1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/vmalloc.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/mempolicy.h> 30 #include <linux/ctype.h> 31 #include <linux/stackdepot.h> 32 #include <linux/debugobjects.h> 33 #include <linux/kallsyms.h> 34 #include <linux/kfence.h> 35 #include <linux/memory.h> 36 #include <linux/math64.h> 37 #include <linux/fault-inject.h> 38 #include <linux/kmemleak.h> 39 #include <linux/stacktrace.h> 40 #include <linux/prefetch.h> 41 #include <linux/memcontrol.h> 42 #include <linux/random.h> 43 #include <kunit/test.h> 44 #include <kunit/test-bug.h> 45 #include <linux/sort.h> 46 47 #include <linux/debugfs.h> 48 #include <trace/events/kmem.h> 49 50 #include "internal.h" 51 52 /* 53 * Lock order: 54 * 1. slab_mutex (Global Mutex) 55 * 2. node->list_lock (Spinlock) 56 * 3. kmem_cache->cpu_slab->lock (Local lock) 57 * 4. slab_lock(slab) (Only on some arches) 58 * 5. object_map_lock (Only for debugging) 59 * 60 * slab_mutex 61 * 62 * The role of the slab_mutex is to protect the list of all the slabs 63 * and to synchronize major metadata changes to slab cache structures. 64 * Also synchronizes memory hotplug callbacks. 65 * 66 * slab_lock 67 * 68 * The slab_lock is a wrapper around the page lock, thus it is a bit 69 * spinlock. 70 * 71 * The slab_lock is only used on arches that do not have the ability 72 * to do a cmpxchg_double. It only protects: 73 * 74 * A. slab->freelist -> List of free objects in a slab 75 * B. slab->inuse -> Number of objects in use 76 * C. slab->objects -> Number of objects in slab 77 * D. slab->frozen -> frozen state 78 * 79 * Frozen slabs 80 * 81 * If a slab is frozen then it is exempt from list management. It is 82 * the cpu slab which is actively allocated from by the processor that 83 * froze it and it is not on any list. The processor that froze the 84 * slab is the one who can perform list operations on the slab. Other 85 * processors may put objects onto the freelist but the processor that 86 * froze the slab is the only one that can retrieve the objects from the 87 * slab's freelist. 88 * 89 * CPU partial slabs 90 * 91 * The partially empty slabs cached on the CPU partial list are used 92 * for performance reasons, which speeds up the allocation process. 93 * These slabs are not frozen, but are also exempt from list management, 94 * by clearing the PG_workingset flag when moving out of the node 95 * partial list. Please see __slab_free() for more details. 96 * 97 * To sum up, the current scheme is: 98 * - node partial slab: PG_Workingset && !frozen 99 * - cpu partial slab: !PG_Workingset && !frozen 100 * - cpu slab: !PG_Workingset && frozen 101 * - full slab: !PG_Workingset && !frozen 102 * 103 * list_lock 104 * 105 * The list_lock protects the partial and full list on each node and 106 * the partial slab counter. If taken then no new slabs may be added or 107 * removed from the lists nor make the number of partial slabs be modified. 108 * (Note that the total number of slabs is an atomic value that may be 109 * modified without taking the list lock). 110 * 111 * The list_lock is a centralized lock and thus we avoid taking it as 112 * much as possible. As long as SLUB does not have to handle partial 113 * slabs, operations can continue without any centralized lock. F.e. 114 * allocating a long series of objects that fill up slabs does not require 115 * the list lock. 116 * 117 * For debug caches, all allocations are forced to go through a list_lock 118 * protected region to serialize against concurrent validation. 119 * 120 * cpu_slab->lock local lock 121 * 122 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 123 * except the stat counters. This is a percpu structure manipulated only by 124 * the local cpu, so the lock protects against being preempted or interrupted 125 * by an irq. Fast path operations rely on lockless operations instead. 126 * 127 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 128 * which means the lockless fastpath cannot be used as it might interfere with 129 * an in-progress slow path operations. In this case the local lock is always 130 * taken but it still utilizes the freelist for the common operations. 131 * 132 * lockless fastpaths 133 * 134 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 135 * are fully lockless when satisfied from the percpu slab (and when 136 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 137 * They also don't disable preemption or migration or irqs. They rely on 138 * the transaction id (tid) field to detect being preempted or moved to 139 * another cpu. 140 * 141 * irq, preemption, migration considerations 142 * 143 * Interrupts are disabled as part of list_lock or local_lock operations, or 144 * around the slab_lock operation, in order to make the slab allocator safe 145 * to use in the context of an irq. 146 * 147 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 148 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 149 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 150 * doesn't have to be revalidated in each section protected by the local lock. 151 * 152 * SLUB assigns one slab for allocation to each processor. 153 * Allocations only occur from these slabs called cpu slabs. 154 * 155 * Slabs with free elements are kept on a partial list and during regular 156 * operations no list for full slabs is used. If an object in a full slab is 157 * freed then the slab will show up again on the partial lists. 158 * We track full slabs for debugging purposes though because otherwise we 159 * cannot scan all objects. 160 * 161 * Slabs are freed when they become empty. Teardown and setup is 162 * minimal so we rely on the page allocators per cpu caches for 163 * fast frees and allocs. 164 * 165 * slab->frozen The slab is frozen and exempt from list processing. 166 * This means that the slab is dedicated to a purpose 167 * such as satisfying allocations for a specific 168 * processor. Objects may be freed in the slab while 169 * it is frozen but slab_free will then skip the usual 170 * list operations. It is up to the processor holding 171 * the slab to integrate the slab into the slab lists 172 * when the slab is no longer needed. 173 * 174 * One use of this flag is to mark slabs that are 175 * used for allocations. Then such a slab becomes a cpu 176 * slab. The cpu slab may be equipped with an additional 177 * freelist that allows lockless access to 178 * free objects in addition to the regular freelist 179 * that requires the slab lock. 180 * 181 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 182 * options set. This moves slab handling out of 183 * the fast path and disables lockless freelists. 184 */ 185 186 /* 187 * We could simply use migrate_disable()/enable() but as long as it's a 188 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 189 */ 190 #ifndef CONFIG_PREEMPT_RT 191 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 192 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 193 #define USE_LOCKLESS_FAST_PATH() (true) 194 #else 195 #define slub_get_cpu_ptr(var) \ 196 ({ \ 197 migrate_disable(); \ 198 this_cpu_ptr(var); \ 199 }) 200 #define slub_put_cpu_ptr(var) \ 201 do { \ 202 (void)(var); \ 203 migrate_enable(); \ 204 } while (0) 205 #define USE_LOCKLESS_FAST_PATH() (false) 206 #endif 207 208 #ifndef CONFIG_SLUB_TINY 209 #define __fastpath_inline __always_inline 210 #else 211 #define __fastpath_inline 212 #endif 213 214 #ifdef CONFIG_SLUB_DEBUG 215 #ifdef CONFIG_SLUB_DEBUG_ON 216 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 217 #else 218 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 219 #endif 220 #endif /* CONFIG_SLUB_DEBUG */ 221 222 #ifdef CONFIG_NUMA 223 static DEFINE_STATIC_KEY_FALSE(strict_numa); 224 #endif 225 226 /* Structure holding parameters for get_partial() call chain */ 227 struct partial_context { 228 gfp_t flags; 229 unsigned int orig_size; 230 void *object; 231 }; 232 233 static inline bool kmem_cache_debug(struct kmem_cache *s) 234 { 235 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 236 } 237 238 void *fixup_red_left(struct kmem_cache *s, void *p) 239 { 240 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 241 p += s->red_left_pad; 242 243 return p; 244 } 245 246 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 247 { 248 #ifdef CONFIG_SLUB_CPU_PARTIAL 249 return !kmem_cache_debug(s); 250 #else 251 return false; 252 #endif 253 } 254 255 /* 256 * Issues still to be resolved: 257 * 258 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 259 * 260 * - Variable sizing of the per node arrays 261 */ 262 263 /* Enable to log cmpxchg failures */ 264 #undef SLUB_DEBUG_CMPXCHG 265 266 #ifndef CONFIG_SLUB_TINY 267 /* 268 * Minimum number of partial slabs. These will be left on the partial 269 * lists even if they are empty. kmem_cache_shrink may reclaim them. 270 */ 271 #define MIN_PARTIAL 5 272 273 /* 274 * Maximum number of desirable partial slabs. 275 * The existence of more partial slabs makes kmem_cache_shrink 276 * sort the partial list by the number of objects in use. 277 */ 278 #define MAX_PARTIAL 10 279 #else 280 #define MIN_PARTIAL 0 281 #define MAX_PARTIAL 0 282 #endif 283 284 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 285 SLAB_POISON | SLAB_STORE_USER) 286 287 /* 288 * These debug flags cannot use CMPXCHG because there might be consistency 289 * issues when checking or reading debug information 290 */ 291 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 292 SLAB_TRACE) 293 294 295 /* 296 * Debugging flags that require metadata to be stored in the slab. These get 297 * disabled when slab_debug=O is used and a cache's min order increases with 298 * metadata. 299 */ 300 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 301 302 #define OO_SHIFT 16 303 #define OO_MASK ((1 << OO_SHIFT) - 1) 304 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 305 306 /* Internal SLUB flags */ 307 /* Poison object */ 308 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 309 /* Use cmpxchg_double */ 310 311 #ifdef system_has_freelist_aba 312 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 313 #else 314 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 315 #endif 316 317 /* 318 * Tracking user of a slab. 319 */ 320 #define TRACK_ADDRS_COUNT 16 321 struct track { 322 unsigned long addr; /* Called from address */ 323 #ifdef CONFIG_STACKDEPOT 324 depot_stack_handle_t handle; 325 #endif 326 int cpu; /* Was running on cpu */ 327 int pid; /* Pid context */ 328 unsigned long when; /* When did the operation occur */ 329 }; 330 331 enum track_item { TRACK_ALLOC, TRACK_FREE }; 332 333 #ifdef SLAB_SUPPORTS_SYSFS 334 static int sysfs_slab_add(struct kmem_cache *); 335 static int sysfs_slab_alias(struct kmem_cache *, const char *); 336 #else 337 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 338 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 339 { return 0; } 340 #endif 341 342 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 343 static void debugfs_slab_add(struct kmem_cache *); 344 #else 345 static inline void debugfs_slab_add(struct kmem_cache *s) { } 346 #endif 347 348 enum stat_item { 349 ALLOC_FASTPATH, /* Allocation from cpu slab */ 350 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 351 FREE_FASTPATH, /* Free to cpu slab */ 352 FREE_SLOWPATH, /* Freeing not to cpu slab */ 353 FREE_FROZEN, /* Freeing to frozen slab */ 354 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 355 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 356 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 357 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 358 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 359 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 360 FREE_SLAB, /* Slab freed to the page allocator */ 361 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 362 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 363 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 364 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 365 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 366 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 367 DEACTIVATE_BYPASS, /* Implicit deactivation */ 368 ORDER_FALLBACK, /* Number of times fallback was necessary */ 369 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 370 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 371 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 372 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 373 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 374 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 375 NR_SLUB_STAT_ITEMS 376 }; 377 378 #ifndef CONFIG_SLUB_TINY 379 /* 380 * When changing the layout, make sure freelist and tid are still compatible 381 * with this_cpu_cmpxchg_double() alignment requirements. 382 */ 383 struct kmem_cache_cpu { 384 union { 385 struct { 386 void **freelist; /* Pointer to next available object */ 387 unsigned long tid; /* Globally unique transaction id */ 388 }; 389 freelist_aba_t freelist_tid; 390 }; 391 struct slab *slab; /* The slab from which we are allocating */ 392 #ifdef CONFIG_SLUB_CPU_PARTIAL 393 struct slab *partial; /* Partially allocated slabs */ 394 #endif 395 local_lock_t lock; /* Protects the fields above */ 396 #ifdef CONFIG_SLUB_STATS 397 unsigned int stat[NR_SLUB_STAT_ITEMS]; 398 #endif 399 }; 400 #endif /* CONFIG_SLUB_TINY */ 401 402 static inline void stat(const struct kmem_cache *s, enum stat_item si) 403 { 404 #ifdef CONFIG_SLUB_STATS 405 /* 406 * The rmw is racy on a preemptible kernel but this is acceptable, so 407 * avoid this_cpu_add()'s irq-disable overhead. 408 */ 409 raw_cpu_inc(s->cpu_slab->stat[si]); 410 #endif 411 } 412 413 static inline 414 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 415 { 416 #ifdef CONFIG_SLUB_STATS 417 raw_cpu_add(s->cpu_slab->stat[si], v); 418 #endif 419 } 420 421 /* 422 * The slab lists for all objects. 423 */ 424 struct kmem_cache_node { 425 spinlock_t list_lock; 426 unsigned long nr_partial; 427 struct list_head partial; 428 #ifdef CONFIG_SLUB_DEBUG 429 atomic_long_t nr_slabs; 430 atomic_long_t total_objects; 431 struct list_head full; 432 #endif 433 }; 434 435 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 436 { 437 return s->node[node]; 438 } 439 440 /* 441 * Iterator over all nodes. The body will be executed for each node that has 442 * a kmem_cache_node structure allocated (which is true for all online nodes) 443 */ 444 #define for_each_kmem_cache_node(__s, __node, __n) \ 445 for (__node = 0; __node < nr_node_ids; __node++) \ 446 if ((__n = get_node(__s, __node))) 447 448 /* 449 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 450 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 451 * differ during memory hotplug/hotremove operations. 452 * Protected by slab_mutex. 453 */ 454 static nodemask_t slab_nodes; 455 456 #ifndef CONFIG_SLUB_TINY 457 /* 458 * Workqueue used for flush_cpu_slab(). 459 */ 460 static struct workqueue_struct *flushwq; 461 #endif 462 463 /******************************************************************** 464 * Core slab cache functions 465 *******************************************************************/ 466 467 /* 468 * Returns freelist pointer (ptr). With hardening, this is obfuscated 469 * with an XOR of the address where the pointer is held and a per-cache 470 * random number. 471 */ 472 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 473 void *ptr, unsigned long ptr_addr) 474 { 475 unsigned long encoded; 476 477 #ifdef CONFIG_SLAB_FREELIST_HARDENED 478 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 479 #else 480 encoded = (unsigned long)ptr; 481 #endif 482 return (freeptr_t){.v = encoded}; 483 } 484 485 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 486 freeptr_t ptr, unsigned long ptr_addr) 487 { 488 void *decoded; 489 490 #ifdef CONFIG_SLAB_FREELIST_HARDENED 491 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 492 #else 493 decoded = (void *)ptr.v; 494 #endif 495 return decoded; 496 } 497 498 static inline void *get_freepointer(struct kmem_cache *s, void *object) 499 { 500 unsigned long ptr_addr; 501 freeptr_t p; 502 503 object = kasan_reset_tag(object); 504 ptr_addr = (unsigned long)object + s->offset; 505 p = *(freeptr_t *)(ptr_addr); 506 return freelist_ptr_decode(s, p, ptr_addr); 507 } 508 509 #ifndef CONFIG_SLUB_TINY 510 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 511 { 512 prefetchw(object + s->offset); 513 } 514 #endif 515 516 /* 517 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 518 * pointer value in the case the current thread loses the race for the next 519 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 520 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 521 * KMSAN will still check all arguments of cmpxchg because of imperfect 522 * handling of inline assembly. 523 * To work around this problem, we apply __no_kmsan_checks to ensure that 524 * get_freepointer_safe() returns initialized memory. 525 */ 526 __no_kmsan_checks 527 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 528 { 529 unsigned long freepointer_addr; 530 freeptr_t p; 531 532 if (!debug_pagealloc_enabled_static()) 533 return get_freepointer(s, object); 534 535 object = kasan_reset_tag(object); 536 freepointer_addr = (unsigned long)object + s->offset; 537 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 538 return freelist_ptr_decode(s, p, freepointer_addr); 539 } 540 541 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 542 { 543 unsigned long freeptr_addr = (unsigned long)object + s->offset; 544 545 #ifdef CONFIG_SLAB_FREELIST_HARDENED 546 BUG_ON(object == fp); /* naive detection of double free or corruption */ 547 #endif 548 549 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 550 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 551 } 552 553 /* 554 * See comment in calculate_sizes(). 555 */ 556 static inline bool freeptr_outside_object(struct kmem_cache *s) 557 { 558 return s->offset >= s->inuse; 559 } 560 561 /* 562 * Return offset of the end of info block which is inuse + free pointer if 563 * not overlapping with object. 564 */ 565 static inline unsigned int get_info_end(struct kmem_cache *s) 566 { 567 if (freeptr_outside_object(s)) 568 return s->inuse + sizeof(void *); 569 else 570 return s->inuse; 571 } 572 573 /* Loop over all objects in a slab */ 574 #define for_each_object(__p, __s, __addr, __objects) \ 575 for (__p = fixup_red_left(__s, __addr); \ 576 __p < (__addr) + (__objects) * (__s)->size; \ 577 __p += (__s)->size) 578 579 static inline unsigned int order_objects(unsigned int order, unsigned int size) 580 { 581 return ((unsigned int)PAGE_SIZE << order) / size; 582 } 583 584 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 585 unsigned int size) 586 { 587 struct kmem_cache_order_objects x = { 588 (order << OO_SHIFT) + order_objects(order, size) 589 }; 590 591 return x; 592 } 593 594 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 595 { 596 return x.x >> OO_SHIFT; 597 } 598 599 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 600 { 601 return x.x & OO_MASK; 602 } 603 604 #ifdef CONFIG_SLUB_CPU_PARTIAL 605 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 606 { 607 unsigned int nr_slabs; 608 609 s->cpu_partial = nr_objects; 610 611 /* 612 * We take the number of objects but actually limit the number of 613 * slabs on the per cpu partial list, in order to limit excessive 614 * growth of the list. For simplicity we assume that the slabs will 615 * be half-full. 616 */ 617 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 618 s->cpu_partial_slabs = nr_slabs; 619 } 620 621 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 622 { 623 return s->cpu_partial_slabs; 624 } 625 #else 626 static inline void 627 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 628 { 629 } 630 631 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 632 { 633 return 0; 634 } 635 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 636 637 /* 638 * Per slab locking using the pagelock 639 */ 640 static __always_inline void slab_lock(struct slab *slab) 641 { 642 bit_spin_lock(PG_locked, &slab->__page_flags); 643 } 644 645 static __always_inline void slab_unlock(struct slab *slab) 646 { 647 bit_spin_unlock(PG_locked, &slab->__page_flags); 648 } 649 650 static inline bool 651 __update_freelist_fast(struct slab *slab, 652 void *freelist_old, unsigned long counters_old, 653 void *freelist_new, unsigned long counters_new) 654 { 655 #ifdef system_has_freelist_aba 656 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 657 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 658 659 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 660 #else 661 return false; 662 #endif 663 } 664 665 static inline bool 666 __update_freelist_slow(struct slab *slab, 667 void *freelist_old, unsigned long counters_old, 668 void *freelist_new, unsigned long counters_new) 669 { 670 bool ret = false; 671 672 slab_lock(slab); 673 if (slab->freelist == freelist_old && 674 slab->counters == counters_old) { 675 slab->freelist = freelist_new; 676 slab->counters = counters_new; 677 ret = true; 678 } 679 slab_unlock(slab); 680 681 return ret; 682 } 683 684 /* 685 * Interrupts must be disabled (for the fallback code to work right), typically 686 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 687 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 688 * allocation/ free operation in hardirq context. Therefore nothing can 689 * interrupt the operation. 690 */ 691 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 692 void *freelist_old, unsigned long counters_old, 693 void *freelist_new, unsigned long counters_new, 694 const char *n) 695 { 696 bool ret; 697 698 if (USE_LOCKLESS_FAST_PATH()) 699 lockdep_assert_irqs_disabled(); 700 701 if (s->flags & __CMPXCHG_DOUBLE) { 702 ret = __update_freelist_fast(slab, freelist_old, counters_old, 703 freelist_new, counters_new); 704 } else { 705 ret = __update_freelist_slow(slab, freelist_old, counters_old, 706 freelist_new, counters_new); 707 } 708 if (likely(ret)) 709 return true; 710 711 cpu_relax(); 712 stat(s, CMPXCHG_DOUBLE_FAIL); 713 714 #ifdef SLUB_DEBUG_CMPXCHG 715 pr_info("%s %s: cmpxchg double redo ", n, s->name); 716 #endif 717 718 return false; 719 } 720 721 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 722 void *freelist_old, unsigned long counters_old, 723 void *freelist_new, unsigned long counters_new, 724 const char *n) 725 { 726 bool ret; 727 728 if (s->flags & __CMPXCHG_DOUBLE) { 729 ret = __update_freelist_fast(slab, freelist_old, counters_old, 730 freelist_new, counters_new); 731 } else { 732 unsigned long flags; 733 734 local_irq_save(flags); 735 ret = __update_freelist_slow(slab, freelist_old, counters_old, 736 freelist_new, counters_new); 737 local_irq_restore(flags); 738 } 739 if (likely(ret)) 740 return true; 741 742 cpu_relax(); 743 stat(s, CMPXCHG_DOUBLE_FAIL); 744 745 #ifdef SLUB_DEBUG_CMPXCHG 746 pr_info("%s %s: cmpxchg double redo ", n, s->name); 747 #endif 748 749 return false; 750 } 751 752 /* 753 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 754 * family will round up the real request size to these fixed ones, so 755 * there could be an extra area than what is requested. Save the original 756 * request size in the meta data area, for better debug and sanity check. 757 */ 758 static inline void set_orig_size(struct kmem_cache *s, 759 void *object, unsigned int orig_size) 760 { 761 void *p = kasan_reset_tag(object); 762 763 if (!slub_debug_orig_size(s)) 764 return; 765 766 p += get_info_end(s); 767 p += sizeof(struct track) * 2; 768 769 *(unsigned int *)p = orig_size; 770 } 771 772 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 773 { 774 void *p = kasan_reset_tag(object); 775 776 if (is_kfence_address(object)) 777 return kfence_ksize(object); 778 779 if (!slub_debug_orig_size(s)) 780 return s->object_size; 781 782 p += get_info_end(s); 783 p += sizeof(struct track) * 2; 784 785 return *(unsigned int *)p; 786 } 787 788 #ifdef CONFIG_SLUB_DEBUG 789 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 790 static DEFINE_SPINLOCK(object_map_lock); 791 792 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 793 struct slab *slab) 794 { 795 void *addr = slab_address(slab); 796 void *p; 797 798 bitmap_zero(obj_map, slab->objects); 799 800 for (p = slab->freelist; p; p = get_freepointer(s, p)) 801 set_bit(__obj_to_index(s, addr, p), obj_map); 802 } 803 804 #if IS_ENABLED(CONFIG_KUNIT) 805 static bool slab_add_kunit_errors(void) 806 { 807 struct kunit_resource *resource; 808 809 if (!kunit_get_current_test()) 810 return false; 811 812 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 813 if (!resource) 814 return false; 815 816 (*(int *)resource->data)++; 817 kunit_put_resource(resource); 818 return true; 819 } 820 821 bool slab_in_kunit_test(void) 822 { 823 struct kunit_resource *resource; 824 825 if (!kunit_get_current_test()) 826 return false; 827 828 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 829 if (!resource) 830 return false; 831 832 kunit_put_resource(resource); 833 return true; 834 } 835 #else 836 static inline bool slab_add_kunit_errors(void) { return false; } 837 #endif 838 839 static inline unsigned int size_from_object(struct kmem_cache *s) 840 { 841 if (s->flags & SLAB_RED_ZONE) 842 return s->size - s->red_left_pad; 843 844 return s->size; 845 } 846 847 static inline void *restore_red_left(struct kmem_cache *s, void *p) 848 { 849 if (s->flags & SLAB_RED_ZONE) 850 p -= s->red_left_pad; 851 852 return p; 853 } 854 855 /* 856 * Debug settings: 857 */ 858 #if defined(CONFIG_SLUB_DEBUG_ON) 859 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 860 #else 861 static slab_flags_t slub_debug; 862 #endif 863 864 static char *slub_debug_string; 865 static int disable_higher_order_debug; 866 867 /* 868 * slub is about to manipulate internal object metadata. This memory lies 869 * outside the range of the allocated object, so accessing it would normally 870 * be reported by kasan as a bounds error. metadata_access_enable() is used 871 * to tell kasan that these accesses are OK. 872 */ 873 static inline void metadata_access_enable(void) 874 { 875 kasan_disable_current(); 876 kmsan_disable_current(); 877 } 878 879 static inline void metadata_access_disable(void) 880 { 881 kmsan_enable_current(); 882 kasan_enable_current(); 883 } 884 885 /* 886 * Object debugging 887 */ 888 889 /* Verify that a pointer has an address that is valid within a slab page */ 890 static inline int check_valid_pointer(struct kmem_cache *s, 891 struct slab *slab, void *object) 892 { 893 void *base; 894 895 if (!object) 896 return 1; 897 898 base = slab_address(slab); 899 object = kasan_reset_tag(object); 900 object = restore_red_left(s, object); 901 if (object < base || object >= base + slab->objects * s->size || 902 (object - base) % s->size) { 903 return 0; 904 } 905 906 return 1; 907 } 908 909 static void print_section(char *level, char *text, u8 *addr, 910 unsigned int length) 911 { 912 metadata_access_enable(); 913 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 914 16, 1, kasan_reset_tag((void *)addr), length, 1); 915 metadata_access_disable(); 916 } 917 918 static struct track *get_track(struct kmem_cache *s, void *object, 919 enum track_item alloc) 920 { 921 struct track *p; 922 923 p = object + get_info_end(s); 924 925 return kasan_reset_tag(p + alloc); 926 } 927 928 #ifdef CONFIG_STACKDEPOT 929 static noinline depot_stack_handle_t set_track_prepare(void) 930 { 931 depot_stack_handle_t handle; 932 unsigned long entries[TRACK_ADDRS_COUNT]; 933 unsigned int nr_entries; 934 935 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 936 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 937 938 return handle; 939 } 940 #else 941 static inline depot_stack_handle_t set_track_prepare(void) 942 { 943 return 0; 944 } 945 #endif 946 947 static void set_track_update(struct kmem_cache *s, void *object, 948 enum track_item alloc, unsigned long addr, 949 depot_stack_handle_t handle) 950 { 951 struct track *p = get_track(s, object, alloc); 952 953 #ifdef CONFIG_STACKDEPOT 954 p->handle = handle; 955 #endif 956 p->addr = addr; 957 p->cpu = smp_processor_id(); 958 p->pid = current->pid; 959 p->when = jiffies; 960 } 961 962 static __always_inline void set_track(struct kmem_cache *s, void *object, 963 enum track_item alloc, unsigned long addr) 964 { 965 depot_stack_handle_t handle = set_track_prepare(); 966 967 set_track_update(s, object, alloc, addr, handle); 968 } 969 970 static void init_tracking(struct kmem_cache *s, void *object) 971 { 972 struct track *p; 973 974 if (!