freed then the slab will show up again on the partial lists.
77  * We track full slabs for debugging purposes though because otherwise we
78  * cannot scan all objects.
79  *
80  * Slabs are freed when they become empty. Teardown and setup is
81  * minimal so we rely on the page allocators per cpu caches for
82  * fast frees and allocs.
83  *
84  * Overloading of page flags that are otherwise used for LRU management.
85  *
86  * PageActive 		The slab is frozen and exempt from list processing.
87  * 			This means that the slab is dedicated to a purpose
88  * 			such as satisfying allocations for a specific
89  * 			processor. Objects may be freed in the slab while
90  * 			it is frozen but slab_free will then skip the usual
91  * 			list operations. It is up to the processor holding
92  * 			the slab to integrate the slab into the slab lists
93  * 			when the slab is no longer needed.
94  *
95  * 			One use of this flag is to mark slabs that are
96  * 			used for allocations. Then such a slab becomes a cpu
97  * 			slab. The cpu slab may be equipped with an additional
98  * 			freelist that allows lockless access to
99  * 			free objects in addition to the regular freelist
100  * 			that requires the slab lock.
101  *
102  * PageError		Slab requires special handling due to debug
103  * 			options set. This moves	slab handling out of
104  * 			the fast path and disables lockless freelists.
105  */
106 
107 #ifdef CONFIG_SLUB_DEBUG
108 #define SLABDEBUG 1
109 #else
110 #define SLABDEBUG 0
111 #endif
112 
113 /*
114  * Issues still to be resolved:
115  *
116  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
117  *
118  * - Variable sizing of the per node arrays
119  */
120 
121 /* Enable to test recovery from slab corruption on boot */
122 #undef SLUB_RESILIENCY_TEST
123 
124 /*
125  * Mininum number of partial slabs. These will be left on the partial
126  * lists even if they are empty. kmem_cache_shrink may reclaim them.
127  */
128 #define MIN_PARTIAL 5
129 
130 /*
131  * Maximum number of desirable partial slabs.
132  * The existence of more partial slabs makes kmem_cache_shrink
133  * sort the partial list by the number of objects in the.
134  */
135 #define MAX_PARTIAL 10
136 
137 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
138 				SLAB_POISON | SLAB_STORE_USER)
139 
140 /*
141  * Set of flags that will prevent slab merging
142  */
143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145 
146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 		SLAB_CACHE_DMA)
148 
149 #ifndef ARCH_KMALLOC_MINALIGN
150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151 #endif
152 
153 #ifndef ARCH_SLAB_MINALIGN
154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155 #endif
156 
157 #define OO_SHIFT	16
158 #define OO_MASK		((1 << OO_SHIFT) - 1)
159 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
160 
161 /* Internal SLUB flags */
162 #define __OBJECT_POISON		0x80000000 /* Poison object */
163 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
164 
165 static int kmem_size = sizeof(struct kmem_cache);
166 
167 #ifdef CONFIG_SMP
168 static struct notifier_block slab_notifier;
169 #endif
170 
171 static enum {
172 	DOWN,		/* No slab functionality available */
173 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
174 	UP,		/* Everything works but does not show up in sysfs */
175 	SYSFS		/* Sysfs up */
176 } slab_state = DOWN;
177 
178 /* A list of all slab caches on the system */
179 static DECLARE_RWSEM(slub_lock);
180 static LIST_HEAD(slab_caches);
181 
182 /*
183  * Tracking user of a slab.
184  */
185 struct track {
186 	unsigned long addr;	/* Called from address */
187 	int cpu;		/* Was running on cpu */
188 	int pid;		/* Pid context */
189 	unsigned long when;	/* When did the operation occur */
190 };
191 
192 enum track_item { TRACK_ALLOC, TRACK_FREE };
193 
194 #ifdef CONFIG_SLUB_DEBUG
195 static int sysfs_slab_add(struct kmem_cache *);
196 static int sysfs_slab_alias(struct kmem_cache *, const char *);
197 static void sysfs_slab_remove(struct kmem_cache *);
198 
199 #else
200 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
201 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
202 							{ return 0; }
203 static inline void sysfs_slab_remove(struct kmem_cache *s)
204 {
205 	kfree(s);
206 }
207 
208 #endif
209 
210 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
211 {
212 #ifdef CONFIG_SLUB_STATS
213 	c->stat[si]++;
214 #endif
215 }
216 
217 /********************************************************************
218  * 			Core slab cache functions
219  *******************************************************************/
220 
221 int slab_is_available(void)
222 {
223 	return slab_state >= UP;
224 }
225 
226 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
227 {
228 #ifdef CONFIG_NUMA
229 	return s->node[node];
230 #else
231 	return &s->local_node;
232 #endif
233 }
234 
235 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
236 {
237 #ifdef CONFIG_SMP
238 	return s->cpu_slab[cpu];
239 #else
240 	return &s->cpu_slab;
241 #endif
242 }
243 
244 /* Verify that a pointer has an address that is valid within a slab page */
245 static inline int check_valid_pointer(struct kmem_cache *s,
246 				struct page *page, const void *object)
247 {
248 	void *base;
249 
250 	if (!object)
251 		return 1;
252 
253 	base = page_address(page);
254 	if (object < base || object >= base + page->objects * s->size ||
255 		(object - base) % s->size) {
256 		return 0;
257 	}
258 
259 	return 1;
260 }
261 
262 /*
263  * Slow version of get and set free pointer.
264  *
265  * This version requires touching the cache lines of kmem_cache which
266  * we avoid to do in the fast alloc free paths. There we obtain the offset
267  * from the page struct.
268  */
269 static inline void *get_freepointer(struct kmem_cache *s, void *object)
270 {
271 	return *(void **)(object + s->offset);
272 }
273 
274 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
275 {
276 	*(void **)(object + s->offset) = fp;
277 }
278 
279 /* Loop over all objects in a slab */
280 #define for_each_object(__p, __s, __addr, __objects) \
281 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
282 			__p += (__s)->size)
283 
284 /* Scan freelist */
285 #define for_each_free_object(__p, __s, __free) \
286 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
287 
288 /* Determine object index from a given position */
289 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
290 {
291 	return (p - addr) / s->size;
292 }
293 
294 static inline struct kmem_cache_order_objects oo_make(int order,
295 						unsigned long size)
296 {
297 	struct kmem_cache_order_objects x = {
298 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
299 	};
300 
301 	return x;
302 }
303 
304 static inline int oo_order(struct kmem_cache_order_objects x)
305 {
306 	return x.x >> OO_SHIFT;
307 }
308 
309 static inline int oo_objects(struct kmem_cache_order_objects x)
310 {
311 	return x.x & OO_MASK;
312 }
313 
314 #ifdef CONFIG_SLUB_DEBUG
315 /*
316  * Debug settings:
317  */
318 #ifdef CONFIG_SLUB_DEBUG_ON
319 static int slub_debug = DEBUG_DEFAULT_FLAGS;
320 #else
321 static int slub_debug;
322 #endif
323 
324 static char *slub_debug_slabs;
325 
326 /*
327  * Object debugging
328  */
329 static void print_section(char *text, u8 *addr, unsigned int length)
330 {
331 	int i, offset;
332 	int newline = 1;
333 	char ascii[17];
334 
335 	ascii[16] = 0;
336 
337 	for (i = 0; i < length; i++) {
338 		if (newline) {
339 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
340 			newline = 0;
341 		}
342 		printk(KERN_CONT " %02x", addr[i]);
343 		offset = i % 16;
344 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
345 		if (offset == 15) {
346 			printk(KERN_CONT " %s\n", ascii);
347 			newline = 1;
348 		}
349 	}
350 	if (!newline) {
351 		i %= 16;
352 		while (i < 16) {
353 			printk(KERN_CONT "   ");
354 			ascii[i] = ' ';
355 			i++;
356 		}
357 		printk(KERN_CONT " %s\n", ascii);
358 	}
359 }
360 
361 static struct track *get_track(struct kmem_cache *s, void *object,
362 	enum track_item alloc)
363 {
364 	struct track *p;
365 
366 	if (s->offset)
367 		p = object + s->offset + sizeof(void *);
368 	else
369 		p = object + s->inuse;
370 
371 	return p + alloc;
372 }
373 
374 static void set_track(struct kmem_cache *s, void *object,
375 			enum track_item alloc, unsigned long addr)
376 {
377 	struct track *p;
378 
379 	if (s->offset)
380 		p = object + s->offset + sizeof(void *);
381 	else
382 		p = object + s->inuse;
383 
384 	p += alloc;
385 	if (addr) {
386 		p->addr = addr;
387 		p->cpu = smp_processor_id();
388 		p->pid = current->pid;
389 		p->when = jiffies;
390 	} else
391 		memset(p, 0, sizeof(struct track));
392 }
393 
394 static void init_tracking(struct kmem_cache *s, void *object)
395 {
396 	if (!(s->flags & SLAB_STORE_USER))
397 		return;
398 
399 	set_track(s, object, TRACK_FREE, 0UL);
400 	set_track(s, object, TRACK_ALLOC, 0UL);
401 }
402 
403 static void print_track(const char *s, struct track *t)
404 {
405 	if (!t->addr)
406 		return;
407 
408 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
409 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
410 }
411 
412 static void print_tracking(struct kmem_cache *s, void *object)
413 {
414 	if (!(s->flags & SLAB_STORE_USER))
415 		return;
416 
417 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
418 	print_track("Freed", get_track(s, object, TRACK_FREE));
419 }
420 
421 static void print_page_info(struct page *page)
422 {
423 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
424 		page, page->objects, page->inuse, page->freelist, page->flags);
425 
426 }
427 
428 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
429 {
430 	va_list args;
431 	char buf[100];
432 
433 	va_start(args, fmt);
434 	vsnprintf(buf, sizeof(buf), fmt, args);
435 	va_end(args);
436 	printk(KERN_ERR "========================================"
437 			"=====================================\n");
438 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
439 	printk(KERN_ERR "----------------------------------------"
440 			"-------------------------------------\n\n");
441 }
442 
443 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
444 {
445 	va_list args;
446 	char buf[100];
447 
448 	va_start(args, fmt);
449 	vsnprintf(buf, sizeof(buf), fmt, args);
450 	va_end(args);
451 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
452 }
453 
454 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
455 {
456 	unsigned int off;	/* Offset of last byte */
457 	u8 *addr = page_address(page);
458 
459 	print_tracking(s, p);
460 
461 	print_page_info(page);
462 
463 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
464 			p, p - addr, get_freepointer(s, p));
465 
466 	if (p > addr + 16)
467 		print_section("Bytes b4", p - 16, 16);
468 
469 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
470 
471 	if (s->flags & SLAB_RED_ZONE)
472 		print_section("Redzone", p + s->objsize,
473 			s->inuse - s->objsize);
474 
475 	if (s->offset)
476 		off = s->offset + sizeof(void *);
477 	else
478 		off = s->inuse;
479 
480 	if (s->flags & SLAB_STORE_USER)
481 		off += 2 * sizeof(struct track);
482 
483 	if (off != s->size)
484 		/* Beginning of the filler is the free pointer */
485 		print_section("Padding", p + off, s->size - off);
486 
487 	dump_stack();
488 }
489 
490 static void object_err(struct kmem_cache *s, struct page *page,
491 			u8 *object, char *reason)
492 {
493 	slab_bug(s, "%s", reason);
494 	print_trailer(s, page, object);
495 }
496 
497 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
498 {
499 	va_list args;
500 	char buf[100];
501 
502 	va_start(args, fmt);
503 	vsnprintf(buf, sizeof(buf), fmt, args);
504 	va_end(args);
505 	slab_bug(s, "%s", buf);
506 	print_page_info(page);
507 	dump_stack();
508 }
509 
510 static void init_object(struct kmem_cache *s, void *object, int active)
511 {
512 	u8 *p = object;
513 
514 	if (s->flags & __OBJECT_POISON) {
515 		memset(p, POISON_FREE, s->objsize - 1);
516 		p[s->objsize - 1] = POISON_END;
517 	}
518 
519 	if (s->flags & SLAB_RED_ZONE)
520 		memset(p + s->objsize,
521 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
522 			s->inuse - s->objsize);
523 }
524 
525 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
526 {
527 	while (bytes) {
528 		if (*start != (u8)value)
529 			return start;
530 		start++;
531 		bytes--;
532 	}
533 	return NULL;
534 }
535 
536 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
537 						void *from, void *to)
538 {
539 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
540 	memset(from, data, to - from);
541 }
542 
543 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
544 			u8 *object, char *what,
545 			u8 *start, unsigned int value, unsigned int bytes)
546 {
547 	u8 *fault;
548 	u8 *end;
549 
550 	fault = check_bytes(start, value, bytes);
551 	if (!fault)
552 		return 1;
553 
554 	end = start + bytes;
555 	while (end > fault && end[-1] == value)
556 		end--;
557 
558 	slab_bug(s, "%s overwritten", what);
559 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
560 					fault, end - 1, fault[0], value);
561 	print_trailer(s, page, object);
562 
563 	restore_bytes(s, what, value, fault, end);
564 	return 0;
565 }
566 
567 /*
568  * Object layout:
569  *
570  * object address
571  * 	Bytes of the object to be managed.
572  * 	If the freepointer may overlay the object then the free
573  * 	pointer is the first word of the object.
574  *
575  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
576  * 	0xa5 (POISON_END)
577  *
578  * object + s->objsize
579  * 	Padding to reach word boundary. This is also used for Redzoning.
580  * 	Padding is extended by another word if Redzoning is enabled and
581  * 	objsize == inuse.
582  *
583  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
584  * 	0xcc (RED_ACTIVE) for objects in use.
585  *
586  * object + s->inuse
587  * 	Meta data starts here.
588  *
589  * 	A. Free pointer (if we cannot overwrite object on free)
590  * 	B. Tracking data for SLAB_STORE_USER
591  * 	C. Padding to reach required alignment boundary or at mininum
592  * 		one word if debugging is on to be able to detect writes
593  * 		before the word boundary.
594  *
595  *	Padding is done using 0x5a (POISON_INUSE)
596  *
597  * object + s->size
598  * 	Nothing is used beyond s->size.
599  *
600  * If slabcaches are merged then the objsize and inuse boundaries are mostly
601  * ignored. And therefore no slab options that rely on these boundaries
602  * may be used with merged slabcaches.
603  */
604 
605 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
606 {
607 	unsigned long off = s->inuse;	/* The end of info */
608 
609 	if (s->offset)
610 		/* Freepointer is placed after the object. */
611 		off += sizeof(void *);
612 
613 	if (s->flags & SLAB_STORE_USER)
614 		/* We also have user information there */
615 		off += 2 * sizeof(struct track);
616 
617 	if (s->size == off)
618 		return 1;
619 
620 	return check_bytes_and_report(s, page, p, "Object padding",
621 				p + off, POISON_INUSE, s->size - off);
622 }
623 
624 /* Check the pad bytes at the end of a slab page */
625 static int slab_pad_check(struct kmem_cache *s, struct page *page)
626 {
627 	u8 *start;
628 	u8 *fault;
629 	u8 *end;
630 	int length;
631 	int remainder;
632 
633 	if (!(s->flags & SLAB_POISON))
634 		return 1;
635 
636 	start = page_address(page);
637 	length = (PAGE_SIZE << compound_order(page));
638 	end = start + length;
639 	remainder = length % s->size;
640 	if (!remainder)
641 		return 1;
642 
643 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
644 	if (!fault)
645 		return 1;
646 	while (end > fault && end[-1] == POISON_INUSE)
647 		end--;
648 
649 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
650 	print_section("Padding", end - remainder, remainder);
651 
652 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
653 	return 0;
654 }
655 
656 static int check_object(struct kmem_cache *s, struct page *page,
657 					void *object, int active)
658 {
659 	u8 *p = object;
660 	u8 *endobject = object + s->objsize;
661 
662 	if (s->flags & SLAB_RED_ZONE) {
663 		unsigned int red =
664 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
665 
666 		if (!check_bytes_and_report(s, page, object, "Redzone",
667 			endobject, red, s->inuse - s->objsize))
668 			return 0;
669 	} else {
670 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
671 			check_bytes_and_report(s, page, p, "Alignment padding",
672 				endobject, POISON_INUSE, s->inuse - s->objsize);
673 		}
674 	}
675 
676 	if (s->flags & SLAB_POISON) {
677 		if (!active && (s->flags & __OBJECT_POISON) &&
678 			(!check_bytes_and_report(s, page, p, "Poison", p,
679 					POISON_FREE, s->objsize - 1) ||
680 			 !check_bytes_and_report(s, page, p, "Poison",
681 				p + s->objsize - 1, POISON_END, 1)))
682 			return 0;
683 		/*
684 		 * check_pad_bytes cleans up on its own.
