1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/notifier.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 #include <linux/random.h> 38 39 #include <trace/events/kmem.h> 40 41 #include "internal.h" 42 43 /* 44 * Lock order: 45 * 1. slab_mutex (Global Mutex) 46 * 2. node->list_lock 47 * 3. slab_lock(page) (Only on some arches and for debugging) 48 * 49 * slab_mutex 50 * 51 * The role of the slab_mutex is to protect the list of all the slabs 52 * and to synchronize major metadata changes to slab cache structures. 53 * 54 * The slab_lock is only used for debugging and on arches that do not 55 * have the ability to do a cmpxchg_double. It only protects the second 56 * double word in the page struct. Meaning 57 * A. page->freelist -> List of object free in a page 58 * B. page->counters -> Counters of objects 59 * C. page->frozen -> frozen state 60 * 61 * If a slab is frozen then it is exempt from list management. It is not 62 * on any list. The processor that froze the slab is the one who can 63 * perform list operations on the page. Other processors may put objects 64 * onto the freelist but the processor that froze the slab is the only 65 * one that can retrieve the objects from the page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 /* Poison object */ 196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 197 /* Use cmpxchg_double */ 198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 199 200 /* 201 * Tracking user of a slab. 202 */ 203 #define TRACK_ADDRS_COUNT 16 204 struct track { 205 unsigned long addr; /* Called from address */ 206 #ifdef CONFIG_STACKTRACE 207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 208 #endif 209 int cpu; /* Was running on cpu */ 210 int pid; /* Pid context */ 211 unsigned long when; /* When did the operation occur */ 212 }; 213 214 enum track_item { TRACK_ALLOC, TRACK_FREE }; 215 216 #ifdef CONFIG_SYSFS 217 static int sysfs_slab_add(struct kmem_cache *); 218 static int sysfs_slab_alias(struct kmem_cache *, const char *); 219 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 220 static void sysfs_slab_remove(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 /* 233 * The rmw is racy on a preemptible kernel but this is acceptable, so 234 * avoid this_cpu_add()'s irq-disable overhead. 235 */ 236 raw_cpu_inc(s->cpu_slab->stat[si]); 237 #endif 238 } 239 240 /******************************************************************** 241 * Core slab cache functions 242 *******************************************************************/ 243 244 /* 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated 246 * with an XOR of the address where the pointer is held and a per-cache 247 * random number. 248 */ 249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 250 unsigned long ptr_addr) 251 { 252 #ifdef CONFIG_SLAB_FREELIST_HARDENED 253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); 254 #else 255 return ptr; 256 #endif 257 } 258 259 /* Returns the freelist pointer recorded at location ptr_addr. */ 260 static inline void *freelist_dereference(const struct kmem_cache *s, 261 void *ptr_addr) 262 { 263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 264 (unsigned long)ptr_addr); 265 } 266 267 static inline void *get_freepointer(struct kmem_cache *s, void *object) 268 { 269 return freelist_dereference(s, object + s->offset); 270 } 271 272 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 273 { 274 if (object) 275 prefetch(freelist_dereference(s, object + s->offset)); 276 } 277 278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 279 { 280 unsigned long freepointer_addr; 281 void *p; 282 283 if (!debug_pagealloc_enabled()) 284 return get_freepointer(s, object); 285 286 freepointer_addr = (unsigned long)object + s->offset; 287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 288 return freelist_ptr(s, p, freepointer_addr); 289 } 290 291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 292 { 293 unsigned long freeptr_addr = (unsigned long)object + s->offset; 294 295 #ifdef CONFIG_SLAB_FREELIST_HARDENED 296 BUG_ON(object == fp); /* naive detection of double free or corruption */ 297 #endif 298 299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 300 } 301 302 /* Loop over all objects in a slab */ 303 #define for_each_object(__p, __s, __addr, __objects) \ 304 for (__p = fixup_red_left(__s, __addr); \ 305 __p < (__addr) + (__objects) * (__s)->size; \ 306 __p += (__s)->size) 307 308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 310 __idx <= __objects; \ 311 __p += (__s)->size, __idx++) 312 313 /* Determine object index from a given position */ 314 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 315 { 316 return (p - addr) / s->size; 317 } 318 319 static inline int order_objects(int order, unsigned long size, int reserved) 320 { 321 return ((PAGE_SIZE << order) - reserved) / size; 322 } 323 324 static inline struct kmem_cache_order_objects oo_make(int order, 325 unsigned long size, int reserved) 326 { 327 struct kmem_cache_order_objects x = { 328 (order << OO_SHIFT) + order_objects(order, size, reserved) 329 }; 330 331 return x; 332 } 333 334 static inline int oo_order(struct kmem_cache_order_objects x) 335 { 336 return x.x >> OO_SHIFT; 337 } 338 339 static inline int oo_objects(struct kmem_cache_order_objects x) 340 { 341 return x.x & OO_MASK; 342 } 343 344 /* 345 * Per slab locking using the pagelock 346 */ 347 static __always_inline void slab_lock(struct page *page) 348 { 349 VM_BUG_ON_PAGE(PageTail(page), page); 350 bit_spin_lock(PG_locked, &page->flags); 351 } 352 353 static __always_inline void slab_unlock(struct page *page) 354 { 355 VM_BUG_ON_PAGE(PageTail(page), page); 356 __bit_spin_unlock(PG_locked, &page->flags); 357 } 358 359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 360 { 361 struct page tmp; 362 tmp.counters = counters_new; 363 /* 364 * page->counters can cover frozen/inuse/objects as well 365 * as page->_refcount. If we assign to ->counters directly 366 * we run the risk of losing updates to page->_refcount, so 367 * be careful and only assign to the fields we need. 368 */ 369 page->frozen = tmp.frozen; 370 page->inuse = tmp.inuse; 371 page->objects = tmp.objects; 372 } 373 374 /* Interrupts must be disabled (for the fallback code to work right) */ 375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 376 void *freelist_old, unsigned long counters_old, 377 void *freelist_new, unsigned long counters_new, 378 const char *n) 379 { 380 VM_BUG_ON(!irqs_disabled()); 381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 383 if (s->flags & __CMPXCHG_DOUBLE) { 384 if (cmpxchg_double(&page->freelist, &page->counters, 385 freelist_old, counters_old, 386 freelist_new, counters_new)) 387 return true; 388 } else 389 #endif 390 { 391 slab_lock(page); 392 if (page->freelist == freelist_old && 393 page->counters == counters_old) { 394 page->freelist = freelist_new; 395 set_page_slub_counters(page, counters_new); 396 slab_unlock(page); 397 return true; 398 } 399 slab_unlock(page); 400 } 401 402 cpu_relax(); 403 stat(s, CMPXCHG_DOUBLE_FAIL); 404 405 #ifdef SLUB_DEBUG_CMPXCHG 406 pr_info("%s %s: cmpxchg double redo ", n, s->name); 407 #endif 408 409 return false; 410 } 411 412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 413 void *freelist_old, unsigned long counters_old, 414 void *freelist_new, unsigned long counters_new, 415 const char *n) 416 { 417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 419 if (s->flags & __CMPXCHG_DOUBLE) { 420 if (cmpxchg_double(&page->freelist, &page->counters, 421 freelist_old, counters_old, 422 freelist_new, counters_new)) 423 return true; 424 } else 425 #endif 426 { 427 unsigned long flags; 428 429 local_irq_save(flags); 430 slab_lock(page); 431 if (page->freelist == freelist_old && 432 page->counters == counters_old) { 433 page->freelist = freelist_new; 434 set_page_slub_counters(page, counters_new); 435 slab_unlock(page); 436 local_irq_restore(flags); 437 return true; 438 } 439 slab_unlock(page); 440 local_irq_restore(flags); 441 } 442 443 cpu_relax(); 444 stat(s, CMPXCHG_DOUBLE_FAIL); 445 446 #ifdef SLUB_DEBUG_CMPXCHG 447 pr_info("%s %s: cmpxchg double redo ", n, s->name); 448 #endif 449 450 return false; 451 } 452 453 #ifdef CONFIG_SLUB_DEBUG 454 /* 455 * Determine a map of object in use on a page. 456 * 457 * Node listlock must be held to guarantee that the page does 458 * not vanish from under us. 459 */ 460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 461 { 462 void *p; 463 void *addr = page_address(page); 464 465 for (p = page->freelist; p; p = get_freepointer(s, p)) 466 set_bit(slab_index(p, s, addr), map); 467 } 468 469 static inline int size_from_object(struct kmem_cache *s) 470 { 471 if (s->flags & SLAB_RED_ZONE) 472 return s->size - s->red_left_pad; 473 474 return s->size; 475 } 476 477 static inline void *restore_red_left(struct kmem_cache *s, void *p) 478 { 479 if (s->flags & SLAB_RED_ZONE) 480 p -= s->red_left_pad; 481 482 return p; 483 } 484 485 /* 486 * Debug settings: 487 */ 488 #if defined(CONFIG_SLUB_DEBUG_ON) 489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 490 #else 491 static slab_flags_t slub_debug; 492 #endif 493 494 static char *slub_debug_slabs; 495 static int disable_higher_order_debug; 496 497 /* 498 * slub is about to manipulate internal object metadata. This memory lies 499 * outside the range of the allocated object, so accessing it would normally 500 * be reported by kasan as a bounds error. metadata_access_enable() is used 501 * to tell kasan that these accesses are OK. 502 */ 503 static inline void metadata_access_enable(void) 504 { 505 kasan_disable_current(); 506 } 507 508 static inline void metadata_access_disable(void) 509 { 510 kasan_enable_current(); 511 } 512 513 /* 514 * Object debugging 515 */ 516 517 /* Verify that a pointer has an address that is valid within a slab page */ 518 static inline int check_valid_pointer(struct kmem_cache *s, 519 struct page *page, void *object) 520 { 521 void *base; 522 523 if (!object) 524 return 1; 525 526 base = page_address(page); 527 object = restore_red_left(s, object); 528 if (object < base || object >= base + page->objects * s->size || 529 (object - base) % s->size) { 530 return 0; 531 } 532 533 return 1; 534 } 535 536 static void print_section(char *level, char *text, u8 *addr, 537 unsigned int length) 538 { 539 metadata_access_enable(); 540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 541 length, 1); 542 metadata_access_disable(); 543 } 544 545 static struct track *get_track(struct kmem_cache *s, void *object, 546 enum track_item alloc) 547 { 548 struct track *p; 549 550 if (s->offset) 551 p = object + s->offset + sizeof(void *); 552 else 553 p = object + s->inuse; 554 555 return p + alloc; 556 } 557 558 static void set_track(struct kmem_cache *s, void *object, 559 enum track_item alloc, unsigned long addr) 560 { 561 struct track *p = get_track(s, object, alloc); 562 563 if (addr) { 564 #ifdef CONFIG_STACKTRACE 565 struct stack_trace trace; 566 int i; 567 568 trace.nr_entries = 0; 569 trace.max_entries = TRACK_ADDRS_COUNT; 570 trace.entries = p->addrs; 571 trace.skip = 3; 572 metadata_access_enable(); 573 save_stack_trace(&trace); 574 metadata_access_disable(); 575 576 /* See rant in lockdep.c */ 577 if (trace.nr_entries != 0 && 578 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 579 trace.nr_entries--; 580 581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 582 p->addrs[i] = 0; 583 #endif 584 p->addr = addr; 585 p->cpu = smp_processor_id(); 586 p->pid = current->pid; 587 p->when = jiffies; 588 } else 589 memset(p, 0, sizeof(struct track)); 590 } 591 592 static void init_tracking(struct kmem_cache *s, void *object) 593 { 594 if (!(s->flags & SLAB_STORE_USER)) 595 return; 596 597 set_track(s, object, TRACK_FREE, 0UL); 598 set_track(s, object, TRACK_ALLOC, 0UL); 599 } 600 601 static void print_track(const char *s, struct track *t) 602 { 603 if (!t->addr) 604 return; 605 606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 607 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 608 #ifdef CONFIG_STACKTRACE 609 { 610 int i; 611 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 612 if (t->addrs[i]) 613 pr_err("\t%pS\n", (void *)t->addrs[i]); 614 else 615 break; 616 } 617 #endif 618 } 619 620 static void print_tracking(struct kmem_cache *s, void *object) 621 { 622 if (!(s->flags & SLAB_STORE_USER)) 623 return; 624 625 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 626 print_track("Freed", get_track(s, object, TRACK_FREE)); 627 } 628 629 static void print_page_info(struct page *page) 630 { 631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 632 page, page->objects, page->inuse, page->freelist, page->flags); 633 634 } 635 636 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 637 { 638 struct va_format vaf; 639 va_list args; 640 641 va_start(args, fmt); 642 vaf.fmt = fmt; 643 vaf.va = &args; 644 pr_err("=============================================================================\n"); 645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 646 pr_err("-----------------------------------------------------------------------------\n\n"); 647 648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 649 va_end(args); 650 } 651 652 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 653 { 654 struct va_format vaf; 655 va_list args; 656 657 va_start(args, fmt); 658 vaf.fmt = fmt; 659 vaf.va = &args; 660 pr_err("FIX %s: %pV\n", s->name, &vaf); 661 va_end(args); 662 } 663 664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 665 { 666 unsigned int off; /* Offset of last byte */ 667 u8 *addr = page_address(page); 668 669 print_tracking(s, p); 670 671 print_page_info(page); 672 673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 674 p, p - addr, get_freepointer(s, p)); 675 676 if (s->flags & SLAB_RED_ZONE) 677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 678 s->red_left_pad); 679 else if (p > addr + 16) 680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 681 682 print_section(KERN_ERR, "Object ", p, 683 min_t(unsigned long, s->object_size, PAGE_SIZE)); 684 if (s->flags & SLAB_RED_ZONE) 685 print_section(KERN_ERR, "Redzone ", p + s->object_size, 686 s->inuse - s->object_size); 687 688 if (s->offset) 689 off = s->offset + sizeof(void *); 690 else 691 off = s->inuse; 692 693 if (s->flags & SLAB_STORE_USER) 694 off += 2 * sizeof(struct track); 695 696 off += kasan_metadata_size(s); 697 698 if (off != size_from_object(s)) 699 /* Beginning of the filler is the free pointer */ 700 print_section(KERN_ERR, "Padding ", p + off, 701 size_from_object(s) - off); 702 703 dump_stack(); 704 } 705 706 void object_err(struct kmem_cache *s, struct page *page, 707 u8 *object, char *reason) 708 { 709 slab_bug(s, "%s", reason); 710 print_trailer(s, page, object); 711 } 712 713 static void slab_err(struct kmem_cache *s, struct page *page, 714 const char *fmt, ...) 715 { 716 va_list args; 717 char buf[100]; 718 719 va_start(args, fmt); 720 vsnprintf(buf, sizeof(buf), fmt, args); 721 va_end(args); 722 slab_bug(s, "%s", buf); 723 print_page_info(page); 724 dump_stack(); 725 } 726 727 static void init_object(struct kmem_cache *s, void *object, u8 val) 728 { 729 u8 *p = object; 730 731 if (s->flags & SLAB_RED_ZONE) 732 memset(p - s->red_left_pad, val, s->red_left_pad); 733 734 if (s->flags & __OBJECT_POISON) { 735 memset(p, POISON_FREE, s->object_size - 1); 736 p[s->object_size - 1] = POISON_END; 737 } 738 739 if (s->flags & SLAB_RED_ZONE) 740 memset(p + s->object_size, val, s->inuse - s->object_size); 741 } 742 743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 744 void *from, void *to) 745 { 746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 747 memset(from, data, to - from); 748 } 749 750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 751 u8 *object, char *what, 752 u8 *start, unsigned int value, unsigned int bytes) 753 { 754 u8 *fault; 755 u8 *end; 756 757 metadata_access_enable(); 758 fault = memchr_inv(start, value, bytes); 759 metadata_access_disable(); 760 if (!fault) 761 return 1; 762 763 end = start + bytes; 764 while (end > fault && end[-1] == value) 765 end--; 766 767 slab_bug(s, "%s overwritten", what); 768 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 769 fault, end - 1, fault[0], value); 770 print_trailer(s, page, object); 771 772 restore_bytes(s, what, value, fault, end); 773 return 0; 774 } 775 776 /* 777 * Object layout: 778 * 779 * object address 780 * Bytes of the object to be managed. 781 * If the freepointer may overlay the object then the free 782 * pointer is the first word of the object. 783 * 784 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 785 * 0xa5 (POISON_END) 786 * 787 * object + s->object_size 788 * Padding to reach word boundary. This is also used for Redzoning. 789 * Padding is extended by another word if Redzoning is enabled and 790 * object_size == inuse. 791 * 792 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 793 * 0xcc (RED_ACTIVE) for objects in use. 794 * 795 * object + s->inuse 796 * Meta data starts here. 797 * 798 * A. Free pointer (if we cannot overwrite object on free) 799 * B. Tracking data for SLAB_STORE_USER 800 * C. Padding to reach required alignment boundary or at mininum 801 * one word if debugging is on to be able to detect writes 802 * before the word boundary. 803 * 804 * Padding is done using 0x5a (POISON_INUSE) 805 * 806 * object + s->size 807 * Nothing is used beyond s->size. 808 * 809 * If slabcaches are merged then the object_size and inuse boundaries are mostly 810 * ignored. And therefore no slab options that rely on these boundaries 811 * may be used with merged slabcaches. 812 */ 813 814 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 815 { 816 unsigned long off = s->inuse; /* The end of info */ 817 818 if (s->offset) 819 /* Freepointer is placed after the object. */ 820 off += sizeof(void *); 821 822 if (s->flags & SLAB_STORE_USER) 823 /* We also have user information there */ 824 off += 2 * sizeof(struct track); 825 826 off += kasan_metadata_size(s); 827 828 if (size_from_object(s) == off) 829 return 1; 830 831 return check_bytes_and_report(s, page, p, "Object padding", 832 p + off, POISON_INUSE, size_from_object(s) - off); 833 } 834 835 /* Check the pad bytes at the end of a slab page */ 836 static int slab_pad_check(struct kmem_cache *s, struct page *page) 837 { 838 u8 *start; 839 u8 *fault; 840 u8 *end; 841 int length; 842 int remainder; 843 844 if (!(s->flags & SLAB_POISON)) 845 return 1; 846 847 start = page_address(page); 848 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 849 end = start + length; 850 remainder = length % s->size; 851 if (!remainder) 852 return 1; 853 854 metadata_access_enable(); 855 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 856 metadata_access_disable(); 857 if (!fault) 858 return 1; 859 while (end > fault && end[-1] == POISON_INUSE) 860 end--; 861 862 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 863 print_section(KERN_ERR, "Padding ", end - remainder, remainder); 864 865 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 866 return 0; 867 } 868 869 static int check_object(struct kmem_cache *s, struct page *page, 870 void *object, u8 val) 871 { 872 u8 *p = object; 873 u8 *endobject = object + s->object_size; 874 875 if (s->flags & SLAB_RED_ZONE) { 876 if (!check_bytes_and_report(s, page, object, "Redzone", 877 object - s->red_left_pad, val, s->red_left_pad)) 878 return 0; 879 880 if (!check_bytes_and_report(s, page, object, "Redzone", 881 endobject, val, s->inuse - s->object_size)) 882 return 0; 883 } else { 884 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 885 check_bytes_and_report(s, page, p, "Alignment padding", 886 endobject, POISON_INUSE, 887 s->inuse - s->object_size); 888 } 889 } 890 891 if (s->flags & SLAB_POISON) { 892 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 893 (!check_bytes_and_report(s, page, p, "Poison", p, 894 POISON_FREE, s->object_size - 1) || 895 !check_bytes_and_report(s, page, p, "Poison", 896 p + s->object_size - 1, POISON_END, 1))) 897 return 0; 898 /* 899 * check_pad_bytes cleans up on its own. 900 */ 901 check_pad_bytes(s, page, p); 902 } 903 904 if (!s->offset && val == SLUB_RED_ACTIVE) 905 /* 906 * Object and freepointer overlap. Cannot check 907 * freepointer while object is allocated. 