(s->flags & SLAB_STORE_USER)) 975 return; 976 977 p = get_track(s, object, TRACK_ALLOC); 978 memset(p, 0, 2*sizeof(struct track)); 979 } 980 981 static void print_track(const char *s, struct track *t, unsigned long pr_time) 982 { 983 depot_stack_handle_t handle __maybe_unused; 984 985 if (!t->addr) 986 return; 987 988 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 989 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 990 #ifdef CONFIG_STACKDEPOT 991 handle = READ_ONCE(t->handle); 992 if (handle) 993 stack_depot_print(handle); 994 else 995 pr_err("object allocation/free stack trace missing\n"); 996 #endif 997 } 998 999 void print_tracking(struct kmem_cache *s, void *object) 1000 { 1001 unsigned long pr_time = jiffies; 1002 if (!(s->flags & SLAB_STORE_USER)) 1003 return; 1004 1005 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 1006 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 1007 } 1008 1009 static void print_slab_info(const struct slab *slab) 1010 { 1011 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 1012 slab, slab->objects, slab->inuse, slab->freelist, 1013 &slab->__page_flags); 1014 } 1015 1016 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1017 { 1018 set_orig_size(s, (void *)object, s->object_size); 1019 } 1020 1021 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp) 1022 { 1023 struct va_format vaf; 1024 va_list args; 1025 1026 va_copy(args, argsp); 1027 vaf.fmt = fmt; 1028 vaf.va = &args; 1029 pr_err("=============================================================================\n"); 1030 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf); 1031 pr_err("-----------------------------------------------------------------------------\n\n"); 1032 va_end(args); 1033 } 1034 1035 static void slab_bug(struct kmem_cache *s, const char *fmt, ...) 1036 { 1037 va_list args; 1038 1039 va_start(args, fmt); 1040 __slab_bug(s, fmt, args); 1041 va_end(args); 1042 } 1043 1044 __printf(2, 3) 1045 static void slab_fix(struct kmem_cache *s, const char *fmt, ...) 1046 { 1047 struct va_format vaf; 1048 va_list args; 1049 1050 if (slab_add_kunit_errors()) 1051 return; 1052 1053 va_start(args, fmt); 1054 vaf.fmt = fmt; 1055 vaf.va = &args; 1056 pr_err("FIX %s: %pV\n", s->name, &vaf); 1057 va_end(args); 1058 } 1059 1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1061 { 1062 unsigned int off; /* Offset of last byte */ 1063 u8 *addr = slab_address(slab); 1064 1065 print_tracking(s, p); 1066 1067 print_slab_info(slab); 1068 1069 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1070 p, p - addr, get_freepointer(s, p)); 1071 1072 if (s->flags & SLAB_RED_ZONE) 1073 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1074 s->red_left_pad); 1075 else if (p > addr + 16) 1076 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1077 1078 print_section(KERN_ERR, "Object ", p, 1079 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1080 if (s->flags & SLAB_RED_ZONE) 1081 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1082 s->inuse - s->object_size); 1083 1084 off = get_info_end(s); 1085 1086 if (s->flags & SLAB_STORE_USER) 1087 off += 2 * sizeof(struct track); 1088 1089 if (slub_debug_orig_size(s)) 1090 off += sizeof(unsigned int); 1091 1092 off += kasan_metadata_size(s, false); 1093 1094 if (off != size_from_object(s)) 1095 /* Beginning of the filler is the free pointer */ 1096 print_section(KERN_ERR, "Padding ", p + off, 1097 size_from_object(s) - off); 1098 } 1099 1100 static void object_err(struct kmem_cache *s, struct slab *slab, 1101 u8 *object, const char *reason) 1102 { 1103 if (slab_add_kunit_errors()) 1104 return; 1105 1106 slab_bug(s, reason); 1107 print_trailer(s, slab, object); 1108 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1109 1110 WARN_ON(1); 1111 } 1112 1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1114 void **freelist, void *nextfree) 1115 { 1116 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1117 !check_valid_pointer(s, slab, nextfree) && freelist) { 1118 object_err(s, slab, *freelist, "Freechain corrupt"); 1119 *freelist = NULL; 1120 slab_fix(s, "Isolate corrupted freechain"); 1121 return true; 1122 } 1123 1124 return false; 1125 } 1126 1127 static void __slab_err(struct slab *slab) 1128 { 1129 if (slab_in_kunit_test()) 1130 return; 1131 1132 print_slab_info(slab); 1133 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1134 1135 WARN_ON(1); 1136 } 1137 1138 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1139 const char *fmt, ...) 1140 { 1141 va_list args; 1142 1143 if (slab_add_kunit_errors()) 1144 return; 1145 1146 va_start(args, fmt); 1147 __slab_bug(s, fmt, args); 1148 va_end(args); 1149 1150 __slab_err(slab); 1151 } 1152 1153 static void init_object(struct kmem_cache *s, void *object, u8 val) 1154 { 1155 u8 *p = kasan_reset_tag(object); 1156 unsigned int poison_size = s->object_size; 1157 1158 if (s->flags & SLAB_RED_ZONE) { 1159 /* 1160 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1161 * the shadow makes it possible to distinguish uninit-value 1162 * from use-after-free. 1163 */ 1164 memset_no_sanitize_memory(p - s->red_left_pad, val, 1165 s->red_left_pad); 1166 1167 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1168 /* 1169 * Redzone the extra allocated space by kmalloc than 1170 * requested, and the poison size will be limited to 1171 * the original request size accordingly. 1172 */ 1173 poison_size = get_orig_size(s, object); 1174 } 1175 } 1176 1177 if (s->flags & __OBJECT_POISON) { 1178 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1179 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1180 } 1181 1182 if (s->flags & SLAB_RED_ZONE) 1183 memset_no_sanitize_memory(p + poison_size, val, 1184 s->inuse - poison_size); 1185 } 1186 1187 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data, 1188 void *from, void *to) 1189 { 1190 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1191 memset(from, data, to - from); 1192 } 1193 1194 #ifdef CONFIG_KMSAN 1195 #define pad_check_attributes noinline __no_kmsan_checks 1196 #else 1197 #define pad_check_attributes 1198 #endif 1199 1200 static pad_check_attributes int 1201 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1202 u8 *object, const char *what, u8 *start, unsigned int value, 1203 unsigned int bytes, bool slab_obj_print) 1204 { 1205 u8 *fault; 1206 u8 *end; 1207 u8 *addr = slab_address(slab); 1208 1209 metadata_access_enable(); 1210 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1211 metadata_access_disable(); 1212 if (!fault) 1213 return 1; 1214 1215 end = start + bytes; 1216 while (end > fault && end[-1] == value) 1217 end--; 1218 1219 if (slab_add_kunit_errors()) 1220 goto skip_bug_print; 1221 1222 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1223 what, fault, end - 1, fault - addr, fault[0], value); 1224 1225 if (slab_obj_print) 1226 object_err(s, slab, object, "Object corrupt"); 1227 1228 skip_bug_print: 1229 restore_bytes(s, what, value, fault, end); 1230 return 0; 1231 } 1232 1233 /* 1234 * Object layout: 1235 * 1236 * object address 1237 * Bytes of the object to be managed. 1238 * If the freepointer may overlay the object then the free 1239 * pointer is at the middle of the object. 1240 * 1241 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1242 * 0xa5 (POISON_END) 1243 * 1244 * object + s->object_size 1245 * Padding to reach word boundary. This is also used for Redzoning. 1246 * Padding is extended by another word if Redzoning is enabled and 1247 * object_size == inuse. 1248 * 1249 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1250 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1251 * 1252 * object + s->inuse 1253 * Meta data starts here. 1254 * 1255 * A. Free pointer (if we cannot overwrite object on free) 1256 * B. Tracking data for SLAB_STORE_USER 1257 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1258 * D. Padding to reach required alignment boundary or at minimum 1259 * one word if debugging is on to be able to detect writes 1260 * before the word boundary. 1261 * 1262 * Padding is done using 0x5a (POISON_INUSE) 1263 * 1264 * object + s->size 1265 * Nothing is used beyond s->size. 1266 * 1267 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1268 * ignored. And therefore no slab options that rely on these boundaries 1269 * may be used with merged slabcaches. 1270 */ 1271 1272 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1273 { 1274 unsigned long off = get_info_end(s); /* The end of info */ 1275 1276 if (s->flags & SLAB_STORE_USER) { 1277 /* We also have user information there */ 1278 off += 2 * sizeof(struct track); 1279 1280 if (s->flags & SLAB_KMALLOC) 1281 off += sizeof(unsigned int); 1282 } 1283 1284 off += kasan_metadata_size(s, false); 1285 1286 if (size_from_object(s) == off) 1287 return 1; 1288 1289 return check_bytes_and_report(s, slab, p, "Object padding", 1290 p + off, POISON_INUSE, size_from_object(s) - off, true); 1291 } 1292 1293 /* Check the pad bytes at the end of a slab page */ 1294 static pad_check_attributes void 1295 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1296 { 1297 u8 *start; 1298 u8 *fault; 1299 u8 *end; 1300 u8 *pad; 1301 int length; 1302 int remainder; 1303 1304 if (!(s->flags & SLAB_POISON)) 1305 return; 1306 1307 start = slab_address(slab); 1308 length = slab_size(slab); 1309 end = start + length; 1310 remainder = length % s->size; 1311 if (!remainder) 1312 return; 1313 1314 pad = end - remainder; 1315 metadata_access_enable(); 1316 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1317 metadata_access_disable(); 1318 if (!fault) 1319 return; 1320 while (end > fault && end[-1] == POISON_INUSE) 1321 end--; 1322 1323 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1324 fault, end - 1, fault - start); 1325 print_section(KERN_ERR, "Padding ", pad, remainder); 1326 __slab_err(slab); 1327 1328 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1329 } 1330 1331 static int check_object(struct kmem_cache *s, struct slab *slab, 1332 void *object, u8 val) 1333 { 1334 u8 *p = object; 1335 u8 *endobject = object + s->object_size; 1336 unsigned int orig_size, kasan_meta_size; 1337 int ret = 1; 1338 1339 if (s->flags & SLAB_RED_ZONE) { 1340 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1341 object - s->red_left_pad, val, s->red_left_pad, ret)) 1342 ret = 0; 1343 1344 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1345 endobject, val, s->inuse - s->object_size, ret)) 1346 ret = 0; 1347 1348 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1349 orig_size = get_orig_size(s, object); 1350 1351 if (s->object_size > orig_size && 1352 !check_bytes_and_report(s, slab, object, 1353 "kmalloc Redzone", p + orig_size, 1354 val, s->object_size - orig_size, ret)) { 1355 ret = 0; 1356 } 1357 } 1358 } else { 1359 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1360 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1361 endobject, POISON_INUSE, 1362 s->inuse - s->object_size, ret)) 1363 ret = 0; 1364 } 1365 } 1366 1367 if (s->flags & SLAB_POISON) { 1368 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1369 /* 1370 * KASAN can save its free meta data inside of the 1371 * object at offset 0. Thus, skip checking the part of 1372 * the redzone that overlaps with the meta data. 1373 */ 1374 kasan_meta_size = kasan_metadata_size(s, true); 1375 if (kasan_meta_size < s->object_size - 1 && 1376 !check_bytes_and_report(s, slab, p, "Poison", 1377 p + kasan_meta_size, POISON_FREE, 1378 s->object_size - kasan_meta_size - 1, ret)) 1379 ret = 0; 1380 if (kasan_meta_size < s->object_size && 1381 !check_bytes_and_report(s, slab, p, "End Poison", 1382 p + s->object_size - 1, POISON_END, 1, ret)) 1383 ret = 0; 1384 } 1385 /* 1386 * check_pad_bytes cleans up on its own. 1387 */ 1388 if (!check_pad_bytes(s, slab, p)) 1389 ret = 0; 1390 } 1391 1392 /* 1393 * Cannot check freepointer while object is allocated if 1394 * object and freepointer overlap. 1395 */ 1396 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1397 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1398 object_err(s, slab, p, "Freepointer corrupt"); 1399 /* 1400 * No choice but to zap it and thus lose the remainder 1401 * of the free objects in this slab. May cause 1402 * another error because the object count is now wrong. 1403 */ 1404 set_freepointer(s, p, NULL); 1405 ret = 0; 1406 } 1407 1408 return ret; 1409 } 1410 1411 static int check_slab(struct kmem_cache *s, struct slab *slab) 1412 { 1413 int maxobj; 1414 1415 if (!folio_test_slab(slab_folio(slab))) { 1416 slab_err(s, slab, "Not a valid slab page"); 1417 return 0; 1418 } 1419 1420 maxobj = order_objects(slab_order(slab), s->size); 1421 if (slab->objects > maxobj) { 1422 slab_err(s, slab, "objects %u > max %u", 1423 slab->objects, maxobj); 1424 return 0; 1425 } 1426 if (slab->inuse > slab->objects) { 1427 slab_err(s, slab, "inuse %u > max %u", 1428 slab->inuse, slab->objects); 1429 return 0; 1430 } 1431 if (slab->frozen) { 1432 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1433 return 0; 1434 } 1435 1436 /* Slab_pad_check fixes things up after itself */ 1437 slab_pad_check(s, slab); 1438 return 1; 1439 } 1440 1441 /* 1442 * Determine if a certain object in a slab is on the freelist. Must hold the 1443 * slab lock to guarantee that the chains are in a consistent state. 1444 */ 1445 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1446 { 1447 int nr = 0; 1448 void *fp; 1449 void *object = NULL; 1450 int max_objects; 1451 1452 fp = slab->freelist; 1453 while (fp && nr <= slab->objects) { 1454 if (fp == search) 1455 return true; 1456 if (!check_valid_pointer(s, slab, fp)) { 1457 if (object) { 1458 object_err(s, slab, object, 1459 "Freechain corrupt"); 1460 set_freepointer(s, object, NULL); 1461 break; 1462 } else { 1463 slab_err(s, slab, "Freepointer corrupt"); 1464 slab->freelist = NULL; 1465 slab->inuse = slab->objects; 1466 slab_fix(s, "Freelist cleared"); 1467 return false; 1468 } 1469 } 1470 object = fp; 1471 fp = get_freepointer(s, object); 1472 nr++; 1473 } 1474 1475 if (nr > slab->objects) { 1476 slab_err(s, slab, "Freelist cycle detected"); 1477 slab->freelist = NULL; 1478 slab->inuse = slab->objects; 1479 slab_fix(s, "Freelist cleared"); 1480 return false; 1481 } 1482 1483 max_objects = order_objects(slab_order(slab), s->size); 1484 if (max_objects > MAX_OBJS_PER_PAGE) 1485 max_objects = MAX_OBJS_PER_PAGE; 1486 1487 if (slab->objects != max_objects) { 1488 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1489 slab->objects, max_objects); 1490 slab->objects = max_objects; 1491 slab_fix(s, "Number of objects adjusted"); 1492 } 1493 if (slab->inuse != slab->objects - nr) { 1494 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1495 slab->inuse, slab->objects - nr); 1496 slab->inuse = slab->objects - nr; 1497 slab_fix(s, "Object count adjusted"); 1498 } 1499 return search == NULL; 1500 } 1501 1502 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1503 int alloc) 1504 { 1505 if (s->flags & SLAB_TRACE) { 1506 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1507 s->name, 1508 alloc ? "alloc" : "free", 1509 object, slab->inuse, 1510 slab->freelist); 1511 1512 if (!alloc) 1513 print_section(KERN_INFO, "Object ", (void *)object, 1514 s->object_size); 1515 1516 dump_stack(); 1517 } 1518 } 1519 1520 /* 1521 * Tracking of fully allocated slabs for debugging purposes. 1522 */ 1523 static void add_full(struct kmem_cache *s, 1524 struct kmem_cache_node *n, struct slab *slab) 1525 { 1526 if (!(s->flags & SLAB_STORE_USER)) 1527 return; 1528 1529 lockdep_assert_held(&n->list_lock); 1530 list_add(&slab->slab_list, &n->full); 1531 } 1532 1533 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1534 { 1535 if (!(s->flags & SLAB_STORE_USER)) 1536 return; 1537 1538 lockdep_assert_held(&n->list_lock); 1539 list_del(&slab->slab_list); 1540 } 1541 1542 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1543 { 1544 return atomic_long_read(&n->nr_slabs); 1545 } 1546 1547 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1548 { 1549 struct kmem_cache_node *n = get_node(s, node); 1550 1551 atomic_long_inc(&n->nr_slabs); 1552 atomic_long_add(objects, &n->total_objects); 1553 } 1554 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1555 { 1556 struct kmem_cache_node *n = get_node(s, node); 1557 1558 atomic_long_dec(&n->nr_slabs); 1559 atomic_long_sub(objects, &n->total_objects); 1560 } 1561 1562 /* Object debug checks for alloc/free paths */ 1563 static void setup_object_debug(struct kmem_cache *s, void *object) 1564 { 1565 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1566 return; 1567 1568 init_object(s, object, SLUB_RED_INACTIVE); 1569 init_tracking(s, object); 1570 } 1571 1572 static 1573 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1574 { 1575 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1576 return; 1577 1578 metadata_access_enable(); 1579 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1580 metadata_access_disable(); 1581 } 1582 1583 static inline int alloc_consistency_checks(struct kmem_cache *s, 1584 struct slab *slab, void *object) 1585 { 1586 if (!check_slab(s, slab)) 1587 return 0; 1588 1589 if (!check_valid_pointer(s, slab, object)) { 1590 object_err(s, slab, object, "Freelist Pointer check fails"); 1591 return 0; 1592 } 1593 1594 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1595 return 0; 1596 1597 return 1; 1598 } 1599 1600 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1601 struct slab *slab, void *object, int orig_size) 1602 { 1603 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1604 if (!alloc_consistency_checks(s, slab, object)) 1605 goto bad; 1606 } 1607 1608 /* Success. Perform special debug activities for allocs */ 1609 trace(s, slab, object, 1); 1610 set_orig_size(s, object, orig_size); 1611 init_object(s, object, SLUB_RED_ACTIVE); 1612 return true; 1613 1614 bad: 1615 if (folio_test_slab(slab_folio(slab))) { 1616 /* 1617 * If this is a slab page then lets do the best we can 1618 * to avoid issues in the future. Marking all objects 1619 * as used avoids touching the remaining objects. 1620 */ 1621 slab_fix(s, "Marking all objects used"); 1622 slab->inuse = slab->objects; 1623 slab->freelist = NULL; 1624 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1625 } 1626 return false; 1627 } 1628 1629 static inline int free_consistency_checks(struct kmem_cache *s, 1630 struct slab *slab, void *object, unsigned long addr) 1631 { 1632 if (!check_valid_pointer(s, slab, object)) { 1633 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1634 return 0; 1635 } 1636 1637 if (on_freelist(s, slab, object)) { 1638 object_err(s, slab, object, "Object already free"); 1639 return 0; 1640 } 1641 1642 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1643 return 0; 1644 1645 if (unlikely(s != slab->slab_cache)) { 1646 if (!folio_test_slab(slab_folio(slab))) { 1647 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1648 object); 1649 } else if (!slab->slab_cache) { 1650 slab_err(NULL, slab, "No slab cache for object 0x%p", 1651 object); 1652 } else { 1653 object_err(s, slab, object, 1654 "page slab pointer corrupt."); 1655 } 1656 return 0; 1657 } 1658 return 1; 1659 } 1660 1661 /* 1662 * Parse a block of slab_debug options. Blocks are delimited by ';' 1663 * 1664 * @str: start of block 1665 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1666 * @slabs: return start of list of slabs, or NULL when there's no list 1667 * @init: assume this is initial parsing and not per-kmem-create parsing 1668 * 1669 * returns the start of next block if there's any, or NULL 1670 */ 1671 static char * 1672 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1673 { 1674 bool higher_order_disable = false; 1675 1676 /* Skip any completely empty blocks */ 1677 while (*str && *str == ';') 1678 str++; 1679 1680 if (*str == ',') { 1681 /* 1682 * No options but restriction on slabs. This means full 1683 * debugging for slabs matching a pattern. 1684 */ 1685 *flags = DEBUG_DEFAULT_FLAGS; 1686 goto check_slabs; 1687 } 1688 *flags = 0; 1689 1690 /* Determine which debug features should be switched on */ 1691 for (; *str && *str != ',' && *str != ';'; str++) { 1692 switch (tolower(*str)) { 1693 case '-': 1694 *flags = 0; 1695 break; 1696 case 'f': 1697 *flags |= SLAB_CONSISTENCY_CHECKS; 1698 break; 1699 case 'z': 1700 *flags |= SLAB_RED_ZONE; 1701 break; 1702 case 'p': 1703 *flags |= SLAB_POISON; 1704 break; 1705 case 'u': 1706 *flags |= SLAB_STORE_USER; 1707 break; 1708 case 't': 1709 *flags |= SLAB_TRACE; 1710 break; 1711 case 'a': 1712 *flags |= SLAB_FAILSLAB; 1713 break; 1714 case 'o': 1715 /* 1716 * Avoid enabling debugging on caches if its minimum 1717 * order would increase as a result. 1718 */ 1719 higher_order_disable = true; 1720 break; 1721 default: 1722 if (init) 1723 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1724 } 1725 } 1726 check_slabs: 1727 if (*str == ',') 1728 *slabs = ++str; 1729 else 1730 *slabs = NULL; 1731 1732 /* Skip over the slab list */ 1733 while (*str && *str != ';') 1734 str++; 1735 1736 /* Skip any completely empty blocks */ 1737 while (*str && *str == ';') 1738 str++; 1739 1740 if (init && higher_order_disable) 1741 disable_higher_order_debug = 1; 1742 1743 if (*str) 1744 return str; 1745 else 1746 return NULL; 1747 } 1748 1749 static int __init setup_slub_debug(char *str) 1750 { 1751 slab_flags_t flags; 1752 slab_flags_t global_flags; 1753 char *saved_str; 1754 char *slab_list; 1755 bool global_slub_debug_changed = false; 1756 bool slab_list_specified = false; 1757 1758 global_flags = DEBUG_DEFAULT_FLAGS; 1759 if (*str++ != '=' || !*str) 1760 /* 1761 * No options specified. Switch on full debugging. 1762 */ 1763 goto out; 1764 1765 saved_str = str; 1766 while (str) { 1767 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1768 1769 if (!slab_list) { 1770 global_flags = flags; 1771 global_slub_debug_changed = true; 1772 } else { 1773 slab_list_specified = true; 1774 if (flags & SLAB_STORE_USER) 1775 stack_depot_request_early_init(); 1776 } 1777 } 1778 1779 /* 1780 * For backwards compatibility, a single list of flags with list of 1781 * slabs means debugging is only changed for those slabs, so the global 1782 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1783 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1784 * long as there is no option specifying flags without a slab list. 1785 */ 1786 if (slab_list_specified) { 1787 if (!global_slub_debug_changed) 1788 global_flags = slub_debug; 1789 slub_debug_string = saved_str; 1790 } 1791 out: 1792 slub_debug = global_flags; 1793 if (slub_debug & SLAB_STORE_USER) 1794 stack_depot_request_early_init(); 1795 if (slub_debug != 0 || slub_debug_string) 1796 static_branch_enable(&slub_debug_enabled); 1797 else 1798 static_branch_disable(&slub_debug_enabled); 1799 if ((static_branch_unlikely(&init_on_alloc) || 1800 static_branch_unlikely(&init_on_free)) && 1801 (slub_debug & SLAB_POISON)) 1802 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1803 return 1; 1804 } 1805 1806 __setup("slab_debug", setup_slub_debug); 1807 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1808 1809 /* 1810 * kmem_cache_flags - apply debugging options to the cache 1811 * @flags: flags to set 1812 * @name: name of the cache 1813 * 1814 * Debug option(s) are applied to @flags. In addition to the debug 1815 * option(s), if a slab name (or multiple) is specified i.e. 1816 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1817 * then only the select slabs will receive the debug option(s). 1818 */ 1819 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1820 { 1821 char *iter; 1822 size_t len; 1823 char *next_block; 1824 slab_flags_t block_flags; 1825 slab_flags_t slub_debug_local = slub_debug; 1826 1827 if (flags & SLAB_NO_USER_FLAGS) 1828 return flags; 1829 1830 /* 1831 * If the slab cache is for debugging (e.g. kmemleak) then 1832 * don't store user (stack trace) information by default, 1833 * but let the user enable it via the command line below. 1834 */ 1835 if (flags & SLAB_NOLEAKTRACE) 1836 slub_debug_local &= ~SLAB_STORE_USER; 1837 1838 len = strlen(name); 1839 next_block = slub_debug_string; 1840 /* Go through all blocks of debug options, see if any matches our slab's name */ 1841 while (next_block) { 1842 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1843 if (!iter) 1844 continue; 1845 /* Found a block that has a slab list, search it */ 1846 while (*iter) { 1847 char *end, *glob; 1848 size_t cmplen; 1849 1850 end = strchrnul(iter, ','); 1851 if (next_block && next_block < end) 1852 end = next_block - 1; 1853 1854 glob = strnchr(iter, end - iter, '*'); 1855 if (glob) 1856 cmplen = glob - iter; 1857 else 1858 cmplen = max_t(size_t, len, (end - iter)); 1859 1860 if (!strncmp(name, iter, cmplen)) { 1861 flags |= block_flags; 1862 return flags; 1863 } 1864 1865 if (!*end || *end == ';') 1866 break; 1867 iter = end + 1; 1868 } 1869 } 1870 1871 return flags | slub_debug_local; 1872 } 1873 #else /* !CONFIG_SLUB_DEBUG */ 1874 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1875 static inline 1876 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1877 1878 static inline bool alloc_debug_processing(struct kmem_cache *s, 1879 struct slab *slab, void *object, int orig_size) { return true; } 1880 1881 static inline bool free_debug_processing(struct kmem_cache *s, 1882 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1883 unsigned long addr, depot_stack_handle_t handle) { return true; } 1884 1885 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1886 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1887 void *object, u8 val) { return 1; } 1888 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1889 static inline void set_track(struct kmem_cache *s, void *object, 1890 enum track_item alloc, unsigned long addr) {} 1891 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1892 struct slab *slab) {} 1893 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1894 struct slab *slab) {} 1895 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1896 { 1897 return flags; 1898 } 1899 #define slub_debug 0 1900 1901 #define disable_higher_order_debug 0 1902 1903 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1904 { return 0; } 1905 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1906 int objects) {} 1907 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1908 int objects) {} 1909 #ifndef CONFIG_SLUB_TINY 1910 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1911 void **freelist, void *nextfree) 1912 { 1913 return false; 1914 } 1915 #endif 1916 #endif /* CONFIG_SLUB_DEBUG */ 1917 1918 #ifdef CONFIG_SLAB_OBJ_EXT 1919 1920 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1921 1922 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1923 { 1924 struct slabobj_ext *slab_exts; 1925 struct slab *obj_exts_slab; 1926 1927 obj_exts_slab = virt_to_slab(obj_exts); 1928 slab_exts = slab_obj_exts(obj_exts_slab); 1929 if (slab_exts) { 1930 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1931 obj_exts_slab, obj_exts); 1932 /* codetag should be NULL */ 1933 WARN_ON(slab_exts[offs].ref.ct); 1934 set_codetag_empty(&slab_exts[offs].ref); 1935 } 1936 } 1937 1938 static inline void mark_failed_objexts_alloc(struct slab *slab) 1939 { 1940 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1941 } 1942 1943 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1944 struct slabobj_ext *vec, unsigned int objects) 1945 { 1946 /* 1947 * If vector previously failed to allocate then we have live 1948 * objects with no tag reference. Mark all references in this 1949 * vector as empty to avoid warnings later on. 1950 */ 1951 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1952 unsigned int i; 1953 1954 for (i = 0; i < objects; i++) 1955 set_codetag_empty(&vec[i].ref); 1956 } 1957 } 1958 1959 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1960 1961 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1962 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1963 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1964 struct slabobj_ext *vec, unsigned int objects) {} 1965 1966 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1967 1968 /* 1969 * The allocated objcg pointers array is not accounted directly. 