685 		 */
686 		check_pad_bytes(s, page, p);
687 	}
688 
689 	if (!s->offset && active)
690 		/*
691 		 * Object and freepointer overlap. Cannot check
692 		 * freepointer while object is allocated.
693 		 */
694 		return 1;
695 
696 	/* Check free pointer validity */
697 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
698 		object_err(s, page, p, "Freepointer corrupt");
699 		/*
700 		 * No choice but to zap it and thus lose the remainder
701 		 * of the free objects in this slab. May cause
702 		 * another error because the object count is now wrong.
703 		 */
704 		set_freepointer(s, p, NULL);
705 		return 0;
706 	}
707 	return 1;
708 }
709 
710 static int check_slab(struct kmem_cache *s, struct page *page)
711 {
712 	int maxobj;
713 
714 	VM_BUG_ON(!irqs_disabled());
715 
716 	if (!PageSlab(page)) {
717 		slab_err(s, page, "Not a valid slab page");
718 		return 0;
719 	}
720 
721 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
722 	if (page->objects > maxobj) {
723 		slab_err(s, page, "objects %u > max %u",
724 			s->name, page->objects, maxobj);
725 		return 0;
726 	}
727 	if (page->inuse > page->objects) {
728 		slab_err(s, page, "inuse %u > max %u",
729 			s->name, page->inuse, page->objects);
730 		return 0;
731 	}
732 	/* Slab_pad_check fixes things up after itself */
733 	slab_pad_check(s, page);
734 	return 1;
735 }
736 
737 /*
738  * Determine if a certain object on a page is on the freelist. Must hold the
739  * slab lock to guarantee that the chains are in a consistent state.
740  */
741 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
742 {
743 	int nr = 0;
744 	void *fp = page->freelist;
745 	void *object = NULL;
746 	unsigned long max_objects;
747 
748 	while (fp && nr <= page->objects) {
749 		if (fp == search)
750 			return 1;
751 		if (!check_valid_pointer(s, page, fp)) {
752 			if (object) {
753 				object_err(s, page, object,
754 					"Freechain corrupt");
755 				set_freepointer(s, object, NULL);
756 				break;
757 			} else {
758 				slab_err(s, page, "Freepointer corrupt");
759 				page->freelist = NULL;
760 				page->inuse = page->objects;
761 				slab_fix(s, "Freelist cleared");
762 				return 0;
763 			}
764 			break;
765 		}
766 		object = fp;
767 		fp = get_freepointer(s, object);
768 		nr++;
769 	}
770 
771 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
772 	if (max_objects > MAX_OBJS_PER_PAGE)
773 		max_objects = MAX_OBJS_PER_PAGE;
774 
775 	if (page->objects != max_objects) {
776 		slab_err(s, page, "Wrong number of objects. Found %d but "
777 			"should be %d", page->objects, max_objects);
778 		page->objects = max_objects;
779 		slab_fix(s, "Number of objects adjusted.");
780 	}
781 	if (page->inuse != page->objects - nr) {
782 		slab_err(s, page, "Wrong object count. Counter is %d but "
783 			"counted were %d", page->inuse, page->objects - nr);
784 		page->inuse = page->objects - nr;
785 		slab_fix(s, "Object count adjusted.");
786 	}
787 	return search == NULL;
788 }
789 
790 static void trace(struct kmem_cache *s, struct page *page, void *object,
791 								int alloc)
792 {
793 	if (s->flags & SLAB_TRACE) {
794 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
795 			s->name,
796 			alloc ? "alloc" : "free",
797 			object, page->inuse,
798 			page->freelist);
799 
800 		if (!alloc)
801 			print_section("Object", (void *)object, s->objsize);
802 
803 		dump_stack();
804 	}
805 }
806 
807 /*
808  * Tracking of fully allocated slabs for debugging purposes.
809  */
810 static void add_full(struct kmem_cache_node *n, struct page *page)
811 {
812 	spin_lock(&n->list_lock);
813 	list_add(&page->lru, &n->full);
814 	spin_unlock(&n->list_lock);
815 }
816 
817 static void remove_full(struct kmem_cache *s, struct page *page)
818 {
819 	struct kmem_cache_node *n;
820 
821 	if (!(s->flags & SLAB_STORE_USER))
822 		return;
823 
824 	n = get_node(s, page_to_nid(page));
825 
826 	spin_lock(&n->list_lock);
827 	list_del(&page->lru);
828 	spin_unlock(&n->list_lock);
829 }
830 
831 /* Tracking of the number of slabs for debugging purposes */
832 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
833 {
834 	struct kmem_cache_node *n = get_node(s, node);
835 
836 	return atomic_long_read(&n->nr_slabs);
837 }
838 
839 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
840 {
841 	struct kmem_cache_node *n = get_node(s, node);
842 
843 	/*
844 	 * May be called early in order to allocate a slab for the
845 	 * kmem_cache_node structure. Solve the chicken-egg
846 	 * dilemma by deferring the increment of the count during
847 	 * bootstrap (see early_kmem_cache_node_alloc).
848 	 */
849 	if (!NUMA_BUILD || n) {
850 		atomic_long_inc(&n->nr_slabs);
851 		atomic_long_add(objects, &n->total_objects);
852 	}
853 }
854 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
855 {
856 	struct kmem_cache_node *n = get_node(s, node);
857 
858 	atomic_long_dec(&n->nr_slabs);
859 	atomic_long_sub(objects, &n->total_objects);
860 }
861 
862 /* Object debug checks for alloc/free paths */
863 static void setup_object_debug(struct kmem_cache *s, struct page *page,
864 								void *object)
865 {
866 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
867 		return;
868 
869 	init_object(s, object, 0);
870 	init_tracking(s, object);
871 }
872 
873 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
874 					void *object, unsigned long addr)
875 {
876 	if (!check_slab(s, page))
877 		goto bad;
878 
879 	if (!on_freelist(s, page, object)) {
880 		object_err(s, page, object, "Object already allocated");
881 		goto bad;
882 	}
883 
884 	if (!check_valid_pointer(s, page, object)) {
885 		object_err(s, page, object, "Freelist Pointer check fails");
886 		goto bad;
887 	}
888 
889 	if (!check_object(s, page, object, 0))
890 		goto bad;
891 
892 	/* Success perform special debug activities for allocs */
893 	if (s->flags & SLAB_STORE_USER)
894 		set_track(s, object, TRACK_ALLOC, addr);
895 	trace(s, page, object, 1);
896 	init_object(s, object, 1);
897 	return 1;
898 
899 bad:
900 	if (PageSlab(page)) {
901 		/*
902 		 * If this is a slab page then lets do the best we can
903 		 * to avoid issues in the future. Marking all objects
904 		 * as used avoids touching the remaining objects.
905 		 */
906 		slab_fix(s, "Marking all objects used");
907 		page->inuse = page->objects;
908 		page->freelist = NULL;
909 	}
910 	return 0;
911 }
912 
913 static int free_debug_processing(struct kmem_cache *s, struct page *page,
914 					void *object, unsigned long addr)
915 {
916 	if (!check_slab(s, page))
917 		goto fail;
918 
919 	if (!check_valid_pointer(s, page, object)) {
920 		slab_err(s, page, "Invalid object pointer 0x%p", object);
921 		goto fail;
922 	}
923 
924 	if (on_freelist(s, page, object)) {
925 		object_err(s, page, object, "Object already free");
926 		goto fail;
927 	}
928 
929 	if (!check_object(s, page, object, 1))
930 		return 0;
931 
932 	if (unlikely(s != page->slab)) {
933 		if (!PageSlab(page)) {
934 			slab_err(s, page, "Attempt to free object(0x%p) "
935 				"outside of slab", object);
936 		} else if (!page->slab) {
937 			printk(KERN_ERR
938 				"SLUB <none>: no slab for object 0x%p.\n",
939 						object);
940 			dump_stack();
941 		} else
942 			object_err(s, page, object,
943 					"page slab pointer corrupt.");
944 		goto fail;
945 	}
946 
947 	/* Special debug activities for freeing objects */
948 	if (!PageSlubFrozen(page) && !page->freelist)
949 		remove_full(s, page);
950 	if (s->flags & SLAB_STORE_USER)
951 		set_track(s, object, TRACK_FREE, addr);
952 	trace(s, page, object, 0);
953 	init_object(s, object, 0);
954 	return 1;
955 
956 fail:
957 	slab_fix(s, "Object at 0x%p not freed", object);
958 	return 0;
959 }
960 
961 static int __init setup_slub_debug(char *str)
962 {
963 	slub_debug = DEBUG_DEFAULT_FLAGS;
964 	if (*str++ != '=' || !*str)
965 		/*
966 		 * No options specified. Switch on full debugging.
967 		 */
968 		goto out;
969 
970 	if (*str == ',')
971 		/*
972 		 * No options but restriction on slabs. This means full
973 		 * debugging for slabs matching a pattern.
974 		 */
975 		goto check_slabs;
976 
977 	slub_debug = 0;
978 	if (*str == '-')
979 		/*
980 		 * Switch off all debugging measures.
981 		 */
982 		goto out;
983 
984 	/*
985 	 * Determine which debug features should be switched on
986 	 */
987 	for (; *str && *str != ','; str++) {
988 		switch (tolower(*str)) {
989 		case 'f':
990 			slub_debug |= SLAB_DEBUG_FREE;
991 			break;
992 		case 'z':
993 			slub_debug |= SLAB_RED_ZONE;
994 			break;
995 		case 'p':
996 			slub_debug |= SLAB_POISON;
997 			break;
998 		case 'u':
999 			slub_debug |= SLAB_STORE_USER;
1000 			break;
1001 		case 't':
1002 			slub_debug |= SLAB_TRACE;
1003 			break;
1004 		default:
1005 			printk(KERN_ERR "slub_debug option '%c' "
1006 				"unknown. skipped\n", *str);
1007 		}
1008 	}
1009 
1010 check_slabs:
1011 	if (*str == ',')
1012 		slub_debug_slabs = str + 1;
1013 out:
1014 	return 1;
1015 }
1016 
1017 __setup("slub_debug", setup_slub_debug);
1018 
1019 static unsigned long kmem_cache_flags(unsigned long objsize,
1020 	unsigned long flags, const char *name,
1021 	void (*ctor)(void *))
1022 {
1023 	/*
1024 	 * Enable debugging if selected on the kernel commandline.
1025 	 */
1026 	if (slub_debug && (!slub_debug_slabs ||
1027 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1028 			flags |= slub_debug;
1029 
1030 	return flags;
1031 }
1032 #else
1033 static inline void setup_object_debug(struct kmem_cache *s,
1034 			struct page *page, void *object) {}
1035 
1036 static inline int alloc_debug_processing(struct kmem_cache *s,
1037 	struct page *page, void *object, unsigned long addr) { return 0; }
1038 
1039 static inline int free_debug_processing(struct kmem_cache *s,
1040 	struct page *page, void *object, unsigned long addr) { return 0; }
1041 
1042 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1043 			{ return 1; }
1044 static inline int check_object(struct kmem_cache *s, struct page *page,
1045 			void *object, int active) { return 1; }
1046 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1047 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1048 	unsigned long flags, const char *name,
1049 	void (*ctor)(void *))
1050 {
1051 	return flags;
1052 }
1053 #define slub_debug 0
1054 
1055 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1056 							{ return 0; }
1057 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1058 							int objects) {}
1059 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1060 							int objects) {}
1061 #endif
1062 
1063 /*
1064  * Slab allocation and freeing
1065  */
1066 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1067 					struct kmem_cache_order_objects oo)
1068 {
1069 	int order = oo_order(oo);
1070 
1071 	if (node == -1)
1072 		return alloc_pages(flags, order);
1073 	else
1074 		return alloc_pages_node(node, flags, order);
1075 }
1076 
1077 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1078 {
1079 	struct page *page;
1080 	struct kmem_cache_order_objects oo = s->oo;
1081 
1082 	flags |= s->allocflags;
1083 
1084 	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1085 									oo);
1086 	if (unlikely(!page)) {
1087 		oo = s->min;
1088 		/*
1089 		 * Allocation may have failed due to fragmentation.
1090 		 * Try a lower order alloc if possible
1091 		 */
1092 		page = alloc_slab_page(flags, node, oo);
1093 		if (!page)
1094 			return NULL;
1095 
1096 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1097 	}
1098 	page->objects = oo_objects(oo);
1099 	mod_zone_page_state(page_zone(page),
1100 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1101 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1102 		1 << oo_order(oo));
1103 
1104 	return page;
1105 }
1106 
1107 static void setup_object(struct kmem_cache *s, struct page *page,
1108 				void *object)
1109 {
1110 	setup_object_debug(s, page, object);
1111 	if (unlikely(s->ctor))
1112 		s->ctor(object);
1113 }
1114 
1115 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1116 {
1117 	struct page *page;
1118 	void *start;
1119 	void *last;
1120 	void *p;
1121 
1122 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1123 
1124 	page = allocate_slab(s,
1125 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1126 	if (!page)
1127 		goto out;
1128 
1129 	inc_slabs_node(s, page_to_nid(page), page->objects);
1130 	page->slab = s;
1131 	page->flags |= 1 << PG_slab;
1132 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1133 			SLAB_STORE_USER | SLAB_TRACE))
1134 		__SetPageSlubDebug(page);
1135 
1136 	start = page_address(page);
1137 
1138 	if (unlikely(s->flags & SLAB_POISON))
1139 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1140 
1141 	last = start;
1142 	for_each_object(p, s, start, page->objects) {
1143 		setup_object(s, page, last);
1144 		set_freepointer(s, last, p);
1145 		last = p;
1146 	}
1147 	setup_object(s, page, last);
1148 	set_freepointer(s, last, NULL);
1149 
1150 	page->freelist = start;
1151 	page->inuse = 0;
1152 out:
1153 	return page;
1154 }
1155 
1156 static void __free_slab(struct kmem_cache *s, struct page *page)
1157 {
1158 	int order = compound_order(page);
1159 	int pages = 1 << order;
1160 
1161 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1162 		void *p;
1163 
1164 		slab_pad_check(s, page);
1165 		for_each_object(p, s, page_address(page),
1166 						page->objects)
1167 			check_object(s, page, p, 0);
1168 		__ClearPageSlubDebug(page);
1169 	}
1170 
1171 	mod_zone_page_state(page_zone(page),
1172 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1173 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1174 		-pages);
1175 
1176 	__ClearPageSlab(page);
1177 	reset_page_mapcount(page);
1178 	__free_pages(page, order);
1179 }
1180 
1181 static void rcu_free_slab(struct rcu_head *h)
1182 {
1183 	struct page *page;
1184 
1185 	page = container_of((struct list_head *)h, struct page, lru);
1186 	__free_slab(page->slab, page);
1187 }
1188 
1189 static void free_slab(struct kmem_cache *s, struct page *page)
1190 {
1191 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1192 		/*
1193 		 * RCU free overloads the RCU head over the LRU
1194 		 */
1195 		struct rcu_head *head = (void *)&page->lru;
1196 
1197 		call_rcu(head, rcu_free_slab);
1198 	} else
1199 		__free_slab(s, page);
1200 }
1201 
1202 static void discard_slab(struct kmem_cache *s, struct page *page)
1203 {
1204 	dec_slabs_node(s, page_to_nid(page), page->objects);
1205 	free_slab(s, page);
1206 }
1207 
1208 /*
1209  * Per slab locking using the pagelock
1210  */
1211 static __always_inline void slab_lock(struct page *page)
1212 {
1213 	bit_spin_lock(PG_locked, &page->flags);
1214 }
1215 
1216 static __always_inline void slab_unlock(struct page *page)
1217 {
1218 	__bit_spin_unlock(PG_locked, &page->flags);
1219 }
1220 
1221 static __always_inline int slab_trylock(struct page *page)
1222 {
1223 	int rc = 1;
1224 
1225 	rc = bit_spin_trylock(PG_locked, &page->flags);
1226 	return rc;
1227 }
1228 
1229 /*
1230  * Management of partially allocated slabs
1231  */
1232 static void add_partial(struct kmem_cache_node *n,
1233 				struct page *page, int tail)
1234 {
1235 	spin_lock(&n->list_lock);
1236 	n->nr_partial++;
1237 	if (tail)
1238 		list_add_tail(&page->lru, &n->partial);
1239 	else
1240 		list_add(&page->lru, &n->partial);
1241 	spin_unlock(&n->list_lock);
1242 }
1243 
1244 static void remove_partial(struct kmem_cache *s, struct page *page)
1245 {
1246 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1247 
1248 	spin_lock(&n->list_lock);
1249 	list_del(&page->lru);
1250 	n->nr_partial--;
1251 	spin_unlock(&n->list_lock);
1252 }
1253 
1254 /*
1255  * Lock slab and remove from the partial list.