908 */ 909 return 1; 910 911 /* Check free pointer validity */ 912 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 913 object_err(s, page, p, "Freepointer corrupt"); 914 /* 915 * No choice but to zap it and thus lose the remainder 916 * of the free objects in this slab. May cause 917 * another error because the object count is now wrong. 918 */ 919 set_freepointer(s, p, NULL); 920 return 0; 921 } 922 return 1; 923 } 924 925 static int check_slab(struct kmem_cache *s, struct page *page) 926 { 927 int maxobj; 928 929 VM_BUG_ON(!irqs_disabled()); 930 931 if (!PageSlab(page)) { 932 slab_err(s, page, "Not a valid slab page"); 933 return 0; 934 } 935 936 maxobj = order_objects(compound_order(page), s->size, s->reserved); 937 if (page->objects > maxobj) { 938 slab_err(s, page, "objects %u > max %u", 939 page->objects, maxobj); 940 return 0; 941 } 942 if (page->inuse > page->objects) { 943 slab_err(s, page, "inuse %u > max %u", 944 page->inuse, page->objects); 945 return 0; 946 } 947 /* Slab_pad_check fixes things up after itself */ 948 slab_pad_check(s, page); 949 return 1; 950 } 951 952 /* 953 * Determine if a certain object on a page is on the freelist. Must hold the 954 * slab lock to guarantee that the chains are in a consistent state. 955 */ 956 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 957 { 958 int nr = 0; 959 void *fp; 960 void *object = NULL; 961 int max_objects; 962 963 fp = page->freelist; 964 while (fp && nr <= page->objects) { 965 if (fp == search) 966 return 1; 967 if (!check_valid_pointer(s, page, fp)) { 968 if (object) { 969 object_err(s, page, object, 970 "Freechain corrupt"); 971 set_freepointer(s, object, NULL); 972 } else { 973 slab_err(s, page, "Freepointer corrupt"); 974 page->freelist = NULL; 975 page->inuse = page->objects; 976 slab_fix(s, "Freelist cleared"); 977 return 0; 978 } 979 break; 980 } 981 object = fp; 982 fp = get_freepointer(s, object); 983 nr++; 984 } 985 986 max_objects = order_objects(compound_order(page), s->size, s->reserved); 987 if (max_objects > MAX_OBJS_PER_PAGE) 988 max_objects = MAX_OBJS_PER_PAGE; 989 990 if (page->objects != max_objects) { 991 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 992 page->objects, max_objects); 993 page->objects = max_objects; 994 slab_fix(s, "Number of objects adjusted."); 995 } 996 if (page->inuse != page->objects - nr) { 997 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 998 page->inuse, page->objects - nr); 999 page->inuse = page->objects - nr; 1000 slab_fix(s, "Object count adjusted."); 1001 } 1002 return search == NULL; 1003 } 1004 1005 static void trace(struct kmem_cache *s, struct page *page, void *object, 1006 int alloc) 1007 { 1008 if (s->flags & SLAB_TRACE) { 1009 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1010 s->name, 1011 alloc ? "alloc" : "free", 1012 object, page->inuse, 1013 page->freelist); 1014 1015 if (!alloc) 1016 print_section(KERN_INFO, "Object ", (void *)object, 1017 s->object_size); 1018 1019 dump_stack(); 1020 } 1021 } 1022 1023 /* 1024 * Tracking of fully allocated slabs for debugging purposes. 1025 */ 1026 static void add_full(struct kmem_cache *s, 1027 struct kmem_cache_node *n, struct page *page) 1028 { 1029 if (!(s->flags & SLAB_STORE_USER)) 1030 return; 1031 1032 lockdep_assert_held(&n->list_lock); 1033 list_add(&page->lru, &n->full); 1034 } 1035 1036 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1037 { 1038 if (!(s->flags & SLAB_STORE_USER)) 1039 return; 1040 1041 lockdep_assert_held(&n->list_lock); 1042 list_del(&page->lru); 1043 } 1044 1045 /* Tracking of the number of slabs for debugging purposes */ 1046 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1047 { 1048 struct kmem_cache_node *n = get_node(s, node); 1049 1050 return atomic_long_read(&n->nr_slabs); 1051 } 1052 1053 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1054 { 1055 return atomic_long_read(&n->nr_slabs); 1056 } 1057 1058 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1059 { 1060 struct kmem_cache_node *n = get_node(s, node); 1061 1062 /* 1063 * May be called early in order to allocate a slab for the 1064 * kmem_cache_node structure. Solve the chicken-egg 1065 * dilemma by deferring the increment of the count during 1066 * bootstrap (see early_kmem_cache_node_alloc). 1067 */ 1068 if (likely(n)) { 1069 atomic_long_inc(&n->nr_slabs); 1070 atomic_long_add(objects, &n->total_objects); 1071 } 1072 } 1073 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1074 { 1075 struct kmem_cache_node *n = get_node(s, node); 1076 1077 atomic_long_dec(&n->nr_slabs); 1078 atomic_long_sub(objects, &n->total_objects); 1079 } 1080 1081 /* Object debug checks for alloc/free paths */ 1082 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1083 void *object) 1084 { 1085 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1086 return; 1087 1088 init_object(s, object, SLUB_RED_INACTIVE); 1089 init_tracking(s, object); 1090 } 1091 1092 static inline int alloc_consistency_checks(struct kmem_cache *s, 1093 struct page *page, 1094 void *object, unsigned long addr) 1095 { 1096 if (!check_slab(s, page)) 1097 return 0; 1098 1099 if (!check_valid_pointer(s, page, object)) { 1100 object_err(s, page, object, "Freelist Pointer check fails"); 1101 return 0; 1102 } 1103 1104 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1105 return 0; 1106 1107 return 1; 1108 } 1109 1110 static noinline int alloc_debug_processing(struct kmem_cache *s, 1111 struct page *page, 1112 void *object, unsigned long addr) 1113 { 1114 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1115 if (!alloc_consistency_checks(s, page, object, addr)) 1116 goto bad; 1117 } 1118 1119 /* Success perform special debug activities for allocs */ 1120 if (s->flags & SLAB_STORE_USER) 1121 set_track(s, object, TRACK_ALLOC, addr); 1122 trace(s, page, object, 1); 1123 init_object(s, object, SLUB_RED_ACTIVE); 1124 return 1; 1125 1126 bad: 1127 if (PageSlab(page)) { 1128 /* 1129 * If this is a slab page then lets do the best we can 1130 * to avoid issues in the future. Marking all objects 1131 * as used avoids touching the remaining objects. 1132 */ 1133 slab_fix(s, "Marking all objects used"); 1134 page->inuse = page->objects; 1135 page->freelist = NULL; 1136 } 1137 return 0; 1138 } 1139 1140 static inline int free_consistency_checks(struct kmem_cache *s, 1141 struct page *page, void *object, unsigned long addr) 1142 { 1143 if (!check_valid_pointer(s, page, object)) { 1144 slab_err(s, page, "Invalid object pointer 0x%p", object); 1145 return 0; 1146 } 1147 1148 if (on_freelist(s, page, object)) { 1149 object_err(s, page, object, "Object already free"); 1150 return 0; 1151 } 1152 1153 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1154 return 0; 1155 1156 if (unlikely(s != page->slab_cache)) { 1157 if (!PageSlab(page)) { 1158 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1159 object); 1160 } else if (!page->slab_cache) { 1161 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1162 object); 1163 dump_stack(); 1164 } else 1165 object_err(s, page, object, 1166 "page slab pointer corrupt."); 1167 return 0; 1168 } 1169 return 1; 1170 } 1171 1172 /* Supports checking bulk free of a constructed freelist */ 1173 static noinline int free_debug_processing( 1174 struct kmem_cache *s, struct page *page, 1175 void *head, void *tail, int bulk_cnt, 1176 unsigned long addr) 1177 { 1178 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1179 void *object = head; 1180 int cnt = 0; 1181 unsigned long uninitialized_var(flags); 1182 int ret = 0; 1183 1184 spin_lock_irqsave(&n->list_lock, flags); 1185 slab_lock(page); 1186 1187 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1188 if (!check_slab(s, page)) 1189 goto out; 1190 } 1191 1192 next_object: 1193 cnt++; 1194 1195 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1196 if (!free_consistency_checks(s, page, object, addr)) 1197 goto out; 1198 } 1199 1200 if (s->flags & SLAB_STORE_USER) 1201 set_track(s, object, TRACK_FREE, addr); 1202 trace(s, page, object, 0); 1203 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1204 init_object(s, object, SLUB_RED_INACTIVE); 1205 1206 /* Reached end of constructed freelist yet? */ 1207 if (object != tail) { 1208 object = get_freepointer(s, object); 1209 goto next_object; 1210 } 1211 ret = 1; 1212 1213 out: 1214 if (cnt != bulk_cnt) 1215 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1216 bulk_cnt, cnt); 1217 1218 slab_unlock(page); 1219 spin_unlock_irqrestore(&n->list_lock, flags); 1220 if (!ret) 1221 slab_fix(s, "Object at 0x%p not freed", object); 1222 return ret; 1223 } 1224 1225 static int __init setup_slub_debug(char *str) 1226 { 1227 slub_debug = DEBUG_DEFAULT_FLAGS; 1228 if (*str++ != '=' || !*str) 1229 /* 1230 * No options specified. Switch on full debugging. 1231 */ 1232 goto out; 1233 1234 if (*str == ',') 1235 /* 1236 * No options but restriction on slabs. This means full 1237 * debugging for slabs matching a pattern. 1238 */ 1239 goto check_slabs; 1240 1241 slub_debug = 0; 1242 if (*str == '-') 1243 /* 1244 * Switch off all debugging measures. 1245 */ 1246 goto out; 1247 1248 /* 1249 * Determine which debug features should be switched on 1250 */ 1251 for (; *str && *str != ','; str++) { 1252 switch (tolower(*str)) { 1253 case 'f': 1254 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1255 break; 1256 case 'z': 1257 slub_debug |= SLAB_RED_ZONE; 1258 break; 1259 case 'p': 1260 slub_debug |= SLAB_POISON; 1261 break; 1262 case 'u': 1263 slub_debug |= SLAB_STORE_USER; 1264 break; 1265 case 't': 1266 slub_debug |= SLAB_TRACE; 1267 break; 1268 case 'a': 1269 slub_debug |= SLAB_FAILSLAB; 1270 break; 1271 case 'o': 1272 /* 1273 * Avoid enabling debugging on caches if its minimum 1274 * order would increase as a result. 1275 */ 1276 disable_higher_order_debug = 1; 1277 break; 1278 default: 1279 pr_err("slub_debug option '%c' unknown. skipped\n", 1280 *str); 1281 } 1282 } 1283 1284 check_slabs: 1285 if (*str == ',') 1286 slub_debug_slabs = str + 1; 1287 out: 1288 return 1; 1289 } 1290 1291 __setup("slub_debug", setup_slub_debug); 1292 1293 slab_flags_t kmem_cache_flags(unsigned long object_size, 1294 slab_flags_t flags, const char *name, 1295 void (*ctor)(void *)) 1296 { 1297 /* 1298 * Enable debugging if selected on the kernel commandline. 1299 */ 1300 if (slub_debug && (!slub_debug_slabs || (name && 1301 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1302 flags |= slub_debug; 1303 1304 return flags; 1305 } 1306 #else /* !CONFIG_SLUB_DEBUG */ 1307 static inline void setup_object_debug(struct kmem_cache *s, 1308 struct page *page, void *object) {} 1309 1310 static inline int alloc_debug_processing(struct kmem_cache *s, 1311 struct page *page, void *object, unsigned long addr) { return 0; } 1312 1313 static inline int free_debug_processing( 1314 struct kmem_cache *s, struct page *page, 1315 void *head, void *tail, int bulk_cnt, 1316 unsigned long addr) { return 0; } 1317 1318 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1319 { return 1; } 1320 static inline int check_object(struct kmem_cache *s, struct page *page, 1321 void *object, u8 val) { return 1; } 1322 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1323 struct page *page) {} 1324 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1325 struct page *page) {} 1326 slab_flags_t kmem_cache_flags(unsigned long object_size, 1327 slab_flags_t flags, const char *name, 1328 void (*ctor)(void *)) 1329 { 1330 return flags; 1331 } 1332 #define slub_debug 0 1333 1334 #define disable_higher_order_debug 0 1335 1336 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1337 { return 0; } 1338 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1339 { return 0; } 1340 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1341 int objects) {} 1342 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1343 int objects) {} 1344 1345 #endif /* CONFIG_SLUB_DEBUG */ 1346 1347 /* 1348 * Hooks for other subsystems that check memory allocations. In a typical 1349 * production configuration these hooks all should produce no code at all. 1350 */ 1351 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1352 { 1353 kmemleak_alloc(ptr, size, 1, flags); 1354 kasan_kmalloc_large(ptr, size, flags); 1355 } 1356 1357 static inline void kfree_hook(const void *x) 1358 { 1359 kmemleak_free(x); 1360 kasan_kfree_large(x); 1361 } 1362 1363 static inline void *slab_free_hook(struct kmem_cache *s, void *x) 1364 { 1365 void *freeptr; 1366 1367 kmemleak_free_recursive(x, s->flags); 1368 1369 /* 1370 * Trouble is that we may no longer disable interrupts in the fast path 1371 * So in order to make the debug calls that expect irqs to be 1372 * disabled we need to disable interrupts temporarily. 1373 */ 1374 #ifdef CONFIG_LOCKDEP 1375 { 1376 unsigned long flags; 1377 1378 local_irq_save(flags); 1379 debug_check_no_locks_freed(x, s->object_size); 1380 local_irq_restore(flags); 1381 } 1382 #endif 1383 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1384 debug_check_no_obj_freed(x, s->object_size); 1385 1386 freeptr = get_freepointer(s, x); 1387 /* 1388 * kasan_slab_free() may put x into memory quarantine, delaying its 1389 * reuse. In this case the object's freelist pointer is changed. 1390 */ 1391 kasan_slab_free(s, x); 1392 return freeptr; 1393 } 1394 1395 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1396 void *head, void *tail) 1397 { 1398 /* 1399 * Compiler cannot detect this function can be removed if slab_free_hook() 1400 * evaluates to nothing. Thus, catch all relevant config debug options here. 1401 */ 1402 #if defined(CONFIG_LOCKDEP) || \ 1403 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1404 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1405 defined(CONFIG_KASAN) 1406 1407 void *object = head; 1408 void *tail_obj = tail ? : head; 1409 void *freeptr; 1410 1411 do { 1412 freeptr = slab_free_hook(s, object); 1413 } while ((object != tail_obj) && (object = freeptr)); 1414 #endif 1415 } 1416 1417 static void setup_object(struct kmem_cache *s, struct page *page, 1418 void *object) 1419 { 1420 setup_object_debug(s, page, object); 1421 kasan_init_slab_obj(s, object); 1422 if (unlikely(s->ctor)) { 1423 kasan_unpoison_object_data(s, object); 1424 s->ctor(object); 1425 kasan_poison_object_data(s, object); 1426 } 1427 } 1428 1429 /* 1430 * Slab allocation and freeing 1431 */ 1432 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1433 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1434 { 1435 struct page *page; 1436 int order = oo_order(oo); 1437 1438 if (node == NUMA_NO_NODE) 1439 page = alloc_pages(flags, order); 1440 else 1441 page = __alloc_pages_node(node, flags, order); 1442 1443 if (page && memcg_charge_slab(page, flags, order, s)) { 1444 __free_pages(page, order); 1445 page = NULL; 1446 } 1447 1448 return page; 1449 } 1450 1451 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1452 /* Pre-initialize the random sequence cache */ 1453 static int init_cache_random_seq(struct kmem_cache *s) 1454 { 1455 int err; 1456 unsigned long i, count = oo_objects(s->oo); 1457 1458 /* Bailout if already initialised */ 1459 if (s->random_seq) 1460 return 0; 1461 1462 err = cache_random_seq_create(s, count, GFP_KERNEL); 1463 if (err) { 1464 pr_err("SLUB: Unable to initialize free list for %s\n", 1465 s->name); 1466 return err; 1467 } 1468 1469 /* Transform to an offset on the set of pages */ 1470 if (s->random_seq) { 1471 for (i = 0; i < count; i++) 1472 s->random_seq[i] *= s->size; 1473 } 1474 return 0; 1475 } 1476 1477 /* Initialize each random sequence freelist per cache */ 1478 static void __init init_freelist_randomization(void) 1479 { 1480 struct kmem_cache *s; 1481 1482 mutex_lock(&slab_mutex); 1483 1484 list_for_each_entry(s, &slab_caches, list) 1485 init_cache_random_seq(s); 1486 1487 mutex_unlock(&slab_mutex); 1488 } 1489 1490 /* Get the next entry on the pre-computed freelist randomized */ 1491 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1492 unsigned long *pos, void *start, 1493 unsigned long page_limit, 1494 unsigned long freelist_count) 1495 { 1496 unsigned int idx; 1497 1498 /* 1499 * If the target page allocation failed, the number of objects on the 1500 * page might be smaller than the usual size defined by the cache. 1501 */ 1502 do { 1503 idx = s->random_seq[*pos]; 1504 *pos += 1; 1505 if (*pos >= freelist_count) 1506 *pos = 0; 1507 } while (unlikely(idx >= page_limit)); 1508 1509 return (char *)start + idx; 1510 } 1511 1512 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1513 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1514 { 1515 void *start; 1516 void *cur; 1517 void *next; 1518 unsigned long idx, pos, page_limit, freelist_count; 1519 1520 if (page->objects < 2 || !s->random_seq) 1521 return false; 1522 1523 freelist_count = oo_objects(s->oo); 1524 pos = get_random_int() % freelist_count; 1525 1526 page_limit = page->objects * s->size; 1527 start = fixup_red_left(s, page_address(page)); 1528 1529 /* First entry is used as the base of the freelist */ 1530 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1531 freelist_count); 1532 page->freelist = cur; 1533 1534 for (idx = 1; idx < page->objects; idx++) { 1535 setup_object(s, page, cur); 1536 next = next_freelist_entry(s, page, &pos, start, page_limit, 1537 freelist_count); 1538 set_freepointer(s, cur, next); 1539 cur = next; 1540 } 1541 setup_object(s, page, cur); 1542 set_freepointer(s, cur, NULL); 1543 1544 return true; 1545 } 1546 #else 1547 static inline int init_cache_random_seq(struct kmem_cache *s) 1548 { 1549 return 0; 1550 } 1551 static inline void init_freelist_randomization(void) { } 1552 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1553 { 1554 return false; 1555 } 1556 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1557 1558 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1559 { 1560 struct page *page; 1561 struct kmem_cache_order_objects oo = s->oo; 1562 gfp_t alloc_gfp; 1563 void *start, *p; 1564 int idx, order; 1565 bool shuffle; 1566 1567 flags &= gfp_allowed_mask; 1568 1569 if (gfpflags_allow_blocking(flags)) 1570 local_irq_enable(); 1571 1572 flags |= s->allocflags; 1573 1574 /* 1575 * Let the initial higher-order allocation fail under memory pressure 1576 * so we fall-back to the minimum order allocation. 1577 */ 1578 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1579 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1580 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1581 1582 page = alloc_slab_page(s, alloc_gfp, node, oo); 1583 if (unlikely(!page)) { 1584 oo = s->min; 1585 alloc_gfp = flags; 1586 /* 1587 * Allocation may have failed due to fragmentation. 