1970 * Moreover, it should not come from DMA buffer and is not readily 1971 * reclaimable. So those GFP bits should be masked off. 1972 */ 1973 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1974 __GFP_ACCOUNT | __GFP_NOFAIL) 1975 1976 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1977 gfp_t gfp, bool new_slab) 1978 { 1979 unsigned int objects = objs_per_slab(s, slab); 1980 unsigned long new_exts; 1981 unsigned long old_exts; 1982 struct slabobj_ext *vec; 1983 1984 gfp &= ~OBJCGS_CLEAR_MASK; 1985 /* Prevent recursive extension vector allocation */ 1986 gfp |= __GFP_NO_OBJ_EXT; 1987 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1988 slab_nid(slab)); 1989 if (!vec) { 1990 /* Mark vectors which failed to allocate */ 1991 if (new_slab) 1992 mark_failed_objexts_alloc(slab); 1993 1994 return -ENOMEM; 1995 } 1996 1997 new_exts = (unsigned long)vec; 1998 #ifdef CONFIG_MEMCG 1999 new_exts |= MEMCG_DATA_OBJEXTS; 2000 #endif 2001 old_exts = READ_ONCE(slab->obj_exts); 2002 handle_failed_objexts_alloc(old_exts, vec, objects); 2003 if (new_slab) { 2004 /* 2005 * If the slab is brand new and nobody can yet access its 2006 * obj_exts, no synchronization is required and obj_exts can 2007 * be simply assigned. 2008 */ 2009 slab->obj_exts = new_exts; 2010 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 2011 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 2012 /* 2013 * If the slab is already in use, somebody can allocate and 2014 * assign slabobj_exts in parallel. In this case the existing 2015 * objcg vector should be reused. 2016 */ 2017 mark_objexts_empty(vec); 2018 kfree(vec); 2019 return 0; 2020 } 2021 2022 kmemleak_not_leak(vec); 2023 return 0; 2024 } 2025 2026 static inline void free_slab_obj_exts(struct slab *slab) 2027 { 2028 struct slabobj_ext *obj_exts; 2029 2030 obj_exts = slab_obj_exts(slab); 2031 if (!obj_exts) 2032 return; 2033 2034 /* 2035 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2036 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2037 * warning if slab has extensions but the extension of an object is 2038 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2039 * the extension for obj_exts is expected to be NULL. 2040 */ 2041 mark_objexts_empty(obj_exts); 2042 kfree(obj_exts); 2043 slab->obj_exts = 0; 2044 } 2045 2046 static inline bool need_slab_obj_ext(void) 2047 { 2048 if (mem_alloc_profiling_enabled()) 2049 return true; 2050 2051 /* 2052 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally 2053 * inside memcg_slab_post_alloc_hook. No other users for now. 2054 */ 2055 return false; 2056 } 2057 2058 #else /* CONFIG_SLAB_OBJ_EXT */ 2059 2060 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2061 gfp_t gfp, bool new_slab) 2062 { 2063 return 0; 2064 } 2065 2066 static inline void free_slab_obj_exts(struct slab *slab) 2067 { 2068 } 2069 2070 static inline bool need_slab_obj_ext(void) 2071 { 2072 return false; 2073 } 2074 2075 #endif /* CONFIG_SLAB_OBJ_EXT */ 2076 2077 #ifdef CONFIG_MEM_ALLOC_PROFILING 2078 2079 static inline struct slabobj_ext * 2080 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2081 { 2082 struct slab *slab; 2083 2084 if (!p) 2085 return NULL; 2086 2087 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2088 return NULL; 2089 2090 if (flags & __GFP_NO_OBJ_EXT) 2091 return NULL; 2092 2093 slab = virt_to_slab(p); 2094 if (!slab_obj_exts(slab) && 2095 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2096 "%s, %s: Failed to create slab extension vector!\n", 2097 __func__, s->name)) 2098 return NULL; 2099 2100 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2101 } 2102 2103 static inline void 2104 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2105 { 2106 if (need_slab_obj_ext()) { 2107 struct slabobj_ext *obj_exts; 2108 2109 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2110 /* 2111 * Currently obj_exts is used only for allocation profiling. 2112 * If other users appear then mem_alloc_profiling_enabled() 2113 * check should be added before alloc_tag_add(). 2114 */ 2115 if (likely(obj_exts)) 2116 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2117 } 2118 } 2119 2120 static inline void 2121 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2122 int objects) 2123 { 2124 struct slabobj_ext *obj_exts; 2125 int i; 2126 2127 if (!mem_alloc_profiling_enabled()) 2128 return; 2129 2130 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2131 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2132 return; 2133 2134 obj_exts = slab_obj_exts(slab); 2135 if (!obj_exts) 2136 return; 2137 2138 for (i = 0; i < objects; i++) { 2139 unsigned int off = obj_to_index(s, slab, p[i]); 2140 2141 alloc_tag_sub(&obj_exts[off].ref, s->size); 2142 } 2143 } 2144 2145 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2146 2147 static inline void 2148 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2149 { 2150 } 2151 2152 static inline void 2153 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2154 int objects) 2155 { 2156 } 2157 2158 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2159 2160 2161 #ifdef CONFIG_MEMCG 2162 2163 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2164 2165 static __fastpath_inline 2166 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2167 gfp_t flags, size_t size, void **p) 2168 { 2169 if (likely(!memcg_kmem_online())) 2170 return true; 2171 2172 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2173 return true; 2174 2175 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2176 return true; 2177 2178 if (likely(size == 1)) { 2179 memcg_alloc_abort_single(s, *p); 2180 *p = NULL; 2181 } else { 2182 kmem_cache_free_bulk(s, size, p); 2183 } 2184 2185 return false; 2186 } 2187 2188 static __fastpath_inline 2189 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2190 int objects) 2191 { 2192 struct slabobj_ext *obj_exts; 2193 2194 if (!memcg_kmem_online()) 2195 return; 2196 2197 obj_exts = slab_obj_exts(slab); 2198 if (likely(!obj_exts)) 2199 return; 2200 2201 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2202 } 2203 2204 static __fastpath_inline 2205 bool memcg_slab_post_charge(void *p, gfp_t flags) 2206 { 2207 struct slabobj_ext *slab_exts; 2208 struct kmem_cache *s; 2209 struct folio *folio; 2210 struct slab *slab; 2211 unsigned long off; 2212 2213 folio = virt_to_folio(p); 2214 if (!folio_test_slab(folio)) { 2215 int size; 2216 2217 if (folio_memcg_kmem(folio)) 2218 return true; 2219 2220 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags, 2221 folio_order(folio))) 2222 return false; 2223 2224 /* 2225 * This folio has already been accounted in the global stats but 2226 * not in the memcg stats. So, subtract from the global and use 2227 * the interface which adds to both global and memcg stats. 2228 */ 2229 size = folio_size(folio); 2230 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size); 2231 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size); 2232 return true; 2233 } 2234 2235 slab = folio_slab(folio); 2236 s = slab->slab_cache; 2237 2238 /* 2239 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency 2240 * of slab_obj_exts being allocated from the same slab and thus the slab 2241 * becoming effectively unfreeable. 2242 */ 2243 if (is_kmalloc_normal(s)) 2244 return true; 2245 2246 /* Ignore already charged objects. */ 2247 slab_exts = slab_obj_exts(slab); 2248 if (slab_exts) { 2249 off = obj_to_index(s, slab, p); 2250 if (unlikely(slab_exts[off].objcg)) 2251 return true; 2252 } 2253 2254 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); 2255 } 2256 2257 #else /* CONFIG_MEMCG */ 2258 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2259 struct list_lru *lru, 2260 gfp_t flags, size_t size, 2261 void **p) 2262 { 2263 return true; 2264 } 2265 2266 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2267 void **p, int objects) 2268 { 2269 } 2270 2271 static inline bool memcg_slab_post_charge(void *p, gfp_t flags) 2272 { 2273 return true; 2274 } 2275 #endif /* CONFIG_MEMCG */ 2276 2277 #ifdef CONFIG_SLUB_RCU_DEBUG 2278 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); 2279 2280 struct rcu_delayed_free { 2281 struct rcu_head head; 2282 void *object; 2283 }; 2284 #endif 2285 2286 /* 2287 * Hooks for other subsystems that check memory allocations. In a typical 2288 * production configuration these hooks all should produce no code at all. 2289 * 2290 * Returns true if freeing of the object can proceed, false if its reuse 2291 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned 2292 * to KFENCE. 2293 */ 2294 static __always_inline 2295 bool slab_free_hook(struct kmem_cache *s, void *x, bool init, 2296 bool after_rcu_delay) 2297 { 2298 /* Are the object contents still accessible? */ 2299 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; 2300 2301 kmemleak_free_recursive(x, s->flags); 2302 kmsan_slab_free(s, x); 2303 2304 debug_check_no_locks_freed(x, s->object_size); 2305 2306 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2307 debug_check_no_obj_freed(x, s->object_size); 2308 2309 /* Use KCSAN to help debug racy use-after-free. */ 2310 if (!still_accessible) 2311 __kcsan_check_access(x, s->object_size, 2312 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2313 2314 if (kfence_free(x)) 2315 return false; 2316 2317 /* 2318 * Give KASAN a chance to notice an invalid free operation before we 2319 * modify the object. 2320 */ 2321 if (kasan_slab_pre_free(s, x)) 2322 return false; 2323 2324 #ifdef CONFIG_SLUB_RCU_DEBUG 2325 if (still_accessible) { 2326 struct rcu_delayed_free *delayed_free; 2327 2328 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); 2329 if (delayed_free) { 2330 /* 2331 * Let KASAN track our call stack as a "related work 2332 * creation", just like if the object had been freed 2333 * normally via kfree_rcu(). 2334 * We have to do this manually because the rcu_head is 2335 * not located inside the object. 2336 */ 2337 kasan_record_aux_stack(x); 2338 2339 delayed_free->object = x; 2340 call_rcu(&delayed_free->head, slab_free_after_rcu_debug); 2341 return false; 2342 } 2343 } 2344 #endif /* CONFIG_SLUB_RCU_DEBUG */ 2345 2346 /* 2347 * As memory initialization might be integrated into KASAN, 2348 * kasan_slab_free and initialization memset's must be 2349 * kept together to avoid discrepancies in behavior. 2350 * 2351 * The initialization memset's clear the object and the metadata, 2352 * but don't touch the SLAB redzone. 2353 * 2354 * The object's freepointer is also avoided if stored outside the 2355 * object. 2356 */ 2357 if (unlikely(init)) { 2358 int rsize; 2359 unsigned int inuse, orig_size; 2360 2361 inuse = get_info_end(s); 2362 orig_size = get_orig_size(s, x); 2363 if (!kasan_has_integrated_init()) 2364 memset(kasan_reset_tag(x), 0, orig_size); 2365 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2366 memset((char *)kasan_reset_tag(x) + inuse, 0, 2367 s->size - inuse - rsize); 2368 /* 2369 * Restore orig_size, otherwize kmalloc redzone overwritten 2370 * would be reported 2371 */ 2372 set_orig_size(s, x, orig_size); 2373 2374 } 2375 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2376 return !kasan_slab_free(s, x, init, still_accessible); 2377 } 2378 2379 static __fastpath_inline 2380 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2381 int *cnt) 2382 { 2383 2384 void *object; 2385 void *next = *head; 2386 void *old_tail = *tail; 2387 bool init; 2388 2389 if (is_kfence_address(next)) { 2390 slab_free_hook(s, next, false, false); 2391 return false; 2392 } 2393 2394 /* Head and tail of the reconstructed freelist */ 2395 *head = NULL; 2396 *tail = NULL; 2397 2398 init = slab_want_init_on_free(s); 2399 2400 do { 2401 object = next; 2402 next = get_freepointer(s, object); 2403 2404 /* If object's reuse doesn't have to be delayed */ 2405 if (likely(slab_free_hook(s, object, init, false))) { 2406 /* Move object to the new freelist */ 2407 set_freepointer(s, object, *head); 2408 *head = object; 2409 if (!*tail) 2410 *tail = object; 2411 } else { 2412 /* 2413 * Adjust the reconstructed freelist depth 2414 * accordingly if object's reuse is delayed. 2415 */ 2416 --(*cnt); 2417 } 2418 } while (object != old_tail); 2419 2420 return *head != NULL; 2421 } 2422 2423 static void *setup_object(struct kmem_cache *s, void *object) 2424 { 2425 setup_object_debug(s, object); 2426 object = kasan_init_slab_obj(s, object); 2427 if (unlikely(s->ctor)) { 2428 kasan_unpoison_new_object(s, object); 2429 s->ctor(object); 2430 kasan_poison_new_object(s, object); 2431 } 2432 return object; 2433 } 2434 2435 /* 2436 * Slab allocation and freeing 2437 */ 2438 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2439 struct kmem_cache_order_objects oo) 2440 { 2441 struct folio *folio; 2442 struct slab *slab; 2443 unsigned int order = oo_order(oo); 2444 2445 if (node == NUMA_NO_NODE) 2446 folio = (struct folio *)alloc_frozen_pages(flags, order); 2447 else 2448 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL); 2449 2450 if (!folio) 2451 return NULL; 2452 2453 slab = folio_slab(folio); 2454 __folio_set_slab(folio); 2455 if (folio_is_pfmemalloc(folio)) 2456 slab_set_pfmemalloc(slab); 2457 2458 return slab; 2459 } 2460 2461 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2462 /* Pre-initialize the random sequence cache */ 2463 static int init_cache_random_seq(struct kmem_cache *s) 2464 { 2465 unsigned int count = oo_objects(s->oo); 2466 int err; 2467 2468 /* Bailout if already initialised */ 2469 if (s->random_seq) 2470 return 0; 2471 2472 err = cache_random_seq_create(s, count, GFP_KERNEL); 2473 if (err) { 2474 pr_err("SLUB: Unable to initialize free list for %s\n", 2475 s->name); 2476 return err; 2477 } 2478 2479 /* Transform to an offset on the set of pages */ 2480 if (s->random_seq) { 2481 unsigned int i; 2482 2483 for (i = 0; i < count; i++) 2484 s->random_seq[i] *= s->size; 2485 } 2486 return 0; 2487 } 2488 2489 /* Initialize each random sequence freelist per cache */ 2490 static void __init init_freelist_randomization(void) 2491 { 2492 struct kmem_cache *s; 2493 2494 mutex_lock(&slab_mutex); 2495 2496 list_for_each_entry(s, &slab_caches, list) 2497 init_cache_random_seq(s); 2498 2499 mutex_unlock(&slab_mutex); 2500 } 2501 2502 /* Get the next entry on the pre-computed freelist randomized */ 2503 static void *next_freelist_entry(struct kmem_cache *s, 2504 unsigned long *pos, void *start, 2505 unsigned long page_limit, 2506 unsigned long freelist_count) 2507 { 2508 unsigned int idx; 2509 2510 /* 2511 * If the target page allocation failed, the number of objects on the 2512 * page might be smaller than the usual size defined by the cache. 2513 */ 2514 do { 2515 idx = s->random_seq[*pos]; 2516 *pos += 1; 2517 if (*pos >= freelist_count) 2518 *pos = 0; 2519 } while (unlikely(idx >= page_limit)); 2520 2521 return (char *)start + idx; 2522 } 2523 2524 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2525 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2526 { 2527 void *start; 2528 void *cur; 2529 void *next; 2530 unsigned long idx, pos, page_limit, freelist_count; 2531 2532 if (slab->objects < 2 || !s->random_seq) 2533 return false; 2534 2535 freelist_count = oo_objects(s->oo); 2536 pos = get_random_u32_below(freelist_count); 2537 2538 page_limit = slab->objects * s->size; 2539 start = fixup_red_left(s, slab_address(slab)); 2540 2541 /* First entry is used as the base of the freelist */ 2542 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2543 cur = setup_object(s, cur); 2544 slab->freelist = cur; 2545 2546 for (idx = 1; idx < slab->objects; idx++) { 2547 next = next_freelist_entry(s, &pos, start, page_limit, 2548 freelist_count); 2549 next = setup_object(s, next); 2550 set_freepointer(s, cur, next); 2551 cur = next; 2552 } 2553 set_freepointer(s, cur, NULL); 2554 2555 return true; 2556 } 2557 #else 2558 static inline int init_cache_random_seq(struct kmem_cache *s) 2559 { 2560 return 0; 2561 } 2562 static inline void init_freelist_randomization(void) { } 2563 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2564 { 2565 return false; 2566 } 2567 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2568 2569 static __always_inline void account_slab(struct slab *slab, int order, 2570 struct kmem_cache *s, gfp_t gfp) 2571 { 2572 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2573 alloc_slab_obj_exts(slab, s, gfp, true); 2574 2575 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2576 PAGE_SIZE << order); 2577 } 2578 2579 static __always_inline void unaccount_slab(struct slab *slab, int order, 2580 struct kmem_cache *s) 2581 { 2582 if (memcg_kmem_online() || need_slab_obj_ext()) 2583 free_slab_obj_exts(slab); 2584 2585 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2586 -(PAGE_SIZE << order)); 2587 } 2588 2589 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2590 { 2591 struct slab *slab; 2592 struct kmem_cache_order_objects oo = s->oo; 2593 gfp_t alloc_gfp; 2594 void *start, *p, *next; 2595 int idx; 2596 bool shuffle; 2597 2598 flags &= gfp_allowed_mask; 2599 2600 flags |= s->allocflags; 2601 2602 /* 2603 * Let the initial higher-order allocation fail under memory pressure 2604 * so we fall-back to the minimum order allocation. 2605 */ 2606 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2607 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2608 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2609 2610 slab = alloc_slab_page(alloc_gfp, node, oo); 2611 if (unlikely(!slab)) { 2612 oo = s->min; 2613 alloc_gfp = flags; 2614 /* 2615 * Allocation may have failed due to fragmentation. 2616 * Try a lower order alloc if possible 2617 */ 2618 slab = alloc_slab_page(alloc_gfp, node, oo); 2619 if (unlikely(!slab)) 2620 return NULL; 2621 stat(s, ORDER_FALLBACK); 2622 } 2623 2624 slab->objects = oo_objects(oo); 2625 slab->inuse = 0; 2626 slab->frozen = 0; 2627 2628 account_slab(slab, oo_order(oo), s, flags); 2629 2630 slab->slab_cache = s; 2631 2632 kasan_poison_slab(slab); 2633 2634 start = slab_address(slab); 2635 2636 setup_slab_debug(s, slab, start); 2637 2638 shuffle = shuffle_freelist(s, slab); 2639 2640 if (!shuffle) { 2641 start = fixup_red_left(s, start); 2642 start = setup_object(s, start); 2643 slab->freelist = start; 2644 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2645 next = p + s->size; 2646 next = setup_object(s, next); 2647 set_freepointer(s, p, next); 2648 p = next; 2649 } 2650 set_freepointer(s, p, NULL); 2651 } 2652 2653 return slab; 2654 } 2655 2656 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2657 { 2658 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2659 flags = kmalloc_fix_flags(flags); 2660 2661 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2662 2663 return allocate_slab(s, 2664 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2665 } 2666 2667 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2668 { 2669 struct folio *folio = slab_folio(slab); 2670 int order = folio_order(folio); 2671 int pages = 1 << order; 2672 2673 __slab_clear_pfmemalloc(slab); 2674 folio->mapping = NULL; 2675 __folio_clear_slab(folio); 2676 mm_account_reclaimed_pages(pages); 2677 unaccount_slab(slab, order, s); 2678 free_frozen_pages(&folio->page, order); 2679 } 2680 2681 static void rcu_free_slab(struct rcu_head *h) 2682 { 2683 struct slab *slab = container_of(h, struct slab, rcu_head); 2684 2685 __free_slab(slab->slab_cache, slab); 2686 } 2687 2688 static void free_slab(struct kmem_cache *s, struct slab *slab) 2689 { 2690 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2691 void *p; 2692 2693 slab_pad_check(s, slab); 2694 for_each_object(p, s, slab_address(slab), slab->objects) 2695 check_object(s, slab, p, SLUB_RED_INACTIVE); 2696 } 2697 2698 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2699 call_rcu(&slab->rcu_head, rcu_free_slab); 2700 else 2701 __free_slab(s, slab); 2702 } 2703 2704 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2705 { 2706 dec_slabs_node(s, slab_nid(slab), slab->objects); 2707 free_slab(s, slab); 2708 } 2709 2710 /* 2711 * SLUB reuses PG_workingset bit to keep track of whether it's on 2712 * the per-node partial list. 2713 */ 2714 static inline bool slab_test_node_partial(const struct slab *slab) 2715 { 2716 return folio_test_workingset(slab_folio(slab)); 2717 } 2718 2719 static inline void slab_set_node_partial(struct slab *slab) 2720 { 2721 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2722 } 2723 2724 static inline void slab_clear_node_partial(struct slab *slab) 2725 { 2726 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2727 } 2728 2729 /* 2730 * Management of partially allocated slabs. 2731 */ 2732 static inline void 2733 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2734 { 2735 n->nr_partial++; 2736 if (tail == DEACTIVATE_TO_TAIL) 2737 list_add_tail(&slab->slab_list, &n->partial); 2738 else 2739 list_add(&slab->slab_list, &n->partial); 2740 slab_set_node_partial(slab); 2741 } 2742 2743 static inline void add_partial(struct kmem_cache_node *n, 2744 struct slab *slab, int tail) 2745 { 2746 lockdep_assert_held(&n->list_lock); 2747 __add_partial(n, slab, tail); 2748 } 2749 2750 static inline void remove_partial(struct kmem_cache_node *n, 2751 struct slab *slab) 2752 { 2753 lockdep_assert_held(&n->list_lock); 2754 list_del(&slab->slab_list); 2755 slab_clear_node_partial(slab); 2756 n->nr_partial--; 2757 } 2758 2759 /* 2760 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2761 * slab from the n->partial list. Remove only a single object from the slab, do 2762 * the alloc_debug_processing() checks and leave the slab on the list, or move 2763 * it to full list if it was the last free object. 2764 */ 2765 static void *alloc_single_from_partial(struct kmem_cache *s, 2766 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2767 { 2768 void *object; 2769 2770 lockdep_assert_held(&n->list_lock); 2771 2772 object = slab->freelist; 2773 slab->freelist = get_freepointer(s, object); 2774 slab->inuse++; 2775 2776 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2777 if (folio_test_slab(slab_folio(slab))) 2778 remove_partial(n, slab); 2779 return NULL; 2780 } 2781 2782 if (slab->inuse == slab->objects) { 2783 remove_partial(n, slab); 2784 add_full(s, n, slab); 2785 } 2786 2787 return object; 2788 } 2789 2790 /* 2791 * Called only for kmem_cache_debug() caches to allocate from a freshly 2792 * allocated slab. Allocate a single object instead of whole freelist 2793 * and put the slab to the partial (or full) list. 2794 */ 2795 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2796 struct slab *slab, int orig_size) 2797 { 2798 int nid = slab_nid(slab); 2799 struct kmem_cache_node *n = get_node(s, nid); 2800 unsigned long flags; 2801 void *object; 2802 2803 2804 object = slab->freelist; 2805 slab->freelist = get_freepointer(s, object); 2806 slab->inuse = 1; 2807 2808 if (!alloc_debug_processing(s, slab, object, orig_size)) 2809 /* 2810 * It's not really expected that this would fail on a 2811 * freshly allocated slab, but a concurrent memory 2812 * corruption in theory could cause that. 2813 */ 2814 return NULL; 2815 2816 spin_lock_irqsave(&n->list_lock, flags); 2817 2818 if (slab->inuse == slab->objects) 2819 add_full(s, n, slab); 2820 else 2821 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2822 2823 inc_slabs_node(s, nid, slab->objects); 2824 spin_unlock_irqrestore(&n->list_lock, flags); 2825 2826 return object; 2827 } 2828 2829 #ifdef CONFIG_SLUB_CPU_PARTIAL 2830 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2831 #else 2832 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2833 int drain) { } 2834 #endif 2835 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2836 2837 /* 2838 * Try to allocate a partial slab from a specific node. 2839 */ 2840 static struct slab *get_partial_node(struct kmem_cache *s, 2841 struct kmem_cache_node *n, 2842 struct partial_context *pc) 2843 { 2844 struct slab *slab, *slab2, *partial = NULL; 2845 unsigned long flags; 2846 unsigned int partial_slabs = 0; 2847 2848 /* 2849 * Racy check. If we mistakenly see no partial slabs then we 2850 * just allocate an empty slab. If we mistakenly try to get a 2851 * partial slab and there is none available then get_partial() 2852 * will return NULL. 2853 */ 2854 if (!n || !n->nr_partial) 2855 return NULL; 2856 2857 spin_lock_irqsave(&n->list_lock, flags); 2858 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2859 if (!pfmemalloc_match(slab, pc->flags)) 2860 continue; 2861 2862 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2863 void *object = alloc_single_from_partial(s, n, slab, 2864 pc->orig_size); 2865 if (object) { 2866 partial = slab; 2867 pc->object = object; 2868 break; 2869 } 2870 continue; 2871 } 2872 2873 remove_partial(n, slab); 2874 2875 if (!partial) { 2876 partial = slab; 2877 stat(s, ALLOC_FROM_PARTIAL); 2878 2879 if ((slub_get_cpu_partial(s) == 0)) { 2880 break; 2881 } 2882 } else { 2883 put_cpu_partial(s, slab, 0); 2884 stat(s, CPU_PARTIAL_NODE); 2885 2886 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2887 break; 2888 } 2889 } 2890 } 2891 spin_unlock_irqrestore(&n->list_lock, flags); 2892 return partial; 2893 } 2894 2895 /* 2896 * Get a slab from somewhere. Search in increasing NUMA distances. 2897 */ 2898 static struct slab *get_any_partial(struct kmem_cache *s, 2899 struct partial_context *pc) 2900 { 2901 #ifdef CONFIG_NUMA 2902 struct zonelist *zonelist; 2903 struct zoneref *z; 2904 struct zone *zone; 2905 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2906 struct slab *slab; 2907 unsigned int cpuset_mems_cookie; 2908 2909 /* 2910 * The defrag ratio allows a configuration of the tradeoffs between 2911 * inter node defragmentation and node local allocations. A lower 2912 * defrag_ratio increases the tendency to do local allocations 2913 * instead of attempting to obtain partial slabs from other nodes. 2914 * 2915 * If the defrag_ratio is set to 0 then kmalloc() always 2916 * returns node local objects. If the ratio is higher then kmalloc() 2917 * may return off node objects because partial slabs are obtained 2918 * from other nodes and filled up. 2919 * 2920 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2921 * (which makes defrag_ratio = 1000) then every (well almost) 2922 * allocation will first attempt to defrag slab caches on other nodes. 2923 * This means scanning over all nodes to look for partial slabs which 2924 * may be expensive if we do it every time we are trying to find a slab 2925 * with available objects. 