1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 /* Structure holding parameters for get_partial() call chain */ 222 struct partial_context { 223 gfp_t flags; 224 unsigned int orig_size; 225 void *object; 226 }; 227 228 static inline bool kmem_cache_debug(struct kmem_cache *s) 229 { 230 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 231 } 232 233 static inline bool slub_debug_orig_size(struct kmem_cache *s) 234 { 235 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) && 236 (s->flags & SLAB_KMALLOC)); 237 } 238 239 void *fixup_red_left(struct kmem_cache *s, void *p) 240 { 241 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 242 p += s->red_left_pad; 243 244 return p; 245 } 246 247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 248 { 249 #ifdef CONFIG_SLUB_CPU_PARTIAL 250 return !kmem_cache_debug(s); 251 #else 252 return false; 253 #endif 254 } 255 256 /* 257 * Issues still to be resolved: 258 * 259 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 260 * 261 * - Variable sizing of the per node arrays 262 */ 263 264 /* Enable to log cmpxchg failures */ 265 #undef SLUB_DEBUG_CMPXCHG 266 267 #ifndef CONFIG_SLUB_TINY 268 /* 269 * Minimum number of partial slabs. These will be left on the partial 270 * lists even if they are empty. kmem_cache_shrink may reclaim them. 271 */ 272 #define MIN_PARTIAL 5 273 274 /* 275 * Maximum number of desirable partial slabs. 276 * The existence of more partial slabs makes kmem_cache_shrink 277 * sort the partial list by the number of objects in use. 278 */ 279 #define MAX_PARTIAL 10 280 #else 281 #define MIN_PARTIAL 0 282 #define MAX_PARTIAL 0 283 #endif 284 285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 286 SLAB_POISON | SLAB_STORE_USER) 287 288 /* 289 * These debug flags cannot use CMPXCHG because there might be consistency 290 * issues when checking or reading debug information 291 */ 292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 293 SLAB_TRACE) 294 295 296 /* 297 * Debugging flags that require metadata to be stored in the slab. These get 298 * disabled when slab_debug=O is used and a cache's min order increases with 299 * metadata. 300 */ 301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 302 303 #define OO_SHIFT 16 304 #define OO_MASK ((1 << OO_SHIFT) - 1) 305 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 306 307 /* Internal SLUB flags */ 308 /* Poison object */ 309 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 310 /* Use cmpxchg_double */ 311 312 #ifdef system_has_freelist_aba 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 314 #else 315 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 316 #endif 317 318 /* 319 * Tracking user of a slab. 320 */ 321 #define TRACK_ADDRS_COUNT 16 322 struct track { 323 unsigned long addr; /* Called from address */ 324 #ifdef CONFIG_STACKDEPOT 325 depot_stack_handle_t handle; 326 #endif 327 int cpu; /* Was running on cpu */ 328 int pid; /* Pid context */ 329 unsigned long when; /* When did the operation occur */ 330 }; 331 332 enum track_item { TRACK_ALLOC, TRACK_FREE }; 333 334 #ifdef SLAB_SUPPORTS_SYSFS 335 static int sysfs_slab_add(struct kmem_cache *); 336 static int sysfs_slab_alias(struct kmem_cache *, const char *); 337 #else 338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 340 { return 0; } 341 #endif 342 343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 344 static void debugfs_slab_add(struct kmem_cache *); 345 #else 346 static inline void debugfs_slab_add(struct kmem_cache *s) { } 347 #endif 348 349 enum stat_item { 350 ALLOC_FASTPATH, /* Allocation from cpu slab */ 351 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 352 FREE_FASTPATH, /* Free to cpu slab */ 353 FREE_SLOWPATH, /* Freeing not to cpu slab */ 354 FREE_FROZEN, /* Freeing to frozen slab */ 355 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 356 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 357 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 358 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 359 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 360 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 361 FREE_SLAB, /* Slab freed to the page allocator */ 362 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 363 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 364 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 365 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 366 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 367 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 368 DEACTIVATE_BYPASS, /* Implicit deactivation */ 369 ORDER_FALLBACK, /* Number of times fallback was necessary */ 370 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 371 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 372 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 373 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 374 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 375 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 376 NR_SLUB_STAT_ITEMS 377 }; 378 379 #ifndef CONFIG_SLUB_TINY 380 /* 381 * When changing the layout, make sure freelist and tid are still compatible 382 * with this_cpu_cmpxchg_double() alignment requirements. 383 */ 384 struct kmem_cache_cpu { 385 union { 386 struct { 387 void **freelist; /* Pointer to next available object */ 388 unsigned long tid; /* Globally unique transaction id */ 389 }; 390 freelist_aba_t freelist_tid; 391 }; 392 struct slab *slab; /* The slab from which we are allocating */ 393 #ifdef CONFIG_SLUB_CPU_PARTIAL 394 struct slab *partial; /* Partially allocated slabs */ 395 #endif 396 local_lock_t lock; /* Protects the fields above */ 397 #ifdef CONFIG_SLUB_STATS 398 unsigned int stat[NR_SLUB_STAT_ITEMS]; 399 #endif 400 }; 401 #endif /* CONFIG_SLUB_TINY */ 402 403 static inline void stat(const struct kmem_cache *s, enum stat_item si) 404 { 405 #ifdef CONFIG_SLUB_STATS 406 /* 407 * The rmw is racy on a preemptible kernel but this is acceptable, so 408 * avoid this_cpu_add()'s irq-disable overhead. 409 */ 410 raw_cpu_inc(s->cpu_slab->stat[si]); 411 #endif 412 } 413 414 static inline 415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 416 { 417 #ifdef CONFIG_SLUB_STATS 418 raw_cpu_add(s->cpu_slab->stat[si], v); 419 #endif 420 } 421 422 /* 423 * The slab lists for all objects. 424 */ 425 struct kmem_cache_node { 426 spinlock_t list_lock; 427 unsigned long nr_partial; 428 struct list_head partial; 429 #ifdef CONFIG_SLUB_DEBUG 430 atomic_long_t nr_slabs; 431 atomic_long_t total_objects; 432 struct list_head full; 433 #endif 434 }; 435 436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 437 { 438 return s->node[node]; 439 } 440 441 /* 442 * Iterator over all nodes. The body will be executed for each node that has 443 * a kmem_cache_node structure allocated (which is true for all online nodes) 444 */ 445 #define for_each_kmem_cache_node(__s, __node, __n) \ 446 for (__node = 0; __node < nr_node_ids; __node++) \ 447 if ((__n = get_node(__s, __node))) 448 449 /* 450 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 451 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 452 * differ during memory hotplug/hotremove operations. 453 * Protected by slab_mutex. 454 */ 455 static nodemask_t slab_nodes; 456 457 #ifndef CONFIG_SLUB_TINY 458 /* 459 * Workqueue used for flush_cpu_slab(). 460 */ 461 static struct workqueue_struct *flushwq; 462 #endif 463 464 /******************************************************************** 465 * Core slab cache functions 466 *******************************************************************/ 467 468 /* 469 * freeptr_t represents a SLUB freelist pointer, which might be encoded 470 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled. 471 */ 472 typedef struct { unsigned long v; } freeptr_t; 473 474 /* 475 * Returns freelist pointer (ptr). With hardening, this is obfuscated 476 * with an XOR of the address where the pointer is held and a per-cache 477 * random number. 478 */ 479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 480 void *ptr, unsigned long ptr_addr) 481 { 482 unsigned long encoded; 483 484 #ifdef CONFIG_SLAB_FREELIST_HARDENED 485 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 486 #else 487 encoded = (unsigned long)ptr; 488 #endif 489 return (freeptr_t){.v = encoded}; 490 } 491 492 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 493 freeptr_t ptr, unsigned long ptr_addr) 494 { 495 void *decoded; 496 497 #ifdef CONFIG_SLAB_FREELIST_HARDENED 498 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 499 #else 500 decoded = (void *)ptr.v; 501 #endif 502 return decoded; 503 } 504 505 static inline void *get_freepointer(struct kmem_cache *s, void *object) 506 { 507 unsigned long ptr_addr; 508 freeptr_t p; 509 510 object = kasan_reset_tag(object); 511 ptr_addr = (unsigned long)object + s->offset; 512 p = *(freeptr_t *)(ptr_addr); 513 return freelist_ptr_decode(s, p, ptr_addr); 514 } 515 516 #ifndef CONFIG_SLUB_TINY 517 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 518 { 519 prefetchw(object + s->offset); 520 } 521 #endif 522 523 /* 524 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 525 * pointer value in the case the current thread loses the race for the next 526 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 527 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 528 * KMSAN will still check all arguments of cmpxchg because of imperfect 529 * handling of inline assembly. 530 * To work around this problem, we apply __no_kmsan_checks to ensure that 531 * get_freepointer_safe() returns initialized memory. 532 */ 533 __no_kmsan_checks 534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 535 { 536 unsigned long freepointer_addr; 537 freeptr_t p; 538 539 if (!debug_pagealloc_enabled_static()) 540 return get_freepointer(s, object); 541 542 object = kasan_reset_tag(object); 543 freepointer_addr = (unsigned long)object + s->offset; 544 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 545 return freelist_ptr_decode(s, p, freepointer_addr); 546 } 547 548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 549 { 550 unsigned long freeptr_addr = (unsigned long)object + s->offset; 551 552 #ifdef CONFIG_SLAB_FREELIST_HARDENED 553 BUG_ON(object == fp); /* naive detection of double free or corruption */ 554 #endif 555 556 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 557 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 558 } 559 560 /* 561 * See comment in calculate_sizes(). 562 */ 563 static inline bool freeptr_outside_object(struct kmem_cache *s) 564 { 565 return s->offset >= s->inuse; 566 } 567 568 /* 569 * Return offset of the end of info block which is inuse + free pointer if 570 * not overlapping with object. 571 */ 572 static inline unsigned int get_info_end(struct kmem_cache *s) 573 { 574 if (freeptr_outside_object(s)) 575 return s->inuse + sizeof(void *); 576 else 577 return s->inuse; 578 } 579 580 /* Loop over all objects in a slab */ 581 #define for_each_object(__p, __s, __addr, __objects) \ 582 for (__p = fixup_red_left(__s, __addr); \ 583 __p < (__addr) + (__objects) * (__s)->size; \ 584 __p += (__s)->size) 585 586 static inline unsigned int order_objects(unsigned int order, unsigned int size) 587 { 588 return ((unsigned int)PAGE_SIZE << order) / size; 589 } 590 591 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 592 unsigned int size) 593 { 594 struct kmem_cache_order_objects x = { 595 (order << OO_SHIFT) + order_objects(order, size) 596 }; 597 598 return x; 599 } 600 601 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 602 { 603 return x.x >> OO_SHIFT; 604 } 605 606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 607 { 608 return x.x & OO_MASK; 609 } 610 611 #ifdef CONFIG_SLUB_CPU_PARTIAL 612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 613 { 614 unsigned int nr_slabs; 615 616 s->cpu_partial = nr_objects; 617 618 /* 619 * We take the number of objects but actually limit the number of 620 * slabs on the per cpu partial list, in order to limit excessive 621 * growth of the list. For simplicity we assume that the slabs will 622 * be half-full. 623 */ 624 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 625 s->cpu_partial_slabs = nr_slabs; 626 } 627 628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 629 { 630 return s->cpu_partial_slabs; 631 } 632 #else 633 static inline void 634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 635 { 636 } 637 638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 639 { 640 return 0; 641 } 642 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 643 644 /* 645 * Per slab locking using the pagelock 646 */ 647 static __always_inline void slab_lock(struct slab *slab) 648 { 649 bit_spin_lock(PG_locked, &slab->__page_flags); 650 } 651 652 static __always_inline void slab_unlock(struct slab *slab) 653 { 654 bit_spin_unlock(PG_locked, &slab->__page_flags); 655 } 656 657 static inline bool 658 __update_freelist_fast(struct slab *slab, 659 void *freelist_old, unsigned long counters_old, 660 void *freelist_new, unsigned long counters_new) 661 { 662 #ifdef system_has_freelist_aba 663 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 664 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 665 666 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 667 #else 668 return false; 669 #endif 670 } 671 672 static inline bool 673 __update_freelist_slow(struct slab *slab, 674 void *freelist_old, unsigned long counters_old, 675 void *freelist_new, unsigned long counters_new) 676 { 677 bool ret = false; 678 679 slab_lock(slab); 680 if (slab->freelist == freelist_old && 681 slab->counters == counters_old) { 682 slab->freelist = freelist_new; 683 slab->counters = counters_new; 684 ret = true; 685 } 686 slab_unlock(slab); 687 688 return ret; 689 } 690 691 /* 692 * Interrupts must be disabled (for the fallback code to work right), typically 693 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 694 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 695 * allocation/ free operation in hardirq context. Therefore nothing can 696 * interrupt the operation. 697 */ 698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 699 void *freelist_old, unsigned long counters_old, 700 void *freelist_new, unsigned long counters_new, 701 const char *n) 702 { 703 bool ret; 704 705 if (USE_LOCKLESS_FAST_PATH()) 706 lockdep_assert_irqs_disabled(); 707 708 if (s->flags & __CMPXCHG_DOUBLE) { 709 ret = __update_freelist_fast(slab, freelist_old, counters_old, 710 freelist_new, counters_new); 711 } else { 712 ret = __update_freelist_slow(slab, freelist_old, counters_old, 713 freelist_new, counters_new); 714 } 715 if (likely(ret)) 716 return true; 717 718 cpu_relax(); 719 stat(s, CMPXCHG_DOUBLE_FAIL); 720 721 #ifdef SLUB_DEBUG_CMPXCHG 722 pr_info("%s %s: cmpxchg double redo ", n, s->name); 723 #endif 724 725 return false; 726 } 727 728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 729 void *freelist_old, unsigned long counters_old, 730 void *freelist_new, unsigned long counters_new, 731 const char *n) 732 { 733 bool ret; 734 735 if (s->flags & __CMPXCHG_DOUBLE) { 736 ret = __update_freelist_fast(slab, freelist_old, counters_old, 737 freelist_new, counters_new); 738 } else { 739 unsigned long flags; 740 741 local_irq_save(flags); 742 ret = __update_freelist_slow(slab, freelist_old, counters_old, 743 freelist_new, counters_new); 744 local_irq_restore(flags); 745 } 746 if (likely(ret)) 747 return true; 748 749 cpu_relax(); 750 stat(s, CMPXCHG_DOUBLE_FAIL); 751 752 #ifdef SLUB_DEBUG_CMPXCHG 753 pr_info("%s %s: cmpxchg double redo ", n, s->name); 754 #endif 755 756 return false; 757 } 758 759 #ifdef CONFIG_SLUB_DEBUG 760 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 761 static DEFINE_SPINLOCK(object_map_lock); 762 763 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 764 struct slab *slab) 765 { 766 void *addr = slab_address(slab); 767 void *p; 768 769 bitmap_zero(obj_map, slab->objects); 770 771 for (p = slab->freelist; p; p = get_freepointer(s, p)) 772 set_bit(__obj_to_index(s, addr, p), obj_map); 773 } 774 775 #if IS_ENABLED(CONFIG_KUNIT) 776 static bool slab_add_kunit_errors(void) 777 { 778 struct kunit_resource *resource; 779 780 if (!kunit_get_current_test()) 781 return false; 782 783 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 784 if (!resource) 785 return false; 786 787 (*(int *)resource->data)++; 788 kunit_put_resource(resource); 789 return true; 790 } 791 792 static bool slab_in_kunit_test(void) 793 { 794 struct kunit_resource *resource; 795 796 if (!kunit_get_current_test()) 797 return false; 798 799 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 800 if (!resource) 801 return false; 802 803 kunit_put_resource(resource); 804 return true; 805 } 806 #else 807 static inline bool slab_add_kunit_errors(void) { return false; } 808 static inline bool slab_in_kunit_test(void) { return false; } 809 #endif 810 811 static inline unsigned int size_from_object(struct kmem_cache *s) 812 { 813 if (s->flags & SLAB_RED_ZONE) 814 return s->size - s->red_left_pad; 815 816 return s->size; 817 } 818 819 static inline void *restore_red_left(struct kmem_cache *s, void *p) 820 { 821 if (s->flags & SLAB_RED_ZONE) 822 p -= s->red_left_pad; 823 824 return p; 825 } 826 827 /* 828 * Debug settings: 829 */ 830 #if defined(CONFIG_SLUB_DEBUG_ON) 831 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 832 #else 833 static slab_flags_t slub_debug; 834 #endif 835 836 static char *slub_debug_string; 837 static int disable_higher_order_debug; 838 839 /* 840 * slub is about to manipulate internal object metadata. This memory lies 841 * outside the range of the allocated object, so accessing it would normally 842 * be reported by kasan as a bounds error. metadata_access_enable() is used 843 * to tell kasan that these accesses are OK. 844 */ 845 static inline void metadata_access_enable(void) 846 { 847 kasan_disable_current(); 848 kmsan_disable_current(); 849 } 850 851 static inline void metadata_access_disable(void) 852 { 853 kmsan_enable_current(); 854 kasan_enable_current(); 855 } 856 857 /* 858 * Object debugging 859 */ 860 861 /* Verify that a pointer has an address that is valid within a slab page */ 862 static inline int check_valid_pointer(struct kmem_cache *s, 863 struct slab *slab, void *object) 864 { 865 void *base; 866 867 if (!object) 868 return 1; 869 870 base = slab_address(slab); 871 object = kasan_reset_tag(object); 872 object = restore_red_left(s, object); 873 if (object < base || object >= base + slab->objects * s->size || 874 (object - base) % s->size) { 875 return 0; 876 } 877 878 return 1; 879 } 880 881 static void print_section(char *level, char *text, u8 *addr, 882 unsigned int length) 883 { 884 metadata_access_enable(); 885 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 886 16, 1, kasan_reset_tag((void *)addr), length, 1); 887 metadata_access_disable(); 888 } 889 890 static struct track *get_track(struct kmem_cache *s, void *object, 891 enum track_item alloc) 892 { 893 struct track *p; 894 895 p = object + get_info_end(s); 896 897 return kasan_reset_tag(p + alloc); 898 } 899 900 #ifdef CONFIG_STACKDEPOT 901 static noinline depot_stack_handle_t set_track_prepare(void) 902 { 903 depot_stack_handle_t handle; 904 unsigned long entries[TRACK_ADDRS_COUNT]; 905 unsigned int nr_entries; 906 907 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 908 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 909 910 return handle; 911 } 912 #else 913 static inline depot_stack_handle_t set_track_prepare(void) 914 { 915 return 0; 916 } 917 #endif 918 919 static void set_track_update(struct kmem_cache *s, void *object, 920 enum track_item alloc, unsigned long addr, 921 depot_stack_handle_t handle) 922 { 923 struct track *p = get_track(s, object, alloc); 924 925 #ifdef CONFIG_STACKDEPOT 926 p->handle = handle; 927 #endif 928 p->addr = addr; 929 p->cpu = smp_processor_id(); 930 p->pid = current->pid; 931 p->when = jiffies; 932 } 933 934 static __always_inline void set_track(struct kmem_cache *s, void *object, 935 enum track_item alloc, unsigned long addr) 936 { 937 depot_stack_handle_t handle = set_track_prepare(); 938 939 set_track_update(s, object, alloc, addr, handle); 940 } 941 942 static void init_tracking(struct kmem_cache *s, void *object) 943 { 944 struct track *p; 945 946 if (!(s->flags & SLAB_STORE_USER)) 947 return; 948 949 p = get_track(s, object, TRACK_ALLOC); 950 memset(p, 0, 2*sizeof(struct track)); 951 } 952 953 static void print_track(const char *s, struct track *t, unsigned long pr_time) 954 { 955 depot_stack_handle_t handle __maybe_unused; 956 957 if (!t->addr) 958 return; 959 960 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 961 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 962 #ifdef CONFIG_STACKDEPOT 963 handle = READ_ONCE(t->handle); 964 if (handle) 965 stack_depot_print(handle); 966 else 967 pr_err("object allocation/free stack trace missing\n"); 968 #endif 969 } 970 971 void print_tracking(struct kmem_cache *s, void *object) 972 { 973 unsigned long pr_time = jiffies; 974 if (!