1256  *
1257  * Must hold list_lock.
1258  */
1259 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1260 							struct page *page)
1261 {
1262 	if (slab_trylock(page)) {
1263 		list_del(&page->lru);
1264 		n->nr_partial--;
1265 		__SetPageSlubFrozen(page);
1266 		return 1;
1267 	}
1268 	return 0;
1269 }
1270 
1271 /*
1272  * Try to allocate a partial slab from a specific node.
1273  */
1274 static struct page *get_partial_node(struct kmem_cache_node *n)
1275 {
1276 	struct page *page;
1277 
1278 	/*
1279 	 * Racy check. If we mistakenly see no partial slabs then we
1280 	 * just allocate an empty slab. If we mistakenly try to get a
1281 	 * partial slab and there is none available then get_partials()
1282 	 * will return NULL.
1283 	 */
1284 	if (!n || !n->nr_partial)
1285 		return NULL;
1286 
1287 	spin_lock(&n->list_lock);
1288 	list_for_each_entry(page, &n->partial, lru)
1289 		if (lock_and_freeze_slab(n, page))
1290 			goto out;
1291 	page = NULL;
1292 out:
1293 	spin_unlock(&n->list_lock);
1294 	return page;
1295 }
1296 
1297 /*
1298  * Get a page from somewhere. Search in increasing NUMA distances.
1299  */
1300 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1301 {
1302 #ifdef CONFIG_NUMA
1303 	struct zonelist *zonelist;
1304 	struct zoneref *z;
1305 	struct zone *zone;
1306 	enum zone_type high_zoneidx = gfp_zone(flags);
1307 	struct page *page;
1308 
1309 	/*
1310 	 * The defrag ratio allows a configuration of the tradeoffs between
1311 	 * inter node defragmentation and node local allocations. A lower
1312 	 * defrag_ratio increases the tendency to do local allocations
1313 	 * instead of attempting to obtain partial slabs from other nodes.
1314 	 *
1315 	 * If the defrag_ratio is set to 0 then kmalloc() always
1316 	 * returns node local objects. If the ratio is higher then kmalloc()
1317 	 * may return off node objects because partial slabs are obtained
1318 	 * from other nodes and filled up.
1319 	 *
1320 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1321 	 * defrag_ratio = 1000) then every (well almost) allocation will
1322 	 * first attempt to defrag slab caches on other nodes. This means
1323 	 * scanning over all nodes to look for partial slabs which may be
1324 	 * expensive if we do it every time we are trying to find a slab
1325 	 * with available objects.
1326 	 */
1327 	if (!s->remote_node_defrag_ratio ||
1328 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1329 		return NULL;
1330 
1331 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1332 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1333 		struct kmem_cache_node *n;
1334 
1335 		n = get_node(s, zone_to_nid(zone));
1336 
1337 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1338 				n->nr_partial > n->min_partial) {
1339 			page = get_partial_node(n);
1340 			if (page)
1341 				return page;
1342 		}
1343 	}
1344 #endif
1345 	return NULL;
1346 }
1347 
1348 /*
1349  * Get a partial page, lock it and return it.
1350  */
1351 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1352 {
1353 	struct page *page;
1354 	int searchnode = (node == -1) ? numa_node_id() : node;
1355 
1356 	page = get_partial_node(get_node(s, searchnode));
1357 	if (page || (flags & __GFP_THISNODE))
1358 		return page;
1359 
1360 	return get_any_partial(s, flags);
1361 }
1362 
1363 /*
1364  * Move a page back to the lists.
1365  *
1366  * Must be called with the slab lock held.
1367  *
1368  * On exit the slab lock will have been dropped.
1369  */
1370 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1371 {
1372 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1373 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1374 
1375 	__ClearPageSlubFrozen(page);
1376 	if (page->inuse) {
1377 
1378 		if (page->freelist) {
1379 			add_partial(n, page, tail);
1380 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1381 		} else {
1382 			stat(c, DEACTIVATE_FULL);
1383 			if (SLABDEBUG && PageSlubDebug(page) &&
1384 						(s->flags & SLAB_STORE_USER))
1385 				add_full(n, page);
1386 		}
1387 		slab_unlock(page);
1388 	} else {
1389 		stat(c, DEACTIVATE_EMPTY);
1390 		if (n->nr_partial < n->min_partial) {
1391 			/*
1392 			 * Adding an empty slab to the partial slabs in order
1393 			 * to avoid page allocator overhead. This slab needs
1394 			 * to come after the other slabs with objects in
1395 			 * so that the others get filled first. That way the
1396 			 * size of the partial list stays small.
1397 			 *
1398 			 * kmem_cache_shrink can reclaim any empty slabs from
1399 			 * the partial list.
1400 			 */
1401 			add_partial(n, page, 1);
1402 			slab_unlock(page);
1403 		} else {
1404 			slab_unlock(page);
1405 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1406 			discard_slab(s, page);
1407 		}
1408 	}
1409 }
1410 
1411 /*
1412  * Remove the cpu slab
1413  */
1414 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1415 {
1416 	struct page *page = c->page;
1417 	int tail = 1;
1418 
1419 	if (page->freelist)
1420 		stat(c, DEACTIVATE_REMOTE_FREES);
1421 	/*
1422 	 * Merge cpu freelist into slab freelist. Typically we get here
1423 	 * because both freelists are empty. So this is unlikely
1424 	 * to occur.
1425 	 */
1426 	while (unlikely(c->freelist)) {
1427 		void **object;
1428 
1429 		tail = 0;	/* Hot objects. Put the slab first */
1430 
1431 		/* Retrieve object from cpu_freelist */
1432 		object = c->freelist;
1433 		c->freelist = c->freelist[c->offset];
1434 
1435 		/* And put onto the regular freelist */
1436 		object[c->offset] = page->freelist;
1437 		page->freelist = object;
1438 		page->inuse--;
1439 	}
1440 	c->page = NULL;
1441 	unfreeze_slab(s, page, tail);
1442 }
1443 
1444 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1445 {
1446 	stat(c, CPUSLAB_FLUSH);
1447 	slab_lock(c->page);
1448 	deactivate_slab(s, c);
1449 }
1450 
1451 /*
1452  * Flush cpu slab.
1453  *
1454  * Called from IPI handler with interrupts disabled.
1455  */
1456 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1457 {
1458 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1459 
1460 	if (likely(c && c->page))
1461 		flush_slab(s, c);
1462 }
1463 
1464 static void flush_cpu_slab(void *d)
1465 {
1466 	struct kmem_cache *s = d;
1467 
1468 	__flush_cpu_slab(s, smp_processor_id());
1469 }
1470 
1471 static void flush_all(struct kmem_cache *s)
1472 {
1473 	on_each_cpu(flush_cpu_slab, s, 1);
1474 }
1475 
1476 /*
1477  * Check if the objects in a per cpu structure fit numa
1478  * locality expectations.
1479  */
1480 static inline int node_match(struct kmem_cache_cpu *c, int node)
1481 {
1482 #ifdef CONFIG_NUMA
1483 	if (node != -1 && c->node != node)
1484 		return 0;
1485 #endif
1486 	return 1;
1487 }
1488 
1489 /*
1490  * Slow path. The lockless freelist is empty or we need to perform
1491  * debugging duties.
1492  *
1493  * Interrupts are disabled.
1494  *
1495  * Processing is still very fast if new objects have been freed to the
1496  * regular freelist. In that case we simply take over the regular freelist
1497  * as the lockless freelist and zap the regular freelist.
1498  *
1499  * If that is not working then we fall back to the partial lists. We take the
1500  * first element of the freelist as the object to allocate now and move the
1501  * rest of the freelist to the lockless freelist.
1502  *
1503  * And if we were unable to get a new slab from the partial slab lists then
1504  * we need to allocate a new slab. This is the slowest path since it involves
1505  * a call to the page allocator and the setup of a new slab.
1506  */
1507 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1508 			  unsigned long addr, struct kmem_cache_cpu *c)
1509 {
1510 	void **object;
1511 	struct page *new;
1512 
1513 	/* We handle __GFP_ZERO in the caller */
1514 	gfpflags &= ~__GFP_ZERO;
1515 
1516 	if (!c->page)
1517 		goto new_slab;
1518 
1519 	slab_lock(c->page);
1520 	if (unlikely(!node_match(c, node)))
1521 		goto another_slab;
1522 
1523 	stat(c, ALLOC_REFILL);
1524 
1525 load_freelist:
1526 	object = c->page->freelist;
1527 	if (unlikely(!object))
1528 		goto another_slab;
1529 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1530 		goto debug;
1531 
1532 	c->freelist = object[c->offset];
1533 	c->page->inuse = c->page->objects;
1534 	c->page->freelist = NULL;
1535 	c->node = page_to_nid(c->page);
1536 unlock_out:
1537 	slab_unlock(c->page);
1538 	stat(c, ALLOC_SLOWPATH);
1539 	return object;
1540 
1541 another_slab:
1542 	deactivate_slab(s, c);
1543 
1544 new_slab:
1545 	new = get_partial(s, gfpflags, node);
1546 	if (new) {
1547 		c->page = new;
1548 		stat(c, ALLOC_FROM_PARTIAL);
1549 		goto load_freelist;
1550 	}
1551 
1552 	if (gfpflags & __GFP_WAIT)
1553 		local_irq_enable();
1554 
1555 	new = new_slab(s, gfpflags, node);
1556 
1557 	if (gfpflags & __GFP_WAIT)
1558 		local_irq_disable();
1559 
1560 	if (new) {
1561 		c = get_cpu_slab(s, smp_processor_id());
1562 		stat(c, ALLOC_SLAB);
1563 		if (c->page)
1564 			flush_slab(s, c);
1565 		slab_lock(new);
1566 		__SetPageSlubFrozen(new);
1567 		c->page = new;
1568 		goto load_freelist;
1569 	}
1570 	return NULL;
1571 debug:
1572 	if (!alloc_debug_processing(s, c->page, object, addr))
1573 		goto another_slab;
1574 
1575 	c->page->inuse++;
1576 	c->page->freelist = object[c->offset];
1577 	c->node = -1;
1578 	goto unlock_out;
1579 }
1580 
1581 /*
1582  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1583  * have the fastpath folded into their functions. So no function call
1584  * overhead for requests that can be satisfied on the fastpath.
1585  *
1586  * The fastpath works by first checking if the lockless freelist can be used.
1587  * If not then __slab_alloc is called for slow processing.
1588  *
1589  * Otherwise we can simply pick the next object from the lockless free list.
1590  */
1591 static __always_inline void *slab_alloc(struct kmem_cache *s,
1592 		gfp_t gfpflags, int node, unsigned long addr)
1593 {
1594 	void **object;
1595 	struct kmem_cache_cpu *c;
1596 	unsigned long flags;
1597 	unsigned int objsize;
1598 
1599 	might_sleep_if(gfpflags & __GFP_WAIT);
1600 
1601 	if (should_failslab(s->objsize, gfpflags))
1602 		return NULL;
1603 
1604 	local_irq_save(flags);
1605 	c = get_cpu_slab(s, smp_processor_id());
1606 	objsize = c->objsize;
1607 	if (unlikely(!c->freelist || !node_match(c, node)))
1608 
1609 		object = __slab_alloc(s, gfpflags, node, addr, c);
1610 
1611 	else {
1612 		object = c->freelist;
1613 		c->freelist = object[c->offset];
1614 		stat(c, ALLOC_FASTPATH);
1615 	}
1616 	local_irq_restore(flags);
1617 
1618 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1619 		memset(object, 0, objsize);
1620 
1621 	return object;
1622 }
1623 
1624 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1625 {
1626 	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1627 }
1628 EXPORT_SYMBOL(kmem_cache_alloc);
1629 
1630 #ifdef CONFIG_NUMA
1631 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1632 {
1633 	return slab_alloc(s, gfpflags, node, _RET_IP_);
1634 }
1635 EXPORT_SYMBOL(kmem_cache_alloc_node);
1636 #endif
1637 
1638 /*
1639  * Slow patch handling. This may still be called frequently since objects
1640  * have a longer lifetime than the cpu slabs in most processing loads.
1641  *
1642  * So we still attempt to reduce cache line usage. Just take the slab
1643  * lock and free the item. If there is no additional partial page
1644  * handling required then we can return immediately.
1645  */
1646 static void __slab_free(struct kmem_cache *s, struct page *page,
1647 			void *x, unsigned long addr, unsigned int offset)
1648 {
1649 	void *prior;
1650 	void **object = (void *)x;
1651 	struct kmem_cache_cpu *c;
1652 
1653 	c = get_cpu_slab(s, raw_smp_processor_id());
1654 	stat(c, FREE_SLOWPATH);
1655 	slab_lock(page);
1656 
1657 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1658 		goto debug;
1659 
1660 checks_ok:
1661 	prior = object[offset] = page->freelist;
1662 	page->freelist = object;
1663 	page->inuse--;
1664 
1665 	if (unlikely(PageSlubFrozen(page))) {
1666 		stat(c, FREE_FROZEN);
1667 		goto out_unlock;
1668 	}
1669 
1670 	if (unlikely(!page->inuse))
1671 		goto slab_empty;
1672 
1673 	/*
1674 	 * Objects left in the slab. If it was not on the partial list before
1675 	 * then add it.
1676 	 */
1677 	if (unlikely(!prior)) {
1678 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1679 		stat(c, FREE_ADD_PARTIAL);
1680 	}
1681 
1682 out_unlock:
1683 	slab_unlock(page);
1684 	return;
1685 
1686 slab_empty:
1687 	if (prior) {
1688 		/*
1689 		 * Slab still on the partial list.
1690 		 */
1691 		remove_partial(s, page);
1692 		stat(c, FREE_REMOVE_PARTIAL);
1693 	}
1694 	slab_unlock(page);
1695 	stat(c, FREE_SLAB);
1696 	discard_slab(s, page);
1697 	return;
1698 
1699 debug:
1700 	if (!free_debug_processing(s, page, x, addr))
1701 		goto out_unlock;
1702 	goto checks_ok;
1703 }
1704 
1705 /*
1706  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1707  * can perform fastpath freeing without additional function calls.
1708  *
1709  * The fastpath is only possible if we are freeing to the current cpu slab
1710  * of this processor. This typically the case if we have just allocated
1711  * the item before.
1712  *
1713  * If fastpath is not possible then fall back to __slab_free where we deal
1714  * with all sorts of special processing.
1715  */
1716 static __always_inline void slab_free(struct kmem_cache *s,
1717 			struct page *page, void *x, unsigned long addr)
1718 {
1719 	void **object = (void *)x;
1720 	struct kmem_cache_cpu *c;
1721 	unsigned long flags;
1722 
1723 	local_irq_save(flags);
1724 	c = get_cpu_slab(s, smp_processor_id());
1725 	debug_check_no_locks_freed(object, c->objsize);
1726 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1727 		debug_check_no_obj_freed(object, s->objsize);
1728 	if (likely(page == c->page && c->node >= 0)) {
1729 		object[c->offset] = c->freelist;
1730 		c->freelist = object;
1731 		stat(c, FREE_FASTPATH);
1732 	} else
1733 		__slab_free(s, page, x, addr, c->offset);
1734 
1735 	local_irq_restore(flags);
1736 }
1737 
1738 void kmem_cache_free(struct kmem_cache *s, void *x)
1739 {
1740 	struct page *page;
1741 
1742 	page = virt_to_head_page(x);
1743 
1744 	slab_free(s, page, x, _RET_IP_);
1745 }
1746 EXPORT_SYMBOL(kmem_cache_free);
1747 
1748 /* Figure out on which slab page the object resides */
1749 static struct page *get_object_page(const void *x)
1750 {
1751 	struct page *page = virt_to_head_page(x);
1752 
1753 	if (!PageSlab(page))
1754 		return NULL;
1755 
1756 	return page;
1757 }
1758 
1759 /*
1760  * Object placement in a slab is made very easy because we always start at
1761  * offset 0. If we tune the size of the object to the alignment then we can
1762  * get the required alignment by putting one properly sized object after
1763  * another.
1764  *
1765  * Notice that the allocation order determines the sizes of the per cpu
1766  * caches. Each processor has always one slab available for allocations.
1767  * Increasing the allocation order reduces the number of times that slabs
1768  * must be moved on and off the partial lists and is therefore a factor in
1769  * locking overhead.