2926 */ 2927 if (!s->remote_node_defrag_ratio || 2928 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2929 return NULL; 2930 2931 do { 2932 cpuset_mems_cookie = read_mems_allowed_begin(); 2933 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2934 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2935 struct kmem_cache_node *n; 2936 2937 n = get_node(s, zone_to_nid(zone)); 2938 2939 if (n && cpuset_zone_allowed(zone, pc->flags) && 2940 n->nr_partial > s->min_partial) { 2941 slab = get_partial_node(s, n, pc); 2942 if (slab) { 2943 /* 2944 * Don't check read_mems_allowed_retry() 2945 * here - if mems_allowed was updated in 2946 * parallel, that was a harmless race 2947 * between allocation and the cpuset 2948 * update 2949 */ 2950 return slab; 2951 } 2952 } 2953 } 2954 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2955 #endif /* CONFIG_NUMA */ 2956 return NULL; 2957 } 2958 2959 /* 2960 * Get a partial slab, lock it and return it. 2961 */ 2962 static struct slab *get_partial(struct kmem_cache *s, int node, 2963 struct partial_context *pc) 2964 { 2965 struct slab *slab; 2966 int searchnode = node; 2967 2968 if (node == NUMA_NO_NODE) 2969 searchnode = numa_mem_id(); 2970 2971 slab = get_partial_node(s, get_node(s, searchnode), pc); 2972 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2973 return slab; 2974 2975 return get_any_partial(s, pc); 2976 } 2977 2978 #ifndef CONFIG_SLUB_TINY 2979 2980 #ifdef CONFIG_PREEMPTION 2981 /* 2982 * Calculate the next globally unique transaction for disambiguation 2983 * during cmpxchg. The transactions start with the cpu number and are then 2984 * incremented by CONFIG_NR_CPUS. 2985 */ 2986 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2987 #else 2988 /* 2989 * No preemption supported therefore also no need to check for 2990 * different cpus. 2991 */ 2992 #define TID_STEP 1 2993 #endif /* CONFIG_PREEMPTION */ 2994 2995 static inline unsigned long next_tid(unsigned long tid) 2996 { 2997 return tid + TID_STEP; 2998 } 2999 3000 #ifdef SLUB_DEBUG_CMPXCHG 3001 static inline unsigned int tid_to_cpu(unsigned long tid) 3002 { 3003 return tid % TID_STEP; 3004 } 3005 3006 static inline unsigned long tid_to_event(unsigned long tid) 3007 { 3008 return tid / TID_STEP; 3009 } 3010 #endif 3011 3012 static inline unsigned int init_tid(int cpu) 3013 { 3014 return cpu; 3015 } 3016 3017 static inline void note_cmpxchg_failure(const char *n, 3018 const struct kmem_cache *s, unsigned long tid) 3019 { 3020 #ifdef SLUB_DEBUG_CMPXCHG 3021 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 3022 3023 pr_info("%s %s: cmpxchg redo ", n, s->name); 3024 3025 #ifdef CONFIG_PREEMPTION 3026 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 3027 pr_warn("due to cpu change %d -> %d\n", 3028 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 3029 else 3030 #endif 3031 if (tid_to_event(tid) != tid_to_event(actual_tid)) 3032 pr_warn("due to cpu running other code. Event %ld->%ld\n", 3033 tid_to_event(tid), tid_to_event(actual_tid)); 3034 else 3035 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 3036 actual_tid, tid, next_tid(tid)); 3037 #endif 3038 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 3039 } 3040 3041 static void init_kmem_cache_cpus(struct kmem_cache *s) 3042 { 3043 int cpu; 3044 struct kmem_cache_cpu *c; 3045 3046 for_each_possible_cpu(cpu) { 3047 c = per_cpu_ptr(s->cpu_slab, cpu); 3048 local_lock_init(&c->lock); 3049 c->tid = init_tid(cpu); 3050 } 3051 } 3052 3053 /* 3054 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 3055 * unfreezes the slabs and puts it on the proper list. 3056 * Assumes the slab has been already safely taken away from kmem_cache_cpu 3057 * by the caller. 3058 */ 3059 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 3060 void *freelist) 3061 { 3062 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3063 int free_delta = 0; 3064 void *nextfree, *freelist_iter, *freelist_tail; 3065 int tail = DEACTIVATE_TO_HEAD; 3066 unsigned long flags = 0; 3067 struct slab new; 3068 struct slab old; 3069 3070 if (READ_ONCE(slab->freelist)) { 3071 stat(s, DEACTIVATE_REMOTE_FREES); 3072 tail = DEACTIVATE_TO_TAIL; 3073 } 3074 3075 /* 3076 * Stage one: Count the objects on cpu's freelist as free_delta and 3077 * remember the last object in freelist_tail for later splicing. 3078 */ 3079 freelist_tail = NULL; 3080 freelist_iter = freelist; 3081 while (freelist_iter) { 3082 nextfree = get_freepointer(s, freelist_iter); 3083 3084 /* 3085 * If 'nextfree' is invalid, it is possible that the object at 3086 * 'freelist_iter' is already corrupted. So isolate all objects 3087 * starting at 'freelist_iter' by skipping them. 3088 */ 3089 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 3090 break; 3091 3092 freelist_tail = freelist_iter; 3093 free_delta++; 3094 3095 freelist_iter = nextfree; 3096 } 3097 3098 /* 3099 * Stage two: Unfreeze the slab while splicing the per-cpu 3100 * freelist to the head of slab's freelist. 3101 */ 3102 do { 3103 old.freelist = READ_ONCE(slab->freelist); 3104 old.counters = READ_ONCE(slab->counters); 3105 VM_BUG_ON(!old.frozen); 3106 3107 /* Determine target state of the slab */ 3108 new.counters = old.counters; 3109 new.frozen = 0; 3110 if (freelist_tail) { 3111 new.inuse -= free_delta; 3112 set_freepointer(s, freelist_tail, old.freelist); 3113 new.freelist = freelist; 3114 } else { 3115 new.freelist = old.freelist; 3116 } 3117 } while (!slab_update_freelist(s, slab, 3118 old.freelist, old.counters, 3119 new.freelist, new.counters, 3120 "unfreezing slab")); 3121 3122 /* 3123 * Stage three: Manipulate the slab list based on the updated state. 3124 */ 3125 if (!new.inuse && n->nr_partial >= s->min_partial) { 3126 stat(s, DEACTIVATE_EMPTY); 3127 discard_slab(s, slab); 3128 stat(s, FREE_SLAB); 3129 } else if (new.freelist) { 3130 spin_lock_irqsave(&n->list_lock, flags); 3131 add_partial(n, slab, tail); 3132 spin_unlock_irqrestore(&n->list_lock, flags); 3133 stat(s, tail); 3134 } else { 3135 stat(s, DEACTIVATE_FULL); 3136 } 3137 } 3138 3139 #ifdef CONFIG_SLUB_CPU_PARTIAL 3140 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3141 { 3142 struct kmem_cache_node *n = NULL, *n2 = NULL; 3143 struct slab *slab, *slab_to_discard = NULL; 3144 unsigned long flags = 0; 3145 3146 while (partial_slab) { 3147 slab = partial_slab; 3148 partial_slab = slab->next; 3149 3150 n2 = get_node(s, slab_nid(slab)); 3151 if (n != n2) { 3152 if (n) 3153 spin_unlock_irqrestore(&n->list_lock, flags); 3154 3155 n = n2; 3156 spin_lock_irqsave(&n->list_lock, flags); 3157 } 3158 3159 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3160 slab->next = slab_to_discard; 3161 slab_to_discard = slab; 3162 } else { 3163 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3164 stat(s, FREE_ADD_PARTIAL); 3165 } 3166 } 3167 3168 if (n) 3169 spin_unlock_irqrestore(&n->list_lock, flags); 3170 3171 while (slab_to_discard) { 3172 slab = slab_to_discard; 3173 slab_to_discard = slab_to_discard->next; 3174 3175 stat(s, DEACTIVATE_EMPTY); 3176 discard_slab(s, slab); 3177 stat(s, FREE_SLAB); 3178 } 3179 } 3180 3181 /* 3182 * Put all the cpu partial slabs to the node partial list. 3183 */ 3184 static void put_partials(struct kmem_cache *s) 3185 { 3186 struct slab *partial_slab; 3187 unsigned long flags; 3188 3189 local_lock_irqsave(&s->cpu_slab->lock, flags); 3190 partial_slab = this_cpu_read(s->cpu_slab->partial); 3191 this_cpu_write(s->cpu_slab->partial, NULL); 3192 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3193 3194 if (partial_slab) 3195 __put_partials(s, partial_slab); 3196 } 3197 3198 static void put_partials_cpu(struct kmem_cache *s, 3199 struct kmem_cache_cpu *c) 3200 { 3201 struct slab *partial_slab; 3202 3203 partial_slab = slub_percpu_partial(c); 3204 c->partial = NULL; 3205 3206 if (partial_slab) 3207 __put_partials(s, partial_slab); 3208 } 3209 3210 /* 3211 * Put a slab into a partial slab slot if available. 3212 * 3213 * If we did not find a slot then simply move all the partials to the 3214 * per node partial list. 3215 */ 3216 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3217 { 3218 struct slab *oldslab; 3219 struct slab *slab_to_put = NULL; 3220 unsigned long flags; 3221 int slabs = 0; 3222 3223 local_lock_irqsave(&s->cpu_slab->lock, flags); 3224 3225 oldslab = this_cpu_read(s->cpu_slab->partial); 3226 3227 if (oldslab) { 3228 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3229 /* 3230 * Partial array is full. Move the existing set to the 3231 * per node partial list. Postpone the actual unfreezing 3232 * outside of the critical section. 3233 */ 3234 slab_to_put = oldslab; 3235 oldslab = NULL; 3236 } else { 3237 slabs = oldslab->slabs; 3238 } 3239 } 3240 3241 slabs++; 3242 3243 slab->slabs = slabs; 3244 slab->next = oldslab; 3245 3246 this_cpu_write(s->cpu_slab->partial, slab); 3247 3248 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3249 3250 if (slab_to_put) { 3251 __put_partials(s, slab_to_put); 3252 stat(s, CPU_PARTIAL_DRAIN); 3253 } 3254 } 3255 3256 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3257 3258 static inline void put_partials(struct kmem_cache *s) { } 3259 static inline void put_partials_cpu(struct kmem_cache *s, 3260 struct kmem_cache_cpu *c) { } 3261 3262 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3263 3264 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3265 { 3266 unsigned long flags; 3267 struct slab *slab; 3268 void *freelist; 3269 3270 local_lock_irqsave(&s->cpu_slab->lock, flags); 3271 3272 slab = c->slab; 3273 freelist = c->freelist; 3274 3275 c->slab = NULL; 3276 c->freelist = NULL; 3277 c->tid = next_tid(c->tid); 3278 3279 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3280 3281 if (slab) { 3282 deactivate_slab(s, slab, freelist); 3283 stat(s, CPUSLAB_FLUSH); 3284 } 3285 } 3286 3287 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3288 { 3289 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3290 void *freelist = c->freelist; 3291 struct slab *slab = c->slab; 3292 3293 c->slab = NULL; 3294 c->freelist = NULL; 3295 c->tid = next_tid(c->tid); 3296 3297 if (slab) { 3298 deactivate_slab(s, slab, freelist); 3299 stat(s, CPUSLAB_FLUSH); 3300 } 3301 3302 put_partials_cpu(s, c); 3303 } 3304 3305 struct slub_flush_work { 3306 struct work_struct work; 3307 struct kmem_cache *s; 3308 bool skip; 3309 }; 3310 3311 /* 3312 * Flush cpu slab. 3313 * 3314 * Called from CPU work handler with migration disabled. 3315 */ 3316 static void flush_cpu_slab(struct work_struct *w) 3317 { 3318 struct kmem_cache *s; 3319 struct kmem_cache_cpu *c; 3320 struct slub_flush_work *sfw; 3321 3322 sfw = container_of(w, struct slub_flush_work, work); 3323 3324 s = sfw->s; 3325 c = this_cpu_ptr(s->cpu_slab); 3326 3327 if (c->slab) 3328 flush_slab(s, c); 3329 3330 put_partials(s); 3331 } 3332 3333 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3334 { 3335 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3336 3337 return c->slab || slub_percpu_partial(c); 3338 } 3339 3340 static DEFINE_MUTEX(flush_lock); 3341 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3342 3343 static void flush_all_cpus_locked(struct kmem_cache *s) 3344 { 3345 struct slub_flush_work *sfw; 3346 unsigned int cpu; 3347 3348 lockdep_assert_cpus_held(); 3349 mutex_lock(&flush_lock); 3350 3351 for_each_online_cpu(cpu) { 3352 sfw = &per_cpu(slub_flush, cpu); 3353 if (!has_cpu_slab(cpu, s)) { 3354 sfw->skip = true; 3355 continue; 3356 } 3357 INIT_WORK(&sfw->work, flush_cpu_slab); 3358 sfw->skip = false; 3359 sfw->s = s; 3360 queue_work_on(cpu, flushwq, &sfw->work); 3361 } 3362 3363 for_each_online_cpu(cpu) { 3364 sfw = &per_cpu(slub_flush, cpu); 3365 if (sfw->skip) 3366 continue; 3367 flush_work(&sfw->work); 3368 } 3369 3370 mutex_unlock(&flush_lock); 3371 } 3372 3373 static void flush_all(struct kmem_cache *s) 3374 { 3375 cpus_read_lock(); 3376 flush_all_cpus_locked(s); 3377 cpus_read_unlock(); 3378 } 3379 3380 /* 3381 * Use the cpu notifier to insure that the cpu slabs are flushed when 3382 * necessary. 3383 */ 3384 static int slub_cpu_dead(unsigned int cpu) 3385 { 3386 struct kmem_cache *s; 3387 3388 mutex_lock(&slab_mutex); 3389 list_for_each_entry(s, &slab_caches, list) 3390 __flush_cpu_slab(s, cpu); 3391 mutex_unlock(&slab_mutex); 3392 return 0; 3393 } 3394 3395 #else /* CONFIG_SLUB_TINY */ 3396 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3397 static inline void flush_all(struct kmem_cache *s) { } 3398 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3399 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3400 #endif /* CONFIG_SLUB_TINY */ 3401 3402 /* 3403 * Check if the objects in a per cpu structure fit numa 3404 * locality expectations. 3405 */ 3406 static inline int node_match(struct slab *slab, int node) 3407 { 3408 #ifdef CONFIG_NUMA 3409 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3410 return 0; 3411 #endif 3412 return 1; 3413 } 3414 3415 #ifdef CONFIG_SLUB_DEBUG 3416 static int count_free(struct slab *slab) 3417 { 3418 return slab->objects - slab->inuse; 3419 } 3420 3421 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3422 { 3423 return atomic_long_read(&n->total_objects); 3424 } 3425 3426 /* Supports checking bulk free of a constructed freelist */ 3427 static inline bool free_debug_processing(struct kmem_cache *s, 3428 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3429 unsigned long addr, depot_stack_handle_t handle) 3430 { 3431 bool checks_ok = false; 3432 void *object = head; 3433 int cnt = 0; 3434 3435 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3436 if (!check_slab(s, slab)) 3437 goto out; 3438 } 3439 3440 if (slab->inuse < *bulk_cnt) { 3441 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3442 slab->inuse, *bulk_cnt); 3443 goto out; 3444 } 3445 3446 next_object: 3447 3448 if (++cnt > *bulk_cnt) 3449 goto out_cnt; 3450 3451 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3452 if (!free_consistency_checks(s, slab, object, addr)) 3453 goto out; 3454 } 3455 3456 if (s->flags & SLAB_STORE_USER) 3457 set_track_update(s, object, TRACK_FREE, addr, handle); 3458 trace(s, slab, object, 0); 3459 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3460 init_object(s, object, SLUB_RED_INACTIVE); 3461 3462 /* Reached end of constructed freelist yet? */ 3463 if (object != tail) { 3464 object = get_freepointer(s, object); 3465 goto next_object; 3466 } 3467 checks_ok = true; 3468 3469 out_cnt: 3470 if (cnt != *bulk_cnt) { 3471 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3472 *bulk_cnt, cnt); 3473 *bulk_cnt = cnt; 3474 } 3475 3476 out: 3477 3478 if (!checks_ok) 3479 slab_fix(s, "Object at 0x%p not freed", object); 3480 3481 return checks_ok; 3482 } 3483 #endif /* CONFIG_SLUB_DEBUG */ 3484 3485 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3486 static unsigned long count_partial(struct kmem_cache_node *n, 3487 int (*get_count)(struct slab *)) 3488 { 3489 unsigned long flags; 3490 unsigned long x = 0; 3491 struct slab *slab; 3492 3493 spin_lock_irqsave(&n->list_lock, flags); 3494 list_for_each_entry(slab, &n->partial, slab_list) 3495 x += get_count(slab); 3496 spin_unlock_irqrestore(&n->list_lock, flags); 3497 return x; 3498 } 3499 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3500 3501 #ifdef CONFIG_SLUB_DEBUG 3502 #define MAX_PARTIAL_TO_SCAN 10000 3503 3504 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3505 { 3506 unsigned long flags; 3507 unsigned long x = 0; 3508 struct slab *slab; 3509 3510 spin_lock_irqsave(&n->list_lock, flags); 3511 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3512 list_for_each_entry(slab, &n->partial, slab_list) 3513 x += slab->objects - slab->inuse; 3514 } else { 3515 /* 3516 * For a long list, approximate the total count of objects in 3517 * it to meet the limit on the number of slabs to scan. 3518 * Scan from both the list's head and tail for better accuracy. 3519 */ 3520 unsigned long scanned = 0; 3521 3522 list_for_each_entry(slab, &n->partial, slab_list) { 3523 x += slab->objects - slab->inuse; 3524 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3525 break; 3526 } 3527 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3528 x += slab->objects - slab->inuse; 3529 if (++scanned == MAX_PARTIAL_TO_SCAN) 3530 break; 3531 } 3532 x = mult_frac(x, n->nr_partial, scanned); 3533 x = min(x, node_nr_objs(n)); 3534 } 3535 spin_unlock_irqrestore(&n->list_lock, flags); 3536 return x; 3537 } 3538 3539 static noinline void 3540 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3541 { 3542 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3543 DEFAULT_RATELIMIT_BURST); 3544 int cpu = raw_smp_processor_id(); 3545 int node; 3546 struct kmem_cache_node *n; 3547 3548 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3549 return; 3550 3551 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", 3552 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); 3553 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3554 s->name, s->object_size, s->size, oo_order(s->oo), 3555 oo_order(s->min)); 3556 3557 if (oo_order(s->min) > get_order(s->object_size)) 3558 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3559 s->name); 3560 3561 for_each_kmem_cache_node(s, node, n) { 3562 unsigned long nr_slabs; 3563 unsigned long nr_objs; 3564 unsigned long nr_free; 3565 3566 nr_free = count_partial_free_approx(n); 3567 nr_slabs = node_nr_slabs(n); 3568 nr_objs = node_nr_objs(n); 3569 3570 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3571 node, nr_slabs, nr_objs, nr_free); 3572 } 3573 } 3574 #else /* CONFIG_SLUB_DEBUG */ 3575 static inline void 3576 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3577 #endif 3578 3579 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3580 { 3581 if (unlikely(slab_test_pfmemalloc(slab))) 3582 return gfp_pfmemalloc_allowed(gfpflags); 3583 3584 return true; 3585 } 3586 3587 #ifndef CONFIG_SLUB_TINY 3588 static inline bool 3589 __update_cpu_freelist_fast(struct kmem_cache *s, 3590 void *freelist_old, void *freelist_new, 3591 unsigned long tid) 3592 { 3593 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3594 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3595 3596 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3597 &old.full, new.full); 3598 } 3599 3600 /* 3601 * Check the slab->freelist and either transfer the freelist to the 3602 * per cpu freelist or deactivate the slab. 3603 * 3604 * The slab is still frozen if the return value is not NULL. 3605 * 3606 * If this function returns NULL then the slab has been unfrozen. 3607 */ 3608 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3609 { 3610 struct slab new; 3611 unsigned long counters; 3612 void *freelist; 3613 3614 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3615 3616 do { 3617 freelist = slab->freelist; 3618 counters = slab->counters; 3619 3620 new.counters = counters; 3621 3622 new.inuse = slab->objects; 3623 new.frozen = freelist != NULL; 3624 3625 } while (!__slab_update_freelist(s, slab, 3626 freelist, counters, 3627 NULL, new.counters, 3628 "get_freelist")); 3629 3630 return freelist; 3631 } 3632 3633 /* 3634 * Freeze the partial slab and return the pointer to the freelist. 3635 */ 3636 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3637 { 3638 struct slab new; 3639 unsigned long counters; 3640 void *freelist; 3641 3642 do { 3643 freelist = slab->freelist; 3644 counters = slab->counters; 3645 3646 new.counters = counters; 3647 VM_BUG_ON(new.frozen); 3648 3649 new.inuse = slab->objects; 3650 new.frozen = 1; 3651 3652 } while (!slab_update_freelist(s, slab, 3653 freelist, counters, 3654 NULL, new.counters, 3655 "freeze_slab")); 3656 3657 return freelist; 3658 } 3659 3660 /* 3661 * Slow path. The lockless freelist is empty or we need to perform 3662 * debugging duties. 3663 * 3664 * Processing is still very fast if new objects have been freed to the 3665 * regular freelist. In that case we simply take over the regular freelist 3666 * as the lockless freelist and zap the regular freelist. 3667 * 3668 * If that is not working then we fall back to the partial lists. We take the 3669 * first element of the freelist as the object to allocate now and move the 3670 * rest of the freelist to the lockless freelist. 3671 * 3672 * And if we were unable to get a new slab from the partial slab lists then 3673 * we need to allocate a new slab. This is the slowest path since it involves 3674 * a call to the page allocator and the setup of a new slab. 3675 * 3676 * Version of __slab_alloc to use when we know that preemption is 3677 * already disabled (which is the case for bulk allocation). 3678 */ 3679 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3680 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3681 { 3682 void *freelist; 3683 struct slab *slab; 3684 unsigned long flags; 3685 struct partial_context pc; 3686 bool try_thisnode = true; 3687 3688 stat(s, ALLOC_SLOWPATH); 3689 3690 reread_slab: 3691 3692 slab = READ_ONCE(c->slab); 3693 if (!slab) { 3694 /* 3695 * if the node is not online or has no normal memory, just 3696 * ignore the node constraint 3697 */ 3698 if (unlikely(node != NUMA_NO_NODE && 3699 !node_isset(node, slab_nodes))) 3700 node = NUMA_NO_NODE; 3701 goto new_slab; 3702 } 3703 3704 if (unlikely(!node_match(slab, node))) { 3705 /* 3706 * same as above but node_match() being false already 3707 * implies node != NUMA_NO_NODE 3708 */ 3709 if (!node_isset(node, slab_nodes)) { 3710 node = NUMA_NO_NODE; 3711 } else { 3712 stat(s, ALLOC_NODE_MISMATCH); 3713 goto deactivate_slab; 3714 } 3715 } 3716 3717 /* 3718 * By rights, we should be searching for a slab page that was 3719 * PFMEMALLOC but right now, we are losing the pfmemalloc 3720 * information when the page leaves the per-cpu allocator 3721 */ 3722 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3723 goto deactivate_slab; 3724 3725 /* must check again c->slab in case we got preempted and it changed */ 3726 local_lock_irqsave(&s->cpu_slab->lock, flags); 3727 if (unlikely(slab != c->slab)) { 3728 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3729 goto reread_slab; 3730 } 3731 freelist = c->freelist; 3732 if (freelist) 3733 goto load_freelist; 3734 3735 freelist = get_freelist(s, slab); 3736 3737 if (!freelist) { 3738 c->slab = NULL; 3739 c->tid = next_tid(c->tid); 3740 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3741 stat(s, DEACTIVATE_BYPASS); 3742 goto new_slab; 3743 } 3744 3745 stat(s, ALLOC_REFILL); 3746 3747 load_freelist: 3748 3749 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3750 3751 /* 3752 * freelist is pointing to the list of objects to be used. 3753 * slab is pointing to the slab from which the objects are obtained. 3754 * That slab must be frozen for per cpu allocations to work. 3755 */ 3756 VM_BUG_ON(!c->slab->frozen); 3757 c->freelist = get_freepointer(s, freelist); 3758 c->tid = next_tid(c->tid); 3759 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3760 return freelist; 3761 3762 deactivate_slab: 3763 3764 local_lock_irqsave(&s->cpu_slab->lock, flags); 3765 if (slab != c->slab) { 3766 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3767 goto reread_slab; 3768 } 3769 freelist = c->freelist; 3770 c->slab = NULL; 3771 c->freelist = NULL; 3772 c->tid = next_tid(c->tid); 3773 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3774 deactivate_slab(s, slab, freelist); 3775 3776 new_slab: 3777 3778 #ifdef CONFIG_SLUB_CPU_PARTIAL 3779 while (slub_percpu_partial(c)) { 3780 local_lock_irqsave(&s->cpu_slab->lock, flags); 3781 if (unlikely(c->slab)) { 3782 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3783 goto reread_slab; 3784 } 3785 if (unlikely(!slub_percpu_partial(c))) { 3786 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3787 /* we were preempted and partial list got empty */ 3788 goto new_objects; 3789 } 3790 3791 slab = slub_percpu_partial(c); 3792 slub_set_percpu_partial(c, slab); 3793 3794 if (likely(node_match(slab, node) && 3795 pfmemalloc_match(slab, gfpflags))) { 3796 c->slab = slab; 3797 freelist = get_freelist(s, slab); 3798 VM_BUG_ON(!freelist); 3799 stat(s, CPU_PARTIAL_ALLOC); 3800 goto load_freelist; 3801 } 3802 3803 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3804 3805 slab->next = NULL; 3806 __put_partials(s, slab); 3807 } 3808 #endif 3809 3810 new_objects: 3811 3812 pc.flags = gfpflags; 3813 /* 3814 * When a preferred node is indicated but no __GFP_THISNODE 3815 * 3816 * 1) try to get a partial slab from target node only by having 3817 * __GFP_THISNODE in pc.flags for get_partial() 3818 * 2) if 1) failed, try to allocate a new slab from target node with 3819 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3820 * 3) if 2) failed, retry with original gfpflags which will allow 3821 * get_partial() try partial lists of other nodes before potentially 3822 * allocating new page from other nodes 3823 */ 3824 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3825 && try_thisnode)) 3826 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3827 3828 pc.orig_size = orig_size; 3829 slab = get_partial(s, node, &pc); 3830 if (slab) { 3831 if (kmem_cache_debug(s)) { 3832 freelist = pc.object; 3833 /* 3834 * For debug caches here we had to go through 3835 * alloc_single_from_partial() so just store the 3836 * tracking info and return the object. 3837 */ 3838 if (s->flags & SLAB_STORE_USER) 3839 set_track(s, freelist, TRACK_ALLOC, addr); 3840 3841 return freelist; 3842 } 3843 3844 freelist = freeze_slab(s, slab); 3845 goto retry_load_slab; 3846 } 3847 3848 slub_put_cpu_ptr(s->cpu_slab); 3849 slab = new_slab(s, pc.flags, node); 3850 c = slub_get_cpu_ptr(s->cpu_slab); 3851 3852 if (unlikely(!slab)) { 3853 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3854 && try_thisnode) { 3855 try_thisnode = false; 3856 goto new_objects; 3857 } 3858 slab_out_of_memory(s, gfpflags, node); 3859 return NULL; 3860 } 3861 3862 stat(s, ALLOC_SLAB); 3863 3864 if (kmem_cache_debug(s)) { 3865 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3866 3867 if (unlikely(!freelist)) 3868 goto new_objects; 3869 3870 if (s->flags & SLAB_STORE_USER) 3871 set_track(s, freelist, TRACK_ALLOC, addr); 3872 3873 return freelist; 3874 } 3875 3876 /* 3877 * No other reference to the slab yet so we can 3878 * muck around with it freely without cmpxchg 3879 */ 3880 freelist = slab->freelist; 3881 slab->freelist = NULL; 3882 slab->inuse = slab->objects; 3883 slab->frozen = 1; 3884 3885 inc_slabs_node(s, slab_nid(slab), slab->objects); 3886 3887 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3888 /* 3889 * For !pfmemalloc_match() case we don't load freelist so that 3890 * we don't make further mismatched allocations easier. 3891 */ 3892 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3893 return freelist; 3894 } 3895 3896 retry_load_slab: 3897 3898 local_lock_irqsave(&s->cpu_slab->lock, flags); 3899 if (unlikely(c->slab)) { 3900 void *flush_freelist = c->freelist; 3901 struct slab *flush_slab = c->slab; 3902 3903 c->slab = NULL; 3904 c->freelist = NULL; 3905 c->tid = next_tid(c->tid); 3906 3907 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3908 3909 deactivate_slab(s, flush_slab, flush_freelist); 3910 3911 stat(s, CPUSLAB_FLUSH); 3912 3913 goto retry_load_slab; 3914 } 3915 c->slab = slab; 3916 3917 goto load_freelist; 3918 } 3919 3920 /* 3921 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3922 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3923 * pointer. 3924 */ 3925 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3926 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3927 { 3928 void *p; 3929 3930 #ifdef CONFIG_PREEMPT_COUNT 3931 /* 3932 * We may have been preempted and rescheduled on a different 3933 * cpu before disabling preemption. Need to reload cpu area 3934 * pointer. 