(s->flags & SLAB_STORE_USER)) 975 return; 976 977 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 978 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 979 } 980 981 static void print_slab_info(const struct slab *slab) 982 { 983 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 984 slab, slab->objects, slab->inuse, slab->freelist, 985 &slab->__page_flags); 986 } 987 988 /* 989 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 990 * family will round up the real request size to these fixed ones, so 991 * there could be an extra area than what is requested. Save the original 992 * request size in the meta data area, for better debug and sanity check. 993 */ 994 static inline void set_orig_size(struct kmem_cache *s, 995 void *object, unsigned int orig_size) 996 { 997 void *p = kasan_reset_tag(object); 998 unsigned int kasan_meta_size; 999 1000 if (!slub_debug_orig_size(s)) 1001 return; 1002 1003 /* 1004 * KASAN can save its free meta data inside of the object at offset 0. 1005 * If this meta data size is larger than 'orig_size', it will overlap 1006 * the data redzone in [orig_size+1, object_size]. Thus, we adjust 1007 * 'orig_size' to be as at least as big as KASAN's meta data. 1008 */ 1009 kasan_meta_size = kasan_metadata_size(s, true); 1010 if (kasan_meta_size > orig_size) 1011 orig_size = kasan_meta_size; 1012 1013 p += get_info_end(s); 1014 p += sizeof(struct track) * 2; 1015 1016 *(unsigned int *)p = orig_size; 1017 } 1018 1019 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 1020 { 1021 void *p = kasan_reset_tag(object); 1022 1023 if (!slub_debug_orig_size(s)) 1024 return s->object_size; 1025 1026 p += get_info_end(s); 1027 p += sizeof(struct track) * 2; 1028 1029 return *(unsigned int *)p; 1030 } 1031 1032 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1033 { 1034 set_orig_size(s, (void *)object, s->object_size); 1035 } 1036 1037 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1038 { 1039 struct va_format vaf; 1040 va_list args; 1041 1042 va_start(args, fmt); 1043 vaf.fmt = fmt; 1044 vaf.va = &args; 1045 pr_err("=============================================================================\n"); 1046 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1047 pr_err("-----------------------------------------------------------------------------\n\n"); 1048 va_end(args); 1049 } 1050 1051 __printf(2, 3) 1052 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1053 { 1054 struct va_format vaf; 1055 va_list args; 1056 1057 if (slab_add_kunit_errors()) 1058 return; 1059 1060 va_start(args, fmt); 1061 vaf.fmt = fmt; 1062 vaf.va = &args; 1063 pr_err("FIX %s: %pV\n", s->name, &vaf); 1064 va_end(args); 1065 } 1066 1067 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1068 { 1069 unsigned int off; /* Offset of last byte */ 1070 u8 *addr = slab_address(slab); 1071 1072 print_tracking(s, p); 1073 1074 print_slab_info(slab); 1075 1076 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1077 p, p - addr, get_freepointer(s, p)); 1078 1079 if (s->flags & SLAB_RED_ZONE) 1080 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1081 s->red_left_pad); 1082 else if (p > addr + 16) 1083 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1084 1085 print_section(KERN_ERR, "Object ", p, 1086 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1087 if (s->flags & SLAB_RED_ZONE) 1088 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1089 s->inuse - s->object_size); 1090 1091 off = get_info_end(s); 1092 1093 if (s->flags & SLAB_STORE_USER) 1094 off += 2 * sizeof(struct track); 1095 1096 if (slub_debug_orig_size(s)) 1097 off += sizeof(unsigned int); 1098 1099 off += kasan_metadata_size(s, false); 1100 1101 if (off != size_from_object(s)) 1102 /* Beginning of the filler is the free pointer */ 1103 print_section(KERN_ERR, "Padding ", p + off, 1104 size_from_object(s) - off); 1105 1106 dump_stack(); 1107 } 1108 1109 static void object_err(struct kmem_cache *s, struct slab *slab, 1110 u8 *object, char *reason) 1111 { 1112 if (slab_add_kunit_errors()) 1113 return; 1114 1115 slab_bug(s, "%s", reason); 1116 print_trailer(s, slab, object); 1117 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1118 } 1119 1120 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1121 void **freelist, void *nextfree) 1122 { 1123 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1124 !check_valid_pointer(s, slab, nextfree) && freelist) { 1125 object_err(s, slab, *freelist, "Freechain corrupt"); 1126 *freelist = NULL; 1127 slab_fix(s, "Isolate corrupted freechain"); 1128 return true; 1129 } 1130 1131 return false; 1132 } 1133 1134 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1135 const char *fmt, ...) 1136 { 1137 va_list args; 1138 char buf[100]; 1139 1140 if (slab_add_kunit_errors()) 1141 return; 1142 1143 va_start(args, fmt); 1144 vsnprintf(buf, sizeof(buf), fmt, args); 1145 va_end(args); 1146 slab_bug(s, "%s", buf); 1147 print_slab_info(slab); 1148 dump_stack(); 1149 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1150 } 1151 1152 static void init_object(struct kmem_cache *s, void *object, u8 val) 1153 { 1154 u8 *p = kasan_reset_tag(object); 1155 unsigned int poison_size = s->object_size; 1156 1157 if (s->flags & SLAB_RED_ZONE) { 1158 /* 1159 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1160 * the shadow makes it possible to distinguish uninit-value 1161 * from use-after-free. 1162 */ 1163 memset_no_sanitize_memory(p - s->red_left_pad, val, 1164 s->red_left_pad); 1165 1166 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1167 /* 1168 * Redzone the extra allocated space by kmalloc than 1169 * requested, and the poison size will be limited to 1170 * the original request size accordingly. 1171 */ 1172 poison_size = get_orig_size(s, object); 1173 } 1174 } 1175 1176 if (s->flags & __OBJECT_POISON) { 1177 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1178 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1179 } 1180 1181 if (s->flags & SLAB_RED_ZONE) 1182 memset_no_sanitize_memory(p + poison_size, val, 1183 s->inuse - poison_size); 1184 } 1185 1186 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1187 void *from, void *to) 1188 { 1189 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1190 memset(from, data, to - from); 1191 } 1192 1193 #ifdef CONFIG_KMSAN 1194 #define pad_check_attributes noinline __no_kmsan_checks 1195 #else 1196 #define pad_check_attributes 1197 #endif 1198 1199 static pad_check_attributes int 1200 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1201 u8 *object, char *what, 1202 u8 *start, unsigned int value, unsigned int bytes) 1203 { 1204 u8 *fault; 1205 u8 *end; 1206 u8 *addr = slab_address(slab); 1207 1208 metadata_access_enable(); 1209 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1210 metadata_access_disable(); 1211 if (!fault) 1212 return 1; 1213 1214 end = start + bytes; 1215 while (end > fault && end[-1] == value) 1216 end--; 1217 1218 if (slab_add_kunit_errors()) 1219 goto skip_bug_print; 1220 1221 slab_bug(s, "%s overwritten", what); 1222 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1223 fault, end - 1, fault - addr, 1224 fault[0], value); 1225 1226 skip_bug_print: 1227 restore_bytes(s, what, value, fault, end); 1228 return 0; 1229 } 1230 1231 /* 1232 * Object layout: 1233 * 1234 * object address 1235 * Bytes of the object to be managed. 1236 * If the freepointer may overlay the object then the free 1237 * pointer is at the middle of the object. 1238 * 1239 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1240 * 0xa5 (POISON_END) 1241 * 1242 * object + s->object_size 1243 * Padding to reach word boundary. This is also used for Redzoning. 1244 * Padding is extended by another word if Redzoning is enabled and 1245 * object_size == inuse. 1246 * 1247 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1248 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1249 * 1250 * object + s->inuse 1251 * Meta data starts here. 1252 * 1253 * A. Free pointer (if we cannot overwrite object on free) 1254 * B. Tracking data for SLAB_STORE_USER 1255 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1256 * D. Padding to reach required alignment boundary or at minimum 1257 * one word if debugging is on to be able to detect writes 1258 * before the word boundary. 1259 * 1260 * Padding is done using 0x5a (POISON_INUSE) 1261 * 1262 * object + s->size 1263 * Nothing is used beyond s->size. 1264 * 1265 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1266 * ignored. And therefore no slab options that rely on these boundaries 1267 * may be used with merged slabcaches. 1268 */ 1269 1270 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1271 { 1272 unsigned long off = get_info_end(s); /* The end of info */ 1273 1274 if (s->flags & SLAB_STORE_USER) { 1275 /* We also have user information there */ 1276 off += 2 * sizeof(struct track); 1277 1278 if (s->flags & SLAB_KMALLOC) 1279 off += sizeof(unsigned int); 1280 } 1281 1282 off += kasan_metadata_size(s, false); 1283 1284 if (size_from_object(s) == off) 1285 return 1; 1286 1287 return check_bytes_and_report(s, slab, p, "Object padding", 1288 p + off, POISON_INUSE, size_from_object(s) - off); 1289 } 1290 1291 /* Check the pad bytes at the end of a slab page */ 1292 static pad_check_attributes void 1293 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1294 { 1295 u8 *start; 1296 u8 *fault; 1297 u8 *end; 1298 u8 *pad; 1299 int length; 1300 int remainder; 1301 1302 if (!(s->flags & SLAB_POISON)) 1303 return; 1304 1305 start = slab_address(slab); 1306 length = slab_size(slab); 1307 end = start + length; 1308 remainder = length % s->size; 1309 if (!remainder) 1310 return; 1311 1312 pad = end - remainder; 1313 metadata_access_enable(); 1314 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1315 metadata_access_disable(); 1316 if (!fault) 1317 return; 1318 while (end > fault && end[-1] == POISON_INUSE) 1319 end--; 1320 1321 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1322 fault, end - 1, fault - start); 1323 print_section(KERN_ERR, "Padding ", pad, remainder); 1324 1325 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1326 } 1327 1328 static int check_object(struct kmem_cache *s, struct slab *slab, 1329 void *object, u8 val) 1330 { 1331 u8 *p = object; 1332 u8 *endobject = object + s->object_size; 1333 unsigned int orig_size, kasan_meta_size; 1334 int ret = 1; 1335 1336 if (s->flags & SLAB_RED_ZONE) { 1337 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1338 object - s->red_left_pad, val, s->red_left_pad)) 1339 ret = 0; 1340 1341 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1342 endobject, val, s->inuse - s->object_size)) 1343 ret = 0; 1344 1345 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1346 orig_size = get_orig_size(s, object); 1347 1348 if (s->object_size > orig_size && 1349 !check_bytes_and_report(s, slab, object, 1350 "kmalloc Redzone", p + orig_size, 1351 val, s->object_size - orig_size)) { 1352 ret = 0; 1353 } 1354 } 1355 } else { 1356 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1357 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1358 endobject, POISON_INUSE, 1359 s->inuse - s->object_size)) 1360 ret = 0; 1361 } 1362 } 1363 1364 if (s->flags & SLAB_POISON) { 1365 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1366 /* 1367 * KASAN can save its free meta data inside of the 1368 * object at offset 0. Thus, skip checking the part of 1369 * the redzone that overlaps with the meta data. 1370 */ 1371 kasan_meta_size = kasan_metadata_size(s, true); 1372 if (kasan_meta_size < s->object_size - 1 && 1373 !check_bytes_and_report(s, slab, p, "Poison", 1374 p + kasan_meta_size, POISON_FREE, 1375 s->object_size - kasan_meta_size - 1)) 1376 ret = 0; 1377 if (kasan_meta_size < s->object_size && 1378 !check_bytes_and_report(s, slab, p, "End Poison", 1379 p + s->object_size - 1, POISON_END, 1)) 1380 ret = 0; 1381 } 1382 /* 1383 * check_pad_bytes cleans up on its own. 1384 */ 1385 if (!check_pad_bytes(s, slab, p)) 1386 ret = 0; 1387 } 1388 1389 /* 1390 * Cannot check freepointer while object is allocated if 1391 * object and freepointer overlap. 1392 */ 1393 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1394 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1395 object_err(s, slab, p, "Freepointer corrupt"); 1396 /* 1397 * No choice but to zap it and thus lose the remainder 1398 * of the free objects in this slab. May cause 1399 * another error because the object count is now wrong. 1400 */ 1401 set_freepointer(s, p, NULL); 1402 ret = 0; 1403 } 1404 1405 if (!ret && !slab_in_kunit_test()) { 1406 print_trailer(s, slab, object); 1407 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1408 } 1409 1410 return ret; 1411 } 1412 1413 static int check_slab(struct kmem_cache *s, struct slab *slab) 1414 { 1415 int maxobj; 1416 1417 if (!folio_test_slab(slab_folio(slab))) { 1418 slab_err(s, slab, "Not a valid slab page"); 1419 return 0; 1420 } 1421 1422 maxobj = order_objects(slab_order(slab), s->size); 1423 if (slab->objects > maxobj) { 1424 slab_err(s, slab, "objects %u > max %u", 1425 slab->objects, maxobj); 1426 return 0; 1427 } 1428 if (slab->inuse > slab->objects) { 1429 slab_err(s, slab, "inuse %u > max %u", 1430 slab->inuse, slab->objects); 1431 return 0; 1432 } 1433 /* Slab_pad_check fixes things up after itself */ 1434 slab_pad_check(s, slab); 1435 return 1; 1436 } 1437 1438 /* 1439 * Determine if a certain object in a slab is on the freelist. Must hold the 1440 * slab lock to guarantee that the chains are in a consistent state. 1441 */ 1442 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1443 { 1444 int nr = 0; 1445 void *fp; 1446 void *object = NULL; 1447 int max_objects; 1448 1449 fp = slab->freelist; 1450 while (fp && nr <= slab->objects) { 1451 if (fp == search) 1452 return 1; 1453 if (!check_valid_pointer(s, slab, fp)) { 1454 if (object) { 1455 object_err(s, slab, object, 1456 "Freechain corrupt"); 1457 set_freepointer(s, object, NULL); 1458 } else { 1459 slab_err(s, slab, "Freepointer corrupt"); 1460 slab->freelist = NULL; 1461 slab->inuse = slab->objects; 1462 slab_fix(s, "Freelist cleared"); 1463 return 0; 1464 } 1465 break; 1466 } 1467 object = fp; 1468 fp = get_freepointer(s, object); 1469 nr++; 1470 } 1471 1472 max_objects = order_objects(slab_order(slab), s->size); 1473 if (max_objects > MAX_OBJS_PER_PAGE) 1474 max_objects = MAX_OBJS_PER_PAGE; 1475 1476 if (slab->objects != max_objects) { 1477 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1478 slab->objects, max_objects); 1479 slab->objects = max_objects; 1480 slab_fix(s, "Number of objects adjusted"); 1481 } 1482 if (slab->inuse != slab->objects - nr) { 1483 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1484 slab->inuse, slab->objects - nr); 1485 slab->inuse = slab->objects - nr; 1486 slab_fix(s, "Object count adjusted"); 1487 } 1488 return search == NULL; 1489 } 1490 1491 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1492 int alloc) 1493 { 1494 if (s->flags & SLAB_TRACE) { 1495 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1496 s->name, 1497 alloc ? "alloc" : "free", 1498 object, slab->inuse, 1499 slab->freelist); 1500 1501 if (!alloc) 1502 print_section(KERN_INFO, "Object ", (void *)object, 1503 s->object_size); 1504 1505 dump_stack(); 1506 } 1507 } 1508 1509 /* 1510 * Tracking of fully allocated slabs for debugging purposes. 1511 */ 1512 static void add_full(struct kmem_cache *s, 1513 struct kmem_cache_node *n, struct slab *slab) 1514 { 1515 if (!(s->flags & SLAB_STORE_USER)) 1516 return; 1517 1518 lockdep_assert_held(&n->list_lock); 1519 list_add(&slab->slab_list, &n->full); 1520 } 1521 1522 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1523 { 1524 if (!(s->flags & SLAB_STORE_USER)) 1525 return; 1526 1527 lockdep_assert_held(&n->list_lock); 1528 list_del(&slab->slab_list); 1529 } 1530 1531 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1532 { 1533 return atomic_long_read(&n->nr_slabs); 1534 } 1535 1536 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1537 { 1538 struct kmem_cache_node *n = get_node(s, node); 1539 1540 atomic_long_inc(&n->nr_slabs); 1541 atomic_long_add(objects, &n->total_objects); 1542 } 1543 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1544 { 1545 struct kmem_cache_node *n = get_node(s, node); 1546 1547 atomic_long_dec(&n->nr_slabs); 1548 atomic_long_sub(objects, &n->total_objects); 1549 } 1550 1551 /* Object debug checks for alloc/free paths */ 1552 static void setup_object_debug(struct kmem_cache *s, void *object) 1553 { 1554 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1555 return; 1556 1557 init_object(s, object, SLUB_RED_INACTIVE); 1558 init_tracking(s, object); 1559 } 1560 1561 static 1562 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1563 { 1564 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1565 return; 1566 1567 metadata_access_enable(); 1568 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1569 metadata_access_disable(); 1570 } 1571 1572 static inline int alloc_consistency_checks(struct kmem_cache *s, 1573 struct slab *slab, void *object) 1574 { 1575 if (!check_slab(s, slab)) 1576 return 0; 1577 1578 if (!check_valid_pointer(s, slab, object)) { 1579 object_err(s, slab, object, "Freelist Pointer check fails"); 1580 return 0; 1581 } 1582 1583 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1584 return 0; 1585 1586 return 1; 1587 } 1588 1589 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1590 struct slab *slab, void *object, int orig_size) 1591 { 1592 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1593 if (!alloc_consistency_checks(s, slab, object)) 1594 goto bad; 1595 } 1596 1597 /* Success. Perform special debug activities for allocs */ 1598 trace(s, slab, object, 1); 1599 set_orig_size(s, object, orig_size); 1600 init_object(s, object, SLUB_RED_ACTIVE); 1601 return true; 1602 1603 bad: 1604 if (folio_test_slab(slab_folio(slab))) { 1605 /* 1606 * If this is a slab page then lets do the best we can 1607 * to avoid issues in the future. Marking all objects 1608 * as used avoids touching the remaining objects. 1609 */ 1610 slab_fix(s, "Marking all objects used"); 1611 slab->inuse = slab->objects; 1612 slab->freelist = NULL; 1613 } 1614 return false; 1615 } 1616 1617 static inline int free_consistency_checks(struct kmem_cache *s, 1618 struct slab *slab, void *object, unsigned long addr) 1619 { 1620 if (!check_valid_pointer(s, slab, object)) { 1621 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1622 return 0; 1623 } 1624 1625 if (on_freelist(s, slab, object)) { 1626 object_err(s, slab, object, "Object already free"); 1627 return 0; 1628 } 1629 1630 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1631 return 0; 1632 1633 if (unlikely(s != slab->slab_cache)) { 1634 if (!folio_test_slab(slab_folio(slab))) { 1635 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1636 object); 1637 } else if (!slab->slab_cache) { 1638 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1639 object); 1640 dump_stack(); 1641 } else 1642 object_err(s, slab, object, 1643 "page slab pointer corrupt."); 1644 return 0; 1645 } 1646 return 1; 1647 } 1648 1649 /* 1650 * Parse a block of slab_debug options. Blocks are delimited by ';' 1651 * 1652 * @str: start of block 1653 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1654 * @slabs: return start of list of slabs, or NULL when there's no list 1655 * @init: assume this is initial parsing and not per-kmem-create parsing 1656 * 1657 * returns the start of next block if there's any, or NULL 1658 */ 1659 static char * 1660 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1661 { 1662 bool higher_order_disable = false; 1663 1664 /* Skip any completely empty blocks */ 1665 while (*str && *str == ';') 1666 str++; 1667 1668 if (*str == ',') { 1669 /* 1670 * No options but restriction on slabs. This means full 1671 * debugging for slabs matching a pattern. 1672 */ 1673 *flags = DEBUG_DEFAULT_FLAGS; 1674 goto check_slabs; 1675 } 1676 *flags = 0; 1677 1678 /* Determine which debug features should be switched on */ 1679 for (; *str && *str != ',' && *str != ';'; str++) { 1680 switch (tolower(*str)) { 1681 case '-': 1682 *flags = 0; 1683 break; 1684 case 'f': 1685 *flags |= SLAB_CONSISTENCY_CHECKS; 1686 break; 1687 case 'z': 1688 *flags |= SLAB_RED_ZONE; 1689 break; 1690 case 'p': 1691 *flags |= SLAB_POISON; 1692 break; 1693 case 'u': 1694 *flags |= SLAB_STORE_USER; 1695 break; 1696 case 't': 1697 *flags |= SLAB_TRACE; 1698 break; 1699 case 'a': 1700 *flags |= SLAB_FAILSLAB; 1701 break; 1702 case 'o': 1703 /* 1704 * Avoid enabling debugging on caches if its minimum 1705 * order would increase as a result. 1706 */ 1707 higher_order_disable = true; 1708 break; 1709 default: 1710 if (init) 1711 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1712 } 1713 } 1714 check_slabs: 1715 if (*str == ',') 1716 *slabs = ++str; 1717 else 1718 *slabs = NULL; 1719 1720 /* Skip over the slab list */ 1721 while (*str && *str != ';') 1722 str++; 1723 1724 /* Skip any completely empty blocks */ 1725 while (*str && *str == ';') 1726 str++; 1727 1728 if (init && higher_order_disable) 1729 disable_higher_order_debug = 1; 1730 1731 if (*str) 1732 return str; 1733 else 1734 return NULL; 1735 } 1736 1737 static int __init setup_slub_debug(char *str) 1738 { 1739 slab_flags_t flags; 1740 slab_flags_t global_flags; 1741 char *saved_str; 1742 char *slab_list; 1743 bool global_slub_debug_changed = false; 1744 bool slab_list_specified = false; 1745 1746 global_flags = DEBUG_DEFAULT_FLAGS; 1747 if (*str++ != '=' || !*str) 1748 /* 1749 * No options specified. Switch on full debugging. 