1770  */
1771 
1772 /*
1773  * Mininum / Maximum order of slab pages. This influences locking overhead
1774  * and slab fragmentation. A higher order reduces the number of partial slabs
1775  * and increases the number of allocations possible without having to
1776  * take the list_lock.
1777  */
1778 static int slub_min_order;
1779 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1780 static int slub_min_objects;
1781 
1782 /*
1783  * Merge control. If this is set then no merging of slab caches will occur.
1784  * (Could be removed. This was introduced to pacify the merge skeptics.)
1785  */
1786 static int slub_nomerge;
1787 
1788 /*
1789  * Calculate the order of allocation given an slab object size.
1790  *
1791  * The order of allocation has significant impact on performance and other
1792  * system components. Generally order 0 allocations should be preferred since
1793  * order 0 does not cause fragmentation in the page allocator. Larger objects
1794  * be problematic to put into order 0 slabs because there may be too much
1795  * unused space left. We go to a higher order if more than 1/16th of the slab
1796  * would be wasted.
1797  *
1798  * In order to reach satisfactory performance we must ensure that a minimum
1799  * number of objects is in one slab. Otherwise we may generate too much
1800  * activity on the partial lists which requires taking the list_lock. This is
1801  * less a concern for large slabs though which are rarely used.
1802  *
1803  * slub_max_order specifies the order where we begin to stop considering the
1804  * number of objects in a slab as critical. If we reach slub_max_order then
1805  * we try to keep the page order as low as possible. So we accept more waste
1806  * of space in favor of a small page order.
1807  *
1808  * Higher order allocations also allow the placement of more objects in a
1809  * slab and thereby reduce object handling overhead. If the user has
1810  * requested a higher mininum order then we start with that one instead of
1811  * the smallest order which will fit the object.
1812  */
1813 static inline int slab_order(int size, int min_objects,
1814 				int max_order, int fract_leftover)
1815 {
1816 	int order;
1817 	int rem;
1818 	int min_order = slub_min_order;
1819 
1820 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1821 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1822 
1823 	for (order = max(min_order,
1824 				fls(min_objects * size - 1) - PAGE_SHIFT);
1825 			order <= max_order; order++) {
1826 
1827 		unsigned long slab_size = PAGE_SIZE << order;
1828 
1829 		if (slab_size < min_objects * size)
1830 			continue;
1831 
1832 		rem = slab_size % size;
1833 
1834 		if (rem <= slab_size / fract_leftover)
1835 			break;
1836 
1837 	}
1838 
1839 	return order;
1840 }
1841 
1842 static inline int calculate_order(int size)
1843 {
1844 	int order;
1845 	int min_objects;
1846 	int fraction;
1847 
1848 	/*
1849 	 * Attempt to find best configuration for a slab. This
1850 	 * works by first attempting to generate a layout with
1851 	 * the best configuration and backing off gradually.
1852 	 *
1853 	 * First we reduce the acceptable waste in a slab. Then
1854 	 * we reduce the minimum objects required in a slab.
1855 	 */
1856 	min_objects = slub_min_objects;
1857 	if (!min_objects)
1858 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1859 	while (min_objects > 1) {
1860 		fraction = 16;
1861 		while (fraction >= 4) {
1862 			order = slab_order(size, min_objects,
1863 						slub_max_order, fraction);
1864 			if (order <= slub_max_order)
1865 				return order;
1866 			fraction /= 2;
1867 		}
1868 		min_objects /= 2;
1869 	}
1870 
1871 	/*
1872 	 * We were unable to place multiple objects in a slab. Now
1873 	 * lets see if we can place a single object there.
1874 	 */
1875 	order = slab_order(size, 1, slub_max_order, 1);
1876 	if (order <= slub_max_order)
1877 		return order;
1878 
1879 	/*
1880 	 * Doh this slab cannot be placed using slub_max_order.
1881 	 */
1882 	order = slab_order(size, 1, MAX_ORDER, 1);
1883 	if (order <= MAX_ORDER)
1884 		return order;
1885 	return -ENOSYS;
1886 }
1887 
1888 /*
1889  * Figure out what the alignment of the objects will be.
1890  */
1891 static unsigned long calculate_alignment(unsigned long flags,
1892 		unsigned long align, unsigned long size)
1893 {
1894 	/*
1895 	 * If the user wants hardware cache aligned objects then follow that
1896 	 * suggestion if the object is sufficiently large.
1897 	 *
1898 	 * The hardware cache alignment cannot override the specified
1899 	 * alignment though. If that is greater then use it.
1900 	 */
1901 	if (flags & SLAB_HWCACHE_ALIGN) {
1902 		unsigned long ralign = cache_line_size();
1903 		while (size <= ralign / 2)
1904 			ralign /= 2;
1905 		align = max(align, ralign);
1906 	}
1907 
1908 	if (align < ARCH_SLAB_MINALIGN)
1909 		align = ARCH_SLAB_MINALIGN;
1910 
1911 	return ALIGN(align, sizeof(void *));
1912 }
1913 
1914 static void init_kmem_cache_cpu(struct kmem_cache *s,
1915 			struct kmem_cache_cpu *c)
1916 {
1917 	c->page = NULL;
1918 	c->freelist = NULL;
1919 	c->node = 0;
1920 	c->offset = s->offset / sizeof(void *);
1921 	c->objsize = s->objsize;
1922 #ifdef CONFIG_SLUB_STATS
1923 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1924 #endif
1925 }
1926 
1927 static void
1928 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1929 {
1930 	n->nr_partial = 0;
1931 
1932 	/*
1933 	 * The larger the object size is, the more pages we want on the partial
1934 	 * list to avoid pounding the page allocator excessively.
1935 	 */
1936 	n->min_partial = ilog2(s->size);
1937 	if (n->min_partial < MIN_PARTIAL)
1938 		n->min_partial = MIN_PARTIAL;
1939 	else if (n->min_partial > MAX_PARTIAL)
1940 		n->min_partial = MAX_PARTIAL;
1941 
1942 	spin_lock_init(&n->list_lock);
1943 	INIT_LIST_HEAD(&n->partial);
1944 #ifdef CONFIG_SLUB_DEBUG
1945 	atomic_long_set(&n->nr_slabs, 0);
1946 	atomic_long_set(&n->total_objects, 0);
1947 	INIT_LIST_HEAD(&n->full);
1948 #endif
1949 }
1950 
1951 #ifdef CONFIG_SMP
1952 /*
1953  * Per cpu array for per cpu structures.
1954  *
1955  * The per cpu array places all kmem_cache_cpu structures from one processor
1956  * close together meaning that it becomes possible that multiple per cpu
1957  * structures are contained in one cacheline. This may be particularly
1958  * beneficial for the kmalloc caches.
1959  *
1960  * A desktop system typically has around 60-80 slabs. With 100 here we are
1961  * likely able to get per cpu structures for all caches from the array defined
1962  * here. We must be able to cover all kmalloc caches during bootstrap.
1963  *
1964  * If the per cpu array is exhausted then fall back to kmalloc
1965  * of individual cachelines. No sharing is possible then.
1966  */
1967 #define NR_KMEM_CACHE_CPU 100
1968 
1969 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1970 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1971 
1972 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1973 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1974 
1975 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1976 							int cpu, gfp_t flags)
1977 {
1978 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1979 
1980 	if (c)
1981 		per_cpu(kmem_cache_cpu_free, cpu) =
1982 				(void *)c->freelist;
1983 	else {
1984 		/* Table overflow: So allocate ourselves */
1985 		c = kmalloc_node(
1986 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1987 			flags, cpu_to_node(cpu));
1988 		if (!c)
1989 			return NULL;
1990 	}
1991 
1992 	init_kmem_cache_cpu(s, c);
1993 	return c;
1994 }
1995 
1996 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1997 {
1998 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
1999 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2000 		kfree(c);
2001 		return;
2002 	}
2003 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2004 	per_cpu(kmem_cache_cpu_free, cpu) = c;
2005 }
2006 
2007 static void free_kmem_cache_cpus(struct kmem_cache *s)
2008 {
2009 	int cpu;
2010 
2011 	for_each_online_cpu(cpu) {
2012 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2013 
2014 		if (c) {
2015 			s->cpu_slab[cpu] = NULL;
2016 			free_kmem_cache_cpu(c, cpu);
2017 		}
2018 	}
2019 }
2020 
2021 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2022 {
2023 	int cpu;
2024 
2025 	for_each_online_cpu(cpu) {
2026 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2027 
2028 		if (c)
2029 			continue;
2030 
2031 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2032 		if (!c) {
2033 			free_kmem_cache_cpus(s);
2034 			return 0;
2035 		}
2036 		s->cpu_slab[cpu] = c;
2037 	}
2038 	return 1;
2039 }
2040 
2041 /*
2042  * Initialize the per cpu array.
2043  */
2044 static void init_alloc_cpu_cpu(int cpu)
2045 {
2046 	int i;
2047 
2048 	if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2049 		return;
2050 
2051 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2052 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2053 
2054 	cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2055 }
2056 
2057 static void __init init_alloc_cpu(void)
2058 {
2059 	int cpu;
2060 
2061 	for_each_online_cpu(cpu)
2062 		init_alloc_cpu_cpu(cpu);
2063   }
2064 
2065 #else
2066 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2067 static inline void init_alloc_cpu(void) {}
2068 
2069 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2070 {
2071 	init_kmem_cache_cpu(s, &s->cpu_slab);
2072 	return 1;
2073 }
2074 #endif
2075 
2076 #ifdef CONFIG_NUMA
2077 /*
2078  * No kmalloc_node yet so do it by hand. We know that this is the first
2079  * slab on the node for this slabcache. There are no concurrent accesses
2080  * possible.
2081  *
2082  * Note that this function only works on the kmalloc_node_cache
2083  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2084  * memory on a fresh node that has no slab structures yet.
2085  */
2086 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2087 {
2088 	struct page *page;
2089 	struct kmem_cache_node *n;
2090 	unsigned long flags;
2091 
2092 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2093 
2094 	page = new_slab(kmalloc_caches, gfpflags, node);
2095 
2096 	BUG_ON(!page);
2097 	if (page_to_nid(page) != node) {
2098 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2099 				"node %d\n", node);
2100 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2101 				"in order to be able to continue\n");
2102 	}
2103 
2104 	n = page->freelist;
2105 	BUG_ON(!n);
2106 	page->freelist = get_freepointer(kmalloc_caches, n);
2107 	page->inuse++;
2108 	kmalloc_caches->node[node] = n;
2109 #ifdef CONFIG_SLUB_DEBUG
2110 	init_object(kmalloc_caches, n, 1);
2111 	init_tracking(kmalloc_caches, n);
2112 #endif
2113 	init_kmem_cache_node(n, kmalloc_caches);
2114 	inc_slabs_node(kmalloc_caches, node, page->objects);
2115 
2116 	/*
2117 	 * lockdep requires consistent irq usage for each lock
2118 	 * so even though there cannot be a race this early in
2119 	 * the boot sequence, we still disable irqs.
2120 	 */
2121 	local_irq_save(flags);
2122 	add_partial(n, page, 0);
2123 	local_irq_restore(flags);
2124 }
2125 
2126 static void free_kmem_cache_nodes(struct kmem_cache *s)
2127 {
2128 	int node;
2129 
2130 	for_each_node_state(node, N_NORMAL_MEMORY) {
2131 		struct kmem_cache_node *n = s->node[node];
2132 		if (n && n != &s->local_node)
2133 			kmem_cache_free(kmalloc_caches, n);
2134 		s->node[node] = NULL;
2135 	}
2136 }
2137 
2138 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2139 {
2140 	int node;
2141 	int local_node;
2142 
2143 	if (slab_state >= UP)
2144 		local_node = page_to_nid(virt_to_page(s));
2145 	else
2146 		local_node = 0;
2147 
2148 	for_each_node_state(node, N_NORMAL_MEMORY) {
2149 		struct kmem_cache_node *n;
2150 
2151 		if (local_node == node)
2152 			n = &s->local_node;
2153 		else {
2154 			if (slab_state == DOWN) {
2155 				early_kmem_cache_node_alloc(gfpflags, node);
2156 				continue;
2157 			}
2158 			n = kmem_cache_alloc_node(kmalloc_caches,
2159 							gfpflags, node);
2160 
2161 			if (!n) {
2162 				free_kmem_cache_nodes(s);
2163 				return 0;
2164 			}
2165 
2166 		}
2167 		s->node[node] = n;
2168 		init_kmem_cache_node(n, s);
2169 	}
2170 	return 1;
2171 }
2172 #else
2173 static void free_kmem_cache_nodes(struct kmem_cache *s)
2174 {
2175 }
2176 
2177 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2178 {
2179 	init_kmem_cache_node(&s->local_node, s);
2180 	return 1;
2181 }
2182 #endif
2183 
2184 /*
2185  * calculate_sizes() determines the order and the distribution of data within
2186  * a slab object.
2187  */
2188 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2189 {
2190 	unsigned long flags = s->flags;
2191 	unsigned long size = s->objsize;
2192 	unsigned long align = s->align;
2193 	int order;
2194 
2195 	/*
2196 	 * Round up object size to the next word boundary. We can only
2197 	 * place the free pointer at word boundaries and this determines
2198 	 * the possible location of the free pointer.
2199 	 */
2200 	size = ALIGN(size, sizeof(void *));
2201 
2202 #ifdef CONFIG_SLUB_DEBUG
2203 	/*
2204 	 * Determine if we can poison the object itself. If the user of
2205 	 * the slab may touch the object after free or before allocation
2206 	 * then we should never poison the object itself.
2207 	 */
2208 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2209 			!s->ctor)
2210 		s->flags |= __OBJECT_POISON;
2211 	else
2212 		s->flags &= ~__OBJECT_POISON;
2213 
2214 
2215 	/*
2216 	 * If we are Redzoning then check if there is some space between the
2217 	 * end of the object and the free pointer. If not then add an
2218 	 * additional word to have some bytes to store Redzone information.
2219 	 */
2220 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2221 		size += sizeof(void *);
2222 #endif
2223 
2224 	/*
2225 	 * With that we have determined the number of bytes in actual use
2226 	 * by the object. This is the potential offset to the free pointer.
2227 	 */
2228 	s->inuse = size;
2229 
2230 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2231 		s->ctor)) {
2232 		/*
2233 		 * Relocate free pointer after the object if it is not
2234 		 * permitted to overwrite the first word of the object on
2235 		 * kmem_cache_free.
2236 		 *
2237 		 * This is the case if we do RCU, have a constructor or
2238 		 * destructor or are poisoning the objects.
2239 		 */
2240 		s->offset = size;
2241 		size += sizeof(void *);
2242 	}
2243 
2244 #ifdef CONFIG_SLUB_DEBUG
2245 	if (flags & SLAB_STORE_USER)
2246 		/*
2247 		 * Need to store information about allocs and frees after
2248 		 * the object.
2249 		 */
2250 		size += 2 * sizeof(struct track);
2251 
2252 	if (flags & SLAB_RED_ZONE)
2253 		/*
2254 		 * Add some empty padding so that we can catch
2255 		 * overwrites from earlier objects rather than let
2256 		 * tracking information or the free pointer be
2257 		 * corrupted if a user writes before the start
2258 		 * of the object.
2259 		 */
2260 		size += sizeof(void *);
2261 #endif
2262 
2263 	/*
2264 	 * Determine the alignment based on various parameters that the
2265 	 * user specified and the dynamic determination of cache line size
2266 	 * on bootup.
2267 	 */
2268 	align = calculate_alignment(flags, align, s->objsize);
2269 
2270 	/*
2271 	 * SLUB stores one object immediately after another beginning from
2272 	 * offset 0. In order to align the objects we have to simply size
2273 	 * each object to conform to the alignment.