3935 */ 3936 c = slub_get_cpu_ptr(s->cpu_slab); 3937 #endif 3938 3939 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3940 #ifdef CONFIG_PREEMPT_COUNT 3941 slub_put_cpu_ptr(s->cpu_slab); 3942 #endif 3943 return p; 3944 } 3945 3946 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3947 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3948 { 3949 struct kmem_cache_cpu *c; 3950 struct slab *slab; 3951 unsigned long tid; 3952 void *object; 3953 3954 redo: 3955 /* 3956 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3957 * enabled. We may switch back and forth between cpus while 3958 * reading from one cpu area. That does not matter as long 3959 * as we end up on the original cpu again when doing the cmpxchg. 3960 * 3961 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3962 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3963 * the tid. If we are preempted and switched to another cpu between the 3964 * two reads, it's OK as the two are still associated with the same cpu 3965 * and cmpxchg later will validate the cpu. 3966 */ 3967 c = raw_cpu_ptr(s->cpu_slab); 3968 tid = READ_ONCE(c->tid); 3969 3970 /* 3971 * Irqless object alloc/free algorithm used here depends on sequence 3972 * of fetching cpu_slab's data. tid should be fetched before anything 3973 * on c to guarantee that object and slab associated with previous tid 3974 * won't be used with current tid. If we fetch tid first, object and 3975 * slab could be one associated with next tid and our alloc/free 3976 * request will be failed. In this case, we will retry. So, no problem. 3977 */ 3978 barrier(); 3979 3980 /* 3981 * The transaction ids are globally unique per cpu and per operation on 3982 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3983 * occurs on the right processor and that there was no operation on the 3984 * linked list in between. 3985 */ 3986 3987 object = c->freelist; 3988 slab = c->slab; 3989 3990 #ifdef CONFIG_NUMA 3991 if (static_branch_unlikely(&strict_numa) && 3992 node == NUMA_NO_NODE) { 3993 3994 struct mempolicy *mpol = current->mempolicy; 3995 3996 if (mpol) { 3997 /* 3998 * Special BIND rule support. If existing slab 3999 * is in permitted set then do not redirect 4000 * to a particular node. 4001 * Otherwise we apply the memory policy to get 4002 * the node we need to allocate on. 4003 */ 4004 if (mpol->mode != MPOL_BIND || !slab || 4005 !node_isset(slab_nid(slab), mpol->nodes)) 4006 4007 node = mempolicy_slab_node(); 4008 } 4009 } 4010 #endif 4011 4012 if (!USE_LOCKLESS_FAST_PATH() || 4013 unlikely(!object || !slab || !node_match(slab, node))) { 4014 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 4015 } else { 4016 void *next_object = get_freepointer_safe(s, object); 4017 4018 /* 4019 * The cmpxchg will only match if there was no additional 4020 * operation and if we are on the right processor. 4021 * 4022 * The cmpxchg does the following atomically (without lock 4023 * semantics!) 4024 * 1. Relocate first pointer to the current per cpu area. 4025 * 2. Verify that tid and freelist have not been changed 4026 * 3. If they were not changed replace tid and freelist 4027 * 4028 * Since this is without lock semantics the protection is only 4029 * against code executing on this cpu *not* from access by 4030 * other cpus. 4031 */ 4032 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 4033 note_cmpxchg_failure("slab_alloc", s, tid); 4034 goto redo; 4035 } 4036 prefetch_freepointer(s, next_object); 4037 stat(s, ALLOC_FASTPATH); 4038 } 4039 4040 return object; 4041 } 4042 #else /* CONFIG_SLUB_TINY */ 4043 static void *__slab_alloc_node(struct kmem_cache *s, 4044 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4045 { 4046 struct partial_context pc; 4047 struct slab *slab; 4048 void *object; 4049 4050 pc.flags = gfpflags; 4051 pc.orig_size = orig_size; 4052 slab = get_partial(s, node, &pc); 4053 4054 if (slab) 4055 return pc.object; 4056 4057 slab = new_slab(s, gfpflags, node); 4058 if (unlikely(!slab)) { 4059 slab_out_of_memory(s, gfpflags, node); 4060 return NULL; 4061 } 4062 4063 object = alloc_single_from_new_slab(s, slab, orig_size); 4064 4065 return object; 4066 } 4067 #endif /* CONFIG_SLUB_TINY */ 4068 4069 /* 4070 * If the object has been wiped upon free, make sure it's fully initialized by 4071 * zeroing out freelist pointer. 4072 * 4073 * Note that we also wipe custom freelist pointers. 4074 */ 4075 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 4076 void *obj) 4077 { 4078 if (unlikely(slab_want_init_on_free(s)) && obj && 4079 !freeptr_outside_object(s)) 4080 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 4081 0, sizeof(void *)); 4082 } 4083 4084 static __fastpath_inline 4085 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 4086 { 4087 flags &= gfp_allowed_mask; 4088 4089 might_alloc(flags); 4090 4091 if (unlikely(should_failslab(s, flags))) 4092 return NULL; 4093 4094 return s; 4095 } 4096 4097 static __fastpath_inline 4098 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 4099 gfp_t flags, size_t size, void **p, bool init, 4100 unsigned int orig_size) 4101 { 4102 unsigned int zero_size = s->object_size; 4103 bool kasan_init = init; 4104 size_t i; 4105 gfp_t init_flags = flags & gfp_allowed_mask; 4106 4107 /* 4108 * For kmalloc object, the allocated memory size(object_size) is likely 4109 * larger than the requested size(orig_size). If redzone check is 4110 * enabled for the extra space, don't zero it, as it will be redzoned 4111 * soon. The redzone operation for this extra space could be seen as a 4112 * replacement of current poisoning under certain debug option, and 4113 * won't break other sanity checks. 4114 */ 4115 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 4116 (s->flags & SLAB_KMALLOC)) 4117 zero_size = orig_size; 4118 4119 /* 4120 * When slab_debug is enabled, avoid memory initialization integrated 4121 * into KASAN and instead zero out the memory via the memset below with 4122 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 4123 * cause false-positive reports. This does not lead to a performance 4124 * penalty on production builds, as slab_debug is not intended to be 4125 * enabled there. 4126 */ 4127 if (__slub_debug_enabled()) 4128 kasan_init = false; 4129 4130 /* 4131 * As memory initialization might be integrated into KASAN, 4132 * kasan_slab_alloc and initialization memset must be 4133 * kept together to avoid discrepancies in behavior. 4134 * 4135 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 4136 */ 4137 for (i = 0; i < size; i++) { 4138 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 4139 if (p[i] && init && (!kasan_init || 4140 !kasan_has_integrated_init())) 4141 memset(p[i], 0, zero_size); 4142 kmemleak_alloc_recursive(p[i], s->object_size, 1, 4143 s->flags, init_flags); 4144 kmsan_slab_alloc(s, p[i], init_flags); 4145 alloc_tagging_slab_alloc_hook(s, p[i], flags); 4146 } 4147 4148 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4149 } 4150 4151 /* 4152 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4153 * have the fastpath folded into their functions. So no function call 4154 * overhead for requests that can be satisfied on the fastpath. 4155 * 4156 * The fastpath works by first checking if the lockless freelist can be used. 4157 * If not then __slab_alloc is called for slow processing. 4158 * 4159 * Otherwise we can simply pick the next object from the lockless free list. 4160 */ 4161 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4162 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4163 { 4164 void *object; 4165 bool init = false; 4166 4167 s = slab_pre_alloc_hook(s, gfpflags); 4168 if (unlikely(!s)) 4169 return NULL; 4170 4171 object = kfence_alloc(s, orig_size, gfpflags); 4172 if (unlikely(object)) 4173 goto out; 4174 4175 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4176 4177 maybe_wipe_obj_freeptr(s, object); 4178 init = slab_want_init_on_alloc(gfpflags, s); 4179 4180 out: 4181 /* 4182 * When init equals 'true', like for kzalloc() family, only 4183 * @orig_size bytes might be zeroed instead of s->object_size 4184 * In case this fails due to memcg_slab_post_alloc_hook(), 4185 * object is set to NULL 4186 */ 4187 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4188 4189 return object; 4190 } 4191 4192 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4193 { 4194 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4195 s->object_size); 4196 4197 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4198 4199 return ret; 4200 } 4201 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4202 4203 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4204 gfp_t gfpflags) 4205 { 4206 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4207 s->object_size); 4208 4209 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4210 4211 return ret; 4212 } 4213 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4214 4215 bool kmem_cache_charge(void *objp, gfp_t gfpflags) 4216 { 4217 if (!memcg_kmem_online()) 4218 return true; 4219 4220 return memcg_slab_post_charge(objp, gfpflags); 4221 } 4222 EXPORT_SYMBOL(kmem_cache_charge); 4223 4224 /** 4225 * kmem_cache_alloc_node - Allocate an object on the specified node 4226 * @s: The cache to allocate from. 4227 * @gfpflags: See kmalloc(). 4228 * @node: node number of the target node. 4229 * 4230 * Identical to kmem_cache_alloc but it will allocate memory on the given 4231 * node, which can improve the performance for cpu bound structures. 4232 * 4233 * Fallback to other node is possible if __GFP_THISNODE is not set. 4234 * 4235 * Return: pointer to the new object or %NULL in case of error 4236 */ 4237 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4238 { 4239 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4240 4241 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4242 4243 return ret; 4244 } 4245 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4246 4247 /* 4248 * To avoid unnecessary overhead, we pass through large allocation requests 4249 * directly to the page allocator. We use __GFP_COMP, because we will need to 4250 * know the allocation order to free the pages properly in kfree. 4251 */ 4252 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4253 { 4254 struct folio *folio; 4255 void *ptr = NULL; 4256 unsigned int order = get_order(size); 4257 4258 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4259 flags = kmalloc_fix_flags(flags); 4260 4261 flags |= __GFP_COMP; 4262 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4263 if (folio) { 4264 ptr = folio_address(folio); 4265 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4266 PAGE_SIZE << order); 4267 __folio_set_large_kmalloc(folio); 4268 } 4269 4270 ptr = kasan_kmalloc_large(ptr, size, flags); 4271 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4272 kmemleak_alloc(ptr, size, 1, flags); 4273 kmsan_kmalloc_large(ptr, size, flags); 4274 4275 return ptr; 4276 } 4277 4278 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4279 { 4280 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4281 4282 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4283 flags, NUMA_NO_NODE); 4284 return ret; 4285 } 4286 EXPORT_SYMBOL(__kmalloc_large_noprof); 4287 4288 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4289 { 4290 void *ret = ___kmalloc_large_node(size, flags, node); 4291 4292 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4293 flags, node); 4294 return ret; 4295 } 4296 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4297 4298 static __always_inline 4299 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4300 unsigned long caller) 4301 { 4302 struct kmem_cache *s; 4303 void *ret; 4304 4305 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4306 ret = __kmalloc_large_node_noprof(size, flags, node); 4307 trace_kmalloc(caller, ret, size, 4308 PAGE_SIZE << get_order(size), flags, node); 4309 return ret; 4310 } 4311 4312 if (unlikely(!size)) 4313 return ZERO_SIZE_PTR; 4314 4315 s = kmalloc_slab(size, b, flags, caller); 4316 4317 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4318 ret = kasan_kmalloc(s, ret, size, flags); 4319 trace_kmalloc(caller, ret, size, s->size, flags, node); 4320 return ret; 4321 } 4322 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4323 { 4324 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4325 } 4326 EXPORT_SYMBOL(__kmalloc_node_noprof); 4327 4328 void *__kmalloc_noprof(size_t size, gfp_t flags) 4329 { 4330 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4331 } 4332 EXPORT_SYMBOL(__kmalloc_noprof); 4333 4334 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4335 int node, unsigned long caller) 4336 { 4337 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4338 4339 } 4340 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4341 4342 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4343 { 4344 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4345 _RET_IP_, size); 4346 4347 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4348 4349 ret = kasan_kmalloc(s, ret, size, gfpflags); 4350 return ret; 4351 } 4352 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4353 4354 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4355 int node, size_t size) 4356 { 4357 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4358 4359 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4360 4361 ret = kasan_kmalloc(s, ret, size, gfpflags); 4362 return ret; 4363 } 4364 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4365 4366 static noinline void free_to_partial_list( 4367 struct kmem_cache *s, struct slab *slab, 4368 void *head, void *tail, int bulk_cnt, 4369 unsigned long addr) 4370 { 4371 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4372 struct slab *slab_free = NULL; 4373 int cnt = bulk_cnt; 4374 unsigned long flags; 4375 depot_stack_handle_t handle = 0; 4376 4377 if (s->flags & SLAB_STORE_USER) 4378 handle = set_track_prepare(); 4379 4380 spin_lock_irqsave(&n->list_lock, flags); 4381 4382 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4383 void *prior = slab->freelist; 4384 4385 /* Perform the actual freeing while we still hold the locks */ 4386 slab->inuse -= cnt; 4387 set_freepointer(s, tail, prior); 4388 slab->freelist = head; 4389 4390 /* 4391 * If the slab is empty, and node's partial list is full, 4392 * it should be discarded anyway no matter it's on full or 4393 * partial list. 4394 */ 4395 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4396 slab_free = slab; 4397 4398 if (!prior) { 4399 /* was on full list */ 4400 remove_full(s, n, slab); 4401 if (!slab_free) { 4402 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4403 stat(s, FREE_ADD_PARTIAL); 4404 } 4405 } else if (slab_free) { 4406 remove_partial(n, slab); 4407 stat(s, FREE_REMOVE_PARTIAL); 4408 } 4409 } 4410 4411 if (slab_free) { 4412 /* 4413 * Update the counters while still holding n->list_lock to 4414 * prevent spurious validation warnings 4415 */ 4416 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4417 } 4418 4419 spin_unlock_irqrestore(&n->list_lock, flags); 4420 4421 if (slab_free) { 4422 stat(s, FREE_SLAB); 4423 free_slab(s, slab_free); 4424 } 4425 } 4426 4427 /* 4428 * Slow path handling. This may still be called frequently since objects 4429 * have a longer lifetime than the cpu slabs in most processing loads. 4430 * 4431 * So we still attempt to reduce cache line usage. Just take the slab 4432 * lock and free the item. If there is no additional partial slab 4433 * handling required then we can return immediately. 4434 */ 4435 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4436 void *head, void *tail, int cnt, 4437 unsigned long addr) 4438 4439 { 4440 void *prior; 4441 int was_frozen; 4442 struct slab new; 4443 unsigned long counters; 4444 struct kmem_cache_node *n = NULL; 4445 unsigned long flags; 4446 bool on_node_partial; 4447 4448 stat(s, FREE_SLOWPATH); 4449 4450 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4451 free_to_partial_list(s, slab, head, tail, cnt, addr); 4452 return; 4453 } 4454 4455 do { 4456 if (unlikely(n)) { 4457 spin_unlock_irqrestore(&n->list_lock, flags); 4458 n = NULL; 4459 } 4460 prior = slab->freelist; 4461 counters = slab->counters; 4462 set_freepointer(s, tail, prior); 4463 new.counters = counters; 4464 was_frozen = new.frozen; 4465 new.inuse -= cnt; 4466 if ((!new.inuse || !prior) && !was_frozen) { 4467 /* Needs to be taken off a list */ 4468 if (!kmem_cache_has_cpu_partial(s) || prior) { 4469 4470 n = get_node(s, slab_nid(slab)); 4471 /* 4472 * Speculatively acquire the list_lock. 4473 * If the cmpxchg does not succeed then we may 4474 * drop the list_lock without any processing. 4475 * 4476 * Otherwise the list_lock will synchronize with 4477 * other processors updating the list of slabs. 4478 */ 4479 spin_lock_irqsave(&n->list_lock, flags); 4480 4481 on_node_partial = slab_test_node_partial(slab); 4482 } 4483 } 4484 4485 } while (!slab_update_freelist(s, slab, 4486 prior, counters, 4487 head, new.counters, 4488 "__slab_free")); 4489 4490 if (likely(!n)) { 4491 4492 if (likely(was_frozen)) { 4493 /* 4494 * The list lock was not taken therefore no list 4495 * activity can be necessary. 4496 */ 4497 stat(s, FREE_FROZEN); 4498 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4499 /* 4500 * If we started with a full slab then put it onto the 4501 * per cpu partial list. 4502 */ 4503 put_cpu_partial(s, slab, 1); 4504 stat(s, CPU_PARTIAL_FREE); 4505 } 4506 4507 return; 4508 } 4509 4510 /* 4511 * This slab was partially empty but not on the per-node partial list, 4512 * in which case we shouldn't manipulate its list, just return. 4513 */ 4514 if (prior && !on_node_partial) { 4515 spin_unlock_irqrestore(&n->list_lock, flags); 4516 return; 4517 } 4518 4519 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4520 goto slab_empty; 4521 4522 /* 4523 * Objects left in the slab. If it was not on the partial list before 4524 * then add it. 4525 */ 4526 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4527 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4528 stat(s, FREE_ADD_PARTIAL); 4529 } 4530 spin_unlock_irqrestore(&n->list_lock, flags); 4531 return; 4532 4533 slab_empty: 4534 if (prior) { 4535 /* 4536 * Slab on the partial list. 4537 */ 4538 remove_partial(n, slab); 4539 stat(s, FREE_REMOVE_PARTIAL); 4540 } 4541 4542 spin_unlock_irqrestore(&n->list_lock, flags); 4543 stat(s, FREE_SLAB); 4544 discard_slab(s, slab); 4545 } 4546 4547 #ifndef CONFIG_SLUB_TINY 4548 /* 4549 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4550 * can perform fastpath freeing without additional function calls. 4551 * 4552 * The fastpath is only possible if we are freeing to the current cpu slab 4553 * of this processor. This typically the case if we have just allocated 4554 * the item before. 4555 * 4556 * If fastpath is not possible then fall back to __slab_free where we deal 4557 * with all sorts of special processing. 4558 * 4559 * Bulk free of a freelist with several objects (all pointing to the 4560 * same slab) possible by specifying head and tail ptr, plus objects 4561 * count (cnt). Bulk free indicated by tail pointer being set. 4562 */ 4563 static __always_inline void do_slab_free(struct kmem_cache *s, 4564 struct slab *slab, void *head, void *tail, 4565 int cnt, unsigned long addr) 4566 { 4567 struct kmem_cache_cpu *c; 4568 unsigned long tid; 4569 void **freelist; 4570 4571 redo: 4572 /* 4573 * Determine the currently cpus per cpu slab. 4574 * The cpu may change afterward. However that does not matter since 4575 * data is retrieved via this pointer. If we are on the same cpu 4576 * during the cmpxchg then the free will succeed. 4577 */ 4578 c = raw_cpu_ptr(s->cpu_slab); 4579 tid = READ_ONCE(c->tid); 4580 4581 /* Same with comment on barrier() in __slab_alloc_node() */ 4582 barrier(); 4583 4584 if (unlikely(slab != c->slab)) { 4585 __slab_free(s, slab, head, tail, cnt, addr); 4586 return; 4587 } 4588 4589 if (USE_LOCKLESS_FAST_PATH()) { 4590 freelist = READ_ONCE(c->freelist); 4591 4592 set_freepointer(s, tail, freelist); 4593 4594 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4595 note_cmpxchg_failure("slab_free", s, tid); 4596 goto redo; 4597 } 4598 } else { 4599 /* Update the free list under the local lock */ 4600 local_lock(&s->cpu_slab->lock); 4601 c = this_cpu_ptr(s->cpu_slab); 4602 if (unlikely(slab != c->slab)) { 4603 local_unlock(&s->cpu_slab->lock); 4604 goto redo; 4605 } 4606 tid = c->tid; 4607 freelist = c->freelist; 4608 4609 set_freepointer(s, tail, freelist); 4610 c->freelist = head; 4611 c->tid = next_tid(tid); 4612 4613 local_unlock(&s->cpu_slab->lock); 4614 } 4615 stat_add(s, FREE_FASTPATH, cnt); 4616 } 4617 #else /* CONFIG_SLUB_TINY */ 4618 static void do_slab_free(struct kmem_cache *s, 4619 struct slab *slab, void *head, void *tail, 4620 int cnt, unsigned long addr) 4621 { 4622 __slab_free(s, slab, head, tail, cnt, addr); 4623 } 4624 #endif /* CONFIG_SLUB_TINY */ 4625 4626 static __fastpath_inline 4627 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4628 unsigned long addr) 4629 { 4630 memcg_slab_free_hook(s, slab, &object, 1); 4631 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4632 4633 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4634 do_slab_free(s, slab, object, object, 1, addr); 4635 } 4636 4637 #ifdef CONFIG_MEMCG 4638 /* Do not inline the rare memcg charging failed path into the allocation path */ 4639 static noinline 4640 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4641 { 4642 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4643 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4644 } 4645 #endif 4646 4647 static __fastpath_inline 4648 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4649 void *tail, void **p, int cnt, unsigned long addr) 4650 { 4651 memcg_slab_free_hook(s, slab, p, cnt); 4652 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4653 /* 4654 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4655 * to remove objects, whose reuse must be delayed. 4656 */ 4657 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4658 do_slab_free(s, slab, head, tail, cnt, addr); 4659 } 4660 4661 #ifdef CONFIG_SLUB_RCU_DEBUG 4662 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) 4663 { 4664 struct rcu_delayed_free *delayed_free = 4665 container_of(rcu_head, struct rcu_delayed_free, head); 4666 void *object = delayed_free->object; 4667 struct slab *slab = virt_to_slab(object); 4668 struct kmem_cache *s; 4669 4670 kfree(delayed_free); 4671 4672 if (WARN_ON(is_kfence_address(object))) 4673 return; 4674 4675 /* find the object and the cache again */ 4676 if (WARN_ON(!slab)) 4677 return; 4678 s = slab->slab_cache; 4679 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) 4680 return; 4681 4682 /* resume freeing */ 4683 if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) 4684 do_slab_free(s, slab, object, object, 1, _THIS_IP_); 4685 } 4686 #endif /* CONFIG_SLUB_RCU_DEBUG */ 4687 4688 #ifdef CONFIG_KASAN_GENERIC 4689 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4690 { 4691 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4692 } 4693 #endif 4694 4695 static inline struct kmem_cache *virt_to_cache(const void *obj) 4696 { 4697 struct slab *slab; 4698 4699 slab = virt_to_slab(obj); 4700 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4701 return NULL; 4702 return slab->slab_cache; 4703 } 4704 4705 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4706 { 4707 struct kmem_cache *cachep; 4708 4709 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4710 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4711 return s; 4712 4713 cachep = virt_to_cache(x); 4714 if (WARN(cachep && cachep != s, 4715 "%s: Wrong slab cache. %s but object is from %s\n", 4716 __func__, s->name, cachep->name)) 4717 print_tracking(cachep, x); 4718 return cachep; 4719 } 4720 4721 /** 4722 * kmem_cache_free - Deallocate an object 4723 * @s: The cache the allocation was from. 4724 * @x: The previously allocated object. 4725 * 4726 * Free an object which was previously allocated from this 4727 * cache. 4728 */ 4729 void kmem_cache_free(struct kmem_cache *s, void *x) 4730 { 4731 s = cache_from_obj(s, x); 4732 if (!s) 4733 return; 4734 trace_kmem_cache_free(_RET_IP_, x, s); 4735 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4736 } 4737 EXPORT_SYMBOL(kmem_cache_free); 4738 4739 static void free_large_kmalloc(struct folio *folio, void *object) 4740 { 4741 unsigned int order = folio_order(folio); 4742 4743 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) { 4744 dump_page(&folio->page, "Not a kmalloc allocation"); 4745 return; 4746 } 4747 4748 if (WARN_ON_ONCE(order == 0)) 4749 pr_warn_once("object pointer: 0x%p\n", object); 4750 4751 kmemleak_free(object); 4752 kasan_kfree_large(object); 4753 kmsan_kfree_large(object); 4754 4755 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4756 -(PAGE_SIZE << order)); 4757 __folio_clear_large_kmalloc(folio); 4758 folio_put(folio); 4759 } 4760 4761 /* 4762 * Given an rcu_head embedded within an object obtained from kvmalloc at an 4763 * offset < 4k, free the object in question. 4764 */ 4765 void kvfree_rcu_cb(struct rcu_head *head) 4766 { 4767 void *obj = head; 4768 struct folio *folio; 4769 struct slab *slab; 4770 struct kmem_cache *s; 4771 void *slab_addr; 4772 4773 if (is_vmalloc_addr(obj)) { 4774 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 4775 vfree(obj); 4776 return; 4777 } 4778 4779 folio = virt_to_folio(obj); 4780 if (!folio_test_slab(folio)) { 4781 /* 4782 * rcu_head offset can be only less than page size so no need to 4783 * consider folio order 4784 */ 4785 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 4786 free_large_kmalloc(folio, obj); 4787 return; 4788 } 4789 4790 slab = folio_slab(folio); 4791 s = slab->slab_cache; 4792 slab_addr = folio_address(folio); 4793 4794 if (is_kfence_address(obj)) { 4795 obj = kfence_object_start(obj); 4796 } else { 4797 unsigned int idx = __obj_to_index(s, slab_addr, obj); 4798 4799 obj = slab_addr + s->size * idx; 4800 obj = fixup_red_left(s, obj); 4801 } 4802 4803 slab_free(s, slab, obj, _RET_IP_); 4804 } 4805 4806 /** 4807 * kfree - free previously allocated memory 4808 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4809 * 4810 * If @object is NULL, no operation is performed. 4811 */ 4812 void kfree(const void *object) 4813 { 4814 struct folio *folio; 4815 struct slab *slab; 4816 struct kmem_cache *s; 4817 void *x = (void *)object; 4818 4819 trace_kfree(_RET_IP_, object); 4820 4821 if (unlikely(ZERO_OR_NULL_PTR(object))) 4822 return; 4823 4824 folio = virt_to_folio(object); 4825 if (unlikely(!folio_test_slab(folio))) { 4826 free_large_kmalloc(folio, (void *)object); 4827 return; 4828 } 4829 4830 slab = folio_slab(folio); 4831 s = slab->slab_cache; 4832 slab_free(s, slab, x, _RET_IP_); 4833 } 4834 EXPORT_SYMBOL(kfree); 4835 4836 static __always_inline __realloc_size(2) void * 4837 __do_krealloc(const void *p, size_t new_size, gfp_t flags) 4838 { 4839 void *ret; 4840 size_t ks = 0; 4841 int orig_size = 0; 4842 struct kmem_cache *s = NULL; 4843 4844 if (unlikely(ZERO_OR_NULL_PTR(p))) 4845 goto alloc_new; 4846 4847 /* Check for double-free. */ 4848 if (!kasan_check_byte(p)) 4849 return NULL; 4850 4851 if (is_kfence_address(p)) { 4852 ks = orig_size = kfence_ksize(p); 4853 } else { 4854 struct folio *folio; 4855 4856 folio = virt_to_folio(p); 4857 if (unlikely(!folio_test_slab(folio))) { 4858 /* Big kmalloc object */ 4859 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE); 4860 WARN_ON(p != folio_address(folio)); 4861 ks = folio_size(folio); 4862 } else { 4863 s = folio_slab(folio)->slab_cache; 4864 orig_size = get_orig_size(s, (void *)p); 4865 ks = s->object_size; 4866 } 4867 } 4868 4869 /* If the old object doesn't fit, allocate a bigger one */ 4870 if (new_size > ks) 4871 goto alloc_new; 4872 4873 /* Zero out spare memory. */ 4874 if (want_init_on_alloc(flags)) { 4875 kasan_disable_current(); 4876 if (orig_size && orig_size < new_size) 4877 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); 4878 else 4879 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); 4880 kasan_enable_current(); 4881 } 4882 4883 /* Setup kmalloc redzone when needed */ 4884 if (s && slub_debug_orig_size(s)) { 4885 set_orig_size(s, (void *)p, new_size); 4886 if (s->flags & SLAB_RED_ZONE && new_size < ks) 4887 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, 4888 SLUB_RED_ACTIVE, ks - new_size); 4889 } 4890 4891 p = kasan_krealloc(p, new_size, flags); 4892 return (void *)p; 4893 4894 alloc_new: 4895 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_); 4896 if (ret && p) { 4897 /* Disable KASAN checks as the object's redzone is accessed. */ 4898 kasan_disable_current(); 4899 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); 4900 kasan_enable_current(); 4901 } 4902 4903 return ret; 4904 } 4905 4906 /** 4907 * krealloc - reallocate memory. The contents will remain unchanged. 