1750 */ 1751 goto out; 1752 1753 saved_str = str; 1754 while (str) { 1755 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1756 1757 if (!slab_list) { 1758 global_flags = flags; 1759 global_slub_debug_changed = true; 1760 } else { 1761 slab_list_specified = true; 1762 if (flags & SLAB_STORE_USER) 1763 stack_depot_request_early_init(); 1764 } 1765 } 1766 1767 /* 1768 * For backwards compatibility, a single list of flags with list of 1769 * slabs means debugging is only changed for those slabs, so the global 1770 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1771 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1772 * long as there is no option specifying flags without a slab list. 1773 */ 1774 if (slab_list_specified) { 1775 if (!global_slub_debug_changed) 1776 global_flags = slub_debug; 1777 slub_debug_string = saved_str; 1778 } 1779 out: 1780 slub_debug = global_flags; 1781 if (slub_debug & SLAB_STORE_USER) 1782 stack_depot_request_early_init(); 1783 if (slub_debug != 0 || slub_debug_string) 1784 static_branch_enable(&slub_debug_enabled); 1785 else 1786 static_branch_disable(&slub_debug_enabled); 1787 if ((static_branch_unlikely(&init_on_alloc) || 1788 static_branch_unlikely(&init_on_free)) && 1789 (slub_debug & SLAB_POISON)) 1790 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1791 return 1; 1792 } 1793 1794 __setup("slab_debug", setup_slub_debug); 1795 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1796 1797 /* 1798 * kmem_cache_flags - apply debugging options to the cache 1799 * @flags: flags to set 1800 * @name: name of the cache 1801 * 1802 * Debug option(s) are applied to @flags. In addition to the debug 1803 * option(s), if a slab name (or multiple) is specified i.e. 1804 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1805 * then only the select slabs will receive the debug option(s). 1806 */ 1807 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1808 { 1809 char *iter; 1810 size_t len; 1811 char *next_block; 1812 slab_flags_t block_flags; 1813 slab_flags_t slub_debug_local = slub_debug; 1814 1815 if (flags & SLAB_NO_USER_FLAGS) 1816 return flags; 1817 1818 /* 1819 * If the slab cache is for debugging (e.g. kmemleak) then 1820 * don't store user (stack trace) information by default, 1821 * but let the user enable it via the command line below. 1822 */ 1823 if (flags & SLAB_NOLEAKTRACE) 1824 slub_debug_local &= ~SLAB_STORE_USER; 1825 1826 len = strlen(name); 1827 next_block = slub_debug_string; 1828 /* Go through all blocks of debug options, see if any matches our slab's name */ 1829 while (next_block) { 1830 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1831 if (!iter) 1832 continue; 1833 /* Found a block that has a slab list, search it */ 1834 while (*iter) { 1835 char *end, *glob; 1836 size_t cmplen; 1837 1838 end = strchrnul(iter, ','); 1839 if (next_block && next_block < end) 1840 end = next_block - 1; 1841 1842 glob = strnchr(iter, end - iter, '*'); 1843 if (glob) 1844 cmplen = glob - iter; 1845 else 1846 cmplen = max_t(size_t, len, (end - iter)); 1847 1848 if (!strncmp(name, iter, cmplen)) { 1849 flags |= block_flags; 1850 return flags; 1851 } 1852 1853 if (!*end || *end == ';') 1854 break; 1855 iter = end + 1; 1856 } 1857 } 1858 1859 return flags | slub_debug_local; 1860 } 1861 #else /* !CONFIG_SLUB_DEBUG */ 1862 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1863 static inline 1864 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1865 1866 static inline bool alloc_debug_processing(struct kmem_cache *s, 1867 struct slab *slab, void *object, int orig_size) { return true; } 1868 1869 static inline bool free_debug_processing(struct kmem_cache *s, 1870 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1871 unsigned long addr, depot_stack_handle_t handle) { return true; } 1872 1873 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1874 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1875 void *object, u8 val) { return 1; } 1876 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1877 static inline void set_track(struct kmem_cache *s, void *object, 1878 enum track_item alloc, unsigned long addr) {} 1879 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1880 struct slab *slab) {} 1881 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1882 struct slab *slab) {} 1883 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1884 { 1885 return flags; 1886 } 1887 #define slub_debug 0 1888 1889 #define disable_higher_order_debug 0 1890 1891 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1892 { return 0; } 1893 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1894 int objects) {} 1895 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1896 int objects) {} 1897 1898 #ifndef CONFIG_SLUB_TINY 1899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1900 void **freelist, void *nextfree) 1901 { 1902 return false; 1903 } 1904 #endif 1905 #endif /* CONFIG_SLUB_DEBUG */ 1906 1907 #ifdef CONFIG_SLAB_OBJ_EXT 1908 1909 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1910 1911 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1912 { 1913 struct slabobj_ext *slab_exts; 1914 struct slab *obj_exts_slab; 1915 1916 obj_exts_slab = virt_to_slab(obj_exts); 1917 slab_exts = slab_obj_exts(obj_exts_slab); 1918 if (slab_exts) { 1919 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1920 obj_exts_slab, obj_exts); 1921 /* codetag should be NULL */ 1922 WARN_ON(slab_exts[offs].ref.ct); 1923 set_codetag_empty(&slab_exts[offs].ref); 1924 } 1925 } 1926 1927 static inline void mark_failed_objexts_alloc(struct slab *slab) 1928 { 1929 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1930 } 1931 1932 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1933 struct slabobj_ext *vec, unsigned int objects) 1934 { 1935 /* 1936 * If vector previously failed to allocate then we have live 1937 * objects with no tag reference. Mark all references in this 1938 * vector as empty to avoid warnings later on. 1939 */ 1940 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1941 unsigned int i; 1942 1943 for (i = 0; i < objects; i++) 1944 set_codetag_empty(&vec[i].ref); 1945 } 1946 } 1947 1948 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1949 1950 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1951 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1952 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1953 struct slabobj_ext *vec, unsigned int objects) {} 1954 1955 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1956 1957 /* 1958 * The allocated objcg pointers array is not accounted directly. 1959 * Moreover, it should not come from DMA buffer and is not readily 1960 * reclaimable. So those GFP bits should be masked off. 1961 */ 1962 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1963 __GFP_ACCOUNT | __GFP_NOFAIL) 1964 1965 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1966 gfp_t gfp, bool new_slab) 1967 { 1968 unsigned int objects = objs_per_slab(s, slab); 1969 unsigned long new_exts; 1970 unsigned long old_exts; 1971 struct slabobj_ext *vec; 1972 1973 gfp &= ~OBJCGS_CLEAR_MASK; 1974 /* Prevent recursive extension vector allocation */ 1975 gfp |= __GFP_NO_OBJ_EXT; 1976 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1977 slab_nid(slab)); 1978 if (!vec) { 1979 /* Mark vectors which failed to allocate */ 1980 if (new_slab) 1981 mark_failed_objexts_alloc(slab); 1982 1983 return -ENOMEM; 1984 } 1985 1986 new_exts = (unsigned long)vec; 1987 #ifdef CONFIG_MEMCG 1988 new_exts |= MEMCG_DATA_OBJEXTS; 1989 #endif 1990 old_exts = READ_ONCE(slab->obj_exts); 1991 handle_failed_objexts_alloc(old_exts, vec, objects); 1992 if (new_slab) { 1993 /* 1994 * If the slab is brand new and nobody can yet access its 1995 * obj_exts, no synchronization is required and obj_exts can 1996 * be simply assigned. 1997 */ 1998 slab->obj_exts = new_exts; 1999 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 2000 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 2001 /* 2002 * If the slab is already in use, somebody can allocate and 2003 * assign slabobj_exts in parallel. In this case the existing 2004 * objcg vector should be reused. 2005 */ 2006 mark_objexts_empty(vec); 2007 kfree(vec); 2008 return 0; 2009 } 2010 2011 kmemleak_not_leak(vec); 2012 return 0; 2013 } 2014 2015 static inline void free_slab_obj_exts(struct slab *slab) 2016 { 2017 struct slabobj_ext *obj_exts; 2018 2019 obj_exts = slab_obj_exts(slab); 2020 if (!obj_exts) 2021 return; 2022 2023 /* 2024 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2025 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2026 * warning if slab has extensions but the extension of an object is 2027 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2028 * the extension for obj_exts is expected to be NULL. 2029 */ 2030 mark_objexts_empty(obj_exts); 2031 kfree(obj_exts); 2032 slab->obj_exts = 0; 2033 } 2034 2035 static inline bool need_slab_obj_ext(void) 2036 { 2037 if (mem_alloc_profiling_enabled()) 2038 return true; 2039 2040 /* 2041 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally 2042 * inside memcg_slab_post_alloc_hook. No other users for now. 2043 */ 2044 return false; 2045 } 2046 2047 #else /* CONFIG_SLAB_OBJ_EXT */ 2048 2049 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2050 gfp_t gfp, bool new_slab) 2051 { 2052 return 0; 2053 } 2054 2055 static inline void free_slab_obj_exts(struct slab *slab) 2056 { 2057 } 2058 2059 static inline bool need_slab_obj_ext(void) 2060 { 2061 return false; 2062 } 2063 2064 #endif /* CONFIG_SLAB_OBJ_EXT */ 2065 2066 #ifdef CONFIG_MEM_ALLOC_PROFILING 2067 2068 static inline struct slabobj_ext * 2069 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2070 { 2071 struct slab *slab; 2072 2073 if (!p) 2074 return NULL; 2075 2076 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2077 return NULL; 2078 2079 if (flags & __GFP_NO_OBJ_EXT) 2080 return NULL; 2081 2082 slab = virt_to_slab(p); 2083 if (!slab_obj_exts(slab) && 2084 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2085 "%s, %s: Failed to create slab extension vector!\n", 2086 __func__, s->name)) 2087 return NULL; 2088 2089 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2090 } 2091 2092 static inline void 2093 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2094 { 2095 if (need_slab_obj_ext()) { 2096 struct slabobj_ext *obj_exts; 2097 2098 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2099 /* 2100 * Currently obj_exts is used only for allocation profiling. 2101 * If other users appear then mem_alloc_profiling_enabled() 2102 * check should be added before alloc_tag_add(). 2103 */ 2104 if (likely(obj_exts)) 2105 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2106 } 2107 } 2108 2109 static inline void 2110 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2111 int objects) 2112 { 2113 struct slabobj_ext *obj_exts; 2114 int i; 2115 2116 if (!mem_alloc_profiling_enabled()) 2117 return; 2118 2119 obj_exts = slab_obj_exts(slab); 2120 if (!obj_exts) 2121 return; 2122 2123 for (i = 0; i < objects; i++) { 2124 unsigned int off = obj_to_index(s, slab, p[i]); 2125 2126 alloc_tag_sub(&obj_exts[off].ref, s->size); 2127 } 2128 } 2129 2130 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2131 2132 static inline void 2133 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2134 { 2135 } 2136 2137 static inline void 2138 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2139 int objects) 2140 { 2141 } 2142 2143 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2144 2145 2146 #ifdef CONFIG_MEMCG 2147 2148 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2149 2150 static __fastpath_inline 2151 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2152 gfp_t flags, size_t size, void **p) 2153 { 2154 if (likely(!memcg_kmem_online())) 2155 return true; 2156 2157 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2158 return true; 2159 2160 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2161 return true; 2162 2163 if (likely(size == 1)) { 2164 memcg_alloc_abort_single(s, *p); 2165 *p = NULL; 2166 } else { 2167 kmem_cache_free_bulk(s, size, p); 2168 } 2169 2170 return false; 2171 } 2172 2173 static __fastpath_inline 2174 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2175 int objects) 2176 { 2177 struct slabobj_ext *obj_exts; 2178 2179 if (!memcg_kmem_online()) 2180 return; 2181 2182 obj_exts = slab_obj_exts(slab); 2183 if (likely(!obj_exts)) 2184 return; 2185 2186 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2187 } 2188 #else /* CONFIG_MEMCG */ 2189 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2190 struct list_lru *lru, 2191 gfp_t flags, size_t size, 2192 void **p) 2193 { 2194 return true; 2195 } 2196 2197 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2198 void **p, int objects) 2199 { 2200 } 2201 #endif /* CONFIG_MEMCG */ 2202 2203 /* 2204 * Hooks for other subsystems that check memory allocations. In a typical 2205 * production configuration these hooks all should produce no code at all. 2206 * 2207 * Returns true if freeing of the object can proceed, false if its reuse 2208 * was delayed by KASAN quarantine, or it was returned to KFENCE. 2209 */ 2210 static __always_inline 2211 bool slab_free_hook(struct kmem_cache *s, void *x, bool init) 2212 { 2213 kmemleak_free_recursive(x, s->flags); 2214 kmsan_slab_free(s, x); 2215 2216 debug_check_no_locks_freed(x, s->object_size); 2217 2218 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2219 debug_check_no_obj_freed(x, s->object_size); 2220 2221 /* Use KCSAN to help debug racy use-after-free. */ 2222 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 2223 __kcsan_check_access(x, s->object_size, 2224 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2225 2226 if (kfence_free(x)) 2227 return false; 2228 2229 /* 2230 * As memory initialization might be integrated into KASAN, 2231 * kasan_slab_free and initialization memset's must be 2232 * kept together to avoid discrepancies in behavior. 2233 * 2234 * The initialization memset's clear the object and the metadata, 2235 * but don't touch the SLAB redzone. 2236 * 2237 * The object's freepointer is also avoided if stored outside the 2238 * object. 2239 */ 2240 if (unlikely(init)) { 2241 int rsize; 2242 unsigned int inuse; 2243 2244 inuse = get_info_end(s); 2245 if (!kasan_has_integrated_init()) 2246 memset(kasan_reset_tag(x), 0, s->object_size); 2247 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2248 memset((char *)kasan_reset_tag(x) + inuse, 0, 2249 s->size - inuse - rsize); 2250 } 2251 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2252 return !kasan_slab_free(s, x, init); 2253 } 2254 2255 static __fastpath_inline 2256 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2257 int *cnt) 2258 { 2259 2260 void *object; 2261 void *next = *head; 2262 void *old_tail = *tail; 2263 bool init; 2264 2265 if (is_kfence_address(next)) { 2266 slab_free_hook(s, next, false); 2267 return false; 2268 } 2269 2270 /* Head and tail of the reconstructed freelist */ 2271 *head = NULL; 2272 *tail = NULL; 2273 2274 init = slab_want_init_on_free(s); 2275 2276 do { 2277 object = next; 2278 next = get_freepointer(s, object); 2279 2280 /* If object's reuse doesn't have to be delayed */ 2281 if (likely(slab_free_hook(s, object, init))) { 2282 /* Move object to the new freelist */ 2283 set_freepointer(s, object, *head); 2284 *head = object; 2285 if (!*tail) 2286 *tail = object; 2287 } else { 2288 /* 2289 * Adjust the reconstructed freelist depth 2290 * accordingly if object's reuse is delayed. 2291 */ 2292 --(*cnt); 2293 } 2294 } while (object != old_tail); 2295 2296 return *head != NULL; 2297 } 2298 2299 static void *setup_object(struct kmem_cache *s, void *object) 2300 { 2301 setup_object_debug(s, object); 2302 object = kasan_init_slab_obj(s, object); 2303 if (unlikely(s->ctor)) { 2304 kasan_unpoison_new_object(s, object); 2305 s->ctor(object); 2306 kasan_poison_new_object(s, object); 2307 } 2308 return object; 2309 } 2310 2311 /* 2312 * Slab allocation and freeing 2313 */ 2314 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2315 struct kmem_cache_order_objects oo) 2316 { 2317 struct folio *folio; 2318 struct slab *slab; 2319 unsigned int order = oo_order(oo); 2320 2321 folio = (struct folio *)alloc_pages_node(node, flags, order); 2322 if (!folio) 2323 return NULL; 2324 2325 slab = folio_slab(folio); 2326 __folio_set_slab(folio); 2327 /* Make the flag visible before any changes to folio->mapping */ 2328 smp_wmb(); 2329 if (folio_is_pfmemalloc(folio)) 2330 slab_set_pfmemalloc(slab); 2331 2332 return slab; 2333 } 2334 2335 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2336 /* Pre-initialize the random sequence cache */ 2337 static int init_cache_random_seq(struct kmem_cache *s) 2338 { 2339 unsigned int count = oo_objects(s->oo); 2340 int err; 2341 2342 /* Bailout if already initialised */ 2343 if (s->random_seq) 2344 return 0; 2345 2346 err = cache_random_seq_create(s, count, GFP_KERNEL); 2347 if (err) { 2348 pr_err("SLUB: Unable to initialize free list for %s\n", 2349 s->name); 2350 return err; 2351 } 2352 2353 /* Transform to an offset on the set of pages */ 2354 if (s->random_seq) { 2355 unsigned int i; 2356 2357 for (i = 0; i < count; i++) 2358 s->random_seq[i] *= s->size; 2359 } 2360 return 0; 2361 } 2362 2363 /* Initialize each random sequence freelist per cache */ 2364 static void __init init_freelist_randomization(void) 2365 { 2366 struct kmem_cache *s; 2367 2368 mutex_lock(&slab_mutex); 2369 2370 list_for_each_entry(s, &slab_caches, list) 2371 init_cache_random_seq(s); 2372 2373 mutex_unlock(&slab_mutex); 2374 } 2375 2376 /* Get the next entry on the pre-computed freelist randomized */ 2377 static void *next_freelist_entry(struct kmem_cache *s, 2378 unsigned long *pos, void *start, 2379 unsigned long page_limit, 2380 unsigned long freelist_count) 2381 { 2382 unsigned int idx; 2383 2384 /* 2385 * If the target page allocation failed, the number of objects on the 2386 * page might be smaller than the usual size defined by the cache. 2387 */ 2388 do { 2389 idx = s->random_seq[*pos]; 2390 *pos += 1; 2391 if (*pos >= freelist_count) 2392 *pos = 0; 2393 } while (unlikely(idx >= page_limit)); 2394 2395 return (char *)start + idx; 2396 } 2397 2398 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2399 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2400 { 2401 void *start; 2402 void *cur; 2403 void *next; 2404 unsigned long idx, pos, page_limit, freelist_count; 2405 2406 if (slab->objects < 2 || !s->random_seq) 2407 return false; 2408 2409 freelist_count = oo_objects(s->oo); 2410 pos = get_random_u32_below(freelist_count); 2411 2412 page_limit = slab->objects * s->size; 2413 start = fixup_red_left(s, slab_address(slab)); 2414 2415 /* First entry is used as the base of the freelist */ 2416 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2417 cur = setup_object(s, cur); 2418 slab->freelist = cur; 2419 2420 for (idx = 1; idx < slab->objects; idx++) { 2421 next = next_freelist_entry(s, &pos, start, page_limit, 2422 freelist_count); 2423 next = setup_object(s, next); 2424 set_freepointer(s, cur, next); 2425 cur = next; 2426 } 2427 set_freepointer(s, cur, NULL); 2428 2429 return true; 2430 } 2431 #else 2432 static inline int init_cache_random_seq(struct kmem_cache *s) 2433 { 2434 return 0; 2435 } 2436 static inline void init_freelist_randomization(void) { } 2437 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2438 { 2439 return false; 2440 } 2441 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2442 2443 static __always_inline void account_slab(struct slab *slab, int order, 2444 struct kmem_cache *s, gfp_t gfp) 2445 { 2446 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2447 alloc_slab_obj_exts(slab, s, gfp, true); 2448 2449 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2450 PAGE_SIZE << order); 2451 } 2452 2453 static __always_inline void unaccount_slab(struct slab *slab, int order, 2454 struct kmem_cache *s) 2455 { 2456 if (memcg_kmem_online() || need_slab_obj_ext()) 2457 free_slab_obj_exts(slab); 2458 2459 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2460 -(PAGE_SIZE << order)); 2461 } 2462 2463 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2464 { 2465 struct slab *slab; 2466 struct kmem_cache_order_objects oo = s->oo; 2467 gfp_t alloc_gfp; 2468 void *start, *p, *next; 2469 int idx; 2470 bool shuffle; 2471 2472 flags &= gfp_allowed_mask; 2473 2474 flags |= s->allocflags; 2475 2476 /* 2477 * Let the initial higher-order allocation fail under memory pressure 2478 * so we fall-back to the minimum order allocation. 2479 */ 2480 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2481 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2482 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2483 2484 slab = alloc_slab_page(alloc_gfp, node, oo); 2485 if (unlikely(!slab)) { 2486 oo = s->min; 2487 alloc_gfp = flags; 2488 /* 2489 * Allocation may have failed due to fragmentation. 