1588 * Try a lower order alloc if possible 1589 */ 1590 page = alloc_slab_page(s, alloc_gfp, node, oo); 1591 if (unlikely(!page)) 1592 goto out; 1593 stat(s, ORDER_FALLBACK); 1594 } 1595 1596 page->objects = oo_objects(oo); 1597 1598 order = compound_order(page); 1599 page->slab_cache = s; 1600 __SetPageSlab(page); 1601 if (page_is_pfmemalloc(page)) 1602 SetPageSlabPfmemalloc(page); 1603 1604 start = page_address(page); 1605 1606 if (unlikely(s->flags & SLAB_POISON)) 1607 memset(start, POISON_INUSE, PAGE_SIZE << order); 1608 1609 kasan_poison_slab(page); 1610 1611 shuffle = shuffle_freelist(s, page); 1612 1613 if (!shuffle) { 1614 for_each_object_idx(p, idx, s, start, page->objects) { 1615 setup_object(s, page, p); 1616 if (likely(idx < page->objects)) 1617 set_freepointer(s, p, p + s->size); 1618 else 1619 set_freepointer(s, p, NULL); 1620 } 1621 page->freelist = fixup_red_left(s, start); 1622 } 1623 1624 page->inuse = page->objects; 1625 page->frozen = 1; 1626 1627 out: 1628 if (gfpflags_allow_blocking(flags)) 1629 local_irq_disable(); 1630 if (!page) 1631 return NULL; 1632 1633 mod_lruvec_page_state(page, 1634 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1635 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1636 1 << oo_order(oo)); 1637 1638 inc_slabs_node(s, page_to_nid(page), page->objects); 1639 1640 return page; 1641 } 1642 1643 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1644 { 1645 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1646 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1647 flags &= ~GFP_SLAB_BUG_MASK; 1648 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1649 invalid_mask, &invalid_mask, flags, &flags); 1650 dump_stack(); 1651 } 1652 1653 return allocate_slab(s, 1654 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1655 } 1656 1657 static void __free_slab(struct kmem_cache *s, struct page *page) 1658 { 1659 int order = compound_order(page); 1660 int pages = 1 << order; 1661 1662 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1663 void *p; 1664 1665 slab_pad_check(s, page); 1666 for_each_object(p, s, page_address(page), 1667 page->objects) 1668 check_object(s, page, p, SLUB_RED_INACTIVE); 1669 } 1670 1671 mod_lruvec_page_state(page, 1672 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1673 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1674 -pages); 1675 1676 __ClearPageSlabPfmemalloc(page); 1677 __ClearPageSlab(page); 1678 1679 page_mapcount_reset(page); 1680 if (current->reclaim_state) 1681 current->reclaim_state->reclaimed_slab += pages; 1682 memcg_uncharge_slab(page, order, s); 1683 __free_pages(page, order); 1684 } 1685 1686 #define need_reserve_slab_rcu \ 1687 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1688 1689 static void rcu_free_slab(struct rcu_head *h) 1690 { 1691 struct page *page; 1692 1693 if (need_reserve_slab_rcu) 1694 page = virt_to_head_page(h); 1695 else 1696 page = container_of((struct list_head *)h, struct page, lru); 1697 1698 __free_slab(page->slab_cache, page); 1699 } 1700 1701 static void free_slab(struct kmem_cache *s, struct page *page) 1702 { 1703 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1704 struct rcu_head *head; 1705 1706 if (need_reserve_slab_rcu) { 1707 int order = compound_order(page); 1708 int offset = (PAGE_SIZE << order) - s->reserved; 1709 1710 VM_BUG_ON(s->reserved != sizeof(*head)); 1711 head = page_address(page) + offset; 1712 } else { 1713 head = &page->rcu_head; 1714 } 1715 1716 call_rcu(head, rcu_free_slab); 1717 } else 1718 __free_slab(s, page); 1719 } 1720 1721 static void discard_slab(struct kmem_cache *s, struct page *page) 1722 { 1723 dec_slabs_node(s, page_to_nid(page), page->objects); 1724 free_slab(s, page); 1725 } 1726 1727 /* 1728 * Management of partially allocated slabs. 1729 */ 1730 static inline void 1731 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1732 { 1733 n->nr_partial++; 1734 if (tail == DEACTIVATE_TO_TAIL) 1735 list_add_tail(&page->lru, &n->partial); 1736 else 1737 list_add(&page->lru, &n->partial); 1738 } 1739 1740 static inline void add_partial(struct kmem_cache_node *n, 1741 struct page *page, int tail) 1742 { 1743 lockdep_assert_held(&n->list_lock); 1744 __add_partial(n, page, tail); 1745 } 1746 1747 static inline void remove_partial(struct kmem_cache_node *n, 1748 struct page *page) 1749 { 1750 lockdep_assert_held(&n->list_lock); 1751 list_del(&page->lru); 1752 n->nr_partial--; 1753 } 1754 1755 /* 1756 * Remove slab from the partial list, freeze it and 1757 * return the pointer to the freelist. 1758 * 1759 * Returns a list of objects or NULL if it fails. 1760 */ 1761 static inline void *acquire_slab(struct kmem_cache *s, 1762 struct kmem_cache_node *n, struct page *page, 1763 int mode, int *objects) 1764 { 1765 void *freelist; 1766 unsigned long counters; 1767 struct page new; 1768 1769 lockdep_assert_held(&n->list_lock); 1770 1771 /* 1772 * Zap the freelist and set the frozen bit. 1773 * The old freelist is the list of objects for the 1774 * per cpu allocation list. 1775 */ 1776 freelist = page->freelist; 1777 counters = page->counters; 1778 new.counters = counters; 1779 *objects = new.objects - new.inuse; 1780 if (mode) { 1781 new.inuse = page->objects; 1782 new.freelist = NULL; 1783 } else { 1784 new.freelist = freelist; 1785 } 1786 1787 VM_BUG_ON(new.frozen); 1788 new.frozen = 1; 1789 1790 if (!__cmpxchg_double_slab(s, page, 1791 freelist, counters, 1792 new.freelist, new.counters, 1793 "acquire_slab")) 1794 return NULL; 1795 1796 remove_partial(n, page); 1797 WARN_ON(!freelist); 1798 return freelist; 1799 } 1800 1801 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1802 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1803 1804 /* 1805 * Try to allocate a partial slab from a specific node. 1806 */ 1807 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1808 struct kmem_cache_cpu *c, gfp_t flags) 1809 { 1810 struct page *page, *page2; 1811 void *object = NULL; 1812 int available = 0; 1813 int objects; 1814 1815 /* 1816 * Racy check. If we mistakenly see no partial slabs then we 1817 * just allocate an empty slab. If we mistakenly try to get a 1818 * partial slab and there is none available then get_partials() 1819 * will return NULL. 1820 */ 1821 if (!n || !n->nr_partial) 1822 return NULL; 1823 1824 spin_lock(&n->list_lock); 1825 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1826 void *t; 1827 1828 if (!pfmemalloc_match(page, flags)) 1829 continue; 1830 1831 t = acquire_slab(s, n, page, object == NULL, &objects); 1832 if (!t) 1833 break; 1834 1835 available += objects; 1836 if (!object) { 1837 c->page = page; 1838 stat(s, ALLOC_FROM_PARTIAL); 1839 object = t; 1840 } else { 1841 put_cpu_partial(s, page, 0); 1842 stat(s, CPU_PARTIAL_NODE); 1843 } 1844 if (!kmem_cache_has_cpu_partial(s) 1845 || available > slub_cpu_partial(s) / 2) 1846 break; 1847 1848 } 1849 spin_unlock(&n->list_lock); 1850 return object; 1851 } 1852 1853 /* 1854 * Get a page from somewhere. Search in increasing NUMA distances. 1855 */ 1856 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1857 struct kmem_cache_cpu *c) 1858 { 1859 #ifdef CONFIG_NUMA 1860 struct zonelist *zonelist; 1861 struct zoneref *z; 1862 struct zone *zone; 1863 enum zone_type high_zoneidx = gfp_zone(flags); 1864 void *object; 1865 unsigned int cpuset_mems_cookie; 1866 1867 /* 1868 * The defrag ratio allows a configuration of the tradeoffs between 1869 * inter node defragmentation and node local allocations. A lower 1870 * defrag_ratio increases the tendency to do local allocations 1871 * instead of attempting to obtain partial slabs from other nodes. 1872 * 1873 * If the defrag_ratio is set to 0 then kmalloc() always 1874 * returns node local objects. If the ratio is higher then kmalloc() 1875 * may return off node objects because partial slabs are obtained 1876 * from other nodes and filled up. 1877 * 1878 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1879 * (which makes defrag_ratio = 1000) then every (well almost) 1880 * allocation will first attempt to defrag slab caches on other nodes. 1881 * This means scanning over all nodes to look for partial slabs which 1882 * may be expensive if we do it every time we are trying to find a slab 1883 * with available objects. 1884 */ 1885 if (!s->remote_node_defrag_ratio || 1886 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1887 return NULL; 1888 1889 do { 1890 cpuset_mems_cookie = read_mems_allowed_begin(); 1891 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1892 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1893 struct kmem_cache_node *n; 1894 1895 n = get_node(s, zone_to_nid(zone)); 1896 1897 if (n && cpuset_zone_allowed(zone, flags) && 1898 n->nr_partial > s->min_partial) { 1899 object = get_partial_node(s, n, c, flags); 1900 if (object) { 1901 /* 1902 * Don't check read_mems_allowed_retry() 1903 * here - if mems_allowed was updated in 1904 * parallel, that was a harmless race 1905 * between allocation and the cpuset 1906 * update 1907 */ 1908 return object; 1909 } 1910 } 1911 } 1912 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1913 #endif 1914 return NULL; 1915 } 1916 1917 /* 1918 * Get a partial page, lock it and return it. 1919 */ 1920 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1921 struct kmem_cache_cpu *c) 1922 { 1923 void *object; 1924 int searchnode = node; 1925 1926 if (node == NUMA_NO_NODE) 1927 searchnode = numa_mem_id(); 1928 else if (!node_present_pages(node)) 1929 searchnode = node_to_mem_node(node); 1930 1931 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1932 if (object || node != NUMA_NO_NODE) 1933 return object; 1934 1935 return get_any_partial(s, flags, c); 1936 } 1937 1938 #ifdef CONFIG_PREEMPT 1939 /* 1940 * Calculate the next globally unique transaction for disambiguiation 1941 * during cmpxchg. The transactions start with the cpu number and are then 1942 * incremented by CONFIG_NR_CPUS. 1943 */ 1944 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1945 #else 1946 /* 1947 * No preemption supported therefore also no need to check for 1948 * different cpus. 1949 */ 1950 #define TID_STEP 1 1951 #endif 1952 1953 static inline unsigned long next_tid(unsigned long tid) 1954 { 1955 return tid + TID_STEP; 1956 } 1957 1958 static inline unsigned int tid_to_cpu(unsigned long tid) 1959 { 1960 return tid % TID_STEP; 1961 } 1962 1963 static inline unsigned long tid_to_event(unsigned long tid) 1964 { 1965 return tid / TID_STEP; 1966 } 1967 1968 static inline unsigned int init_tid(int cpu) 1969 { 1970 return cpu; 1971 } 1972 1973 static inline void note_cmpxchg_failure(const char *n, 1974 const struct kmem_cache *s, unsigned long tid) 1975 { 1976 #ifdef SLUB_DEBUG_CMPXCHG 1977 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1978 1979 pr_info("%s %s: cmpxchg redo ", n, s->name); 1980 1981 #ifdef CONFIG_PREEMPT 1982 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1983 pr_warn("due to cpu change %d -> %d\n", 1984 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1985 else 1986 #endif 1987 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1988 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1989 tid_to_event(tid), tid_to_event(actual_tid)); 1990 else 1991 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1992 actual_tid, tid, next_tid(tid)); 1993 #endif 1994 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1995 } 1996 1997 static void init_kmem_cache_cpus(struct kmem_cache *s) 1998 { 1999 int cpu; 2000 2001 for_each_possible_cpu(cpu) 2002 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2003 } 2004 2005 /* 2006 * Remove the cpu slab 2007 */ 2008 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2009 void *freelist, struct kmem_cache_cpu *c) 2010 { 2011 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2012 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2013 int lock = 0; 2014 enum slab_modes l = M_NONE, m = M_NONE; 2015 void *nextfree; 2016 int tail = DEACTIVATE_TO_HEAD; 2017 struct page new; 2018 struct page old; 2019 2020 if (page->freelist) { 2021 stat(s, DEACTIVATE_REMOTE_FREES); 2022 tail = DEACTIVATE_TO_TAIL; 2023 } 2024 2025 /* 2026 * Stage one: Free all available per cpu objects back 2027 * to the page freelist while it is still frozen. Leave the 2028 * last one. 2029 * 2030 * There is no need to take the list->lock because the page 2031 * is still frozen. 2032 */ 2033 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2034 void *prior; 2035 unsigned long counters; 2036 2037 do { 2038 prior = page->freelist; 2039 counters = page->counters; 2040 set_freepointer(s, freelist, prior); 2041 new.counters = counters; 2042 new.inuse--; 2043 VM_BUG_ON(!new.frozen); 2044 2045 } while (!__cmpxchg_double_slab(s, page, 2046 prior, counters, 2047 freelist, new.counters, 2048 "drain percpu freelist")); 2049 2050 freelist = nextfree; 2051 } 2052 2053 /* 2054 * Stage two: Ensure that the page is unfrozen while the 2055 * list presence reflects the actual number of objects 2056 * during unfreeze. 2057 * 2058 * We setup the list membership and then perform a cmpxchg 2059 * with the count. If there is a mismatch then the page 2060 * is not unfrozen but the page is on the wrong list. 2061 * 2062 * Then we restart the process which may have to remove 2063 * the page from the list that we just put it on again 2064 * because the number of objects in the slab may have 2065 * changed. 2066 */ 2067 redo: 2068 2069 old.freelist = page->freelist; 2070 old.counters = page->counters; 2071 VM_BUG_ON(!old.frozen); 2072 2073 /* Determine target state of the slab */ 2074 new.counters = old.counters; 2075 if (freelist) { 2076 new.inuse--; 2077 set_freepointer(s, freelist, old.freelist); 2078 new.freelist = freelist; 2079 } else 2080 new.freelist = old.freelist; 2081 2082 new.frozen = 0; 2083 2084 if (!new.inuse && n->nr_partial >= s->min_partial) 2085 m = M_FREE; 2086 else if (new.freelist) { 2087 m = M_PARTIAL; 2088 if (!lock) { 2089 lock = 1; 2090 /* 2091 * Taking the spinlock removes the possiblity 2092 * that acquire_slab() will see a slab page that 2093 * is frozen 2094 */ 2095 spin_lock(&n->list_lock); 2096 } 2097 } else { 2098 m = M_FULL; 2099 if (kmem_cache_debug(s) && !lock) { 2100 lock = 1; 2101 /* 2102 * This also ensures that the scanning of full 2103 * slabs from diagnostic functions will not see 2104 * any frozen slabs. 2105 */ 2106 spin_lock(&n->list_lock); 2107 } 2108 } 2109 2110 if (l != m) { 2111 2112 if (l == M_PARTIAL) 2113 2114 remove_partial(n, page); 2115 2116 else if (l == M_FULL) 2117 2118 remove_full(s, n, page); 2119 2120 if (m == M_PARTIAL) { 2121 2122 add_partial(n, page, tail); 2123 stat(s, tail); 2124 2125 } else if (m == M_FULL) { 2126 2127 stat(s, DEACTIVATE_FULL); 2128 add_full(s, n, page); 2129 2130 } 2131 } 2132 2133 l = m; 2134 if (!__cmpxchg_double_slab(s, page, 2135 old.freelist, old.counters, 2136 new.freelist, new.counters, 2137 "unfreezing slab")) 2138 goto redo; 2139 2140 if (lock) 2141 spin_unlock(&n->list_lock); 2142 2143 if (m == M_FREE) { 2144 stat(s, DEACTIVATE_EMPTY); 2145 discard_slab(s, page); 2146 stat(s, FREE_SLAB); 2147 } 2148 2149 c->page = NULL; 2150 c->freelist = NULL; 2151 } 2152 2153 /* 2154 * Unfreeze all the cpu partial slabs. 2155 * 2156 * This function must be called with interrupts disabled 2157 * for the cpu using c (or some other guarantee must be there 2158 * to guarantee no concurrent accesses). 2159 */ 2160 static void unfreeze_partials(struct kmem_cache *s, 2161 struct kmem_cache_cpu *c) 2162 { 2163 #ifdef CONFIG_SLUB_CPU_PARTIAL 2164 struct kmem_cache_node *n = NULL, *n2 = NULL; 2165 struct page *page, *discard_page = NULL; 2166 2167 while ((page = c->partial)) { 2168 struct page new; 2169 struct page old; 2170 2171 c->partial = page->next; 2172 2173 n2 = get_node(s, page_to_nid(page)); 2174 if (n != n2) { 2175 if (n) 2176 spin_unlock(&n->list_lock); 2177 2178 n = n2; 2179 spin_lock(&n->list_lock); 2180 } 2181 2182 do { 2183 2184 old.freelist = page->freelist; 2185 old.counters = page->counters; 2186 VM_BUG_ON(!old.frozen); 2187 2188 new.counters = old.counters; 2189 new.freelist = old.freelist; 2190 2191 new.frozen = 0; 2192 2193 } while (!__cmpxchg_double_slab(s, page, 2194 old.freelist, old.counters, 2195 new.freelist, new.counters, 2196 "unfreezing slab")); 2197 2198 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2199 page->next = discard_page; 2200 discard_page = page; 2201 } else { 2202 add_partial(n, page, DEACTIVATE_TO_TAIL); 2203 stat(s, FREE_ADD_PARTIAL); 2204 } 2205 } 2206 2207 if (n) 2208 spin_unlock(&n->list_lock); 2209 2210 while (discard_page) { 2211 page = discard_page; 2212 discard_page = discard_page->next; 2213 2214 stat(s, DEACTIVATE_EMPTY); 2215 discard_slab(s, page); 2216 stat(s, FREE_SLAB); 2217 } 2218 #endif 2219 } 2220 2221 /* 2222 * Put a page that was just frozen (in __slab_free) into a partial page 2223 * slot if available. This is done without interrupts disabled and without 2224 * preemption disabled. The cmpxchg is racy and may put the partial page 2225 * onto a random cpus partial slot. 2226 * 2227 * If we did not find a slot then simply move all the partials to the 2228 * per node partial list. 2229 */ 2230 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2231 { 2232 #ifdef CONFIG_SLUB_CPU_PARTIAL 2233 struct page *oldpage; 2234 int pages; 2235 int pobjects; 2236 2237 preempt_disable(); 2238 do { 2239 pages = 0; 2240 pobjects = 0; 2241 oldpage = this_cpu_read(s->cpu_slab->partial); 2242 2243 if (oldpage) { 2244 pobjects = oldpage->pobjects; 2245 pages = oldpage->pages; 2246 if (drain && pobjects > s->cpu_partial) { 2247 unsigned long flags; 2248 /* 2249 * partial array is full. Move the existing 2250 * set to the per node partial list. 2251 */ 2252 local_irq_save(flags); 2253 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2254 local_irq_restore(flags); 2255 oldpage = NULL; 2256 pobjects = 0; 2257 pages = 0; 2258 stat(s, CPU_PARTIAL_DRAIN); 2259 } 2260 } 2261 2262 pages++; 2263 pobjects += page->objects - page->inuse; 2264 2265 page->pages = pages; 2266 page->pobjects = pobjects; 2267 page->next = oldpage; 2268 2269 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2270 != oldpage); 2271 if (unlikely(!s->cpu_partial)) { 2272 unsigned long flags; 2273 2274 local_irq_save(flags); 2275 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2276 local_irq_restore(flags); 2277 } 2278 preempt_enable(); 2279 #endif 2280 } 2281 2282 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2283 { 2284 stat(s, CPUSLAB_FLUSH); 2285 deactivate_slab(s, c->page, c->freelist, c); 2286 2287 c->tid = next_tid(c->tid); 2288 } 2289 2290 /* 2291 * Flush cpu slab. 2292 * 2293 * Called from IPI handler with interrupts disabled. 2294 */ 2295 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2296 { 2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2298 2299 if (likely(c)) { 2300 if (c->page) 2301 flush_slab(s, c); 2302 2303 unfreeze_partials(s, c); 2304 } 2305 } 2306 2307 static void flush_cpu_slab(void *d) 2308 { 2309 struct kmem_cache *s = d; 2310 2311 __flush_cpu_slab(s, smp_processor_id()); 2312 } 2313 2314 static bool has_cpu_slab(int cpu, void *info) 2315 { 2316 struct kmem_cache *s = info; 2317 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2318 2319 return c->page || slub_percpu_partial(c); 2320 } 2321 2322 static void flush_all(struct kmem_cache *s) 2323 { 2324 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2325 } 2326 2327 /* 2328 * Use the cpu notifier to insure that the cpu slabs are flushed when 2329 * necessary. 