4908 * @p: object to reallocate memory for. 4909 * @new_size: how many bytes of memory are required. 4910 * @flags: the type of memory to allocate. 4911 * 4912 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 4913 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 4914 * 4915 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4916 * initial memory allocation, every subsequent call to this API for the same 4917 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4918 * __GFP_ZERO is not fully honored by this API. 4919 * 4920 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket 4921 * size of an allocation (but not the exact size it was allocated with) and 4922 * hence implements the following semantics for shrinking and growing buffers 4923 * with __GFP_ZERO. 4924 * 4925 * new bucket 4926 * 0 size size 4927 * |--------|----------------| 4928 * | keep | zero | 4929 * 4930 * Otherwise, the original allocation size 'orig_size' could be used to 4931 * precisely clear the requested size, and the new size will also be stored 4932 * as the new 'orig_size'. 4933 * 4934 * In any case, the contents of the object pointed to are preserved up to the 4935 * lesser of the new and old sizes. 4936 * 4937 * Return: pointer to the allocated memory or %NULL in case of error 4938 */ 4939 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags) 4940 { 4941 void *ret; 4942 4943 if (unlikely(!new_size)) { 4944 kfree(p); 4945 return ZERO_SIZE_PTR; 4946 } 4947 4948 ret = __do_krealloc(p, new_size, flags); 4949 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 4950 kfree(p); 4951 4952 return ret; 4953 } 4954 EXPORT_SYMBOL(krealloc_noprof); 4955 4956 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) 4957 { 4958 /* 4959 * We want to attempt a large physically contiguous block first because 4960 * it is less likely to fragment multiple larger blocks and therefore 4961 * contribute to a long term fragmentation less than vmalloc fallback. 4962 * However make sure that larger requests are not too disruptive - no 4963 * OOM killer and no allocation failure warnings as we have a fallback. 4964 */ 4965 if (size > PAGE_SIZE) { 4966 flags |= __GFP_NOWARN; 4967 4968 if (!(flags & __GFP_RETRY_MAYFAIL)) 4969 flags |= __GFP_NORETRY; 4970 4971 /* nofail semantic is implemented by the vmalloc fallback */ 4972 flags &= ~__GFP_NOFAIL; 4973 } 4974 4975 return flags; 4976 } 4977 4978 /** 4979 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 4980 * failure, fall back to non-contiguous (vmalloc) allocation. 4981 * @size: size of the request. 4982 * @b: which set of kmalloc buckets to allocate from. 4983 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 4984 * @node: numa node to allocate from 4985 * 4986 * Uses kmalloc to get the memory but if the allocation fails then falls back 4987 * to the vmalloc allocator. Use kvfree for freeing the memory. 4988 * 4989 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 4990 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 4991 * preferable to the vmalloc fallback, due to visible performance drawbacks. 4992 * 4993 * Return: pointer to the allocated memory of %NULL in case of failure 4994 */ 4995 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4996 { 4997 void *ret; 4998 4999 /* 5000 * It doesn't really make sense to fallback to vmalloc for sub page 5001 * requests 5002 */ 5003 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), 5004 kmalloc_gfp_adjust(flags, size), 5005 node, _RET_IP_); 5006 if (ret || size <= PAGE_SIZE) 5007 return ret; 5008 5009 /* non-sleeping allocations are not supported by vmalloc */ 5010 if (!gfpflags_allow_blocking(flags)) 5011 return NULL; 5012 5013 /* Don't even allow crazy sizes */ 5014 if (unlikely(size > INT_MAX)) { 5015 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 5016 return NULL; 5017 } 5018 5019 /* 5020 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 5021 * since the callers already cannot assume anything 5022 * about the resulting pointer, and cannot play 5023 * protection games. 5024 */ 5025 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 5026 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 5027 node, __builtin_return_address(0)); 5028 } 5029 EXPORT_SYMBOL(__kvmalloc_node_noprof); 5030 5031 /** 5032 * kvfree() - Free memory. 5033 * @addr: Pointer to allocated memory. 5034 * 5035 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 5036 * It is slightly more efficient to use kfree() or vfree() if you are certain 5037 * that you know which one to use. 5038 * 5039 * Context: Either preemptible task context or not-NMI interrupt. 5040 */ 5041 void kvfree(const void *addr) 5042 { 5043 if (is_vmalloc_addr(addr)) 5044 vfree(addr); 5045 else 5046 kfree(addr); 5047 } 5048 EXPORT_SYMBOL(kvfree); 5049 5050 /** 5051 * kvfree_sensitive - Free a data object containing sensitive information. 5052 * @addr: address of the data object to be freed. 5053 * @len: length of the data object. 5054 * 5055 * Use the special memzero_explicit() function to clear the content of a 5056 * kvmalloc'ed object containing sensitive data to make sure that the 5057 * compiler won't optimize out the data clearing. 5058 */ 5059 void kvfree_sensitive(const void *addr, size_t len) 5060 { 5061 if (likely(!ZERO_OR_NULL_PTR(addr))) { 5062 memzero_explicit((void *)addr, len); 5063 kvfree(addr); 5064 } 5065 } 5066 EXPORT_SYMBOL(kvfree_sensitive); 5067 5068 /** 5069 * kvrealloc - reallocate memory; contents remain unchanged 5070 * @p: object to reallocate memory for 5071 * @size: the size to reallocate 5072 * @flags: the flags for the page level allocator 5073 * 5074 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 5075 * and @p is not a %NULL pointer, the object pointed to is freed. 5076 * 5077 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 5078 * initial memory allocation, every subsequent call to this API for the same 5079 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 5080 * __GFP_ZERO is not fully honored by this API. 5081 * 5082 * In any case, the contents of the object pointed to are preserved up to the 5083 * lesser of the new and old sizes. 5084 * 5085 * This function must not be called concurrently with itself or kvfree() for the 5086 * same memory allocation. 5087 * 5088 * Return: pointer to the allocated memory or %NULL in case of error 5089 */ 5090 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) 5091 { 5092 void *n; 5093 5094 if (is_vmalloc_addr(p)) 5095 return vrealloc_noprof(p, size, flags); 5096 5097 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size)); 5098 if (!n) { 5099 /* We failed to krealloc(), fall back to kvmalloc(). */ 5100 n = kvmalloc_noprof(size, flags); 5101 if (!n) 5102 return NULL; 5103 5104 if (p) { 5105 /* We already know that `p` is not a vmalloc address. */ 5106 kasan_disable_current(); 5107 memcpy(n, kasan_reset_tag(p), ksize(p)); 5108 kasan_enable_current(); 5109 5110 kfree(p); 5111 } 5112 } 5113 5114 return n; 5115 } 5116 EXPORT_SYMBOL(kvrealloc_noprof); 5117 5118 struct detached_freelist { 5119 struct slab *slab; 5120 void *tail; 5121 void *freelist; 5122 int cnt; 5123 struct kmem_cache *s; 5124 }; 5125 5126 /* 5127 * This function progressively scans the array with free objects (with 5128 * a limited look ahead) and extract objects belonging to the same 5129 * slab. It builds a detached freelist directly within the given 5130 * slab/objects. This can happen without any need for 5131 * synchronization, because the objects are owned by running process. 5132 * The freelist is build up as a single linked list in the objects. 5133 * The idea is, that this detached freelist can then be bulk 5134 * transferred to the real freelist(s), but only requiring a single 5135 * synchronization primitive. Look ahead in the array is limited due 5136 * to performance reasons. 5137 */ 5138 static inline 5139 int build_detached_freelist(struct kmem_cache *s, size_t size, 5140 void **p, struct detached_freelist *df) 5141 { 5142 int lookahead = 3; 5143 void *object; 5144 struct folio *folio; 5145 size_t same; 5146 5147 object = p[--size]; 5148 folio = virt_to_folio(object); 5149 if (!s) { 5150 /* Handle kalloc'ed objects */ 5151 if (unlikely(!folio_test_slab(folio))) { 5152 free_large_kmalloc(folio, object); 5153 df->slab = NULL; 5154 return size; 5155 } 5156 /* Derive kmem_cache from object */ 5157 df->slab = folio_slab(folio); 5158 df->s = df->slab->slab_cache; 5159 } else { 5160 df->slab = folio_slab(folio); 5161 df->s = cache_from_obj(s, object); /* Support for memcg */ 5162 } 5163 5164 /* Start new detached freelist */ 5165 df->tail = object; 5166 df->freelist = object; 5167 df->cnt = 1; 5168 5169 if (is_kfence_address(object)) 5170 return size; 5171 5172 set_freepointer(df->s, object, NULL); 5173 5174 same = size; 5175 while (size) { 5176 object = p[--size]; 5177 /* df->slab is always set at this point */ 5178 if (df->slab == virt_to_slab(object)) { 5179 /* Opportunity build freelist */ 5180 set_freepointer(df->s, object, df->freelist); 5181 df->freelist = object; 5182 df->cnt++; 5183 same--; 5184 if (size != same) 5185 swap(p[size], p[same]); 5186 continue; 5187 } 5188 5189 /* Limit look ahead search */ 5190 if (!--lookahead) 5191 break; 5192 } 5193 5194 return same; 5195 } 5196 5197 /* 5198 * Internal bulk free of objects that were not initialised by the post alloc 5199 * hooks and thus should not be processed by the free hooks 5200 */ 5201 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 5202 { 5203 if (!size) 5204 return; 5205 5206 do { 5207 struct detached_freelist df; 5208 5209 size = build_detached_freelist(s, size, p, &df); 5210 if (!df.slab) 5211 continue; 5212 5213 if (kfence_free(df.freelist)) 5214 continue; 5215 5216 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 5217 _RET_IP_); 5218 } while (likely(size)); 5219 } 5220 5221 /* Note that interrupts must be enabled when calling this function. */ 5222 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 5223 { 5224 if (!size) 5225 return; 5226 5227 do { 5228 struct detached_freelist df; 5229 5230 size = build_detached_freelist(s, size, p, &df); 5231 if (!df.slab) 5232 continue; 5233 5234 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 5235 df.cnt, _RET_IP_); 5236 } while (likely(size)); 5237 } 5238 EXPORT_SYMBOL(kmem_cache_free_bulk); 5239 5240 #ifndef CONFIG_SLUB_TINY 5241 static inline 5242 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 5243 void **p) 5244 { 5245 struct kmem_cache_cpu *c; 5246 unsigned long irqflags; 5247 int i; 5248 5249 /* 5250 * Drain objects in the per cpu slab, while disabling local 5251 * IRQs, which protects against PREEMPT and interrupts 5252 * handlers invoking normal fastpath. 5253 */ 5254 c = slub_get_cpu_ptr(s->cpu_slab); 5255 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5256 5257 for (i = 0; i < size; i++) { 5258 void *object = kfence_alloc(s, s->object_size, flags); 5259 5260 if (unlikely(object)) { 5261 p[i] = object; 5262 continue; 5263 } 5264 5265 object = c->freelist; 5266 if (unlikely(!object)) { 5267 /* 5268 * We may have removed an object from c->freelist using 5269 * the fastpath in the previous iteration; in that case, 5270 * c->tid has not been bumped yet. 5271 * Since ___slab_alloc() may reenable interrupts while 5272 * allocating memory, we should bump c->tid now. 5273 */ 5274 c->tid = next_tid(c->tid); 5275 5276 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5277 5278 /* 5279 * Invoking slow path likely have side-effect 5280 * of re-populating per CPU c->freelist 5281 */ 5282 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 5283 _RET_IP_, c, s->object_size); 5284 if (unlikely(!p[i])) 5285 goto error; 5286 5287 c = this_cpu_ptr(s->cpu_slab); 5288 maybe_wipe_obj_freeptr(s, p[i]); 5289 5290 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5291 5292 continue; /* goto for-loop */ 5293 } 5294 c->freelist = get_freepointer(s, object); 5295 p[i] = object; 5296 maybe_wipe_obj_freeptr(s, p[i]); 5297 stat(s, ALLOC_FASTPATH); 5298 } 5299 c->tid = next_tid(c->tid); 5300 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5301 slub_put_cpu_ptr(s->cpu_slab); 5302 5303 return i; 5304 5305 error: 5306 slub_put_cpu_ptr(s->cpu_slab); 5307 __kmem_cache_free_bulk(s, i, p); 5308 return 0; 5309 5310 } 5311 #else /* CONFIG_SLUB_TINY */ 5312 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 5313 size_t size, void **p) 5314 { 5315 int i; 5316 5317 for (i = 0; i < size; i++) { 5318 void *object = kfence_alloc(s, s->object_size, flags); 5319 5320 if (unlikely(object)) { 5321 p[i] = object; 5322 continue; 5323 } 5324 5325 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 5326 _RET_IP_, s->object_size); 5327 if (unlikely(!p[i])) 5328 goto error; 5329 5330 maybe_wipe_obj_freeptr(s, p[i]); 5331 } 5332 5333 return i; 5334 5335 error: 5336 __kmem_cache_free_bulk(s, i, p); 5337 return 0; 5338 } 5339 #endif /* CONFIG_SLUB_TINY */ 5340 5341 /* Note that interrupts must be enabled when calling this function. */ 5342 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 5343 void **p) 5344 { 5345 int i; 5346 5347 if (!size) 5348 return 0; 5349 5350 s = slab_pre_alloc_hook(s, flags); 5351 if (unlikely(!s)) 5352 return 0; 5353 5354 i = __kmem_cache_alloc_bulk(s, flags, size, p); 5355 if (unlikely(i == 0)) 5356 return 0; 5357 5358 /* 5359 * memcg and kmem_cache debug support and memory initialization. 5360 * Done outside of the IRQ disabled fastpath loop. 5361 */ 5362 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 5363 slab_want_init_on_alloc(flags, s), s->object_size))) { 5364 return 0; 5365 } 5366 return i; 5367 } 5368 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 5369 5370 5371 /* 5372 * Object placement in a slab is made very easy because we always start at 5373 * offset 0. If we tune the size of the object to the alignment then we can 5374 * get the required alignment by putting one properly sized object after 5375 * another. 5376 * 5377 * Notice that the allocation order determines the sizes of the per cpu 5378 * caches. Each processor has always one slab available for allocations. 5379 * Increasing the allocation order reduces the number of times that slabs 5380 * must be moved on and off the partial lists and is therefore a factor in 5381 * locking overhead. 5382 */ 5383 5384 /* 5385 * Minimum / Maximum order of slab pages. This influences locking overhead 5386 * and slab fragmentation. A higher order reduces the number of partial slabs 5387 * and increases the number of allocations possible without having to 5388 * take the list_lock. 5389 */ 5390 static unsigned int slub_min_order; 5391 static unsigned int slub_max_order = 5392 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 5393 static unsigned int slub_min_objects; 5394 5395 /* 5396 * Calculate the order of allocation given an slab object size. 5397 * 5398 * The order of allocation has significant impact on performance and other 5399 * system components. Generally order 0 allocations should be preferred since 5400 * order 0 does not cause fragmentation in the page allocator. Larger objects 5401 * be problematic to put into order 0 slabs because there may be too much 5402 * unused space left. We go to a higher order if more than 1/16th of the slab 5403 * would be wasted. 5404 * 5405 * In order to reach satisfactory performance we must ensure that a minimum 5406 * number of objects is in one slab. Otherwise we may generate too much 5407 * activity on the partial lists which requires taking the list_lock. This is 5408 * less a concern for large slabs though which are rarely used. 5409 * 5410 * slab_max_order specifies the order where we begin to stop considering the 5411 * number of objects in a slab as critical. If we reach slab_max_order then 5412 * we try to keep the page order as low as possible. So we accept more waste 5413 * of space in favor of a small page order. 5414 * 5415 * Higher order allocations also allow the placement of more objects in a 5416 * slab and thereby reduce object handling overhead. If the user has 5417 * requested a higher minimum order then we start with that one instead of 5418 * the smallest order which will fit the object. 5419 */ 5420 static inline unsigned int calc_slab_order(unsigned int size, 5421 unsigned int min_order, unsigned int max_order, 5422 unsigned int fract_leftover) 5423 { 5424 unsigned int order; 5425 5426 for (order = min_order; order <= max_order; order++) { 5427 5428 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 5429 unsigned int rem; 5430 5431 rem = slab_size % size; 5432 5433 if (rem <= slab_size / fract_leftover) 5434 break; 5435 } 5436 5437 return order; 5438 } 5439 5440 static inline int calculate_order(unsigned int size) 5441 { 5442 unsigned int order; 5443 unsigned int min_objects; 5444 unsigned int max_objects; 5445 unsigned int min_order; 5446 5447 min_objects = slub_min_objects; 5448 if (!min_objects) { 5449 /* 5450 * Some architectures will only update present cpus when 5451 * onlining them, so don't trust the number if it's just 1. But 5452 * we also don't want to use nr_cpu_ids always, as on some other 5453 * architectures, there can be many possible cpus, but never 5454 * onlined. Here we compromise between trying to avoid too high 5455 * order on systems that appear larger than they are, and too 5456 * low order on systems that appear smaller than they are. 5457 */ 5458 unsigned int nr_cpus = num_present_cpus(); 5459 if (nr_cpus <= 1) 5460 nr_cpus = nr_cpu_ids; 5461 min_objects = 4 * (fls(nr_cpus) + 1); 5462 } 5463 /* min_objects can't be 0 because get_order(0) is undefined */ 5464 max_objects = max(order_objects(slub_max_order, size), 1U); 5465 min_objects = min(min_objects, max_objects); 5466 5467 min_order = max_t(unsigned int, slub_min_order, 5468 get_order(min_objects * size)); 5469 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 5470 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 5471 5472 /* 5473 * Attempt to find best configuration for a slab. This works by first 5474 * attempting to generate a layout with the best possible configuration 5475 * and backing off gradually. 5476 * 5477 * We start with accepting at most 1/16 waste and try to find the 5478 * smallest order from min_objects-derived/slab_min_order up to 5479 * slab_max_order that will satisfy the constraint. Note that increasing 5480 * the order can only result in same or less fractional waste, not more. 5481 * 5482 * If that fails, we increase the acceptable fraction of waste and try 5483 * again. The last iteration with fraction of 1/2 would effectively 5484 * accept any waste and give us the order determined by min_objects, as 5485 * long as at least single object fits within slab_max_order. 5486 */ 5487 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 5488 order = calc_slab_order(size, min_order, slub_max_order, 5489 fraction); 5490 if (order <= slub_max_order) 5491 return order; 5492 } 5493 5494 /* 5495 * Doh this slab cannot be placed using slab_max_order. 5496 */ 5497 order = get_order(size); 5498 if (order <= MAX_PAGE_ORDER) 5499 return order; 5500 return -ENOSYS; 5501 } 5502 5503 static void 5504 init_kmem_cache_node(struct kmem_cache_node *n) 5505 { 5506 n->nr_partial = 0; 5507 spin_lock_init(&n->list_lock); 5508 INIT_LIST_HEAD(&n->partial); 5509 #ifdef CONFIG_SLUB_DEBUG 5510 atomic_long_set(&n->nr_slabs, 0); 5511 atomic_long_set(&n->total_objects, 0); 5512 INIT_LIST_HEAD(&n->full); 5513 #endif 5514 } 5515 5516 #ifndef CONFIG_SLUB_TINY 5517 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5518 { 5519 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 5520 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 5521 sizeof(struct kmem_cache_cpu)); 5522 5523 /* 5524 * Must align to double word boundary for the double cmpxchg 5525 * instructions to work; see __pcpu_double_call_return_bool(). 5526 */ 5527 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 5528 2 * sizeof(void *)); 5529 5530 if (!s->cpu_slab) 5531 return 0; 5532 5533 init_kmem_cache_cpus(s); 5534 5535 return 1; 5536 } 5537 #else 5538 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5539 { 5540 return 1; 5541 } 5542 #endif /* CONFIG_SLUB_TINY */ 5543 5544 static struct kmem_cache *kmem_cache_node; 5545 5546 /* 5547 * No kmalloc_node yet so do it by hand. We know that this is the first 5548 * slab on the node for this slabcache. There are no concurrent accesses 5549 * possible. 5550 * 5551 * Note that this function only works on the kmem_cache_node 5552 * when allocating for the kmem_cache_node. This is used for bootstrapping 5553 * memory on a fresh node that has no slab structures yet. 5554 */ 5555 static void early_kmem_cache_node_alloc(int node) 5556 { 5557 struct slab *slab; 5558 struct kmem_cache_node *n; 5559 5560 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5561 5562 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5563 5564 BUG_ON(!slab); 5565 if (slab_nid(slab) != node) { 5566 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5567 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5568 } 5569 5570 n = slab->freelist; 5571 BUG_ON(!n); 5572 #ifdef CONFIG_SLUB_DEBUG 5573 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5574 #endif 5575 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5576 slab->freelist = get_freepointer(kmem_cache_node, n); 5577 slab->inuse = 1; 5578 kmem_cache_node->node[node] = n; 5579 init_kmem_cache_node(n); 5580 inc_slabs_node(kmem_cache_node, node, slab->objects); 5581 5582 /* 5583 * No locks need to be taken here as it has just been 5584 * initialized and there is no concurrent access. 5585 */ 5586 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5587 } 5588 5589 static void free_kmem_cache_nodes(struct kmem_cache *s) 5590 { 5591 int node; 5592 struct kmem_cache_node *n; 5593 5594 for_each_kmem_cache_node(s, node, n) { 5595 s->node[node] = NULL; 5596 kmem_cache_free(kmem_cache_node, n); 5597 } 5598 } 5599 5600 void __kmem_cache_release(struct kmem_cache *s) 5601 { 5602 cache_random_seq_destroy(s); 5603 #ifndef CONFIG_SLUB_TINY 5604 free_percpu(s->cpu_slab); 5605 #endif 5606 free_kmem_cache_nodes(s); 5607 } 5608 5609 static int init_kmem_cache_nodes(struct kmem_cache *s) 5610 { 5611 int node; 5612 5613 for_each_node_mask(node, slab_nodes) { 5614 struct kmem_cache_node *n; 5615 5616 if (slab_state == DOWN) { 5617 early_kmem_cache_node_alloc(node); 5618 continue; 5619 } 5620 n = kmem_cache_alloc_node(kmem_cache_node, 5621 GFP_KERNEL, node); 5622 5623 if (!n) { 5624 free_kmem_cache_nodes(s); 5625 return 0; 5626 } 5627 5628 init_kmem_cache_node(n); 5629 s->node[node] = n; 5630 } 5631 return 1; 5632 } 5633 5634 static void set_cpu_partial(struct kmem_cache *s) 5635 { 5636 #ifdef CONFIG_SLUB_CPU_PARTIAL 5637 unsigned int nr_objects; 5638 5639 /* 5640 * cpu_partial determined the maximum number of objects kept in the 5641 * per cpu partial lists of a processor. 5642 * 5643 * Per cpu partial lists mainly contain slabs that just have one 5644 * object freed. If they are used for allocation then they can be 5645 * filled up again with minimal effort. The slab will never hit the 5646 * per node partial lists and therefore no locking will be required. 5647 * 5648 * For backwards compatibility reasons, this is determined as number 5649 * of objects, even though we now limit maximum number of pages, see 5650 * slub_set_cpu_partial() 5651 */ 5652 if (!kmem_cache_has_cpu_partial(s)) 5653 nr_objects = 0; 5654 else if (s->size >= PAGE_SIZE) 5655 nr_objects = 6; 5656 else if (s->size >= 1024) 5657 nr_objects = 24; 5658 else if (s->size >= 256) 5659 nr_objects = 52; 5660 else 5661 nr_objects = 120; 5662 5663 slub_set_cpu_partial(s, nr_objects); 5664 #endif 5665 } 5666 5667 /* 5668 * calculate_sizes() determines the order and the distribution of data within 5669 * a slab object. 5670 */ 5671 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) 5672 { 5673 slab_flags_t flags = s->flags; 5674 unsigned int size = s->object_size; 5675 unsigned int order; 5676 5677 /* 5678 * Round up object size to the next word boundary. We can only 5679 * place the free pointer at word boundaries and this determines 5680 * the possible location of the free pointer. 5681 */ 5682 size = ALIGN(size, sizeof(void *)); 5683 5684 #ifdef CONFIG_SLUB_DEBUG 5685 /* 5686 * Determine if we can poison the object itself. If the user of 5687 * the slab may touch the object after free or before allocation 5688 * then we should never poison the object itself. 5689 */ 5690 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5691 !s->ctor) 5692 s->flags |= __OBJECT_POISON; 5693 else 5694 s->flags &= ~__OBJECT_POISON; 5695 5696 5697 /* 5698 * If we are Redzoning then check if there is some space between the 5699 * end of the object and the free pointer. If not then add an 5700 * additional word to have some bytes to store Redzone information. 5701 */ 5702 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5703 size += sizeof(void *); 5704 #endif 5705 5706 /* 5707 * With that we have determined the number of bytes in actual use 5708 * by the object and redzoning. 5709 */ 5710 s->inuse = size; 5711 5712 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || 5713 (flags & SLAB_POISON) || s->ctor || 5714 ((flags & SLAB_RED_ZONE) && 5715 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5716 /* 5717 * Relocate free pointer after the object if it is not 5718 * permitted to overwrite the first word of the object on 5719 * kmem_cache_free. 5720 * 5721 * This is the case if we do RCU, have a constructor or 5722 * destructor, are poisoning the objects, or are 5723 * redzoning an object smaller than sizeof(void *) or are 5724 * redzoning an object with slub_debug_orig_size() enabled, 5725 * in which case the right redzone may be extended. 5726 * 5727 * The assumption that s->offset >= s->inuse means free 5728 * pointer is outside of the object is used in the 5729 * freeptr_outside_object() function. If that is no 5730 * longer true, the function needs to be modified. 5731 */ 5732 s->offset = size; 5733 size += sizeof(void *); 5734 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { 5735 s->offset = args->freeptr_offset; 5736 } else { 5737 /* 5738 * Store freelist pointer near middle of object to keep 5739 * it away from the edges of the object to avoid small 5740 * sized over/underflows from neighboring allocations. 5741 */ 5742 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5743 } 5744 5745 #ifdef CONFIG_SLUB_DEBUG 5746 if (flags & SLAB_STORE_USER) { 5747 /* 5748 * Need to store information about allocs and frees after 5749 * the object. 