2490 * Try a lower order alloc if possible 2491 */ 2492 slab = alloc_slab_page(alloc_gfp, node, oo); 2493 if (unlikely(!slab)) 2494 return NULL; 2495 stat(s, ORDER_FALLBACK); 2496 } 2497 2498 slab->objects = oo_objects(oo); 2499 slab->inuse = 0; 2500 slab->frozen = 0; 2501 2502 account_slab(slab, oo_order(oo), s, flags); 2503 2504 slab->slab_cache = s; 2505 2506 kasan_poison_slab(slab); 2507 2508 start = slab_address(slab); 2509 2510 setup_slab_debug(s, slab, start); 2511 2512 shuffle = shuffle_freelist(s, slab); 2513 2514 if (!shuffle) { 2515 start = fixup_red_left(s, start); 2516 start = setup_object(s, start); 2517 slab->freelist = start; 2518 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2519 next = p + s->size; 2520 next = setup_object(s, next); 2521 set_freepointer(s, p, next); 2522 p = next; 2523 } 2524 set_freepointer(s, p, NULL); 2525 } 2526 2527 return slab; 2528 } 2529 2530 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2531 { 2532 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2533 flags = kmalloc_fix_flags(flags); 2534 2535 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2536 2537 return allocate_slab(s, 2538 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2539 } 2540 2541 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2542 { 2543 struct folio *folio = slab_folio(slab); 2544 int order = folio_order(folio); 2545 int pages = 1 << order; 2546 2547 __slab_clear_pfmemalloc(slab); 2548 folio->mapping = NULL; 2549 /* Make the mapping reset visible before clearing the flag */ 2550 smp_wmb(); 2551 __folio_clear_slab(folio); 2552 mm_account_reclaimed_pages(pages); 2553 unaccount_slab(slab, order, s); 2554 __free_pages(&folio->page, order); 2555 } 2556 2557 static void rcu_free_slab(struct rcu_head *h) 2558 { 2559 struct slab *slab = container_of(h, struct slab, rcu_head); 2560 2561 __free_slab(slab->slab_cache, slab); 2562 } 2563 2564 static void free_slab(struct kmem_cache *s, struct slab *slab) 2565 { 2566 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2567 void *p; 2568 2569 slab_pad_check(s, slab); 2570 for_each_object(p, s, slab_address(slab), slab->objects) 2571 check_object(s, slab, p, SLUB_RED_INACTIVE); 2572 } 2573 2574 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2575 call_rcu(&slab->rcu_head, rcu_free_slab); 2576 else 2577 __free_slab(s, slab); 2578 } 2579 2580 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2581 { 2582 dec_slabs_node(s, slab_nid(slab), slab->objects); 2583 free_slab(s, slab); 2584 } 2585 2586 /* 2587 * SLUB reuses PG_workingset bit to keep track of whether it's on 2588 * the per-node partial list. 2589 */ 2590 static inline bool slab_test_node_partial(const struct slab *slab) 2591 { 2592 return folio_test_workingset(slab_folio(slab)); 2593 } 2594 2595 static inline void slab_set_node_partial(struct slab *slab) 2596 { 2597 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2598 } 2599 2600 static inline void slab_clear_node_partial(struct slab *slab) 2601 { 2602 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2603 } 2604 2605 /* 2606 * Management of partially allocated slabs. 2607 */ 2608 static inline void 2609 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2610 { 2611 n->nr_partial++; 2612 if (tail == DEACTIVATE_TO_TAIL) 2613 list_add_tail(&slab->slab_list, &n->partial); 2614 else 2615 list_add(&slab->slab_list, &n->partial); 2616 slab_set_node_partial(slab); 2617 } 2618 2619 static inline void add_partial(struct kmem_cache_node *n, 2620 struct slab *slab, int tail) 2621 { 2622 lockdep_assert_held(&n->list_lock); 2623 __add_partial(n, slab, tail); 2624 } 2625 2626 static inline void remove_partial(struct kmem_cache_node *n, 2627 struct slab *slab) 2628 { 2629 lockdep_assert_held(&n->list_lock); 2630 list_del(&slab->slab_list); 2631 slab_clear_node_partial(slab); 2632 n->nr_partial--; 2633 } 2634 2635 /* 2636 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2637 * slab from the n->partial list. Remove only a single object from the slab, do 2638 * the alloc_debug_processing() checks and leave the slab on the list, or move 2639 * it to full list if it was the last free object. 2640 */ 2641 static void *alloc_single_from_partial(struct kmem_cache *s, 2642 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2643 { 2644 void *object; 2645 2646 lockdep_assert_held(&n->list_lock); 2647 2648 object = slab->freelist; 2649 slab->freelist = get_freepointer(s, object); 2650 slab->inuse++; 2651 2652 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2653 remove_partial(n, slab); 2654 return NULL; 2655 } 2656 2657 if (slab->inuse == slab->objects) { 2658 remove_partial(n, slab); 2659 add_full(s, n, slab); 2660 } 2661 2662 return object; 2663 } 2664 2665 /* 2666 * Called only for kmem_cache_debug() caches to allocate from a freshly 2667 * allocated slab. Allocate a single object instead of whole freelist 2668 * and put the slab to the partial (or full) list. 2669 */ 2670 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2671 struct slab *slab, int orig_size) 2672 { 2673 int nid = slab_nid(slab); 2674 struct kmem_cache_node *n = get_node(s, nid); 2675 unsigned long flags; 2676 void *object; 2677 2678 2679 object = slab->freelist; 2680 slab->freelist = get_freepointer(s, object); 2681 slab->inuse = 1; 2682 2683 if (!alloc_debug_processing(s, slab, object, orig_size)) 2684 /* 2685 * It's not really expected that this would fail on a 2686 * freshly allocated slab, but a concurrent memory 2687 * corruption in theory could cause that. 2688 */ 2689 return NULL; 2690 2691 spin_lock_irqsave(&n->list_lock, flags); 2692 2693 if (slab->inuse == slab->objects) 2694 add_full(s, n, slab); 2695 else 2696 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2697 2698 inc_slabs_node(s, nid, slab->objects); 2699 spin_unlock_irqrestore(&n->list_lock, flags); 2700 2701 return object; 2702 } 2703 2704 #ifdef CONFIG_SLUB_CPU_PARTIAL 2705 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2706 #else 2707 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2708 int drain) { } 2709 #endif 2710 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2711 2712 /* 2713 * Try to allocate a partial slab from a specific node. 2714 */ 2715 static struct slab *get_partial_node(struct kmem_cache *s, 2716 struct kmem_cache_node *n, 2717 struct partial_context *pc) 2718 { 2719 struct slab *slab, *slab2, *partial = NULL; 2720 unsigned long flags; 2721 unsigned int partial_slabs = 0; 2722 2723 /* 2724 * Racy check. If we mistakenly see no partial slabs then we 2725 * just allocate an empty slab. If we mistakenly try to get a 2726 * partial slab and there is none available then get_partial() 2727 * will return NULL. 2728 */ 2729 if (!n || !n->nr_partial) 2730 return NULL; 2731 2732 spin_lock_irqsave(&n->list_lock, flags); 2733 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2734 if (!pfmemalloc_match(slab, pc->flags)) 2735 continue; 2736 2737 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2738 void *object = alloc_single_from_partial(s, n, slab, 2739 pc->orig_size); 2740 if (object) { 2741 partial = slab; 2742 pc->object = object; 2743 break; 2744 } 2745 continue; 2746 } 2747 2748 remove_partial(n, slab); 2749 2750 if (!partial) { 2751 partial = slab; 2752 stat(s, ALLOC_FROM_PARTIAL); 2753 2754 if ((slub_get_cpu_partial(s) == 0)) { 2755 break; 2756 } 2757 } else { 2758 put_cpu_partial(s, slab, 0); 2759 stat(s, CPU_PARTIAL_NODE); 2760 2761 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2762 break; 2763 } 2764 } 2765 } 2766 spin_unlock_irqrestore(&n->list_lock, flags); 2767 return partial; 2768 } 2769 2770 /* 2771 * Get a slab from somewhere. Search in increasing NUMA distances. 2772 */ 2773 static struct slab *get_any_partial(struct kmem_cache *s, 2774 struct partial_context *pc) 2775 { 2776 #ifdef CONFIG_NUMA 2777 struct zonelist *zonelist; 2778 struct zoneref *z; 2779 struct zone *zone; 2780 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2781 struct slab *slab; 2782 unsigned int cpuset_mems_cookie; 2783 2784 /* 2785 * The defrag ratio allows a configuration of the tradeoffs between 2786 * inter node defragmentation and node local allocations. A lower 2787 * defrag_ratio increases the tendency to do local allocations 2788 * instead of attempting to obtain partial slabs from other nodes. 2789 * 2790 * If the defrag_ratio is set to 0 then kmalloc() always 2791 * returns node local objects. If the ratio is higher then kmalloc() 2792 * may return off node objects because partial slabs are obtained 2793 * from other nodes and filled up. 2794 * 2795 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2796 * (which makes defrag_ratio = 1000) then every (well almost) 2797 * allocation will first attempt to defrag slab caches on other nodes. 2798 * This means scanning over all nodes to look for partial slabs which 2799 * may be expensive if we do it every time we are trying to find a slab 2800 * with available objects. 2801 */ 2802 if (!s->remote_node_defrag_ratio || 2803 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2804 return NULL; 2805 2806 do { 2807 cpuset_mems_cookie = read_mems_allowed_begin(); 2808 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2809 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2810 struct kmem_cache_node *n; 2811 2812 n = get_node(s, zone_to_nid(zone)); 2813 2814 if (n && cpuset_zone_allowed(zone, pc->flags) && 2815 n->nr_partial > s->min_partial) { 2816 slab = get_partial_node(s, n, pc); 2817 if (slab) { 2818 /* 2819 * Don't check read_mems_allowed_retry() 2820 * here - if mems_allowed was updated in 2821 * parallel, that was a harmless race 2822 * between allocation and the cpuset 2823 * update 2824 */ 2825 return slab; 2826 } 2827 } 2828 } 2829 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2830 #endif /* CONFIG_NUMA */ 2831 return NULL; 2832 } 2833 2834 /* 2835 * Get a partial slab, lock it and return it. 2836 */ 2837 static struct slab *get_partial(struct kmem_cache *s, int node, 2838 struct partial_context *pc) 2839 { 2840 struct slab *slab; 2841 int searchnode = node; 2842 2843 if (node == NUMA_NO_NODE) 2844 searchnode = numa_mem_id(); 2845 2846 slab = get_partial_node(s, get_node(s, searchnode), pc); 2847 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2848 return slab; 2849 2850 return get_any_partial(s, pc); 2851 } 2852 2853 #ifndef CONFIG_SLUB_TINY 2854 2855 #ifdef CONFIG_PREEMPTION 2856 /* 2857 * Calculate the next globally unique transaction for disambiguation 2858 * during cmpxchg. The transactions start with the cpu number and are then 2859 * incremented by CONFIG_NR_CPUS. 2860 */ 2861 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2862 #else 2863 /* 2864 * No preemption supported therefore also no need to check for 2865 * different cpus. 2866 */ 2867 #define TID_STEP 1 2868 #endif /* CONFIG_PREEMPTION */ 2869 2870 static inline unsigned long next_tid(unsigned long tid) 2871 { 2872 return tid + TID_STEP; 2873 } 2874 2875 #ifdef SLUB_DEBUG_CMPXCHG 2876 static inline unsigned int tid_to_cpu(unsigned long tid) 2877 { 2878 return tid % TID_STEP; 2879 } 2880 2881 static inline unsigned long tid_to_event(unsigned long tid) 2882 { 2883 return tid / TID_STEP; 2884 } 2885 #endif 2886 2887 static inline unsigned int init_tid(int cpu) 2888 { 2889 return cpu; 2890 } 2891 2892 static inline void note_cmpxchg_failure(const char *n, 2893 const struct kmem_cache *s, unsigned long tid) 2894 { 2895 #ifdef SLUB_DEBUG_CMPXCHG 2896 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2897 2898 pr_info("%s %s: cmpxchg redo ", n, s->name); 2899 2900 #ifdef CONFIG_PREEMPTION 2901 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2902 pr_warn("due to cpu change %d -> %d\n", 2903 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2904 else 2905 #endif 2906 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2907 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2908 tid_to_event(tid), tid_to_event(actual_tid)); 2909 else 2910 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2911 actual_tid, tid, next_tid(tid)); 2912 #endif 2913 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2914 } 2915 2916 static void init_kmem_cache_cpus(struct kmem_cache *s) 2917 { 2918 int cpu; 2919 struct kmem_cache_cpu *c; 2920 2921 for_each_possible_cpu(cpu) { 2922 c = per_cpu_ptr(s->cpu_slab, cpu); 2923 local_lock_init(&c->lock); 2924 c->tid = init_tid(cpu); 2925 } 2926 } 2927 2928 /* 2929 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2930 * unfreezes the slabs and puts it on the proper list. 2931 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2932 * by the caller. 2933 */ 2934 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2935 void *freelist) 2936 { 2937 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2938 int free_delta = 0; 2939 void *nextfree, *freelist_iter, *freelist_tail; 2940 int tail = DEACTIVATE_TO_HEAD; 2941 unsigned long flags = 0; 2942 struct slab new; 2943 struct slab old; 2944 2945 if (READ_ONCE(slab->freelist)) { 2946 stat(s, DEACTIVATE_REMOTE_FREES); 2947 tail = DEACTIVATE_TO_TAIL; 2948 } 2949 2950 /* 2951 * Stage one: Count the objects on cpu's freelist as free_delta and 2952 * remember the last object in freelist_tail for later splicing. 2953 */ 2954 freelist_tail = NULL; 2955 freelist_iter = freelist; 2956 while (freelist_iter) { 2957 nextfree = get_freepointer(s, freelist_iter); 2958 2959 /* 2960 * If 'nextfree' is invalid, it is possible that the object at 2961 * 'freelist_iter' is already corrupted. So isolate all objects 2962 * starting at 'freelist_iter' by skipping them. 2963 */ 2964 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2965 break; 2966 2967 freelist_tail = freelist_iter; 2968 free_delta++; 2969 2970 freelist_iter = nextfree; 2971 } 2972 2973 /* 2974 * Stage two: Unfreeze the slab while splicing the per-cpu 2975 * freelist to the head of slab's freelist. 2976 */ 2977 do { 2978 old.freelist = READ_ONCE(slab->freelist); 2979 old.counters = READ_ONCE(slab->counters); 2980 VM_BUG_ON(!old.frozen); 2981 2982 /* Determine target state of the slab */ 2983 new.counters = old.counters; 2984 new.frozen = 0; 2985 if (freelist_tail) { 2986 new.inuse -= free_delta; 2987 set_freepointer(s, freelist_tail, old.freelist); 2988 new.freelist = freelist; 2989 } else { 2990 new.freelist = old.freelist; 2991 } 2992 } while (!slab_update_freelist(s, slab, 2993 old.freelist, old.counters, 2994 new.freelist, new.counters, 2995 "unfreezing slab")); 2996 2997 /* 2998 * Stage three: Manipulate the slab list based on the updated state. 2999 */ 3000 if (!new.inuse && n->nr_partial >= s->min_partial) { 3001 stat(s, DEACTIVATE_EMPTY); 3002 discard_slab(s, slab); 3003 stat(s, FREE_SLAB); 3004 } else if (new.freelist) { 3005 spin_lock_irqsave(&n->list_lock, flags); 3006 add_partial(n, slab, tail); 3007 spin_unlock_irqrestore(&n->list_lock, flags); 3008 stat(s, tail); 3009 } else { 3010 stat(s, DEACTIVATE_FULL); 3011 } 3012 } 3013 3014 #ifdef CONFIG_SLUB_CPU_PARTIAL 3015 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3016 { 3017 struct kmem_cache_node *n = NULL, *n2 = NULL; 3018 struct slab *slab, *slab_to_discard = NULL; 3019 unsigned long flags = 0; 3020 3021 while (partial_slab) { 3022 slab = partial_slab; 3023 partial_slab = slab->next; 3024 3025 n2 = get_node(s, slab_nid(slab)); 3026 if (n != n2) { 3027 if (n) 3028 spin_unlock_irqrestore(&n->list_lock, flags); 3029 3030 n = n2; 3031 spin_lock_irqsave(&n->list_lock, flags); 3032 } 3033 3034 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3035 slab->next = slab_to_discard; 3036 slab_to_discard = slab; 3037 } else { 3038 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3039 stat(s, FREE_ADD_PARTIAL); 3040 } 3041 } 3042 3043 if (n) 3044 spin_unlock_irqrestore(&n->list_lock, flags); 3045 3046 while (slab_to_discard) { 3047 slab = slab_to_discard; 3048 slab_to_discard = slab_to_discard->next; 3049 3050 stat(s, DEACTIVATE_EMPTY); 3051 discard_slab(s, slab); 3052 stat(s, FREE_SLAB); 3053 } 3054 } 3055 3056 /* 3057 * Put all the cpu partial slabs to the node partial list. 3058 */ 3059 static void put_partials(struct kmem_cache *s) 3060 { 3061 struct slab *partial_slab; 3062 unsigned long flags; 3063 3064 local_lock_irqsave(&s->cpu_slab->lock, flags); 3065 partial_slab = this_cpu_read(s->cpu_slab->partial); 3066 this_cpu_write(s->cpu_slab->partial, NULL); 3067 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3068 3069 if (partial_slab) 3070 __put_partials(s, partial_slab); 3071 } 3072 3073 static void put_partials_cpu(struct kmem_cache *s, 3074 struct kmem_cache_cpu *c) 3075 { 3076 struct slab *partial_slab; 3077 3078 partial_slab = slub_percpu_partial(c); 3079 c->partial = NULL; 3080 3081 if (partial_slab) 3082 __put_partials(s, partial_slab); 3083 } 3084 3085 /* 3086 * Put a slab into a partial slab slot if available. 3087 * 3088 * If we did not find a slot then simply move all the partials to the 3089 * per node partial list. 3090 */ 3091 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3092 { 3093 struct slab *oldslab; 3094 struct slab *slab_to_put = NULL; 3095 unsigned long flags; 3096 int slabs = 0; 3097 3098 local_lock_irqsave(&s->cpu_slab->lock, flags); 3099 3100 oldslab = this_cpu_read(s->cpu_slab->partial); 3101 3102 if (oldslab) { 3103 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3104 /* 3105 * Partial array is full. Move the existing set to the 3106 * per node partial list. Postpone the actual unfreezing 3107 * outside of the critical section. 3108 */ 3109 slab_to_put = oldslab; 3110 oldslab = NULL; 3111 } else { 3112 slabs = oldslab->slabs; 3113 } 3114 } 3115 3116 slabs++; 3117 3118 slab->slabs = slabs; 3119 slab->next = oldslab; 3120 3121 this_cpu_write(s->cpu_slab->partial, slab); 3122 3123 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3124 3125 if (slab_to_put) { 3126 __put_partials(s, slab_to_put); 3127 stat(s, CPU_PARTIAL_DRAIN); 3128 } 3129 } 3130 3131 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3132 3133 static inline void put_partials(struct kmem_cache *s) { } 3134 static inline void put_partials_cpu(struct kmem_cache *s, 3135 struct kmem_cache_cpu *c) { } 3136 3137 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3138 3139 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3140 { 3141 unsigned long flags; 3142 struct slab *slab; 3143 void *freelist; 3144 3145 local_lock_irqsave(&s->cpu_slab->lock, flags); 3146 3147 slab = c->slab; 3148 freelist = c->freelist; 3149 3150 c->slab = NULL; 3151 c->freelist = NULL; 3152 c->tid = next_tid(c->tid); 3153 3154 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3155 3156 if (slab) { 3157 deactivate_slab(s, slab, freelist); 3158 stat(s, CPUSLAB_FLUSH); 3159 } 3160 } 3161 3162 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3163 { 3164 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3165 void *freelist = c->freelist; 3166 struct slab *slab = c->slab; 3167 3168 c->slab = NULL; 3169 c->freelist = NULL; 3170 c->tid = next_tid(c->tid); 3171 3172 if (slab) { 3173 deactivate_slab(s, slab, freelist); 3174 stat(s, CPUSLAB_FLUSH); 3175 } 3176 3177 put_partials_cpu(s, c); 3178 } 3179 3180 struct slub_flush_work { 3181 struct work_struct work; 3182 struct kmem_cache *s; 3183 bool skip; 3184 }; 3185 3186 /* 3187 * Flush cpu slab. 3188 * 3189 * Called from CPU work handler with migration disabled. 3190 */ 3191 static void flush_cpu_slab(struct work_struct *w) 3192 { 3193 struct kmem_cache *s; 3194 struct kmem_cache_cpu *c; 3195 struct slub_flush_work *sfw; 3196 3197 sfw = container_of(w, struct slub_flush_work, work); 3198 3199 s = sfw->s; 3200 c = this_cpu_ptr(s->cpu_slab); 3201 3202 if (c->slab) 3203 flush_slab(s, c); 3204 3205 put_partials(s); 3206 } 3207 3208 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3209 { 3210 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3211 3212 return c->slab || slub_percpu_partial(c); 3213 } 3214 3215 static DEFINE_MUTEX(flush_lock); 3216 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3217 3218 static void flush_all_cpus_locked(struct kmem_cache *s) 3219 { 3220 struct slub_flush_work *sfw; 3221 unsigned int cpu; 3222 3223 lockdep_assert_cpus_held(); 3224 mutex_lock(&flush_lock); 3225 3226 for_each_online_cpu(cpu) { 3227 sfw = &per_cpu(slub_flush, cpu); 3228 if (!has_cpu_slab(cpu, s)) { 3229 sfw->skip = true; 3230 continue; 3231 } 3232 INIT_WORK(&sfw->work, flush_cpu_slab); 3233 sfw->skip = false; 3234 sfw->s = s; 3235 queue_work_on(cpu, flushwq, &sfw->work); 3236 } 3237 3238 for_each_online_cpu(cpu) { 3239 sfw = &per_cpu(slub_flush, cpu); 3240 if (sfw->skip) 3241 continue; 3242 flush_work(&sfw->work); 3243 } 3244 3245 mutex_unlock(&flush_lock); 3246 } 3247 3248 static void flush_all(struct kmem_cache *s) 3249 { 3250 cpus_read_lock(); 3251 flush_all_cpus_locked(s); 3252 cpus_read_unlock(); 3253 } 3254 3255 /* 3256 * Use the cpu notifier to insure that the cpu slabs are flushed when 3257 * necessary. 3258 */ 3259 static int slub_cpu_dead(unsigned int cpu) 3260 { 3261 struct kmem_cache *s; 3262 3263 mutex_lock(&slab_mutex); 3264 list_for_each_entry(s, &slab_caches, list) 3265 __flush_cpu_slab(s, cpu); 3266 mutex_unlock(&slab_mutex); 3267 return 0; 3268 } 3269 3270 #else /* CONFIG_SLUB_TINY */ 3271 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3272 static inline void flush_all(struct kmem_cache *s) { } 3273 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3274 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3275 #endif /* CONFIG_SLUB_TINY */ 3276 3277 /* 3278 * Check if the objects in a per cpu structure fit numa 3279 * locality expectations. 