1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 128 { 129 #ifdef CONFIG_SLUB_CPU_PARTIAL 130 return !kmem_cache_debug(s); 131 #else 132 return false; 133 #endif 134 } 135 136 /* 137 * Issues still to be resolved: 138 * 139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 140 * 141 * - Variable sizing of the per node arrays 142 */ 143 144 /* Enable to test recovery from slab corruption on boot */ 145 #undef SLUB_RESILIENCY_TEST 146 147 /* Enable to log cmpxchg failures */ 148 #undef SLUB_DEBUG_CMPXCHG 149 150 /* 151 * Mininum number of partial slabs. These will be left on the partial 152 * lists even if they are empty. kmem_cache_shrink may reclaim them. 153 */ 154 #define MIN_PARTIAL 5 155 156 /* 157 * Maximum number of desirable partial slabs. 158 * The existence of more partial slabs makes kmem_cache_shrink 159 * sort the partial list by the number of objects in use. 160 */ 161 #define MAX_PARTIAL 10 162 163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 164 SLAB_POISON | SLAB_STORE_USER) 165 166 /* 167 * Debugging flags that require metadata to be stored in the slab. These get 168 * disabled when slub_debug=O is used and a cache's min order increases with 169 * metadata. 170 */ 171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 172 173 #define OO_SHIFT 16 174 #define OO_MASK ((1 << OO_SHIFT) - 1) 175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 176 177 /* Internal SLUB flags */ 178 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 180 181 #ifdef CONFIG_SMP 182 static struct notifier_block slab_notifier; 183 #endif 184 185 /* 186 * Tracking user of a slab. 187 */ 188 #define TRACK_ADDRS_COUNT 16 189 struct track { 190 unsigned long addr; /* Called from address */ 191 #ifdef CONFIG_STACKTRACE 192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 193 #endif 194 int cpu; /* Was running on cpu */ 195 int pid; /* Pid context */ 196 unsigned long when; /* When did the operation occur */ 197 }; 198 199 enum track_item { TRACK_ALLOC, TRACK_FREE }; 200 201 #ifdef CONFIG_SYSFS 202 static int sysfs_slab_add(struct kmem_cache *); 203 static int sysfs_slab_alias(struct kmem_cache *, const char *); 204 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 205 #else 206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 208 { return 0; } 209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 210 #endif 211 212 static inline void stat(const struct kmem_cache *s, enum stat_item si) 213 { 214 #ifdef CONFIG_SLUB_STATS 215 /* 216 * The rmw is racy on a preemptible kernel but this is acceptable, so 217 * avoid this_cpu_add()'s irq-disable overhead. 218 */ 219 raw_cpu_inc(s->cpu_slab->stat[si]); 220 #endif 221 } 222 223 /******************************************************************** 224 * Core slab cache functions 225 *******************************************************************/ 226 227 /* Verify that a pointer has an address that is valid within a slab page */ 228 static inline int check_valid_pointer(struct kmem_cache *s, 229 struct page *page, const void *object) 230 { 231 void *base; 232 233 if (!object) 234 return 1; 235 236 base = page_address(page); 237 if (object < base || object >= base + page->objects * s->size || 238 (object - base) % s->size) { 239 return 0; 240 } 241 242 return 1; 243 } 244 245 static inline void *get_freepointer(struct kmem_cache *s, void *object) 246 { 247 return *(void **)(object + s->offset); 248 } 249 250 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 251 { 252 prefetch(object + s->offset); 253 } 254 255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 256 { 257 void *p; 258 259 #ifdef CONFIG_DEBUG_PAGEALLOC 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 261 #else 262 p = get_freepointer(s, object); 263 #endif 264 return p; 265 } 266 267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 268 { 269 *(void **)(object + s->offset) = fp; 270 } 271 272 /* Loop over all objects in a slab */ 273 #define for_each_object(__p, __s, __addr, __objects) \ 274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 275 __p += (__s)->size) 276 277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 278 for (__p = (__addr), __idx = 1; __idx <= __objects;\ 279 __p += (__s)->size, __idx++) 280 281 /* Determine object index from a given position */ 282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 283 { 284 return (p - addr) / s->size; 285 } 286 287 static inline size_t slab_ksize(const struct kmem_cache *s) 288 { 289 #ifdef CONFIG_SLUB_DEBUG 290 /* 291 * Debugging requires use of the padding between object 292 * and whatever may come after it. 293 */ 294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 295 return s->object_size; 296 297 #endif 298 /* 299 * If we have the need to store the freelist pointer 300 * back there or track user information then we can 301 * only use the space before that information. 302 */ 303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 304 return s->inuse; 305 /* 306 * Else we can use all the padding etc for the allocation 307 */ 308 return s->size; 309 } 310 311 static inline int order_objects(int order, unsigned long size, int reserved) 312 { 313 return ((PAGE_SIZE << order) - reserved) / size; 314 } 315 316 static inline struct kmem_cache_order_objects oo_make(int order, 317 unsigned long size, int reserved) 318 { 319 struct kmem_cache_order_objects x = { 320 (order << OO_SHIFT) + order_objects(order, size, reserved) 321 }; 322 323 return x; 324 } 325 326 static inline int oo_order(struct kmem_cache_order_objects x) 327 { 328 return x.x >> OO_SHIFT; 329 } 330 331 static inline int oo_objects(struct kmem_cache_order_objects x) 332 { 333 return x.x & OO_MASK; 334 } 335 336 /* 337 * Per slab locking using the pagelock 338 */ 339 static __always_inline void slab_lock(struct page *page) 340 { 341 bit_spin_lock(PG_locked, &page->flags); 342 } 343 344 static __always_inline void slab_unlock(struct page *page) 345 { 346 __bit_spin_unlock(PG_locked, &page->flags); 347 } 348 349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 350 { 351 struct page tmp; 352 tmp.counters = counters_new; 353 /* 354 * page->counters can cover frozen/inuse/objects as well 355 * as page->_count. If we assign to ->counters directly 356 * we run the risk of losing updates to page->_count, so 357 * be careful and only assign to the fields we need. 358 */ 359 page->frozen = tmp.frozen; 360 page->inuse = tmp.inuse; 361 page->objects = tmp.objects; 362 } 363 364 /* Interrupts must be disabled (for the fallback code to work right) */ 365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 366 void *freelist_old, unsigned long counters_old, 367 void *freelist_new, unsigned long counters_new, 368 const char *n) 369 { 370 VM_BUG_ON(!irqs_disabled()); 371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 373 if (s->flags & __CMPXCHG_DOUBLE) { 374 if (cmpxchg_double(&page->freelist, &page->counters, 375 freelist_old, counters_old, 376 freelist_new, counters_new)) 377 return true; 378 } else 379 #endif 380 { 381 slab_lock(page); 382 if (page->freelist == freelist_old && 383 page->counters == counters_old) { 384 page->freelist = freelist_new; 385 set_page_slub_counters(page, counters_new); 386 slab_unlock(page); 387 return true; 388 } 389 slab_unlock(page); 390 } 391 392 cpu_relax(); 393 stat(s, CMPXCHG_DOUBLE_FAIL); 394 395 #ifdef SLUB_DEBUG_CMPXCHG 396 pr_info("%s %s: cmpxchg double redo ", n, s->name); 397 #endif 398 399 return false; 400 } 401 402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 403 void *freelist_old, unsigned long counters_old, 404 void *freelist_new, unsigned long counters_new, 405 const char *n) 406 { 407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 409 if (s->flags & __CMPXCHG_DOUBLE) { 410 if (cmpxchg_double(&page->freelist, &page->counters, 411 freelist_old, counters_old, 412 freelist_new, counters_new)) 413 return true; 414 } else 415 #endif 416 { 417 unsigned long flags; 418 419 local_irq_save(flags); 420 slab_lock(page); 421 if (page->freelist == freelist_old && 422 page->counters == counters_old) { 423 page->freelist = freelist_new; 424 set_page_slub_counters(page, counters_new); 425 slab_unlock(page); 426 local_irq_restore(flags); 427 return true; 428 } 429 slab_unlock(page); 430 local_irq_restore(flags); 431 } 432 433 cpu_relax(); 434 stat(s, CMPXCHG_DOUBLE_FAIL); 435 436 #ifdef SLUB_DEBUG_CMPXCHG 437 pr_info("%s %s: cmpxchg double redo ", n, s->name); 438 #endif 439 440 return false; 441 } 442 443 #ifdef CONFIG_SLUB_DEBUG 444 /* 445 * Determine a map of object in use on a page. 446 * 447 * Node listlock must be held to guarantee that the page does 448 * not vanish from under us. 449 */ 450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 451 { 452 void *p; 453 void *addr = page_address(page); 454 455 for (p = page->freelist; p; p = get_freepointer(s, p)) 456 set_bit(slab_index(p, s, addr), map); 457 } 458 459 /* 460 * Debug settings: 461 */ 462 #if defined(CONFIG_SLUB_DEBUG_ON) 463 static int slub_debug = DEBUG_DEFAULT_FLAGS; 464 #elif defined(CONFIG_KASAN) 465 static int slub_debug = SLAB_STORE_USER; 466 #else 467 static int slub_debug; 468 #endif 469 470 static char *slub_debug_slabs; 471 static int disable_higher_order_debug; 472 473 /* 474 * slub is about to manipulate internal object metadata. This memory lies 475 * outside the range of the allocated object, so accessing it would normally 476 * be reported by kasan as a bounds error. metadata_access_enable() is used 477 * to tell kasan that these accesses are OK. 478 */ 479 static inline void metadata_access_enable(void) 480 { 481 kasan_disable_current(); 482 } 483 484 static inline void metadata_access_disable(void) 485 { 486 kasan_enable_current(); 487 } 488 489 /* 490 * Object debugging 491 */ 492 static void print_section(char *text, u8 *addr, unsigned int length) 493 { 494 metadata_access_enable(); 495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 496 length, 1); 497 metadata_access_disable(); 498 } 499 500 static struct track *get_track(struct kmem_cache *s, void *object, 501 enum track_item alloc) 502 { 503 struct track *p; 504 505 if (s->offset) 506 p = object + s->offset + sizeof(void *); 507 else 508 p = object + s->inuse; 509 510 return p + alloc; 511 } 512 513 static void set_track(struct kmem_cache *s, void *object, 514 enum track_item alloc, unsigned long addr) 515 { 516 struct track *p = get_track(s, object, alloc); 517 518 if (addr) { 519 #ifdef CONFIG_STACKTRACE 520 struct stack_trace trace; 521 int i; 522 523 trace.nr_entries = 0; 524 trace.max_entries = TRACK_ADDRS_COUNT; 525 trace.entries = p->addrs; 526 trace.skip = 3; 527 metadata_access_enable(); 528 save_stack_trace(&trace); 529 metadata_access_disable(); 530 531 /* See rant in lockdep.c */ 532 if (trace.nr_entries != 0 && 533 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 534 trace.nr_entries--; 535 536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 537 p->addrs[i] = 0; 538 #endif 539 p->addr = addr; 540 p->cpu = smp_processor_id(); 541 p->pid = current->pid; 542 p->when = jiffies; 543 } else 544 memset(p, 0, sizeof(struct track)); 545 } 546 547 static void init_tracking(struct kmem_cache *s, void *object) 548 { 549 if (!(s->flags & SLAB_STORE_USER)) 550 return; 551 552 set_track(s, object, TRACK_FREE, 0UL); 553 set_track(s, object, TRACK_ALLOC, 0UL); 554 } 555 556 static void print_track(const char *s, struct track *t) 557 { 558 if (!t->addr) 559 return; 560 561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 563 #ifdef CONFIG_STACKTRACE 564 { 565 int i; 566 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 567 if (t->addrs[i]) 568 pr_err("\t%pS\n", (void *)t->addrs[i]); 569 else 570 break; 571 } 572 #endif 573 } 574 575 static void print_tracking(struct kmem_cache *s, void *object) 576 { 577 if (!(s->flags & SLAB_STORE_USER)) 578 return; 579 580 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 581 print_track("Freed", get_track(s, object, TRACK_FREE)); 582 } 583 584 static void print_page_info(struct page *page) 585 { 586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 587 page, page->objects, page->inuse, page->freelist, page->flags); 588 589 } 590 591 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 592 { 593 struct va_format vaf; 594 va_list args; 595 596 va_start(args, fmt); 597 vaf.fmt = fmt; 598 vaf.va = &args; 599 pr_err("=============================================================================\n"); 600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 601 pr_err("-----------------------------------------------------------------------------\n\n"); 602 603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 604 va_end(args); 605 } 606 607 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 608 { 609 struct va_format vaf; 610 va_list args; 611 612 va_start(args, fmt); 613 vaf.fmt = fmt; 614 vaf.va = &args; 615 pr_err("FIX %s: %pV\n", s->name, &vaf); 616 va_end(args); 617 } 618 619 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 620 { 621 unsigned int off; /* Offset of last byte */ 622 u8 *addr = page_address(page); 623 624 print_tracking(s, p); 625 626 print_page_info(page); 627 628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 629 p, p - addr, get_freepointer(s, p)); 630 631 if (p > addr + 16) 632 print_section("Bytes b4 ", p - 16, 16); 633 634 print_section("Object ", p, min_t(unsigned long, s->object_size, 635 PAGE_SIZE)); 636 if (s->flags & SLAB_RED_ZONE) 637 print_section("Redzone ", p + s->object_size, 638 s->inuse - s->object_size); 639 640 if (s->offset) 641 off = s->offset + sizeof(void *); 642 else 643 off = s->inuse; 644 645 if (s->flags & SLAB_STORE_USER) 646 off += 2 * sizeof(struct track); 647 648 if (off != s->size) 649 /* Beginning of the filler is the free pointer */ 650 print_section("Padding ", p + off, s->size - off); 651 652 dump_stack(); 653 } 654 655 void object_err(struct kmem_cache *s, struct page *page, 656 u8 *object, char *reason) 657 { 658 slab_bug(s, "%s", reason); 659 print_trailer(s, page, object); 660 } 661 662 static void slab_err(struct kmem_cache *s, struct page *page, 663 const char *fmt, ...) 664 { 665 va_list args; 666 char buf[100]; 667 668 va_start(args, fmt); 669 vsnprintf(buf, sizeof(buf), fmt, args); 670 va_end(args); 671 slab_bug(s, "%s", buf); 672 print_page_info(page); 673 dump_stack(); 674 } 675 676 static void init_object(struct kmem_cache *s, void *object, u8 val) 677 { 678 u8 *p = object; 679 680 if (s->flags & __OBJECT_POISON) { 681 memset(p, POISON_FREE, s->object_size - 1); 682 p[s->object_size - 1] = POISON_END; 683 } 684 685 if (s->flags & SLAB_RED_ZONE) 686 memset(p + s->object_size, val, s->inuse - s->object_size); 687 } 688 689 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 690 void *from, void *to) 691 { 692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 693 memset(from, data, to - from); 694 } 695 696 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 697 u8 *object, char *what, 698 u8 *start, unsigned int value, unsigned int bytes) 699 { 700 u8 *fault; 701 u8 *end; 702 703 metadata_access_enable(); 704 fault = memchr_inv(start, value, bytes); 705 metadata_access_disable(); 706 if (!fault) 707 return 1; 708 709 end = start + bytes; 710 while (end > fault && end[-1] == value) 711 end--; 712 713 slab_bug(s, "%s overwritten", what); 714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 715 fault, end - 1, fault[0], value); 716 print_trailer(s, page, object); 717 718 restore_bytes(s, what, value, fault, end); 719 return 0; 720 } 721 722 /* 723 * Object layout: 724 * 725 * object address 726 * Bytes of the object to be managed. 727 * If the freepointer may overlay the object then the free 728 * pointer is the first word of the object. 729 * 730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 731 * 0xa5 (POISON_END) 732 * 733 * object + s->object_size 734 * Padding to reach word boundary. This is also used for Redzoning. 735 * Padding is extended by another word if Redzoning is enabled and 736 * object_size == inuse. 737 * 738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 739 * 0xcc (RED_ACTIVE) for objects in use. 740 * 741 * object + s->inuse 742 * Meta data starts here. 743 * 744 * A. Free pointer (if we cannot overwrite object on free) 745 * B. Tracking data for SLAB_STORE_USER 746 * C. Padding to reach required alignment boundary or at mininum 747 * one word if debugging is on to be able to detect writes 748 * before the word boundary. 749 * 750 * Padding is done using 0x5a (POISON_INUSE) 751 * 752 * object + s->size 753 * Nothing is used beyond s->size. 754 * 755 * If slabcaches are merged then the object_size and inuse boundaries are mostly 756 * ignored. And therefore no slab options that rely on these boundaries 757 * may be used with merged slabcaches. 758 */ 759 760 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 761 { 762 unsigned long off = s->inuse; /* The end of info */ 763 764 if (s->offset) 765 /* Freepointer is placed after the object. */ 766 off += sizeof(void *); 767 768 if (s->flags & SLAB_STORE_USER) 769 /* We also have user information there */ 770 off += 2 * sizeof(struct track); 771 772 if (s->size == off) 773 return 1; 774 775 return check_bytes_and_report(s, page, p, "Object padding", 776 p + off, POISON_INUSE, s->size - off); 777 } 778 779 /* Check the pad bytes at the end of a slab page */ 780 static int slab_pad_check(struct kmem_cache *s, struct page *page) 781 { 782 u8 *start; 783 u8 *fault; 784 u8 *end; 785 int length; 786 int remainder; 787 788 if (!