5750 */ 5751 size += 2 * sizeof(struct track); 5752 5753 /* Save the original kmalloc request size */ 5754 if (flags & SLAB_KMALLOC) 5755 size += sizeof(unsigned int); 5756 } 5757 #endif 5758 5759 kasan_cache_create(s, &size, &s->flags); 5760 #ifdef CONFIG_SLUB_DEBUG 5761 if (flags & SLAB_RED_ZONE) { 5762 /* 5763 * Add some empty padding so that we can catch 5764 * overwrites from earlier objects rather than let 5765 * tracking information or the free pointer be 5766 * corrupted if a user writes before the start 5767 * of the object. 5768 */ 5769 size += sizeof(void *); 5770 5771 s->red_left_pad = sizeof(void *); 5772 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5773 size += s->red_left_pad; 5774 } 5775 #endif 5776 5777 /* 5778 * SLUB stores one object immediately after another beginning from 5779 * offset 0. In order to align the objects we have to simply size 5780 * each object to conform to the alignment. 5781 */ 5782 size = ALIGN(size, s->align); 5783 s->size = size; 5784 s->reciprocal_size = reciprocal_value(size); 5785 order = calculate_order(size); 5786 5787 if ((int)order < 0) 5788 return 0; 5789 5790 s->allocflags = __GFP_COMP; 5791 5792 if (s->flags & SLAB_CACHE_DMA) 5793 s->allocflags |= GFP_DMA; 5794 5795 if (s->flags & SLAB_CACHE_DMA32) 5796 s->allocflags |= GFP_DMA32; 5797 5798 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5799 s->allocflags |= __GFP_RECLAIMABLE; 5800 5801 /* 5802 * Determine the number of objects per slab 5803 */ 5804 s->oo = oo_make(order, size); 5805 s->min = oo_make(get_order(size), size); 5806 5807 return !!oo_objects(s->oo); 5808 } 5809 5810 static void list_slab_objects(struct kmem_cache *s, struct slab *slab) 5811 { 5812 #ifdef CONFIG_SLUB_DEBUG 5813 void *addr = slab_address(slab); 5814 void *p; 5815 5816 if (!slab_add_kunit_errors()) 5817 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()"); 5818 5819 spin_lock(&object_map_lock); 5820 __fill_map(object_map, s, slab); 5821 5822 for_each_object(p, s, addr, slab->objects) { 5823 5824 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5825 if (slab_add_kunit_errors()) 5826 continue; 5827 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5828 print_tracking(s, p); 5829 } 5830 } 5831 spin_unlock(&object_map_lock); 5832 5833 __slab_err(slab); 5834 #endif 5835 } 5836 5837 /* 5838 * Attempt to free all partial slabs on a node. 5839 * This is called from __kmem_cache_shutdown(). We must take list_lock 5840 * because sysfs file might still access partial list after the shutdowning. 5841 */ 5842 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5843 { 5844 LIST_HEAD(discard); 5845 struct slab *slab, *h; 5846 5847 BUG_ON(irqs_disabled()); 5848 spin_lock_irq(&n->list_lock); 5849 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5850 if (!slab->inuse) { 5851 remove_partial(n, slab); 5852 list_add(&slab->slab_list, &discard); 5853 } else { 5854 list_slab_objects(s, slab); 5855 } 5856 } 5857 spin_unlock_irq(&n->list_lock); 5858 5859 list_for_each_entry_safe(slab, h, &discard, slab_list) 5860 discard_slab(s, slab); 5861 } 5862 5863 bool __kmem_cache_empty(struct kmem_cache *s) 5864 { 5865 int node; 5866 struct kmem_cache_node *n; 5867 5868 for_each_kmem_cache_node(s, node, n) 5869 if (n->nr_partial || node_nr_slabs(n)) 5870 return false; 5871 return true; 5872 } 5873 5874 /* 5875 * Release all resources used by a slab cache. 5876 */ 5877 int __kmem_cache_shutdown(struct kmem_cache *s) 5878 { 5879 int node; 5880 struct kmem_cache_node *n; 5881 5882 flush_all_cpus_locked(s); 5883 /* Attempt to free all objects */ 5884 for_each_kmem_cache_node(s, node, n) { 5885 free_partial(s, n); 5886 if (n->nr_partial || node_nr_slabs(n)) 5887 return 1; 5888 } 5889 return 0; 5890 } 5891 5892 #ifdef CONFIG_PRINTK 5893 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5894 { 5895 void *base; 5896 int __maybe_unused i; 5897 unsigned int objnr; 5898 void *objp; 5899 void *objp0; 5900 struct kmem_cache *s = slab->slab_cache; 5901 struct track __maybe_unused *trackp; 5902 5903 kpp->kp_ptr = object; 5904 kpp->kp_slab = slab; 5905 kpp->kp_slab_cache = s; 5906 base = slab_address(slab); 5907 objp0 = kasan_reset_tag(object); 5908 #ifdef CONFIG_SLUB_DEBUG 5909 objp = restore_red_left(s, objp0); 5910 #else 5911 objp = objp0; 5912 #endif 5913 objnr = obj_to_index(s, slab, objp); 5914 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5915 objp = base + s->size * objnr; 5916 kpp->kp_objp = objp; 5917 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5918 || (objp - base) % s->size) || 5919 !(s->flags & SLAB_STORE_USER)) 5920 return; 5921 #ifdef CONFIG_SLUB_DEBUG 5922 objp = fixup_red_left(s, objp); 5923 trackp = get_track(s, objp, TRACK_ALLOC); 5924 kpp->kp_ret = (void *)trackp->addr; 5925 #ifdef CONFIG_STACKDEPOT 5926 { 5927 depot_stack_handle_t handle; 5928 unsigned long *entries; 5929 unsigned int nr_entries; 5930 5931 handle = READ_ONCE(trackp->handle); 5932 if (handle) { 5933 nr_entries = stack_depot_fetch(handle, &entries); 5934 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5935 kpp->kp_stack[i] = (void *)entries[i]; 5936 } 5937 5938 trackp = get_track(s, objp, TRACK_FREE); 5939 handle = READ_ONCE(trackp->handle); 5940 if (handle) { 5941 nr_entries = stack_depot_fetch(handle, &entries); 5942 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5943 kpp->kp_free_stack[i] = (void *)entries[i]; 5944 } 5945 } 5946 #endif 5947 #endif 5948 } 5949 #endif 5950 5951 /******************************************************************** 5952 * Kmalloc subsystem 5953 *******************************************************************/ 5954 5955 static int __init setup_slub_min_order(char *str) 5956 { 5957 get_option(&str, (int *)&slub_min_order); 5958 5959 if (slub_min_order > slub_max_order) 5960 slub_max_order = slub_min_order; 5961 5962 return 1; 5963 } 5964 5965 __setup("slab_min_order=", setup_slub_min_order); 5966 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5967 5968 5969 static int __init setup_slub_max_order(char *str) 5970 { 5971 get_option(&str, (int *)&slub_max_order); 5972 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5973 5974 if (slub_min_order > slub_max_order) 5975 slub_min_order = slub_max_order; 5976 5977 return 1; 5978 } 5979 5980 __setup("slab_max_order=", setup_slub_max_order); 5981 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5982 5983 static int __init setup_slub_min_objects(char *str) 5984 { 5985 get_option(&str, (int *)&slub_min_objects); 5986 5987 return 1; 5988 } 5989 5990 __setup("slab_min_objects=", setup_slub_min_objects); 5991 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5992 5993 #ifdef CONFIG_NUMA 5994 static int __init setup_slab_strict_numa(char *str) 5995 { 5996 if (nr_node_ids > 1) { 5997 static_branch_enable(&strict_numa); 5998 pr_info("SLUB: Strict NUMA enabled.\n"); 5999 } else { 6000 pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); 6001 } 6002 6003 return 1; 6004 } 6005 6006 __setup("slab_strict_numa", setup_slab_strict_numa); 6007 #endif 6008 6009 6010 #ifdef CONFIG_HARDENED_USERCOPY 6011 /* 6012 * Rejects incorrectly sized objects and objects that are to be copied 6013 * to/from userspace but do not fall entirely within the containing slab 6014 * cache's usercopy region. 6015 * 6016 * Returns NULL if check passes, otherwise const char * to name of cache 6017 * to indicate an error. 6018 */ 6019 void __check_heap_object(const void *ptr, unsigned long n, 6020 const struct slab *slab, bool to_user) 6021 { 6022 struct kmem_cache *s; 6023 unsigned int offset; 6024 bool is_kfence = is_kfence_address(ptr); 6025 6026 ptr = kasan_reset_tag(ptr); 6027 6028 /* Find object and usable object size. */ 6029 s = slab->slab_cache; 6030 6031 /* Reject impossible pointers. */ 6032 if (ptr < slab_address(slab)) 6033 usercopy_abort("SLUB object not in SLUB page?!", NULL, 6034 to_user, 0, n); 6035 6036 /* Find offset within object. */ 6037 if (is_kfence) 6038 offset = ptr - kfence_object_start(ptr); 6039 else 6040 offset = (ptr - slab_address(slab)) % s->size; 6041 6042 /* Adjust for redzone and reject if within the redzone. */ 6043 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 6044 if (offset < s->red_left_pad) 6045 usercopy_abort("SLUB object in left red zone", 6046 s->name, to_user, offset, n); 6047 offset -= s->red_left_pad; 6048 } 6049 6050 /* Allow address range falling entirely within usercopy region. */ 6051 if (offset >= s->useroffset && 6052 offset - s->useroffset <= s->usersize && 6053 n <= s->useroffset - offset + s->usersize) 6054 return; 6055 6056 usercopy_abort("SLUB object", s->name, to_user, offset, n); 6057 } 6058 #endif /* CONFIG_HARDENED_USERCOPY */ 6059 6060 #define SHRINK_PROMOTE_MAX 32 6061 6062 /* 6063 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 6064 * up most to the head of the partial lists. New allocations will then 6065 * fill those up and thus they can be removed from the partial lists. 6066 * 6067 * The slabs with the least items are placed last. This results in them 6068 * being allocated from last increasing the chance that the last objects 6069 * are freed in them. 6070 */ 6071 static int __kmem_cache_do_shrink(struct kmem_cache *s) 6072 { 6073 int node; 6074 int i; 6075 struct kmem_cache_node *n; 6076 struct slab *slab; 6077 struct slab *t; 6078 struct list_head discard; 6079 struct list_head promote[SHRINK_PROMOTE_MAX]; 6080 unsigned long flags; 6081 int ret = 0; 6082 6083 for_each_kmem_cache_node(s, node, n) { 6084 INIT_LIST_HEAD(&discard); 6085 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 6086 INIT_LIST_HEAD(promote + i); 6087 6088 spin_lock_irqsave(&n->list_lock, flags); 6089 6090 /* 6091 * Build lists of slabs to discard or promote. 6092 * 6093 * Note that concurrent frees may occur while we hold the 6094 * list_lock. slab->inuse here is the upper limit. 6095 */ 6096 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 6097 int free = slab->objects - slab->inuse; 6098 6099 /* Do not reread slab->inuse */ 6100 barrier(); 6101 6102 /* We do not keep full slabs on the list */ 6103 BUG_ON(free <= 0); 6104 6105 if (free == slab->objects) { 6106 list_move(&slab->slab_list, &discard); 6107 slab_clear_node_partial(slab); 6108 n->nr_partial--; 6109 dec_slabs_node(s, node, slab->objects); 6110 } else if (free <= SHRINK_PROMOTE_MAX) 6111 list_move(&slab->slab_list, promote + free - 1); 6112 } 6113 6114 /* 6115 * Promote the slabs filled up most to the head of the 6116 * partial list. 6117 */ 6118 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 6119 list_splice(promote + i, &n->partial); 6120 6121 spin_unlock_irqrestore(&n->list_lock, flags); 6122 6123 /* Release empty slabs */ 6124 list_for_each_entry_safe(slab, t, &discard, slab_list) 6125 free_slab(s, slab); 6126 6127 if (node_nr_slabs(n)) 6128 ret = 1; 6129 } 6130 6131 return ret; 6132 } 6133 6134 int __kmem_cache_shrink(struct kmem_cache *s) 6135 { 6136 flush_all(s); 6137 return __kmem_cache_do_shrink(s); 6138 } 6139 6140 static int slab_mem_going_offline_callback(void *arg) 6141 { 6142 struct kmem_cache *s; 6143 6144 mutex_lock(&slab_mutex); 6145 list_for_each_entry(s, &slab_caches, list) { 6146 flush_all_cpus_locked(s); 6147 __kmem_cache_do_shrink(s); 6148 } 6149 mutex_unlock(&slab_mutex); 6150 6151 return 0; 6152 } 6153 6154 static void slab_mem_offline_callback(void *arg) 6155 { 6156 struct memory_notify *marg = arg; 6157 int offline_node; 6158 6159 offline_node = marg->status_change_nid_normal; 6160 6161 /* 6162 * If the node still has available memory. we need kmem_cache_node 6163 * for it yet. 6164 */ 6165 if (offline_node < 0) 6166 return; 6167 6168 mutex_lock(&slab_mutex); 6169 node_clear(offline_node, slab_nodes); 6170 /* 6171 * We no longer free kmem_cache_node structures here, as it would be 6172 * racy with all get_node() users, and infeasible to protect them with 6173 * slab_mutex. 6174 */ 6175 mutex_unlock(&slab_mutex); 6176 } 6177 6178 static int slab_mem_going_online_callback(void *arg) 6179 { 6180 struct kmem_cache_node *n; 6181 struct kmem_cache *s; 6182 struct memory_notify *marg = arg; 6183 int nid = marg->status_change_nid_normal; 6184 int ret = 0; 6185 6186 /* 6187 * If the node's memory is already available, then kmem_cache_node is 6188 * already created. Nothing to do. 6189 */ 6190 if (nid < 0) 6191 return 0; 6192 6193 /* 6194 * We are bringing a node online. No memory is available yet. We must 6195 * allocate a kmem_cache_node structure in order to bring the node 6196 * online. 6197 */ 6198 mutex_lock(&slab_mutex); 6199 list_for_each_entry(s, &slab_caches, list) { 6200 /* 6201 * The structure may already exist if the node was previously 6202 * onlined and offlined. 6203 */ 6204 if (get_node(s, nid)) 6205 continue; 6206 /* 6207 * XXX: kmem_cache_alloc_node will fallback to other nodes 6208 * since memory is not yet available from the node that 6209 * is brought up. 6210 */ 6211 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 6212 if (!n) { 6213 ret = -ENOMEM; 6214 goto out; 6215 } 6216 init_kmem_cache_node(n); 6217 s->node[nid] = n; 6218 } 6219 /* 6220 * Any cache created after this point will also have kmem_cache_node 6221 * initialized for the new node. 6222 */ 6223 node_set(nid, slab_nodes); 6224 out: 6225 mutex_unlock(&slab_mutex); 6226 return ret; 6227 } 6228 6229 static int slab_memory_callback(struct notifier_block *self, 6230 unsigned long action, void *arg) 6231 { 6232 int ret = 0; 6233 6234 switch (action) { 6235 case MEM_GOING_ONLINE: 6236 ret = slab_mem_going_online_callback(arg); 6237 break; 6238 case MEM_GOING_OFFLINE: 6239 ret = slab_mem_going_offline_callback(arg); 6240 break; 6241 case MEM_OFFLINE: 6242 case MEM_CANCEL_ONLINE: 6243 slab_mem_offline_callback(arg); 6244 break; 6245 case MEM_ONLINE: 6246 case MEM_CANCEL_OFFLINE: 6247 break; 6248 } 6249 if (ret) 6250 ret = notifier_from_errno(ret); 6251 else 6252 ret = NOTIFY_OK; 6253 return ret; 6254 } 6255 6256 /******************************************************************** 6257 * Basic setup of slabs 6258 *******************************************************************/ 6259 6260 /* 6261 * Used for early kmem_cache structures that were allocated using 6262 * the page allocator. Allocate them properly then fix up the pointers 6263 * that may be pointing to the wrong kmem_cache structure. 6264 */ 6265 6266 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 6267 { 6268 int node; 6269 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 6270 struct kmem_cache_node *n; 6271 6272 memcpy(s, static_cache, kmem_cache->object_size); 6273 6274 /* 6275 * This runs very early, and only the boot processor is supposed to be 6276 * up. Even if it weren't true, IRQs are not up so we couldn't fire 6277 * IPIs around. 6278 */ 6279 __flush_cpu_slab(s, smp_processor_id()); 6280 for_each_kmem_cache_node(s, node, n) { 6281 struct slab *p; 6282 6283 list_for_each_entry(p, &n->partial, slab_list) 6284 p->slab_cache = s; 6285 6286 #ifdef CONFIG_SLUB_DEBUG 6287 list_for_each_entry(p, &n->full, slab_list) 6288 p->slab_cache = s; 6289 #endif 6290 } 6291 list_add(&s->list, &slab_caches); 6292 return s; 6293 } 6294 6295 void __init kmem_cache_init(void) 6296 { 6297 static __initdata struct kmem_cache boot_kmem_cache, 6298 boot_kmem_cache_node; 6299 int node; 6300 6301 if (debug_guardpage_minorder()) 6302 slub_max_order = 0; 6303 6304 /* Print slub debugging pointers without hashing */ 6305 if (__slub_debug_enabled()) 6306 no_hash_pointers_enable(NULL); 6307 6308 kmem_cache_node = &boot_kmem_cache_node; 6309 kmem_cache = &boot_kmem_cache; 6310 6311 /* 6312 * Initialize the nodemask for which we will allocate per node 6313 * structures. Here we don't need taking slab_mutex yet. 6314 */ 6315 for_each_node_state(node, N_NORMAL_MEMORY) 6316 node_set(node, slab_nodes); 6317 6318 create_boot_cache(kmem_cache_node, "kmem_cache_node", 6319 sizeof(struct kmem_cache_node), 6320 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6321 6322 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 6323 6324 /* Able to allocate the per node structures */ 6325 slab_state = PARTIAL; 6326 6327 create_boot_cache(kmem_cache, "kmem_cache", 6328 offsetof(struct kmem_cache, node) + 6329 nr_node_ids * sizeof(struct kmem_cache_node *), 6330 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6331 6332 kmem_cache = bootstrap(&boot_kmem_cache); 6333 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 6334 6335 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 6336 setup_kmalloc_cache_index_table(); 6337 create_kmalloc_caches(); 6338 6339 /* Setup random freelists for each cache */ 6340 init_freelist_randomization(); 6341 6342 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 6343 slub_cpu_dead); 6344 6345 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 6346 cache_line_size(), 6347 slub_min_order, slub_max_order, slub_min_objects, 6348 nr_cpu_ids, nr_node_ids); 6349 } 6350 6351 void __init kmem_cache_init_late(void) 6352 { 6353 #ifndef CONFIG_SLUB_TINY 6354 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 6355 WARN_ON(!flushwq); 6356 #endif 6357 } 6358 6359 struct kmem_cache * 6360 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 6361 slab_flags_t flags, void (*ctor)(void *)) 6362 { 6363 struct kmem_cache *s; 6364 6365 s = find_mergeable(size, align, flags, name, ctor); 6366 if (s) { 6367 if (sysfs_slab_alias(s, name)) 6368 pr_err("SLUB: Unable to add cache alias %s to sysfs\n", 6369 name); 6370 6371 s->refcount++; 6372 6373 /* 6374 * Adjust the object sizes so that we clear 6375 * the complete object on kzalloc. 6376 */ 6377 s->object_size = max(s->object_size, size); 6378 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 6379 } 6380 6381 return s; 6382 } 6383 6384 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 6385 unsigned int size, struct kmem_cache_args *args, 6386 slab_flags_t flags) 6387 { 6388 int err = -EINVAL; 6389 6390 s->name = name; 6391 s->size = s->object_size = size; 6392 6393 s->flags = kmem_cache_flags(flags, s->name); 6394 #ifdef CONFIG_SLAB_FREELIST_HARDENED 6395 s->random = get_random_long(); 6396 #endif 6397 s->align = args->align; 6398 s->ctor = args->ctor; 6399 #ifdef CONFIG_HARDENED_USERCOPY 6400 s->useroffset = args->useroffset; 6401 s->usersize = args->usersize; 6402 #endif 6403 6404 if (!calculate_sizes(args, s)) 6405 goto out; 6406 if (disable_higher_order_debug) { 6407 /* 6408 * Disable debugging flags that store metadata if the min slab 6409 * order increased. 6410 */ 6411 if (get_order(s->size) > get_order(s->object_size)) { 6412 s->flags &= ~DEBUG_METADATA_FLAGS; 6413 s->offset = 0; 6414 if (!calculate_sizes(args, s)) 6415 goto out; 6416 } 6417 } 6418 6419 #ifdef system_has_freelist_aba 6420 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 6421 /* Enable fast mode */ 6422 s->flags |= __CMPXCHG_DOUBLE; 6423 } 6424 #endif 6425 6426 /* 6427 * The larger the object size is, the more slabs we want on the partial 6428 * list to avoid pounding the page allocator excessively. 6429 */ 6430 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 6431 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 6432 6433 set_cpu_partial(s); 6434 6435 #ifdef CONFIG_NUMA 6436 s->remote_node_defrag_ratio = 1000; 6437 #endif 6438 6439 /* Initialize the pre-computed randomized freelist if slab is up */ 6440 if (slab_state >= UP) { 6441 if (init_cache_random_seq(s)) 6442 goto out; 6443 } 6444 6445 if (!init_kmem_cache_nodes(s)) 6446 goto out; 6447 6448 if (!alloc_kmem_cache_cpus(s)) 6449 goto out; 6450 6451 err = 0; 6452 6453 /* Mutex is not taken during early boot */ 6454 if (slab_state <= UP) 6455 goto out; 6456 6457 /* 6458 * Failing to create sysfs files is not critical to SLUB functionality. 6459 * If it fails, proceed with cache creation without these files. 6460 */ 6461 if (sysfs_slab_add(s)) 6462 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); 6463 6464 if (s->flags & SLAB_STORE_USER) 6465 debugfs_slab_add(s); 6466 6467 out: 6468 if (err) 6469 __kmem_cache_release(s); 6470 return err; 6471 } 6472 6473 #ifdef SLAB_SUPPORTS_SYSFS 6474 static int count_inuse(struct slab *slab) 6475 { 6476 return slab->inuse; 6477 } 6478 6479 static int count_total(struct slab *slab) 6480 { 6481 return slab->objects; 6482 } 6483 #endif 6484 6485 #ifdef CONFIG_SLUB_DEBUG 6486 static void validate_slab(struct kmem_cache *s, struct slab *slab, 6487 unsigned long *obj_map) 6488 { 6489 void *p; 6490 void *addr = slab_address(slab); 6491 6492 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 6493 return; 6494 6495 /* Now we know that a valid freelist exists */ 6496 __fill_map(obj_map, s, slab); 6497 for_each_object(p, s, addr, slab->objects) { 6498 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 6499 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 6500 6501 if (!check_object(s, slab, p, val)) 6502 break; 6503 } 6504 } 6505 6506 static int validate_slab_node(struct kmem_cache *s, 6507 struct kmem_cache_node *n, unsigned long *obj_map) 6508 { 6509 unsigned long count = 0; 6510 struct slab *slab; 6511 unsigned long flags; 6512 6513 spin_lock_irqsave(&n->list_lock, flags); 6514 6515 list_for_each_entry(slab, &n->partial, slab_list) { 6516 validate_slab(s, slab, obj_map); 6517 count++; 6518 } 6519 if (count != n->nr_partial) { 6520 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 6521 s->name, count, n->nr_partial); 6522 slab_add_kunit_errors(); 6523 } 6524 6525 if (!(s->flags & SLAB_STORE_USER)) 6526 goto out; 6527 6528 list_for_each_entry(slab, &n->full, slab_list) { 6529 validate_slab(s, slab, obj_map); 6530 count++; 6531 } 6532 if (count != node_nr_slabs(n)) { 6533 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 6534 s->name, count, node_nr_slabs(n)); 6535 slab_add_kunit_errors(); 6536 } 6537 6538 out: 6539 spin_unlock_irqrestore(&n->list_lock, flags); 6540 return count; 6541 } 6542 6543 long validate_slab_cache(struct kmem_cache *s) 6544 { 6545 int node; 6546 unsigned long count = 0; 6547 struct kmem_cache_node *n; 6548 unsigned long *obj_map; 6549 6550 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6551 if (!obj_map) 6552 return -ENOMEM; 6553 6554 flush_all(s); 6555 for_each_kmem_cache_node(s, node, n) 6556 count += validate_slab_node(s, n, obj_map); 6557 6558 bitmap_free(obj_map); 6559 6560 return count; 6561 } 6562 EXPORT_SYMBOL(validate_slab_cache); 6563 6564 #ifdef CONFIG_DEBUG_FS 6565 /* 6566 * Generate lists of code addresses where slabcache objects are allocated 6567 * and freed. 6568 */ 6569 6570 struct location { 6571 depot_stack_handle_t handle; 6572 unsigned long count; 6573 unsigned long addr; 6574 unsigned long waste; 6575 long long sum_time; 6576 long min_time; 6577 long max_time; 6578 long min_pid; 6579 long max_pid; 6580 DECLARE_BITMAP(cpus, NR_CPUS); 6581 nodemask_t nodes; 6582 }; 6583 6584 struct loc_track { 6585 unsigned long max; 6586 unsigned long count; 6587 struct location *loc; 6588 loff_t idx; 6589 }; 6590 6591 static struct dentry *slab_debugfs_root; 6592 6593 static void free_loc_track(struct loc_track *t) 6594 { 6595 if (t->max) 6596 free_pages((unsigned long)t->loc, 6597 get_order(sizeof(struct location) * t->max)); 6598 } 6599 6600 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6601 { 6602 struct location *l; 6603 int order; 6604 6605 order = get_order(sizeof(struct location) * max); 6606 6607 l = (void *)__get_free_pages(flags, order); 6608 if (!l) 6609 return 0; 6610 6611 if (t->count) { 6612 memcpy(l, t->loc, sizeof(struct location) * t->count); 6613 free_loc_track(t); 6614 } 6615 t->max = max; 6616 t->loc = l; 6617 return 1; 6618 } 6619 6620 static int add_location(struct loc_track *t, struct kmem_cache *s, 6621 const struct track *track, 6622 unsigned int orig_size) 6623 { 6624 long start, end, pos; 6625 struct location *l; 6626 unsigned long caddr, chandle, cwaste; 6627 unsigned long age = jiffies - track->when; 6628 depot_stack_handle_t handle = 0; 6629 unsigned int waste = s->object_size - orig_size; 6630 6631 #ifdef CONFIG_STACKDEPOT 6632 handle = READ_ONCE(track->handle); 6633 #endif 6634 start = -1; 6635 end = t->count; 6636 6637 for ( ; ; ) { 6638 pos = start + (end - start + 1) / 2; 6639 6640 /* 6641 * There is nothing at "end". If we end up there 6642 * we need to add something to before end. 6643 */ 6644 if (pos == end) 6645 break; 6646 6647 l = &t->loc[pos]; 6648 caddr = l->addr; 6649 chandle = l->handle; 6650 cwaste = l->waste; 6651 if ((track->addr == caddr) && (handle == chandle) && 6652 (waste == cwaste)) { 6653 6654 l->count++; 6655 if (track->when) { 6656 l->sum_time += age; 6657 if (age < l->min_time) 6658 l->min_time = age; 6659 if (age > l->max_time) 6660 l->max_time = age; 6661 6662 if (track->pid < l->min_pid) 6663 l->min_pid = track->pid; 6664 if (track->pid > l->max_pid) 6665 l->max_pid = track->pid; 6666 6667 cpumask_set_cpu(track->cpu, 6668 to_cpumask(l->cpus)); 6669 } 6670 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6671 return 1; 6672 } 6673 6674 if (track->addr < caddr) 6675 end = pos; 6676 else if (track->addr == caddr && handle < chandle) 6677 end = pos; 6678 else if (track->addr == caddr && handle == chandle && 6679 waste < cwaste) 6680 end = pos; 6681 else 6682 start = pos; 6683 } 6684 6685 /* 6686 * Not found. Insert new tracking element. 