3280 */ 3281 static inline int node_match(struct slab *slab, int node) 3282 { 3283 #ifdef CONFIG_NUMA 3284 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3285 return 0; 3286 #endif 3287 return 1; 3288 } 3289 3290 #ifdef CONFIG_SLUB_DEBUG 3291 static int count_free(struct slab *slab) 3292 { 3293 return slab->objects - slab->inuse; 3294 } 3295 3296 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3297 { 3298 return atomic_long_read(&n->total_objects); 3299 } 3300 3301 /* Supports checking bulk free of a constructed freelist */ 3302 static inline bool free_debug_processing(struct kmem_cache *s, 3303 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3304 unsigned long addr, depot_stack_handle_t handle) 3305 { 3306 bool checks_ok = false; 3307 void *object = head; 3308 int cnt = 0; 3309 3310 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3311 if (!check_slab(s, slab)) 3312 goto out; 3313 } 3314 3315 if (slab->inuse < *bulk_cnt) { 3316 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3317 slab->inuse, *bulk_cnt); 3318 goto out; 3319 } 3320 3321 next_object: 3322 3323 if (++cnt > *bulk_cnt) 3324 goto out_cnt; 3325 3326 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3327 if (!free_consistency_checks(s, slab, object, addr)) 3328 goto out; 3329 } 3330 3331 if (s->flags & SLAB_STORE_USER) 3332 set_track_update(s, object, TRACK_FREE, addr, handle); 3333 trace(s, slab, object, 0); 3334 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3335 init_object(s, object, SLUB_RED_INACTIVE); 3336 3337 /* Reached end of constructed freelist yet? */ 3338 if (object != tail) { 3339 object = get_freepointer(s, object); 3340 goto next_object; 3341 } 3342 checks_ok = true; 3343 3344 out_cnt: 3345 if (cnt != *bulk_cnt) { 3346 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3347 *bulk_cnt, cnt); 3348 *bulk_cnt = cnt; 3349 } 3350 3351 out: 3352 3353 if (!checks_ok) 3354 slab_fix(s, "Object at 0x%p not freed", object); 3355 3356 return checks_ok; 3357 } 3358 #endif /* CONFIG_SLUB_DEBUG */ 3359 3360 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3361 static unsigned long count_partial(struct kmem_cache_node *n, 3362 int (*get_count)(struct slab *)) 3363 { 3364 unsigned long flags; 3365 unsigned long x = 0; 3366 struct slab *slab; 3367 3368 spin_lock_irqsave(&n->list_lock, flags); 3369 list_for_each_entry(slab, &n->partial, slab_list) 3370 x += get_count(slab); 3371 spin_unlock_irqrestore(&n->list_lock, flags); 3372 return x; 3373 } 3374 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3375 3376 #ifdef CONFIG_SLUB_DEBUG 3377 #define MAX_PARTIAL_TO_SCAN 10000 3378 3379 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3380 { 3381 unsigned long flags; 3382 unsigned long x = 0; 3383 struct slab *slab; 3384 3385 spin_lock_irqsave(&n->list_lock, flags); 3386 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3387 list_for_each_entry(slab, &n->partial, slab_list) 3388 x += slab->objects - slab->inuse; 3389 } else { 3390 /* 3391 * For a long list, approximate the total count of objects in 3392 * it to meet the limit on the number of slabs to scan. 3393 * Scan from both the list's head and tail for better accuracy. 3394 */ 3395 unsigned long scanned = 0; 3396 3397 list_for_each_entry(slab, &n->partial, slab_list) { 3398 x += slab->objects - slab->inuse; 3399 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3400 break; 3401 } 3402 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3403 x += slab->objects - slab->inuse; 3404 if (++scanned == MAX_PARTIAL_TO_SCAN) 3405 break; 3406 } 3407 x = mult_frac(x, n->nr_partial, scanned); 3408 x = min(x, node_nr_objs(n)); 3409 } 3410 spin_unlock_irqrestore(&n->list_lock, flags); 3411 return x; 3412 } 3413 3414 static noinline void 3415 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3416 { 3417 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3418 DEFAULT_RATELIMIT_BURST); 3419 int node; 3420 struct kmem_cache_node *n; 3421 3422 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3423 return; 3424 3425 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 3426 nid, gfpflags, &gfpflags); 3427 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3428 s->name, s->object_size, s->size, oo_order(s->oo), 3429 oo_order(s->min)); 3430 3431 if (oo_order(s->min) > get_order(s->object_size)) 3432 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3433 s->name); 3434 3435 for_each_kmem_cache_node(s, node, n) { 3436 unsigned long nr_slabs; 3437 unsigned long nr_objs; 3438 unsigned long nr_free; 3439 3440 nr_free = count_partial_free_approx(n); 3441 nr_slabs = node_nr_slabs(n); 3442 nr_objs = node_nr_objs(n); 3443 3444 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3445 node, nr_slabs, nr_objs, nr_free); 3446 } 3447 } 3448 #else /* CONFIG_SLUB_DEBUG */ 3449 static inline void 3450 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3451 #endif 3452 3453 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3454 { 3455 if (unlikely(slab_test_pfmemalloc(slab))) 3456 return gfp_pfmemalloc_allowed(gfpflags); 3457 3458 return true; 3459 } 3460 3461 #ifndef CONFIG_SLUB_TINY 3462 static inline bool 3463 __update_cpu_freelist_fast(struct kmem_cache *s, 3464 void *freelist_old, void *freelist_new, 3465 unsigned long tid) 3466 { 3467 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3468 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3469 3470 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3471 &old.full, new.full); 3472 } 3473 3474 /* 3475 * Check the slab->freelist and either transfer the freelist to the 3476 * per cpu freelist or deactivate the slab. 3477 * 3478 * The slab is still frozen if the return value is not NULL. 3479 * 3480 * If this function returns NULL then the slab has been unfrozen. 3481 */ 3482 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3483 { 3484 struct slab new; 3485 unsigned long counters; 3486 void *freelist; 3487 3488 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3489 3490 do { 3491 freelist = slab->freelist; 3492 counters = slab->counters; 3493 3494 new.counters = counters; 3495 3496 new.inuse = slab->objects; 3497 new.frozen = freelist != NULL; 3498 3499 } while (!__slab_update_freelist(s, slab, 3500 freelist, counters, 3501 NULL, new.counters, 3502 "get_freelist")); 3503 3504 return freelist; 3505 } 3506 3507 /* 3508 * Freeze the partial slab and return the pointer to the freelist. 3509 */ 3510 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3511 { 3512 struct slab new; 3513 unsigned long counters; 3514 void *freelist; 3515 3516 do { 3517 freelist = slab->freelist; 3518 counters = slab->counters; 3519 3520 new.counters = counters; 3521 VM_BUG_ON(new.frozen); 3522 3523 new.inuse = slab->objects; 3524 new.frozen = 1; 3525 3526 } while (!slab_update_freelist(s, slab, 3527 freelist, counters, 3528 NULL, new.counters, 3529 "freeze_slab")); 3530 3531 return freelist; 3532 } 3533 3534 /* 3535 * Slow path. The lockless freelist is empty or we need to perform 3536 * debugging duties. 3537 * 3538 * Processing is still very fast if new objects have been freed to the 3539 * regular freelist. In that case we simply take over the regular freelist 3540 * as the lockless freelist and zap the regular freelist. 3541 * 3542 * If that is not working then we fall back to the partial lists. We take the 3543 * first element of the freelist as the object to allocate now and move the 3544 * rest of the freelist to the lockless freelist. 3545 * 3546 * And if we were unable to get a new slab from the partial slab lists then 3547 * we need to allocate a new slab. This is the slowest path since it involves 3548 * a call to the page allocator and the setup of a new slab. 3549 * 3550 * Version of __slab_alloc to use when we know that preemption is 3551 * already disabled (which is the case for bulk allocation). 3552 */ 3553 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3554 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3555 { 3556 void *freelist; 3557 struct slab *slab; 3558 unsigned long flags; 3559 struct partial_context pc; 3560 bool try_thisnode = true; 3561 3562 stat(s, ALLOC_SLOWPATH); 3563 3564 reread_slab: 3565 3566 slab = READ_ONCE(c->slab); 3567 if (!slab) { 3568 /* 3569 * if the node is not online or has no normal memory, just 3570 * ignore the node constraint 3571 */ 3572 if (unlikely(node != NUMA_NO_NODE && 3573 !node_isset(node, slab_nodes))) 3574 node = NUMA_NO_NODE; 3575 goto new_slab; 3576 } 3577 3578 if (unlikely(!node_match(slab, node))) { 3579 /* 3580 * same as above but node_match() being false already 3581 * implies node != NUMA_NO_NODE 3582 */ 3583 if (!node_isset(node, slab_nodes)) { 3584 node = NUMA_NO_NODE; 3585 } else { 3586 stat(s, ALLOC_NODE_MISMATCH); 3587 goto deactivate_slab; 3588 } 3589 } 3590 3591 /* 3592 * By rights, we should be searching for a slab page that was 3593 * PFMEMALLOC but right now, we are losing the pfmemalloc 3594 * information when the page leaves the per-cpu allocator 3595 */ 3596 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3597 goto deactivate_slab; 3598 3599 /* must check again c->slab in case we got preempted and it changed */ 3600 local_lock_irqsave(&s->cpu_slab->lock, flags); 3601 if (unlikely(slab != c->slab)) { 3602 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3603 goto reread_slab; 3604 } 3605 freelist = c->freelist; 3606 if (freelist) 3607 goto load_freelist; 3608 3609 freelist = get_freelist(s, slab); 3610 3611 if (!freelist) { 3612 c->slab = NULL; 3613 c->tid = next_tid(c->tid); 3614 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3615 stat(s, DEACTIVATE_BYPASS); 3616 goto new_slab; 3617 } 3618 3619 stat(s, ALLOC_REFILL); 3620 3621 load_freelist: 3622 3623 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3624 3625 /* 3626 * freelist is pointing to the list of objects to be used. 3627 * slab is pointing to the slab from which the objects are obtained. 3628 * That slab must be frozen for per cpu allocations to work. 3629 */ 3630 VM_BUG_ON(!c->slab->frozen); 3631 c->freelist = get_freepointer(s, freelist); 3632 c->tid = next_tid(c->tid); 3633 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3634 return freelist; 3635 3636 deactivate_slab: 3637 3638 local_lock_irqsave(&s->cpu_slab->lock, flags); 3639 if (slab != c->slab) { 3640 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3641 goto reread_slab; 3642 } 3643 freelist = c->freelist; 3644 c->slab = NULL; 3645 c->freelist = NULL; 3646 c->tid = next_tid(c->tid); 3647 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3648 deactivate_slab(s, slab, freelist); 3649 3650 new_slab: 3651 3652 #ifdef CONFIG_SLUB_CPU_PARTIAL 3653 while (slub_percpu_partial(c)) { 3654 local_lock_irqsave(&s->cpu_slab->lock, flags); 3655 if (unlikely(c->slab)) { 3656 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3657 goto reread_slab; 3658 } 3659 if (unlikely(!slub_percpu_partial(c))) { 3660 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3661 /* we were preempted and partial list got empty */ 3662 goto new_objects; 3663 } 3664 3665 slab = slub_percpu_partial(c); 3666 slub_set_percpu_partial(c, slab); 3667 3668 if (likely(node_match(slab, node) && 3669 pfmemalloc_match(slab, gfpflags))) { 3670 c->slab = slab; 3671 freelist = get_freelist(s, slab); 3672 VM_BUG_ON(!freelist); 3673 stat(s, CPU_PARTIAL_ALLOC); 3674 goto load_freelist; 3675 } 3676 3677 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3678 3679 slab->next = NULL; 3680 __put_partials(s, slab); 3681 } 3682 #endif 3683 3684 new_objects: 3685 3686 pc.flags = gfpflags; 3687 /* 3688 * When a preferred node is indicated but no __GFP_THISNODE 3689 * 3690 * 1) try to get a partial slab from target node only by having 3691 * __GFP_THISNODE in pc.flags for get_partial() 3692 * 2) if 1) failed, try to allocate a new slab from target node with 3693 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3694 * 3) if 2) failed, retry with original gfpflags which will allow 3695 * get_partial() try partial lists of other nodes before potentially 3696 * allocating new page from other nodes 3697 */ 3698 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3699 && try_thisnode)) 3700 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3701 3702 pc.orig_size = orig_size; 3703 slab = get_partial(s, node, &pc); 3704 if (slab) { 3705 if (kmem_cache_debug(s)) { 3706 freelist = pc.object; 3707 /* 3708 * For debug caches here we had to go through 3709 * alloc_single_from_partial() so just store the 3710 * tracking info and return the object. 3711 */ 3712 if (s->flags & SLAB_STORE_USER) 3713 set_track(s, freelist, TRACK_ALLOC, addr); 3714 3715 return freelist; 3716 } 3717 3718 freelist = freeze_slab(s, slab); 3719 goto retry_load_slab; 3720 } 3721 3722 slub_put_cpu_ptr(s->cpu_slab); 3723 slab = new_slab(s, pc.flags, node); 3724 c = slub_get_cpu_ptr(s->cpu_slab); 3725 3726 if (unlikely(!slab)) { 3727 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3728 && try_thisnode) { 3729 try_thisnode = false; 3730 goto new_objects; 3731 } 3732 slab_out_of_memory(s, gfpflags, node); 3733 return NULL; 3734 } 3735 3736 stat(s, ALLOC_SLAB); 3737 3738 if (kmem_cache_debug(s)) { 3739 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3740 3741 if (unlikely(!freelist)) 3742 goto new_objects; 3743 3744 if (s->flags & SLAB_STORE_USER) 3745 set_track(s, freelist, TRACK_ALLOC, addr); 3746 3747 return freelist; 3748 } 3749 3750 /* 3751 * No other reference to the slab yet so we can 3752 * muck around with it freely without cmpxchg 3753 */ 3754 freelist = slab->freelist; 3755 slab->freelist = NULL; 3756 slab->inuse = slab->objects; 3757 slab->frozen = 1; 3758 3759 inc_slabs_node(s, slab_nid(slab), slab->objects); 3760 3761 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3762 /* 3763 * For !pfmemalloc_match() case we don't load freelist so that 3764 * we don't make further mismatched allocations easier. 3765 */ 3766 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3767 return freelist; 3768 } 3769 3770 retry_load_slab: 3771 3772 local_lock_irqsave(&s->cpu_slab->lock, flags); 3773 if (unlikely(c->slab)) { 3774 void *flush_freelist = c->freelist; 3775 struct slab *flush_slab = c->slab; 3776 3777 c->slab = NULL; 3778 c->freelist = NULL; 3779 c->tid = next_tid(c->tid); 3780 3781 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3782 3783 deactivate_slab(s, flush_slab, flush_freelist); 3784 3785 stat(s, CPUSLAB_FLUSH); 3786 3787 goto retry_load_slab; 3788 } 3789 c->slab = slab; 3790 3791 goto load_freelist; 3792 } 3793 3794 /* 3795 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3796 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3797 * pointer. 3798 */ 3799 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3800 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3801 { 3802 void *p; 3803 3804 #ifdef CONFIG_PREEMPT_COUNT 3805 /* 3806 * We may have been preempted and rescheduled on a different 3807 * cpu before disabling preemption. Need to reload cpu area 3808 * pointer. 3809 */ 3810 c = slub_get_cpu_ptr(s->cpu_slab); 3811 #endif 3812 3813 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3814 #ifdef CONFIG_PREEMPT_COUNT 3815 slub_put_cpu_ptr(s->cpu_slab); 3816 #endif 3817 return p; 3818 } 3819 3820 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3821 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3822 { 3823 struct kmem_cache_cpu *c; 3824 struct slab *slab; 3825 unsigned long tid; 3826 void *object; 3827 3828 redo: 3829 /* 3830 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3831 * enabled. We may switch back and forth between cpus while 3832 * reading from one cpu area. That does not matter as long 3833 * as we end up on the original cpu again when doing the cmpxchg. 3834 * 3835 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3836 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3837 * the tid. If we are preempted and switched to another cpu between the 3838 * two reads, it's OK as the two are still associated with the same cpu 3839 * and cmpxchg later will validate the cpu. 3840 */ 3841 c = raw_cpu_ptr(s->cpu_slab); 3842 tid = READ_ONCE(c->tid); 3843 3844 /* 3845 * Irqless object alloc/free algorithm used here depends on sequence 3846 * of fetching cpu_slab's data. tid should be fetched before anything 3847 * on c to guarantee that object and slab associated with previous tid 3848 * won't be used with current tid. If we fetch tid first, object and 3849 * slab could be one associated with next tid and our alloc/free 3850 * request will be failed. In this case, we will retry. So, no problem. 3851 */ 3852 barrier(); 3853 3854 /* 3855 * The transaction ids are globally unique per cpu and per operation on 3856 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3857 * occurs on the right processor and that there was no operation on the 3858 * linked list in between. 3859 */ 3860 3861 object = c->freelist; 3862 slab = c->slab; 3863 3864 if (!USE_LOCKLESS_FAST_PATH() || 3865 unlikely(!object || !slab || !node_match(slab, node))) { 3866 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3867 } else { 3868 void *next_object = get_freepointer_safe(s, object); 3869 3870 /* 3871 * The cmpxchg will only match if there was no additional 3872 * operation and if we are on the right processor. 3873 * 3874 * The cmpxchg does the following atomically (without lock 3875 * semantics!) 3876 * 1. Relocate first pointer to the current per cpu area. 3877 * 2. Verify that tid and freelist have not been changed 3878 * 3. If they were not changed replace tid and freelist 3879 * 3880 * Since this is without lock semantics the protection is only 3881 * against code executing on this cpu *not* from access by 3882 * other cpus. 3883 */ 3884 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3885 note_cmpxchg_failure("slab_alloc", s, tid); 3886 goto redo; 3887 } 3888 prefetch_freepointer(s, next_object); 3889 stat(s, ALLOC_FASTPATH); 3890 } 3891 3892 return object; 3893 } 3894 #else /* CONFIG_SLUB_TINY */ 3895 static void *__slab_alloc_node(struct kmem_cache *s, 3896 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3897 { 3898 struct partial_context pc; 3899 struct slab *slab; 3900 void *object; 3901 3902 pc.flags = gfpflags; 3903 pc.orig_size = orig_size; 3904 slab = get_partial(s, node, &pc); 3905 3906 if (slab) 3907 return pc.object; 3908 3909 slab = new_slab(s, gfpflags, node); 3910 if (unlikely(!slab)) { 3911 slab_out_of_memory(s, gfpflags, node); 3912 return NULL; 3913 } 3914 3915 object = alloc_single_from_new_slab(s, slab, orig_size); 3916 3917 return object; 3918 } 3919 #endif /* CONFIG_SLUB_TINY */ 3920 3921 /* 3922 * If the object has been wiped upon free, make sure it's fully initialized by 3923 * zeroing out freelist pointer. 3924 */ 3925 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3926 void *obj) 3927 { 3928 if (unlikely(slab_want_init_on_free(s)) && obj && 3929 !freeptr_outside_object(s)) 3930 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3931 0, sizeof(void *)); 3932 } 3933 3934 static __fastpath_inline 3935 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 3936 { 3937 flags &= gfp_allowed_mask; 3938 3939 might_alloc(flags); 3940 3941 if (unlikely(should_failslab(s, flags))) 3942 return NULL; 3943 3944 return s; 3945 } 3946 3947 static __fastpath_inline 3948 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 3949 gfp_t flags, size_t size, void **p, bool init, 3950 unsigned int orig_size) 3951 { 3952 unsigned int zero_size = s->object_size; 3953 bool kasan_init = init; 3954 size_t i; 3955 gfp_t init_flags = flags & gfp_allowed_mask; 3956 3957 /* 3958 * For kmalloc object, the allocated memory size(object_size) is likely 3959 * larger than the requested size(orig_size). If redzone check is 3960 * enabled for the extra space, don't zero it, as it will be redzoned 3961 * soon. The redzone operation for this extra space could be seen as a 3962 * replacement of current poisoning under certain debug option, and 3963 * won't break other sanity checks. 3964 */ 3965 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 3966 (s->flags & SLAB_KMALLOC)) 3967 zero_size = orig_size; 3968 3969 /* 3970 * When slab_debug is enabled, avoid memory initialization integrated 3971 * into KASAN and instead zero out the memory via the memset below with 3972 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 3973 * cause false-positive reports. This does not lead to a performance 3974 * penalty on production builds, as slab_debug is not intended to be 3975 * enabled there. 3976 */ 3977 if (__slub_debug_enabled()) 3978 kasan_init = false; 3979 3980 /* 3981 * As memory initialization might be integrated into KASAN, 3982 * kasan_slab_alloc and initialization memset must be 3983 * kept together to avoid discrepancies in behavior. 3984 * 3985 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 3986 */ 3987 for (i = 0; i < size; i++) { 3988 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 3989 if (p[i] && init && (!kasan_init || 3990 !kasan_has_integrated_init())) 3991 memset(p[i], 0, zero_size); 3992 kmemleak_alloc_recursive(p[i], s->object_size, 1, 3993 s->flags, init_flags); 3994 kmsan_slab_alloc(s, p[i], init_flags); 3995 alloc_tagging_slab_alloc_hook(s, p[i], flags); 3996 } 3997 3998 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 3999 } 4000 4001 /* 4002 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4003 * have the fastpath folded into their functions. So no function call 4004 * overhead for requests that can be satisfied on the fastpath. 4005 * 4006 * The fastpath works by first checking if the lockless freelist can be used. 4007 * If not then __slab_alloc is called for slow processing. 