(s->flags & SLAB_POISON)) 789 return 1; 790 791 start = page_address(page); 792 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 793 end = start + length; 794 remainder = length % s->size; 795 if (!remainder) 796 return 1; 797 798 metadata_access_enable(); 799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 800 metadata_access_disable(); 801 if (!fault) 802 return 1; 803 while (end > fault && end[-1] == POISON_INUSE) 804 end--; 805 806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 807 print_section("Padding ", end - remainder, remainder); 808 809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 810 return 0; 811 } 812 813 static int check_object(struct kmem_cache *s, struct page *page, 814 void *object, u8 val) 815 { 816 u8 *p = object; 817 u8 *endobject = object + s->object_size; 818 819 if (s->flags & SLAB_RED_ZONE) { 820 if (!check_bytes_and_report(s, page, object, "Redzone", 821 endobject, val, s->inuse - s->object_size)) 822 return 0; 823 } else { 824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 825 check_bytes_and_report(s, page, p, "Alignment padding", 826 endobject, POISON_INUSE, 827 s->inuse - s->object_size); 828 } 829 } 830 831 if (s->flags & SLAB_POISON) { 832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 833 (!check_bytes_and_report(s, page, p, "Poison", p, 834 POISON_FREE, s->object_size - 1) || 835 !check_bytes_and_report(s, page, p, "Poison", 836 p + s->object_size - 1, POISON_END, 1))) 837 return 0; 838 /* 839 * check_pad_bytes cleans up on its own. 840 */ 841 check_pad_bytes(s, page, p); 842 } 843 844 if (!s->offset && val == SLUB_RED_ACTIVE) 845 /* 846 * Object and freepointer overlap. Cannot check 847 * freepointer while object is allocated. 848 */ 849 return 1; 850 851 /* Check free pointer validity */ 852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 853 object_err(s, page, p, "Freepointer corrupt"); 854 /* 855 * No choice but to zap it and thus lose the remainder 856 * of the free objects in this slab. May cause 857 * another error because the object count is now wrong. 858 */ 859 set_freepointer(s, p, NULL); 860 return 0; 861 } 862 return 1; 863 } 864 865 static int check_slab(struct kmem_cache *s, struct page *page) 866 { 867 int maxobj; 868 869 VM_BUG_ON(!irqs_disabled()); 870 871 if (!PageSlab(page)) { 872 slab_err(s, page, "Not a valid slab page"); 873 return 0; 874 } 875 876 maxobj = order_objects(compound_order(page), s->size, s->reserved); 877 if (page->objects > maxobj) { 878 slab_err(s, page, "objects %u > max %u", 879 page->objects, maxobj); 880 return 0; 881 } 882 if (page->inuse > page->objects) { 883 slab_err(s, page, "inuse %u > max %u", 884 page->inuse, page->objects); 885 return 0; 886 } 887 /* Slab_pad_check fixes things up after itself */ 888 slab_pad_check(s, page); 889 return 1; 890 } 891 892 /* 893 * Determine if a certain object on a page is on the freelist. Must hold the 894 * slab lock to guarantee that the chains are in a consistent state. 895 */ 896 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 897 { 898 int nr = 0; 899 void *fp; 900 void *object = NULL; 901 int max_objects; 902 903 fp = page->freelist; 904 while (fp && nr <= page->objects) { 905 if (fp == search) 906 return 1; 907 if (!check_valid_pointer(s, page, fp)) { 908 if (object) { 909 object_err(s, page, object, 910 "Freechain corrupt"); 911 set_freepointer(s, object, NULL); 912 } else { 913 slab_err(s, page, "Freepointer corrupt"); 914 page->freelist = NULL; 915 page->inuse = page->objects; 916 slab_fix(s, "Freelist cleared"); 917 return 0; 918 } 919 break; 920 } 921 object = fp; 922 fp = get_freepointer(s, object); 923 nr++; 924 } 925 926 max_objects = order_objects(compound_order(page), s->size, s->reserved); 927 if (max_objects > MAX_OBJS_PER_PAGE) 928 max_objects = MAX_OBJS_PER_PAGE; 929 930 if (page->objects != max_objects) { 931 slab_err(s, page, "Wrong number of objects. Found %d but " 932 "should be %d", page->objects, max_objects); 933 page->objects = max_objects; 934 slab_fix(s, "Number of objects adjusted."); 935 } 936 if (page->inuse != page->objects - nr) { 937 slab_err(s, page, "Wrong object count. Counter is %d but " 938 "counted were %d", page->inuse, page->objects - nr); 939 page->inuse = page->objects - nr; 940 slab_fix(s, "Object count adjusted."); 941 } 942 return search == NULL; 943 } 944 945 static void trace(struct kmem_cache *s, struct page *page, void *object, 946 int alloc) 947 { 948 if (s->flags & SLAB_TRACE) { 949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 950 s->name, 951 alloc ? "alloc" : "free", 952 object, page->inuse, 953 page->freelist); 954 955 if (!alloc) 956 print_section("Object ", (void *)object, 957 s->object_size); 958 959 dump_stack(); 960 } 961 } 962 963 /* 964 * Tracking of fully allocated slabs for debugging purposes. 965 */ 966 static void add_full(struct kmem_cache *s, 967 struct kmem_cache_node *n, struct page *page) 968 { 969 if (!(s->flags & SLAB_STORE_USER)) 970 return; 971 972 lockdep_assert_held(&n->list_lock); 973 list_add(&page->lru, &n->full); 974 } 975 976 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 977 { 978 if (!(s->flags & SLAB_STORE_USER)) 979 return; 980 981 lockdep_assert_held(&n->list_lock); 982 list_del(&page->lru); 983 } 984 985 /* Tracking of the number of slabs for debugging purposes */ 986 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 987 { 988 struct kmem_cache_node *n = get_node(s, node); 989 990 return atomic_long_read(&n->nr_slabs); 991 } 992 993 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 994 { 995 return atomic_long_read(&n->nr_slabs); 996 } 997 998 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 999 { 1000 struct kmem_cache_node *n = get_node(s, node); 1001 1002 /* 1003 * May be called early in order to allocate a slab for the 1004 * kmem_cache_node structure. Solve the chicken-egg 1005 * dilemma by deferring the increment of the count during 1006 * bootstrap (see early_kmem_cache_node_alloc). 1007 */ 1008 if (likely(n)) { 1009 atomic_long_inc(&n->nr_slabs); 1010 atomic_long_add(objects, &n->total_objects); 1011 } 1012 } 1013 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1014 { 1015 struct kmem_cache_node *n = get_node(s, node); 1016 1017 atomic_long_dec(&n->nr_slabs); 1018 atomic_long_sub(objects, &n->total_objects); 1019 } 1020 1021 /* Object debug checks for alloc/free paths */ 1022 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1023 void *object) 1024 { 1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1026 return; 1027 1028 init_object(s, object, SLUB_RED_INACTIVE); 1029 init_tracking(s, object); 1030 } 1031 1032 static noinline int alloc_debug_processing(struct kmem_cache *s, 1033 struct page *page, 1034 void *object, unsigned long addr) 1035 { 1036 if (!check_slab(s, page)) 1037 goto bad; 1038 1039 if (!check_valid_pointer(s, page, object)) { 1040 object_err(s, page, object, "Freelist Pointer check fails"); 1041 goto bad; 1042 } 1043 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1045 goto bad; 1046 1047 /* Success perform special debug activities for allocs */ 1048 if (s->flags & SLAB_STORE_USER) 1049 set_track(s, object, TRACK_ALLOC, addr); 1050 trace(s, page, object, 1); 1051 init_object(s, object, SLUB_RED_ACTIVE); 1052 return 1; 1053 1054 bad: 1055 if (PageSlab(page)) { 1056 /* 1057 * If this is a slab page then lets do the best we can 1058 * to avoid issues in the future. Marking all objects 1059 * as used avoids touching the remaining objects. 1060 */ 1061 slab_fix(s, "Marking all objects used"); 1062 page->inuse = page->objects; 1063 page->freelist = NULL; 1064 } 1065 return 0; 1066 } 1067 1068 static noinline struct kmem_cache_node *free_debug_processing( 1069 struct kmem_cache *s, struct page *page, void *object, 1070 unsigned long addr, unsigned long *flags) 1071 { 1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1073 1074 spin_lock_irqsave(&n->list_lock, *flags); 1075 slab_lock(page); 1076 1077 if (!check_slab(s, page)) 1078 goto fail; 1079 1080 if (!check_valid_pointer(s, page, object)) { 1081 slab_err(s, page, "Invalid object pointer 0x%p", object); 1082 goto fail; 1083 } 1084 1085 if (on_freelist(s, page, object)) { 1086 object_err(s, page, object, "Object already free"); 1087 goto fail; 1088 } 1089 1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1091 goto out; 1092 1093 if (unlikely(s != page->slab_cache)) { 1094 if (!PageSlab(page)) { 1095 slab_err(s, page, "Attempt to free object(0x%p) " 1096 "outside of slab", object); 1097 } else if (!page->slab_cache) { 1098 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1099 object); 1100 dump_stack(); 1101 } else 1102 object_err(s, page, object, 1103 "page slab pointer corrupt."); 1104 goto fail; 1105 } 1106 1107 if (s->flags & SLAB_STORE_USER) 1108 set_track(s, object, TRACK_FREE, addr); 1109 trace(s, page, object, 0); 1110 init_object(s, object, SLUB_RED_INACTIVE); 1111 out: 1112 slab_unlock(page); 1113 /* 1114 * Keep node_lock to preserve integrity 1115 * until the object is actually freed 1116 */ 1117 return n; 1118 1119 fail: 1120 slab_unlock(page); 1121 spin_unlock_irqrestore(&n->list_lock, *flags); 1122 slab_fix(s, "Object at 0x%p not freed", object); 1123 return NULL; 1124 } 1125 1126 static int __init setup_slub_debug(char *str) 1127 { 1128 slub_debug = DEBUG_DEFAULT_FLAGS; 1129 if (*str++ != '=' || !*str) 1130 /* 1131 * No options specified. Switch on full debugging. 1132 */ 1133 goto out; 1134 1135 if (*str == ',') 1136 /* 1137 * No options but restriction on slabs. This means full 1138 * debugging for slabs matching a pattern. 1139 */ 1140 goto check_slabs; 1141 1142 slub_debug = 0; 1143 if (*str == '-') 1144 /* 1145 * Switch off all debugging measures. 1146 */ 1147 goto out; 1148 1149 /* 1150 * Determine which debug features should be switched on 1151 */ 1152 for (; *str && *str != ','; str++) { 1153 switch (tolower(*str)) { 1154 case 'f': 1155 slub_debug |= SLAB_DEBUG_FREE; 1156 break; 1157 case 'z': 1158 slub_debug |= SLAB_RED_ZONE; 1159 break; 1160 case 'p': 1161 slub_debug |= SLAB_POISON; 1162 break; 1163 case 'u': 1164 slub_debug |= SLAB_STORE_USER; 1165 break; 1166 case 't': 1167 slub_debug |= SLAB_TRACE; 1168 break; 1169 case 'a': 1170 slub_debug |= SLAB_FAILSLAB; 1171 break; 1172 case 'o': 1173 /* 1174 * Avoid enabling debugging on caches if its minimum 1175 * order would increase as a result. 1176 */ 1177 disable_higher_order_debug = 1; 1178 break; 1179 default: 1180 pr_err("slub_debug option '%c' unknown. skipped\n", 1181 *str); 1182 } 1183 } 1184 1185 check_slabs: 1186 if (*str == ',') 1187 slub_debug_slabs = str + 1; 1188 out: 1189 return 1; 1190 } 1191 1192 __setup("slub_debug", setup_slub_debug); 1193 1194 unsigned long kmem_cache_flags(unsigned long object_size, 1195 unsigned long flags, const char *name, 1196 void (*ctor)(void *)) 1197 { 1198 /* 1199 * Enable debugging if selected on the kernel commandline. 1200 */ 1201 if (slub_debug && (!slub_debug_slabs || (name && 1202 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1203 flags |= slub_debug; 1204 1205 return flags; 1206 } 1207 #else 1208 static inline void setup_object_debug(struct kmem_cache *s, 1209 struct page *page, void *object) {} 1210 1211 static inline int alloc_debug_processing(struct kmem_cache *s, 1212 struct page *page, void *object, unsigned long addr) { return 0; } 1213 1214 static inline struct kmem_cache_node *free_debug_processing( 1215 struct kmem_cache *s, struct page *page, void *object, 1216 unsigned long addr, unsigned long *flags) { return NULL; } 1217 1218 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1219 { return 1; } 1220 static inline int check_object(struct kmem_cache *s, struct page *page, 1221 void *object, u8 val) { return 1; } 1222 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1223 struct page *page) {} 1224 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1225 struct page *page) {} 1226 unsigned long kmem_cache_flags(unsigned long object_size, 1227 unsigned long flags, const char *name, 1228 void (*ctor)(void *)) 1229 { 1230 return flags; 1231 } 1232 #define slub_debug 0 1233 1234 #define disable_higher_order_debug 0 1235 1236 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1237 { return 0; } 1238 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1239 { return 0; } 1240 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1241 int objects) {} 1242 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1243 int objects) {} 1244 1245 #endif /* CONFIG_SLUB_DEBUG */ 1246 1247 /* 1248 * Hooks for other subsystems that check memory allocations. In a typical 1249 * production configuration these hooks all should produce no code at all. 1250 */ 1251 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1252 { 1253 kmemleak_alloc(ptr, size, 1, flags); 1254 kasan_kmalloc_large(ptr, size); 1255 } 1256 1257 static inline void kfree_hook(const void *x) 1258 { 1259 kmemleak_free(x); 1260 kasan_kfree_large(x); 1261 } 1262 1263 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, 1264 gfp_t flags) 1265 { 1266 flags &= gfp_allowed_mask; 1267 lockdep_trace_alloc(flags); 1268 might_sleep_if(flags & __GFP_WAIT); 1269 1270 if (should_failslab(s->object_size, flags, s->flags)) 1271 return NULL; 1272 1273 return memcg_kmem_get_cache(s, flags); 1274 } 1275 1276 static inline void slab_post_alloc_hook(struct kmem_cache *s, 1277 gfp_t flags, void *object) 1278 { 1279 flags &= gfp_allowed_mask; 1280 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 1281 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 1282 memcg_kmem_put_cache(s); 1283 kasan_slab_alloc(s, object); 1284 } 1285 1286 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1287 { 1288 kmemleak_free_recursive(x, s->flags); 1289 1290 /* 1291 * Trouble is that we may no longer disable interrupts in the fast path 1292 * So in order to make the debug calls that expect irqs to be 1293 * disabled we need to disable interrupts temporarily. 1294 */ 1295 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1296 { 1297 unsigned long flags; 1298 1299 local_irq_save(flags); 1300 kmemcheck_slab_free(s, x, s->object_size); 1301 debug_check_no_locks_freed(x, s->object_size); 1302 local_irq_restore(flags); 1303 } 1304 #endif 1305 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1306 debug_check_no_obj_freed(x, s->object_size); 1307 1308 kasan_slab_free(s, x); 1309 } 1310 1311 static void setup_object(struct kmem_cache *s, struct page *page, 1312 void *object) 1313 { 1314 setup_object_debug(s, page, object); 1315 if (unlikely(s->ctor)) { 1316 kasan_unpoison_object_data(s, object); 1317 s->ctor(object); 1318 kasan_poison_object_data(s, object); 1319 } 1320 } 1321 1322 /* 1323 * Slab allocation and freeing 1324 */ 1325 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1326 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1327 { 1328 struct page *page; 1329 int order = oo_order(oo); 1330 1331 flags |= __GFP_NOTRACK; 1332 1333 if (node == NUMA_NO_NODE) 1334 page = alloc_pages(flags, order); 1335 else 1336 page = __alloc_pages_node(node, flags, order); 1337 1338 if (page && memcg_charge_slab(page, flags, order, s)) { 1339 __free_pages(page, order); 1340 page = NULL; 1341 } 1342 1343 return page; 1344 } 1345 1346 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1347 { 1348 struct page *page; 1349 struct kmem_cache_order_objects oo = s->oo; 1350 gfp_t alloc_gfp; 1351 void *start, *p; 1352 int idx, order; 1353 1354 flags &= gfp_allowed_mask; 1355 1356 if (flags & __GFP_WAIT) 1357 local_irq_enable(); 1358 1359 flags |= s->allocflags; 1360 1361 /* 1362 * Let the initial higher-order allocation fail under memory pressure 1363 * so we fall-back to the minimum order allocation. 1364 */ 1365 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1366 if ((alloc_gfp & __GFP_WAIT) && oo_order(oo) > oo_order(s->min)) 1367 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_WAIT; 1368 1369 page = alloc_slab_page(s, alloc_gfp, node, oo); 1370 if (unlikely(!page)) { 1371 oo = s->min; 1372 alloc_gfp = flags; 1373 /* 1374 * Allocation may have failed due to fragmentation. 1375 * Try a lower order alloc if possible 1376 */ 1377 page = alloc_slab_page(s, alloc_gfp, node, oo); 1378 if (unlikely(!page)) 1379 goto out; 1380 stat(s, ORDER_FALLBACK); 1381 } 1382 1383 if (kmemcheck_enabled && 1384 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1385 int pages = 1 << oo_order(oo); 1386 1387 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1388 1389 /* 1390 * Objects from caches that have a constructor don't get 1391 * cleared when they're allocated, so we need to do it here. 1392 */ 1393 if (s->ctor) 1394 kmemcheck_mark_uninitialized_pages(page, pages); 1395 else 1396 kmemcheck_mark_unallocated_pages(page, pages); 1397 } 1398 1399 page->objects = oo_objects(oo); 1400 1401 order = compound_order(page); 1402 page->slab_cache = s; 1403 __SetPageSlab(page); 1404 if (page_is_pfmemalloc(page)) 1405 SetPageSlabPfmemalloc(page); 1406 1407 start = page_address(page); 1408 1409 if (unlikely(s->flags & SLAB_POISON)) 1410 memset(start, POISON_INUSE, PAGE_SIZE << order); 1411 1412 kasan_poison_slab(page); 1413 1414 for_each_object_idx(p, idx, s, start, page->objects) { 1415 setup_object(s, page, p); 1416 if (likely(idx < page->objects)) 1417 set_freepointer(s, p, p + s->size); 1418 else 1419 set_freepointer(s, p, NULL); 1420 } 1421 1422 page->freelist = start; 1423 page->inuse = page->objects; 1424 page->frozen = 1; 1425 1426 out: 1427 if (flags & __GFP_WAIT) 1428 local_irq_disable(); 1429 if (!page) 1430 return NULL; 1431 1432 mod_zone_page_state(page_zone(page), 1433 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1434 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1435 1 << oo_order(oo)); 1436 1437 inc_slabs_node(s, page_to_nid(page), page->objects); 1438 1439 return page; 1440 } 1441 1442 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1443 { 1444 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1445 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK); 1446 BUG(); 1447 } 1448 1449 return allocate_slab(s, 1450 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1451 } 1452 1453 static void __free_slab(struct kmem_cache *s, struct page *page) 1454 { 1455 int order = compound_order(page); 1456 int pages = 1 << order; 1457 1458 if (kmem_cache_debug(s)) { 1459 void *p; 1460 1461 slab_pad_check(s, page); 1462 for_each_object(p, s, page_address(page), 1463 page->objects) 1464 check_object(s, page, p, SLUB_RED_INACTIVE); 1465 } 1466 1467 kmemcheck_free_shadow(page, compound_order(page)); 1468 1469 mod_zone_page_state(page_zone(page), 1470 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1471 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1472 -pages); 1473 1474 __ClearPageSlabPfmemalloc(page); 1475 __ClearPageSlab(page); 1476 1477 page_mapcount_reset(page); 1478 if (current->reclaim_state) 1479 current->reclaim_state->reclaimed_slab += pages; 1480 __free_kmem_pages(page, order); 1481 } 1482 1483 #define need_reserve_slab_rcu \ 1484 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1485 1486 static void rcu_free_slab(struct rcu_head *h) 1487 { 1488 struct page *page; 1489 1490 if (need_reserve_slab_rcu) 1491 page = virt_to_head_page(h); 1492 else 1493 page = container_of((struct list_head *)h, struct page, lru); 1494 1495 __free_slab(page->slab_cache, page); 1496 } 1497 1498 static void free_slab(struct kmem_cache *s, struct page *page) 1499 { 1500 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1501 struct rcu_head *head; 1502 1503 if (need_reserve_slab_rcu) { 1504 int order = compound_order(page); 1505 int offset = (PAGE_SIZE << order) - s->reserved; 1506 1507 VM_BUG_ON(s->reserved != sizeof(*head)); 1508 head = page_address(page) + offset; 1509 } else { 1510 /* 1511 * RCU free overloads the RCU head over the LRU 1512 */ 1513 head = (void *)&page->lru; 1514 } 1515 1516 call_rcu(head, rcu_free_slab); 1517 } else 1518 __free_slab(s, page); 1519 } 1520 1521 static void discard_slab(struct kmem_cache *s, struct page *page) 1522 { 1523 dec_slabs_node(s, page_to_nid(page), page->objects); 1524 free_slab(s, page); 1525 } 1526 1527 /* 1528 * Management of partially allocated slabs. 