2330 */ 2331 static int slub_cpu_dead(unsigned int cpu) 2332 { 2333 struct kmem_cache *s; 2334 unsigned long flags; 2335 2336 mutex_lock(&slab_mutex); 2337 list_for_each_entry(s, &slab_caches, list) { 2338 local_irq_save(flags); 2339 __flush_cpu_slab(s, cpu); 2340 local_irq_restore(flags); 2341 } 2342 mutex_unlock(&slab_mutex); 2343 return 0; 2344 } 2345 2346 /* 2347 * Check if the objects in a per cpu structure fit numa 2348 * locality expectations. 2349 */ 2350 static inline int node_match(struct page *page, int node) 2351 { 2352 #ifdef CONFIG_NUMA 2353 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2354 return 0; 2355 #endif 2356 return 1; 2357 } 2358 2359 #ifdef CONFIG_SLUB_DEBUG 2360 static int count_free(struct page *page) 2361 { 2362 return page->objects - page->inuse; 2363 } 2364 2365 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2366 { 2367 return atomic_long_read(&n->total_objects); 2368 } 2369 #endif /* CONFIG_SLUB_DEBUG */ 2370 2371 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2372 static unsigned long count_partial(struct kmem_cache_node *n, 2373 int (*get_count)(struct page *)) 2374 { 2375 unsigned long flags; 2376 unsigned long x = 0; 2377 struct page *page; 2378 2379 spin_lock_irqsave(&n->list_lock, flags); 2380 list_for_each_entry(page, &n->partial, lru) 2381 x += get_count(page); 2382 spin_unlock_irqrestore(&n->list_lock, flags); 2383 return x; 2384 } 2385 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2386 2387 static noinline void 2388 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2389 { 2390 #ifdef CONFIG_SLUB_DEBUG 2391 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2392 DEFAULT_RATELIMIT_BURST); 2393 int node; 2394 struct kmem_cache_node *n; 2395 2396 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2397 return; 2398 2399 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2400 nid, gfpflags, &gfpflags); 2401 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2402 s->name, s->object_size, s->size, oo_order(s->oo), 2403 oo_order(s->min)); 2404 2405 if (oo_order(s->min) > get_order(s->object_size)) 2406 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2407 s->name); 2408 2409 for_each_kmem_cache_node(s, node, n) { 2410 unsigned long nr_slabs; 2411 unsigned long nr_objs; 2412 unsigned long nr_free; 2413 2414 nr_free = count_partial(n, count_free); 2415 nr_slabs = node_nr_slabs(n); 2416 nr_objs = node_nr_objs(n); 2417 2418 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2419 node, nr_slabs, nr_objs, nr_free); 2420 } 2421 #endif 2422 } 2423 2424 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2425 int node, struct kmem_cache_cpu **pc) 2426 { 2427 void *freelist; 2428 struct kmem_cache_cpu *c = *pc; 2429 struct page *page; 2430 2431 freelist = get_partial(s, flags, node, c); 2432 2433 if (freelist) 2434 return freelist; 2435 2436 page = new_slab(s, flags, node); 2437 if (page) { 2438 c = raw_cpu_ptr(s->cpu_slab); 2439 if (c->page) 2440 flush_slab(s, c); 2441 2442 /* 2443 * No other reference to the page yet so we can 2444 * muck around with it freely without cmpxchg 2445 */ 2446 freelist = page->freelist; 2447 page->freelist = NULL; 2448 2449 stat(s, ALLOC_SLAB); 2450 c->page = page; 2451 *pc = c; 2452 } else 2453 freelist = NULL; 2454 2455 return freelist; 2456 } 2457 2458 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2459 { 2460 if (unlikely(PageSlabPfmemalloc(page))) 2461 return gfp_pfmemalloc_allowed(gfpflags); 2462 2463 return true; 2464 } 2465 2466 /* 2467 * Check the page->freelist of a page and either transfer the freelist to the 2468 * per cpu freelist or deactivate the page. 2469 * 2470 * The page is still frozen if the return value is not NULL. 2471 * 2472 * If this function returns NULL then the page has been unfrozen. 2473 * 2474 * This function must be called with interrupt disabled. 2475 */ 2476 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2477 { 2478 struct page new; 2479 unsigned long counters; 2480 void *freelist; 2481 2482 do { 2483 freelist = page->freelist; 2484 counters = page->counters; 2485 2486 new.counters = counters; 2487 VM_BUG_ON(!new.frozen); 2488 2489 new.inuse = page->objects; 2490 new.frozen = freelist != NULL; 2491 2492 } while (!__cmpxchg_double_slab(s, page, 2493 freelist, counters, 2494 NULL, new.counters, 2495 "get_freelist")); 2496 2497 return freelist; 2498 } 2499 2500 /* 2501 * Slow path. The lockless freelist is empty or we need to perform 2502 * debugging duties. 2503 * 2504 * Processing is still very fast if new objects have been freed to the 2505 * regular freelist. In that case we simply take over the regular freelist 2506 * as the lockless freelist and zap the regular freelist. 2507 * 2508 * If that is not working then we fall back to the partial lists. We take the 2509 * first element of the freelist as the object to allocate now and move the 2510 * rest of the freelist to the lockless freelist. 2511 * 2512 * And if we were unable to get a new slab from the partial slab lists then 2513 * we need to allocate a new slab. This is the slowest path since it involves 2514 * a call to the page allocator and the setup of a new slab. 2515 * 2516 * Version of __slab_alloc to use when we know that interrupts are 2517 * already disabled (which is the case for bulk allocation). 2518 */ 2519 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2520 unsigned long addr, struct kmem_cache_cpu *c) 2521 { 2522 void *freelist; 2523 struct page *page; 2524 2525 page = c->page; 2526 if (!page) 2527 goto new_slab; 2528 redo: 2529 2530 if (unlikely(!node_match(page, node))) { 2531 int searchnode = node; 2532 2533 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2534 searchnode = node_to_mem_node(node); 2535 2536 if (unlikely(!node_match(page, searchnode))) { 2537 stat(s, ALLOC_NODE_MISMATCH); 2538 deactivate_slab(s, page, c->freelist, c); 2539 goto new_slab; 2540 } 2541 } 2542 2543 /* 2544 * By rights, we should be searching for a slab page that was 2545 * PFMEMALLOC but right now, we are losing the pfmemalloc 2546 * information when the page leaves the per-cpu allocator 2547 */ 2548 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2549 deactivate_slab(s, page, c->freelist, c); 2550 goto new_slab; 2551 } 2552 2553 /* must check again c->freelist in case of cpu migration or IRQ */ 2554 freelist = c->freelist; 2555 if (freelist) 2556 goto load_freelist; 2557 2558 freelist = get_freelist(s, page); 2559 2560 if (!freelist) { 2561 c->page = NULL; 2562 stat(s, DEACTIVATE_BYPASS); 2563 goto new_slab; 2564 } 2565 2566 stat(s, ALLOC_REFILL); 2567 2568 load_freelist: 2569 /* 2570 * freelist is pointing to the list of objects to be used. 2571 * page is pointing to the page from which the objects are obtained. 2572 * That page must be frozen for per cpu allocations to work. 2573 */ 2574 VM_BUG_ON(!c->page->frozen); 2575 c->freelist = get_freepointer(s, freelist); 2576 c->tid = next_tid(c->tid); 2577 return freelist; 2578 2579 new_slab: 2580 2581 if (slub_percpu_partial(c)) { 2582 page = c->page = slub_percpu_partial(c); 2583 slub_set_percpu_partial(c, page); 2584 stat(s, CPU_PARTIAL_ALLOC); 2585 goto redo; 2586 } 2587 2588 freelist = new_slab_objects(s, gfpflags, node, &c); 2589 2590 if (unlikely(!freelist)) { 2591 slab_out_of_memory(s, gfpflags, node); 2592 return NULL; 2593 } 2594 2595 page = c->page; 2596 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2597 goto load_freelist; 2598 2599 /* Only entered in the debug case */ 2600 if (kmem_cache_debug(s) && 2601 !alloc_debug_processing(s, page, freelist, addr)) 2602 goto new_slab; /* Slab failed checks. Next slab needed */ 2603 2604 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2605 return freelist; 2606 } 2607 2608 /* 2609 * Another one that disabled interrupt and compensates for possible 2610 * cpu changes by refetching the per cpu area pointer. 2611 */ 2612 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2613 unsigned long addr, struct kmem_cache_cpu *c) 2614 { 2615 void *p; 2616 unsigned long flags; 2617 2618 local_irq_save(flags); 2619 #ifdef CONFIG_PREEMPT 2620 /* 2621 * We may have been preempted and rescheduled on a different 2622 * cpu before disabling interrupts. Need to reload cpu area 2623 * pointer. 2624 */ 2625 c = this_cpu_ptr(s->cpu_slab); 2626 #endif 2627 2628 p = ___slab_alloc(s, gfpflags, node, addr, c); 2629 local_irq_restore(flags); 2630 return p; 2631 } 2632 2633 /* 2634 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2635 * have the fastpath folded into their functions. So no function call 2636 * overhead for requests that can be satisfied on the fastpath. 2637 * 2638 * The fastpath works by first checking if the lockless freelist can be used. 2639 * If not then __slab_alloc is called for slow processing. 2640 * 2641 * Otherwise we can simply pick the next object from the lockless free list. 2642 */ 2643 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2644 gfp_t gfpflags, int node, unsigned long addr) 2645 { 2646 void *object; 2647 struct kmem_cache_cpu *c; 2648 struct page *page; 2649 unsigned long tid; 2650 2651 s = slab_pre_alloc_hook(s, gfpflags); 2652 if (!s) 2653 return NULL; 2654 redo: 2655 /* 2656 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2657 * enabled. We may switch back and forth between cpus while 2658 * reading from one cpu area. That does not matter as long 2659 * as we end up on the original cpu again when doing the cmpxchg. 2660 * 2661 * We should guarantee that tid and kmem_cache are retrieved on 2662 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2663 * to check if it is matched or not. 2664 */ 2665 do { 2666 tid = this_cpu_read(s->cpu_slab->tid); 2667 c = raw_cpu_ptr(s->cpu_slab); 2668 } while (IS_ENABLED(CONFIG_PREEMPT) && 2669 unlikely(tid != READ_ONCE(c->tid))); 2670 2671 /* 2672 * Irqless object alloc/free algorithm used here depends on sequence 2673 * of fetching cpu_slab's data. tid should be fetched before anything 2674 * on c to guarantee that object and page associated with previous tid 2675 * won't be used with current tid. If we fetch tid first, object and 2676 * page could be one associated with next tid and our alloc/free 2677 * request will be failed. In this case, we will retry. So, no problem. 2678 */ 2679 barrier(); 2680 2681 /* 2682 * The transaction ids are globally unique per cpu and per operation on 2683 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2684 * occurs on the right processor and that there was no operation on the 2685 * linked list in between. 2686 */ 2687 2688 object = c->freelist; 2689 page = c->page; 2690 if (unlikely(!object || !node_match(page, node))) { 2691 object = __slab_alloc(s, gfpflags, node, addr, c); 2692 stat(s, ALLOC_SLOWPATH); 2693 } else { 2694 void *next_object = get_freepointer_safe(s, object); 2695 2696 /* 2697 * The cmpxchg will only match if there was no additional 2698 * operation and if we are on the right processor. 2699 * 2700 * The cmpxchg does the following atomically (without lock 2701 * semantics!) 2702 * 1. Relocate first pointer to the current per cpu area. 2703 * 2. Verify that tid and freelist have not been changed 2704 * 3. If they were not changed replace tid and freelist 2705 * 2706 * Since this is without lock semantics the protection is only 2707 * against code executing on this cpu *not* from access by 2708 * other cpus. 2709 */ 2710 if (unlikely(!this_cpu_cmpxchg_double( 2711 s->cpu_slab->freelist, s->cpu_slab->tid, 2712 object, tid, 2713 next_object, next_tid(tid)))) { 2714 2715 note_cmpxchg_failure("slab_alloc", s, tid); 2716 goto redo; 2717 } 2718 prefetch_freepointer(s, next_object); 2719 stat(s, ALLOC_FASTPATH); 2720 } 2721 2722 if (unlikely(gfpflags & __GFP_ZERO) && object) 2723 memset(object, 0, s->object_size); 2724 2725 slab_post_alloc_hook(s, gfpflags, 1, &object); 2726 2727 return object; 2728 } 2729 2730 static __always_inline void *slab_alloc(struct kmem_cache *s, 2731 gfp_t gfpflags, unsigned long addr) 2732 { 2733 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2734 } 2735 2736 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2737 { 2738 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2739 2740 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2741 s->size, gfpflags); 2742 2743 return ret; 2744 } 2745 EXPORT_SYMBOL(kmem_cache_alloc); 2746 2747 #ifdef CONFIG_TRACING 2748 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2749 { 2750 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2751 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2752 kasan_kmalloc(s, ret, size, gfpflags); 2753 return ret; 2754 } 2755 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2756 #endif 2757 2758 #ifdef CONFIG_NUMA 2759 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2760 { 2761 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2762 2763 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2764 s->object_size, s->size, gfpflags, node); 2765 2766 return ret; 2767 } 2768 EXPORT_SYMBOL(kmem_cache_alloc_node); 2769 2770 #ifdef CONFIG_TRACING 2771 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2772 gfp_t gfpflags, 2773 int node, size_t size) 2774 { 2775 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2776 2777 trace_kmalloc_node(_RET_IP_, ret, 2778 size, s->size, gfpflags, node); 2779 2780 kasan_kmalloc(s, ret, size, gfpflags); 2781 return ret; 2782 } 2783 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2784 #endif 2785 #endif 2786 2787 /* 2788 * Slow path handling. This may still be called frequently since objects 2789 * have a longer lifetime than the cpu slabs in most processing loads. 2790 * 2791 * So we still attempt to reduce cache line usage. Just take the slab 2792 * lock and free the item. If there is no additional partial page 2793 * handling required then we can return immediately. 2794 */ 2795 static void __slab_free(struct kmem_cache *s, struct page *page, 2796 void *head, void *tail, int cnt, 2797 unsigned long addr) 2798 2799 { 2800 void *prior; 2801 int was_frozen; 2802 struct page new; 2803 unsigned long counters; 2804 struct kmem_cache_node *n = NULL; 2805 unsigned long uninitialized_var(flags); 2806 2807 stat(s, FREE_SLOWPATH); 2808 2809 if (kmem_cache_debug(s) && 2810 !free_debug_processing(s, page, head, tail, cnt, addr)) 2811 return; 2812 2813 do { 2814 if (unlikely(n)) { 2815 spin_unlock_irqrestore(&n->list_lock, flags); 2816 n = NULL; 2817 } 2818 prior = page->freelist; 2819 counters = page->counters; 2820 set_freepointer(s, tail, prior); 2821 new.counters = counters; 2822 was_frozen = new.frozen; 2823 new.inuse -= cnt; 2824 if ((!new.inuse || !prior) && !was_frozen) { 2825 2826 if (kmem_cache_has_cpu_partial(s) && !prior) { 2827 2828 /* 2829 * Slab was on no list before and will be 2830 * partially empty 2831 * We can defer the list move and instead 2832 * freeze it. 2833 */ 2834 new.frozen = 1; 2835 2836 } else { /* Needs to be taken off a list */ 2837 2838 n = get_node(s, page_to_nid(page)); 2839 /* 2840 * Speculatively acquire the list_lock. 2841 * If the cmpxchg does not succeed then we may 2842 * drop the list_lock without any processing. 2843 * 2844 * Otherwise the list_lock will synchronize with 2845 * other processors updating the list of slabs. 2846 */ 2847 spin_lock_irqsave(&n->list_lock, flags); 2848 2849 } 2850 } 2851 2852 } while (!cmpxchg_double_slab(s, page, 2853 prior, counters, 2854 head, new.counters, 2855 "__slab_free")); 2856 2857 if (likely(!n)) { 2858 2859 /* 2860 * If we just froze the page then put it onto the 2861 * per cpu partial list. 2862 */ 2863 if (new.frozen && !was_frozen) { 2864 put_cpu_partial(s, page, 1); 2865 stat(s, CPU_PARTIAL_FREE); 2866 } 2867 /* 2868 * The list lock was not taken therefore no list 2869 * activity can be necessary. 2870 */ 2871 if (was_frozen) 2872 stat(s, FREE_FROZEN); 2873 return; 2874 } 2875 2876 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2877 goto slab_empty; 2878 2879 /* 2880 * Objects left in the slab. If it was not on the partial list before 2881 * then add it. 2882 */ 2883 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2884 if (kmem_cache_debug(s)) 2885 remove_full(s, n, page); 2886 add_partial(n, page, DEACTIVATE_TO_TAIL); 2887 stat(s, FREE_ADD_PARTIAL); 2888 } 2889 spin_unlock_irqrestore(&n->list_lock, flags); 2890 return; 2891 2892 slab_empty: 2893 if (prior) { 2894 /* 2895 * Slab on the partial list. 2896 */ 2897 remove_partial(n, page); 2898 stat(s, FREE_REMOVE_PARTIAL); 2899 } else { 2900 /* Slab must be on the full list */ 2901 remove_full(s, n, page); 2902 } 2903 2904 spin_unlock_irqrestore(&n->list_lock, flags); 2905 stat(s, FREE_SLAB); 2906 discard_slab(s, page); 2907 } 2908 2909 /* 2910 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2911 * can perform fastpath freeing without additional function calls. 2912 * 2913 * The fastpath is only possible if we are freeing to the current cpu slab 2914 * of this processor. This typically the case if we have just allocated 2915 * the item before. 2916 * 2917 * If fastpath is not possible then fall back to __slab_free where we deal 2918 * with all sorts of special processing. 2919 * 2920 * Bulk free of a freelist with several objects (all pointing to the 2921 * same page) possible by specifying head and tail ptr, plus objects 2922 * count (cnt). Bulk free indicated by tail pointer being set. 2923 */ 2924 static __always_inline void do_slab_free(struct kmem_cache *s, 2925 struct page *page, void *head, void *tail, 2926 int cnt, unsigned long addr) 2927 { 2928 void *tail_obj = tail ? : head; 2929 struct kmem_cache_cpu *c; 2930 unsigned long tid; 2931 redo: 2932 /* 2933 * Determine the currently cpus per cpu slab. 2934 * The cpu may change afterward. However that does not matter since 2935 * data is retrieved via this pointer. If we are on the same cpu 2936 * during the cmpxchg then the free will succeed. 2937 */ 2938 do { 2939 tid = this_cpu_read(s->cpu_slab->tid); 2940 c = raw_cpu_ptr(s->cpu_slab); 2941 } while (IS_ENABLED(CONFIG_PREEMPT) && 2942 unlikely(tid != READ_ONCE(c->tid))); 2943 2944 /* Same with comment on barrier() in slab_alloc_node() */ 2945 barrier(); 2946 2947 if (likely(page == c->page)) { 2948 set_freepointer(s, tail_obj, c->freelist); 2949 2950 if (unlikely(!this_cpu_cmpxchg_double( 2951 s->cpu_slab->freelist, s->cpu_slab->tid, 2952 c->freelist, tid, 2953 head, next_tid(tid)))) { 2954 2955 note_cmpxchg_failure("slab_free", s, tid); 2956 goto redo; 2957 } 2958 stat(s, FREE_FASTPATH); 2959 } else 2960 __slab_free(s, page, head, tail_obj, cnt, addr); 2961 2962 } 2963 2964 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2965 void *head, void *tail, int cnt, 2966 unsigned long addr) 2967 { 2968 slab_free_freelist_hook(s, head, tail); 2969 /* 2970 * slab_free_freelist_hook() could have put the items into quarantine. 