4008 * 4009 * Otherwise we can simply pick the next object from the lockless free list. 4010 */ 4011 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4012 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4013 { 4014 void *object; 4015 bool init = false; 4016 4017 s = slab_pre_alloc_hook(s, gfpflags); 4018 if (unlikely(!s)) 4019 return NULL; 4020 4021 object = kfence_alloc(s, orig_size, gfpflags); 4022 if (unlikely(object)) 4023 goto out; 4024 4025 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4026 4027 maybe_wipe_obj_freeptr(s, object); 4028 init = slab_want_init_on_alloc(gfpflags, s); 4029 4030 out: 4031 /* 4032 * When init equals 'true', like for kzalloc() family, only 4033 * @orig_size bytes might be zeroed instead of s->object_size 4034 * In case this fails due to memcg_slab_post_alloc_hook(), 4035 * object is set to NULL 4036 */ 4037 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4038 4039 return object; 4040 } 4041 4042 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4043 { 4044 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4045 s->object_size); 4046 4047 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4048 4049 return ret; 4050 } 4051 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4052 4053 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4054 gfp_t gfpflags) 4055 { 4056 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4057 s->object_size); 4058 4059 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4060 4061 return ret; 4062 } 4063 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4064 4065 /** 4066 * kmem_cache_alloc_node - Allocate an object on the specified node 4067 * @s: The cache to allocate from. 4068 * @gfpflags: See kmalloc(). 4069 * @node: node number of the target node. 4070 * 4071 * Identical to kmem_cache_alloc but it will allocate memory on the given 4072 * node, which can improve the performance for cpu bound structures. 4073 * 4074 * Fallback to other node is possible if __GFP_THISNODE is not set. 4075 * 4076 * Return: pointer to the new object or %NULL in case of error 4077 */ 4078 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4079 { 4080 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4081 4082 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4083 4084 return ret; 4085 } 4086 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4087 4088 /* 4089 * To avoid unnecessary overhead, we pass through large allocation requests 4090 * directly to the page allocator. We use __GFP_COMP, because we will need to 4091 * know the allocation order to free the pages properly in kfree. 4092 */ 4093 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4094 { 4095 struct folio *folio; 4096 void *ptr = NULL; 4097 unsigned int order = get_order(size); 4098 4099 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4100 flags = kmalloc_fix_flags(flags); 4101 4102 flags |= __GFP_COMP; 4103 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4104 if (folio) { 4105 ptr = folio_address(folio); 4106 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4107 PAGE_SIZE << order); 4108 } 4109 4110 ptr = kasan_kmalloc_large(ptr, size, flags); 4111 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4112 kmemleak_alloc(ptr, size, 1, flags); 4113 kmsan_kmalloc_large(ptr, size, flags); 4114 4115 return ptr; 4116 } 4117 4118 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4119 { 4120 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4121 4122 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4123 flags, NUMA_NO_NODE); 4124 return ret; 4125 } 4126 EXPORT_SYMBOL(__kmalloc_large_noprof); 4127 4128 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4129 { 4130 void *ret = ___kmalloc_large_node(size, flags, node); 4131 4132 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4133 flags, node); 4134 return ret; 4135 } 4136 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4137 4138 static __always_inline 4139 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4140 unsigned long caller) 4141 { 4142 struct kmem_cache *s; 4143 void *ret; 4144 4145 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4146 ret = __kmalloc_large_node_noprof(size, flags, node); 4147 trace_kmalloc(caller, ret, size, 4148 PAGE_SIZE << get_order(size), flags, node); 4149 return ret; 4150 } 4151 4152 if (unlikely(!size)) 4153 return ZERO_SIZE_PTR; 4154 4155 s = kmalloc_slab(size, b, flags, caller); 4156 4157 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4158 ret = kasan_kmalloc(s, ret, size, flags); 4159 trace_kmalloc(caller, ret, size, s->size, flags, node); 4160 return ret; 4161 } 4162 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4163 { 4164 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4165 } 4166 EXPORT_SYMBOL(__kmalloc_node_noprof); 4167 4168 void *__kmalloc_noprof(size_t size, gfp_t flags) 4169 { 4170 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4171 } 4172 EXPORT_SYMBOL(__kmalloc_noprof); 4173 4174 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4175 int node, unsigned long caller) 4176 { 4177 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4178 4179 } 4180 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4181 4182 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4183 { 4184 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4185 _RET_IP_, size); 4186 4187 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4188 4189 ret = kasan_kmalloc(s, ret, size, gfpflags); 4190 return ret; 4191 } 4192 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4193 4194 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4195 int node, size_t size) 4196 { 4197 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4198 4199 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4200 4201 ret = kasan_kmalloc(s, ret, size, gfpflags); 4202 return ret; 4203 } 4204 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4205 4206 static noinline void free_to_partial_list( 4207 struct kmem_cache *s, struct slab *slab, 4208 void *head, void *tail, int bulk_cnt, 4209 unsigned long addr) 4210 { 4211 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4212 struct slab *slab_free = NULL; 4213 int cnt = bulk_cnt; 4214 unsigned long flags; 4215 depot_stack_handle_t handle = 0; 4216 4217 if (s->flags & SLAB_STORE_USER) 4218 handle = set_track_prepare(); 4219 4220 spin_lock_irqsave(&n->list_lock, flags); 4221 4222 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4223 void *prior = slab->freelist; 4224 4225 /* Perform the actual freeing while we still hold the locks */ 4226 slab->inuse -= cnt; 4227 set_freepointer(s, tail, prior); 4228 slab->freelist = head; 4229 4230 /* 4231 * If the slab is empty, and node's partial list is full, 4232 * it should be discarded anyway no matter it's on full or 4233 * partial list. 4234 */ 4235 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4236 slab_free = slab; 4237 4238 if (!prior) { 4239 /* was on full list */ 4240 remove_full(s, n, slab); 4241 if (!slab_free) { 4242 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4243 stat(s, FREE_ADD_PARTIAL); 4244 } 4245 } else if (slab_free) { 4246 remove_partial(n, slab); 4247 stat(s, FREE_REMOVE_PARTIAL); 4248 } 4249 } 4250 4251 if (slab_free) { 4252 /* 4253 * Update the counters while still holding n->list_lock to 4254 * prevent spurious validation warnings 4255 */ 4256 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4257 } 4258 4259 spin_unlock_irqrestore(&n->list_lock, flags); 4260 4261 if (slab_free) { 4262 stat(s, FREE_SLAB); 4263 free_slab(s, slab_free); 4264 } 4265 } 4266 4267 /* 4268 * Slow path handling. This may still be called frequently since objects 4269 * have a longer lifetime than the cpu slabs in most processing loads. 4270 * 4271 * So we still attempt to reduce cache line usage. Just take the slab 4272 * lock and free the item. If there is no additional partial slab 4273 * handling required then we can return immediately. 4274 */ 4275 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4276 void *head, void *tail, int cnt, 4277 unsigned long addr) 4278 4279 { 4280 void *prior; 4281 int was_frozen; 4282 struct slab new; 4283 unsigned long counters; 4284 struct kmem_cache_node *n = NULL; 4285 unsigned long flags; 4286 bool on_node_partial; 4287 4288 stat(s, FREE_SLOWPATH); 4289 4290 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4291 free_to_partial_list(s, slab, head, tail, cnt, addr); 4292 return; 4293 } 4294 4295 do { 4296 if (unlikely(n)) { 4297 spin_unlock_irqrestore(&n->list_lock, flags); 4298 n = NULL; 4299 } 4300 prior = slab->freelist; 4301 counters = slab->counters; 4302 set_freepointer(s, tail, prior); 4303 new.counters = counters; 4304 was_frozen = new.frozen; 4305 new.inuse -= cnt; 4306 if ((!new.inuse || !prior) && !was_frozen) { 4307 /* Needs to be taken off a list */ 4308 if (!kmem_cache_has_cpu_partial(s) || prior) { 4309 4310 n = get_node(s, slab_nid(slab)); 4311 /* 4312 * Speculatively acquire the list_lock. 4313 * If the cmpxchg does not succeed then we may 4314 * drop the list_lock without any processing. 4315 * 4316 * Otherwise the list_lock will synchronize with 4317 * other processors updating the list of slabs. 4318 */ 4319 spin_lock_irqsave(&n->list_lock, flags); 4320 4321 on_node_partial = slab_test_node_partial(slab); 4322 } 4323 } 4324 4325 } while (!slab_update_freelist(s, slab, 4326 prior, counters, 4327 head, new.counters, 4328 "__slab_free")); 4329 4330 if (likely(!n)) { 4331 4332 if (likely(was_frozen)) { 4333 /* 4334 * The list lock was not taken therefore no list 4335 * activity can be necessary. 4336 */ 4337 stat(s, FREE_FROZEN); 4338 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4339 /* 4340 * If we started with a full slab then put it onto the 4341 * per cpu partial list. 4342 */ 4343 put_cpu_partial(s, slab, 1); 4344 stat(s, CPU_PARTIAL_FREE); 4345 } 4346 4347 return; 4348 } 4349 4350 /* 4351 * This slab was partially empty but not on the per-node partial list, 4352 * in which case we shouldn't manipulate its list, just return. 4353 */ 4354 if (prior && !on_node_partial) { 4355 spin_unlock_irqrestore(&n->list_lock, flags); 4356 return; 4357 } 4358 4359 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4360 goto slab_empty; 4361 4362 /* 4363 * Objects left in the slab. If it was not on the partial list before 4364 * then add it. 4365 */ 4366 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4367 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4368 stat(s, FREE_ADD_PARTIAL); 4369 } 4370 spin_unlock_irqrestore(&n->list_lock, flags); 4371 return; 4372 4373 slab_empty: 4374 if (prior) { 4375 /* 4376 * Slab on the partial list. 4377 */ 4378 remove_partial(n, slab); 4379 stat(s, FREE_REMOVE_PARTIAL); 4380 } 4381 4382 spin_unlock_irqrestore(&n->list_lock, flags); 4383 stat(s, FREE_SLAB); 4384 discard_slab(s, slab); 4385 } 4386 4387 #ifndef CONFIG_SLUB_TINY 4388 /* 4389 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4390 * can perform fastpath freeing without additional function calls. 4391 * 4392 * The fastpath is only possible if we are freeing to the current cpu slab 4393 * of this processor. This typically the case if we have just allocated 4394 * the item before. 4395 * 4396 * If fastpath is not possible then fall back to __slab_free where we deal 4397 * with all sorts of special processing. 4398 * 4399 * Bulk free of a freelist with several objects (all pointing to the 4400 * same slab) possible by specifying head and tail ptr, plus objects 4401 * count (cnt). Bulk free indicated by tail pointer being set. 4402 */ 4403 static __always_inline void do_slab_free(struct kmem_cache *s, 4404 struct slab *slab, void *head, void *tail, 4405 int cnt, unsigned long addr) 4406 { 4407 struct kmem_cache_cpu *c; 4408 unsigned long tid; 4409 void **freelist; 4410 4411 redo: 4412 /* 4413 * Determine the currently cpus per cpu slab. 4414 * The cpu may change afterward. However that does not matter since 4415 * data is retrieved via this pointer. If we are on the same cpu 4416 * during the cmpxchg then the free will succeed. 4417 */ 4418 c = raw_cpu_ptr(s->cpu_slab); 4419 tid = READ_ONCE(c->tid); 4420 4421 /* Same with comment on barrier() in __slab_alloc_node() */ 4422 barrier(); 4423 4424 if (unlikely(slab != c->slab)) { 4425 __slab_free(s, slab, head, tail, cnt, addr); 4426 return; 4427 } 4428 4429 if (USE_LOCKLESS_FAST_PATH()) { 4430 freelist = READ_ONCE(c->freelist); 4431 4432 set_freepointer(s, tail, freelist); 4433 4434 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4435 note_cmpxchg_failure("slab_free", s, tid); 4436 goto redo; 4437 } 4438 } else { 4439 /* Update the free list under the local lock */ 4440 local_lock(&s->cpu_slab->lock); 4441 c = this_cpu_ptr(s->cpu_slab); 4442 if (unlikely(slab != c->slab)) { 4443 local_unlock(&s->cpu_slab->lock); 4444 goto redo; 4445 } 4446 tid = c->tid; 4447 freelist = c->freelist; 4448 4449 set_freepointer(s, tail, freelist); 4450 c->freelist = head; 4451 c->tid = next_tid(tid); 4452 4453 local_unlock(&s->cpu_slab->lock); 4454 } 4455 stat_add(s, FREE_FASTPATH, cnt); 4456 } 4457 #else /* CONFIG_SLUB_TINY */ 4458 static void do_slab_free(struct kmem_cache *s, 4459 struct slab *slab, void *head, void *tail, 4460 int cnt, unsigned long addr) 4461 { 4462 __slab_free(s, slab, head, tail, cnt, addr); 4463 } 4464 #endif /* CONFIG_SLUB_TINY */ 4465 4466 static __fastpath_inline 4467 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4468 unsigned long addr) 4469 { 4470 memcg_slab_free_hook(s, slab, &object, 1); 4471 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4472 4473 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4474 do_slab_free(s, slab, object, object, 1, addr); 4475 } 4476 4477 #ifdef CONFIG_MEMCG 4478 /* Do not inline the rare memcg charging failed path into the allocation path */ 4479 static noinline 4480 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4481 { 4482 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s)))) 4483 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4484 } 4485 #endif 4486 4487 static __fastpath_inline 4488 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4489 void *tail, void **p, int cnt, unsigned long addr) 4490 { 4491 memcg_slab_free_hook(s, slab, p, cnt); 4492 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4493 /* 4494 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4495 * to remove objects, whose reuse must be delayed. 4496 */ 4497 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4498 do_slab_free(s, slab, head, tail, cnt, addr); 4499 } 4500 4501 #ifdef CONFIG_KASAN_GENERIC 4502 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4503 { 4504 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4505 } 4506 #endif 4507 4508 static inline struct kmem_cache *virt_to_cache(const void *obj) 4509 { 4510 struct slab *slab; 4511 4512 slab = virt_to_slab(obj); 4513 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4514 return NULL; 4515 return slab->slab_cache; 4516 } 4517 4518 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4519 { 4520 struct kmem_cache *cachep; 4521 4522 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4523 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4524 return s; 4525 4526 cachep = virt_to_cache(x); 4527 if (WARN(cachep && cachep != s, 4528 "%s: Wrong slab cache. %s but object is from %s\n", 4529 __func__, s->name, cachep->name)) 4530 print_tracking(cachep, x); 4531 return cachep; 4532 } 4533 4534 /** 4535 * kmem_cache_free - Deallocate an object 4536 * @s: The cache the allocation was from. 4537 * @x: The previously allocated object. 4538 * 4539 * Free an object which was previously allocated from this 4540 * cache. 4541 */ 4542 void kmem_cache_free(struct kmem_cache *s, void *x) 4543 { 4544 s = cache_from_obj(s, x); 4545 if (!s) 4546 return; 4547 trace_kmem_cache_free(_RET_IP_, x, s); 4548 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4549 } 4550 EXPORT_SYMBOL(kmem_cache_free); 4551 4552 static void free_large_kmalloc(struct folio *folio, void *object) 4553 { 4554 unsigned int order = folio_order(folio); 4555 4556 if (WARN_ON_ONCE(order == 0)) 4557 pr_warn_once("object pointer: 0x%p\n", object); 4558 4559 kmemleak_free(object); 4560 kasan_kfree_large(object); 4561 kmsan_kfree_large(object); 4562 4563 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4564 -(PAGE_SIZE << order)); 4565 folio_put(folio); 4566 } 4567 4568 /** 4569 * kfree - free previously allocated memory 4570 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4571 * 4572 * If @object is NULL, no operation is performed. 4573 */ 4574 void kfree(const void *object) 4575 { 4576 struct folio *folio; 4577 struct slab *slab; 4578 struct kmem_cache *s; 4579 void *x = (void *)object; 4580 4581 trace_kfree(_RET_IP_, object); 4582 4583 if (unlikely(ZERO_OR_NULL_PTR(object))) 4584 return; 4585 4586 folio = virt_to_folio(object); 4587 if (unlikely(!folio_test_slab(folio))) { 4588 free_large_kmalloc(folio, (void *)object); 4589 return; 4590 } 4591 4592 slab = folio_slab(folio); 4593 s = slab->slab_cache; 4594 slab_free(s, slab, x, _RET_IP_); 4595 } 4596 EXPORT_SYMBOL(kfree); 4597 4598 struct detached_freelist { 4599 struct slab *slab; 4600 void *tail; 4601 void *freelist; 4602 int cnt; 4603 struct kmem_cache *s; 4604 }; 4605 4606 /* 4607 * This function progressively scans the array with free objects (with 4608 * a limited look ahead) and extract objects belonging to the same 4609 * slab. It builds a detached freelist directly within the given 4610 * slab/objects. This can happen without any need for 4611 * synchronization, because the objects are owned by running process. 4612 * The freelist is build up as a single linked list in the objects. 4613 * The idea is, that this detached freelist can then be bulk 4614 * transferred to the real freelist(s), but only requiring a single 4615 * synchronization primitive. Look ahead in the array is limited due 4616 * to performance reasons. 4617 */ 4618 static inline 4619 int build_detached_freelist(struct kmem_cache *s, size_t size, 4620 void **p, struct detached_freelist *df) 4621 { 4622 int lookahead = 3; 4623 void *object; 4624 struct folio *folio; 4625 size_t same; 4626 4627 object = p[--size]; 4628 folio = virt_to_folio(object); 4629 if (!s) { 4630 /* Handle kalloc'ed objects */ 4631 if (unlikely(!folio_test_slab(folio))) { 4632 free_large_kmalloc(folio, object); 4633 df->slab = NULL; 4634 return size; 4635 } 4636 /* Derive kmem_cache from object */ 4637 df->slab = folio_slab(folio); 4638 df->s = df->slab->slab_cache; 4639 } else { 4640 df->slab = folio_slab(folio); 4641 df->s = cache_from_obj(s, object); /* Support for memcg */ 4642 } 4643 4644 /* Start new detached freelist */ 4645 df->tail = object; 4646 df->freelist = object; 4647 df->cnt = 1; 4648 4649 if (is_kfence_address(object)) 4650 return size; 4651 4652 set_freepointer(df->s, object, NULL); 4653 4654 same = size; 4655 while (size) { 4656 object = p[--size]; 4657 /* df->slab is always set at this point */ 4658 if (df->slab == virt_to_slab(object)) { 4659 /* Opportunity build freelist */ 4660 set_freepointer(df->s, object, df->freelist); 4661 df->freelist = object; 4662 df->cnt++; 4663 same--; 4664 if (size != same) 4665 swap(p[size], p[same]); 4666 continue; 4667 } 4668 4669 /* Limit look ahead search */ 4670 if (!--lookahead) 4671 break; 4672 } 4673 4674 return same; 4675 } 4676 4677 /* 4678 * Internal bulk free of objects that were not initialised by the post alloc 4679 * hooks and thus should not be processed by the free hooks 4680 */ 4681 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4682 { 4683 if (!size) 4684 return; 4685 4686 do { 4687 struct detached_freelist df; 4688 4689 size = build_detached_freelist(s, size, p, &df); 4690 if (!df.slab) 4691 continue; 4692 4693 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4694 _RET_IP_); 4695 } while (likely(size)); 4696 } 4697 4698 /* Note that interrupts must be enabled when calling this function. */ 4699 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4700 { 4701 if (!size) 4702 return; 4703 4704 do { 4705 struct detached_freelist df; 4706 4707 size = build_detached_freelist(s, size, p, &df); 4708 if (!df.slab) 4709 continue; 4710 4711 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4712 df.cnt, _RET_IP_); 4713 } while (likely(size)); 4714 } 4715 EXPORT_SYMBOL(kmem_cache_free_bulk); 4716 4717 #ifndef CONFIG_SLUB_TINY 4718 static inline 4719 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4720 void **p) 4721 { 4722 struct kmem_cache_cpu *c; 4723 unsigned long irqflags; 4724 int i; 4725 4726 /* 4727 * Drain objects in the per cpu slab, while disabling local 4728 * IRQs, which protects against PREEMPT and interrupts 4729 * handlers invoking normal fastpath. 