1529 */ 1530 static inline void 1531 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1532 { 1533 n->nr_partial++; 1534 if (tail == DEACTIVATE_TO_TAIL) 1535 list_add_tail(&page->lru, &n->partial); 1536 else 1537 list_add(&page->lru, &n->partial); 1538 } 1539 1540 static inline void add_partial(struct kmem_cache_node *n, 1541 struct page *page, int tail) 1542 { 1543 lockdep_assert_held(&n->list_lock); 1544 __add_partial(n, page, tail); 1545 } 1546 1547 static inline void 1548 __remove_partial(struct kmem_cache_node *n, struct page *page) 1549 { 1550 list_del(&page->lru); 1551 n->nr_partial--; 1552 } 1553 1554 static inline void remove_partial(struct kmem_cache_node *n, 1555 struct page *page) 1556 { 1557 lockdep_assert_held(&n->list_lock); 1558 __remove_partial(n, page); 1559 } 1560 1561 /* 1562 * Remove slab from the partial list, freeze it and 1563 * return the pointer to the freelist. 1564 * 1565 * Returns a list of objects or NULL if it fails. 1566 */ 1567 static inline void *acquire_slab(struct kmem_cache *s, 1568 struct kmem_cache_node *n, struct page *page, 1569 int mode, int *objects) 1570 { 1571 void *freelist; 1572 unsigned long counters; 1573 struct page new; 1574 1575 lockdep_assert_held(&n->list_lock); 1576 1577 /* 1578 * Zap the freelist and set the frozen bit. 1579 * The old freelist is the list of objects for the 1580 * per cpu allocation list. 1581 */ 1582 freelist = page->freelist; 1583 counters = page->counters; 1584 new.counters = counters; 1585 *objects = new.objects - new.inuse; 1586 if (mode) { 1587 new.inuse = page->objects; 1588 new.freelist = NULL; 1589 } else { 1590 new.freelist = freelist; 1591 } 1592 1593 VM_BUG_ON(new.frozen); 1594 new.frozen = 1; 1595 1596 if (!__cmpxchg_double_slab(s, page, 1597 freelist, counters, 1598 new.freelist, new.counters, 1599 "acquire_slab")) 1600 return NULL; 1601 1602 remove_partial(n, page); 1603 WARN_ON(!freelist); 1604 return freelist; 1605 } 1606 1607 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1608 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1609 1610 /* 1611 * Try to allocate a partial slab from a specific node. 1612 */ 1613 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1614 struct kmem_cache_cpu *c, gfp_t flags) 1615 { 1616 struct page *page, *page2; 1617 void *object = NULL; 1618 int available = 0; 1619 int objects; 1620 1621 /* 1622 * Racy check. If we mistakenly see no partial slabs then we 1623 * just allocate an empty slab. If we mistakenly try to get a 1624 * partial slab and there is none available then get_partials() 1625 * will return NULL. 1626 */ 1627 if (!n || !n->nr_partial) 1628 return NULL; 1629 1630 spin_lock(&n->list_lock); 1631 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1632 void *t; 1633 1634 if (!pfmemalloc_match(page, flags)) 1635 continue; 1636 1637 t = acquire_slab(s, n, page, object == NULL, &objects); 1638 if (!t) 1639 break; 1640 1641 available += objects; 1642 if (!object) { 1643 c->page = page; 1644 stat(s, ALLOC_FROM_PARTIAL); 1645 object = t; 1646 } else { 1647 put_cpu_partial(s, page, 0); 1648 stat(s, CPU_PARTIAL_NODE); 1649 } 1650 if (!kmem_cache_has_cpu_partial(s) 1651 || available > s->cpu_partial / 2) 1652 break; 1653 1654 } 1655 spin_unlock(&n->list_lock); 1656 return object; 1657 } 1658 1659 /* 1660 * Get a page from somewhere. Search in increasing NUMA distances. 1661 */ 1662 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1663 struct kmem_cache_cpu *c) 1664 { 1665 #ifdef CONFIG_NUMA 1666 struct zonelist *zonelist; 1667 struct zoneref *z; 1668 struct zone *zone; 1669 enum zone_type high_zoneidx = gfp_zone(flags); 1670 void *object; 1671 unsigned int cpuset_mems_cookie; 1672 1673 /* 1674 * The defrag ratio allows a configuration of the tradeoffs between 1675 * inter node defragmentation and node local allocations. A lower 1676 * defrag_ratio increases the tendency to do local allocations 1677 * instead of attempting to obtain partial slabs from other nodes. 1678 * 1679 * If the defrag_ratio is set to 0 then kmalloc() always 1680 * returns node local objects. If the ratio is higher then kmalloc() 1681 * may return off node objects because partial slabs are obtained 1682 * from other nodes and filled up. 1683 * 1684 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1685 * defrag_ratio = 1000) then every (well almost) allocation will 1686 * first attempt to defrag slab caches on other nodes. This means 1687 * scanning over all nodes to look for partial slabs which may be 1688 * expensive if we do it every time we are trying to find a slab 1689 * with available objects. 1690 */ 1691 if (!s->remote_node_defrag_ratio || 1692 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1693 return NULL; 1694 1695 do { 1696 cpuset_mems_cookie = read_mems_allowed_begin(); 1697 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1698 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1699 struct kmem_cache_node *n; 1700 1701 n = get_node(s, zone_to_nid(zone)); 1702 1703 if (n && cpuset_zone_allowed(zone, flags) && 1704 n->nr_partial > s->min_partial) { 1705 object = get_partial_node(s, n, c, flags); 1706 if (object) { 1707 /* 1708 * Don't check read_mems_allowed_retry() 1709 * here - if mems_allowed was updated in 1710 * parallel, that was a harmless race 1711 * between allocation and the cpuset 1712 * update 1713 */ 1714 return object; 1715 } 1716 } 1717 } 1718 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1719 #endif 1720 return NULL; 1721 } 1722 1723 /* 1724 * Get a partial page, lock it and return it. 1725 */ 1726 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1727 struct kmem_cache_cpu *c) 1728 { 1729 void *object; 1730 int searchnode = node; 1731 1732 if (node == NUMA_NO_NODE) 1733 searchnode = numa_mem_id(); 1734 else if (!node_present_pages(node)) 1735 searchnode = node_to_mem_node(node); 1736 1737 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1738 if (object || node != NUMA_NO_NODE) 1739 return object; 1740 1741 return get_any_partial(s, flags, c); 1742 } 1743 1744 #ifdef CONFIG_PREEMPT 1745 /* 1746 * Calculate the next globally unique transaction for disambiguiation 1747 * during cmpxchg. The transactions start with the cpu number and are then 1748 * incremented by CONFIG_NR_CPUS. 1749 */ 1750 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1751 #else 1752 /* 1753 * No preemption supported therefore also no need to check for 1754 * different cpus. 1755 */ 1756 #define TID_STEP 1 1757 #endif 1758 1759 static inline unsigned long next_tid(unsigned long tid) 1760 { 1761 return tid + TID_STEP; 1762 } 1763 1764 static inline unsigned int tid_to_cpu(unsigned long tid) 1765 { 1766 return tid % TID_STEP; 1767 } 1768 1769 static inline unsigned long tid_to_event(unsigned long tid) 1770 { 1771 return tid / TID_STEP; 1772 } 1773 1774 static inline unsigned int init_tid(int cpu) 1775 { 1776 return cpu; 1777 } 1778 1779 static inline void note_cmpxchg_failure(const char *n, 1780 const struct kmem_cache *s, unsigned long tid) 1781 { 1782 #ifdef SLUB_DEBUG_CMPXCHG 1783 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1784 1785 pr_info("%s %s: cmpxchg redo ", n, s->name); 1786 1787 #ifdef CONFIG_PREEMPT 1788 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1789 pr_warn("due to cpu change %d -> %d\n", 1790 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1791 else 1792 #endif 1793 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1794 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1795 tid_to_event(tid), tid_to_event(actual_tid)); 1796 else 1797 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1798 actual_tid, tid, next_tid(tid)); 1799 #endif 1800 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1801 } 1802 1803 static void init_kmem_cache_cpus(struct kmem_cache *s) 1804 { 1805 int cpu; 1806 1807 for_each_possible_cpu(cpu) 1808 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1809 } 1810 1811 /* 1812 * Remove the cpu slab 1813 */ 1814 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1815 void *freelist) 1816 { 1817 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1818 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1819 int lock = 0; 1820 enum slab_modes l = M_NONE, m = M_NONE; 1821 void *nextfree; 1822 int tail = DEACTIVATE_TO_HEAD; 1823 struct page new; 1824 struct page old; 1825 1826 if (page->freelist) { 1827 stat(s, DEACTIVATE_REMOTE_FREES); 1828 tail = DEACTIVATE_TO_TAIL; 1829 } 1830 1831 /* 1832 * Stage one: Free all available per cpu objects back 1833 * to the page freelist while it is still frozen. Leave the 1834 * last one. 1835 * 1836 * There is no need to take the list->lock because the page 1837 * is still frozen. 1838 */ 1839 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1840 void *prior; 1841 unsigned long counters; 1842 1843 do { 1844 prior = page->freelist; 1845 counters = page->counters; 1846 set_freepointer(s, freelist, prior); 1847 new.counters = counters; 1848 new.inuse--; 1849 VM_BUG_ON(!new.frozen); 1850 1851 } while (!__cmpxchg_double_slab(s, page, 1852 prior, counters, 1853 freelist, new.counters, 1854 "drain percpu freelist")); 1855 1856 freelist = nextfree; 1857 } 1858 1859 /* 1860 * Stage two: Ensure that the page is unfrozen while the 1861 * list presence reflects the actual number of objects 1862 * during unfreeze. 1863 * 1864 * We setup the list membership and then perform a cmpxchg 1865 * with the count. If there is a mismatch then the page 1866 * is not unfrozen but the page is on the wrong list. 1867 * 1868 * Then we restart the process which may have to remove 1869 * the page from the list that we just put it on again 1870 * because the number of objects in the slab may have 1871 * changed. 1872 */ 1873 redo: 1874 1875 old.freelist = page->freelist; 1876 old.counters = page->counters; 1877 VM_BUG_ON(!old.frozen); 1878 1879 /* Determine target state of the slab */ 1880 new.counters = old.counters; 1881 if (freelist) { 1882 new.inuse--; 1883 set_freepointer(s, freelist, old.freelist); 1884 new.freelist = freelist; 1885 } else 1886 new.freelist = old.freelist; 1887 1888 new.frozen = 0; 1889 1890 if (!new.inuse && n->nr_partial >= s->min_partial) 1891 m = M_FREE; 1892 else if (new.freelist) { 1893 m = M_PARTIAL; 1894 if (!lock) { 1895 lock = 1; 1896 /* 1897 * Taking the spinlock removes the possiblity 1898 * that acquire_slab() will see a slab page that 1899 * is frozen 1900 */ 1901 spin_lock(&n->list_lock); 1902 } 1903 } else { 1904 m = M_FULL; 1905 if (kmem_cache_debug(s) && !lock) { 1906 lock = 1; 1907 /* 1908 * This also ensures that the scanning of full 1909 * slabs from diagnostic functions will not see 1910 * any frozen slabs. 1911 */ 1912 spin_lock(&n->list_lock); 1913 } 1914 } 1915 1916 if (l != m) { 1917 1918 if (l == M_PARTIAL) 1919 1920 remove_partial(n, page); 1921 1922 else if (l == M_FULL) 1923 1924 remove_full(s, n, page); 1925 1926 if (m == M_PARTIAL) { 1927 1928 add_partial(n, page, tail); 1929 stat(s, tail); 1930 1931 } else if (m == M_FULL) { 1932 1933 stat(s, DEACTIVATE_FULL); 1934 add_full(s, n, page); 1935 1936 } 1937 } 1938 1939 l = m; 1940 if (!__cmpxchg_double_slab(s, page, 1941 old.freelist, old.counters, 1942 new.freelist, new.counters, 1943 "unfreezing slab")) 1944 goto redo; 1945 1946 if (lock) 1947 spin_unlock(&n->list_lock); 1948 1949 if (m == M_FREE) { 1950 stat(s, DEACTIVATE_EMPTY); 1951 discard_slab(s, page); 1952 stat(s, FREE_SLAB); 1953 } 1954 } 1955 1956 /* 1957 * Unfreeze all the cpu partial slabs. 1958 * 1959 * This function must be called with interrupts disabled 1960 * for the cpu using c (or some other guarantee must be there 1961 * to guarantee no concurrent accesses). 1962 */ 1963 static void unfreeze_partials(struct kmem_cache *s, 1964 struct kmem_cache_cpu *c) 1965 { 1966 #ifdef CONFIG_SLUB_CPU_PARTIAL 1967 struct kmem_cache_node *n = NULL, *n2 = NULL; 1968 struct page *page, *discard_page = NULL; 1969 1970 while ((page = c->partial)) { 1971 struct page new; 1972 struct page old; 1973 1974 c->partial = page->next; 1975 1976 n2 = get_node(s, page_to_nid(page)); 1977 if (n != n2) { 1978 if (n) 1979 spin_unlock(&n->list_lock); 1980 1981 n = n2; 1982 spin_lock(&n->list_lock); 1983 } 1984 1985 do { 1986 1987 old.freelist = page->freelist; 1988 old.counters = page->counters; 1989 VM_BUG_ON(!old.frozen); 1990 1991 new.counters = old.counters; 1992 new.freelist = old.freelist; 1993 1994 new.frozen = 0; 1995 1996 } while (!__cmpxchg_double_slab(s, page, 1997 old.freelist, old.counters, 1998 new.freelist, new.counters, 1999 "unfreezing slab")); 2000 2001 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2002 page->next = discard_page; 2003 discard_page = page; 2004 } else { 2005 add_partial(n, page, DEACTIVATE_TO_TAIL); 2006 stat(s, FREE_ADD_PARTIAL); 2007 } 2008 } 2009 2010 if (n) 2011 spin_unlock(&n->list_lock); 2012 2013 while (discard_page) { 2014 page = discard_page; 2015 discard_page = discard_page->next; 2016 2017 stat(s, DEACTIVATE_EMPTY); 2018 discard_slab(s, page); 2019 stat(s, FREE_SLAB); 2020 } 2021 #endif 2022 } 2023 2024 /* 2025 * Put a page that was just frozen (in __slab_free) into a partial page 2026 * slot if available. This is done without interrupts disabled and without 2027 * preemption disabled. The cmpxchg is racy and may put the partial page 2028 * onto a random cpus partial slot. 2029 * 2030 * If we did not find a slot then simply move all the partials to the 2031 * per node partial list. 2032 */ 2033 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2034 { 2035 #ifdef CONFIG_SLUB_CPU_PARTIAL 2036 struct page *oldpage; 2037 int pages; 2038 int pobjects; 2039 2040 preempt_disable(); 2041 do { 2042 pages = 0; 2043 pobjects = 0; 2044 oldpage = this_cpu_read(s->cpu_slab->partial); 2045 2046 if (oldpage) { 2047 pobjects = oldpage->pobjects; 2048 pages = oldpage->pages; 2049 if (drain && pobjects > s->cpu_partial) { 2050 unsigned long flags; 2051 /* 2052 * partial array is full. Move the existing 2053 * set to the per node partial list. 2054 */ 2055 local_irq_save(flags); 2056 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2057 local_irq_restore(flags); 2058 oldpage = NULL; 2059 pobjects = 0; 2060 pages = 0; 2061 stat(s, CPU_PARTIAL_DRAIN); 2062 } 2063 } 2064 2065 pages++; 2066 pobjects += page->objects - page->inuse; 2067 2068 page->pages = pages; 2069 page->pobjects = pobjects; 2070 page->next = oldpage; 2071 2072 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2073 != oldpage); 2074 if (unlikely(!s->cpu_partial)) { 2075 unsigned long flags; 2076 2077 local_irq_save(flags); 2078 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2079 local_irq_restore(flags); 2080 } 2081 preempt_enable(); 2082 #endif 2083 } 2084 2085 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2086 { 2087 stat(s, CPUSLAB_FLUSH); 2088 deactivate_slab(s, c->page, c->freelist); 2089 2090 c->tid = next_tid(c->tid); 2091 c->page = NULL; 2092 c->freelist = NULL; 2093 } 2094 2095 /* 2096 * Flush cpu slab. 2097 * 2098 * Called from IPI handler with interrupts disabled. 2099 */ 2100 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2101 { 2102 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2103 2104 if (likely(c)) { 2105 if (c->page) 2106 flush_slab(s, c); 2107 2108 unfreeze_partials(s, c); 2109 } 2110 } 2111 2112 static void flush_cpu_slab(void *d) 2113 { 2114 struct kmem_cache *s = d; 2115 2116 __flush_cpu_slab(s, smp_processor_id()); 2117 } 2118 2119 static bool has_cpu_slab(int cpu, void *info) 2120 { 2121 struct kmem_cache *s = info; 2122 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2123 2124 return c->page || c->partial; 2125 } 2126 2127 static void flush_all(struct kmem_cache *s) 2128 { 2129 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2130 } 2131 2132 /* 2133 * Check if the objects in a per cpu structure fit numa 2134 * locality expectations. 