2971 * If so, no need to free them. 2972 */ 2973 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU)) 2974 return; 2975 do_slab_free(s, page, head, tail, cnt, addr); 2976 } 2977 2978 #ifdef CONFIG_KASAN 2979 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2980 { 2981 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2982 } 2983 #endif 2984 2985 void kmem_cache_free(struct kmem_cache *s, void *x) 2986 { 2987 s = cache_from_obj(s, x); 2988 if (!s) 2989 return; 2990 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2991 trace_kmem_cache_free(_RET_IP_, x); 2992 } 2993 EXPORT_SYMBOL(kmem_cache_free); 2994 2995 struct detached_freelist { 2996 struct page *page; 2997 void *tail; 2998 void *freelist; 2999 int cnt; 3000 struct kmem_cache *s; 3001 }; 3002 3003 /* 3004 * This function progressively scans the array with free objects (with 3005 * a limited look ahead) and extract objects belonging to the same 3006 * page. It builds a detached freelist directly within the given 3007 * page/objects. This can happen without any need for 3008 * synchronization, because the objects are owned by running process. 3009 * The freelist is build up as a single linked list in the objects. 3010 * The idea is, that this detached freelist can then be bulk 3011 * transferred to the real freelist(s), but only requiring a single 3012 * synchronization primitive. Look ahead in the array is limited due 3013 * to performance reasons. 3014 */ 3015 static inline 3016 int build_detached_freelist(struct kmem_cache *s, size_t size, 3017 void **p, struct detached_freelist *df) 3018 { 3019 size_t first_skipped_index = 0; 3020 int lookahead = 3; 3021 void *object; 3022 struct page *page; 3023 3024 /* Always re-init detached_freelist */ 3025 df->page = NULL; 3026 3027 do { 3028 object = p[--size]; 3029 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3030 } while (!object && size); 3031 3032 if (!object) 3033 return 0; 3034 3035 page = virt_to_head_page(object); 3036 if (!s) { 3037 /* Handle kalloc'ed objects */ 3038 if (unlikely(!PageSlab(page))) { 3039 BUG_ON(!PageCompound(page)); 3040 kfree_hook(object); 3041 __free_pages(page, compound_order(page)); 3042 p[size] = NULL; /* mark object processed */ 3043 return size; 3044 } 3045 /* Derive kmem_cache from object */ 3046 df->s = page->slab_cache; 3047 } else { 3048 df->s = cache_from_obj(s, object); /* Support for memcg */ 3049 } 3050 3051 /* Start new detached freelist */ 3052 df->page = page; 3053 set_freepointer(df->s, object, NULL); 3054 df->tail = object; 3055 df->freelist = object; 3056 p[size] = NULL; /* mark object processed */ 3057 df->cnt = 1; 3058 3059 while (size) { 3060 object = p[--size]; 3061 if (!object) 3062 continue; /* Skip processed objects */ 3063 3064 /* df->page is always set at this point */ 3065 if (df->page == virt_to_head_page(object)) { 3066 /* Opportunity build freelist */ 3067 set_freepointer(df->s, object, df->freelist); 3068 df->freelist = object; 3069 df->cnt++; 3070 p[size] = NULL; /* mark object processed */ 3071 3072 continue; 3073 } 3074 3075 /* Limit look ahead search */ 3076 if (!--lookahead) 3077 break; 3078 3079 if (!first_skipped_index) 3080 first_skipped_index = size + 1; 3081 } 3082 3083 return first_skipped_index; 3084 } 3085 3086 /* Note that interrupts must be enabled when calling this function. */ 3087 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3088 { 3089 if (WARN_ON(!size)) 3090 return; 3091 3092 do { 3093 struct detached_freelist df; 3094 3095 size = build_detached_freelist(s, size, p, &df); 3096 if (!df.page) 3097 continue; 3098 3099 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3100 } while (likely(size)); 3101 } 3102 EXPORT_SYMBOL(kmem_cache_free_bulk); 3103 3104 /* Note that interrupts must be enabled when calling this function. */ 3105 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3106 void **p) 3107 { 3108 struct kmem_cache_cpu *c; 3109 int i; 3110 3111 /* memcg and kmem_cache debug support */ 3112 s = slab_pre_alloc_hook(s, flags); 3113 if (unlikely(!s)) 3114 return false; 3115 /* 3116 * Drain objects in the per cpu slab, while disabling local 3117 * IRQs, which protects against PREEMPT and interrupts 3118 * handlers invoking normal fastpath. 3119 */ 3120 local_irq_disable(); 3121 c = this_cpu_ptr(s->cpu_slab); 3122 3123 for (i = 0; i < size; i++) { 3124 void *object = c->freelist; 3125 3126 if (unlikely(!object)) { 3127 /* 3128 * Invoking slow path likely have side-effect 3129 * of re-populating per CPU c->freelist 3130 */ 3131 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3132 _RET_IP_, c); 3133 if (unlikely(!p[i])) 3134 goto error; 3135 3136 c = this_cpu_ptr(s->cpu_slab); 3137 continue; /* goto for-loop */ 3138 } 3139 c->freelist = get_freepointer(s, object); 3140 p[i] = object; 3141 } 3142 c->tid = next_tid(c->tid); 3143 local_irq_enable(); 3144 3145 /* Clear memory outside IRQ disabled fastpath loop */ 3146 if (unlikely(flags & __GFP_ZERO)) { 3147 int j; 3148 3149 for (j = 0; j < i; j++) 3150 memset(p[j], 0, s->object_size); 3151 } 3152 3153 /* memcg and kmem_cache debug support */ 3154 slab_post_alloc_hook(s, flags, size, p); 3155 return i; 3156 error: 3157 local_irq_enable(); 3158 slab_post_alloc_hook(s, flags, i, p); 3159 __kmem_cache_free_bulk(s, i, p); 3160 return 0; 3161 } 3162 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3163 3164 3165 /* 3166 * Object placement in a slab is made very easy because we always start at 3167 * offset 0. If we tune the size of the object to the alignment then we can 3168 * get the required alignment by putting one properly sized object after 3169 * another. 3170 * 3171 * Notice that the allocation order determines the sizes of the per cpu 3172 * caches. Each processor has always one slab available for allocations. 3173 * Increasing the allocation order reduces the number of times that slabs 3174 * must be moved on and off the partial lists and is therefore a factor in 3175 * locking overhead. 3176 */ 3177 3178 /* 3179 * Mininum / Maximum order of slab pages. This influences locking overhead 3180 * and slab fragmentation. A higher order reduces the number of partial slabs 3181 * and increases the number of allocations possible without having to 3182 * take the list_lock. 3183 */ 3184 static int slub_min_order; 3185 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3186 static int slub_min_objects; 3187 3188 /* 3189 * Calculate the order of allocation given an slab object size. 3190 * 3191 * The order of allocation has significant impact on performance and other 3192 * system components. Generally order 0 allocations should be preferred since 3193 * order 0 does not cause fragmentation in the page allocator. Larger objects 3194 * be problematic to put into order 0 slabs because there may be too much 3195 * unused space left. We go to a higher order if more than 1/16th of the slab 3196 * would be wasted. 3197 * 3198 * In order to reach satisfactory performance we must ensure that a minimum 3199 * number of objects is in one slab. Otherwise we may generate too much 3200 * activity on the partial lists which requires taking the list_lock. This is 3201 * less a concern for large slabs though which are rarely used. 3202 * 3203 * slub_max_order specifies the order where we begin to stop considering the 3204 * number of objects in a slab as critical. If we reach slub_max_order then 3205 * we try to keep the page order as low as possible. So we accept more waste 3206 * of space in favor of a small page order. 3207 * 3208 * Higher order allocations also allow the placement of more objects in a 3209 * slab and thereby reduce object handling overhead. If the user has 3210 * requested a higher mininum order then we start with that one instead of 3211 * the smallest order which will fit the object. 3212 */ 3213 static inline int slab_order(int size, int min_objects, 3214 int max_order, int fract_leftover, int reserved) 3215 { 3216 int order; 3217 int rem; 3218 int min_order = slub_min_order; 3219 3220 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3221 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3222 3223 for (order = max(min_order, get_order(min_objects * size + reserved)); 3224 order <= max_order; order++) { 3225 3226 unsigned long slab_size = PAGE_SIZE << order; 3227 3228 rem = (slab_size - reserved) % size; 3229 3230 if (rem <= slab_size / fract_leftover) 3231 break; 3232 } 3233 3234 return order; 3235 } 3236 3237 static inline int calculate_order(int size, int reserved) 3238 { 3239 int order; 3240 int min_objects; 3241 int fraction; 3242 int max_objects; 3243 3244 /* 3245 * Attempt to find best configuration for a slab. This 3246 * works by first attempting to generate a layout with 3247 * the best configuration and backing off gradually. 3248 * 3249 * First we increase the acceptable waste in a slab. Then 3250 * we reduce the minimum objects required in a slab. 3251 */ 3252 min_objects = slub_min_objects; 3253 if (!min_objects) 3254 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3255 max_objects = order_objects(slub_max_order, size, reserved); 3256 min_objects = min(min_objects, max_objects); 3257 3258 while (min_objects > 1) { 3259 fraction = 16; 3260 while (fraction >= 4) { 3261 order = slab_order(size, min_objects, 3262 slub_max_order, fraction, reserved); 3263 if (order <= slub_max_order) 3264 return order; 3265 fraction /= 2; 3266 } 3267 min_objects--; 3268 } 3269 3270 /* 3271 * We were unable to place multiple objects in a slab. Now 3272 * lets see if we can place a single object there. 3273 */ 3274 order = slab_order(size, 1, slub_max_order, 1, reserved); 3275 if (order <= slub_max_order) 3276 return order; 3277 3278 /* 3279 * Doh this slab cannot be placed using slub_max_order. 3280 */ 3281 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3282 if (order < MAX_ORDER) 3283 return order; 3284 return -ENOSYS; 3285 } 3286 3287 static void 3288 init_kmem_cache_node(struct kmem_cache_node *n) 3289 { 3290 n->nr_partial = 0; 3291 spin_lock_init(&n->list_lock); 3292 INIT_LIST_HEAD(&n->partial); 3293 #ifdef CONFIG_SLUB_DEBUG 3294 atomic_long_set(&n->nr_slabs, 0); 3295 atomic_long_set(&n->total_objects, 0); 3296 INIT_LIST_HEAD(&n->full); 3297 #endif 3298 } 3299 3300 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3301 { 3302 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3303 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3304 3305 /* 3306 * Must align to double word boundary for the double cmpxchg 3307 * instructions to work; see __pcpu_double_call_return_bool(). 3308 */ 3309 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3310 2 * sizeof(void *)); 3311 3312 if (!s->cpu_slab) 3313 return 0; 3314 3315 init_kmem_cache_cpus(s); 3316 3317 return 1; 3318 } 3319 3320 static struct kmem_cache *kmem_cache_node; 3321 3322 /* 3323 * No kmalloc_node yet so do it by hand. We know that this is the first 3324 * slab on the node for this slabcache. There are no concurrent accesses 3325 * possible. 3326 * 3327 * Note that this function only works on the kmem_cache_node 3328 * when allocating for the kmem_cache_node. This is used for bootstrapping 3329 * memory on a fresh node that has no slab structures yet. 3330 */ 3331 static void early_kmem_cache_node_alloc(int node) 3332 { 3333 struct page *page; 3334 struct kmem_cache_node *n; 3335 3336 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3337 3338 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3339 3340 BUG_ON(!page); 3341 if (page_to_nid(page) != node) { 3342 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3343 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3344 } 3345 3346 n = page->freelist; 3347 BUG_ON(!n); 3348 page->freelist = get_freepointer(kmem_cache_node, n); 3349 page->inuse = 1; 3350 page->frozen = 0; 3351 kmem_cache_node->node[node] = n; 3352 #ifdef CONFIG_SLUB_DEBUG 3353 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3354 init_tracking(kmem_cache_node, n); 3355 #endif 3356 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3357 GFP_KERNEL); 3358 init_kmem_cache_node(n); 3359 inc_slabs_node(kmem_cache_node, node, page->objects); 3360 3361 /* 3362 * No locks need to be taken here as it has just been 3363 * initialized and there is no concurrent access. 3364 */ 3365 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3366 } 3367 3368 static void free_kmem_cache_nodes(struct kmem_cache *s) 3369 { 3370 int node; 3371 struct kmem_cache_node *n; 3372 3373 for_each_kmem_cache_node(s, node, n) { 3374 s->node[node] = NULL; 3375 kmem_cache_free(kmem_cache_node, n); 3376 } 3377 } 3378 3379 void __kmem_cache_release(struct kmem_cache *s) 3380 { 3381 cache_random_seq_destroy(s); 3382 free_percpu(s->cpu_slab); 3383 free_kmem_cache_nodes(s); 3384 } 3385 3386 static int init_kmem_cache_nodes(struct kmem_cache *s) 3387 { 3388 int node; 3389 3390 for_each_node_state(node, N_NORMAL_MEMORY) { 3391 struct kmem_cache_node *n; 3392 3393 if (slab_state == DOWN) { 3394 early_kmem_cache_node_alloc(node); 3395 continue; 3396 } 3397 n = kmem_cache_alloc_node(kmem_cache_node, 3398 GFP_KERNEL, node); 3399 3400 if (!n) { 3401 free_kmem_cache_nodes(s); 3402 return 0; 3403 } 3404 3405 init_kmem_cache_node(n); 3406 s->node[node] = n; 3407 } 3408 return 1; 3409 } 3410 3411 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3412 { 3413 if (min < MIN_PARTIAL) 3414 min = MIN_PARTIAL; 3415 else if (min > MAX_PARTIAL) 3416 min = MAX_PARTIAL; 3417 s->min_partial = min; 3418 } 3419 3420 static void set_cpu_partial(struct kmem_cache *s) 3421 { 3422 #ifdef CONFIG_SLUB_CPU_PARTIAL 3423 /* 3424 * cpu_partial determined the maximum number of objects kept in the 3425 * per cpu partial lists of a processor. 3426 * 3427 * Per cpu partial lists mainly contain slabs that just have one 3428 * object freed. If they are used for allocation then they can be 3429 * filled up again with minimal effort. The slab will never hit the 3430 * per node partial lists and therefore no locking will be required. 3431 * 3432 * This setting also determines 3433 * 3434 * A) The number of objects from per cpu partial slabs dumped to the 3435 * per node list when we reach the limit. 3436 * B) The number of objects in cpu partial slabs to extract from the 3437 * per node list when we run out of per cpu objects. We only fetch 3438 * 50% to keep some capacity around for frees. 3439 */ 3440 if (!kmem_cache_has_cpu_partial(s)) 3441 s->cpu_partial = 0; 3442 else if (s->size >= PAGE_SIZE) 3443 s->cpu_partial = 2; 3444 else if (s->size >= 1024) 3445 s->cpu_partial = 6; 3446 else if (s->size >= 256) 3447 s->cpu_partial = 13; 3448 else 3449 s->cpu_partial = 30; 3450 #endif 3451 } 3452 3453 /* 3454 * calculate_sizes() determines the order and the distribution of data within 3455 * a slab object. 3456 */ 3457 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3458 { 3459 slab_flags_t flags = s->flags; 3460 size_t size = s->object_size; 3461 int order; 3462 3463 /* 3464 * Round up object size to the next word boundary. We can only 3465 * place the free pointer at word boundaries and this determines 3466 * the possible location of the free pointer. 3467 */ 3468 size = ALIGN(size, sizeof(void *)); 3469 3470 #ifdef CONFIG_SLUB_DEBUG 3471 /* 3472 * Determine if we can poison the object itself. If the user of 3473 * the slab may touch the object after free or before allocation 3474 * then we should never poison the object itself. 3475 */ 3476 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3477 !s->ctor) 3478 s->flags |= __OBJECT_POISON; 3479 else 3480 s->flags &= ~__OBJECT_POISON; 3481 3482 3483 /* 3484 * If we are Redzoning then check if there is some space between the 3485 * end of the object and the free pointer. If not then add an 3486 * additional word to have some bytes to store Redzone information. 3487 */ 3488 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3489 size += sizeof(void *); 3490 #endif 3491 3492 /* 3493 * With that we have determined the number of bytes in actual use 3494 * by the object. This is the potential offset to the free pointer. 3495 */ 3496 s->inuse = size; 3497 3498 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3499 s->ctor)) { 3500 /* 3501 * Relocate free pointer after the object if it is not 3502 * permitted to overwrite the first word of the object on 3503 * kmem_cache_free. 3504 * 3505 * This is the case if we do RCU, have a constructor or 3506 * destructor or are poisoning the objects. 3507 */ 3508 s->offset = size; 3509 size += sizeof(void *); 3510 } 3511 3512 #ifdef CONFIG_SLUB_DEBUG 3513 if (flags & SLAB_STORE_USER) 3514 /* 3515 * Need to store information about allocs and frees after 3516 * the object. 3517 */ 3518 size += 2 * sizeof(struct track); 3519 #endif 3520 3521 kasan_cache_create(s, &size, &s->flags); 3522 #ifdef CONFIG_SLUB_DEBUG 3523 if (flags & SLAB_RED_ZONE) { 3524 /* 3525 * Add some empty padding so that we can catch 3526 * overwrites from earlier objects rather than let 3527 * tracking information or the free pointer be 3528 * corrupted if a user writes before the start 3529 * of the object. 3530 */ 3531 size += sizeof(void *); 3532 3533 s->red_left_pad = sizeof(void *); 3534 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3535 size += s->red_left_pad; 3536 } 3537 #endif 3538 3539 /* 3540 * SLUB stores one object immediately after another beginning from 3541 * offset 0. In order to align the objects we have to simply size 3542 * each object to conform to the alignment. 3543 */ 3544 size = ALIGN(size, s->align); 3545 s->size = size; 3546 if (forced_order >= 0) 3547 order = forced_order; 3548 else 3549 order = calculate_order(size, s->reserved); 3550 3551 if (order < 0) 3552 return 0; 3553 3554 s->allocflags = 0; 3555 if (order) 3556 s->allocflags |= __GFP_COMP; 3557 3558 if (s->flags & SLAB_CACHE_DMA) 3559 s->allocflags |= GFP_DMA; 3560 3561 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3562 s->allocflags |= __GFP_RECLAIMABLE; 3563 3564 /* 3565 * Determine the number of objects per slab 3566 */ 3567 s->oo = oo_make(order, size, s->reserved); 3568 s->min = oo_make(get_order(size), size, s->reserved); 3569 if (oo_objects(s->oo) > oo_objects(s->max)) 3570 s->max = s->oo; 3571 3572 return !!oo_objects(s->oo); 3573 } 3574 3575 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3576 { 3577 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3578 s->reserved = 0; 3579 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3580 s->random = get_random_long(); 3581 #endif 3582 3583 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU)) 3584 s->reserved = sizeof(struct rcu_head); 3585 3586 if (!calculate_sizes(s, -1)) 3587 goto error; 3588 if (disable_higher_order_debug) { 3589 /* 3590 * Disable debugging flags that store metadata if the min slab 3591 * order increased. 3592 */ 3593 if (get_order(s->size) > get_order(s->object_size)) { 3594 s->flags &= ~DEBUG_METADATA_FLAGS; 3595 s->offset = 0; 3596 if (!calculate_sizes(s, -1)) 3597 goto error; 3598 } 3599 } 3600 3601 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3602 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3603 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3604 /* Enable fast mode */ 3605 s->flags |= __CMPXCHG_DOUBLE; 3606 #endif 3607 3608 /* 3609 * The larger the object size is, the more pages we want on the partial 3610 * list to avoid pounding the page allocator excessively. 