4730 */ 4731 c = slub_get_cpu_ptr(s->cpu_slab); 4732 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4733 4734 for (i = 0; i < size; i++) { 4735 void *object = kfence_alloc(s, s->object_size, flags); 4736 4737 if (unlikely(object)) { 4738 p[i] = object; 4739 continue; 4740 } 4741 4742 object = c->freelist; 4743 if (unlikely(!object)) { 4744 /* 4745 * We may have removed an object from c->freelist using 4746 * the fastpath in the previous iteration; in that case, 4747 * c->tid has not been bumped yet. 4748 * Since ___slab_alloc() may reenable interrupts while 4749 * allocating memory, we should bump c->tid now. 4750 */ 4751 c->tid = next_tid(c->tid); 4752 4753 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4754 4755 /* 4756 * Invoking slow path likely have side-effect 4757 * of re-populating per CPU c->freelist 4758 */ 4759 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 4760 _RET_IP_, c, s->object_size); 4761 if (unlikely(!p[i])) 4762 goto error; 4763 4764 c = this_cpu_ptr(s->cpu_slab); 4765 maybe_wipe_obj_freeptr(s, p[i]); 4766 4767 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 4768 4769 continue; /* goto for-loop */ 4770 } 4771 c->freelist = get_freepointer(s, object); 4772 p[i] = object; 4773 maybe_wipe_obj_freeptr(s, p[i]); 4774 stat(s, ALLOC_FASTPATH); 4775 } 4776 c->tid = next_tid(c->tid); 4777 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 4778 slub_put_cpu_ptr(s->cpu_slab); 4779 4780 return i; 4781 4782 error: 4783 slub_put_cpu_ptr(s->cpu_slab); 4784 __kmem_cache_free_bulk(s, i, p); 4785 return 0; 4786 4787 } 4788 #else /* CONFIG_SLUB_TINY */ 4789 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 4790 size_t size, void **p) 4791 { 4792 int i; 4793 4794 for (i = 0; i < size; i++) { 4795 void *object = kfence_alloc(s, s->object_size, flags); 4796 4797 if (unlikely(object)) { 4798 p[i] = object; 4799 continue; 4800 } 4801 4802 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 4803 _RET_IP_, s->object_size); 4804 if (unlikely(!p[i])) 4805 goto error; 4806 4807 maybe_wipe_obj_freeptr(s, p[i]); 4808 } 4809 4810 return i; 4811 4812 error: 4813 __kmem_cache_free_bulk(s, i, p); 4814 return 0; 4815 } 4816 #endif /* CONFIG_SLUB_TINY */ 4817 4818 /* Note that interrupts must be enabled when calling this function. */ 4819 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 4820 void **p) 4821 { 4822 int i; 4823 4824 if (!size) 4825 return 0; 4826 4827 s = slab_pre_alloc_hook(s, flags); 4828 if (unlikely(!s)) 4829 return 0; 4830 4831 i = __kmem_cache_alloc_bulk(s, flags, size, p); 4832 if (unlikely(i == 0)) 4833 return 0; 4834 4835 /* 4836 * memcg and kmem_cache debug support and memory initialization. 4837 * Done outside of the IRQ disabled fastpath loop. 4838 */ 4839 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 4840 slab_want_init_on_alloc(flags, s), s->object_size))) { 4841 return 0; 4842 } 4843 return i; 4844 } 4845 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 4846 4847 4848 /* 4849 * Object placement in a slab is made very easy because we always start at 4850 * offset 0. If we tune the size of the object to the alignment then we can 4851 * get the required alignment by putting one properly sized object after 4852 * another. 4853 * 4854 * Notice that the allocation order determines the sizes of the per cpu 4855 * caches. Each processor has always one slab available for allocations. 4856 * Increasing the allocation order reduces the number of times that slabs 4857 * must be moved on and off the partial lists and is therefore a factor in 4858 * locking overhead. 4859 */ 4860 4861 /* 4862 * Minimum / Maximum order of slab pages. This influences locking overhead 4863 * and slab fragmentation. A higher order reduces the number of partial slabs 4864 * and increases the number of allocations possible without having to 4865 * take the list_lock. 4866 */ 4867 static unsigned int slub_min_order; 4868 static unsigned int slub_max_order = 4869 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 4870 static unsigned int slub_min_objects; 4871 4872 /* 4873 * Calculate the order of allocation given an slab object size. 4874 * 4875 * The order of allocation has significant impact on performance and other 4876 * system components. Generally order 0 allocations should be preferred since 4877 * order 0 does not cause fragmentation in the page allocator. Larger objects 4878 * be problematic to put into order 0 slabs because there may be too much 4879 * unused space left. We go to a higher order if more than 1/16th of the slab 4880 * would be wasted. 4881 * 4882 * In order to reach satisfactory performance we must ensure that a minimum 4883 * number of objects is in one slab. Otherwise we may generate too much 4884 * activity on the partial lists which requires taking the list_lock. This is 4885 * less a concern for large slabs though which are rarely used. 4886 * 4887 * slab_max_order specifies the order where we begin to stop considering the 4888 * number of objects in a slab as critical. If we reach slab_max_order then 4889 * we try to keep the page order as low as possible. So we accept more waste 4890 * of space in favor of a small page order. 4891 * 4892 * Higher order allocations also allow the placement of more objects in a 4893 * slab and thereby reduce object handling overhead. If the user has 4894 * requested a higher minimum order then we start with that one instead of 4895 * the smallest order which will fit the object. 4896 */ 4897 static inline unsigned int calc_slab_order(unsigned int size, 4898 unsigned int min_order, unsigned int max_order, 4899 unsigned int fract_leftover) 4900 { 4901 unsigned int order; 4902 4903 for (order = min_order; order <= max_order; order++) { 4904 4905 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 4906 unsigned int rem; 4907 4908 rem = slab_size % size; 4909 4910 if (rem <= slab_size / fract_leftover) 4911 break; 4912 } 4913 4914 return order; 4915 } 4916 4917 static inline int calculate_order(unsigned int size) 4918 { 4919 unsigned int order; 4920 unsigned int min_objects; 4921 unsigned int max_objects; 4922 unsigned int min_order; 4923 4924 min_objects = slub_min_objects; 4925 if (!min_objects) { 4926 /* 4927 * Some architectures will only update present cpus when 4928 * onlining them, so don't trust the number if it's just 1. But 4929 * we also don't want to use nr_cpu_ids always, as on some other 4930 * architectures, there can be many possible cpus, but never 4931 * onlined. Here we compromise between trying to avoid too high 4932 * order on systems that appear larger than they are, and too 4933 * low order on systems that appear smaller than they are. 4934 */ 4935 unsigned int nr_cpus = num_present_cpus(); 4936 if (nr_cpus <= 1) 4937 nr_cpus = nr_cpu_ids; 4938 min_objects = 4 * (fls(nr_cpus) + 1); 4939 } 4940 /* min_objects can't be 0 because get_order(0) is undefined */ 4941 max_objects = max(order_objects(slub_max_order, size), 1U); 4942 min_objects = min(min_objects, max_objects); 4943 4944 min_order = max_t(unsigned int, slub_min_order, 4945 get_order(min_objects * size)); 4946 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 4947 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 4948 4949 /* 4950 * Attempt to find best configuration for a slab. This works by first 4951 * attempting to generate a layout with the best possible configuration 4952 * and backing off gradually. 4953 * 4954 * We start with accepting at most 1/16 waste and try to find the 4955 * smallest order from min_objects-derived/slab_min_order up to 4956 * slab_max_order that will satisfy the constraint. Note that increasing 4957 * the order can only result in same or less fractional waste, not more. 4958 * 4959 * If that fails, we increase the acceptable fraction of waste and try 4960 * again. The last iteration with fraction of 1/2 would effectively 4961 * accept any waste and give us the order determined by min_objects, as 4962 * long as at least single object fits within slab_max_order. 4963 */ 4964 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 4965 order = calc_slab_order(size, min_order, slub_max_order, 4966 fraction); 4967 if (order <= slub_max_order) 4968 return order; 4969 } 4970 4971 /* 4972 * Doh this slab cannot be placed using slab_max_order. 4973 */ 4974 order = get_order(size); 4975 if (order <= MAX_PAGE_ORDER) 4976 return order; 4977 return -ENOSYS; 4978 } 4979 4980 static void 4981 init_kmem_cache_node(struct kmem_cache_node *n) 4982 { 4983 n->nr_partial = 0; 4984 spin_lock_init(&n->list_lock); 4985 INIT_LIST_HEAD(&n->partial); 4986 #ifdef CONFIG_SLUB_DEBUG 4987 atomic_long_set(&n->nr_slabs, 0); 4988 atomic_long_set(&n->total_objects, 0); 4989 INIT_LIST_HEAD(&n->full); 4990 #endif 4991 } 4992 4993 #ifndef CONFIG_SLUB_TINY 4994 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 4995 { 4996 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 4997 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 4998 sizeof(struct kmem_cache_cpu)); 4999 5000 /* 5001 * Must align to double word boundary for the double cmpxchg 5002 * instructions to work; see __pcpu_double_call_return_bool(). 5003 */ 5004 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 5005 2 * sizeof(void *)); 5006 5007 if (!s->cpu_slab) 5008 return 0; 5009 5010 init_kmem_cache_cpus(s); 5011 5012 return 1; 5013 } 5014 #else 5015 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5016 { 5017 return 1; 5018 } 5019 #endif /* CONFIG_SLUB_TINY */ 5020 5021 static struct kmem_cache *kmem_cache_node; 5022 5023 /* 5024 * No kmalloc_node yet so do it by hand. We know that this is the first 5025 * slab on the node for this slabcache. There are no concurrent accesses 5026 * possible. 5027 * 5028 * Note that this function only works on the kmem_cache_node 5029 * when allocating for the kmem_cache_node. This is used for bootstrapping 5030 * memory on a fresh node that has no slab structures yet. 5031 */ 5032 static void early_kmem_cache_node_alloc(int node) 5033 { 5034 struct slab *slab; 5035 struct kmem_cache_node *n; 5036 5037 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5038 5039 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5040 5041 BUG_ON(!slab); 5042 if (slab_nid(slab) != node) { 5043 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5044 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5045 } 5046 5047 n = slab->freelist; 5048 BUG_ON(!n); 5049 #ifdef CONFIG_SLUB_DEBUG 5050 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5051 #endif 5052 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5053 slab->freelist = get_freepointer(kmem_cache_node, n); 5054 slab->inuse = 1; 5055 kmem_cache_node->node[node] = n; 5056 init_kmem_cache_node(n); 5057 inc_slabs_node(kmem_cache_node, node, slab->objects); 5058 5059 /* 5060 * No locks need to be taken here as it has just been 5061 * initialized and there is no concurrent access. 5062 */ 5063 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5064 } 5065 5066 static void free_kmem_cache_nodes(struct kmem_cache *s) 5067 { 5068 int node; 5069 struct kmem_cache_node *n; 5070 5071 for_each_kmem_cache_node(s, node, n) { 5072 s->node[node] = NULL; 5073 kmem_cache_free(kmem_cache_node, n); 5074 } 5075 } 5076 5077 void __kmem_cache_release(struct kmem_cache *s) 5078 { 5079 cache_random_seq_destroy(s); 5080 #ifndef CONFIG_SLUB_TINY 5081 free_percpu(s->cpu_slab); 5082 #endif 5083 free_kmem_cache_nodes(s); 5084 } 5085 5086 static int init_kmem_cache_nodes(struct kmem_cache *s) 5087 { 5088 int node; 5089 5090 for_each_node_mask(node, slab_nodes) { 5091 struct kmem_cache_node *n; 5092 5093 if (slab_state == DOWN) { 5094 early_kmem_cache_node_alloc(node); 5095 continue; 5096 } 5097 n = kmem_cache_alloc_node(kmem_cache_node, 5098 GFP_KERNEL, node); 5099 5100 if (!n) { 5101 free_kmem_cache_nodes(s); 5102 return 0; 5103 } 5104 5105 init_kmem_cache_node(n); 5106 s->node[node] = n; 5107 } 5108 return 1; 5109 } 5110 5111 static void set_cpu_partial(struct kmem_cache *s) 5112 { 5113 #ifdef CONFIG_SLUB_CPU_PARTIAL 5114 unsigned int nr_objects; 5115 5116 /* 5117 * cpu_partial determined the maximum number of objects kept in the 5118 * per cpu partial lists of a processor. 5119 * 5120 * Per cpu partial lists mainly contain slabs that just have one 5121 * object freed. If they are used for allocation then they can be 5122 * filled up again with minimal effort. The slab will never hit the 5123 * per node partial lists and therefore no locking will be required. 5124 * 5125 * For backwards compatibility reasons, this is determined as number 5126 * of objects, even though we now limit maximum number of pages, see 5127 * slub_set_cpu_partial() 5128 */ 5129 if (!kmem_cache_has_cpu_partial(s)) 5130 nr_objects = 0; 5131 else if (s->size >= PAGE_SIZE) 5132 nr_objects = 6; 5133 else if (s->size >= 1024) 5134 nr_objects = 24; 5135 else if (s->size >= 256) 5136 nr_objects = 52; 5137 else 5138 nr_objects = 120; 5139 5140 slub_set_cpu_partial(s, nr_objects); 5141 #endif 5142 } 5143 5144 /* 5145 * calculate_sizes() determines the order and the distribution of data within 5146 * a slab object. 5147 */ 5148 static int calculate_sizes(struct kmem_cache *s) 5149 { 5150 slab_flags_t flags = s->flags; 5151 unsigned int size = s->object_size; 5152 unsigned int order; 5153 5154 /* 5155 * Round up object size to the next word boundary. We can only 5156 * place the free pointer at word boundaries and this determines 5157 * the possible location of the free pointer. 5158 */ 5159 size = ALIGN(size, sizeof(void *)); 5160 5161 #ifdef CONFIG_SLUB_DEBUG 5162 /* 5163 * Determine if we can poison the object itself. If the user of 5164 * the slab may touch the object after free or before allocation 5165 * then we should never poison the object itself. 5166 */ 5167 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5168 !s->ctor) 5169 s->flags |= __OBJECT_POISON; 5170 else 5171 s->flags &= ~__OBJECT_POISON; 5172 5173 5174 /* 5175 * If we are Redzoning then check if there is some space between the 5176 * end of the object and the free pointer. If not then add an 5177 * additional word to have some bytes to store Redzone information. 5178 */ 5179 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5180 size += sizeof(void *); 5181 #endif 5182 5183 /* 5184 * With that we have determined the number of bytes in actual use 5185 * by the object and redzoning. 5186 */ 5187 s->inuse = size; 5188 5189 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor || 5190 ((flags & SLAB_RED_ZONE) && 5191 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5192 /* 5193 * Relocate free pointer after the object if it is not 5194 * permitted to overwrite the first word of the object on 5195 * kmem_cache_free. 5196 * 5197 * This is the case if we do RCU, have a constructor or 5198 * destructor, are poisoning the objects, or are 5199 * redzoning an object smaller than sizeof(void *) or are 5200 * redzoning an object with slub_debug_orig_size() enabled, 5201 * in which case the right redzone may be extended. 5202 * 5203 * The assumption that s->offset >= s->inuse means free 5204 * pointer is outside of the object is used in the 5205 * freeptr_outside_object() function. If that is no 5206 * longer true, the function needs to be modified. 5207 */ 5208 s->offset = size; 5209 size += sizeof(void *); 5210 } else { 5211 /* 5212 * Store freelist pointer near middle of object to keep 5213 * it away from the edges of the object to avoid small 5214 * sized over/underflows from neighboring allocations. 5215 */ 5216 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5217 } 5218 5219 #ifdef CONFIG_SLUB_DEBUG 5220 if (flags & SLAB_STORE_USER) { 5221 /* 5222 * Need to store information about allocs and frees after 5223 * the object. 5224 */ 5225 size += 2 * sizeof(struct track); 5226 5227 /* Save the original kmalloc request size */ 5228 if (flags & SLAB_KMALLOC) 5229 size += sizeof(unsigned int); 5230 } 5231 #endif 5232 5233 kasan_cache_create(s, &size, &s->flags); 5234 #ifdef CONFIG_SLUB_DEBUG 5235 if (flags & SLAB_RED_ZONE) { 5236 /* 5237 * Add some empty padding so that we can catch 5238 * overwrites from earlier objects rather than let 5239 * tracking information or the free pointer be 5240 * corrupted if a user writes before the start 5241 * of the object. 5242 */ 5243 size += sizeof(void *); 5244 5245 s->red_left_pad = sizeof(void *); 5246 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5247 size += s->red_left_pad; 5248 } 5249 #endif 5250 5251 /* 5252 * SLUB stores one object immediately after another beginning from 5253 * offset 0. In order to align the objects we have to simply size 5254 * each object to conform to the alignment. 5255 */ 5256 size = ALIGN(size, s->align); 5257 s->size = size; 5258 s->reciprocal_size = reciprocal_value(size); 5259 order = calculate_order(size); 5260 5261 if ((int)order < 0) 5262 return 0; 5263 5264 s->allocflags = __GFP_COMP; 5265 5266 if (s->flags & SLAB_CACHE_DMA) 5267 s->allocflags |= GFP_DMA; 5268 5269 if (s->flags & SLAB_CACHE_DMA32) 5270 s->allocflags |= GFP_DMA32; 5271 5272 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5273 s->allocflags |= __GFP_RECLAIMABLE; 5274 5275 /* 5276 * Determine the number of objects per slab 5277 */ 5278 s->oo = oo_make(order, size); 5279 s->min = oo_make(get_order(size), size); 5280 5281 return !!oo_objects(s->oo); 5282 } 5283 5284 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 5285 { 5286 s->flags = kmem_cache_flags(flags, s->name); 5287 #ifdef CONFIG_SLAB_FREELIST_HARDENED 5288 s->random = get_random_long(); 5289 #endif 5290 5291 if (!calculate_sizes(s)) 5292 goto error; 5293 if (disable_higher_order_debug) { 5294 /* 5295 * Disable debugging flags that store metadata if the min slab 5296 * order increased. 5297 */ 5298 if (get_order(s->size) > get_order(s->object_size)) { 5299 s->flags &= ~DEBUG_METADATA_FLAGS; 5300 s->offset = 0; 5301 if (!calculate_sizes(s)) 5302 goto error; 5303 } 5304 } 5305 5306 #ifdef system_has_freelist_aba 5307 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 5308 /* Enable fast mode */ 5309 s->flags |= __CMPXCHG_DOUBLE; 5310 } 5311 #endif 5312 5313 /* 5314 * The larger the object size is, the more slabs we want on the partial 5315 * list to avoid pounding the page allocator excessively. 5316 */ 5317 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 5318 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 5319 5320 set_cpu_partial(s); 5321 5322 #ifdef CONFIG_NUMA 5323 s->remote_node_defrag_ratio = 1000; 5324 #endif 5325 5326 /* Initialize the pre-computed randomized freelist if slab is up */ 5327 if (slab_state >= UP) { 5328 if (init_cache_random_seq(s)) 5329 goto error; 5330 } 5331 5332 if (!init_kmem_cache_nodes(s)) 5333 goto error; 5334 5335 if (alloc_kmem_cache_cpus(s)) 5336 return 0; 5337 5338 error: 5339 __kmem_cache_release(s); 5340 return -EINVAL; 5341 } 5342 5343 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5344 const char *text) 5345 { 5346 #ifdef CONFIG_SLUB_DEBUG 5347 void *addr = slab_address(slab); 5348 void *p; 5349 5350 slab_err(s, slab, text, s->name); 5351 5352 spin_lock(&object_map_lock); 5353 __fill_map(object_map, s, slab); 5354 5355 for_each_object(p, s, addr, slab->objects) { 5356 5357 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5358 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5359 print_tracking(s, p); 5360 } 5361 } 5362 spin_unlock(&object_map_lock); 5363 #endif 5364 } 5365 5366 /* 5367 * Attempt to free all partial slabs on a node. 5368 * This is called from __kmem_cache_shutdown(). We must take list_lock 5369 * because sysfs file might still access partial list after the shutdowning. 5370 */ 5371 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5372 { 5373 LIST_HEAD(discard); 5374 struct slab *slab, *h; 5375 5376 BUG_ON(irqs_disabled()); 5377 spin_lock_irq(&n->list_lock); 5378 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5379 if (!slab->inuse) { 5380 remove_partial(n, slab); 5381 list_add(&slab->slab_list, &discard); 5382 } else { 5383 list_slab_objects(s, slab, 5384 "Objects remaining in %s on __kmem_cache_shutdown()"); 5385 } 5386 } 5387 spin_unlock_irq(&n->list_lock); 5388 5389 list_for_each_entry_safe(slab, h, &discard, slab_list) 5390 discard_slab(s, slab); 5391 } 5392 5393 bool __kmem_cache_empty(struct kmem_cache *s) 5394 { 5395 int node; 5396 struct kmem_cache_node *n; 5397 5398 for_each_kmem_cache_node(s, node, n) 5399 if (n->nr_partial || node_nr_slabs(n)) 5400 return false; 5401 return true; 5402 } 5403 5404 /* 5405 * Release all resources used by a slab cache. 5406 */ 5407 int __kmem_cache_shutdown(struct kmem_cache *s) 5408 { 5409 int node; 5410 struct kmem_cache_node *n; 5411 5412 flush_all_cpus_locked(s); 5413 /* Attempt to free all objects */ 5414 for_each_kmem_cache_node(s, node, n) { 5415 free_partial(s, n); 5416 if (n->nr_partial || node_nr_slabs(n)) 5417 return 1; 5418 } 5419 return 0; 5420 } 5421 5422 #ifdef CONFIG_PRINTK 5423 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5424 { 5425 void *base; 5426 int __maybe_unused i; 5427 unsigned int objnr; 5428 void *objp; 5429 void *objp0; 5430 struct kmem_cache *s = slab->slab_cache; 5431 struct track __maybe_unused *trackp; 5432 5433 kpp->kp_ptr = object; 5434 kpp->kp_slab = slab; 5435 kpp->kp_slab_cache = s; 5436 base = slab_address(slab); 5437 objp0 = kasan_reset_tag(object); 5438 #ifdef CONFIG_SLUB_DEBUG 5439 objp = restore_red_left(s, objp0); 5440 #else 5441 objp = objp0; 5442 #endif 5443 objnr = obj_to_index(s, slab, objp); 5444 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5445 objp = base + s->size * objnr; 5446 kpp->kp_objp = objp; 5447 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5448 || (objp - base) % s->size) || 5449 !