2135 */ 2136 static inline int node_match(struct page *page, int node) 2137 { 2138 #ifdef CONFIG_NUMA 2139 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2140 return 0; 2141 #endif 2142 return 1; 2143 } 2144 2145 #ifdef CONFIG_SLUB_DEBUG 2146 static int count_free(struct page *page) 2147 { 2148 return page->objects - page->inuse; 2149 } 2150 2151 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2152 { 2153 return atomic_long_read(&n->total_objects); 2154 } 2155 #endif /* CONFIG_SLUB_DEBUG */ 2156 2157 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2158 static unsigned long count_partial(struct kmem_cache_node *n, 2159 int (*get_count)(struct page *)) 2160 { 2161 unsigned long flags; 2162 unsigned long x = 0; 2163 struct page *page; 2164 2165 spin_lock_irqsave(&n->list_lock, flags); 2166 list_for_each_entry(page, &n->partial, lru) 2167 x += get_count(page); 2168 spin_unlock_irqrestore(&n->list_lock, flags); 2169 return x; 2170 } 2171 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2172 2173 static noinline void 2174 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2175 { 2176 #ifdef CONFIG_SLUB_DEBUG 2177 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2178 DEFAULT_RATELIMIT_BURST); 2179 int node; 2180 struct kmem_cache_node *n; 2181 2182 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2183 return; 2184 2185 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2186 nid, gfpflags); 2187 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2188 s->name, s->object_size, s->size, oo_order(s->oo), 2189 oo_order(s->min)); 2190 2191 if (oo_order(s->min) > get_order(s->object_size)) 2192 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2193 s->name); 2194 2195 for_each_kmem_cache_node(s, node, n) { 2196 unsigned long nr_slabs; 2197 unsigned long nr_objs; 2198 unsigned long nr_free; 2199 2200 nr_free = count_partial(n, count_free); 2201 nr_slabs = node_nr_slabs(n); 2202 nr_objs = node_nr_objs(n); 2203 2204 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2205 node, nr_slabs, nr_objs, nr_free); 2206 } 2207 #endif 2208 } 2209 2210 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2211 int node, struct kmem_cache_cpu **pc) 2212 { 2213 void *freelist; 2214 struct kmem_cache_cpu *c = *pc; 2215 struct page *page; 2216 2217 freelist = get_partial(s, flags, node, c); 2218 2219 if (freelist) 2220 return freelist; 2221 2222 page = new_slab(s, flags, node); 2223 if (page) { 2224 c = raw_cpu_ptr(s->cpu_slab); 2225 if (c->page) 2226 flush_slab(s, c); 2227 2228 /* 2229 * No other reference to the page yet so we can 2230 * muck around with it freely without cmpxchg 2231 */ 2232 freelist = page->freelist; 2233 page->freelist = NULL; 2234 2235 stat(s, ALLOC_SLAB); 2236 c->page = page; 2237 *pc = c; 2238 } else 2239 freelist = NULL; 2240 2241 return freelist; 2242 } 2243 2244 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2245 { 2246 if (unlikely(PageSlabPfmemalloc(page))) 2247 return gfp_pfmemalloc_allowed(gfpflags); 2248 2249 return true; 2250 } 2251 2252 /* 2253 * Check the page->freelist of a page and either transfer the freelist to the 2254 * per cpu freelist or deactivate the page. 2255 * 2256 * The page is still frozen if the return value is not NULL. 2257 * 2258 * If this function returns NULL then the page has been unfrozen. 2259 * 2260 * This function must be called with interrupt disabled. 2261 */ 2262 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2263 { 2264 struct page new; 2265 unsigned long counters; 2266 void *freelist; 2267 2268 do { 2269 freelist = page->freelist; 2270 counters = page->counters; 2271 2272 new.counters = counters; 2273 VM_BUG_ON(!new.frozen); 2274 2275 new.inuse = page->objects; 2276 new.frozen = freelist != NULL; 2277 2278 } while (!__cmpxchg_double_slab(s, page, 2279 freelist, counters, 2280 NULL, new.counters, 2281 "get_freelist")); 2282 2283 return freelist; 2284 } 2285 2286 /* 2287 * Slow path. The lockless freelist is empty or we need to perform 2288 * debugging duties. 2289 * 2290 * Processing is still very fast if new objects have been freed to the 2291 * regular freelist. In that case we simply take over the regular freelist 2292 * as the lockless freelist and zap the regular freelist. 2293 * 2294 * If that is not working then we fall back to the partial lists. We take the 2295 * first element of the freelist as the object to allocate now and move the 2296 * rest of the freelist to the lockless freelist. 2297 * 2298 * And if we were unable to get a new slab from the partial slab lists then 2299 * we need to allocate a new slab. This is the slowest path since it involves 2300 * a call to the page allocator and the setup of a new slab. 2301 */ 2302 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2303 unsigned long addr, struct kmem_cache_cpu *c) 2304 { 2305 void *freelist; 2306 struct page *page; 2307 unsigned long flags; 2308 2309 local_irq_save(flags); 2310 #ifdef CONFIG_PREEMPT 2311 /* 2312 * We may have been preempted and rescheduled on a different 2313 * cpu before disabling interrupts. Need to reload cpu area 2314 * pointer. 2315 */ 2316 c = this_cpu_ptr(s->cpu_slab); 2317 #endif 2318 2319 page = c->page; 2320 if (!page) 2321 goto new_slab; 2322 redo: 2323 2324 if (unlikely(!node_match(page, node))) { 2325 int searchnode = node; 2326 2327 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2328 searchnode = node_to_mem_node(node); 2329 2330 if (unlikely(!node_match(page, searchnode))) { 2331 stat(s, ALLOC_NODE_MISMATCH); 2332 deactivate_slab(s, page, c->freelist); 2333 c->page = NULL; 2334 c->freelist = NULL; 2335 goto new_slab; 2336 } 2337 } 2338 2339 /* 2340 * By rights, we should be searching for a slab page that was 2341 * PFMEMALLOC but right now, we are losing the pfmemalloc 2342 * information when the page leaves the per-cpu allocator 2343 */ 2344 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2345 deactivate_slab(s, page, c->freelist); 2346 c->page = NULL; 2347 c->freelist = NULL; 2348 goto new_slab; 2349 } 2350 2351 /* must check again c->freelist in case of cpu migration or IRQ */ 2352 freelist = c->freelist; 2353 if (freelist) 2354 goto load_freelist; 2355 2356 freelist = get_freelist(s, page); 2357 2358 if (!freelist) { 2359 c->page = NULL; 2360 stat(s, DEACTIVATE_BYPASS); 2361 goto new_slab; 2362 } 2363 2364 stat(s, ALLOC_REFILL); 2365 2366 load_freelist: 2367 /* 2368 * freelist is pointing to the list of objects to be used. 2369 * page is pointing to the page from which the objects are obtained. 2370 * That page must be frozen for per cpu allocations to work. 2371 */ 2372 VM_BUG_ON(!c->page->frozen); 2373 c->freelist = get_freepointer(s, freelist); 2374 c->tid = next_tid(c->tid); 2375 local_irq_restore(flags); 2376 return freelist; 2377 2378 new_slab: 2379 2380 if (c->partial) { 2381 page = c->page = c->partial; 2382 c->partial = page->next; 2383 stat(s, CPU_PARTIAL_ALLOC); 2384 c->freelist = NULL; 2385 goto redo; 2386 } 2387 2388 freelist = new_slab_objects(s, gfpflags, node, &c); 2389 2390 if (unlikely(!freelist)) { 2391 slab_out_of_memory(s, gfpflags, node); 2392 local_irq_restore(flags); 2393 return NULL; 2394 } 2395 2396 page = c->page; 2397 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2398 goto load_freelist; 2399 2400 /* Only entered in the debug case */ 2401 if (kmem_cache_debug(s) && 2402 !alloc_debug_processing(s, page, freelist, addr)) 2403 goto new_slab; /* Slab failed checks. Next slab needed */ 2404 2405 deactivate_slab(s, page, get_freepointer(s, freelist)); 2406 c->page = NULL; 2407 c->freelist = NULL; 2408 local_irq_restore(flags); 2409 return freelist; 2410 } 2411 2412 /* 2413 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2414 * have the fastpath folded into their functions. So no function call 2415 * overhead for requests that can be satisfied on the fastpath. 2416 * 2417 * The fastpath works by first checking if the lockless freelist can be used. 2418 * If not then __slab_alloc is called for slow processing. 2419 * 2420 * Otherwise we can simply pick the next object from the lockless free list. 2421 */ 2422 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2423 gfp_t gfpflags, int node, unsigned long addr) 2424 { 2425 void **object; 2426 struct kmem_cache_cpu *c; 2427 struct page *page; 2428 unsigned long tid; 2429 2430 s = slab_pre_alloc_hook(s, gfpflags); 2431 if (!s) 2432 return NULL; 2433 redo: 2434 /* 2435 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2436 * enabled. We may switch back and forth between cpus while 2437 * reading from one cpu area. That does not matter as long 2438 * as we end up on the original cpu again when doing the cmpxchg. 2439 * 2440 * We should guarantee that tid and kmem_cache are retrieved on 2441 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2442 * to check if it is matched or not. 2443 */ 2444 do { 2445 tid = this_cpu_read(s->cpu_slab->tid); 2446 c = raw_cpu_ptr(s->cpu_slab); 2447 } while (IS_ENABLED(CONFIG_PREEMPT) && 2448 unlikely(tid != READ_ONCE(c->tid))); 2449 2450 /* 2451 * Irqless object alloc/free algorithm used here depends on sequence 2452 * of fetching cpu_slab's data. tid should be fetched before anything 2453 * on c to guarantee that object and page associated with previous tid 2454 * won't be used with current tid. If we fetch tid first, object and 2455 * page could be one associated with next tid and our alloc/free 2456 * request will be failed. In this case, we will retry. So, no problem. 2457 */ 2458 barrier(); 2459 2460 /* 2461 * The transaction ids are globally unique per cpu and per operation on 2462 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2463 * occurs on the right processor and that there was no operation on the 2464 * linked list in between. 2465 */ 2466 2467 object = c->freelist; 2468 page = c->page; 2469 if (unlikely(!object || !node_match(page, node))) { 2470 object = __slab_alloc(s, gfpflags, node, addr, c); 2471 stat(s, ALLOC_SLOWPATH); 2472 } else { 2473 void *next_object = get_freepointer_safe(s, object); 2474 2475 /* 2476 * The cmpxchg will only match if there was no additional 2477 * operation and if we are on the right processor. 2478 * 2479 * The cmpxchg does the following atomically (without lock 2480 * semantics!) 2481 * 1. Relocate first pointer to the current per cpu area. 2482 * 2. Verify that tid and freelist have not been changed 2483 * 3. If they were not changed replace tid and freelist 2484 * 2485 * Since this is without lock semantics the protection is only 2486 * against code executing on this cpu *not* from access by 2487 * other cpus. 2488 */ 2489 if (unlikely(!this_cpu_cmpxchg_double( 2490 s->cpu_slab->freelist, s->cpu_slab->tid, 2491 object, tid, 2492 next_object, next_tid(tid)))) { 2493 2494 note_cmpxchg_failure("slab_alloc", s, tid); 2495 goto redo; 2496 } 2497 prefetch_freepointer(s, next_object); 2498 stat(s, ALLOC_FASTPATH); 2499 } 2500 2501 if (unlikely(gfpflags & __GFP_ZERO) && object) 2502 memset(object, 0, s->object_size); 2503 2504 slab_post_alloc_hook(s, gfpflags, object); 2505 2506 return object; 2507 } 2508 2509 static __always_inline void *slab_alloc(struct kmem_cache *s, 2510 gfp_t gfpflags, unsigned long addr) 2511 { 2512 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2513 } 2514 2515 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2516 { 2517 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2518 2519 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2520 s->size, gfpflags); 2521 2522 return ret; 2523 } 2524 EXPORT_SYMBOL(kmem_cache_alloc); 2525 2526 #ifdef CONFIG_TRACING 2527 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2528 { 2529 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2530 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2531 kasan_kmalloc(s, ret, size); 2532 return ret; 2533 } 2534 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2535 #endif 2536 2537 #ifdef CONFIG_NUMA 2538 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2539 { 2540 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2541 2542 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2543 s->object_size, s->size, gfpflags, node); 2544 2545 return ret; 2546 } 2547 EXPORT_SYMBOL(kmem_cache_alloc_node); 2548 2549 #ifdef CONFIG_TRACING 2550 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2551 gfp_t gfpflags, 2552 int node, size_t size) 2553 { 2554 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2555 2556 trace_kmalloc_node(_RET_IP_, ret, 2557 size, s->size, gfpflags, node); 2558 2559 kasan_kmalloc(s, ret, size); 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2563 #endif 2564 #endif 2565 2566 /* 2567 * Slow path handling. This may still be called frequently since objects 2568 * have a longer lifetime than the cpu slabs in most processing loads. 2569 * 2570 * So we still attempt to reduce cache line usage. Just take the slab 2571 * lock and free the item. If there is no additional partial page 2572 * handling required then we can return immediately. 2573 */ 2574 static void __slab_free(struct kmem_cache *s, struct page *page, 2575 void *x, unsigned long addr) 2576 { 2577 void *prior; 2578 void **object = (void *)x; 2579 int was_frozen; 2580 struct page new; 2581 unsigned long counters; 2582 struct kmem_cache_node *n = NULL; 2583 unsigned long uninitialized_var(flags); 2584 2585 stat(s, FREE_SLOWPATH); 2586 2587 if (kmem_cache_debug(s) && 2588 !(n = free_debug_processing(s, page, x, addr, &flags))) 2589 return; 2590 2591 do { 2592 if (unlikely(n)) { 2593 spin_unlock_irqrestore(&n->list_lock, flags); 2594 n = NULL; 2595 } 2596 prior = page->freelist; 2597 counters = page->counters; 2598 set_freepointer(s, object, prior); 2599 new.counters = counters; 2600 was_frozen = new.frozen; 2601 new.inuse--; 2602 if ((!new.inuse || !prior) && !was_frozen) { 2603 2604 if (kmem_cache_has_cpu_partial(s) && !prior) { 2605 2606 /* 2607 * Slab was on no list before and will be 2608 * partially empty 2609 * We can defer the list move and instead 2610 * freeze it. 2611 */ 2612 new.frozen = 1; 2613 2614 } else { /* Needs to be taken off a list */ 2615 2616 n = get_node(s, page_to_nid(page)); 2617 /* 2618 * Speculatively acquire the list_lock. 2619 * If the cmpxchg does not succeed then we may 2620 * drop the list_lock without any processing. 2621 * 2622 * Otherwise the list_lock will synchronize with 2623 * other processors updating the list of slabs. 2624 */ 2625 spin_lock_irqsave(&n->list_lock, flags); 2626 2627 } 2628 } 2629 2630 } while (!cmpxchg_double_slab(s, page, 2631 prior, counters, 2632 object, new.counters, 2633 "__slab_free")); 2634 2635 if (likely(!n)) { 2636 2637 /* 2638 * If we just froze the page then put it onto the 2639 * per cpu partial list. 2640 */ 2641 if (new.frozen && !was_frozen) { 2642 put_cpu_partial(s, page, 1); 2643 stat(s, CPU_PARTIAL_FREE); 2644 } 2645 /* 2646 * The list lock was not taken therefore no list 2647 * activity can be necessary. 2648 */ 2649 if (was_frozen) 2650 stat(s, FREE_FROZEN); 2651 return; 2652 } 2653 2654 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2655 goto slab_empty; 2656 2657 /* 2658 * Objects left in the slab. If it was not on the partial list before 2659 * then add it. 2660 */ 2661 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2662 if (kmem_cache_debug(s)) 2663 remove_full(s, n, page); 2664 add_partial(n, page, DEACTIVATE_TO_TAIL); 2665 stat(s, FREE_ADD_PARTIAL); 2666 } 2667 spin_unlock_irqrestore(&n->list_lock, flags); 2668 return; 2669 2670 slab_empty: 2671 if (prior) { 2672 /* 2673 * Slab on the partial list. 2674 */ 2675 remove_partial(n, page); 2676 stat(s, FREE_REMOVE_PARTIAL); 2677 } else { 2678 /* Slab must be on the full list */ 2679 remove_full(s, n, page); 2680 } 2681 2682 spin_unlock_irqrestore(&n->list_lock, flags); 2683 stat(s, FREE_SLAB); 2684 discard_slab(s, page); 2685 } 2686 2687 /* 2688 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2689 * can perform fastpath freeing without additional function calls. 2690 * 2691 * The fastpath is only possible if we are freeing to the current cpu slab 2692 * of this processor. This typically the case if we have just allocated 2693 * the item before. 2694 * 2695 * If fastpath is not possible then fall back to __slab_free where we deal 2696 * with all sorts of special processing. 2697 */ 2698 static __always_inline void slab_free(struct kmem_cache *s, 2699 struct page *page, void *x, unsigned long addr) 2700 { 2701 void **object = (void *)x; 2702 struct kmem_cache_cpu *c; 2703 unsigned long tid; 2704 2705 slab_free_hook(s, x); 2706 2707 redo: 2708 /* 2709 * Determine the currently cpus per cpu slab. 2710 * The cpu may change afterward. However that does not matter since 2711 * data is retrieved via this pointer. If we are on the same cpu 2712 * during the cmpxchg then the free will succeed. 2713 */ 2714 do { 2715 tid = this_cpu_read(s->cpu_slab->tid); 2716 c = raw_cpu_ptr(s->cpu_slab); 2717 } while (IS_ENABLED(CONFIG_PREEMPT) && 2718 unlikely(tid != READ_ONCE(c->tid))); 2719 2720 /* Same with comment on barrier() in slab_alloc_node() */ 2721 barrier(); 2722 2723 if (likely(page == c->page)) { 2724 set_freepointer(s, object, c->freelist); 2725 2726 if (unlikely(!this_cpu_cmpxchg_double( 2727 s->cpu_slab->freelist, s->cpu_slab->tid, 2728 c->freelist, tid, 2729 object, next_tid(tid)))) { 2730 2731 note_cmpxchg_failure("slab_free", s, tid); 2732 goto redo; 2733 } 2734 stat(s, FREE_FASTPATH); 2735 } else 2736 __slab_free(s, page, x, addr); 2737 2738 } 2739 2740 void kmem_cache_free(struct kmem_cache *s, void *x) 2741 { 2742 s = cache_from_obj(s, x); 2743 if (!s) 2744 return; 2745 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2746 trace_kmem_cache_free(_RET_IP_, x); 2747 } 2748 EXPORT_SYMBOL(kmem_cache_free); 2749 2750 /* Note that interrupts must be enabled when calling this function. */ 2751 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 2752 { 2753 struct kmem_cache_cpu *c; 2754 struct page *page; 2755 int i; 2756 2757 local_irq_disable(); 2758 c = this_cpu_ptr(s->cpu_slab); 2759 2760 for (i = 0; i < size; i++) { 2761 void *object = p[i]; 2762 2763 BUG_ON(!object); 2764 /* kmem cache debug support */ 2765 s = cache_from_obj(s, object); 2766 if (unlikely(!s)) 2767 goto exit; 2768 slab_free_hook(s, object); 2769 2770 page = virt_to_head_page(object); 2771 2772 if (c->page == page) { 2773 /* Fastpath: local CPU free */ 2774 set_freepointer(s, object, c->freelist); 2775 c->freelist = object; 2776 } else { 2777 c->tid = next_tid(c->tid); 2778 local_irq_enable(); 2779 /* Slowpath: overhead locked cmpxchg_double_slab */ 2780 __slab_free(s, page, object, _RET_IP_); 2781 local_irq_disable(); 2782 c = this_cpu_ptr(s->cpu_slab); 2783 } 2784 } 2785 exit: 2786 c->tid = next_tid(c->tid); 2787 local_irq_enable(); 2788 } 2789 EXPORT_SYMBOL(kmem_cache_free_bulk); 2790 2791 /* Note that interrupts must be enabled when calling this function. */ 2792 bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 2793 void **p) 2794 { 2795 struct kmem_cache_cpu *c; 2796 int i; 2797 2798 /* 2799 * Drain objects in the per cpu slab, while disabling local 2800 * IRQs, which protects against PREEMPT and interrupts 2801 * handlers invoking normal fastpath. 