2274 	 */
2275 	size = ALIGN(size, align);
2276 	s->size = size;
2277 	if (forced_order >= 0)
2278 		order = forced_order;
2279 	else
2280 		order = calculate_order(size);
2281 
2282 	if (order < 0)
2283 		return 0;
2284 
2285 	s->allocflags = 0;
2286 	if (order)
2287 		s->allocflags |= __GFP_COMP;
2288 
2289 	if (s->flags & SLAB_CACHE_DMA)
2290 		s->allocflags |= SLUB_DMA;
2291 
2292 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2293 		s->allocflags |= __GFP_RECLAIMABLE;
2294 
2295 	/*
2296 	 * Determine the number of objects per slab
2297 	 */
2298 	s->oo = oo_make(order, size);
2299 	s->min = oo_make(get_order(size), size);
2300 	if (oo_objects(s->oo) > oo_objects(s->max))
2301 		s->max = s->oo;
2302 
2303 	return !!oo_objects(s->oo);
2304 
2305 }
2306 
2307 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2308 		const char *name, size_t size,
2309 		size_t align, unsigned long flags,
2310 		void (*ctor)(void *))
2311 {
2312 	memset(s, 0, kmem_size);
2313 	s->name = name;
2314 	s->ctor = ctor;
2315 	s->objsize = size;
2316 	s->align = align;
2317 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2318 
2319 	if (!calculate_sizes(s, -1))
2320 		goto error;
2321 
2322 	s->refcount = 1;
2323 #ifdef CONFIG_NUMA
2324 	s->remote_node_defrag_ratio = 1000;
2325 #endif
2326 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2327 		goto error;
2328 
2329 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2330 		return 1;
2331 	free_kmem_cache_nodes(s);
2332 error:
2333 	if (flags & SLAB_PANIC)
2334 		panic("Cannot create slab %s size=%lu realsize=%u "
2335 			"order=%u offset=%u flags=%lx\n",
2336 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2337 			s->offset, flags);
2338 	return 0;
2339 }
2340 
2341 /*
2342  * Check if a given pointer is valid
2343  */
2344 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2345 {
2346 	struct page *page;
2347 
2348 	page = get_object_page(object);
2349 
2350 	if (!page || s != page->slab)
2351 		/* No slab or wrong slab */
2352 		return 0;
2353 
2354 	if (!check_valid_pointer(s, page, object))
2355 		return 0;
2356 
2357 	/*
2358 	 * We could also check if the object is on the slabs freelist.
2359 	 * But this would be too expensive and it seems that the main
2360 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2361 	 * to a certain slab.
2362 	 */
2363 	return 1;
2364 }
2365 EXPORT_SYMBOL(kmem_ptr_validate);
2366 
2367 /*
2368  * Determine the size of a slab object
2369  */
2370 unsigned int kmem_cache_size(struct kmem_cache *s)
2371 {
2372 	return s->objsize;
2373 }
2374 EXPORT_SYMBOL(kmem_cache_size);
2375 
2376 const char *kmem_cache_name(struct kmem_cache *s)
2377 {
2378 	return s->name;
2379 }
2380 EXPORT_SYMBOL(kmem_cache_name);
2381 
2382 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2383 							const char *text)
2384 {
2385 #ifdef CONFIG_SLUB_DEBUG
2386 	void *addr = page_address(page);
2387 	void *p;
2388 	DECLARE_BITMAP(map, page->objects);
2389 
2390 	bitmap_zero(map, page->objects);
2391 	slab_err(s, page, "%s", text);
2392 	slab_lock(page);
2393 	for_each_free_object(p, s, page->freelist)
2394 		set_bit(slab_index(p, s, addr), map);
2395 
2396 	for_each_object(p, s, addr, page->objects) {
2397 
2398 		if (!test_bit(slab_index(p, s, addr), map)) {
2399 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2400 							p, p - addr);
2401 			print_tracking(s, p);
2402 		}
2403 	}
2404 	slab_unlock(page);
2405 #endif
2406 }
2407 
2408 /*
2409  * Attempt to free all partial slabs on a node.
2410  */
2411 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2412 {
2413 	unsigned long flags;
2414 	struct page *page, *h;
2415 
2416 	spin_lock_irqsave(&n->list_lock, flags);
2417 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2418 		if (!page->inuse) {
2419 			list_del(&page->lru);
2420 			discard_slab(s, page);
2421 			n->nr_partial--;
2422 		} else {
2423 			list_slab_objects(s, page,
2424 				"Objects remaining on kmem_cache_close()");
2425 		}
2426 	}
2427 	spin_unlock_irqrestore(&n->list_lock, flags);
2428 }
2429 
2430 /*
2431  * Release all resources used by a slab cache.
2432  */
2433 static inline int kmem_cache_close(struct kmem_cache *s)
2434 {
2435 	int node;
2436 
2437 	flush_all(s);
2438 
2439 	/* Attempt to free all objects */
2440 	free_kmem_cache_cpus(s);
2441 	for_each_node_state(node, N_NORMAL_MEMORY) {
2442 		struct kmem_cache_node *n = get_node(s, node);
2443 
2444 		free_partial(s, n);
2445 		if (n->nr_partial || slabs_node(s, node))
2446 			return 1;
2447 	}
2448 	free_kmem_cache_nodes(s);
2449 	return 0;
2450 }
2451 
2452 /*
2453  * Close a cache and release the kmem_cache structure
2454  * (must be used for caches created using kmem_cache_create)
2455  */
2456 void kmem_cache_destroy(struct kmem_cache *s)
2457 {
2458 	down_write(&slub_lock);
2459 	s->refcount--;
2460 	if (!s->refcount) {
2461 		list_del(&s->list);
2462 		up_write(&slub_lock);
2463 		if (kmem_cache_close(s)) {
2464 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2465 				"still has objects.\n", s->name, __func__);
2466 			dump_stack();
2467 		}
2468 		sysfs_slab_remove(s);
2469 	} else
2470 		up_write(&slub_lock);
2471 }
2472 EXPORT_SYMBOL(kmem_cache_destroy);
2473 
2474 /********************************************************************
2475  *		Kmalloc subsystem
2476  *******************************************************************/
2477 
2478 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2479 EXPORT_SYMBOL(kmalloc_caches);
2480 
2481 static int __init setup_slub_min_order(char *str)
2482 {
2483 	get_option(&str, &slub_min_order);
2484 
2485 	return 1;
2486 }
2487 
2488 __setup("slub_min_order=", setup_slub_min_order);
2489 
2490 static int __init setup_slub_max_order(char *str)
2491 {
2492 	get_option(&str, &slub_max_order);
2493 
2494 	return 1;
2495 }
2496 
2497 __setup("slub_max_order=", setup_slub_max_order);
2498 
2499 static int __init setup_slub_min_objects(char *str)
2500 {
2501 	get_option(&str, &slub_min_objects);
2502 
2503 	return 1;
2504 }
2505 
2506 __setup("slub_min_objects=", setup_slub_min_objects);
2507 
2508 static int __init setup_slub_nomerge(char *str)
2509 {
2510 	slub_nomerge = 1;
2511 	return 1;
2512 }
2513 
2514 __setup("slub_nomerge", setup_slub_nomerge);
2515 
2516 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2517 		const char *name, int size, gfp_t gfp_flags)
2518 {
2519 	unsigned int flags = 0;
2520 
2521 	if (gfp_flags & SLUB_DMA)
2522 		flags = SLAB_CACHE_DMA;
2523 
2524 	down_write(&slub_lock);
2525 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2526 								flags, NULL))
2527 		goto panic;
2528 
2529 	list_add(&s->list, &slab_caches);
2530 	up_write(&slub_lock);
2531 	if (sysfs_slab_add(s))
2532 		goto panic;
2533 	return s;
2534 
2535 panic:
2536 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2537 }
2538 
2539 #ifdef CONFIG_ZONE_DMA
2540 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2541 
2542 static void sysfs_add_func(struct work_struct *w)
2543 {
2544 	struct kmem_cache *s;
2545 
2546 	down_write(&slub_lock);
2547 	list_for_each_entry(s, &slab_caches, list) {
2548 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2549 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2550 			sysfs_slab_add(s);
2551 		}
2552 	}
2553 	up_write(&slub_lock);
2554 }
2555 
2556 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2557 
2558 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2559 {
2560 	struct kmem_cache *s;
2561 	char *text;
2562 	size_t realsize;
2563 
2564 	s = kmalloc_caches_dma[index];
2565 	if (s)
2566 		return s;
2567 
2568 	/* Dynamically create dma cache */
2569 	if (flags & __GFP_WAIT)
2570 		down_write(&slub_lock);
2571 	else {
2572 		if (!down_write_trylock(&slub_lock))
2573 			goto out;
2574 	}
2575 
2576 	if (kmalloc_caches_dma[index])
2577 		goto unlock_out;
2578 
2579 	realsize = kmalloc_caches[index].objsize;
2580 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2581 			 (unsigned int)realsize);
2582 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2583 
2584 	if (!s || !text || !kmem_cache_open(s, flags, text,
2585 			realsize, ARCH_KMALLOC_MINALIGN,
2586 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2587 		kfree(s);
2588 		kfree(text);
2589 		goto unlock_out;
2590 	}
2591 
2592 	list_add(&s->list, &slab_caches);
2593 	kmalloc_caches_dma[index] = s;
2594 
2595 	schedule_work(&sysfs_add_work);
2596 
2597 unlock_out:
2598 	up_write(&slub_lock);
2599 out:
2600 	return kmalloc_caches_dma[index];
2601 }
2602 #endif
2603 
2604 /*
2605  * Conversion table for small slabs sizes / 8 to the index in the
2606  * kmalloc array. This is necessary for slabs < 192 since we have non power
2607  * of two cache sizes there. The size of larger slabs can be determined using
2608  * fls.
2609  */
2610 static s8 size_index[24] = {
2611 	3,	/* 8 */
2612 	4,	/* 16 */
2613 	5,	/* 24 */
2614 	5,	/* 32 */
2615 	6,	/* 40 */
2616 	6,	/* 48 */
2617 	6,	/* 56 */
2618 	6,	/* 64 */
2619 	1,	/* 72 */
2620 	1,	/* 80 */
2621 	1,	/* 88 */
2622 	1,	/* 96 */
2623 	7,	/* 104 */
2624 	7,	/* 112 */
2625 	7,	/* 120 */
2626 	7,	/* 128 */
2627 	2,	/* 136 */
2628 	2,	/* 144 */
2629 	2,	/* 152 */
2630 	2,	/* 160 */
2631 	2,	/* 168 */
2632 	2,	/* 176 */
2633 	2,	/* 184 */
2634 	2	/* 192 */
2635 };
2636 
2637 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2638 {
2639 	int index;
2640 
2641 	if (size <= 192) {
2642 		if (!size)
2643 			return ZERO_SIZE_PTR;
2644 
2645 		index = size_index[(size - 1) / 8];
2646 	} else
2647 		index = fls(size - 1);
2648 
2649 #ifdef CONFIG_ZONE_DMA
2650 	if (unlikely((flags & SLUB_DMA)))
2651 		return dma_kmalloc_cache(index, flags);
2652 
2653 #endif
2654 	return &kmalloc_caches[index];
2655 }
2656 
2657 void *__kmalloc(size_t size, gfp_t flags)
2658 {
2659 	struct kmem_cache *s;
2660 
2661 	if (unlikely(size > PAGE_SIZE))
2662 		return kmalloc_large(size, flags);
2663 
2664 	s = get_slab(size, flags);
2665 
2666 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2667 		return s;
2668 
2669 	return slab_alloc(s, flags, -1, _RET_IP_);
2670 }
2671 EXPORT_SYMBOL(__kmalloc);
2672 
2673 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2674 {
2675 	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2676 						get_order(size));
2677 
2678 	if (page)
2679 		return page_address(page);
2680 	else
2681 		return NULL;
2682 }
2683 
2684 #ifdef CONFIG_NUMA
2685 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2686 {
2687 	struct kmem_cache *s;
2688 
2689 	if (unlikely(size > PAGE_SIZE))
2690 		return kmalloc_large_node(size, flags, node);
2691 
2692 	s = get_slab(size, flags);
2693 
2694 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2695 		return s;
2696 
2697 	return slab_alloc(s, flags, node, _RET_IP_);
2698 }
2699 EXPORT_SYMBOL(__kmalloc_node);
2700 #endif
2701 
2702 size_t ksize(const void *object)
2703 {
2704 	struct page *page;
2705 	struct kmem_cache *s;
2706 
2707 	if (unlikely(object == ZERO_SIZE_PTR))
2708 		return 0;
2709 
2710 	page = virt_to_head_page(object);
2711 
2712 	if (unlikely(!PageSlab(page))) {
2713 		WARN_ON(!PageCompound(page));
2714 		return PAGE_SIZE << compound_order(page);
2715 	}
2716 	s = page->slab;
2717 
2718 #ifdef CONFIG_SLUB_DEBUG
2719 	/*
2720 	 * Debugging requires use of the padding between object
2721 	 * and whatever may come after it.
2722 	 */
2723 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2724 		return s->objsize;
2725 
2726 #endif
2727 	/*
2728 	 * If we have the need to store the freelist pointer
2729 	 * back there or track user information then we can
2730 	 * only use the space before that information.
2731 	 */
2732 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2733 		return s->inuse;
2734 	/*
2735 	 * Else we can use all the padding etc for the allocation
2736 	 */
2737 	return s->size;
2738 }
2739 
2740 void kfree(const void *x)
2741 {
2742 	struct page *page;
2743 	void *object = (void *)x;
2744 
2745 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2746 		return;
2747 
2748 	page = virt_to_head_page(x);
2749 	if (unlikely(!PageSlab(page))) {
2750 		BUG_ON(!PageCompound(page));
2751 		put_page(page);
2752 		return;
2753 	}
2754 	slab_free(page->slab, page, object, _RET_IP_);
2755 }
2756 EXPORT_SYMBOL(kfree);
2757 
2758 /*
2759  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2760  * the remaining slabs by the number of items in use. The slabs with the
2761  * most items in use come first. New allocations will then fill those up
2762  * and thus they can be removed from the partial lists.
2763  *
2764  * The slabs with the least items are placed last. This results in them
2765  * being allocated from last increasing the chance that the last objects
2766  * are freed in them.
2767  */
2768 int kmem_cache_shrink(struct kmem_cache *s)
2769 {
2770 	int node;
2771 	int i;
2772 	struct kmem_cache_node *n;
2773 	struct page *page;
2774 	struct page *t;
2775 	int objects = oo_objects(s->max);
2776 	struct list_head *slabs_by_inuse =
2777 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2778 	unsigned long flags;
2779 
2780 	if (!slabs_by_inuse)
2781 		return -ENOMEM;
2782 
2783 	flush_all(s);
2784 	for_each_node_state(node, N_NORMAL_MEMORY) {
2785 		n = get_node(s, node);
2786 
2787 		if (!n->nr_partial)
2788 			continue;
2789 
2790 		for (i = 0; i < objects; i++)
2791 			INIT_LIST_HEAD(slabs_by_inuse + i);
2792 
2793 		spin_lock_irqsave(&n->list_lock, flags);
2794 
2795 		/*
2796 		 * Build lists indexed by the items in use in each slab.
2797 		 *
2798 		 * Note that concurrent frees may occur while we hold the
2799 		 * list_lock. page->inuse here is the upper limit.
2800 		 */
2801 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2802 			if (!page->inuse && slab_trylock(page)) {
2803 				/*
2804 				 * Must hold slab lock here because slab_free
2805 				 * may have freed the last object and be
2806 				 * waiting to release the slab.
2807 				 */
2808 				list_del(&page->lru);
2809 				n->nr_partial--;
2810 				slab_unlock(page);
2811 				discard_slab(s, page);
2812 			} else {
2813 				list_move(&page->lru,
2814 				slabs_by_inuse + page->inuse);
2815 			}
2816 		}
2817 
2818 		/*
2819 		 * Rebuild the partial list with the slabs filled up most
2820 		 * first and the least used slabs at the end.
2821 		 */
2822 		for (i = objects - 1; i >= 0; i--)
2823 			list_splice(slabs_by_inuse + i, n->partial.prev);
2824 
2825 		spin_unlock_irqrestore(&n->list_lock, flags);
2826 	}
2827 
2828 	kfree(slabs_by_inuse);
2829 	return 0;
2830 }
2831 EXPORT_SYMBOL(kmem_cache_shrink);
2832 
2833 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2834 static int slab_mem_going_offline_callback(void *arg)
2835 {
2836 	struct kmem_cache *s;
2837 
2838 	down_read(&slub_lock);
2839 	list_for_each_entry(s, &slab_caches, list)
2840 		kmem_cache_shrink(s);
2841 	up_read(&slub_lock);
2842 
2843 	return 0;
2844 }
2845 
2846 static void slab_mem_offline_callback(void *arg)
2847 {
2848 	struct kmem_cache_node *n;
2849 	struct kmem_cache *s;
2850 	struct memory_notify *marg = arg;
2851 	int offline_node;
2852 
2853 	offline_node = marg->status_change_nid;
2854 
2855 	/*
2856 	 * If the node still has available memory. we need kmem_cache_node
2857 	 * for it yet.
2858 	 */
2859 	if (offline_node < 0)
2860 		return;
2861 
2862 	down_read(&slub_lock);
2863 	list_for_each_entry(s, &slab_caches, list) {
2864 		n = get_node(s, offline_node);
2865 		if (n) {
2866 			/*
2867 			 * if n->nr_slabs > 0, slabs still exist on the node
2868 			 * that is going down. We were unable to free them,
2869 			 * and offline_pages() function shoudn't call this
2870 			 * callback. So, we must fail.