3611 */ 3612 set_min_partial(s, ilog2(s->size) / 2); 3613 3614 set_cpu_partial(s); 3615 3616 #ifdef CONFIG_NUMA 3617 s->remote_node_defrag_ratio = 1000; 3618 #endif 3619 3620 /* Initialize the pre-computed randomized freelist if slab is up */ 3621 if (slab_state >= UP) { 3622 if (init_cache_random_seq(s)) 3623 goto error; 3624 } 3625 3626 if (!init_kmem_cache_nodes(s)) 3627 goto error; 3628 3629 if (alloc_kmem_cache_cpus(s)) 3630 return 0; 3631 3632 free_kmem_cache_nodes(s); 3633 error: 3634 if (flags & SLAB_PANIC) 3635 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", 3636 s->name, (unsigned long)s->size, s->size, 3637 oo_order(s->oo), s->offset, (unsigned long)flags); 3638 return -EINVAL; 3639 } 3640 3641 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3642 const char *text) 3643 { 3644 #ifdef CONFIG_SLUB_DEBUG 3645 void *addr = page_address(page); 3646 void *p; 3647 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3648 sizeof(long), GFP_ATOMIC); 3649 if (!map) 3650 return; 3651 slab_err(s, page, text, s->name); 3652 slab_lock(page); 3653 3654 get_map(s, page, map); 3655 for_each_object(p, s, addr, page->objects) { 3656 3657 if (!test_bit(slab_index(p, s, addr), map)) { 3658 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3659 print_tracking(s, p); 3660 } 3661 } 3662 slab_unlock(page); 3663 kfree(map); 3664 #endif 3665 } 3666 3667 /* 3668 * Attempt to free all partial slabs on a node. 3669 * This is called from __kmem_cache_shutdown(). We must take list_lock 3670 * because sysfs file might still access partial list after the shutdowning. 3671 */ 3672 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3673 { 3674 LIST_HEAD(discard); 3675 struct page *page, *h; 3676 3677 BUG_ON(irqs_disabled()); 3678 spin_lock_irq(&n->list_lock); 3679 list_for_each_entry_safe(page, h, &n->partial, lru) { 3680 if (!page->inuse) { 3681 remove_partial(n, page); 3682 list_add(&page->lru, &discard); 3683 } else { 3684 list_slab_objects(s, page, 3685 "Objects remaining in %s on __kmem_cache_shutdown()"); 3686 } 3687 } 3688 spin_unlock_irq(&n->list_lock); 3689 3690 list_for_each_entry_safe(page, h, &discard, lru) 3691 discard_slab(s, page); 3692 } 3693 3694 /* 3695 * Release all resources used by a slab cache. 3696 */ 3697 int __kmem_cache_shutdown(struct kmem_cache *s) 3698 { 3699 int node; 3700 struct kmem_cache_node *n; 3701 3702 flush_all(s); 3703 /* Attempt to free all objects */ 3704 for_each_kmem_cache_node(s, node, n) { 3705 free_partial(s, n); 3706 if (n->nr_partial || slabs_node(s, node)) 3707 return 1; 3708 } 3709 sysfs_slab_remove(s); 3710 return 0; 3711 } 3712 3713 /******************************************************************** 3714 * Kmalloc subsystem 3715 *******************************************************************/ 3716 3717 static int __init setup_slub_min_order(char *str) 3718 { 3719 get_option(&str, &slub_min_order); 3720 3721 return 1; 3722 } 3723 3724 __setup("slub_min_order=", setup_slub_min_order); 3725 3726 static int __init setup_slub_max_order(char *str) 3727 { 3728 get_option(&str, &slub_max_order); 3729 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3730 3731 return 1; 3732 } 3733 3734 __setup("slub_max_order=", setup_slub_max_order); 3735 3736 static int __init setup_slub_min_objects(char *str) 3737 { 3738 get_option(&str, &slub_min_objects); 3739 3740 return 1; 3741 } 3742 3743 __setup("slub_min_objects=", setup_slub_min_objects); 3744 3745 void *__kmalloc(size_t size, gfp_t flags) 3746 { 3747 struct kmem_cache *s; 3748 void *ret; 3749 3750 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3751 return kmalloc_large(size, flags); 3752 3753 s = kmalloc_slab(size, flags); 3754 3755 if (unlikely(ZERO_OR_NULL_PTR(s))) 3756 return s; 3757 3758 ret = slab_alloc(s, flags, _RET_IP_); 3759 3760 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3761 3762 kasan_kmalloc(s, ret, size, flags); 3763 3764 return ret; 3765 } 3766 EXPORT_SYMBOL(__kmalloc); 3767 3768 #ifdef CONFIG_NUMA 3769 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3770 { 3771 struct page *page; 3772 void *ptr = NULL; 3773 3774 flags |= __GFP_COMP; 3775 page = alloc_pages_node(node, flags, get_order(size)); 3776 if (page) 3777 ptr = page_address(page); 3778 3779 kmalloc_large_node_hook(ptr, size, flags); 3780 return ptr; 3781 } 3782 3783 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3784 { 3785 struct kmem_cache *s; 3786 void *ret; 3787 3788 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3789 ret = kmalloc_large_node(size, flags, node); 3790 3791 trace_kmalloc_node(_RET_IP_, ret, 3792 size, PAGE_SIZE << get_order(size), 3793 flags, node); 3794 3795 return ret; 3796 } 3797 3798 s = kmalloc_slab(size, flags); 3799 3800 if (unlikely(ZERO_OR_NULL_PTR(s))) 3801 return s; 3802 3803 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3804 3805 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3806 3807 kasan_kmalloc(s, ret, size, flags); 3808 3809 return ret; 3810 } 3811 EXPORT_SYMBOL(__kmalloc_node); 3812 #endif 3813 3814 #ifdef CONFIG_HARDENED_USERCOPY 3815 /* 3816 * Rejects objects that are incorrectly sized. 3817 * 3818 * Returns NULL if check passes, otherwise const char * to name of cache 3819 * to indicate an error. 3820 */ 3821 const char *__check_heap_object(const void *ptr, unsigned long n, 3822 struct page *page) 3823 { 3824 struct kmem_cache *s; 3825 unsigned long offset; 3826 size_t object_size; 3827 3828 /* Find object and usable object size. */ 3829 s = page->slab_cache; 3830 object_size = slab_ksize(s); 3831 3832 /* Reject impossible pointers. */ 3833 if (ptr < page_address(page)) 3834 return s->name; 3835 3836 /* Find offset within object. */ 3837 offset = (ptr - page_address(page)) % s->size; 3838 3839 /* Adjust for redzone and reject if within the redzone. */ 3840 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3841 if (offset < s->red_left_pad) 3842 return s->name; 3843 offset -= s->red_left_pad; 3844 } 3845 3846 /* Allow address range falling entirely within object size. */ 3847 if (offset <= object_size && n <= object_size - offset) 3848 return NULL; 3849 3850 return s->name; 3851 } 3852 #endif /* CONFIG_HARDENED_USERCOPY */ 3853 3854 static size_t __ksize(const void *object) 3855 { 3856 struct page *page; 3857 3858 if (unlikely(object == ZERO_SIZE_PTR)) 3859 return 0; 3860 3861 page = virt_to_head_page(object); 3862 3863 if (unlikely(!PageSlab(page))) { 3864 WARN_ON(!PageCompound(page)); 3865 return PAGE_SIZE << compound_order(page); 3866 } 3867 3868 return slab_ksize(page->slab_cache); 3869 } 3870 3871 size_t ksize(const void *object) 3872 { 3873 size_t size = __ksize(object); 3874 /* We assume that ksize callers could use whole allocated area, 3875 * so we need to unpoison this area. 3876 */ 3877 kasan_unpoison_shadow(object, size); 3878 return size; 3879 } 3880 EXPORT_SYMBOL(ksize); 3881 3882 void kfree(const void *x) 3883 { 3884 struct page *page; 3885 void *object = (void *)x; 3886 3887 trace_kfree(_RET_IP_, x); 3888 3889 if (unlikely(ZERO_OR_NULL_PTR(x))) 3890 return; 3891 3892 page = virt_to_head_page(x); 3893 if (unlikely(!PageSlab(page))) { 3894 BUG_ON(!PageCompound(page)); 3895 kfree_hook(x); 3896 __free_pages(page, compound_order(page)); 3897 return; 3898 } 3899 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3900 } 3901 EXPORT_SYMBOL(kfree); 3902 3903 #define SHRINK_PROMOTE_MAX 32 3904 3905 /* 3906 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3907 * up most to the head of the partial lists. New allocations will then 3908 * fill those up and thus they can be removed from the partial lists. 3909 * 3910 * The slabs with the least items are placed last. This results in them 3911 * being allocated from last increasing the chance that the last objects 3912 * are freed in them. 3913 */ 3914 int __kmem_cache_shrink(struct kmem_cache *s) 3915 { 3916 int node; 3917 int i; 3918 struct kmem_cache_node *n; 3919 struct page *page; 3920 struct page *t; 3921 struct list_head discard; 3922 struct list_head promote[SHRINK_PROMOTE_MAX]; 3923 unsigned long flags; 3924 int ret = 0; 3925 3926 flush_all(s); 3927 for_each_kmem_cache_node(s, node, n) { 3928 INIT_LIST_HEAD(&discard); 3929 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3930 INIT_LIST_HEAD(promote + i); 3931 3932 spin_lock_irqsave(&n->list_lock, flags); 3933 3934 /* 3935 * Build lists of slabs to discard or promote. 3936 * 3937 * Note that concurrent frees may occur while we hold the 3938 * list_lock. page->inuse here is the upper limit. 3939 */ 3940 list_for_each_entry_safe(page, t, &n->partial, lru) { 3941 int free = page->objects - page->inuse; 3942 3943 /* Do not reread page->inuse */ 3944 barrier(); 3945 3946 /* We do not keep full slabs on the list */ 3947 BUG_ON(free <= 0); 3948 3949 if (free == page->objects) { 3950 list_move(&page->lru, &discard); 3951 n->nr_partial--; 3952 } else if (free <= SHRINK_PROMOTE_MAX) 3953 list_move(&page->lru, promote + free - 1); 3954 } 3955 3956 /* 3957 * Promote the slabs filled up most to the head of the 3958 * partial list. 3959 */ 3960 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3961 list_splice(promote + i, &n->partial); 3962 3963 spin_unlock_irqrestore(&n->list_lock, flags); 3964 3965 /* Release empty slabs */ 3966 list_for_each_entry_safe(page, t, &discard, lru) 3967 discard_slab(s, page); 3968 3969 if (slabs_node(s, node)) 3970 ret = 1; 3971 } 3972 3973 return ret; 3974 } 3975 3976 #ifdef CONFIG_MEMCG 3977 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 3978 { 3979 /* 3980 * Called with all the locks held after a sched RCU grace period. 3981 * Even if @s becomes empty after shrinking, we can't know that @s 3982 * doesn't have allocations already in-flight and thus can't 3983 * destroy @s until the associated memcg is released. 3984 * 3985 * However, let's remove the sysfs files for empty caches here. 3986 * Each cache has a lot of interface files which aren't 3987 * particularly useful for empty draining caches; otherwise, we can 3988 * easily end up with millions of unnecessary sysfs files on 3989 * systems which have a lot of memory and transient cgroups. 3990 */ 3991 if (!__kmem_cache_shrink(s)) 3992 sysfs_slab_remove(s); 3993 } 3994 3995 void __kmemcg_cache_deactivate(struct kmem_cache *s) 3996 { 3997 /* 3998 * Disable empty slabs caching. Used to avoid pinning offline 3999 * memory cgroups by kmem pages that can be freed. 4000 */ 4001 slub_set_cpu_partial(s, 0); 4002 s->min_partial = 0; 4003 4004 /* 4005 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4006 * we have to make sure the change is visible before shrinking. 4007 */ 4008 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4009 } 4010 #endif 4011 4012 static int slab_mem_going_offline_callback(void *arg) 4013 { 4014 struct kmem_cache *s; 4015 4016 mutex_lock(&slab_mutex); 4017 list_for_each_entry(s, &slab_caches, list) 4018 __kmem_cache_shrink(s); 4019 mutex_unlock(&slab_mutex); 4020 4021 return 0; 4022 } 4023 4024 static void slab_mem_offline_callback(void *arg) 4025 { 4026 struct kmem_cache_node *n; 4027 struct kmem_cache *s; 4028 struct memory_notify *marg = arg; 4029 int offline_node; 4030 4031 offline_node = marg->status_change_nid_normal; 4032 4033 /* 4034 * If the node still has available memory. we need kmem_cache_node 4035 * for it yet. 4036 */ 4037 if (offline_node < 0) 4038 return; 4039 4040 mutex_lock(&slab_mutex); 4041 list_for_each_entry(s, &slab_caches, list) { 4042 n = get_node(s, offline_node); 4043 if (n) { 4044 /* 4045 * if n->nr_slabs > 0, slabs still exist on the node 4046 * that is going down. We were unable to free them, 4047 * and offline_pages() function shouldn't call this 4048 * callback. So, we must fail. 4049 */ 4050 BUG_ON(slabs_node(s, offline_node)); 4051 4052 s->node[offline_node] = NULL; 4053 kmem_cache_free(kmem_cache_node, n); 4054 } 4055 } 4056 mutex_unlock(&slab_mutex); 4057 } 4058 4059 static int slab_mem_going_online_callback(void *arg) 4060 { 4061 struct kmem_cache_node *n; 4062 struct kmem_cache *s; 4063 struct memory_notify *marg = arg; 4064 int nid = marg->status_change_nid_normal; 4065 int ret = 0; 4066 4067 /* 4068 * If the node's memory is already available, then kmem_cache_node is 4069 * already created. Nothing to do. 4070 */ 4071 if (nid < 0) 4072 return 0; 4073 4074 /* 4075 * We are bringing a node online. No memory is available yet. We must 4076 * allocate a kmem_cache_node structure in order to bring the node 4077 * online. 4078 */ 4079 mutex_lock(&slab_mutex); 4080 list_for_each_entry(s, &slab_caches, list) { 4081 /* 4082 * XXX: kmem_cache_alloc_node will fallback to other nodes 4083 * since memory is not yet available from the node that 4084 * is brought up. 4085 */ 4086 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4087 if (!n) { 4088 ret = -ENOMEM; 4089 goto out; 4090 } 4091 init_kmem_cache_node(n); 4092 s->node[nid] = n; 4093 } 4094 out: 4095 mutex_unlock(&slab_mutex); 4096 return ret; 4097 } 4098 4099 static int slab_memory_callback(struct notifier_block *self, 4100 unsigned long action, void *arg) 4101 { 4102 int ret = 0; 4103 4104 switch (action) { 4105 case MEM_GOING_ONLINE: 4106 ret = slab_mem_going_online_callback(arg); 4107 break; 4108 case MEM_GOING_OFFLINE: 4109 ret = slab_mem_going_offline_callback(arg); 4110 break; 4111 case MEM_OFFLINE: 4112 case MEM_CANCEL_ONLINE: 4113 slab_mem_offline_callback(arg); 4114 break; 4115 case MEM_ONLINE: 4116 case MEM_CANCEL_OFFLINE: 4117 break; 4118 } 4119 if (ret) 4120 ret = notifier_from_errno(ret); 4121 else 4122 ret = NOTIFY_OK; 4123 return ret; 4124 } 4125 4126 static struct notifier_block slab_memory_callback_nb = { 4127 .notifier_call = slab_memory_callback, 4128 .priority = SLAB_CALLBACK_PRI, 4129 }; 4130 4131 /******************************************************************** 4132 * Basic setup of slabs 4133 *******************************************************************/ 4134 4135 /* 4136 * Used for early kmem_cache structures that were allocated using 4137 * the page allocator. Allocate them properly then fix up the pointers 4138 * that may be pointing to the wrong kmem_cache structure. 4139 */ 4140 4141 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4142 { 4143 int node; 4144 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4145 struct kmem_cache_node *n; 4146 4147 memcpy(s, static_cache, kmem_cache->object_size); 4148 4149 /* 4150 * This runs very early, and only the boot processor is supposed to be 4151 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4152 * IPIs around. 4153 */ 4154 __flush_cpu_slab(s, smp_processor_id()); 4155 for_each_kmem_cache_node(s, node, n) { 4156 struct page *p; 4157 4158 list_for_each_entry(p, &n->partial, lru) 4159 p->slab_cache = s; 4160 4161 #ifdef CONFIG_SLUB_DEBUG 4162 list_for_each_entry(p, &n->full, lru) 4163 p->slab_cache = s; 4164 #endif 4165 } 4166 slab_init_memcg_params(s); 4167 list_add(&s->list, &slab_caches); 4168 memcg_link_cache(s); 4169 return s; 4170 } 4171 4172 void __init kmem_cache_init(void) 4173 { 4174 static __initdata struct kmem_cache boot_kmem_cache, 4175 boot_kmem_cache_node; 4176 4177 if (debug_guardpage_minorder()) 4178 slub_max_order = 0; 4179 4180 kmem_cache_node = &boot_kmem_cache_node; 4181 kmem_cache = &boot_kmem_cache; 4182 4183 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4184 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 4185 4186 register_hotmemory_notifier(&slab_memory_callback_nb); 4187 4188 /* Able to allocate the per node structures */ 4189 slab_state = PARTIAL; 4190 4191 create_boot_cache(kmem_cache, "kmem_cache", 4192 offsetof(struct kmem_cache, node) + 4193 nr_node_ids * sizeof(struct kmem_cache_node *), 4194 SLAB_HWCACHE_ALIGN); 4195 4196 kmem_cache = bootstrap(&boot_kmem_cache); 4197 4198 /* 4199 * Allocate kmem_cache_node properly from the kmem_cache slab. 4200 * kmem_cache_node is separately allocated so no need to 4201 * update any list pointers. 4202 */ 4203 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4204 4205 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4206 setup_kmalloc_cache_index_table(); 4207 create_kmalloc_caches(0); 4208 4209 /* Setup random freelists for each cache */ 4210 init_freelist_randomization(); 4211 4212 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4213 slub_cpu_dead); 4214 4215 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n", 4216 cache_line_size(), 4217 slub_min_order, slub_max_order, slub_min_objects, 4218 nr_cpu_ids, nr_node_ids); 4219 } 4220 4221 void __init kmem_cache_init_late(void) 4222 { 4223 } 4224 4225 struct kmem_cache * 4226 __kmem_cache_alias(const char *name, size_t size, size_t align, 4227 slab_flags_t flags, void (*ctor)(void *)) 4228 { 4229 struct kmem_cache *s, *c; 4230 4231 s = find_mergeable(size, align, flags, name, ctor); 4232 if (s) { 4233 s->refcount++; 4234 4235 /* 4236 * Adjust the object sizes so that we clear 4237 * the complete object on kzalloc. 4238 */ 4239 s->object_size = max(s->object_size, (int)size); 4240 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 4241 4242 for_each_memcg_cache(c, s) { 4243 c->object_size = s->object_size; 4244 c->inuse = max_t(int, c->inuse, 4245 ALIGN(size, sizeof(void *))); 4246 } 4247 4248 if (sysfs_slab_alias(s, name)) { 4249 s->refcount--; 4250 s = NULL; 4251 } 4252 } 4253 4254 return s; 4255 } 4256 4257 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4258 { 4259 int err; 4260 4261 err = kmem_cache_open(s, flags); 4262 if (err) 4263 return err; 4264 4265 /* Mutex is not taken during early boot */ 4266 if (slab_state <= UP) 4267 return 0; 4268 4269 memcg_propagate_slab_attrs(s); 4270 err = sysfs_slab_add(s); 4271 if (err) 4272 __kmem_cache_release(s); 4273 4274 return err; 4275 } 4276 4277 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4278 { 4279 struct kmem_cache *s; 4280 void *ret; 4281 4282 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4283 return kmalloc_large(size, gfpflags); 4284 4285 s = kmalloc_slab(size, gfpflags); 4286 4287 if (unlikely(ZERO_OR_NULL_PTR(s))) 4288 return s; 4289 4290 ret = slab_alloc(s, gfpflags, caller); 4291 4292 /* Honor the call site pointer we received. */ 4293 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4294 4295 return ret; 4296 } 4297 4298 #ifdef CONFIG_NUMA 4299 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4300 int node, unsigned long caller) 4301 { 4302 struct kmem_cache *s; 4303 void *ret; 4304 4305 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4306 ret = kmalloc_large_node(size, gfpflags, node); 4307 4308 trace_kmalloc_node(caller, ret, 4309 size, PAGE_SIZE << get_order(size), 4310 gfpflags, node); 4311 4312 return ret; 4313 } 4314 4315 s = kmalloc_slab(size, gfpflags); 4316 4317 if (unlikely(ZERO_OR_NULL_PTR(s))) 4318 return s; 4319 4320 ret = slab_alloc_node(s, gfpflags, node, caller); 4321 4322 /* Honor the call site pointer we received. */ 4323 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4324 4325 return ret; 4326 } 4327 #endif 4328 4329 #ifdef CONFIG_SYSFS 4330 static int count_inuse(struct page *page) 4331 { 4332 return page->inuse; 4333 } 4334 4335 static int count_total(struct page *page) 4336 { 4337 return page->objects; 4338 } 4339 #endif 4340 4341 #ifdef CONFIG_SLUB_DEBUG 4342 static int validate_slab(struct kmem_cache *s, struct page *page, 4343 unsigned long *map) 4344 { 4345 void *p; 4346 void *addr = page_address(page); 4347 4348 if (!check_slab(s, page) || 4349 !on_freelist(s, page, NULL)) 4350 return 0; 4351 4352 /* Now we know that a valid freelist exists */ 4353 bitmap_zero(map, page->objects); 4354 4355 get_map(s, page, map); 4356 for_each_object(p, s, addr, page->objects) { 4357 if (test_bit(slab_index(p, s, addr), map)) 4358 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4359 return 0; 4360 } 4361 4362 for_each_object(p, s, addr, page->objects) 4363 if (!test_bit(slab_index(p, s, addr), map)) 4364 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4365 return 0; 4366 return 1; 4367 } 4368 4369 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4370 unsigned long *map) 4371 { 4372 slab_lock(page); 4373 validate_slab(s, page, map); 4374 slab_unlock(page); 4375 } 4376 4377 static int validate_slab_node(struct kmem_cache *s, 4378 struct kmem_cache_node *n, unsigned long *map) 4379 { 4380 unsigned long count = 0; 4381 struct page *page; 4382 unsigned long flags; 4383 4384 spin_lock_irqsave(&n->list_lock, flags); 4385 4386 list_for_each_entry(page, &n->partial, lru) { 4387 validate_slab_slab(s, page, map); 4388 count++; 4389 } 4390 if (count != n->nr_partial) 4391 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4392 s->name, count, n->nr_partial); 4393 4394 if (!