2802 */ 2803 local_irq_disable(); 2804 c = this_cpu_ptr(s->cpu_slab); 2805 2806 for (i = 0; i < size; i++) { 2807 void *object = c->freelist; 2808 2809 if (unlikely(!object)) { 2810 local_irq_enable(); 2811 /* 2812 * Invoking slow path likely have side-effect 2813 * of re-populating per CPU c->freelist 2814 */ 2815 p[i] = __slab_alloc(s, flags, NUMA_NO_NODE, 2816 _RET_IP_, c); 2817 if (unlikely(!p[i])) { 2818 __kmem_cache_free_bulk(s, i, p); 2819 return false; 2820 } 2821 local_irq_disable(); 2822 c = this_cpu_ptr(s->cpu_slab); 2823 continue; /* goto for-loop */ 2824 } 2825 2826 /* kmem_cache debug support */ 2827 s = slab_pre_alloc_hook(s, flags); 2828 if (unlikely(!s)) { 2829 __kmem_cache_free_bulk(s, i, p); 2830 c->tid = next_tid(c->tid); 2831 local_irq_enable(); 2832 return false; 2833 } 2834 2835 c->freelist = get_freepointer(s, object); 2836 p[i] = object; 2837 2838 /* kmem_cache debug support */ 2839 slab_post_alloc_hook(s, flags, object); 2840 } 2841 c->tid = next_tid(c->tid); 2842 local_irq_enable(); 2843 2844 /* Clear memory outside IRQ disabled fastpath loop */ 2845 if (unlikely(flags & __GFP_ZERO)) { 2846 int j; 2847 2848 for (j = 0; j < i; j++) 2849 memset(p[j], 0, s->object_size); 2850 } 2851 2852 return true; 2853 } 2854 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 2855 2856 2857 /* 2858 * Object placement in a slab is made very easy because we always start at 2859 * offset 0. If we tune the size of the object to the alignment then we can 2860 * get the required alignment by putting one properly sized object after 2861 * another. 2862 * 2863 * Notice that the allocation order determines the sizes of the per cpu 2864 * caches. Each processor has always one slab available for allocations. 2865 * Increasing the allocation order reduces the number of times that slabs 2866 * must be moved on and off the partial lists and is therefore a factor in 2867 * locking overhead. 2868 */ 2869 2870 /* 2871 * Mininum / Maximum order of slab pages. This influences locking overhead 2872 * and slab fragmentation. A higher order reduces the number of partial slabs 2873 * and increases the number of allocations possible without having to 2874 * take the list_lock. 2875 */ 2876 static int slub_min_order; 2877 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2878 static int slub_min_objects; 2879 2880 /* 2881 * Calculate the order of allocation given an slab object size. 2882 * 2883 * The order of allocation has significant impact on performance and other 2884 * system components. Generally order 0 allocations should be preferred since 2885 * order 0 does not cause fragmentation in the page allocator. Larger objects 2886 * be problematic to put into order 0 slabs because there may be too much 2887 * unused space left. We go to a higher order if more than 1/16th of the slab 2888 * would be wasted. 2889 * 2890 * In order to reach satisfactory performance we must ensure that a minimum 2891 * number of objects is in one slab. Otherwise we may generate too much 2892 * activity on the partial lists which requires taking the list_lock. This is 2893 * less a concern for large slabs though which are rarely used. 2894 * 2895 * slub_max_order specifies the order where we begin to stop considering the 2896 * number of objects in a slab as critical. If we reach slub_max_order then 2897 * we try to keep the page order as low as possible. So we accept more waste 2898 * of space in favor of a small page order. 2899 * 2900 * Higher order allocations also allow the placement of more objects in a 2901 * slab and thereby reduce object handling overhead. If the user has 2902 * requested a higher mininum order then we start with that one instead of 2903 * the smallest order which will fit the object. 2904 */ 2905 static inline int slab_order(int size, int min_objects, 2906 int max_order, int fract_leftover, int reserved) 2907 { 2908 int order; 2909 int rem; 2910 int min_order = slub_min_order; 2911 2912 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2913 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2914 2915 for (order = max(min_order, get_order(min_objects * size + reserved)); 2916 order <= max_order; order++) { 2917 2918 unsigned long slab_size = PAGE_SIZE << order; 2919 2920 rem = (slab_size - reserved) % size; 2921 2922 if (rem <= slab_size / fract_leftover) 2923 break; 2924 } 2925 2926 return order; 2927 } 2928 2929 static inline int calculate_order(int size, int reserved) 2930 { 2931 int order; 2932 int min_objects; 2933 int fraction; 2934 int max_objects; 2935 2936 /* 2937 * Attempt to find best configuration for a slab. This 2938 * works by first attempting to generate a layout with 2939 * the best configuration and backing off gradually. 2940 * 2941 * First we increase the acceptable waste in a slab. Then 2942 * we reduce the minimum objects required in a slab. 2943 */ 2944 min_objects = slub_min_objects; 2945 if (!min_objects) 2946 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2947 max_objects = order_objects(slub_max_order, size, reserved); 2948 min_objects = min(min_objects, max_objects); 2949 2950 while (min_objects > 1) { 2951 fraction = 16; 2952 while (fraction >= 4) { 2953 order = slab_order(size, min_objects, 2954 slub_max_order, fraction, reserved); 2955 if (order <= slub_max_order) 2956 return order; 2957 fraction /= 2; 2958 } 2959 min_objects--; 2960 } 2961 2962 /* 2963 * We were unable to place multiple objects in a slab. Now 2964 * lets see if we can place a single object there. 2965 */ 2966 order = slab_order(size, 1, slub_max_order, 1, reserved); 2967 if (order <= slub_max_order) 2968 return order; 2969 2970 /* 2971 * Doh this slab cannot be placed using slub_max_order. 2972 */ 2973 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2974 if (order < MAX_ORDER) 2975 return order; 2976 return -ENOSYS; 2977 } 2978 2979 static void 2980 init_kmem_cache_node(struct kmem_cache_node *n) 2981 { 2982 n->nr_partial = 0; 2983 spin_lock_init(&n->list_lock); 2984 INIT_LIST_HEAD(&n->partial); 2985 #ifdef CONFIG_SLUB_DEBUG 2986 atomic_long_set(&n->nr_slabs, 0); 2987 atomic_long_set(&n->total_objects, 0); 2988 INIT_LIST_HEAD(&n->full); 2989 #endif 2990 } 2991 2992 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2993 { 2994 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2995 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2996 2997 /* 2998 * Must align to double word boundary for the double cmpxchg 2999 * instructions to work; see __pcpu_double_call_return_bool(). 3000 */ 3001 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3002 2 * sizeof(void *)); 3003 3004 if (!s->cpu_slab) 3005 return 0; 3006 3007 init_kmem_cache_cpus(s); 3008 3009 return 1; 3010 } 3011 3012 static struct kmem_cache *kmem_cache_node; 3013 3014 /* 3015 * No kmalloc_node yet so do it by hand. We know that this is the first 3016 * slab on the node for this slabcache. There are no concurrent accesses 3017 * possible. 3018 * 3019 * Note that this function only works on the kmem_cache_node 3020 * when allocating for the kmem_cache_node. This is used for bootstrapping 3021 * memory on a fresh node that has no slab structures yet. 3022 */ 3023 static void early_kmem_cache_node_alloc(int node) 3024 { 3025 struct page *page; 3026 struct kmem_cache_node *n; 3027 3028 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3029 3030 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3031 3032 BUG_ON(!page); 3033 if (page_to_nid(page) != node) { 3034 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3035 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3036 } 3037 3038 n = page->freelist; 3039 BUG_ON(!n); 3040 page->freelist = get_freepointer(kmem_cache_node, n); 3041 page->inuse = 1; 3042 page->frozen = 0; 3043 kmem_cache_node->node[node] = n; 3044 #ifdef CONFIG_SLUB_DEBUG 3045 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3046 init_tracking(kmem_cache_node, n); 3047 #endif 3048 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node)); 3049 init_kmem_cache_node(n); 3050 inc_slabs_node(kmem_cache_node, node, page->objects); 3051 3052 /* 3053 * No locks need to be taken here as it has just been 3054 * initialized and there is no concurrent access. 3055 */ 3056 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3057 } 3058 3059 static void free_kmem_cache_nodes(struct kmem_cache *s) 3060 { 3061 int node; 3062 struct kmem_cache_node *n; 3063 3064 for_each_kmem_cache_node(s, node, n) { 3065 kmem_cache_free(kmem_cache_node, n); 3066 s->node[node] = NULL; 3067 } 3068 } 3069 3070 static int init_kmem_cache_nodes(struct kmem_cache *s) 3071 { 3072 int node; 3073 3074 for_each_node_state(node, N_NORMAL_MEMORY) { 3075 struct kmem_cache_node *n; 3076 3077 if (slab_state == DOWN) { 3078 early_kmem_cache_node_alloc(node); 3079 continue; 3080 } 3081 n = kmem_cache_alloc_node(kmem_cache_node, 3082 GFP_KERNEL, node); 3083 3084 if (!n) { 3085 free_kmem_cache_nodes(s); 3086 return 0; 3087 } 3088 3089 s->node[node] = n; 3090 init_kmem_cache_node(n); 3091 } 3092 return 1; 3093 } 3094 3095 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3096 { 3097 if (min < MIN_PARTIAL) 3098 min = MIN_PARTIAL; 3099 else if (min > MAX_PARTIAL) 3100 min = MAX_PARTIAL; 3101 s->min_partial = min; 3102 } 3103 3104 /* 3105 * calculate_sizes() determines the order and the distribution of data within 3106 * a slab object. 3107 */ 3108 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3109 { 3110 unsigned long flags = s->flags; 3111 unsigned long size = s->object_size; 3112 int order; 3113 3114 /* 3115 * Round up object size to the next word boundary. We can only 3116 * place the free pointer at word boundaries and this determines 3117 * the possible location of the free pointer. 3118 */ 3119 size = ALIGN(size, sizeof(void *)); 3120 3121 #ifdef CONFIG_SLUB_DEBUG 3122 /* 3123 * Determine if we can poison the object itself. If the user of 3124 * the slab may touch the object after free or before allocation 3125 * then we should never poison the object itself. 3126 */ 3127 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3128 !s->ctor) 3129 s->flags |= __OBJECT_POISON; 3130 else 3131 s->flags &= ~__OBJECT_POISON; 3132 3133 3134 /* 3135 * If we are Redzoning then check if there is some space between the 3136 * end of the object and the free pointer. If not then add an 3137 * additional word to have some bytes to store Redzone information. 3138 */ 3139 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3140 size += sizeof(void *); 3141 #endif 3142 3143 /* 3144 * With that we have determined the number of bytes in actual use 3145 * by the object. This is the potential offset to the free pointer. 3146 */ 3147 s->inuse = size; 3148 3149 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3150 s->ctor)) { 3151 /* 3152 * Relocate free pointer after the object if it is not 3153 * permitted to overwrite the first word of the object on 3154 * kmem_cache_free. 3155 * 3156 * This is the case if we do RCU, have a constructor or 3157 * destructor or are poisoning the objects. 3158 */ 3159 s->offset = size; 3160 size += sizeof(void *); 3161 } 3162 3163 #ifdef CONFIG_SLUB_DEBUG 3164 if (flags & SLAB_STORE_USER) 3165 /* 3166 * Need to store information about allocs and frees after 3167 * the object. 3168 */ 3169 size += 2 * sizeof(struct track); 3170 3171 if (flags & SLAB_RED_ZONE) 3172 /* 3173 * Add some empty padding so that we can catch 3174 * overwrites from earlier objects rather than let 3175 * tracking information or the free pointer be 3176 * corrupted if a user writes before the start 3177 * of the object. 3178 */ 3179 size += sizeof(void *); 3180 #endif 3181 3182 /* 3183 * SLUB stores one object immediately after another beginning from 3184 * offset 0. In order to align the objects we have to simply size 3185 * each object to conform to the alignment. 3186 */ 3187 size = ALIGN(size, s->align); 3188 s->size = size; 3189 if (forced_order >= 0) 3190 order = forced_order; 3191 else 3192 order = calculate_order(size, s->reserved); 3193 3194 if (order < 0) 3195 return 0; 3196 3197 s->allocflags = 0; 3198 if (order) 3199 s->allocflags |= __GFP_COMP; 3200 3201 if (s->flags & SLAB_CACHE_DMA) 3202 s->allocflags |= GFP_DMA; 3203 3204 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3205 s->allocflags |= __GFP_RECLAIMABLE; 3206 3207 /* 3208 * Determine the number of objects per slab 3209 */ 3210 s->oo = oo_make(order, size, s->reserved); 3211 s->min = oo_make(get_order(size), size, s->reserved); 3212 if (oo_objects(s->oo) > oo_objects(s->max)) 3213 s->max = s->oo; 3214 3215 return !!oo_objects(s->oo); 3216 } 3217 3218 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3219 { 3220 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3221 s->reserved = 0; 3222 3223 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3224 s->reserved = sizeof(struct rcu_head); 3225 3226 if (!calculate_sizes(s, -1)) 3227 goto error; 3228 if (disable_higher_order_debug) { 3229 /* 3230 * Disable debugging flags that store metadata if the min slab 3231 * order increased. 3232 */ 3233 if (get_order(s->size) > get_order(s->object_size)) { 3234 s->flags &= ~DEBUG_METADATA_FLAGS; 3235 s->offset = 0; 3236 if (!calculate_sizes(s, -1)) 3237 goto error; 3238 } 3239 } 3240 3241 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3242 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3243 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3244 /* Enable fast mode */ 3245 s->flags |= __CMPXCHG_DOUBLE; 3246 #endif 3247 3248 /* 3249 * The larger the object size is, the more pages we want on the partial 3250 * list to avoid pounding the page allocator excessively. 3251 */ 3252 set_min_partial(s, ilog2(s->size) / 2); 3253 3254 /* 3255 * cpu_partial determined the maximum number of objects kept in the 3256 * per cpu partial lists of a processor. 3257 * 3258 * Per cpu partial lists mainly contain slabs that just have one 3259 * object freed. If they are used for allocation then they can be 3260 * filled up again with minimal effort. The slab will never hit the 3261 * per node partial lists and therefore no locking will be required. 3262 * 3263 * This setting also determines 3264 * 3265 * A) The number of objects from per cpu partial slabs dumped to the 3266 * per node list when we reach the limit. 3267 * B) The number of objects in cpu partial slabs to extract from the 3268 * per node list when we run out of per cpu objects. We only fetch 3269 * 50% to keep some capacity around for frees. 3270 */ 3271 if (!kmem_cache_has_cpu_partial(s)) 3272 s->cpu_partial = 0; 3273 else if (s->size >= PAGE_SIZE) 3274 s->cpu_partial = 2; 3275 else if (s->size >= 1024) 3276 s->cpu_partial = 6; 3277 else if (s->size >= 256) 3278 s->cpu_partial = 13; 3279 else 3280 s->cpu_partial = 30; 3281 3282 #ifdef CONFIG_NUMA 3283 s->remote_node_defrag_ratio = 1000; 3284 #endif 3285 if (!init_kmem_cache_nodes(s)) 3286 goto error; 3287 3288 if (alloc_kmem_cache_cpus(s)) 3289 return 0; 3290 3291 free_kmem_cache_nodes(s); 3292 error: 3293 if (flags & SLAB_PANIC) 3294 panic("Cannot create slab %s size=%lu realsize=%u " 3295 "order=%u offset=%u flags=%lx\n", 3296 s->name, (unsigned long)s->size, s->size, 3297 oo_order(s->oo), s->offset, flags); 3298 return -EINVAL; 3299 } 3300 3301 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3302 const char *text) 3303 { 3304 #ifdef CONFIG_SLUB_DEBUG 3305 void *addr = page_address(page); 3306 void *p; 3307 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3308 sizeof(long), GFP_ATOMIC); 3309 if (!map) 3310 return; 3311 slab_err(s, page, text, s->name); 3312 slab_lock(page); 3313 3314 get_map(s, page, map); 3315 for_each_object(p, s, addr, page->objects) { 3316 3317 if (!test_bit(slab_index(p, s, addr), map)) { 3318 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3319 print_tracking(s, p); 3320 } 3321 } 3322 slab_unlock(page); 3323 kfree(map); 3324 #endif 3325 } 3326 3327 /* 3328 * Attempt to free all partial slabs on a node. 3329 * This is called from kmem_cache_close(). We must be the last thread 3330 * using the cache and therefore we do not need to lock anymore. 3331 */ 3332 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3333 { 3334 struct page *page, *h; 3335 3336 list_for_each_entry_safe(page, h, &n->partial, lru) { 3337 if (!page->inuse) { 3338 __remove_partial(n, page); 3339 discard_slab(s, page); 3340 } else { 3341 list_slab_objects(s, page, 3342 "Objects remaining in %s on kmem_cache_close()"); 3343 } 3344 } 3345 } 3346 3347 /* 3348 * Release all resources used by a slab cache. 