2871 			 */
2872 			BUG_ON(slabs_node(s, offline_node));
2873 
2874 			s->node[offline_node] = NULL;
2875 			kmem_cache_free(kmalloc_caches, n);
2876 		}
2877 	}
2878 	up_read(&slub_lock);
2879 }
2880 
2881 static int slab_mem_going_online_callback(void *arg)
2882 {
2883 	struct kmem_cache_node *n;
2884 	struct kmem_cache *s;
2885 	struct memory_notify *marg = arg;
2886 	int nid = marg->status_change_nid;
2887 	int ret = 0;
2888 
2889 	/*
2890 	 * If the node's memory is already available, then kmem_cache_node is
2891 	 * already created. Nothing to do.
2892 	 */
2893 	if (nid < 0)
2894 		return 0;
2895 
2896 	/*
2897 	 * We are bringing a node online. No memory is available yet. We must
2898 	 * allocate a kmem_cache_node structure in order to bring the node
2899 	 * online.
2900 	 */
2901 	down_read(&slub_lock);
2902 	list_for_each_entry(s, &slab_caches, list) {
2903 		/*
2904 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2905 		 *      since memory is not yet available from the node that
2906 		 *      is brought up.
2907 		 */
2908 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2909 		if (!n) {
2910 			ret = -ENOMEM;
2911 			goto out;
2912 		}
2913 		init_kmem_cache_node(n, s);
2914 		s->node[nid] = n;
2915 	}
2916 out:
2917 	up_read(&slub_lock);
2918 	return ret;
2919 }
2920 
2921 static int slab_memory_callback(struct notifier_block *self,
2922 				unsigned long action, void *arg)
2923 {
2924 	int ret = 0;
2925 
2926 	switch (action) {
2927 	case MEM_GOING_ONLINE:
2928 		ret = slab_mem_going_online_callback(arg);
2929 		break;
2930 	case MEM_GOING_OFFLINE:
2931 		ret = slab_mem_going_offline_callback(arg);
2932 		break;
2933 	case MEM_OFFLINE:
2934 	case MEM_CANCEL_ONLINE:
2935 		slab_mem_offline_callback(arg);
2936 		break;
2937 	case MEM_ONLINE:
2938 	case MEM_CANCEL_OFFLINE:
2939 		break;
2940 	}
2941 	if (ret)
2942 		ret = notifier_from_errno(ret);
2943 	else
2944 		ret = NOTIFY_OK;
2945 	return ret;
2946 }
2947 
2948 #endif /* CONFIG_MEMORY_HOTPLUG */
2949 
2950 /********************************************************************
2951  *			Basic setup of slabs
2952  *******************************************************************/
2953 
2954 void __init kmem_cache_init(void)
2955 {
2956 	int i;
2957 	int caches = 0;
2958 
2959 	init_alloc_cpu();
2960 
2961 #ifdef CONFIG_NUMA
2962 	/*
2963 	 * Must first have the slab cache available for the allocations of the
2964 	 * struct kmem_cache_node's. There is special bootstrap code in
2965 	 * kmem_cache_open for slab_state == DOWN.
2966 	 */
2967 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2968 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2969 	kmalloc_caches[0].refcount = -1;
2970 	caches++;
2971 
2972 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2973 #endif
2974 
2975 	/* Able to allocate the per node structures */
2976 	slab_state = PARTIAL;
2977 
2978 	/* Caches that are not of the two-to-the-power-of size */
2979 	if (KMALLOC_MIN_SIZE <= 64) {
2980 		create_kmalloc_cache(&kmalloc_caches[1],
2981 				"kmalloc-96", 96, GFP_KERNEL);
2982 		caches++;
2983 		create_kmalloc_cache(&kmalloc_caches[2],
2984 				"kmalloc-192", 192, GFP_KERNEL);
2985 		caches++;
2986 	}
2987 
2988 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2989 		create_kmalloc_cache(&kmalloc_caches[i],
2990 			"kmalloc", 1 << i, GFP_KERNEL);
2991 		caches++;
2992 	}
2993 
2994 
2995 	/*
2996 	 * Patch up the size_index table if we have strange large alignment
2997 	 * requirements for the kmalloc array. This is only the case for
2998 	 * MIPS it seems. The standard arches will not generate any code here.
2999 	 *
3000 	 * Largest permitted alignment is 256 bytes due to the way we
3001 	 * handle the index determination for the smaller caches.
3002 	 *
3003 	 * Make sure that nothing crazy happens if someone starts tinkering
3004 	 * around with ARCH_KMALLOC_MINALIGN
3005 	 */
3006 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3007 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3008 
3009 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3010 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3011 
3012 	if (KMALLOC_MIN_SIZE == 128) {
3013 		/*
3014 		 * The 192 byte sized cache is not used if the alignment
3015 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3016 		 * instead.
3017 		 */
3018 		for (i = 128 + 8; i <= 192; i += 8)
3019 			size_index[(i - 1) / 8] = 8;
3020 	}
3021 
3022 	slab_state = UP;
3023 
3024 	/* Provide the correct kmalloc names now that the caches are up */
3025 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3026 		kmalloc_caches[i]. name =
3027 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3028 
3029 #ifdef CONFIG_SMP
3030 	register_cpu_notifier(&slab_notifier);
3031 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3032 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3033 #else
3034 	kmem_size = sizeof(struct kmem_cache);
3035 #endif
3036 
3037 	printk(KERN_INFO
3038 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3039 		" CPUs=%d, Nodes=%d\n",
3040 		caches, cache_line_size(),
3041 		slub_min_order, slub_max_order, slub_min_objects,
3042 		nr_cpu_ids, nr_node_ids);
3043 }
3044 
3045 /*
3046  * Find a mergeable slab cache
3047  */
3048 static int slab_unmergeable(struct kmem_cache *s)
3049 {
3050 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3051 		return 1;
3052 
3053 	if (s->ctor)
3054 		return 1;
3055 
3056 	/*
3057 	 * We may have set a slab to be unmergeable during bootstrap.
3058 	 */
3059 	if (s->refcount < 0)
3060 		return 1;
3061 
3062 	return 0;
3063 }
3064 
3065 static struct kmem_cache *find_mergeable(size_t size,
3066 		size_t align, unsigned long flags, const char *name,
3067 		void (*ctor)(void *))
3068 {
3069 	struct kmem_cache *s;
3070 
3071 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3072 		return NULL;
3073 
3074 	if (ctor)
3075 		return NULL;
3076 
3077 	size = ALIGN(size, sizeof(void *));
3078 	align = calculate_alignment(flags, align, size);
3079 	size = ALIGN(size, align);
3080 	flags = kmem_cache_flags(size, flags, name, NULL);
3081 
3082 	list_for_each_entry(s, &slab_caches, list) {
3083 		if (slab_unmergeable(s))
3084 			continue;
3085 
3086 		if (size > s->size)
3087 			continue;
3088 
3089 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3090 				continue;
3091 		/*
3092 		 * Check if alignment is compatible.
3093 		 * Courtesy of Adrian Drzewiecki
3094 		 */
3095 		if ((s->size & ~(align - 1)) != s->size)
3096 			continue;
3097 
3098 		if (s->size - size >= sizeof(void *))
3099 			continue;
3100 
3101 		return s;
3102 	}
3103 	return NULL;
3104 }
3105 
3106 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3107 		size_t align, unsigned long flags, void (*ctor)(void *))
3108 {
3109 	struct kmem_cache *s;
3110 
3111 	down_write(&slub_lock);
3112 	s = find_mergeable(size, align, flags, name, ctor);
3113 	if (s) {
3114 		int cpu;
3115 
3116 		s->refcount++;
3117 		/*
3118 		 * Adjust the object sizes so that we clear
3119 		 * the complete object on kzalloc.
3120 		 */
3121 		s->objsize = max(s->objsize, (int)size);
3122 
3123 		/*
3124 		 * And then we need to update the object size in the
3125 		 * per cpu structures
3126 		 */
3127 		for_each_online_cpu(cpu)
3128 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3129 
3130 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3131 		up_write(&slub_lock);
3132 
3133 		if (sysfs_slab_alias(s, name)) {
3134 			down_write(&slub_lock);
3135 			s->refcount--;
3136 			up_write(&slub_lock);
3137 			goto err;
3138 		}
3139 		return s;
3140 	}
3141 
3142 	s = kmalloc(kmem_size, GFP_KERNEL);
3143 	if (s) {
3144 		if (kmem_cache_open(s, GFP_KERNEL, name,
3145 				size, align, flags, ctor)) {
3146 			list_add(&s->list, &slab_caches);
3147 			up_write(&slub_lock);
3148 			if (sysfs_slab_add(s)) {
3149 				down_write(&slub_lock);
3150 				list_del(&s->list);
3151 				up_write(&slub_lock);
3152 				kfree(s);
3153 				goto err;
3154 			}
3155 			return s;
3156 		}
3157 		kfree(s);
3158 	}
3159 	up_write(&slub_lock);
3160 
3161 err:
3162 	if (flags & SLAB_PANIC)
3163 		panic("Cannot create slabcache %s\n", name);
3164 	else
3165 		s = NULL;
3166 	return s;
3167 }
3168 EXPORT_SYMBOL(kmem_cache_create);
3169 
3170 #ifdef CONFIG_SMP
3171 /*
3172  * Use the cpu notifier to insure that the cpu slabs are flushed when
3173  * necessary.
3174  */
3175 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3176 		unsigned long action, void *hcpu)
3177 {
3178 	long cpu = (long)hcpu;
3179 	struct kmem_cache *s;
3180 	unsigned long flags;
3181 
3182 	switch (action) {
3183 	case CPU_UP_PREPARE:
3184 	case CPU_UP_PREPARE_FROZEN:
3185 		init_alloc_cpu_cpu(cpu);
3186 		down_read(&slub_lock);
3187 		list_for_each_entry(s, &slab_caches, list)
3188 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3189 							GFP_KERNEL);
3190 		up_read(&slub_lock);
3191 		break;
3192 
3193 	case CPU_UP_CANCELED:
3194 	case CPU_UP_CANCELED_FROZEN:
3195 	case CPU_DEAD:
3196 	case CPU_DEAD_FROZEN:
3197 		down_read(&slub_lock);
3198 		list_for_each_entry(s, &slab_caches, list) {
3199 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3200 
3201 			local_irq_save(flags);
3202 			__flush_cpu_slab(s, cpu);
3203 			local_irq_restore(flags);
3204 			free_kmem_cache_cpu(c, cpu);
3205 			s->cpu_slab[cpu] = NULL;
3206 		}
3207 		up_read(&slub_lock);
3208 		break;
3209 	default:
3210 		break;
3211 	}
3212 	return NOTIFY_OK;
3213 }
3214 
3215 static struct notifier_block __cpuinitdata slab_notifier = {
3216 	.notifier_call = slab_cpuup_callback
3217 };
3218 
3219 #endif
3220 
3221 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3222 {
3223 	struct kmem_cache *s;
3224 
3225 	if (unlikely(size > PAGE_SIZE))
3226 		return kmalloc_large(size, gfpflags);
3227 
3228 	s = get_slab(size, gfpflags);
3229 
3230 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3231 		return s;
3232 
3233 	return slab_alloc(s, gfpflags, -1, caller);
3234 }
3235 
3236 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3237 					int node, unsigned long caller)
3238 {
3239 	struct kmem_cache *s;
3240 
3241 	if (unlikely(size > PAGE_SIZE))
3242 		return kmalloc_large_node(size, gfpflags, node);
3243 
3244 	s = get_slab(size, gfpflags);
3245 
3246 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3247 		return s;
3248 
3249 	return slab_alloc(s, gfpflags, node, caller);
3250 }
3251 
3252 #ifdef CONFIG_SLUB_DEBUG
3253 static unsigned long count_partial(struct kmem_cache_node *n,
3254 					int (*get_count)(struct page *))
3255 {
3256 	unsigned long flags;
3257 	unsigned long x = 0;
3258 	struct page *page;
3259 
3260 	spin_lock_irqsave(&n->list_lock, flags);
3261 	list_for_each_entry(page, &n->partial, lru)
3262 		x += get_count(page);
3263 	spin_unlock_irqrestore(&n->list_lock, flags);
3264 	return x;
3265 }
3266 
3267 static int count_inuse(struct page *page)
3268 {
3269 	return page->inuse;
3270 }
3271 
3272 static int count_total(struct page *page)
3273 {
3274 	return page->objects;
3275 }
3276 
3277 static int count_free(struct page *page)
3278 {
3279 	return page->objects - page->inuse;
3280 }
3281 
3282 static int validate_slab(struct kmem_cache *s, struct page *page,
3283 						unsigned long *map)
3284 {
3285 	void *p;
3286 	void *addr = page_address(page);
3287 
3288 	if (!check_slab(s, page) ||
3289 			!on_freelist(s, page, NULL))
3290 		return 0;
3291 
3292 	/* Now we know that a valid freelist exists */
3293 	bitmap_zero(map, page->objects);
3294 
3295 	for_each_free_object(p, s, page->freelist) {
3296 		set_bit(slab_index(p, s, addr), map);
3297 		if (!check_object(s, page, p, 0))
3298 			return 0;
3299 	}
3300 
3301 	for_each_object(p, s, addr, page->objects)
3302 		if (!test_bit(slab_index(p, s, addr), map))
3303 			if (!check_object(s, page, p, 1))
3304 				return 0;
3305 	return 1;
3306 }
3307 
3308 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3309 						unsigned long *map)
3310 {
3311 	if (slab_trylock(page)) {
3312 		validate_slab(s, page, map);
3313 		slab_unlock(page);
3314 	} else
3315 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3316 			s->name, page);
3317 
3318 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3319 		if (!PageSlubDebug(page))
3320 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3321 				"on slab 0x%p\n", s->name, page);
3322 	} else {
3323 		if (PageSlubDebug(page))
3324 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3325 				"slab 0x%p\n", s->name, page);
3326 	}
3327 }
3328 
3329 static int validate_slab_node(struct kmem_cache *s,
3330 		struct kmem_cache_node *n, unsigned long *map)
3331 {
3332 	unsigned long count = 0;
3333 	struct page *page;
3334 	unsigned long flags;
3335 
3336 	spin_lock_irqsave(&n->list_lock, flags);
3337 
3338 	list_for_each_entry(page, &n->partial, lru) {
3339 		validate_slab_slab(s, page, map);
3340 		count++;
3341 	}
3342 	if (count != n->nr_partial)
3343 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3344 			"counter=%ld\n", s->name, count, n->nr_partial);
3345 
3346 	if (!(s->flags & SLAB_STORE_USER))
3347 		goto out;
3348 
3349 	list_for_each_entry(page, &n->full, lru) {
3350 		validate_slab_slab(s, page, map);
3351 		count++;
3352 	}
3353 	if (count != atomic_long_read(&n->nr_slabs))
3354 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3355 			"counter=%ld\n", s->name, count,
3356 			atomic_long_read(&n->nr_slabs));
3357 
3358 out:
3359 	spin_unlock_irqrestore(&n->list_lock, flags);
3360 	return count;
3361 }
3362 
3363 static long validate_slab_cache(struct kmem_cache *s)
3364 {
3365 	int node;
3366 	unsigned long count = 0;
3367 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3368 				sizeof(unsigned long), GFP_KERNEL);
3369 
3370 	if (!map)
3371 		return -ENOMEM;
3372 
3373 	flush_all(s);
3374 	for_each_node_state(node, N_NORMAL_MEMORY) {
3375 		struct kmem_cache_node *n = get_node(s, node);
3376 
3377 		count += validate_slab_node(s, n, map);
3378 	}
3379 	kfree(map);
3380 	return count;
3381 }
3382 
3383 #ifdef SLUB_RESILIENCY_TEST
3384 static void resiliency_test(void)
3385 {
3386 	u8 *p;
3387 
3388 	printk(KERN_ERR "SLUB resiliency testing\n");
3389 	printk(KERN_ERR "-----------------------\n");
3390 	printk(KERN_ERR "A. Corruption after allocation\n");
3391 
3392 	p = kzalloc(16, GFP_KERNEL);
3393 	p[16] = 0x12;
3394 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3395 			" 0x12->0x%p\n\n", p + 16);
3396 
3397 	validate_slab_cache(kmalloc_caches + 4);
3398 
3399 	/* Hmmm... The next two are dangerous */
3400 	p = kzalloc(32, GFP_KERNEL);
3401 	p[32 + sizeof(void *)] = 0x34;
3402 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3403 			" 0x34 -> -0x%p\n", p);
3404 	printk(KERN_ERR
3405 		"If allocated object is overwritten then not detectable\n\n");
3406 
3407 	validate_slab_cache(kmalloc_caches + 5);
3408 	p = kzalloc(64, GFP_KERNEL);
3409 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3410 	*p = 0x56;
3411 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3412 									p);
3413 	printk(KERN_ERR
3414 		"If allocated object is overwritten then not detectable\n\n");
3415 	validate_slab_cache(kmalloc_caches + 6);
3416 
3417 	printk(KERN_ERR "\nB. Corruption after free\n");
3418 	p = kzalloc(128, GFP_KERNEL);
3419 	kfree(p);
3420 	*p = 0x78;
3421 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3422 	validate_slab_cache(kmalloc_caches + 7);
3423 
3424 	p = kzalloc(256, GFP_KERNEL);
3425 	kfree(p);
3426 	p[50] = 0x9a;
3427 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3428 			p);
3429 	validate_slab_cache(kmalloc_caches + 8);
3430 
3431 	p = kzalloc(512, GFP_KERNEL);
3432 	kfree(p);
3433 	p[512] = 0xab;
3434 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3435 	validate_slab_cache(kmalloc_caches + 9);
3436 }
3437 #else
3438 static void resiliency_test(void) {};
3439 #endif
3440 
3441 /*
3442  * Generate lists of code addresses where slabcache objects are allocated
3443  * and freed.