6687 */ 6688 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6689 return 0; 6690 6691 l = t->loc + pos; 6692 if (pos < t->count) 6693 memmove(l + 1, l, 6694 (t->count - pos) * sizeof(struct location)); 6695 t->count++; 6696 l->count = 1; 6697 l->addr = track->addr; 6698 l->sum_time = age; 6699 l->min_time = age; 6700 l->max_time = age; 6701 l->min_pid = track->pid; 6702 l->max_pid = track->pid; 6703 l->handle = handle; 6704 l->waste = waste; 6705 cpumask_clear(to_cpumask(l->cpus)); 6706 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6707 nodes_clear(l->nodes); 6708 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6709 return 1; 6710 } 6711 6712 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6713 struct slab *slab, enum track_item alloc, 6714 unsigned long *obj_map) 6715 { 6716 void *addr = slab_address(slab); 6717 bool is_alloc = (alloc == TRACK_ALLOC); 6718 void *p; 6719 6720 __fill_map(obj_map, s, slab); 6721 6722 for_each_object(p, s, addr, slab->objects) 6723 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6724 add_location(t, s, get_track(s, p, alloc), 6725 is_alloc ? get_orig_size(s, p) : 6726 s->object_size); 6727 } 6728 #endif /* CONFIG_DEBUG_FS */ 6729 #endif /* CONFIG_SLUB_DEBUG */ 6730 6731 #ifdef SLAB_SUPPORTS_SYSFS 6732 enum slab_stat_type { 6733 SL_ALL, /* All slabs */ 6734 SL_PARTIAL, /* Only partially allocated slabs */ 6735 SL_CPU, /* Only slabs used for cpu caches */ 6736 SL_OBJECTS, /* Determine allocated objects not slabs */ 6737 SL_TOTAL /* Determine object capacity not slabs */ 6738 }; 6739 6740 #define SO_ALL (1 << SL_ALL) 6741 #define SO_PARTIAL (1 << SL_PARTIAL) 6742 #define SO_CPU (1 << SL_CPU) 6743 #define SO_OBJECTS (1 << SL_OBJECTS) 6744 #define SO_TOTAL (1 << SL_TOTAL) 6745 6746 static ssize_t show_slab_objects(struct kmem_cache *s, 6747 char *buf, unsigned long flags) 6748 { 6749 unsigned long total = 0; 6750 int node; 6751 int x; 6752 unsigned long *nodes; 6753 int len = 0; 6754 6755 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6756 if (!nodes) 6757 return -ENOMEM; 6758 6759 if (flags & SO_CPU) { 6760 int cpu; 6761 6762 for_each_possible_cpu(cpu) { 6763 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6764 cpu); 6765 int node; 6766 struct slab *slab; 6767 6768 slab = READ_ONCE(c->slab); 6769 if (!slab) 6770 continue; 6771 6772 node = slab_nid(slab); 6773 if (flags & SO_TOTAL) 6774 x = slab->objects; 6775 else if (flags & SO_OBJECTS) 6776 x = slab->inuse; 6777 else 6778 x = 1; 6779 6780 total += x; 6781 nodes[node] += x; 6782 6783 #ifdef CONFIG_SLUB_CPU_PARTIAL 6784 slab = slub_percpu_partial_read_once(c); 6785 if (slab) { 6786 node = slab_nid(slab); 6787 if (flags & SO_TOTAL) 6788 WARN_ON_ONCE(1); 6789 else if (flags & SO_OBJECTS) 6790 WARN_ON_ONCE(1); 6791 else 6792 x = data_race(slab->slabs); 6793 total += x; 6794 nodes[node] += x; 6795 } 6796 #endif 6797 } 6798 } 6799 6800 /* 6801 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6802 * already held which will conflict with an existing lock order: 6803 * 6804 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6805 * 6806 * We don't really need mem_hotplug_lock (to hold off 6807 * slab_mem_going_offline_callback) here because slab's memory hot 6808 * unplug code doesn't destroy the kmem_cache->node[] data. 6809 */ 6810 6811 #ifdef CONFIG_SLUB_DEBUG 6812 if (flags & SO_ALL) { 6813 struct kmem_cache_node *n; 6814 6815 for_each_kmem_cache_node(s, node, n) { 6816 6817 if (flags & SO_TOTAL) 6818 x = node_nr_objs(n); 6819 else if (flags & SO_OBJECTS) 6820 x = node_nr_objs(n) - count_partial(n, count_free); 6821 else 6822 x = node_nr_slabs(n); 6823 total += x; 6824 nodes[node] += x; 6825 } 6826 6827 } else 6828 #endif 6829 if (flags & SO_PARTIAL) { 6830 struct kmem_cache_node *n; 6831 6832 for_each_kmem_cache_node(s, node, n) { 6833 if (flags & SO_TOTAL) 6834 x = count_partial(n, count_total); 6835 else if (flags & SO_OBJECTS) 6836 x = count_partial(n, count_inuse); 6837 else 6838 x = n->nr_partial; 6839 total += x; 6840 nodes[node] += x; 6841 } 6842 } 6843 6844 len += sysfs_emit_at(buf, len, "%lu", total); 6845 #ifdef CONFIG_NUMA 6846 for (node = 0; node < nr_node_ids; node++) { 6847 if (nodes[node]) 6848 len += sysfs_emit_at(buf, len, " N%d=%lu", 6849 node, nodes[node]); 6850 } 6851 #endif 6852 len += sysfs_emit_at(buf, len, "\n"); 6853 kfree(nodes); 6854 6855 return len; 6856 } 6857 6858 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6859 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6860 6861 struct slab_attribute { 6862 struct attribute attr; 6863 ssize_t (*show)(struct kmem_cache *s, char *buf); 6864 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6865 }; 6866 6867 #define SLAB_ATTR_RO(_name) \ 6868 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6869 6870 #define SLAB_ATTR(_name) \ 6871 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6872 6873 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6874 { 6875 return sysfs_emit(buf, "%u\n", s->size); 6876 } 6877 SLAB_ATTR_RO(slab_size); 6878 6879 static ssize_t align_show(struct kmem_cache *s, char *buf) 6880 { 6881 return sysfs_emit(buf, "%u\n", s->align); 6882 } 6883 SLAB_ATTR_RO(align); 6884 6885 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6886 { 6887 return sysfs_emit(buf, "%u\n", s->object_size); 6888 } 6889 SLAB_ATTR_RO(object_size); 6890 6891 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6892 { 6893 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6894 } 6895 SLAB_ATTR_RO(objs_per_slab); 6896 6897 static ssize_t order_show(struct kmem_cache *s, char *buf) 6898 { 6899 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6900 } 6901 SLAB_ATTR_RO(order); 6902 6903 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6904 { 6905 return sysfs_emit(buf, "%lu\n", s->min_partial); 6906 } 6907 6908 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6909 size_t length) 6910 { 6911 unsigned long min; 6912 int err; 6913 6914 err = kstrtoul(buf, 10, &min); 6915 if (err) 6916 return err; 6917 6918 s->min_partial = min; 6919 return length; 6920 } 6921 SLAB_ATTR(min_partial); 6922 6923 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6924 { 6925 unsigned int nr_partial = 0; 6926 #ifdef CONFIG_SLUB_CPU_PARTIAL 6927 nr_partial = s->cpu_partial; 6928 #endif 6929 6930 return sysfs_emit(buf, "%u\n", nr_partial); 6931 } 6932 6933 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6934 size_t length) 6935 { 6936 unsigned int objects; 6937 int err; 6938 6939 err = kstrtouint(buf, 10, &objects); 6940 if (err) 6941 return err; 6942 if (objects && !kmem_cache_has_cpu_partial(s)) 6943 return -EINVAL; 6944 6945 slub_set_cpu_partial(s, objects); 6946 flush_all(s); 6947 return length; 6948 } 6949 SLAB_ATTR(cpu_partial); 6950 6951 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6952 { 6953 if (!s->ctor) 6954 return 0; 6955 return sysfs_emit(buf, "%pS\n", s->ctor); 6956 } 6957 SLAB_ATTR_RO(ctor); 6958 6959 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6960 { 6961 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6962 } 6963 SLAB_ATTR_RO(aliases); 6964 6965 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6966 { 6967 return show_slab_objects(s, buf, SO_PARTIAL); 6968 } 6969 SLAB_ATTR_RO(partial); 6970 6971 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6972 { 6973 return show_slab_objects(s, buf, SO_CPU); 6974 } 6975 SLAB_ATTR_RO(cpu_slabs); 6976 6977 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6978 { 6979 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6980 } 6981 SLAB_ATTR_RO(objects_partial); 6982 6983 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6984 { 6985 int objects = 0; 6986 int slabs = 0; 6987 int cpu __maybe_unused; 6988 int len = 0; 6989 6990 #ifdef CONFIG_SLUB_CPU_PARTIAL 6991 for_each_online_cpu(cpu) { 6992 struct slab *slab; 6993 6994 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6995 6996 if (slab) 6997 slabs += data_race(slab->slabs); 6998 } 6999 #endif 7000 7001 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 7002 objects = (slabs * oo_objects(s->oo)) / 2; 7003 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 7004 7005 #ifdef CONFIG_SLUB_CPU_PARTIAL 7006 for_each_online_cpu(cpu) { 7007 struct slab *slab; 7008 7009 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 7010 if (slab) { 7011 slabs = data_race(slab->slabs); 7012 objects = (slabs * oo_objects(s->oo)) / 2; 7013 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 7014 cpu, objects, slabs); 7015 } 7016 } 7017 #endif 7018 len += sysfs_emit_at(buf, len, "\n"); 7019 7020 return len; 7021 } 7022 SLAB_ATTR_RO(slabs_cpu_partial); 7023 7024 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 7025 { 7026 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 7027 } 7028 SLAB_ATTR_RO(reclaim_account); 7029 7030 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 7031 { 7032 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 7033 } 7034 SLAB_ATTR_RO(hwcache_align); 7035 7036 #ifdef CONFIG_ZONE_DMA 7037 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 7038 { 7039 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 7040 } 7041 SLAB_ATTR_RO(cache_dma); 7042 #endif 7043 7044 #ifdef CONFIG_HARDENED_USERCOPY 7045 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 7046 { 7047 return sysfs_emit(buf, "%u\n", s->usersize); 7048 } 7049 SLAB_ATTR_RO(usersize); 7050 #endif 7051 7052 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 7053 { 7054 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 7055 } 7056 SLAB_ATTR_RO(destroy_by_rcu); 7057 7058 #ifdef CONFIG_SLUB_DEBUG 7059 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 7060 { 7061 return show_slab_objects(s, buf, SO_ALL); 7062 } 7063 SLAB_ATTR_RO(slabs); 7064 7065 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 7066 { 7067 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 7068 } 7069 SLAB_ATTR_RO(total_objects); 7070 7071 static ssize_t objects_show(struct kmem_cache *s, char *buf) 7072 { 7073 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 7074 } 7075 SLAB_ATTR_RO(objects); 7076 7077 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 7078 { 7079 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 7080 } 7081 SLAB_ATTR_RO(sanity_checks); 7082 7083 static ssize_t trace_show(struct kmem_cache *s, char *buf) 7084 { 7085 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 7086 } 7087 SLAB_ATTR_RO(trace); 7088 7089 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 7090 { 7091 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 7092 } 7093 7094 SLAB_ATTR_RO(red_zone); 7095 7096 static ssize_t poison_show(struct kmem_cache *s, char *buf) 7097 { 7098 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 7099 } 7100 7101 SLAB_ATTR_RO(poison); 7102 7103 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 7104 { 7105 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 7106 } 7107 7108 SLAB_ATTR_RO(store_user); 7109 7110 static ssize_t validate_show(struct kmem_cache *s, char *buf) 7111 { 7112 return 0; 7113 } 7114 7115 static ssize_t validate_store(struct kmem_cache *s, 7116 const char *buf, size_t length) 7117 { 7118 int ret = -EINVAL; 7119 7120 if (buf[0] == '1' && kmem_cache_debug(s)) { 7121 ret = validate_slab_cache(s); 7122 if (ret >= 0) 7123 ret = length; 7124 } 7125 return ret; 7126 } 7127 SLAB_ATTR(validate); 7128 7129 #endif /* CONFIG_SLUB_DEBUG */ 7130 7131 #ifdef CONFIG_FAILSLAB 7132 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 7133 { 7134 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 7135 } 7136 7137 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 7138 size_t length) 7139 { 7140 if (s->refcount > 1) 7141 return -EINVAL; 7142 7143 if (buf[0] == '1') 7144 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 7145 else 7146 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 7147 7148 return length; 7149 } 7150 SLAB_ATTR(failslab); 7151 #endif 7152 7153 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 7154 { 7155 return 0; 7156 } 7157 7158 static ssize_t shrink_store(struct kmem_cache *s, 7159 const char *buf, size_t length) 7160 { 7161 if (buf[0] == '1') 7162 kmem_cache_shrink(s); 7163 else 7164 return -EINVAL; 7165 return length; 7166 } 7167 SLAB_ATTR(shrink); 7168 7169 #ifdef CONFIG_NUMA 7170 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 7171 { 7172 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 7173 } 7174 7175 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 7176 const char *buf, size_t length) 7177 { 7178 unsigned int ratio; 7179 int err; 7180 7181 err = kstrtouint(buf, 10, &ratio); 7182 if (err) 7183 return err; 7184 if (ratio > 100) 7185 return -ERANGE; 7186 7187 s->remote_node_defrag_ratio = ratio * 10; 7188 7189 return length; 7190 } 7191 SLAB_ATTR(remote_node_defrag_ratio); 7192 #endif 7193 7194 #ifdef CONFIG_SLUB_STATS 7195 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 7196 { 7197 unsigned long sum = 0; 7198 int cpu; 7199 int len = 0; 7200 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 7201 7202 if (!data) 7203 return -ENOMEM; 7204 7205 for_each_online_cpu(cpu) { 7206 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 7207 7208 data[cpu] = x; 7209 sum += x; 7210 } 7211 7212 len += sysfs_emit_at(buf, len, "%lu", sum); 7213 7214 #ifdef CONFIG_SMP 7215 for_each_online_cpu(cpu) { 7216 if (data[cpu]) 7217 len += sysfs_emit_at(buf, len, " C%d=%u", 7218 cpu, data[cpu]); 7219 } 7220 #endif 7221 kfree(data); 7222 len += sysfs_emit_at(buf, len, "\n"); 7223 7224 return len; 7225 } 7226 7227 static void clear_stat(struct kmem_cache *s, enum stat_item si) 7228 { 7229 int cpu; 7230 7231 for_each_online_cpu(cpu) 7232 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 7233 } 7234 7235 #define STAT_ATTR(si, text) \ 7236 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 7237 { \ 7238 return show_stat(s, buf, si); \ 7239 } \ 7240 static ssize_t text##_store(struct kmem_cache *s, \ 7241 const char *buf, size_t length) \ 7242 { \ 7243 if (buf[0] != '0') \ 7244 return -EINVAL; \ 7245 clear_stat(s, si); \ 7246 return length; \ 7247 } \ 7248 SLAB_ATTR(text); \ 7249 7250 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 7251 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 7252 STAT_ATTR(FREE_FASTPATH, free_fastpath); 7253 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 7254 STAT_ATTR(FREE_FROZEN, free_frozen); 7255 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 7256 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 7257 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 7258 STAT_ATTR(ALLOC_SLAB, alloc_slab); 7259 STAT_ATTR(ALLOC_REFILL, alloc_refill); 7260 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 7261 STAT_ATTR(FREE_SLAB, free_slab); 7262 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 7263 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 7264 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 7265 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 7266 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 7267 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 7268 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 7269 STAT_ATTR(ORDER_FALLBACK, order_fallback); 7270 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 7271 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 7272 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 7273 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 7274 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 7275 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 7276 #endif /* CONFIG_SLUB_STATS */ 7277 7278 #ifdef CONFIG_KFENCE 7279 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 7280 { 7281 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 7282 } 7283 7284 static ssize_t skip_kfence_store(struct kmem_cache *s, 7285 const char *buf, size_t length) 7286 { 7287 int ret = length; 7288 7289 if (buf[0] == '0') 7290 s->flags &= ~SLAB_SKIP_KFENCE; 7291 else if (buf[0] == '1') 7292 s->flags |= SLAB_SKIP_KFENCE; 7293 else 7294 ret = -EINVAL; 7295 7296 return ret; 7297 } 7298 SLAB_ATTR(skip_kfence); 7299 #endif 7300 7301 static struct attribute *slab_attrs[] = { 7302 &slab_size_attr.attr, 7303 &object_size_attr.attr, 7304 &objs_per_slab_attr.attr, 7305 &order_attr.attr, 7306 &min_partial_attr.attr, 7307 &cpu_partial_attr.attr, 7308 &objects_partial_attr.attr, 7309 &partial_attr.attr, 7310 &cpu_slabs_attr.attr, 7311 &ctor_attr.attr, 7312 &aliases_attr.attr, 7313 &align_attr.attr, 7314 &hwcache_align_attr.attr, 7315 &reclaim_account_attr.attr, 7316 &destroy_by_rcu_attr.attr, 7317 &shrink_attr.attr, 7318 &slabs_cpu_partial_attr.attr, 7319 #ifdef CONFIG_SLUB_DEBUG 7320 &total_objects_attr.attr, 7321 &objects_attr.attr, 7322 &slabs_attr.attr, 7323 &sanity_checks_attr.attr, 7324 &trace_attr.attr, 7325 &red_zone_attr.attr, 7326 &poison_attr.attr, 7327 &store_user_attr.attr, 7328 &validate_attr.attr, 7329 #endif 7330 #ifdef CONFIG_ZONE_DMA 7331 &cache_dma_attr.attr, 7332 #endif 7333 #ifdef CONFIG_NUMA 7334 &remote_node_defrag_ratio_attr.attr, 7335 #endif 7336 #ifdef CONFIG_SLUB_STATS 7337 &alloc_fastpath_attr.attr, 7338 &alloc_slowpath_attr.attr, 7339 &free_fastpath_attr.attr, 7340 &free_slowpath_attr.attr, 7341 &free_frozen_attr.attr, 7342 &free_add_partial_attr.attr, 7343 &free_remove_partial_attr.attr, 7344 &alloc_from_partial_attr.attr, 7345 &alloc_slab_attr.attr, 7346 &alloc_refill_attr.attr, 7347 &alloc_node_mismatch_attr.attr, 7348 &free_slab_attr.attr, 7349 &cpuslab_flush_attr.attr, 7350 &deactivate_full_attr.attr, 7351 &deactivate_empty_attr.attr, 7352 &deactivate_to_head_attr.attr, 7353 &deactivate_to_tail_attr.attr, 7354 &deactivate_remote_frees_attr.attr, 7355 &deactivate_bypass_attr.attr, 7356 &order_fallback_attr.attr, 7357 &cmpxchg_double_fail_attr.attr, 7358 &cmpxchg_double_cpu_fail_attr.attr, 7359 &cpu_partial_alloc_attr.attr, 7360 &cpu_partial_free_attr.attr, 7361 &cpu_partial_node_attr.attr, 7362 &cpu_partial_drain_attr.attr, 7363 #endif 7364 #ifdef CONFIG_FAILSLAB 7365 &failslab_attr.attr, 7366 #endif 7367 #ifdef CONFIG_HARDENED_USERCOPY 7368 &usersize_attr.attr, 7369 #endif 7370 #ifdef CONFIG_KFENCE 7371 &skip_kfence_attr.attr, 7372 #endif 7373 7374 NULL 7375 }; 7376 7377 static const struct attribute_group slab_attr_group = { 7378 .attrs = slab_attrs, 7379 }; 7380 7381 static ssize_t slab_attr_show(struct kobject *kobj, 7382 struct attribute *attr, 7383 char *buf) 7384 { 7385 struct slab_attribute *attribute; 7386 struct kmem_cache *s; 7387 7388 attribute = to_slab_attr(attr); 7389 s = to_slab(kobj); 7390 7391 if (!attribute->show) 7392 return -EIO; 7393 7394 return attribute->show(s, buf); 7395 } 7396 7397 static ssize_t slab_attr_store(struct kobject *kobj, 7398 struct attribute *attr, 7399 const char *buf, size_t len) 7400 { 7401 struct slab_attribute *attribute; 7402 struct kmem_cache *s; 7403 7404 attribute = to_slab_attr(attr); 7405 s = to_slab(kobj); 7406 7407 if (!attribute->store) 7408 return -EIO; 7409 7410 return attribute->store(s, buf, len); 7411 } 7412 7413 static void kmem_cache_release(struct kobject *k) 7414 { 7415 slab_kmem_cache_release(to_slab(k)); 7416 } 7417 7418 static const struct sysfs_ops slab_sysfs_ops = { 7419 .show = slab_attr_show, 7420 .store = slab_attr_store, 7421 }; 7422 7423 static const struct kobj_type slab_ktype = { 7424 .sysfs_ops = &slab_sysfs_ops, 7425 .release = kmem_cache_release, 7426 }; 7427 7428 static struct kset *slab_kset; 7429 7430 static inline struct kset *cache_kset(struct kmem_cache *s) 7431 { 7432 return slab_kset; 7433 } 7434 7435 #define ID_STR_LENGTH 32 7436 7437 /* Create a unique string id for a slab cache: 7438 * 7439 * Format :[flags-]size 7440 */ 7441 static char *create_unique_id(struct kmem_cache *s) 7442 { 7443 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 7444 char *p = name; 7445 7446 if (!name) 7447 return ERR_PTR(-ENOMEM); 7448 7449 *p++ = ':'; 7450 /* 7451 * First flags affecting slabcache operations. We will only 7452 * get here for aliasable slabs so we do not need to support 7453 * too many flags. The flags here must cover all flags that 7454 * are matched during merging to guarantee that the id is 7455 * unique. 7456 */ 7457 if (s->flags & SLAB_CACHE_DMA) 7458 *p++ = 'd'; 7459 if (s->flags & SLAB_CACHE_DMA32) 7460 *p++ = 'D'; 7461 if (s->flags & SLAB_RECLAIM_ACCOUNT) 7462 *p++ = 'a'; 7463 if (s->flags & SLAB_CONSISTENCY_CHECKS) 7464 *p++ = 'F'; 7465 if (s->flags & SLAB_ACCOUNT) 7466 *p++ = 'A'; 7467 if (p != name + 1) 7468 *p++ = '-'; 7469 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 7470 7471 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 7472 kfree(name); 7473 return ERR_PTR(-EINVAL); 7474 } 7475 kmsan_unpoison_memory(name, p - name); 7476 return name; 7477 } 7478 7479 static int sysfs_slab_add(struct kmem_cache *s) 7480 { 7481 int err; 7482 const char *name; 7483 struct kset *kset = cache_kset(s); 7484 int unmergeable = slab_unmergeable(s); 7485 7486 if (!unmergeable && disable_higher_order_debug && 7487 (slub_debug & DEBUG_METADATA_FLAGS)) 7488 unmergeable = 1; 7489 7490 if (unmergeable) { 7491 /* 7492 * Slabcache can never be merged so we can use the name proper. 7493 * This is typically the case for debug situations. In that 7494 * case we can catch duplicate names easily. 7495 */ 7496 sysfs_remove_link(&slab_kset->kobj, s->name); 7497 name = s->name; 7498 } else { 7499 /* 7500 * Create a unique name for the slab as a target 7501 * for the symlinks. 7502 */ 7503 name = create_unique_id(s); 7504 if (IS_ERR(name)) 7505 return PTR_ERR(name); 7506 } 7507 7508 s->kobj.kset = kset; 7509 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 7510 if (err) 7511 goto out; 7512 7513 err = sysfs_create_group(&s->kobj, &slab_attr_group); 7514 if (err) 7515 goto out_del_kobj; 7516 7517 if (!unmergeable) { 7518 /* Setup first alias */ 7519 sysfs_slab_alias(s, s->name); 7520 } 7521 out: 7522 if (!unmergeable) 7523 kfree(name); 7524 return err; 7525 out_del_kobj: 7526 kobject_del(&s->kobj); 7527 goto out; 7528 } 7529 7530 void sysfs_slab_unlink(struct kmem_cache *s) 7531 { 7532 if (s->kobj.state_in_sysfs) 7533 kobject_del(&s->kobj); 7534 } 7535 7536 void sysfs_slab_release(struct kmem_cache *s) 7537 { 7538 kobject_put(&s->kobj); 7539 } 7540 7541 /* 7542 * Need to buffer aliases during bootup until sysfs becomes 7543 * available lest we lose that information. 7544 */ 7545 struct saved_alias { 7546 struct kmem_cache *s; 7547 const char *name; 7548 struct saved_alias *next; 7549 }; 7550 7551 static struct saved_alias *alias_list; 7552 7553 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 7554 { 7555 struct saved_alias *al; 7556 7557 if (slab_state == FULL) { 7558 /* 7559 * If we have a leftover link then remove it. 7560 */ 7561 sysfs_remove_link(&slab_kset->kobj, name); 7562 /* 7563 * The original cache may have failed to generate sysfs file. 7564 * In that case, sysfs_create_link() returns -ENOENT and 7565 * symbolic link creation is skipped. 7566 */ 7567 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7568 } 7569 7570 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7571 if (!al) 7572 return -ENOMEM; 7573 7574 al->s = s; 7575 al->name = name; 7576 al->next = alias_list; 7577 alias_list = al; 7578 kmsan_unpoison_memory(al, sizeof(*al)); 7579 return 0; 7580 } 7581 7582 static int __init slab_sysfs_init(void) 7583 { 7584 struct kmem_cache *s; 7585 int err; 7586 7587 mutex_lock(&slab_mutex); 7588 7589 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7590 if (!slab_kset) { 7591 mutex_unlock(&slab_mutex); 7592 pr_err("Cannot register slab subsystem.\n"); 7593 return -ENOMEM; 7594 } 7595 7596 slab_state = FULL; 7597 7598 list_for_each_entry(s, &slab_caches, list) { 7599 err = sysfs_slab_add(s); 7600 if (err) 7601 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7602 s->name); 7603 } 7604 7605 while (alias_list) { 7606 struct saved_alias *al = alias_list; 7607 7608 alias_list = alias_list->next; 7609 err = sysfs_slab_alias(al->s, al->name); 7610 if (err) 7611 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7612 al->name); 7613 kfree(al); 7614 } 7615 7616 mutex_unlock(&slab_mutex); 7617 return 0; 7618 } 7619 late_initcall(slab_sysfs_init); 7620 #endif /* SLAB_SUPPORTS_SYSFS */ 7621 7622 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7623 static int slab_debugfs_show(struct seq_file *seq, void *v) 7624 { 7625 struct loc_track *t = seq->private; 7626 struct location *l; 7627 unsigned long idx; 7628 7629 idx = (unsigned long) t->idx; 7630 if (idx < t->count) { 7631 l = &t->loc[idx]; 7632 7633 seq_printf(seq, "%7ld ", l->count); 7634 7635 if (l->addr) 7636 seq_printf(seq, "%pS", (void *)l->addr); 7637 else 7638 seq_puts(seq, "<not-available>"); 7639 7640 if (l->waste) 7641 seq_printf(seq, " waste=%lu/%lu", 7642 l->count * l->waste, l->waste); 7643 7644 if (l->sum_time != l->min_time) { 7645 seq_printf(seq, " age=%ld/%llu/%ld", 7646 l->min_time, div_u64(l->sum_time, l->count), 7647 l->max_time); 7648 } else 7649 seq_printf(seq, " age=%ld", l->min_time); 7650 7651 if (l->min_pid != l->max_pid) 7652 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7653 else 7654 seq_printf(seq, " pid=%ld", 7655 l->min_pid); 7656 7657 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7658 seq_printf(seq, " cpus=%*pbl", 7659 cpumask_pr_args(to_cpumask(l->cpus))); 7660 7661 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7662 seq_printf(seq, " nodes=%*pbl", 7663 nodemask_pr_args(&l->nodes)); 7664 7665 #ifdef CONFIG_STACKDEPOT 7666 { 7667 depot_stack_handle_t handle; 7668 unsigned long *entries; 7669 unsigned int nr_entries, j; 7670 7671 handle = READ_ONCE(l->handle); 7672 if (handle) { 7673 nr_entries = stack_depot_fetch(handle, &entries); 7674 seq_puts(seq, "\n"); 7675 for (j = 0; j < nr_entries; j++) 7676 seq_printf(seq, " %pS\n", (void *)entries[j]); 7677 } 7678 } 7679 #endif 7680 seq_puts(seq, "\n"); 7681 } 7682 7683 if (!idx && !t->count) 7684 seq_puts(seq, "No data\n"); 7685 7686 return 0; 7687 } 7688 7689 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7690 { 7691 } 7692 7693 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7694 { 7695 struct loc_track *t = seq->private; 7696 7697 t->idx = ++(*ppos); 7698 if (*ppos <= t->count) 7699 return ppos; 7700 7701 return NULL; 7702 } 7703 7704 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7705 { 7706 struct location *loc1 = (struct location *)a; 7707 struct location *loc2 = (struct location *)b; 7708 7709 if (loc1->count > loc2->count) 7710 return -1; 7711 else 7712 return 1; 7713 } 7714 7715 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7716 { 7717 struct loc_track *t = seq->private; 7718 7719 t->idx = *ppos; 7720 return ppos; 7721 } 7722 7723 static const struct seq_operations slab_debugfs_sops = { 7724 .start = slab_debugfs_start, 7725 .next = slab_debugfs_next, 7726 .stop = slab_debugfs_stop, 7727 .show = slab_debugfs_show, 7728 }; 7729 7730 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7731 { 7732 7733 struct kmem_cache_node *n; 7734 enum track_item alloc; 7735 int node; 7736 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7737 sizeof(struct loc_track)); 7738 struct kmem_cache *s = file_inode(filep)->i_private; 7739 unsigned long *obj_map; 7740 7741 if (!t) 7742 return -ENOMEM; 7743 7744 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7745 if (!obj_map) { 7746 seq_release_private(inode, filep); 7747 return -ENOMEM; 7748 } 7749 7750 alloc = debugfs_get_aux_num(filep); 7751 7752 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7753 bitmap_free(obj_map); 7754 seq_release_private(inode, filep); 7755 return -ENOMEM; 7756 } 7757 7758 for_each_kmem_cache_node(s, node, n) { 7759 unsigned long flags; 7760 struct slab *slab; 7761 7762 if (!node_nr_slabs(n)) 7763 continue; 7764 7765 spin_lock_irqsave(&n->list_lock, flags); 7766 list_for_each_entry(slab, &n->partial, slab_list) 7767 process_slab(t, s, slab, alloc, obj_map); 7768 list_for_each_entry(slab, &n->full, slab_list) 7769 process_slab(t, s, slab, alloc, obj_map); 7770 spin_unlock_irqrestore(&n->list_lock, flags); 7771 } 7772 7773 /* Sort locations by count */ 7774 sort_r(t->loc, t->count, sizeof(struct location), 7775 cmp_loc_by_count, NULL, NULL); 7776 7777 bitmap_free(obj_map); 7778 return 0; 7779 } 7780 7781 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7782 { 7783 struct seq_file *seq = file->private_data; 7784 struct loc_track *t = seq->private; 7785 7786 free_loc_track(t); 7787 return seq_release_private(inode, file); 7788 } 7789 7790 static const struct file_operations slab_debugfs_fops = { 7791 .open = slab_debug_trace_open, 7792 .read = seq_read, 7793 .llseek = seq_lseek, 7794 .release = slab_debug_trace_release, 7795 }; 7796 7797 static void debugfs_slab_add(struct kmem_cache *s) 7798 { 7799 struct dentry *slab_cache_dir; 7800 7801 if (unlikely(!slab_debugfs_root)) 7802 return; 7803 7804 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7805 7806 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s, 7807 TRACK_ALLOC, &slab_debugfs_fops); 7808 7809 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s, 7810 TRACK_FREE, &slab_debugfs_fops); 7811 } 7812 7813 void debugfs_slab_release(struct kmem_cache *s) 7814 { 7815 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7816 } 7817 7818 static int __init slab_debugfs_init(void) 7819 { 7820 struct kmem_cache *s; 7821 7822 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7823 7824 list_for_each_entry(s, &slab_caches, list) 7825 if (s->flags & SLAB_STORE_USER) 7826 debugfs_slab_add(s); 7827 7828 return 0; 7829 7830 } 7831 __initcall(slab_debugfs_init); 7832 #endif 7833 /* 7834 * The /proc/slabinfo ABI 7835 */ 7836 #ifdef CONFIG_SLUB_DEBUG 7837 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7838 { 7839 unsigned long nr_slabs = 0; 7840 unsigned long nr_objs = 0; 7841 unsigned long nr_free = 0; 7842 int node; 7843 struct kmem_cache_node *n; 7844 7845 for_each_kmem_cache_node(s, node, n) { 7846 nr_slabs += node_nr_slabs(n); 7847 nr_objs += node_nr_objs(n); 7848 nr_free += count_partial_free_approx(n); 7849 } 7850 7851 sinfo->active_objs = nr_objs - nr_free; 7852 sinfo->num_objs = nr_objs; 7853 sinfo->active_slabs = nr_slabs; 7854 sinfo->num_slabs = nr_slabs; 7855 sinfo->objects_per_slab = oo_objects(s->oo); 7856 sinfo->cache_order = oo_order(s->oo); 7857 } 7858 #endif /* CONFIG_SLUB_DEBUG */ 7859