3349 */ 3350 static inline int kmem_cache_close(struct kmem_cache *s) 3351 { 3352 int node; 3353 struct kmem_cache_node *n; 3354 3355 flush_all(s); 3356 /* Attempt to free all objects */ 3357 for_each_kmem_cache_node(s, node, n) { 3358 free_partial(s, n); 3359 if (n->nr_partial || slabs_node(s, node)) 3360 return 1; 3361 } 3362 free_percpu(s->cpu_slab); 3363 free_kmem_cache_nodes(s); 3364 return 0; 3365 } 3366 3367 int __kmem_cache_shutdown(struct kmem_cache *s) 3368 { 3369 return kmem_cache_close(s); 3370 } 3371 3372 /******************************************************************** 3373 * Kmalloc subsystem 3374 *******************************************************************/ 3375 3376 static int __init setup_slub_min_order(char *str) 3377 { 3378 get_option(&str, &slub_min_order); 3379 3380 return 1; 3381 } 3382 3383 __setup("slub_min_order=", setup_slub_min_order); 3384 3385 static int __init setup_slub_max_order(char *str) 3386 { 3387 get_option(&str, &slub_max_order); 3388 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3389 3390 return 1; 3391 } 3392 3393 __setup("slub_max_order=", setup_slub_max_order); 3394 3395 static int __init setup_slub_min_objects(char *str) 3396 { 3397 get_option(&str, &slub_min_objects); 3398 3399 return 1; 3400 } 3401 3402 __setup("slub_min_objects=", setup_slub_min_objects); 3403 3404 void *__kmalloc(size_t size, gfp_t flags) 3405 { 3406 struct kmem_cache *s; 3407 void *ret; 3408 3409 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3410 return kmalloc_large(size, flags); 3411 3412 s = kmalloc_slab(size, flags); 3413 3414 if (unlikely(ZERO_OR_NULL_PTR(s))) 3415 return s; 3416 3417 ret = slab_alloc(s, flags, _RET_IP_); 3418 3419 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3420 3421 kasan_kmalloc(s, ret, size); 3422 3423 return ret; 3424 } 3425 EXPORT_SYMBOL(__kmalloc); 3426 3427 #ifdef CONFIG_NUMA 3428 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3429 { 3430 struct page *page; 3431 void *ptr = NULL; 3432 3433 flags |= __GFP_COMP | __GFP_NOTRACK; 3434 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3435 if (page) 3436 ptr = page_address(page); 3437 3438 kmalloc_large_node_hook(ptr, size, flags); 3439 return ptr; 3440 } 3441 3442 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3443 { 3444 struct kmem_cache *s; 3445 void *ret; 3446 3447 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3448 ret = kmalloc_large_node(size, flags, node); 3449 3450 trace_kmalloc_node(_RET_IP_, ret, 3451 size, PAGE_SIZE << get_order(size), 3452 flags, node); 3453 3454 return ret; 3455 } 3456 3457 s = kmalloc_slab(size, flags); 3458 3459 if (unlikely(ZERO_OR_NULL_PTR(s))) 3460 return s; 3461 3462 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3463 3464 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3465 3466 kasan_kmalloc(s, ret, size); 3467 3468 return ret; 3469 } 3470 EXPORT_SYMBOL(__kmalloc_node); 3471 #endif 3472 3473 static size_t __ksize(const void *object) 3474 { 3475 struct page *page; 3476 3477 if (unlikely(object == ZERO_SIZE_PTR)) 3478 return 0; 3479 3480 page = virt_to_head_page(object); 3481 3482 if (unlikely(!PageSlab(page))) { 3483 WARN_ON(!PageCompound(page)); 3484 return PAGE_SIZE << compound_order(page); 3485 } 3486 3487 return slab_ksize(page->slab_cache); 3488 } 3489 3490 size_t ksize(const void *object) 3491 { 3492 size_t size = __ksize(object); 3493 /* We assume that ksize callers could use whole allocated area, 3494 so we need unpoison this area. */ 3495 kasan_krealloc(object, size); 3496 return size; 3497 } 3498 EXPORT_SYMBOL(ksize); 3499 3500 void kfree(const void *x) 3501 { 3502 struct page *page; 3503 void *object = (void *)x; 3504 3505 trace_kfree(_RET_IP_, x); 3506 3507 if (unlikely(ZERO_OR_NULL_PTR(x))) 3508 return; 3509 3510 page = virt_to_head_page(x); 3511 if (unlikely(!PageSlab(page))) { 3512 BUG_ON(!PageCompound(page)); 3513 kfree_hook(x); 3514 __free_kmem_pages(page, compound_order(page)); 3515 return; 3516 } 3517 slab_free(page->slab_cache, page, object, _RET_IP_); 3518 } 3519 EXPORT_SYMBOL(kfree); 3520 3521 #define SHRINK_PROMOTE_MAX 32 3522 3523 /* 3524 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3525 * up most to the head of the partial lists. New allocations will then 3526 * fill those up and thus they can be removed from the partial lists. 3527 * 3528 * The slabs with the least items are placed last. This results in them 3529 * being allocated from last increasing the chance that the last objects 3530 * are freed in them. 3531 */ 3532 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate) 3533 { 3534 int node; 3535 int i; 3536 struct kmem_cache_node *n; 3537 struct page *page; 3538 struct page *t; 3539 struct list_head discard; 3540 struct list_head promote[SHRINK_PROMOTE_MAX]; 3541 unsigned long flags; 3542 int ret = 0; 3543 3544 if (deactivate) { 3545 /* 3546 * Disable empty slabs caching. Used to avoid pinning offline 3547 * memory cgroups by kmem pages that can be freed. 3548 */ 3549 s->cpu_partial = 0; 3550 s->min_partial = 0; 3551 3552 /* 3553 * s->cpu_partial is checked locklessly (see put_cpu_partial), 3554 * so we have to make sure the change is visible. 3555 */ 3556 kick_all_cpus_sync(); 3557 } 3558 3559 flush_all(s); 3560 for_each_kmem_cache_node(s, node, n) { 3561 INIT_LIST_HEAD(&discard); 3562 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3563 INIT_LIST_HEAD(promote + i); 3564 3565 spin_lock_irqsave(&n->list_lock, flags); 3566 3567 /* 3568 * Build lists of slabs to discard or promote. 3569 * 3570 * Note that concurrent frees may occur while we hold the 3571 * list_lock. page->inuse here is the upper limit. 3572 */ 3573 list_for_each_entry_safe(page, t, &n->partial, lru) { 3574 int free = page->objects - page->inuse; 3575 3576 /* Do not reread page->inuse */ 3577 barrier(); 3578 3579 /* We do not keep full slabs on the list */ 3580 BUG_ON(free <= 0); 3581 3582 if (free == page->objects) { 3583 list_move(&page->lru, &discard); 3584 n->nr_partial--; 3585 } else if (free <= SHRINK_PROMOTE_MAX) 3586 list_move(&page->lru, promote + free - 1); 3587 } 3588 3589 /* 3590 * Promote the slabs filled up most to the head of the 3591 * partial list. 3592 */ 3593 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3594 list_splice(promote + i, &n->partial); 3595 3596 spin_unlock_irqrestore(&n->list_lock, flags); 3597 3598 /* Release empty slabs */ 3599 list_for_each_entry_safe(page, t, &discard, lru) 3600 discard_slab(s, page); 3601 3602 if (slabs_node(s, node)) 3603 ret = 1; 3604 } 3605 3606 return ret; 3607 } 3608 3609 static int slab_mem_going_offline_callback(void *arg) 3610 { 3611 struct kmem_cache *s; 3612 3613 mutex_lock(&slab_mutex); 3614 list_for_each_entry(s, &slab_caches, list) 3615 __kmem_cache_shrink(s, false); 3616 mutex_unlock(&slab_mutex); 3617 3618 return 0; 3619 } 3620 3621 static void slab_mem_offline_callback(void *arg) 3622 { 3623 struct kmem_cache_node *n; 3624 struct kmem_cache *s; 3625 struct memory_notify *marg = arg; 3626 int offline_node; 3627 3628 offline_node = marg->status_change_nid_normal; 3629 3630 /* 3631 * If the node still has available memory. we need kmem_cache_node 3632 * for it yet. 3633 */ 3634 if (offline_node < 0) 3635 return; 3636 3637 mutex_lock(&slab_mutex); 3638 list_for_each_entry(s, &slab_caches, list) { 3639 n = get_node(s, offline_node); 3640 if (n) { 3641 /* 3642 * if n->nr_slabs > 0, slabs still exist on the node 3643 * that is going down. We were unable to free them, 3644 * and offline_pages() function shouldn't call this 3645 * callback. So, we must fail. 3646 */ 3647 BUG_ON(slabs_node(s, offline_node)); 3648 3649 s->node[offline_node] = NULL; 3650 kmem_cache_free(kmem_cache_node, n); 3651 } 3652 } 3653 mutex_unlock(&slab_mutex); 3654 } 3655 3656 static int slab_mem_going_online_callback(void *arg) 3657 { 3658 struct kmem_cache_node *n; 3659 struct kmem_cache *s; 3660 struct memory_notify *marg = arg; 3661 int nid = marg->status_change_nid_normal; 3662 int ret = 0; 3663 3664 /* 3665 * If the node's memory is already available, then kmem_cache_node is 3666 * already created. Nothing to do. 3667 */ 3668 if (nid < 0) 3669 return 0; 3670 3671 /* 3672 * We are bringing a node online. No memory is available yet. We must 3673 * allocate a kmem_cache_node structure in order to bring the node 3674 * online. 3675 */ 3676 mutex_lock(&slab_mutex); 3677 list_for_each_entry(s, &slab_caches, list) { 3678 /* 3679 * XXX: kmem_cache_alloc_node will fallback to other nodes 3680 * since memory is not yet available from the node that 3681 * is brought up. 3682 */ 3683 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3684 if (!n) { 3685 ret = -ENOMEM; 3686 goto out; 3687 } 3688 init_kmem_cache_node(n); 3689 s->node[nid] = n; 3690 } 3691 out: 3692 mutex_unlock(&slab_mutex); 3693 return ret; 3694 } 3695 3696 static int slab_memory_callback(struct notifier_block *self, 3697 unsigned long action, void *arg) 3698 { 3699 int ret = 0; 3700 3701 switch (action) { 3702 case MEM_GOING_ONLINE: 3703 ret = slab_mem_going_online_callback(arg); 3704 break; 3705 case MEM_GOING_OFFLINE: 3706 ret = slab_mem_going_offline_callback(arg); 3707 break; 3708 case MEM_OFFLINE: 3709 case MEM_CANCEL_ONLINE: 3710 slab_mem_offline_callback(arg); 3711 break; 3712 case MEM_ONLINE: 3713 case MEM_CANCEL_OFFLINE: 3714 break; 3715 } 3716 if (ret) 3717 ret = notifier_from_errno(ret); 3718 else 3719 ret = NOTIFY_OK; 3720 return ret; 3721 } 3722 3723 static struct notifier_block slab_memory_callback_nb = { 3724 .notifier_call = slab_memory_callback, 3725 .priority = SLAB_CALLBACK_PRI, 3726 }; 3727 3728 /******************************************************************** 3729 * Basic setup of slabs 3730 *******************************************************************/ 3731 3732 /* 3733 * Used for early kmem_cache structures that were allocated using 3734 * the page allocator. Allocate them properly then fix up the pointers 3735 * that may be pointing to the wrong kmem_cache structure. 3736 */ 3737 3738 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3739 { 3740 int node; 3741 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3742 struct kmem_cache_node *n; 3743 3744 memcpy(s, static_cache, kmem_cache->object_size); 3745 3746 /* 3747 * This runs very early, and only the boot processor is supposed to be 3748 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3749 * IPIs around. 3750 */ 3751 __flush_cpu_slab(s, smp_processor_id()); 3752 for_each_kmem_cache_node(s, node, n) { 3753 struct page *p; 3754 3755 list_for_each_entry(p, &n->partial, lru) 3756 p->slab_cache = s; 3757 3758 #ifdef CONFIG_SLUB_DEBUG 3759 list_for_each_entry(p, &n->full, lru) 3760 p->slab_cache = s; 3761 #endif 3762 } 3763 slab_init_memcg_params(s); 3764 list_add(&s->list, &slab_caches); 3765 return s; 3766 } 3767 3768 void __init kmem_cache_init(void) 3769 { 3770 static __initdata struct kmem_cache boot_kmem_cache, 3771 boot_kmem_cache_node; 3772 3773 if (debug_guardpage_minorder()) 3774 slub_max_order = 0; 3775 3776 kmem_cache_node = &boot_kmem_cache_node; 3777 kmem_cache = &boot_kmem_cache; 3778 3779 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3780 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3781 3782 register_hotmemory_notifier(&slab_memory_callback_nb); 3783 3784 /* Able to allocate the per node structures */ 3785 slab_state = PARTIAL; 3786 3787 create_boot_cache(kmem_cache, "kmem_cache", 3788 offsetof(struct kmem_cache, node) + 3789 nr_node_ids * sizeof(struct kmem_cache_node *), 3790 SLAB_HWCACHE_ALIGN); 3791 3792 kmem_cache = bootstrap(&boot_kmem_cache); 3793 3794 /* 3795 * Allocate kmem_cache_node properly from the kmem_cache slab. 3796 * kmem_cache_node is separately allocated so no need to 3797 * update any list pointers. 3798 */ 3799 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3800 3801 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3802 setup_kmalloc_cache_index_table(); 3803 create_kmalloc_caches(0); 3804 3805 #ifdef CONFIG_SMP 3806 register_cpu_notifier(&slab_notifier); 3807 #endif 3808 3809 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3810 cache_line_size(), 3811 slub_min_order, slub_max_order, slub_min_objects, 3812 nr_cpu_ids, nr_node_ids); 3813 } 3814 3815 void __init kmem_cache_init_late(void) 3816 { 3817 } 3818 3819 struct kmem_cache * 3820 __kmem_cache_alias(const char *name, size_t size, size_t align, 3821 unsigned long flags, void (*ctor)(void *)) 3822 { 3823 struct kmem_cache *s, *c; 3824 3825 s = find_mergeable(size, align, flags, name, ctor); 3826 if (s) { 3827 s->refcount++; 3828 3829 /* 3830 * Adjust the object sizes so that we clear 3831 * the complete object on kzalloc. 3832 */ 3833 s->object_size = max(s->object_size, (int)size); 3834 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3835 3836 for_each_memcg_cache(c, s) { 3837 c->object_size = s->object_size; 3838 c->inuse = max_t(int, c->inuse, 3839 ALIGN(size, sizeof(void *))); 3840 } 3841 3842 if (sysfs_slab_alias(s, name)) { 3843 s->refcount--; 3844 s = NULL; 3845 } 3846 } 3847 3848 return s; 3849 } 3850 3851 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3852 { 3853 int err; 3854 3855 err = kmem_cache_open(s, flags); 3856 if (err) 3857 return err; 3858 3859 /* Mutex is not taken during early boot */ 3860 if (slab_state <= UP) 3861 return 0; 3862 3863 memcg_propagate_slab_attrs(s); 3864 err = sysfs_slab_add(s); 3865 if (err) 3866 kmem_cache_close(s); 3867 3868 return err; 3869 } 3870 3871 #ifdef CONFIG_SMP 3872 /* 3873 * Use the cpu notifier to insure that the cpu slabs are flushed when 3874 * necessary. 3875 */ 3876 static int slab_cpuup_callback(struct notifier_block *nfb, 3877 unsigned long action, void *hcpu) 3878 { 3879 long cpu = (long)hcpu; 3880 struct kmem_cache *s; 3881 unsigned long flags; 3882 3883 switch (action) { 3884 case CPU_UP_CANCELED: 3885 case CPU_UP_CANCELED_FROZEN: 3886 case CPU_DEAD: 3887 case CPU_DEAD_FROZEN: 3888 mutex_lock(&slab_mutex); 3889 list_for_each_entry(s, &slab_caches, list) { 3890 local_irq_save(flags); 3891 __flush_cpu_slab(s, cpu); 3892 local_irq_restore(flags); 3893 } 3894 mutex_unlock(&slab_mutex); 3895 break; 3896 default: 3897 break; 3898 } 3899 return NOTIFY_OK; 3900 } 3901 3902 static struct notifier_block slab_notifier = { 3903 .notifier_call = slab_cpuup_callback 3904 }; 3905 3906 #endif 3907 3908 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3909 { 3910 struct kmem_cache *s; 3911 void *ret; 3912 3913 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3914 return kmalloc_large(size, gfpflags); 3915 3916 s = kmalloc_slab(size, gfpflags); 3917 3918 if (unlikely(ZERO_OR_NULL_PTR(s))) 3919 return s; 3920 3921 ret = slab_alloc(s, gfpflags, caller); 3922 3923 /* Honor the call site pointer we received. */ 3924 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3925 3926 return ret; 3927 } 3928 3929 #ifdef CONFIG_NUMA 3930 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3931 int node, unsigned long caller) 3932 { 3933 struct kmem_cache *s; 3934 void *ret; 3935 3936 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3937 ret = kmalloc_large_node(size, gfpflags, node); 3938 3939 trace_kmalloc_node(caller, ret, 3940 size, PAGE_SIZE << get_order(size), 3941 gfpflags, node); 3942 3943 return ret; 3944 } 3945 3946 s = kmalloc_slab(size, gfpflags); 3947 3948 if (unlikely(ZERO_OR_NULL_PTR(s))) 3949 return s; 3950 3951 ret = slab_alloc_node(s, gfpflags, node, caller); 3952 3953 /* Honor the call site pointer we received. */ 3954 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3955 3956 return ret; 3957 } 3958 #endif 3959 3960 #ifdef CONFIG_SYSFS 3961 static int count_inuse(struct page *page) 3962 { 3963 return page->inuse; 3964 } 3965 3966 static int count_total(struct page *page) 3967 { 3968 return page->objects; 3969 } 3970 #endif 3971 3972 #ifdef CONFIG_SLUB_DEBUG 3973 static int validate_slab(struct kmem_cache *s, struct page *page, 3974 unsigned long *map) 3975 { 3976 void *p; 3977 void *addr = page_address(page); 3978 3979 if (!check_slab(s, page) || 3980 !on_freelist(s, page, NULL)) 3981 return 0; 3982 3983 /* Now we know that a valid freelist exists */ 3984 bitmap_zero(map, page->objects); 3985 3986 get_map(s, page, map); 3987 for_each_object(p, s, addr, page->objects) { 3988 if (test_bit(slab_index(p, s, addr), map)) 3989 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3990 return 0; 3991 } 3992 3993 for_each_object(p, s, addr, page->objects) 3994 if (!test_bit(slab_index(p, s, addr), map)) 3995 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3996 return 0; 3997 return 1; 3998 } 3999 4000 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4001 unsigned long *map) 4002 { 4003 slab_lock(page); 4004 validate_slab(s, page, map); 4005 slab_unlock(page); 4006 } 4007 4008 static int validate_slab_node(struct kmem_cache *s, 4009 struct kmem_cache_node *n, unsigned long *map) 4010 { 4011 unsigned long count = 0; 4012 struct page *page; 4013 unsigned long flags; 4014 4015 spin_lock_irqsave(&n->list_lock, flags); 4016 4017 list_for_each_entry(page, &n->partial, lru) { 4018 validate_slab_slab(s, page, map); 4019 count++; 4020 } 4021 if (count != n->nr_partial) 4022 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4023 s->name, count, n->nr_partial); 4024 4025 if (!(s->flags & SLAB_STORE_USER)) 4026 goto out; 4027 4028 list_for_each_entry(page, &n->full, lru) { 4029 validate_slab_slab(s, page, map); 4030 count++; 4031 } 4032 if (count != atomic_long_read(&n->nr_slabs)) 4033 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4034 s->name, count, atomic_long_read(&n->nr_slabs)); 4035 4036 out: 4037 spin_unlock_irqrestore(&n->list_lock, flags); 4038 return count; 4039 } 4040 4041 static long validate_slab_cache(struct kmem_cache *s) 4042 { 4043 int node; 4044 unsigned long count = 0; 4045 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4046 sizeof(unsigned long), GFP_KERNEL); 4047 struct kmem_cache_node *n; 4048 4049 if (!map) 4050 return -ENOMEM; 4051 4052 flush_all(s); 4053 for_each_kmem_cache_node(s, node, n) 4054 count += validate_slab_node(s, n, map); 4055 kfree(map); 4056 return count; 4057 } 4058 /* 4059 * Generate lists of code addresses where slabcache objects are allocated 4060 * and freed. 