3444  */
3445 
3446 struct location {
3447 	unsigned long count;
3448 	unsigned long addr;
3449 	long long sum_time;
3450 	long min_time;
3451 	long max_time;
3452 	long min_pid;
3453 	long max_pid;
3454 	DECLARE_BITMAP(cpus, NR_CPUS);
3455 	nodemask_t nodes;
3456 };
3457 
3458 struct loc_track {
3459 	unsigned long max;
3460 	unsigned long count;
3461 	struct location *loc;
3462 };
3463 
3464 static void free_loc_track(struct loc_track *t)
3465 {
3466 	if (t->max)
3467 		free_pages((unsigned long)t->loc,
3468 			get_order(sizeof(struct location) * t->max));
3469 }
3470 
3471 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3472 {
3473 	struct location *l;
3474 	int order;
3475 
3476 	order = get_order(sizeof(struct location) * max);
3477 
3478 	l = (void *)__get_free_pages(flags, order);
3479 	if (!l)
3480 		return 0;
3481 
3482 	if (t->count) {
3483 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3484 		free_loc_track(t);
3485 	}
3486 	t->max = max;
3487 	t->loc = l;
3488 	return 1;
3489 }
3490 
3491 static int add_location(struct loc_track *t, struct kmem_cache *s,
3492 				const struct track *track)
3493 {
3494 	long start, end, pos;
3495 	struct location *l;
3496 	unsigned long caddr;
3497 	unsigned long age = jiffies - track->when;
3498 
3499 	start = -1;
3500 	end = t->count;
3501 
3502 	for ( ; ; ) {
3503 		pos = start + (end - start + 1) / 2;
3504 
3505 		/*
3506 		 * There is nothing at "end". If we end up there
3507 		 * we need to add something to before end.
3508 		 */
3509 		if (pos == end)
3510 			break;
3511 
3512 		caddr = t->loc[pos].addr;
3513 		if (track->addr == caddr) {
3514 
3515 			l = &t->loc[pos];
3516 			l->count++;
3517 			if (track->when) {
3518 				l->sum_time += age;
3519 				if (age < l->min_time)
3520 					l->min_time = age;
3521 				if (age > l->max_time)
3522 					l->max_time = age;
3523 
3524 				if (track->pid < l->min_pid)
3525 					l->min_pid = track->pid;
3526 				if (track->pid > l->max_pid)
3527 					l->max_pid = track->pid;
3528 
3529 				cpumask_set_cpu(track->cpu,
3530 						to_cpumask(l->cpus));
3531 			}
3532 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3533 			return 1;
3534 		}
3535 
3536 		if (track->addr < caddr)
3537 			end = pos;
3538 		else
3539 			start = pos;
3540 	}
3541 
3542 	/*
3543 	 * Not found. Insert new tracking element.
3544 	 */
3545 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3546 		return 0;
3547 
3548 	l = t->loc + pos;
3549 	if (pos < t->count)
3550 		memmove(l + 1, l,
3551 			(t->count - pos) * sizeof(struct location));
3552 	t->count++;
3553 	l->count = 1;
3554 	l->addr = track->addr;
3555 	l->sum_time = age;
3556 	l->min_time = age;
3557 	l->max_time = age;
3558 	l->min_pid = track->pid;
3559 	l->max_pid = track->pid;
3560 	cpumask_clear(to_cpumask(l->cpus));
3561 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3562 	nodes_clear(l->nodes);
3563 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3564 	return 1;
3565 }
3566 
3567 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3568 		struct page *page, enum track_item alloc)
3569 {
3570 	void *addr = page_address(page);
3571 	DECLARE_BITMAP(map, page->objects);
3572 	void *p;
3573 
3574 	bitmap_zero(map, page->objects);
3575 	for_each_free_object(p, s, page->freelist)
3576 		set_bit(slab_index(p, s, addr), map);
3577 
3578 	for_each_object(p, s, addr, page->objects)
3579 		if (!test_bit(slab_index(p, s, addr), map))
3580 			add_location(t, s, get_track(s, p, alloc));
3581 }
3582 
3583 static int list_locations(struct kmem_cache *s, char *buf,
3584 					enum track_item alloc)
3585 {
3586 	int len = 0;
3587 	unsigned long i;
3588 	struct loc_track t = { 0, 0, NULL };
3589 	int node;
3590 
3591 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3592 			GFP_TEMPORARY))
3593 		return sprintf(buf, "Out of memory\n");
3594 
3595 	/* Push back cpu slabs */
3596 	flush_all(s);
3597 
3598 	for_each_node_state(node, N_NORMAL_MEMORY) {
3599 		struct kmem_cache_node *n = get_node(s, node);
3600 		unsigned long flags;
3601 		struct page *page;
3602 
3603 		if (!atomic_long_read(&n->nr_slabs))
3604 			continue;
3605 
3606 		spin_lock_irqsave(&n->list_lock, flags);
3607 		list_for_each_entry(page, &n->partial, lru)
3608 			process_slab(&t, s, page, alloc);
3609 		list_for_each_entry(page, &n->full, lru)
3610 			process_slab(&t, s, page, alloc);
3611 		spin_unlock_irqrestore(&n->list_lock, flags);
3612 	}
3613 
3614 	for (i = 0; i < t.count; i++) {
3615 		struct location *l = &t.loc[i];
3616 
3617 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3618 			break;
3619 		len += sprintf(buf + len, "%7ld ", l->count);
3620 
3621 		if (l->addr)
3622 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3623 		else
3624 			len += sprintf(buf + len, "<not-available>");
3625 
3626 		if (l->sum_time != l->min_time) {
3627 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3628 				l->min_time,
3629 				(long)div_u64(l->sum_time, l->count),
3630 				l->max_time);
3631 		} else
3632 			len += sprintf(buf + len, " age=%ld",
3633 				l->min_time);
3634 
3635 		if (l->min_pid != l->max_pid)
3636 			len += sprintf(buf + len, " pid=%ld-%ld",
3637 				l->min_pid, l->max_pid);
3638 		else
3639 			len += sprintf(buf + len, " pid=%ld",
3640 				l->min_pid);
3641 
3642 		if (num_online_cpus() > 1 &&
3643 				!cpumask_empty(to_cpumask(l->cpus)) &&
3644 				len < PAGE_SIZE - 60) {
3645 			len += sprintf(buf + len, " cpus=");
3646 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3647 						 to_cpumask(l->cpus));
3648 		}
3649 
3650 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3651 				len < PAGE_SIZE - 60) {
3652 			len += sprintf(buf + len, " nodes=");
3653 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3654 					l->nodes);
3655 		}
3656 
3657 		len += sprintf(buf + len, "\n");
3658 	}
3659 
3660 	free_loc_track(&t);
3661 	if (!t.count)
3662 		len += sprintf(buf, "No data\n");
3663 	return len;
3664 }
3665 
3666 enum slab_stat_type {
3667 	SL_ALL,			/* All slabs */
3668 	SL_PARTIAL,		/* Only partially allocated slabs */
3669 	SL_CPU,			/* Only slabs used for cpu caches */
3670 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3671 	SL_TOTAL		/* Determine object capacity not slabs */
3672 };
3673 
3674 #define SO_ALL		(1 << SL_ALL)
3675 #define SO_PARTIAL	(1 << SL_PARTIAL)
3676 #define SO_CPU		(1 << SL_CPU)
3677 #define SO_OBJECTS	(1 << SL_OBJECTS)
3678 #define SO_TOTAL	(1 << SL_TOTAL)
3679 
3680 static ssize_t show_slab_objects(struct kmem_cache *s,
3681 			    char *buf, unsigned long flags)
3682 {
3683 	unsigned long total = 0;
3684 	int node;
3685 	int x;
3686 	unsigned long *nodes;
3687 	unsigned long *per_cpu;
3688 
3689 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3690 	if (!nodes)
3691 		return -ENOMEM;
3692 	per_cpu = nodes + nr_node_ids;
3693 
3694 	if (flags & SO_CPU) {
3695 		int cpu;
3696 
3697 		for_each_possible_cpu(cpu) {
3698 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3699 
3700 			if (!c || c->node < 0)
3701 				continue;
3702 
3703 			if (c->page) {
3704 					if (flags & SO_TOTAL)
3705 						x = c->page->objects;
3706 				else if (flags & SO_OBJECTS)
3707 					x = c->page->inuse;
3708 				else
3709 					x = 1;
3710 
3711 				total += x;
3712 				nodes[c->node] += x;
3713 			}
3714 			per_cpu[c->node]++;
3715 		}
3716 	}
3717 
3718 	if (flags & SO_ALL) {
3719 		for_each_node_state(node, N_NORMAL_MEMORY) {
3720 			struct kmem_cache_node *n = get_node(s, node);
3721 
3722 		if (flags & SO_TOTAL)
3723 			x = atomic_long_read(&n->total_objects);
3724 		else if (flags & SO_OBJECTS)
3725 			x = atomic_long_read(&n->total_objects) -
3726 				count_partial(n, count_free);
3727 
3728 			else
3729 				x = atomic_long_read(&n->nr_slabs);
3730 			total += x;
3731 			nodes[node] += x;
3732 		}
3733 
3734 	} else if (flags & SO_PARTIAL) {
3735 		for_each_node_state(node, N_NORMAL_MEMORY) {
3736 			struct kmem_cache_node *n = get_node(s, node);
3737 
3738 			if (flags & SO_TOTAL)
3739 				x = count_partial(n, count_total);
3740 			else if (flags & SO_OBJECTS)
3741 				x = count_partial(n, count_inuse);
3742 			else
3743 				x = n->nr_partial;
3744 			total += x;
3745 			nodes[node] += x;
3746 		}
3747 	}
3748 	x = sprintf(buf, "%lu", total);
3749 #ifdef CONFIG_NUMA
3750 	for_each_node_state(node, N_NORMAL_MEMORY)
3751 		if (nodes[node])
3752 			x += sprintf(buf + x, " N%d=%lu",
3753 					node, nodes[node]);
3754 #endif
3755 	kfree(nodes);
3756 	return x + sprintf(buf + x, "\n");
3757 }
3758 
3759 static int any_slab_objects(struct kmem_cache *s)
3760 {
3761 	int node;
3762 
3763 	for_each_online_node(node) {
3764 		struct kmem_cache_node *n = get_node(s, node);
3765 
3766 		if (!n)
3767 			continue;
3768 
3769 		if (atomic_long_read(&n->total_objects))
3770 			return 1;
3771 	}
3772 	return 0;
3773 }
3774 
3775 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3776 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3777 
3778 struct slab_attribute {
3779 	struct attribute attr;
3780 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3781 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3782 };
3783 
3784 #define SLAB_ATTR_RO(_name) \
3785 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3786 
3787 #define SLAB_ATTR(_name) \
3788 	static struct slab_attribute _name##_attr =  \
3789 	__ATTR(_name, 0644, _name##_show, _name##_store)
3790 
3791 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3792 {
3793 	return sprintf(buf, "%d\n", s->size);
3794 }
3795 SLAB_ATTR_RO(slab_size);
3796 
3797 static ssize_t align_show(struct kmem_cache *s, char *buf)
3798 {
3799 	return sprintf(buf, "%d\n", s->align);
3800 }
3801 SLAB_ATTR_RO(align);
3802 
3803 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3804 {
3805 	return sprintf(buf, "%d\n", s->objsize);
3806 }
3807 SLAB_ATTR_RO(object_size);
3808 
3809 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3810 {
3811 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3812 }
3813 SLAB_ATTR_RO(objs_per_slab);
3814 
3815 static ssize_t order_store(struct kmem_cache *s,
3816 				const char *buf, size_t length)
3817 {
3818 	unsigned long order;
3819 	int err;
3820 
3821 	err = strict_strtoul(buf, 10, &order);
3822 	if (err)
3823 		return err;
3824 
3825 	if (order > slub_max_order || order < slub_min_order)
3826 		return -EINVAL;
3827 
3828 	calculate_sizes(s, order);
3829 	return length;
3830 }
3831 
3832 static ssize_t order_show(struct kmem_cache *s, char *buf)
3833 {
3834 	return sprintf(buf, "%d\n", oo_order(s->oo));
3835 }
3836 SLAB_ATTR(order);
3837 
3838 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3839 {
3840 	if (s->ctor) {
3841 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3842 
3843 		return n + sprintf(buf + n, "\n");
3844 	}
3845 	return 0;
3846 }
3847 SLAB_ATTR_RO(ctor);
3848 
3849 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3850 {
3851 	return sprintf(buf, "%d\n", s->refcount - 1);
3852 }
3853 SLAB_ATTR_RO(aliases);
3854 
3855 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3856 {
3857 	return show_slab_objects(s, buf, SO_ALL);
3858 }
3859 SLAB_ATTR_RO(slabs);
3860 
3861 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3862 {
3863 	return show_slab_objects(s, buf, SO_PARTIAL);
3864 }
3865 SLAB_ATTR_RO(partial);
3866 
3867 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3868 {
3869 	return show_slab_objects(s, buf, SO_CPU);
3870 }
3871 SLAB_ATTR_RO(cpu_slabs);
3872 
3873 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3874 {
3875 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3876 }
3877 SLAB_ATTR_RO(objects);
3878 
3879 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3880 {
3881 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3882 }
3883 SLAB_ATTR_RO(objects_partial);
3884 
3885 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3886 {
3887 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3888 }
3889 SLAB_ATTR_RO(total_objects);
3890 
3891 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3892 {
3893 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3894 }
3895 
3896 static ssize_t sanity_checks_store(struct kmem_cache *s,
3897 				const char *buf, size_t length)
3898 {
3899 	s->flags &= ~SLAB_DEBUG_FREE;
3900 	if (buf[0] == '1')
3901 		s->flags |= SLAB_DEBUG_FREE;
3902 	return length;
3903 }
3904 SLAB_ATTR(sanity_checks);
3905 
3906 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3907 {
3908 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3909 }
3910 
3911 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3912 							size_t length)
3913 {
3914 	s->flags &= ~SLAB_TRACE;
3915 	if (buf[0] == '1')
3916 		s->flags |= SLAB_TRACE;
3917 	return length;
3918 }
3919 SLAB_ATTR(trace);
3920 
3921 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3922 {
3923 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3924 }
3925 
3926 static ssize_t reclaim_account_store(struct kmem_cache *s,
3927 				const char *buf, size_t length)
3928 {
3929 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3930 	if (buf[0] == '1')
3931 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3932 	return length;
3933 }
3934 SLAB_ATTR(reclaim_account);
3935 
3936 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3937 {
3938 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3939 }
3940 SLAB_ATTR_RO(hwcache_align);
3941 
3942 #ifdef CONFIG_ZONE_DMA
3943 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3944 {
3945 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3946 }
3947 SLAB_ATTR_RO(cache_dma);
3948 #endif
3949 
3950 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3951 {
3952 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3953 }
3954 SLAB_ATTR_RO(destroy_by_rcu);
3955 
3956 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3957 {
3958 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3959 }
3960 
3961 static ssize_t red_zone_store(struct kmem_cache *s,
3962 				const char *buf, size_t length)
3963 {
3964 	if (any_slab_objects(s))
3965 		return -EBUSY;
3966 
3967 	s->flags &= ~SLAB_RED_ZONE;
3968 	if (buf[0] == '1')
3969 		s->flags |= SLAB_RED_ZONE;
3970 	calculate_sizes(s, -1);
3971 	return length;
3972 }
3973 SLAB_ATTR(red_zone);
3974 
3975 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3976 {
3977 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3978 }
3979 
3980 static ssize_t poison_store(struct kmem_cache *s,
3981 				const char *buf, size_t length)
3982 {
3983 	if (any_slab_objects(s))