(s->flags & SLAB_STORE_USER)) 4395 goto out; 4396 4397 list_for_each_entry(page, &n->full, lru) { 4398 validate_slab_slab(s, page, map); 4399 count++; 4400 } 4401 if (count != atomic_long_read(&n->nr_slabs)) 4402 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4403 s->name, count, atomic_long_read(&n->nr_slabs)); 4404 4405 out: 4406 spin_unlock_irqrestore(&n->list_lock, flags); 4407 return count; 4408 } 4409 4410 static long validate_slab_cache(struct kmem_cache *s) 4411 { 4412 int node; 4413 unsigned long count = 0; 4414 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4415 sizeof(unsigned long), GFP_KERNEL); 4416 struct kmem_cache_node *n; 4417 4418 if (!map) 4419 return -ENOMEM; 4420 4421 flush_all(s); 4422 for_each_kmem_cache_node(s, node, n) 4423 count += validate_slab_node(s, n, map); 4424 kfree(map); 4425 return count; 4426 } 4427 /* 4428 * Generate lists of code addresses where slabcache objects are allocated 4429 * and freed. 4430 */ 4431 4432 struct location { 4433 unsigned long count; 4434 unsigned long addr; 4435 long long sum_time; 4436 long min_time; 4437 long max_time; 4438 long min_pid; 4439 long max_pid; 4440 DECLARE_BITMAP(cpus, NR_CPUS); 4441 nodemask_t nodes; 4442 }; 4443 4444 struct loc_track { 4445 unsigned long max; 4446 unsigned long count; 4447 struct location *loc; 4448 }; 4449 4450 static void free_loc_track(struct loc_track *t) 4451 { 4452 if (t->max) 4453 free_pages((unsigned long)t->loc, 4454 get_order(sizeof(struct location) * t->max)); 4455 } 4456 4457 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4458 { 4459 struct location *l; 4460 int order; 4461 4462 order = get_order(sizeof(struct location) * max); 4463 4464 l = (void *)__get_free_pages(flags, order); 4465 if (!l) 4466 return 0; 4467 4468 if (t->count) { 4469 memcpy(l, t->loc, sizeof(struct location) * t->count); 4470 free_loc_track(t); 4471 } 4472 t->max = max; 4473 t->loc = l; 4474 return 1; 4475 } 4476 4477 static int add_location(struct loc_track *t, struct kmem_cache *s, 4478 const struct track *track) 4479 { 4480 long start, end, pos; 4481 struct location *l; 4482 unsigned long caddr; 4483 unsigned long age = jiffies - track->when; 4484 4485 start = -1; 4486 end = t->count; 4487 4488 for ( ; ; ) { 4489 pos = start + (end - start + 1) / 2; 4490 4491 /* 4492 * There is nothing at "end". If we end up there 4493 * we need to add something to before end. 4494 */ 4495 if (pos == end) 4496 break; 4497 4498 caddr = t->loc[pos].addr; 4499 if (track->addr == caddr) { 4500 4501 l = &t->loc[pos]; 4502 l->count++; 4503 if (track->when) { 4504 l->sum_time += age; 4505 if (age < l->min_time) 4506 l->min_time = age; 4507 if (age > l->max_time) 4508 l->max_time = age; 4509 4510 if (track->pid < l->min_pid) 4511 l->min_pid = track->pid; 4512 if (track->pid > l->max_pid) 4513 l->max_pid = track->pid; 4514 4515 cpumask_set_cpu(track->cpu, 4516 to_cpumask(l->cpus)); 4517 } 4518 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4519 return 1; 4520 } 4521 4522 if (track->addr < caddr) 4523 end = pos; 4524 else 4525 start = pos; 4526 } 4527 4528 /* 4529 * Not found. Insert new tracking element. 4530 */ 4531 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4532 return 0; 4533 4534 l = t->loc + pos; 4535 if (pos < t->count) 4536 memmove(l + 1, l, 4537 (t->count - pos) * sizeof(struct location)); 4538 t->count++; 4539 l->count = 1; 4540 l->addr = track->addr; 4541 l->sum_time = age; 4542 l->min_time = age; 4543 l->max_time = age; 4544 l->min_pid = track->pid; 4545 l->max_pid = track->pid; 4546 cpumask_clear(to_cpumask(l->cpus)); 4547 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4548 nodes_clear(l->nodes); 4549 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4550 return 1; 4551 } 4552 4553 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4554 struct page *page, enum track_item alloc, 4555 unsigned long *map) 4556 { 4557 void *addr = page_address(page); 4558 void *p; 4559 4560 bitmap_zero(map, page->objects); 4561 get_map(s, page, map); 4562 4563 for_each_object(p, s, addr, page->objects) 4564 if (!test_bit(slab_index(p, s, addr), map)) 4565 add_location(t, s, get_track(s, p, alloc)); 4566 } 4567 4568 static int list_locations(struct kmem_cache *s, char *buf, 4569 enum track_item alloc) 4570 { 4571 int len = 0; 4572 unsigned long i; 4573 struct loc_track t = { 0, 0, NULL }; 4574 int node; 4575 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4576 sizeof(unsigned long), GFP_KERNEL); 4577 struct kmem_cache_node *n; 4578 4579 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4580 GFP_KERNEL)) { 4581 kfree(map); 4582 return sprintf(buf, "Out of memory\n"); 4583 } 4584 /* Push back cpu slabs */ 4585 flush_all(s); 4586 4587 for_each_kmem_cache_node(s, node, n) { 4588 unsigned long flags; 4589 struct page *page; 4590 4591 if (!atomic_long_read(&n->nr_slabs)) 4592 continue; 4593 4594 spin_lock_irqsave(&n->list_lock, flags); 4595 list_for_each_entry(page, &n->partial, lru) 4596 process_slab(&t, s, page, alloc, map); 4597 list_for_each_entry(page, &n->full, lru) 4598 process_slab(&t, s, page, alloc, map); 4599 spin_unlock_irqrestore(&n->list_lock, flags); 4600 } 4601 4602 for (i = 0; i < t.count; i++) { 4603 struct location *l = &t.loc[i]; 4604 4605 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4606 break; 4607 len += sprintf(buf + len, "%7ld ", l->count); 4608 4609 if (l->addr) 4610 len += sprintf(buf + len, "%pS", (void *)l->addr); 4611 else 4612 len += sprintf(buf + len, "<not-available>"); 4613 4614 if (l->sum_time != l->min_time) { 4615 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4616 l->min_time, 4617 (long)div_u64(l->sum_time, l->count), 4618 l->max_time); 4619 } else 4620 len += sprintf(buf + len, " age=%ld", 4621 l->min_time); 4622 4623 if (l->min_pid != l->max_pid) 4624 len += sprintf(buf + len, " pid=%ld-%ld", 4625 l->min_pid, l->max_pid); 4626 else 4627 len += sprintf(buf + len, " pid=%ld", 4628 l->min_pid); 4629 4630 if (num_online_cpus() > 1 && 4631 !cpumask_empty(to_cpumask(l->cpus)) && 4632 len < PAGE_SIZE - 60) 4633 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4634 " cpus=%*pbl", 4635 cpumask_pr_args(to_cpumask(l->cpus))); 4636 4637 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4638 len < PAGE_SIZE - 60) 4639 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4640 " nodes=%*pbl", 4641 nodemask_pr_args(&l->nodes)); 4642 4643 len += sprintf(buf + len, "\n"); 4644 } 4645 4646 free_loc_track(&t); 4647 kfree(map); 4648 if (!t.count) 4649 len += sprintf(buf, "No data\n"); 4650 return len; 4651 } 4652 #endif 4653 4654 #ifdef SLUB_RESILIENCY_TEST 4655 static void __init resiliency_test(void) 4656 { 4657 u8 *p; 4658 4659 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4660 4661 pr_err("SLUB resiliency testing\n"); 4662 pr_err("-----------------------\n"); 4663 pr_err("A. Corruption after allocation\n"); 4664 4665 p = kzalloc(16, GFP_KERNEL); 4666 p[16] = 0x12; 4667 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4668 p + 16); 4669 4670 validate_slab_cache(kmalloc_caches[4]); 4671 4672 /* Hmmm... The next two are dangerous */ 4673 p = kzalloc(32, GFP_KERNEL); 4674 p[32 + sizeof(void *)] = 0x34; 4675 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4676 p); 4677 pr_err("If allocated object is overwritten then not detectable\n\n"); 4678 4679 validate_slab_cache(kmalloc_caches[5]); 4680 p = kzalloc(64, GFP_KERNEL); 4681 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4682 *p = 0x56; 4683 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4684 p); 4685 pr_err("If allocated object is overwritten then not detectable\n\n"); 4686 validate_slab_cache(kmalloc_caches[6]); 4687 4688 pr_err("\nB. Corruption after free\n"); 4689 p = kzalloc(128, GFP_KERNEL); 4690 kfree(p); 4691 *p = 0x78; 4692 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4693 validate_slab_cache(kmalloc_caches[7]); 4694 4695 p = kzalloc(256, GFP_KERNEL); 4696 kfree(p); 4697 p[50] = 0x9a; 4698 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4699 validate_slab_cache(kmalloc_caches[8]); 4700 4701 p = kzalloc(512, GFP_KERNEL); 4702 kfree(p); 4703 p[512] = 0xab; 4704 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4705 validate_slab_cache(kmalloc_caches[9]); 4706 } 4707 #else 4708 #ifdef CONFIG_SYSFS 4709 static void resiliency_test(void) {}; 4710 #endif 4711 #endif 4712 4713 #ifdef CONFIG_SYSFS 4714 enum slab_stat_type { 4715 SL_ALL, /* All slabs */ 4716 SL_PARTIAL, /* Only partially allocated slabs */ 4717 SL_CPU, /* Only slabs used for cpu caches */ 4718 SL_OBJECTS, /* Determine allocated objects not slabs */ 4719 SL_TOTAL /* Determine object capacity not slabs */ 4720 }; 4721 4722 #define SO_ALL (1 << SL_ALL) 4723 #define SO_PARTIAL (1 << SL_PARTIAL) 4724 #define SO_CPU (1 << SL_CPU) 4725 #define SO_OBJECTS (1 << SL_OBJECTS) 4726 #define SO_TOTAL (1 << SL_TOTAL) 4727 4728 #ifdef CONFIG_MEMCG 4729 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4730 4731 static int __init setup_slub_memcg_sysfs(char *str) 4732 { 4733 int v; 4734 4735 if (get_option(&str, &v) > 0) 4736 memcg_sysfs_enabled = v; 4737 4738 return 1; 4739 } 4740 4741 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4742 #endif 4743 4744 static ssize_t show_slab_objects(struct kmem_cache *s, 4745 char *buf, unsigned long flags) 4746 { 4747 unsigned long total = 0; 4748 int node; 4749 int x; 4750 unsigned long *nodes; 4751 4752 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4753 if (!nodes) 4754 return -ENOMEM; 4755 4756 if (flags & SO_CPU) { 4757 int cpu; 4758 4759 for_each_possible_cpu(cpu) { 4760 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4761 cpu); 4762 int node; 4763 struct page *page; 4764 4765 page = READ_ONCE(c->page); 4766 if (!page) 4767 continue; 4768 4769 node = page_to_nid(page); 4770 if (flags & SO_TOTAL) 4771 x = page->objects; 4772 else if (flags & SO_OBJECTS) 4773 x = page->inuse; 4774 else 4775 x = 1; 4776 4777 total += x; 4778 nodes[node] += x; 4779 4780 page = slub_percpu_partial_read_once(c); 4781 if (page) { 4782 node = page_to_nid(page); 4783 if (flags & SO_TOTAL) 4784 WARN_ON_ONCE(1); 4785 else if (flags & SO_OBJECTS) 4786 WARN_ON_ONCE(1); 4787 else 4788 x = page->pages; 4789 total += x; 4790 nodes[node] += x; 4791 } 4792 } 4793 } 4794 4795 get_online_mems(); 4796 #ifdef CONFIG_SLUB_DEBUG 4797 if (flags & SO_ALL) { 4798 struct kmem_cache_node *n; 4799 4800 for_each_kmem_cache_node(s, node, n) { 4801 4802 if (flags & SO_TOTAL) 4803 x = atomic_long_read(&n->total_objects); 4804 else if (flags & SO_OBJECTS) 4805 x = atomic_long_read(&n->total_objects) - 4806 count_partial(n, count_free); 4807 else 4808 x = atomic_long_read(&n->nr_slabs); 4809 total += x; 4810 nodes[node] += x; 4811 } 4812 4813 } else 4814 #endif 4815 if (flags & SO_PARTIAL) { 4816 struct kmem_cache_node *n; 4817 4818 for_each_kmem_cache_node(s, node, n) { 4819 if (flags & SO_TOTAL) 4820 x = count_partial(n, count_total); 4821 else if (flags & SO_OBJECTS) 4822 x = count_partial(n, count_inuse); 4823 else 4824 x = n->nr_partial; 4825 total += x; 4826 nodes[node] += x; 4827 } 4828 } 4829 x = sprintf(buf, "%lu", total); 4830 #ifdef CONFIG_NUMA 4831 for (node = 0; node < nr_node_ids; node++) 4832 if (nodes[node]) 4833 x += sprintf(buf + x, " N%d=%lu", 4834 node, nodes[node]); 4835 #endif 4836 put_online_mems(); 4837 kfree(nodes); 4838 return x + sprintf(buf + x, "\n"); 4839 } 4840 4841 #ifdef CONFIG_SLUB_DEBUG 4842 static int any_slab_objects(struct kmem_cache *s) 4843 { 4844 int node; 4845 struct kmem_cache_node *n; 4846 4847 for_each_kmem_cache_node(s, node, n) 4848 if (atomic_long_read(&n->total_objects)) 4849 return 1; 4850 4851 return 0; 4852 } 4853 #endif 4854 4855 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4856 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4857 4858 struct slab_attribute { 4859 struct attribute attr; 4860 ssize_t (*show)(struct kmem_cache *s, char *buf); 4861 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4862 }; 4863 4864 #define SLAB_ATTR_RO(_name) \ 4865 static struct slab_attribute _name##_attr = \ 4866 __ATTR(_name, 0400, _name##_show, NULL) 4867 4868 #define SLAB_ATTR(_name) \ 4869 static struct slab_attribute _name##_attr = \ 4870 __ATTR(_name, 0600, _name##_show, _name##_store) 4871 4872 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4873 { 4874 return sprintf(buf, "%d\n", s->size); 4875 } 4876 SLAB_ATTR_RO(slab_size); 4877 4878 static ssize_t align_show(struct kmem_cache *s, char *buf) 4879 { 4880 return sprintf(buf, "%d\n", s->align); 4881 } 4882 SLAB_ATTR_RO(align); 4883 4884 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4885 { 4886 return sprintf(buf, "%d\n", s->object_size); 4887 } 4888 SLAB_ATTR_RO(object_size); 4889 4890 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4891 { 4892 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4893 } 4894 SLAB_ATTR_RO(objs_per_slab); 4895 4896 static ssize_t order_store(struct kmem_cache *s, 4897 const char *buf, size_t length) 4898 { 4899 unsigned long order; 4900 int err; 4901 4902 err = kstrtoul(buf, 10, &order); 4903 if (err) 4904 return err; 4905 4906 if (order > slub_max_order || order < slub_min_order) 4907 return -EINVAL; 4908 4909 calculate_sizes(s, order); 4910 return length; 4911 } 4912 4913 static ssize_t order_show(struct kmem_cache *s, char *buf) 4914 { 4915 return sprintf(buf, "%d\n", oo_order(s->oo)); 4916 } 4917 SLAB_ATTR(order); 4918 4919 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4920 { 4921 return sprintf(buf, "%lu\n", s->min_partial); 4922 } 4923 4924 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4925 size_t length) 4926 { 4927 unsigned long min; 4928 int err; 4929 4930 err = kstrtoul(buf, 10, &min); 4931 if (err) 4932 return err; 4933 4934 set_min_partial(s, min); 4935 return length; 4936 } 4937 SLAB_ATTR(min_partial); 4938 4939 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4940 { 4941 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4942 } 4943 4944 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4945 size_t length) 4946 { 4947 unsigned long objects; 4948 int err; 4949 4950 err = kstrtoul(buf, 10, &objects); 4951 if (err) 4952 return err; 4953 if (objects && !kmem_cache_has_cpu_partial(s)) 4954 return -EINVAL; 4955 4956 slub_set_cpu_partial(s, objects); 4957 flush_all(s); 4958 return length; 4959 } 4960 SLAB_ATTR(cpu_partial); 4961 4962 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4963 { 4964 if (!s->ctor) 4965 return 0; 4966 return sprintf(buf, "%pS\n", s->ctor); 4967 } 4968 SLAB_ATTR_RO(ctor); 4969 4970 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4971 { 4972 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4973 } 4974 SLAB_ATTR_RO(aliases); 4975 4976 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4977 { 4978 return show_slab_objects(s, buf, SO_PARTIAL); 4979 } 4980 SLAB_ATTR_RO(partial); 4981 4982 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4983 { 4984 return show_slab_objects(s, buf, SO_CPU); 4985 } 4986 SLAB_ATTR_RO(cpu_slabs); 4987 4988 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4989 { 4990 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4991 } 4992 SLAB_ATTR_RO(objects); 4993 4994 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4995 { 4996 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4997 } 4998 SLAB_ATTR_RO(objects_partial); 4999 5000 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5001 { 5002 int objects = 0; 5003 int pages = 0; 5004 int cpu; 5005 int len; 5006 5007 for_each_online_cpu(cpu) { 5008 struct page *page; 5009 5010 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5011 5012 if (page) { 5013 pages += page->pages; 5014 objects += page->pobjects; 5015 } 5016 } 5017 5018 len = sprintf(buf, "%d(%d)", objects, pages); 5019 5020 #ifdef CONFIG_SMP 5021 for_each_online_cpu(cpu) { 5022 struct page *page; 5023 5024 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5025 5026 if (page && len < PAGE_SIZE - 20) 5027 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5028 page->pobjects, page->pages); 5029 } 5030 #endif 5031 return len + sprintf(buf + len, "\n"); 5032 } 5033 SLAB_ATTR_RO(slabs_cpu_partial); 5034 5035 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5036 { 5037 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5038 } 5039 5040 static ssize_t reclaim_account_store(struct kmem_cache *s, 5041 const char *buf, size_t length) 5042 { 5043 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5044 if (buf[0] == '1') 5045 s->flags |= SLAB_RECLAIM_ACCOUNT; 5046 return length; 5047 } 5048 SLAB_ATTR(reclaim_account); 5049 5050 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5051 { 5052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5053 } 5054 SLAB_ATTR_RO(hwcache_align); 5055 5056 #ifdef CONFIG_ZONE_DMA 5057 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5058 { 5059 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5060 } 5061 SLAB_ATTR_RO(cache_dma); 5062 #endif 5063 5064 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5065 { 5066 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5067 } 5068 SLAB_ATTR_RO(destroy_by_rcu); 5069 5070 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 5071 { 5072 return sprintf(buf, "%d\n", s->reserved); 5073 } 5074 SLAB_ATTR_RO(reserved); 5075 5076 #ifdef CONFIG_SLUB_DEBUG 5077 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5078 { 5079 return show_slab_objects(s, buf, SO_ALL); 5080 } 5081 SLAB_ATTR_RO(slabs); 5082 5083 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5084 { 5085 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5086 } 5087 SLAB_ATTR_RO(total_objects); 5088 5089 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5090 { 5091 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5092 } 5093 5094 static ssize_t sanity_checks_store(struct kmem_cache *s, 5095 const char *buf, size_t length) 5096 { 5097 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5098 if (buf[0] == '1') { 5099 s->flags &= ~__CMPXCHG_DOUBLE; 5100 s->flags |= SLAB_CONSISTENCY_CHECKS; 5101 } 5102 return length; 5103 } 5104 SLAB_ATTR(sanity_checks); 5105 5106 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5107 { 5108 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5109 } 5110 5111 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5112 size_t length) 5113 { 5114 /* 5115 * Tracing a merged cache is going to give confusing results 5116 * as well as cause other issues like converting a mergeable 5117 * cache into an umergeable one. 5118 */ 5119 if (s->refcount > 1) 5120 return -EINVAL; 5121 5122 s->flags &= ~SLAB_TRACE; 5123 if (buf[0] == '1') { 5124 s->flags &= ~__CMPXCHG_DOUBLE; 5125 s->flags |= SLAB_TRACE; 5126 } 5127 return length; 5128 } 5129 SLAB_ATTR(trace); 5130 5131 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5132 { 5133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5134 } 5135 5136 static ssize_t red_zone_store(struct kmem_cache *s, 5137 const char *buf, size_t length) 5138 { 5139 if (any_slab_objects(s)) 5140 return -EBUSY; 5141 5142 s->flags &= ~SLAB_RED_ZONE; 5143 if (buf[0] == '1') { 5144 s->flags |= SLAB_RED_ZONE; 5145 } 5146 calculate_sizes(s, -1); 5147 return length; 5148 } 5149 SLAB_ATTR(red_zone); 5150 5151 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5152 { 5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5154 } 5155 5156 static ssize_t poison_store(struct kmem_cache *s, 5157 const char *buf, size_t length) 5158 { 5159 if (any_slab_objects(s)) 5160 return -EBUSY; 5161 5162 s->flags &= ~SLAB_POISON; 5163 if (buf[0] == '1') { 5164 s->flags |= SLAB_POISON; 5165 } 5166 calculate_sizes(s, -1); 5167 return length; 5168 } 5169 SLAB_ATTR(poison); 5170 5171 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5172 { 5173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5174 } 5175 5176 static ssize_t store_user_store(struct kmem_cache *s, 5177 const char *buf, size_t length) 5178 { 5179 if (any_slab_objects(s)) 5180 return -EBUSY; 5181 5182 s->flags &= ~SLAB_STORE_USER; 5183 if (buf[0] == '1') { 5184 s->flags &= ~__CMPXCHG_DOUBLE; 5185 s->flags |= SLAB_STORE_USER; 5186 } 5187 calculate_sizes(s, -1); 5188 return length; 5189 } 5190 SLAB_ATTR(store_user); 5191 5192 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5193 { 5194 return 0; 5195 } 5196 5197 static ssize_t validate_store(struct kmem_cache *s, 5198 const char *buf, size_t length) 5199 { 5200 int ret = -EINVAL; 5201 5202 if (buf[0] == '1') { 5203 ret = validate_slab_cache(s); 5204 if (ret >= 0) 5205 ret = length; 5206 } 5207 return ret; 5208 } 5209 SLAB_ATTR(validate); 5210 5211 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5212 { 5213 if (!