4061 */ 4062 4063 struct location { 4064 unsigned long count; 4065 unsigned long addr; 4066 long long sum_time; 4067 long min_time; 4068 long max_time; 4069 long min_pid; 4070 long max_pid; 4071 DECLARE_BITMAP(cpus, NR_CPUS); 4072 nodemask_t nodes; 4073 }; 4074 4075 struct loc_track { 4076 unsigned long max; 4077 unsigned long count; 4078 struct location *loc; 4079 }; 4080 4081 static void free_loc_track(struct loc_track *t) 4082 { 4083 if (t->max) 4084 free_pages((unsigned long)t->loc, 4085 get_order(sizeof(struct location) * t->max)); 4086 } 4087 4088 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4089 { 4090 struct location *l; 4091 int order; 4092 4093 order = get_order(sizeof(struct location) * max); 4094 4095 l = (void *)__get_free_pages(flags, order); 4096 if (!l) 4097 return 0; 4098 4099 if (t->count) { 4100 memcpy(l, t->loc, sizeof(struct location) * t->count); 4101 free_loc_track(t); 4102 } 4103 t->max = max; 4104 t->loc = l; 4105 return 1; 4106 } 4107 4108 static int add_location(struct loc_track *t, struct kmem_cache *s, 4109 const struct track *track) 4110 { 4111 long start, end, pos; 4112 struct location *l; 4113 unsigned long caddr; 4114 unsigned long age = jiffies - track->when; 4115 4116 start = -1; 4117 end = t->count; 4118 4119 for ( ; ; ) { 4120 pos = start + (end - start + 1) / 2; 4121 4122 /* 4123 * There is nothing at "end". If we end up there 4124 * we need to add something to before end. 4125 */ 4126 if (pos == end) 4127 break; 4128 4129 caddr = t->loc[pos].addr; 4130 if (track->addr == caddr) { 4131 4132 l = &t->loc[pos]; 4133 l->count++; 4134 if (track->when) { 4135 l->sum_time += age; 4136 if (age < l->min_time) 4137 l->min_time = age; 4138 if (age > l->max_time) 4139 l->max_time = age; 4140 4141 if (track->pid < l->min_pid) 4142 l->min_pid = track->pid; 4143 if (track->pid > l->max_pid) 4144 l->max_pid = track->pid; 4145 4146 cpumask_set_cpu(track->cpu, 4147 to_cpumask(l->cpus)); 4148 } 4149 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4150 return 1; 4151 } 4152 4153 if (track->addr < caddr) 4154 end = pos; 4155 else 4156 start = pos; 4157 } 4158 4159 /* 4160 * Not found. Insert new tracking element. 4161 */ 4162 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4163 return 0; 4164 4165 l = t->loc + pos; 4166 if (pos < t->count) 4167 memmove(l + 1, l, 4168 (t->count - pos) * sizeof(struct location)); 4169 t->count++; 4170 l->count = 1; 4171 l->addr = track->addr; 4172 l->sum_time = age; 4173 l->min_time = age; 4174 l->max_time = age; 4175 l->min_pid = track->pid; 4176 l->max_pid = track->pid; 4177 cpumask_clear(to_cpumask(l->cpus)); 4178 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4179 nodes_clear(l->nodes); 4180 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4181 return 1; 4182 } 4183 4184 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4185 struct page *page, enum track_item alloc, 4186 unsigned long *map) 4187 { 4188 void *addr = page_address(page); 4189 void *p; 4190 4191 bitmap_zero(map, page->objects); 4192 get_map(s, page, map); 4193 4194 for_each_object(p, s, addr, page->objects) 4195 if (!test_bit(slab_index(p, s, addr), map)) 4196 add_location(t, s, get_track(s, p, alloc)); 4197 } 4198 4199 static int list_locations(struct kmem_cache *s, char *buf, 4200 enum track_item alloc) 4201 { 4202 int len = 0; 4203 unsigned long i; 4204 struct loc_track t = { 0, 0, NULL }; 4205 int node; 4206 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4207 sizeof(unsigned long), GFP_KERNEL); 4208 struct kmem_cache_node *n; 4209 4210 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4211 GFP_TEMPORARY)) { 4212 kfree(map); 4213 return sprintf(buf, "Out of memory\n"); 4214 } 4215 /* Push back cpu slabs */ 4216 flush_all(s); 4217 4218 for_each_kmem_cache_node(s, node, n) { 4219 unsigned long flags; 4220 struct page *page; 4221 4222 if (!atomic_long_read(&n->nr_slabs)) 4223 continue; 4224 4225 spin_lock_irqsave(&n->list_lock, flags); 4226 list_for_each_entry(page, &n->partial, lru) 4227 process_slab(&t, s, page, alloc, map); 4228 list_for_each_entry(page, &n->full, lru) 4229 process_slab(&t, s, page, alloc, map); 4230 spin_unlock_irqrestore(&n->list_lock, flags); 4231 } 4232 4233 for (i = 0; i < t.count; i++) { 4234 struct location *l = &t.loc[i]; 4235 4236 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4237 break; 4238 len += sprintf(buf + len, "%7ld ", l->count); 4239 4240 if (l->addr) 4241 len += sprintf(buf + len, "%pS", (void *)l->addr); 4242 else 4243 len += sprintf(buf + len, "<not-available>"); 4244 4245 if (l->sum_time != l->min_time) { 4246 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4247 l->min_time, 4248 (long)div_u64(l->sum_time, l->count), 4249 l->max_time); 4250 } else 4251 len += sprintf(buf + len, " age=%ld", 4252 l->min_time); 4253 4254 if (l->min_pid != l->max_pid) 4255 len += sprintf(buf + len, " pid=%ld-%ld", 4256 l->min_pid, l->max_pid); 4257 else 4258 len += sprintf(buf + len, " pid=%ld", 4259 l->min_pid); 4260 4261 if (num_online_cpus() > 1 && 4262 !cpumask_empty(to_cpumask(l->cpus)) && 4263 len < PAGE_SIZE - 60) 4264 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4265 " cpus=%*pbl", 4266 cpumask_pr_args(to_cpumask(l->cpus))); 4267 4268 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4269 len < PAGE_SIZE - 60) 4270 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4271 " nodes=%*pbl", 4272 nodemask_pr_args(&l->nodes)); 4273 4274 len += sprintf(buf + len, "\n"); 4275 } 4276 4277 free_loc_track(&t); 4278 kfree(map); 4279 if (!t.count) 4280 len += sprintf(buf, "No data\n"); 4281 return len; 4282 } 4283 #endif 4284 4285 #ifdef SLUB_RESILIENCY_TEST 4286 static void __init resiliency_test(void) 4287 { 4288 u8 *p; 4289 4290 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4291 4292 pr_err("SLUB resiliency testing\n"); 4293 pr_err("-----------------------\n"); 4294 pr_err("A. Corruption after allocation\n"); 4295 4296 p = kzalloc(16, GFP_KERNEL); 4297 p[16] = 0x12; 4298 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4299 p + 16); 4300 4301 validate_slab_cache(kmalloc_caches[4]); 4302 4303 /* Hmmm... The next two are dangerous */ 4304 p = kzalloc(32, GFP_KERNEL); 4305 p[32 + sizeof(void *)] = 0x34; 4306 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4307 p); 4308 pr_err("If allocated object is overwritten then not detectable\n\n"); 4309 4310 validate_slab_cache(kmalloc_caches[5]); 4311 p = kzalloc(64, GFP_KERNEL); 4312 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4313 *p = 0x56; 4314 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4315 p); 4316 pr_err("If allocated object is overwritten then not detectable\n\n"); 4317 validate_slab_cache(kmalloc_caches[6]); 4318 4319 pr_err("\nB. Corruption after free\n"); 4320 p = kzalloc(128, GFP_KERNEL); 4321 kfree(p); 4322 *p = 0x78; 4323 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4324 validate_slab_cache(kmalloc_caches[7]); 4325 4326 p = kzalloc(256, GFP_KERNEL); 4327 kfree(p); 4328 p[50] = 0x9a; 4329 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4330 validate_slab_cache(kmalloc_caches[8]); 4331 4332 p = kzalloc(512, GFP_KERNEL); 4333 kfree(p); 4334 p[512] = 0xab; 4335 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4336 validate_slab_cache(kmalloc_caches[9]); 4337 } 4338 #else 4339 #ifdef CONFIG_SYSFS 4340 static void resiliency_test(void) {}; 4341 #endif 4342 #endif 4343 4344 #ifdef CONFIG_SYSFS 4345 enum slab_stat_type { 4346 SL_ALL, /* All slabs */ 4347 SL_PARTIAL, /* Only partially allocated slabs */ 4348 SL_CPU, /* Only slabs used for cpu caches */ 4349 SL_OBJECTS, /* Determine allocated objects not slabs */ 4350 SL_TOTAL /* Determine object capacity not slabs */ 4351 }; 4352 4353 #define SO_ALL (1 << SL_ALL) 4354 #define SO_PARTIAL (1 << SL_PARTIAL) 4355 #define SO_CPU (1 << SL_CPU) 4356 #define SO_OBJECTS (1 << SL_OBJECTS) 4357 #define SO_TOTAL (1 << SL_TOTAL) 4358 4359 static ssize_t show_slab_objects(struct kmem_cache *s, 4360 char *buf, unsigned long flags) 4361 { 4362 unsigned long total = 0; 4363 int node; 4364 int x; 4365 unsigned long *nodes; 4366 4367 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4368 if (!nodes) 4369 return -ENOMEM; 4370 4371 if (flags & SO_CPU) { 4372 int cpu; 4373 4374 for_each_possible_cpu(cpu) { 4375 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4376 cpu); 4377 int node; 4378 struct page *page; 4379 4380 page = READ_ONCE(c->page); 4381 if (!page) 4382 continue; 4383 4384 node = page_to_nid(page); 4385 if (flags & SO_TOTAL) 4386 x = page->objects; 4387 else if (flags & SO_OBJECTS) 4388 x = page->inuse; 4389 else 4390 x = 1; 4391 4392 total += x; 4393 nodes[node] += x; 4394 4395 page = READ_ONCE(c->partial); 4396 if (page) { 4397 node = page_to_nid(page); 4398 if (flags & SO_TOTAL) 4399 WARN_ON_ONCE(1); 4400 else if (flags & SO_OBJECTS) 4401 WARN_ON_ONCE(1); 4402 else 4403 x = page->pages; 4404 total += x; 4405 nodes[node] += x; 4406 } 4407 } 4408 } 4409 4410 get_online_mems(); 4411 #ifdef CONFIG_SLUB_DEBUG 4412 if (flags & SO_ALL) { 4413 struct kmem_cache_node *n; 4414 4415 for_each_kmem_cache_node(s, node, n) { 4416 4417 if (flags & SO_TOTAL) 4418 x = atomic_long_read(&n->total_objects); 4419 else if (flags & SO_OBJECTS) 4420 x = atomic_long_read(&n->total_objects) - 4421 count_partial(n, count_free); 4422 else 4423 x = atomic_long_read(&n->nr_slabs); 4424 total += x; 4425 nodes[node] += x; 4426 } 4427 4428 } else 4429 #endif 4430 if (flags & SO_PARTIAL) { 4431 struct kmem_cache_node *n; 4432 4433 for_each_kmem_cache_node(s, node, n) { 4434 if (flags & SO_TOTAL) 4435 x = count_partial(n, count_total); 4436 else if (flags & SO_OBJECTS) 4437 x = count_partial(n, count_inuse); 4438 else 4439 x = n->nr_partial; 4440 total += x; 4441 nodes[node] += x; 4442 } 4443 } 4444 x = sprintf(buf, "%lu", total); 4445 #ifdef CONFIG_NUMA 4446 for (node = 0; node < nr_node_ids; node++) 4447 if (nodes[node]) 4448 x += sprintf(buf + x, " N%d=%lu", 4449 node, nodes[node]); 4450 #endif 4451 put_online_mems(); 4452 kfree(nodes); 4453 return x + sprintf(buf + x, "\n"); 4454 } 4455 4456 #ifdef CONFIG_SLUB_DEBUG 4457 static int any_slab_objects(struct kmem_cache *s) 4458 { 4459 int node; 4460 struct kmem_cache_node *n; 4461 4462 for_each_kmem_cache_node(s, node, n) 4463 if (atomic_long_read(&n->total_objects)) 4464 return 1; 4465 4466 return 0; 4467 } 4468 #endif 4469 4470 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4471 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4472 4473 struct slab_attribute { 4474 struct attribute attr; 4475 ssize_t (*show)(struct kmem_cache *s, char *buf); 4476 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4477 }; 4478 4479 #define SLAB_ATTR_RO(_name) \ 4480 static struct slab_attribute _name##_attr = \ 4481 __ATTR(_name, 0400, _name##_show, NULL) 4482 4483 #define SLAB_ATTR(_name) \ 4484 static struct slab_attribute _name##_attr = \ 4485 __ATTR(_name, 0600, _name##_show, _name##_store) 4486 4487 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4488 { 4489 return sprintf(buf, "%d\n", s->size); 4490 } 4491 SLAB_ATTR_RO(slab_size); 4492 4493 static ssize_t align_show(struct kmem_cache *s, char *buf) 4494 { 4495 return sprintf(buf, "%d\n", s->align); 4496 } 4497 SLAB_ATTR_RO(align); 4498 4499 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4500 { 4501 return sprintf(buf, "%d\n", s->object_size); 4502 } 4503 SLAB_ATTR_RO(object_size); 4504 4505 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4506 { 4507 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4508 } 4509 SLAB_ATTR_RO(objs_per_slab); 4510 4511 static ssize_t order_store(struct kmem_cache *s, 4512 const char *buf, size_t length) 4513 { 4514 unsigned long order; 4515 int err; 4516 4517 err = kstrtoul(buf, 10, &order); 4518 if (err) 4519 return err; 4520 4521 if (order > slub_max_order || order < slub_min_order) 4522 return -EINVAL; 4523 4524 calculate_sizes(s, order); 4525 return length; 4526 } 4527 4528 static ssize_t order_show(struct kmem_cache *s, char *buf) 4529 { 4530 return sprintf(buf, "%d\n", oo_order(s->oo)); 4531 } 4532 SLAB_ATTR(order); 4533 4534 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4535 { 4536 return sprintf(buf, "%lu\n", s->min_partial); 4537 } 4538 4539 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4540 size_t length) 4541 { 4542 unsigned long min; 4543 int err; 4544 4545 err = kstrtoul(buf, 10, &min); 4546 if (err) 4547 return err; 4548 4549 set_min_partial(s, min); 4550 return length; 4551 } 4552 SLAB_ATTR(min_partial); 4553 4554 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4555 { 4556 return sprintf(buf, "%u\n", s->cpu_partial); 4557 } 4558 4559 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4560 size_t length) 4561 { 4562 unsigned long objects; 4563 int err; 4564 4565 err = kstrtoul(buf, 10, &objects); 4566 if (err) 4567 return err; 4568 if (objects && !kmem_cache_has_cpu_partial(s)) 4569 return -EINVAL; 4570 4571 s->cpu_partial = objects; 4572 flush_all(s); 4573 return length; 4574 } 4575 SLAB_ATTR(cpu_partial); 4576 4577 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4578 { 4579 if (!s->ctor) 4580 return 0; 4581 return sprintf(buf, "%pS\n", s->ctor); 4582 } 4583 SLAB_ATTR_RO(ctor); 4584 4585 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4586 { 4587 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4588 } 4589 SLAB_ATTR_RO(aliases); 4590 4591 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4592 { 4593 return show_slab_objects(s, buf, SO_PARTIAL); 4594 } 4595 SLAB_ATTR_RO(partial); 4596 4597 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4598 { 4599 return show_slab_objects(s, buf, SO_CPU); 4600 } 4601 SLAB_ATTR_RO(cpu_slabs); 4602 4603 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4604 { 4605 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4606 } 4607 SLAB_ATTR_RO(objects); 4608 4609 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4610 { 4611 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4612 } 4613 SLAB_ATTR_RO(objects_partial); 4614 4615 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4616 { 4617 int objects = 0; 4618 int pages = 0; 4619 int cpu; 4620 int len; 4621 4622 for_each_online_cpu(cpu) { 4623 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4624 4625 if (page) { 4626 pages += page->pages; 4627 objects += page->pobjects; 4628 } 4629 } 4630 4631 len = sprintf(buf, "%d(%d)", objects, pages); 4632 4633 #ifdef CONFIG_SMP 4634 for_each_online_cpu(cpu) { 4635 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4636 4637 if (page && len < PAGE_SIZE - 20) 4638 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4639 page->pobjects, page->pages); 4640 } 4641 #endif 4642 return len + sprintf(buf + len, "\n"); 4643 } 4644 SLAB_ATTR_RO(slabs_cpu_partial); 4645 4646 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4647 { 4648 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4649 } 4650 4651 static ssize_t reclaim_account_store(struct kmem_cache *s, 4652 const char *buf, size_t length) 4653 { 4654 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4655 if (buf[0] == '1') 4656 s->flags |= SLAB_RECLAIM_ACCOUNT; 4657 return length; 4658 } 4659 SLAB_ATTR(reclaim_account); 4660 4661 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4662 { 4663 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4664 } 4665 SLAB_ATTR_RO(hwcache_align); 4666 4667 #ifdef CONFIG_ZONE_DMA 4668 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4669 { 4670 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4671 } 4672 SLAB_ATTR_RO(cache_dma); 4673 #endif 4674 4675 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4676 { 4677 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4678 } 4679 SLAB_ATTR_RO(destroy_by_rcu); 4680 4681 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4682 { 4683 return sprintf(buf, "%d\n", s->reserved); 4684 } 4685 SLAB_ATTR_RO(reserved); 4686 4687 #ifdef CONFIG_SLUB_DEBUG 4688 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4689 { 4690 return show_slab_objects(s, buf, SO_ALL); 4691 } 4692 SLAB_ATTR_RO(slabs); 4693 4694 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4695 { 4696 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4697 } 4698 SLAB_ATTR_RO(total_objects); 4699 4700 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4701 { 4702 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4703 } 4704 4705 static ssize_t sanity_checks_store(struct kmem_cache *s, 4706 const char *buf, size_t length) 4707 { 4708 s->flags &= ~SLAB_DEBUG_FREE; 4709 if (buf[0] == '1') { 4710 s->flags &= ~__CMPXCHG_DOUBLE; 4711 s->flags |= SLAB_DEBUG_FREE; 4712 } 4713 return length; 4714 } 4715 SLAB_ATTR(sanity_checks); 4716 4717 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4718 { 4719 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4720 } 4721 4722 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4723 size_t length) 4724 { 4725 /* 4726 * Tracing a merged cache is going to give confusing results 4727 * as well as cause other issues like converting a mergeable 4728 * cache into an umergeable one. 4729 */ 4730 if (s->refcount > 1) 4731 return -EINVAL; 4732 4733 s->flags &= ~SLAB_TRACE; 4734 if (buf[0] == '1') { 4735 s->flags &= ~__CMPXCHG_DOUBLE; 4736 s->flags |= SLAB_TRACE; 4737 } 4738 return length; 4739 } 4740 SLAB_ATTR(trace); 4741 4742 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4743 { 4744 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4745 } 4746 4747 static ssize_t red_zone_store(struct kmem_cache *s, 4748 const char *buf, size_t length) 4749 { 4750 if (any_slab_objects(s)) 4751 return -EBUSY; 4752 4753 s->flags &= ~SLAB_RED_ZONE; 4754 if (buf[0] == '1') { 4755 s->flags &= ~__CMPXCHG_DOUBLE; 4756 s->flags |= SLAB_RED_ZONE; 4757 } 4758 calculate_sizes(s, -1); 4759 return length; 4760 } 4761 SLAB_ATTR(red_zone); 4762 4763 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4764 { 4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4766 } 4767 4768 static ssize_t poison_store(struct kmem_cache *s, 4769 const char *buf, size_t length) 4770 { 4771 if (any_slab_objects(s)) 4772 return -EBUSY; 4773 4774 s->flags &= ~SLAB_POISON; 4775 if (buf[0] == '1') { 4776 s->flags &= ~__CMPXCHG_DOUBLE; 4777 s->flags |= SLAB_POISON; 4778 } 4779 calculate_sizes(s, -1); 4780 return length; 4781 } 4782 SLAB_ATTR(poison); 4783 4784 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4785 { 4786 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4787 } 4788 4789 static ssize_t store_user_store(struct kmem_cache *s, 4790 const char *buf, size_t length) 4791 { 4792 if (any_slab_objects(s)) 4793 return -EBUSY; 4794 4795 s->flags &= ~SLAB_STORE_USER; 4796 if (buf[0] == '1') { 4797 s->flags &= ~__CMPXCHG_DOUBLE; 4798 s->flags |= SLAB_STORE_USER; 4799 } 4800 calculate_sizes(s, -1); 4801 return length; 4802 } 4803 SLAB_ATTR(store_user); 4804 4805 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4806 { 4807 return 0; 4808 } 4809 4810 static ssize_t validate_store(struct kmem_cache *s, 4811 const char *buf, size_t length) 4812 { 4813 int ret = -EINVAL; 4814 4815 if (buf[0] == '1') { 4816 ret = validate_slab_cache(s); 4817 if (ret >= 0) 4818 ret = length; 4819 } 4820 return ret; 4821 } 4822 SLAB_ATTR(validate); 4823 4824 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4825 { 4826 if (!