3984 		return -EBUSY;
3985 
3986 	s->flags &= ~SLAB_POISON;
3987 	if (buf[0] == '1')
3988 		s->flags |= SLAB_POISON;
3989 	calculate_sizes(s, -1);
3990 	return length;
3991 }
3992 SLAB_ATTR(poison);
3993 
3994 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3995 {
3996 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3997 }
3998 
3999 static ssize_t store_user_store(struct kmem_cache *s,
4000 				const char *buf, size_t length)
4001 {
4002 	if (any_slab_objects(s))
4003 		return -EBUSY;
4004 
4005 	s->flags &= ~SLAB_STORE_USER;
4006 	if (buf[0] == '1')
4007 		s->flags |= SLAB_STORE_USER;
4008 	calculate_sizes(s, -1);
4009 	return length;
4010 }
4011 SLAB_ATTR(store_user);
4012 
4013 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4014 {
4015 	return 0;
4016 }
4017 
4018 static ssize_t validate_store(struct kmem_cache *s,
4019 			const char *buf, size_t length)
4020 {
4021 	int ret = -EINVAL;
4022 
4023 	if (buf[0] == '1') {
4024 		ret = validate_slab_cache(s);
4025 		if (ret >= 0)
4026 			ret = length;
4027 	}
4028 	return ret;
4029 }
4030 SLAB_ATTR(validate);
4031 
4032 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4033 {
4034 	return 0;
4035 }
4036 
4037 static ssize_t shrink_store(struct kmem_cache *s,
4038 			const char *buf, size_t length)
4039 {
4040 	if (buf[0] == '1') {
4041 		int rc = kmem_cache_shrink(s);
4042 
4043 		if (rc)
4044 			return rc;
4045 	} else
4046 		return -EINVAL;
4047 	return length;
4048 }
4049 SLAB_ATTR(shrink);
4050 
4051 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4052 {
4053 	if (!(s->flags & SLAB_STORE_USER))
4054 		return -ENOSYS;
4055 	return list_locations(s, buf, TRACK_ALLOC);
4056 }
4057 SLAB_ATTR_RO(alloc_calls);
4058 
4059 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4060 {
4061 	if (!(s->flags & SLAB_STORE_USER))
4062 		return -ENOSYS;
4063 	return list_locations(s, buf, TRACK_FREE);
4064 }
4065 SLAB_ATTR_RO(free_calls);
4066 
4067 #ifdef CONFIG_NUMA
4068 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4069 {
4070 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4071 }
4072 
4073 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4074 				const char *buf, size_t length)
4075 {
4076 	unsigned long ratio;
4077 	int err;
4078 
4079 	err = strict_strtoul(buf, 10, &ratio);
4080 	if (err)
4081 		return err;
4082 
4083 	if (ratio <= 100)
4084 		s->remote_node_defrag_ratio = ratio * 10;
4085 
4086 	return length;
4087 }
4088 SLAB_ATTR(remote_node_defrag_ratio);
4089 #endif
4090 
4091 #ifdef CONFIG_SLUB_STATS
4092 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4093 {
4094 	unsigned long sum  = 0;
4095 	int cpu;
4096 	int len;
4097 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4098 
4099 	if (!data)
4100 		return -ENOMEM;
4101 
4102 	for_each_online_cpu(cpu) {
4103 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4104 
4105 		data[cpu] = x;
4106 		sum += x;
4107 	}
4108 
4109 	len = sprintf(buf, "%lu", sum);
4110 
4111 #ifdef CONFIG_SMP
4112 	for_each_online_cpu(cpu) {
4113 		if (data[cpu] && len < PAGE_SIZE - 20)
4114 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4115 	}
4116 #endif
4117 	kfree(data);
4118 	return len + sprintf(buf + len, "\n");
4119 }
4120 
4121 #define STAT_ATTR(si, text) 					\
4122 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4123 {								\
4124 	return show_stat(s, buf, si);				\
4125 }								\
4126 SLAB_ATTR_RO(text);						\
4127 
4128 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4129 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4130 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4131 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4132 STAT_ATTR(FREE_FROZEN, free_frozen);
4133 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4134 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4135 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4136 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4137 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4138 STAT_ATTR(FREE_SLAB, free_slab);
4139 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4140 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4141 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4142 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4143 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4144 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4145 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4146 #endif
4147 
4148 static struct attribute *slab_attrs[] = {
4149 	&slab_size_attr.attr,
4150 	&object_size_attr.attr,
4151 	&objs_per_slab_attr.attr,
4152 	&order_attr.attr,
4153 	&objects_attr.attr,
4154 	&objects_partial_attr.attr,
4155 	&total_objects_attr.attr,
4156 	&slabs_attr.attr,
4157 	&partial_attr.attr,
4158 	&cpu_slabs_attr.attr,
4159 	&ctor_attr.attr,
4160 	&aliases_attr.attr,
4161 	&align_attr.attr,
4162 	&sanity_checks_attr.attr,
4163 	&trace_attr.attr,
4164 	&hwcache_align_attr.attr,
4165 	&reclaim_account_attr.attr,
4166 	&destroy_by_rcu_attr.attr,
4167 	&red_zone_attr.attr,
4168 	&poison_attr.attr,
4169 	&store_user_attr.attr,
4170 	&validate_attr.attr,
4171 	&shrink_attr.attr,
4172 	&alloc_calls_attr.attr,
4173 	&free_calls_attr.attr,
4174 #ifdef CONFIG_ZONE_DMA
4175 	&cache_dma_attr.attr,
4176 #endif
4177 #ifdef CONFIG_NUMA
4178 	&remote_node_defrag_ratio_attr.attr,
4179 #endif
4180 #ifdef CONFIG_SLUB_STATS
4181 	&alloc_fastpath_attr.attr,
4182 	&alloc_slowpath_attr.attr,
4183 	&free_fastpath_attr.attr,
4184 	&free_slowpath_attr.attr,
4185 	&free_frozen_attr.attr,
4186 	&free_add_partial_attr.attr,
4187 	&free_remove_partial_attr.attr,
4188 	&alloc_from_partial_attr.attr,
4189 	&alloc_slab_attr.attr,
4190 	&alloc_refill_attr.attr,
4191 	&free_slab_attr.attr,
4192 	&cpuslab_flush_attr.attr,
4193 	&deactivate_full_attr.attr,
4194 	&deactivate_empty_attr.attr,
4195 	&deactivate_to_head_attr.attr,
4196 	&deactivate_to_tail_attr.attr,
4197 	&deactivate_remote_frees_attr.attr,
4198 	&order_fallback_attr.attr,
4199 #endif
4200 	NULL
4201 };
4202 
4203 static struct attribute_group slab_attr_group = {
4204 	.attrs = slab_attrs,
4205 };
4206 
4207 static ssize_t slab_attr_show(struct kobject *kobj,
4208 				struct attribute *attr,
4209 				char *buf)
4210 {
4211 	struct slab_attribute *attribute;
4212 	struct kmem_cache *s;
4213 	int err;
4214 
4215 	attribute = to_slab_attr(attr);
4216 	s = to_slab(kobj);
4217 
4218 	if (!attribute->show)
4219 		return -EIO;
4220 
4221 	err = attribute->show(s, buf);
4222 
4223 	return err;
4224 }
4225 
4226 static ssize_t slab_attr_store(struct kobject *kobj,
4227 				struct attribute *attr,
4228 				const char *buf, size_t len)
4229 {
4230 	struct slab_attribute *attribute;
4231 	struct kmem_cache *s;
4232 	int err;
4233 
4234 	attribute = to_slab_attr(attr);
4235 	s = to_slab(kobj);
4236 
4237 	if (!attribute->store)
4238 		return -EIO;
4239 
4240 	err = attribute->store(s, buf, len);
4241 
4242 	return err;
4243 }
4244 
4245 static void kmem_cache_release(struct kobject *kobj)
4246 {
4247 	struct kmem_cache *s = to_slab(kobj);
4248 
4249 	kfree(s);
4250 }
4251 
4252 static struct sysfs_ops slab_sysfs_ops = {
4253 	.show = slab_attr_show,
4254 	.store = slab_attr_store,
4255 };
4256 
4257 static struct kobj_type slab_ktype = {
4258 	.sysfs_ops = &slab_sysfs_ops,
4259 	.release = kmem_cache_release
4260 };
4261 
4262 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4263 {
4264 	struct kobj_type *ktype = get_ktype(kobj);
4265 
4266 	if (ktype == &slab_ktype)
4267 		return 1;
4268 	return 0;
4269 }
4270 
4271 static struct kset_uevent_ops slab_uevent_ops = {
4272 	.filter = uevent_filter,
4273 };
4274 
4275 static struct kset *slab_kset;
4276 
4277 #define ID_STR_LENGTH 64
4278 
4279 /* Create a unique string id for a slab cache:
4280  *
4281  * Format	:[flags-]size
4282  */
4283 static char *create_unique_id(struct kmem_cache *s)
4284 {
4285 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4286 	char *p = name;
4287 
4288 	BUG_ON(!name);
4289 
4290 	*p++ = ':';
4291 	/*
4292 	 * First flags affecting slabcache operations. We will only
4293 	 * get here for aliasable slabs so we do not need to support
4294 	 * too many flags. The flags here must cover all flags that
4295 	 * are matched during merging to guarantee that the id is
4296 	 * unique.
4297 	 */
4298 	if (s->flags & SLAB_CACHE_DMA)
4299 		*p++ = 'd';
4300 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4301 		*p++ = 'a';
4302 	if (s->flags & SLAB_DEBUG_FREE)
4303 		*p++ = 'F';
4304 	if (p != name + 1)
4305 		*p++ = '-';
4306 	p += sprintf(p, "%07d", s->size);
4307 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4308 	return name;
4309 }
4310 
4311 static int sysfs_slab_add(struct kmem_cache *s)
4312 {
4313 	int err;
4314 	const char *name;
4315 	int unmergeable;
4316 
4317 	if (slab_state < SYSFS)
4318 		/* Defer until later */
4319 		return 0;
4320 
4321 	unmergeable = slab_unmergeable(s);
4322 	if (unmergeable) {
4323 		/*
4324 		 * Slabcache can never be merged so we can use the name proper.
4325 		 * This is typically the case for debug situations. In that
4326 		 * case we can catch duplicate names easily.
4327 		 */
4328 		sysfs_remove_link(&slab_kset->kobj, s->name);
4329 		name = s->name;
4330 	} else {
4331 		/*
4332 		 * Create a unique name for the slab as a target
4333 		 * for the symlinks.
4334 		 */
4335 		name = create_unique_id(s);
4336 	}
4337 
4338 	s->kobj.kset = slab_kset;
4339 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4340 	if (err) {
4341 		kobject_put(&s->kobj);
4342 		return err;
4343 	}
4344 
4345 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4346 	if (err)
4347 		return err;
4348 	kobject_uevent(&s->kobj, KOBJ_ADD);
4349 	if (!unmergeable) {
4350 		/* Setup first alias */
4351 		sysfs_slab_alias(s, s->name);
4352 		kfree(name);
4353 	}
4354 	return 0;
4355 }
4356 
4357 static void sysfs_slab_remove(struct kmem_cache *s)
4358 {
4359 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4360 	kobject_del(&s->kobj);
4361 	kobject_put(&s->kobj);
4362 }
4363 
4364 /*
4365  * Need to buffer aliases during bootup until sysfs becomes
4366  * available lest we lose that information.
4367  */
4368 struct saved_alias {
4369 	struct kmem_cache *s;
4370 	const char *name;
4371 	struct saved_alias *next;
4372 };
4373 
4374 static struct saved_alias *alias_list;
4375 
4376 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4377 {
4378 	struct saved_alias *al;
4379 
4380 	if (slab_state == SYSFS) {
4381 		/*
4382 		 * If we have a leftover link then remove it.
4383 		 */
4384 		sysfs_remove_link(&slab_kset->kobj, name);
4385 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4386 	}
4387 
4388 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4389 	if (!al)
4390 		return -ENOMEM;
4391 
4392 	al->s = s;
4393 	al->name = name;
4394 	al->next = alias_list;
4395 	alias_list = al;
4396 	return 0;
4397 }
4398 
4399 static int __init slab_sysfs_init(void)
4400 {
4401 	struct kmem_cache *s;
4402 	int err;
4403 
4404 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4405 	if (!slab_kset) {
4406 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4407 		return -ENOSYS;
4408 	}
4409 
4410 	slab_state = SYSFS;
4411 
4412 	list_for_each_entry(s, &slab_caches, list) {
4413 		err = sysfs_slab_add(s);
4414 		if (err)
4415 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4416 						" to sysfs\n", s->name);
4417 	}
4418 
4419 	while (alias_list) {
4420 		struct saved_alias *al = alias_list;
4421 
4422 		alias_list = alias_list->next;
4423 		err = sysfs_slab_alias(al->s, al->name);
4424 		if (err)
4425 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4426 					" %s to sysfs\n", s->name);
4427 		kfree(al);
4428 	}
4429 
4430 	resiliency_test();
4431 	return 0;
4432 }
4433 
4434 __initcall(slab_sysfs_init);
4435 #endif
4436 
4437 /*
4438  * The /proc/slabinfo ABI
4439  */
4440 #ifdef CONFIG_SLABINFO
4441 static void print_slabinfo_header(struct seq_file *m)
4442 {
4443 	seq_puts(m, "slabinfo - version: 2.1\n");
4444 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4445 		 "<objperslab> <pagesperslab>");
4446 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4447 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4448 	seq_putc(m, '\n');
4449 }
4450 
4451 static void *s_start(struct seq_file *m, loff_t *pos)
4452 {
4453 	loff_t n = *pos;
4454 
4455 	down_read(&slub_lock);
4456 	if (!n)
4457 		print_slabinfo_header(m);
4458 
4459 	return seq_list_start(&slab_caches, *pos);
4460 }
4461 
4462 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4463 {
4464 	return seq_list_next(p, &slab_caches, pos);
4465 }
4466 
4467 static void s_stop(struct seq_file *m, void *p)
4468 {
4469 	up_read(&slub_lock);
4470 }
4471 
4472 static int s_show(struct seq_file *m, void *p)
4473 {
4474 	unsigned long nr_partials = 0;
4475 	unsigned long nr_slabs = 0;
4476 	unsigned long nr_inuse = 0;
4477 	unsigned long nr_objs = 0;
4478 	unsigned long nr_free = 0;
4479 	struct kmem_cache *s;
4480 	int node;
4481 
4482 	s = list_entry(p, struct kmem_cache, list);
4483 
4484 	for_each_online_node(node) {
4485 		struct kmem_cache_node *n = get_node(s, node);
4486 
4487 		if (!n)
4488 			continue;
4489 
4490 		nr_partials += n->nr_partial;
4491 		nr_slabs += atomic_long_read(&n->nr_slabs);
4492 		nr_objs += atomic_long_read(&n->total_objects);
4493 		nr_free += count_partial(n, count_free);
4494 	}
4495 
4496 	nr_inuse = nr_objs - nr_free;
4497 
4498 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4499 		   nr_objs, s->size, oo_objects(s->oo),
4500 		   (1 << oo_order(s->oo)));
4501 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4502 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4503 		   0UL);
4504 	seq_putc(m, '\n');
4505 	return 0;
4506 }
4507 
4508 static const struct seq_operations slabinfo_op = {
4509 	.start = s_start,
4510 	.next = s_next,
4511 	.stop = s_stop,
4512 	.show = s_show,
4513 };
4514 
4515 static int slabinfo_open(struct inode *inode, struct file *file)
4516 {
4517 	return seq_open(file, &slabinfo_op);
4518 }
4519 
4520 static const struct file_operations proc_slabinfo_operations = {
4521 	.open		= slabinfo_open,
4522 	.read		= seq_read,
4523 	.llseek		= seq_lseek,
4524 	.release	= seq_release,
4525 };
4526 
4527 static int __init slab_proc_init(void)
4528 {
4529 	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4530 	return 0;
4531 }
4532 module_init(slab_proc_init);
4533 #endif /* CONFIG_SLABINFO */
4534