(s->flags & SLAB_STORE_USER)) 5214 return -ENOSYS; 5215 return list_locations(s, buf, TRACK_ALLOC); 5216 } 5217 SLAB_ATTR_RO(alloc_calls); 5218 5219 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5220 { 5221 if (!(s->flags & SLAB_STORE_USER)) 5222 return -ENOSYS; 5223 return list_locations(s, buf, TRACK_FREE); 5224 } 5225 SLAB_ATTR_RO(free_calls); 5226 #endif /* CONFIG_SLUB_DEBUG */ 5227 5228 #ifdef CONFIG_FAILSLAB 5229 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5230 { 5231 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5232 } 5233 5234 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5235 size_t length) 5236 { 5237 if (s->refcount > 1) 5238 return -EINVAL; 5239 5240 s->flags &= ~SLAB_FAILSLAB; 5241 if (buf[0] == '1') 5242 s->flags |= SLAB_FAILSLAB; 5243 return length; 5244 } 5245 SLAB_ATTR(failslab); 5246 #endif 5247 5248 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5249 { 5250 return 0; 5251 } 5252 5253 static ssize_t shrink_store(struct kmem_cache *s, 5254 const char *buf, size_t length) 5255 { 5256 if (buf[0] == '1') 5257 kmem_cache_shrink(s); 5258 else 5259 return -EINVAL; 5260 return length; 5261 } 5262 SLAB_ATTR(shrink); 5263 5264 #ifdef CONFIG_NUMA 5265 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5266 { 5267 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 5268 } 5269 5270 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5271 const char *buf, size_t length) 5272 { 5273 unsigned long ratio; 5274 int err; 5275 5276 err = kstrtoul(buf, 10, &ratio); 5277 if (err) 5278 return err; 5279 5280 if (ratio <= 100) 5281 s->remote_node_defrag_ratio = ratio * 10; 5282 5283 return length; 5284 } 5285 SLAB_ATTR(remote_node_defrag_ratio); 5286 #endif 5287 5288 #ifdef CONFIG_SLUB_STATS 5289 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5290 { 5291 unsigned long sum = 0; 5292 int cpu; 5293 int len; 5294 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5295 5296 if (!data) 5297 return -ENOMEM; 5298 5299 for_each_online_cpu(cpu) { 5300 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5301 5302 data[cpu] = x; 5303 sum += x; 5304 } 5305 5306 len = sprintf(buf, "%lu", sum); 5307 5308 #ifdef CONFIG_SMP 5309 for_each_online_cpu(cpu) { 5310 if (data[cpu] && len < PAGE_SIZE - 20) 5311 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5312 } 5313 #endif 5314 kfree(data); 5315 return len + sprintf(buf + len, "\n"); 5316 } 5317 5318 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5319 { 5320 int cpu; 5321 5322 for_each_online_cpu(cpu) 5323 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5324 } 5325 5326 #define STAT_ATTR(si, text) \ 5327 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5328 { \ 5329 return show_stat(s, buf, si); \ 5330 } \ 5331 static ssize_t text##_store(struct kmem_cache *s, \ 5332 const char *buf, size_t length) \ 5333 { \ 5334 if (buf[0] != '0') \ 5335 return -EINVAL; \ 5336 clear_stat(s, si); \ 5337 return length; \ 5338 } \ 5339 SLAB_ATTR(text); \ 5340 5341 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5342 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5343 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5344 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5345 STAT_ATTR(FREE_FROZEN, free_frozen); 5346 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5347 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5348 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5349 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5350 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5351 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5352 STAT_ATTR(FREE_SLAB, free_slab); 5353 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5354 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5355 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5356 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5357 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5358 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5359 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5360 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5361 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5362 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5363 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5364 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5365 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5366 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5367 #endif 5368 5369 static struct attribute *slab_attrs[] = { 5370 &slab_size_attr.attr, 5371 &object_size_attr.attr, 5372 &objs_per_slab_attr.attr, 5373 &order_attr.attr, 5374 &min_partial_attr.attr, 5375 &cpu_partial_attr.attr, 5376 &objects_attr.attr, 5377 &objects_partial_attr.attr, 5378 &partial_attr.attr, 5379 &cpu_slabs_attr.attr, 5380 &ctor_attr.attr, 5381 &aliases_attr.attr, 5382 &align_attr.attr, 5383 &hwcache_align_attr.attr, 5384 &reclaim_account_attr.attr, 5385 &destroy_by_rcu_attr.attr, 5386 &shrink_attr.attr, 5387 &reserved_attr.attr, 5388 &slabs_cpu_partial_attr.attr, 5389 #ifdef CONFIG_SLUB_DEBUG 5390 &total_objects_attr.attr, 5391 &slabs_attr.attr, 5392 &sanity_checks_attr.attr, 5393 &trace_attr.attr, 5394 &red_zone_attr.attr, 5395 &poison_attr.attr, 5396 &store_user_attr.attr, 5397 &validate_attr.attr, 5398 &alloc_calls_attr.attr, 5399 &free_calls_attr.attr, 5400 #endif 5401 #ifdef CONFIG_ZONE_DMA 5402 &cache_dma_attr.attr, 5403 #endif 5404 #ifdef CONFIG_NUMA 5405 &remote_node_defrag_ratio_attr.attr, 5406 #endif 5407 #ifdef CONFIG_SLUB_STATS 5408 &alloc_fastpath_attr.attr, 5409 &alloc_slowpath_attr.attr, 5410 &free_fastpath_attr.attr, 5411 &free_slowpath_attr.attr, 5412 &free_frozen_attr.attr, 5413 &free_add_partial_attr.attr, 5414 &free_remove_partial_attr.attr, 5415 &alloc_from_partial_attr.attr, 5416 &alloc_slab_attr.attr, 5417 &alloc_refill_attr.attr, 5418 &alloc_node_mismatch_attr.attr, 5419 &free_slab_attr.attr, 5420 &cpuslab_flush_attr.attr, 5421 &deactivate_full_attr.attr, 5422 &deactivate_empty_attr.attr, 5423 &deactivate_to_head_attr.attr, 5424 &deactivate_to_tail_attr.attr, 5425 &deactivate_remote_frees_attr.attr, 5426 &deactivate_bypass_attr.attr, 5427 &order_fallback_attr.attr, 5428 &cmpxchg_double_fail_attr.attr, 5429 &cmpxchg_double_cpu_fail_attr.attr, 5430 &cpu_partial_alloc_attr.attr, 5431 &cpu_partial_free_attr.attr, 5432 &cpu_partial_node_attr.attr, 5433 &cpu_partial_drain_attr.attr, 5434 #endif 5435 #ifdef CONFIG_FAILSLAB 5436 &failslab_attr.attr, 5437 #endif 5438 5439 NULL 5440 }; 5441 5442 static const struct attribute_group slab_attr_group = { 5443 .attrs = slab_attrs, 5444 }; 5445 5446 static ssize_t slab_attr_show(struct kobject *kobj, 5447 struct attribute *attr, 5448 char *buf) 5449 { 5450 struct slab_attribute *attribute; 5451 struct kmem_cache *s; 5452 int err; 5453 5454 attribute = to_slab_attr(attr); 5455 s = to_slab(kobj); 5456 5457 if (!attribute->show) 5458 return -EIO; 5459 5460 err = attribute->show(s, buf); 5461 5462 return err; 5463 } 5464 5465 static ssize_t slab_attr_store(struct kobject *kobj, 5466 struct attribute *attr, 5467 const char *buf, size_t len) 5468 { 5469 struct slab_attribute *attribute; 5470 struct kmem_cache *s; 5471 int err; 5472 5473 attribute = to_slab_attr(attr); 5474 s = to_slab(kobj); 5475 5476 if (!attribute->store) 5477 return -EIO; 5478 5479 err = attribute->store(s, buf, len); 5480 #ifdef CONFIG_MEMCG 5481 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5482 struct kmem_cache *c; 5483 5484 mutex_lock(&slab_mutex); 5485 if (s->max_attr_size < len) 5486 s->max_attr_size = len; 5487 5488 /* 5489 * This is a best effort propagation, so this function's return 5490 * value will be determined by the parent cache only. This is 5491 * basically because not all attributes will have a well 5492 * defined semantics for rollbacks - most of the actions will 5493 * have permanent effects. 5494 * 5495 * Returning the error value of any of the children that fail 5496 * is not 100 % defined, in the sense that users seeing the 5497 * error code won't be able to know anything about the state of 5498 * the cache. 5499 * 5500 * Only returning the error code for the parent cache at least 5501 * has well defined semantics. The cache being written to 5502 * directly either failed or succeeded, in which case we loop 5503 * through the descendants with best-effort propagation. 5504 */ 5505 for_each_memcg_cache(c, s) 5506 attribute->store(c, buf, len); 5507 mutex_unlock(&slab_mutex); 5508 } 5509 #endif 5510 return err; 5511 } 5512 5513 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5514 { 5515 #ifdef CONFIG_MEMCG 5516 int i; 5517 char *buffer = NULL; 5518 struct kmem_cache *root_cache; 5519 5520 if (is_root_cache(s)) 5521 return; 5522 5523 root_cache = s->memcg_params.root_cache; 5524 5525 /* 5526 * This mean this cache had no attribute written. Therefore, no point 5527 * in copying default values around 5528 */ 5529 if (!root_cache->max_attr_size) 5530 return; 5531 5532 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5533 char mbuf[64]; 5534 char *buf; 5535 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5536 ssize_t len; 5537 5538 if (!attr || !attr->store || !attr->show) 5539 continue; 5540 5541 /* 5542 * It is really bad that we have to allocate here, so we will 5543 * do it only as a fallback. If we actually allocate, though, 5544 * we can just use the allocated buffer until the end. 5545 * 5546 * Most of the slub attributes will tend to be very small in 5547 * size, but sysfs allows buffers up to a page, so they can 5548 * theoretically happen. 5549 */ 5550 if (buffer) 5551 buf = buffer; 5552 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5553 buf = mbuf; 5554 else { 5555 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5556 if (WARN_ON(!buffer)) 5557 continue; 5558 buf = buffer; 5559 } 5560 5561 len = attr->show(root_cache, buf); 5562 if (len > 0) 5563 attr->store(s, buf, len); 5564 } 5565 5566 if (buffer) 5567 free_page((unsigned long)buffer); 5568 #endif 5569 } 5570 5571 static void kmem_cache_release(struct kobject *k) 5572 { 5573 slab_kmem_cache_release(to_slab(k)); 5574 } 5575 5576 static const struct sysfs_ops slab_sysfs_ops = { 5577 .show = slab_attr_show, 5578 .store = slab_attr_store, 5579 }; 5580 5581 static struct kobj_type slab_ktype = { 5582 .sysfs_ops = &slab_sysfs_ops, 5583 .release = kmem_cache_release, 5584 }; 5585 5586 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5587 { 5588 struct kobj_type *ktype = get_ktype(kobj); 5589 5590 if (ktype == &slab_ktype) 5591 return 1; 5592 return 0; 5593 } 5594 5595 static const struct kset_uevent_ops slab_uevent_ops = { 5596 .filter = uevent_filter, 5597 }; 5598 5599 static struct kset *slab_kset; 5600 5601 static inline struct kset *cache_kset(struct kmem_cache *s) 5602 { 5603 #ifdef CONFIG_MEMCG 5604 if (!is_root_cache(s)) 5605 return s->memcg_params.root_cache->memcg_kset; 5606 #endif 5607 return slab_kset; 5608 } 5609 5610 #define ID_STR_LENGTH 64 5611 5612 /* Create a unique string id for a slab cache: 5613 * 5614 * Format :[flags-]size 5615 */ 5616 static char *create_unique_id(struct kmem_cache *s) 5617 { 5618 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5619 char *p = name; 5620 5621 BUG_ON(!name); 5622 5623 *p++ = ':'; 5624 /* 5625 * First flags affecting slabcache operations. We will only 5626 * get here for aliasable slabs so we do not need to support 5627 * too many flags. The flags here must cover all flags that 5628 * are matched during merging to guarantee that the id is 5629 * unique. 5630 */ 5631 if (s->flags & SLAB_CACHE_DMA) 5632 *p++ = 'd'; 5633 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5634 *p++ = 'a'; 5635 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5636 *p++ = 'F'; 5637 if (s->flags & SLAB_ACCOUNT) 5638 *p++ = 'A'; 5639 if (p != name + 1) 5640 *p++ = '-'; 5641 p += sprintf(p, "%07d", s->size); 5642 5643 BUG_ON(p > name + ID_STR_LENGTH - 1); 5644 return name; 5645 } 5646 5647 static void sysfs_slab_remove_workfn(struct work_struct *work) 5648 { 5649 struct kmem_cache *s = 5650 container_of(work, struct kmem_cache, kobj_remove_work); 5651 5652 if (!s->kobj.state_in_sysfs) 5653 /* 5654 * For a memcg cache, this may be called during 5655 * deactivation and again on shutdown. Remove only once. 5656 * A cache is never shut down before deactivation is 5657 * complete, so no need to worry about synchronization. 5658 */ 5659 goto out; 5660 5661 #ifdef CONFIG_MEMCG 5662 kset_unregister(s->memcg_kset); 5663 #endif 5664 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5665 kobject_del(&s->kobj); 5666 out: 5667 kobject_put(&s->kobj); 5668 } 5669 5670 static int sysfs_slab_add(struct kmem_cache *s) 5671 { 5672 int err; 5673 const char *name; 5674 struct kset *kset = cache_kset(s); 5675 int unmergeable = slab_unmergeable(s); 5676 5677 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5678 5679 if (!kset) { 5680 kobject_init(&s->kobj, &slab_ktype); 5681 return 0; 5682 } 5683 5684 if (!unmergeable && disable_higher_order_debug && 5685 (slub_debug & DEBUG_METADATA_FLAGS)) 5686 unmergeable = 1; 5687 5688 if (unmergeable) { 5689 /* 5690 * Slabcache can never be merged so we can use the name proper. 5691 * This is typically the case for debug situations. In that 5692 * case we can catch duplicate names easily. 5693 */ 5694 sysfs_remove_link(&slab_kset->kobj, s->name); 5695 name = s->name; 5696 } else { 5697 /* 5698 * Create a unique name for the slab as a target 5699 * for the symlinks. 5700 */ 5701 name = create_unique_id(s); 5702 } 5703 5704 s->kobj.kset = kset; 5705 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5706 if (err) 5707 goto out; 5708 5709 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5710 if (err) 5711 goto out_del_kobj; 5712 5713 #ifdef CONFIG_MEMCG 5714 if (is_root_cache(s) && memcg_sysfs_enabled) { 5715 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5716 if (!s->memcg_kset) { 5717 err = -ENOMEM; 5718 goto out_del_kobj; 5719 } 5720 } 5721 #endif 5722 5723 kobject_uevent(&s->kobj, KOBJ_ADD); 5724 if (!unmergeable) { 5725 /* Setup first alias */ 5726 sysfs_slab_alias(s, s->name); 5727 } 5728 out: 5729 if (!unmergeable) 5730 kfree(name); 5731 return err; 5732 out_del_kobj: 5733 kobject_del(&s->kobj); 5734 goto out; 5735 } 5736 5737 static void sysfs_slab_remove(struct kmem_cache *s) 5738 { 5739 if (slab_state < FULL) 5740 /* 5741 * Sysfs has not been setup yet so no need to remove the 5742 * cache from sysfs. 5743 */ 5744 return; 5745 5746 kobject_get(&s->kobj); 5747 schedule_work(&s->kobj_remove_work); 5748 } 5749 5750 void sysfs_slab_release(struct kmem_cache *s) 5751 { 5752 if (slab_state >= FULL) 5753 kobject_put(&s->kobj); 5754 } 5755 5756 /* 5757 * Need to buffer aliases during bootup until sysfs becomes 5758 * available lest we lose that information. 5759 */ 5760 struct saved_alias { 5761 struct kmem_cache *s; 5762 const char *name; 5763 struct saved_alias *next; 5764 }; 5765 5766 static struct saved_alias *alias_list; 5767 5768 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5769 { 5770 struct saved_alias *al; 5771 5772 if (slab_state == FULL) { 5773 /* 5774 * If we have a leftover link then remove it. 5775 */ 5776 sysfs_remove_link(&slab_kset->kobj, name); 5777 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5778 } 5779 5780 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5781 if (!al) 5782 return -ENOMEM; 5783 5784 al->s = s; 5785 al->name = name; 5786 al->next = alias_list; 5787 alias_list = al; 5788 return 0; 5789 } 5790 5791 static int __init slab_sysfs_init(void) 5792 { 5793 struct kmem_cache *s; 5794 int err; 5795 5796 mutex_lock(&slab_mutex); 5797 5798 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5799 if (!slab_kset) { 5800 mutex_unlock(&slab_mutex); 5801 pr_err("Cannot register slab subsystem.\n"); 5802 return -ENOSYS; 5803 } 5804 5805 slab_state = FULL; 5806 5807 list_for_each_entry(s, &slab_caches, list) { 5808 err = sysfs_slab_add(s); 5809 if (err) 5810 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5811 s->name); 5812 } 5813 5814 while (alias_list) { 5815 struct saved_alias *al = alias_list; 5816 5817 alias_list = alias_list->next; 5818 err = sysfs_slab_alias(al->s, al->name); 5819 if (err) 5820 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5821 al->name); 5822 kfree(al); 5823 } 5824 5825 mutex_unlock(&slab_mutex); 5826 resiliency_test(); 5827 return 0; 5828 } 5829 5830 __initcall(slab_sysfs_init); 5831 #endif /* CONFIG_SYSFS */ 5832 5833 /* 5834 * The /proc/slabinfo ABI 5835 */ 5836 #ifdef CONFIG_SLUB_DEBUG 5837 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5838 { 5839 unsigned long nr_slabs = 0; 5840 unsigned long nr_objs = 0; 5841 unsigned long nr_free = 0; 5842 int node; 5843 struct kmem_cache_node *n; 5844 5845 for_each_kmem_cache_node(s, node, n) { 5846 nr_slabs += node_nr_slabs(n); 5847 nr_objs += node_nr_objs(n); 5848 nr_free += count_partial(n, count_free); 5849 } 5850 5851 sinfo->active_objs = nr_objs - nr_free; 5852 sinfo->num_objs = nr_objs; 5853 sinfo->active_slabs = nr_slabs; 5854 sinfo->num_slabs = nr_slabs; 5855 sinfo->objects_per_slab = oo_objects(s->oo); 5856 sinfo->cache_order = oo_order(s->oo); 5857 } 5858 5859 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5860 { 5861 } 5862 5863 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5864 size_t count, loff_t *ppos) 5865 { 5866 return -EIO; 5867 } 5868 #endif /* CONFIG_SLUB_DEBUG */ 5869