(s->flags & SLAB_STORE_USER)) 4827 return -ENOSYS; 4828 return list_locations(s, buf, TRACK_ALLOC); 4829 } 4830 SLAB_ATTR_RO(alloc_calls); 4831 4832 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4833 { 4834 if (!(s->flags & SLAB_STORE_USER)) 4835 return -ENOSYS; 4836 return list_locations(s, buf, TRACK_FREE); 4837 } 4838 SLAB_ATTR_RO(free_calls); 4839 #endif /* CONFIG_SLUB_DEBUG */ 4840 4841 #ifdef CONFIG_FAILSLAB 4842 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4843 { 4844 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4845 } 4846 4847 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4848 size_t length) 4849 { 4850 if (s->refcount > 1) 4851 return -EINVAL; 4852 4853 s->flags &= ~SLAB_FAILSLAB; 4854 if (buf[0] == '1') 4855 s->flags |= SLAB_FAILSLAB; 4856 return length; 4857 } 4858 SLAB_ATTR(failslab); 4859 #endif 4860 4861 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4862 { 4863 return 0; 4864 } 4865 4866 static ssize_t shrink_store(struct kmem_cache *s, 4867 const char *buf, size_t length) 4868 { 4869 if (buf[0] == '1') 4870 kmem_cache_shrink(s); 4871 else 4872 return -EINVAL; 4873 return length; 4874 } 4875 SLAB_ATTR(shrink); 4876 4877 #ifdef CONFIG_NUMA 4878 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4879 { 4880 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4881 } 4882 4883 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4884 const char *buf, size_t length) 4885 { 4886 unsigned long ratio; 4887 int err; 4888 4889 err = kstrtoul(buf, 10, &ratio); 4890 if (err) 4891 return err; 4892 4893 if (ratio <= 100) 4894 s->remote_node_defrag_ratio = ratio * 10; 4895 4896 return length; 4897 } 4898 SLAB_ATTR(remote_node_defrag_ratio); 4899 #endif 4900 4901 #ifdef CONFIG_SLUB_STATS 4902 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4903 { 4904 unsigned long sum = 0; 4905 int cpu; 4906 int len; 4907 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4908 4909 if (!data) 4910 return -ENOMEM; 4911 4912 for_each_online_cpu(cpu) { 4913 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4914 4915 data[cpu] = x; 4916 sum += x; 4917 } 4918 4919 len = sprintf(buf, "%lu", sum); 4920 4921 #ifdef CONFIG_SMP 4922 for_each_online_cpu(cpu) { 4923 if (data[cpu] && len < PAGE_SIZE - 20) 4924 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4925 } 4926 #endif 4927 kfree(data); 4928 return len + sprintf(buf + len, "\n"); 4929 } 4930 4931 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4932 { 4933 int cpu; 4934 4935 for_each_online_cpu(cpu) 4936 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4937 } 4938 4939 #define STAT_ATTR(si, text) \ 4940 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4941 { \ 4942 return show_stat(s, buf, si); \ 4943 } \ 4944 static ssize_t text##_store(struct kmem_cache *s, \ 4945 const char *buf, size_t length) \ 4946 { \ 4947 if (buf[0] != '0') \ 4948 return -EINVAL; \ 4949 clear_stat(s, si); \ 4950 return length; \ 4951 } \ 4952 SLAB_ATTR(text); \ 4953 4954 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4955 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4956 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4957 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4958 STAT_ATTR(FREE_FROZEN, free_frozen); 4959 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4960 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4961 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4962 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4963 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4964 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4965 STAT_ATTR(FREE_SLAB, free_slab); 4966 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4967 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4968 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4969 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4970 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4971 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4972 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4973 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4974 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4975 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4976 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4977 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4978 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4979 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4980 #endif 4981 4982 static struct attribute *slab_attrs[] = { 4983 &slab_size_attr.attr, 4984 &object_size_attr.attr, 4985 &objs_per_slab_attr.attr, 4986 &order_attr.attr, 4987 &min_partial_attr.attr, 4988 &cpu_partial_attr.attr, 4989 &objects_attr.attr, 4990 &objects_partial_attr.attr, 4991 &partial_attr.attr, 4992 &cpu_slabs_attr.attr, 4993 &ctor_attr.attr, 4994 &aliases_attr.attr, 4995 &align_attr.attr, 4996 &hwcache_align_attr.attr, 4997 &reclaim_account_attr.attr, 4998 &destroy_by_rcu_attr.attr, 4999 &shrink_attr.attr, 5000 &reserved_attr.attr, 5001 &slabs_cpu_partial_attr.attr, 5002 #ifdef CONFIG_SLUB_DEBUG 5003 &total_objects_attr.attr, 5004 &slabs_attr.attr, 5005 &sanity_checks_attr.attr, 5006 &trace_attr.attr, 5007 &red_zone_attr.attr, 5008 &poison_attr.attr, 5009 &store_user_attr.attr, 5010 &validate_attr.attr, 5011 &alloc_calls_attr.attr, 5012 &free_calls_attr.attr, 5013 #endif 5014 #ifdef CONFIG_ZONE_DMA 5015 &cache_dma_attr.attr, 5016 #endif 5017 #ifdef CONFIG_NUMA 5018 &remote_node_defrag_ratio_attr.attr, 5019 #endif 5020 #ifdef CONFIG_SLUB_STATS 5021 &alloc_fastpath_attr.attr, 5022 &alloc_slowpath_attr.attr, 5023 &free_fastpath_attr.attr, 5024 &free_slowpath_attr.attr, 5025 &free_frozen_attr.attr, 5026 &free_add_partial_attr.attr, 5027 &free_remove_partial_attr.attr, 5028 &alloc_from_partial_attr.attr, 5029 &alloc_slab_attr.attr, 5030 &alloc_refill_attr.attr, 5031 &alloc_node_mismatch_attr.attr, 5032 &free_slab_attr.attr, 5033 &cpuslab_flush_attr.attr, 5034 &deactivate_full_attr.attr, 5035 &deactivate_empty_attr.attr, 5036 &deactivate_to_head_attr.attr, 5037 &deactivate_to_tail_attr.attr, 5038 &deactivate_remote_frees_attr.attr, 5039 &deactivate_bypass_attr.attr, 5040 &order_fallback_attr.attr, 5041 &cmpxchg_double_fail_attr.attr, 5042 &cmpxchg_double_cpu_fail_attr.attr, 5043 &cpu_partial_alloc_attr.attr, 5044 &cpu_partial_free_attr.attr, 5045 &cpu_partial_node_attr.attr, 5046 &cpu_partial_drain_attr.attr, 5047 #endif 5048 #ifdef CONFIG_FAILSLAB 5049 &failslab_attr.attr, 5050 #endif 5051 5052 NULL 5053 }; 5054 5055 static struct attribute_group slab_attr_group = { 5056 .attrs = slab_attrs, 5057 }; 5058 5059 static ssize_t slab_attr_show(struct kobject *kobj, 5060 struct attribute *attr, 5061 char *buf) 5062 { 5063 struct slab_attribute *attribute; 5064 struct kmem_cache *s; 5065 int err; 5066 5067 attribute = to_slab_attr(attr); 5068 s = to_slab(kobj); 5069 5070 if (!attribute->show) 5071 return -EIO; 5072 5073 err = attribute->show(s, buf); 5074 5075 return err; 5076 } 5077 5078 static ssize_t slab_attr_store(struct kobject *kobj, 5079 struct attribute *attr, 5080 const char *buf, size_t len) 5081 { 5082 struct slab_attribute *attribute; 5083 struct kmem_cache *s; 5084 int err; 5085 5086 attribute = to_slab_attr(attr); 5087 s = to_slab(kobj); 5088 5089 if (!attribute->store) 5090 return -EIO; 5091 5092 err = attribute->store(s, buf, len); 5093 #ifdef CONFIG_MEMCG_KMEM 5094 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5095 struct kmem_cache *c; 5096 5097 mutex_lock(&slab_mutex); 5098 if (s->max_attr_size < len) 5099 s->max_attr_size = len; 5100 5101 /* 5102 * This is a best effort propagation, so this function's return 5103 * value will be determined by the parent cache only. This is 5104 * basically because not all attributes will have a well 5105 * defined semantics for rollbacks - most of the actions will 5106 * have permanent effects. 5107 * 5108 * Returning the error value of any of the children that fail 5109 * is not 100 % defined, in the sense that users seeing the 5110 * error code won't be able to know anything about the state of 5111 * the cache. 5112 * 5113 * Only returning the error code for the parent cache at least 5114 * has well defined semantics. The cache being written to 5115 * directly either failed or succeeded, in which case we loop 5116 * through the descendants with best-effort propagation. 5117 */ 5118 for_each_memcg_cache(c, s) 5119 attribute->store(c, buf, len); 5120 mutex_unlock(&slab_mutex); 5121 } 5122 #endif 5123 return err; 5124 } 5125 5126 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5127 { 5128 #ifdef CONFIG_MEMCG_KMEM 5129 int i; 5130 char *buffer = NULL; 5131 struct kmem_cache *root_cache; 5132 5133 if (is_root_cache(s)) 5134 return; 5135 5136 root_cache = s->memcg_params.root_cache; 5137 5138 /* 5139 * This mean this cache had no attribute written. Therefore, no point 5140 * in copying default values around 5141 */ 5142 if (!root_cache->max_attr_size) 5143 return; 5144 5145 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5146 char mbuf[64]; 5147 char *buf; 5148 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5149 5150 if (!attr || !attr->store || !attr->show) 5151 continue; 5152 5153 /* 5154 * It is really bad that we have to allocate here, so we will 5155 * do it only as a fallback. If we actually allocate, though, 5156 * we can just use the allocated buffer until the end. 5157 * 5158 * Most of the slub attributes will tend to be very small in 5159 * size, but sysfs allows buffers up to a page, so they can 5160 * theoretically happen. 5161 */ 5162 if (buffer) 5163 buf = buffer; 5164 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5165 buf = mbuf; 5166 else { 5167 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5168 if (WARN_ON(!buffer)) 5169 continue; 5170 buf = buffer; 5171 } 5172 5173 attr->show(root_cache, buf); 5174 attr->store(s, buf, strlen(buf)); 5175 } 5176 5177 if (buffer) 5178 free_page((unsigned long)buffer); 5179 #endif 5180 } 5181 5182 static void kmem_cache_release(struct kobject *k) 5183 { 5184 slab_kmem_cache_release(to_slab(k)); 5185 } 5186 5187 static const struct sysfs_ops slab_sysfs_ops = { 5188 .show = slab_attr_show, 5189 .store = slab_attr_store, 5190 }; 5191 5192 static struct kobj_type slab_ktype = { 5193 .sysfs_ops = &slab_sysfs_ops, 5194 .release = kmem_cache_release, 5195 }; 5196 5197 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5198 { 5199 struct kobj_type *ktype = get_ktype(kobj); 5200 5201 if (ktype == &slab_ktype) 5202 return 1; 5203 return 0; 5204 } 5205 5206 static const struct kset_uevent_ops slab_uevent_ops = { 5207 .filter = uevent_filter, 5208 }; 5209 5210 static struct kset *slab_kset; 5211 5212 static inline struct kset *cache_kset(struct kmem_cache *s) 5213 { 5214 #ifdef CONFIG_MEMCG_KMEM 5215 if (!is_root_cache(s)) 5216 return s->memcg_params.root_cache->memcg_kset; 5217 #endif 5218 return slab_kset; 5219 } 5220 5221 #define ID_STR_LENGTH 64 5222 5223 /* Create a unique string id for a slab cache: 5224 * 5225 * Format :[flags-]size 5226 */ 5227 static char *create_unique_id(struct kmem_cache *s) 5228 { 5229 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5230 char *p = name; 5231 5232 BUG_ON(!name); 5233 5234 *p++ = ':'; 5235 /* 5236 * First flags affecting slabcache operations. We will only 5237 * get here for aliasable slabs so we do not need to support 5238 * too many flags. The flags here must cover all flags that 5239 * are matched during merging to guarantee that the id is 5240 * unique. 5241 */ 5242 if (s->flags & SLAB_CACHE_DMA) 5243 *p++ = 'd'; 5244 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5245 *p++ = 'a'; 5246 if (s->flags & SLAB_DEBUG_FREE) 5247 *p++ = 'F'; 5248 if (!(s->flags & SLAB_NOTRACK)) 5249 *p++ = 't'; 5250 if (p != name + 1) 5251 *p++ = '-'; 5252 p += sprintf(p, "%07d", s->size); 5253 5254 BUG_ON(p > name + ID_STR_LENGTH - 1); 5255 return name; 5256 } 5257 5258 static int sysfs_slab_add(struct kmem_cache *s) 5259 { 5260 int err; 5261 const char *name; 5262 int unmergeable = slab_unmergeable(s); 5263 5264 if (unmergeable) { 5265 /* 5266 * Slabcache can never be merged so we can use the name proper. 5267 * This is typically the case for debug situations. In that 5268 * case we can catch duplicate names easily. 5269 */ 5270 sysfs_remove_link(&slab_kset->kobj, s->name); 5271 name = s->name; 5272 } else { 5273 /* 5274 * Create a unique name for the slab as a target 5275 * for the symlinks. 5276 */ 5277 name = create_unique_id(s); 5278 } 5279 5280 s->kobj.kset = cache_kset(s); 5281 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5282 if (err) 5283 goto out; 5284 5285 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5286 if (err) 5287 goto out_del_kobj; 5288 5289 #ifdef CONFIG_MEMCG_KMEM 5290 if (is_root_cache(s)) { 5291 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5292 if (!s->memcg_kset) { 5293 err = -ENOMEM; 5294 goto out_del_kobj; 5295 } 5296 } 5297 #endif 5298 5299 kobject_uevent(&s->kobj, KOBJ_ADD); 5300 if (!unmergeable) { 5301 /* Setup first alias */ 5302 sysfs_slab_alias(s, s->name); 5303 } 5304 out: 5305 if (!unmergeable) 5306 kfree(name); 5307 return err; 5308 out_del_kobj: 5309 kobject_del(&s->kobj); 5310 goto out; 5311 } 5312 5313 void sysfs_slab_remove(struct kmem_cache *s) 5314 { 5315 if (slab_state < FULL) 5316 /* 5317 * Sysfs has not been setup yet so no need to remove the 5318 * cache from sysfs. 5319 */ 5320 return; 5321 5322 #ifdef CONFIG_MEMCG_KMEM 5323 kset_unregister(s->memcg_kset); 5324 #endif 5325 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5326 kobject_del(&s->kobj); 5327 kobject_put(&s->kobj); 5328 } 5329 5330 /* 5331 * Need to buffer aliases during bootup until sysfs becomes 5332 * available lest we lose that information. 5333 */ 5334 struct saved_alias { 5335 struct kmem_cache *s; 5336 const char *name; 5337 struct saved_alias *next; 5338 }; 5339 5340 static struct saved_alias *alias_list; 5341 5342 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5343 { 5344 struct saved_alias *al; 5345 5346 if (slab_state == FULL) { 5347 /* 5348 * If we have a leftover link then remove it. 5349 */ 5350 sysfs_remove_link(&slab_kset->kobj, name); 5351 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5352 } 5353 5354 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5355 if (!al) 5356 return -ENOMEM; 5357 5358 al->s = s; 5359 al->name = name; 5360 al->next = alias_list; 5361 alias_list = al; 5362 return 0; 5363 } 5364 5365 static int __init slab_sysfs_init(void) 5366 { 5367 struct kmem_cache *s; 5368 int err; 5369 5370 mutex_lock(&slab_mutex); 5371 5372 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5373 if (!slab_kset) { 5374 mutex_unlock(&slab_mutex); 5375 pr_err("Cannot register slab subsystem.\n"); 5376 return -ENOSYS; 5377 } 5378 5379 slab_state = FULL; 5380 5381 list_for_each_entry(s, &slab_caches, list) { 5382 err = sysfs_slab_add(s); 5383 if (err) 5384 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5385 s->name); 5386 } 5387 5388 while (alias_list) { 5389 struct saved_alias *al = alias_list; 5390 5391 alias_list = alias_list->next; 5392 err = sysfs_slab_alias(al->s, al->name); 5393 if (err) 5394 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5395 al->name); 5396 kfree(al); 5397 } 5398 5399 mutex_unlock(&slab_mutex); 5400 resiliency_test(); 5401 return 0; 5402 } 5403 5404 __initcall(slab_sysfs_init); 5405 #endif /* CONFIG_SYSFS */ 5406 5407 /* 5408 * The /proc/slabinfo ABI 5409 */ 5410 #ifdef CONFIG_SLABINFO 5411 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5412 { 5413 unsigned long nr_slabs = 0; 5414 unsigned long nr_objs = 0; 5415 unsigned long nr_free = 0; 5416 int node; 5417 struct kmem_cache_node *n; 5418 5419 for_each_kmem_cache_node(s, node, n) { 5420 nr_slabs += node_nr_slabs(n); 5421 nr_objs += node_nr_objs(n); 5422 nr_free += count_partial(n, count_free); 5423 } 5424 5425 sinfo->active_objs = nr_objs - nr_free; 5426 sinfo->num_objs = nr_objs; 5427 sinfo->active_slabs = nr_slabs; 5428 sinfo->num_slabs = nr_slabs; 5429 sinfo->objects_per_slab = oo_objects(s->oo); 5430 sinfo->cache_order = oo_order(s->oo); 5431 } 5432 5433 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5434 { 5435 } 5436 5437 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5438 size_t count, loff_t *ppos) 5439 { 5440 return -EIO; 5441 } 5442 #endif /* CONFIG_SLABINFO */ 5443