(s->flags & SLAB_STORE_USER)) 5450 return; 5451 #ifdef CONFIG_SLUB_DEBUG 5452 objp = fixup_red_left(s, objp); 5453 trackp = get_track(s, objp, TRACK_ALLOC); 5454 kpp->kp_ret = (void *)trackp->addr; 5455 #ifdef CONFIG_STACKDEPOT 5456 { 5457 depot_stack_handle_t handle; 5458 unsigned long *entries; 5459 unsigned int nr_entries; 5460 5461 handle = READ_ONCE(trackp->handle); 5462 if (handle) { 5463 nr_entries = stack_depot_fetch(handle, &entries); 5464 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5465 kpp->kp_stack[i] = (void *)entries[i]; 5466 } 5467 5468 trackp = get_track(s, objp, TRACK_FREE); 5469 handle = READ_ONCE(trackp->handle); 5470 if (handle) { 5471 nr_entries = stack_depot_fetch(handle, &entries); 5472 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5473 kpp->kp_free_stack[i] = (void *)entries[i]; 5474 } 5475 } 5476 #endif 5477 #endif 5478 } 5479 #endif 5480 5481 /******************************************************************** 5482 * Kmalloc subsystem 5483 *******************************************************************/ 5484 5485 static int __init setup_slub_min_order(char *str) 5486 { 5487 get_option(&str, (int *)&slub_min_order); 5488 5489 if (slub_min_order > slub_max_order) 5490 slub_max_order = slub_min_order; 5491 5492 return 1; 5493 } 5494 5495 __setup("slab_min_order=", setup_slub_min_order); 5496 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5497 5498 5499 static int __init setup_slub_max_order(char *str) 5500 { 5501 get_option(&str, (int *)&slub_max_order); 5502 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5503 5504 if (slub_min_order > slub_max_order) 5505 slub_min_order = slub_max_order; 5506 5507 return 1; 5508 } 5509 5510 __setup("slab_max_order=", setup_slub_max_order); 5511 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5512 5513 static int __init setup_slub_min_objects(char *str) 5514 { 5515 get_option(&str, (int *)&slub_min_objects); 5516 5517 return 1; 5518 } 5519 5520 __setup("slab_min_objects=", setup_slub_min_objects); 5521 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5522 5523 #ifdef CONFIG_HARDENED_USERCOPY 5524 /* 5525 * Rejects incorrectly sized objects and objects that are to be copied 5526 * to/from userspace but do not fall entirely within the containing slab 5527 * cache's usercopy region. 5528 * 5529 * Returns NULL if check passes, otherwise const char * to name of cache 5530 * to indicate an error. 5531 */ 5532 void __check_heap_object(const void *ptr, unsigned long n, 5533 const struct slab *slab, bool to_user) 5534 { 5535 struct kmem_cache *s; 5536 unsigned int offset; 5537 bool is_kfence = is_kfence_address(ptr); 5538 5539 ptr = kasan_reset_tag(ptr); 5540 5541 /* Find object and usable object size. */ 5542 s = slab->slab_cache; 5543 5544 /* Reject impossible pointers. */ 5545 if (ptr < slab_address(slab)) 5546 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5547 to_user, 0, n); 5548 5549 /* Find offset within object. */ 5550 if (is_kfence) 5551 offset = ptr - kfence_object_start(ptr); 5552 else 5553 offset = (ptr - slab_address(slab)) % s->size; 5554 5555 /* Adjust for redzone and reject if within the redzone. */ 5556 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5557 if (offset < s->red_left_pad) 5558 usercopy_abort("SLUB object in left red zone", 5559 s->name, to_user, offset, n); 5560 offset -= s->red_left_pad; 5561 } 5562 5563 /* Allow address range falling entirely within usercopy region. */ 5564 if (offset >= s->useroffset && 5565 offset - s->useroffset <= s->usersize && 5566 n <= s->useroffset - offset + s->usersize) 5567 return; 5568 5569 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5570 } 5571 #endif /* CONFIG_HARDENED_USERCOPY */ 5572 5573 #define SHRINK_PROMOTE_MAX 32 5574 5575 /* 5576 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5577 * up most to the head of the partial lists. New allocations will then 5578 * fill those up and thus they can be removed from the partial lists. 5579 * 5580 * The slabs with the least items are placed last. This results in them 5581 * being allocated from last increasing the chance that the last objects 5582 * are freed in them. 5583 */ 5584 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5585 { 5586 int node; 5587 int i; 5588 struct kmem_cache_node *n; 5589 struct slab *slab; 5590 struct slab *t; 5591 struct list_head discard; 5592 struct list_head promote[SHRINK_PROMOTE_MAX]; 5593 unsigned long flags; 5594 int ret = 0; 5595 5596 for_each_kmem_cache_node(s, node, n) { 5597 INIT_LIST_HEAD(&discard); 5598 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5599 INIT_LIST_HEAD(promote + i); 5600 5601 spin_lock_irqsave(&n->list_lock, flags); 5602 5603 /* 5604 * Build lists of slabs to discard or promote. 5605 * 5606 * Note that concurrent frees may occur while we hold the 5607 * list_lock. slab->inuse here is the upper limit. 5608 */ 5609 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5610 int free = slab->objects - slab->inuse; 5611 5612 /* Do not reread slab->inuse */ 5613 barrier(); 5614 5615 /* We do not keep full slabs on the list */ 5616 BUG_ON(free <= 0); 5617 5618 if (free == slab->objects) { 5619 list_move(&slab->slab_list, &discard); 5620 slab_clear_node_partial(slab); 5621 n->nr_partial--; 5622 dec_slabs_node(s, node, slab->objects); 5623 } else if (free <= SHRINK_PROMOTE_MAX) 5624 list_move(&slab->slab_list, promote + free - 1); 5625 } 5626 5627 /* 5628 * Promote the slabs filled up most to the head of the 5629 * partial list. 5630 */ 5631 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5632 list_splice(promote + i, &n->partial); 5633 5634 spin_unlock_irqrestore(&n->list_lock, flags); 5635 5636 /* Release empty slabs */ 5637 list_for_each_entry_safe(slab, t, &discard, slab_list) 5638 free_slab(s, slab); 5639 5640 if (node_nr_slabs(n)) 5641 ret = 1; 5642 } 5643 5644 return ret; 5645 } 5646 5647 int __kmem_cache_shrink(struct kmem_cache *s) 5648 { 5649 flush_all(s); 5650 return __kmem_cache_do_shrink(s); 5651 } 5652 5653 static int slab_mem_going_offline_callback(void *arg) 5654 { 5655 struct kmem_cache *s; 5656 5657 mutex_lock(&slab_mutex); 5658 list_for_each_entry(s, &slab_caches, list) { 5659 flush_all_cpus_locked(s); 5660 __kmem_cache_do_shrink(s); 5661 } 5662 mutex_unlock(&slab_mutex); 5663 5664 return 0; 5665 } 5666 5667 static void slab_mem_offline_callback(void *arg) 5668 { 5669 struct memory_notify *marg = arg; 5670 int offline_node; 5671 5672 offline_node = marg->status_change_nid_normal; 5673 5674 /* 5675 * If the node still has available memory. we need kmem_cache_node 5676 * for it yet. 5677 */ 5678 if (offline_node < 0) 5679 return; 5680 5681 mutex_lock(&slab_mutex); 5682 node_clear(offline_node, slab_nodes); 5683 /* 5684 * We no longer free kmem_cache_node structures here, as it would be 5685 * racy with all get_node() users, and infeasible to protect them with 5686 * slab_mutex. 5687 */ 5688 mutex_unlock(&slab_mutex); 5689 } 5690 5691 static int slab_mem_going_online_callback(void *arg) 5692 { 5693 struct kmem_cache_node *n; 5694 struct kmem_cache *s; 5695 struct memory_notify *marg = arg; 5696 int nid = marg->status_change_nid_normal; 5697 int ret = 0; 5698 5699 /* 5700 * If the node's memory is already available, then kmem_cache_node is 5701 * already created. Nothing to do. 5702 */ 5703 if (nid < 0) 5704 return 0; 5705 5706 /* 5707 * We are bringing a node online. No memory is available yet. We must 5708 * allocate a kmem_cache_node structure in order to bring the node 5709 * online. 5710 */ 5711 mutex_lock(&slab_mutex); 5712 list_for_each_entry(s, &slab_caches, list) { 5713 /* 5714 * The structure may already exist if the node was previously 5715 * onlined and offlined. 5716 */ 5717 if (get_node(s, nid)) 5718 continue; 5719 /* 5720 * XXX: kmem_cache_alloc_node will fallback to other nodes 5721 * since memory is not yet available from the node that 5722 * is brought up. 5723 */ 5724 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5725 if (!n) { 5726 ret = -ENOMEM; 5727 goto out; 5728 } 5729 init_kmem_cache_node(n); 5730 s->node[nid] = n; 5731 } 5732 /* 5733 * Any cache created after this point will also have kmem_cache_node 5734 * initialized for the new node. 5735 */ 5736 node_set(nid, slab_nodes); 5737 out: 5738 mutex_unlock(&slab_mutex); 5739 return ret; 5740 } 5741 5742 static int slab_memory_callback(struct notifier_block *self, 5743 unsigned long action, void *arg) 5744 { 5745 int ret = 0; 5746 5747 switch (action) { 5748 case MEM_GOING_ONLINE: 5749 ret = slab_mem_going_online_callback(arg); 5750 break; 5751 case MEM_GOING_OFFLINE: 5752 ret = slab_mem_going_offline_callback(arg); 5753 break; 5754 case MEM_OFFLINE: 5755 case MEM_CANCEL_ONLINE: 5756 slab_mem_offline_callback(arg); 5757 break; 5758 case MEM_ONLINE: 5759 case MEM_CANCEL_OFFLINE: 5760 break; 5761 } 5762 if (ret) 5763 ret = notifier_from_errno(ret); 5764 else 5765 ret = NOTIFY_OK; 5766 return ret; 5767 } 5768 5769 /******************************************************************** 5770 * Basic setup of slabs 5771 *******************************************************************/ 5772 5773 /* 5774 * Used for early kmem_cache structures that were allocated using 5775 * the page allocator. Allocate them properly then fix up the pointers 5776 * that may be pointing to the wrong kmem_cache structure. 5777 */ 5778 5779 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 5780 { 5781 int node; 5782 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 5783 struct kmem_cache_node *n; 5784 5785 memcpy(s, static_cache, kmem_cache->object_size); 5786 5787 /* 5788 * This runs very early, and only the boot processor is supposed to be 5789 * up. Even if it weren't true, IRQs are not up so we couldn't fire 5790 * IPIs around. 5791 */ 5792 __flush_cpu_slab(s, smp_processor_id()); 5793 for_each_kmem_cache_node(s, node, n) { 5794 struct slab *p; 5795 5796 list_for_each_entry(p, &n->partial, slab_list) 5797 p->slab_cache = s; 5798 5799 #ifdef CONFIG_SLUB_DEBUG 5800 list_for_each_entry(p, &n->full, slab_list) 5801 p->slab_cache = s; 5802 #endif 5803 } 5804 list_add(&s->list, &slab_caches); 5805 return s; 5806 } 5807 5808 void __init kmem_cache_init(void) 5809 { 5810 static __initdata struct kmem_cache boot_kmem_cache, 5811 boot_kmem_cache_node; 5812 int node; 5813 5814 if (debug_guardpage_minorder()) 5815 slub_max_order = 0; 5816 5817 /* Print slub debugging pointers without hashing */ 5818 if (__slub_debug_enabled()) 5819 no_hash_pointers_enable(NULL); 5820 5821 kmem_cache_node = &boot_kmem_cache_node; 5822 kmem_cache = &boot_kmem_cache; 5823 5824 /* 5825 * Initialize the nodemask for which we will allocate per node 5826 * structures. Here we don't need taking slab_mutex yet. 5827 */ 5828 for_each_node_state(node, N_NORMAL_MEMORY) 5829 node_set(node, slab_nodes); 5830 5831 create_boot_cache(kmem_cache_node, "kmem_cache_node", 5832 sizeof(struct kmem_cache_node), 5833 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5834 5835 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 5836 5837 /* Able to allocate the per node structures */ 5838 slab_state = PARTIAL; 5839 5840 create_boot_cache(kmem_cache, "kmem_cache", 5841 offsetof(struct kmem_cache, node) + 5842 nr_node_ids * sizeof(struct kmem_cache_node *), 5843 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 5844 5845 kmem_cache = bootstrap(&boot_kmem_cache); 5846 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 5847 5848 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 5849 setup_kmalloc_cache_index_table(); 5850 create_kmalloc_caches(); 5851 5852 /* Setup random freelists for each cache */ 5853 init_freelist_randomization(); 5854 5855 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 5856 slub_cpu_dead); 5857 5858 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 5859 cache_line_size(), 5860 slub_min_order, slub_max_order, slub_min_objects, 5861 nr_cpu_ids, nr_node_ids); 5862 } 5863 5864 void __init kmem_cache_init_late(void) 5865 { 5866 #ifndef CONFIG_SLUB_TINY 5867 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 5868 WARN_ON(!flushwq); 5869 #endif 5870 } 5871 5872 struct kmem_cache * 5873 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 5874 slab_flags_t flags, void (*ctor)(void *)) 5875 { 5876 struct kmem_cache *s; 5877 5878 s = find_mergeable(size, align, flags, name, ctor); 5879 if (s) { 5880 if (sysfs_slab_alias(s, name)) 5881 return NULL; 5882 5883 s->refcount++; 5884 5885 /* 5886 * Adjust the object sizes so that we clear 5887 * the complete object on kzalloc. 5888 */ 5889 s->object_size = max(s->object_size, size); 5890 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 5891 } 5892 5893 return s; 5894 } 5895 5896 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 5897 { 5898 int err; 5899 5900 err = kmem_cache_open(s, flags); 5901 if (err) 5902 return err; 5903 5904 /* Mutex is not taken during early boot */ 5905 if (slab_state <= UP) 5906 return 0; 5907 5908 err = sysfs_slab_add(s); 5909 if (err) { 5910 __kmem_cache_release(s); 5911 return err; 5912 } 5913 5914 if (s->flags & SLAB_STORE_USER) 5915 debugfs_slab_add(s); 5916 5917 return 0; 5918 } 5919 5920 #ifdef SLAB_SUPPORTS_SYSFS 5921 static int count_inuse(struct slab *slab) 5922 { 5923 return slab->inuse; 5924 } 5925 5926 static int count_total(struct slab *slab) 5927 { 5928 return slab->objects; 5929 } 5930 #endif 5931 5932 #ifdef CONFIG_SLUB_DEBUG 5933 static void validate_slab(struct kmem_cache *s, struct slab *slab, 5934 unsigned long *obj_map) 5935 { 5936 void *p; 5937 void *addr = slab_address(slab); 5938 5939 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 5940 return; 5941 5942 /* Now we know that a valid freelist exists */ 5943 __fill_map(obj_map, s, slab); 5944 for_each_object(p, s, addr, slab->objects) { 5945 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 5946 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 5947 5948 if (!check_object(s, slab, p, val)) 5949 break; 5950 } 5951 } 5952 5953 static int validate_slab_node(struct kmem_cache *s, 5954 struct kmem_cache_node *n, unsigned long *obj_map) 5955 { 5956 unsigned long count = 0; 5957 struct slab *slab; 5958 unsigned long flags; 5959 5960 spin_lock_irqsave(&n->list_lock, flags); 5961 5962 list_for_each_entry(slab, &n->partial, slab_list) { 5963 validate_slab(s, slab, obj_map); 5964 count++; 5965 } 5966 if (count != n->nr_partial) { 5967 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5968 s->name, count, n->nr_partial); 5969 slab_add_kunit_errors(); 5970 } 5971 5972 if (!(s->flags & SLAB_STORE_USER)) 5973 goto out; 5974 5975 list_for_each_entry(slab, &n->full, slab_list) { 5976 validate_slab(s, slab, obj_map); 5977 count++; 5978 } 5979 if (count != node_nr_slabs(n)) { 5980 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5981 s->name, count, node_nr_slabs(n)); 5982 slab_add_kunit_errors(); 5983 } 5984 5985 out: 5986 spin_unlock_irqrestore(&n->list_lock, flags); 5987 return count; 5988 } 5989 5990 long validate_slab_cache(struct kmem_cache *s) 5991 { 5992 int node; 5993 unsigned long count = 0; 5994 struct kmem_cache_node *n; 5995 unsigned long *obj_map; 5996 5997 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5998 if (!obj_map) 5999 return -ENOMEM; 6000 6001 flush_all(s); 6002 for_each_kmem_cache_node(s, node, n) 6003 count += validate_slab_node(s, n, obj_map); 6004 6005 bitmap_free(obj_map); 6006 6007 return count; 6008 } 6009 EXPORT_SYMBOL(validate_slab_cache); 6010 6011 #ifdef CONFIG_DEBUG_FS 6012 /* 6013 * Generate lists of code addresses where slabcache objects are allocated 6014 * and freed. 6015 */ 6016 6017 struct location { 6018 depot_stack_handle_t handle; 6019 unsigned long count; 6020 unsigned long addr; 6021 unsigned long waste; 6022 long long sum_time; 6023 long min_time; 6024 long max_time; 6025 long min_pid; 6026 long max_pid; 6027 DECLARE_BITMAP(cpus, NR_CPUS); 6028 nodemask_t nodes; 6029 }; 6030 6031 struct loc_track { 6032 unsigned long max; 6033 unsigned long count; 6034 struct location *loc; 6035 loff_t idx; 6036 }; 6037 6038 static struct dentry *slab_debugfs_root; 6039 6040 static void free_loc_track(struct loc_track *t) 6041 { 6042 if (t->max) 6043 free_pages((unsigned long)t->loc, 6044 get_order(sizeof(struct location) * t->max)); 6045 } 6046 6047 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6048 { 6049 struct location *l; 6050 int order; 6051 6052 order = get_order(sizeof(struct location) * max); 6053 6054 l = (void *)__get_free_pages(flags, order); 6055 if (!l) 6056 return 0; 6057 6058 if (t->count) { 6059 memcpy(l, t->loc, sizeof(struct location) * t->count); 6060 free_loc_track(t); 6061 } 6062 t->max = max; 6063 t->loc = l; 6064 return 1; 6065 } 6066 6067 static int add_location(struct loc_track *t, struct kmem_cache *s, 6068 const struct track *track, 6069 unsigned int orig_size) 6070 { 6071 long start, end, pos; 6072 struct location *l; 6073 unsigned long caddr, chandle, cwaste; 6074 unsigned long age = jiffies - track->when; 6075 depot_stack_handle_t handle = 0; 6076 unsigned int waste = s->object_size - orig_size; 6077 6078 #ifdef CONFIG_STACKDEPOT 6079 handle = READ_ONCE(track->handle); 6080 #endif 6081 start = -1; 6082 end = t->count; 6083 6084 for ( ; ; ) { 6085 pos = start + (end - start + 1) / 2; 6086 6087 /* 6088 * There is nothing at "end". If we end up there 6089 * we need to add something to before end. 6090 */ 6091 if (pos == end) 6092 break; 6093 6094 l = &t->loc[pos]; 6095 caddr = l->addr; 6096 chandle = l->handle; 6097 cwaste = l->waste; 6098 if ((track->addr == caddr) && (handle == chandle) && 6099 (waste == cwaste)) { 6100 6101 l->count++; 6102 if (track->when) { 6103 l->sum_time += age; 6104 if (age < l->min_time) 6105 l->min_time = age; 6106 if (age > l->max_time) 6107 l->max_time = age; 6108 6109 if (track->pid < l->min_pid) 6110 l->min_pid = track->pid; 6111 if (track->pid > l->max_pid) 6112 l->max_pid = track->pid; 6113 6114 cpumask_set_cpu(track->cpu, 6115 to_cpumask(l->cpus)); 6116 } 6117 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6118 return 1; 6119 } 6120 6121 if (track->addr < caddr) 6122 end = pos; 6123 else if (track->addr == caddr && handle < chandle) 6124 end = pos; 6125 else if (track->addr == caddr && handle == chandle && 6126 waste < cwaste) 6127 end = pos; 6128 else 6129 start = pos; 6130 } 6131 6132 /* 6133 * Not found. Insert new tracking element. 6134 */ 6135 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6136 return 0; 6137 6138 l = t->loc + pos; 6139 if (pos < t->count) 6140 memmove(l + 1, l, 6141 (t->count - pos) * sizeof(struct location)); 6142 t->count++; 6143 l->count = 1; 6144 l->addr = track->addr; 6145 l->sum_time = age; 6146 l->min_time = age; 6147 l->max_time = age; 6148 l->min_pid = track->pid; 6149 l->max_pid = track->pid; 6150 l->handle = handle; 6151 l->waste = waste; 6152 cpumask_clear(to_cpumask(l->cpus)); 6153 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6154 nodes_clear(l->nodes); 6155 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6156 return 1; 6157 } 6158 6159 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6160 struct slab *slab, enum track_item alloc, 6161 unsigned long *obj_map) 6162 { 6163 void *addr = slab_address(slab); 6164 bool is_alloc = (alloc == TRACK_ALLOC); 6165 void *p; 6166 6167 __fill_map(obj_map, s, slab); 6168 6169 for_each_object(p, s, addr, slab->objects) 6170 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6171 add_location(t, s, get_track(s, p, alloc), 6172 is_alloc ? get_orig_size(s, p) : 6173 s->object_size); 6174 } 6175 #endif /* CONFIG_DEBUG_FS */ 6176 #endif /* CONFIG_SLUB_DEBUG */ 6177 6178 #ifdef SLAB_SUPPORTS_SYSFS 6179 enum slab_stat_type { 6180 SL_ALL, /* All slabs */ 6181 SL_PARTIAL, /* Only partially allocated slabs */ 6182 SL_CPU, /* Only slabs used for cpu caches */ 6183 SL_OBJECTS, /* Determine allocated objects not slabs */ 6184 SL_TOTAL /* Determine object capacity not slabs */ 6185 }; 6186 6187 #define SO_ALL (1 << SL_ALL) 6188 #define SO_PARTIAL (1 << SL_PARTIAL) 6189 #define SO_CPU (1 << SL_CPU) 6190 #define SO_OBJECTS (1 << SL_OBJECTS) 6191 #define SO_TOTAL (1 << SL_TOTAL) 6192 6193 static ssize_t show_slab_objects(struct kmem_cache *s, 6194 char *buf, unsigned long flags) 6195 { 6196 unsigned long total = 0; 6197 int node; 6198 int x; 6199 unsigned long *nodes; 6200 int len = 0; 6201 6202 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6203 if (!nodes) 6204 return -ENOMEM; 6205 6206 if (flags & SO_CPU) { 6207 int cpu; 6208 6209 for_each_possible_cpu(cpu) { 6210 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6211 cpu); 6212 int node; 6213 struct slab *slab; 6214 6215 slab = READ_ONCE(c->slab); 6216 if (!slab) 6217 continue; 6218 6219 node = slab_nid(slab); 6220 if (flags & SO_TOTAL) 6221 x = slab->objects; 6222 else if (flags & SO_OBJECTS) 6223 x = slab->inuse; 6224 else 6225 x = 1; 6226 6227 total += x; 6228 nodes[node] += x; 6229 6230 #ifdef CONFIG_SLUB_CPU_PARTIAL 6231 slab = slub_percpu_partial_read_once(c); 6232 if (slab) { 6233 node = slab_nid(slab); 6234 if (flags & SO_TOTAL) 6235 WARN_ON_ONCE(1); 6236 else if (flags & SO_OBJECTS) 6237 WARN_ON_ONCE(1); 6238 else 6239 x = data_race(slab->slabs); 6240 total += x; 6241 nodes[node] += x; 6242 } 6243 #endif 6244 } 6245 } 6246 6247 /* 6248 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6249 * already held which will conflict with an existing lock order: 6250 * 6251 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6252 * 6253 * We don't really need mem_hotplug_lock (to hold off 6254 * slab_mem_going_offline_callback) here because slab's memory hot 6255 * unplug code doesn't destroy the kmem_cache->node[] data. 6256 */ 6257 6258 #ifdef CONFIG_SLUB_DEBUG 6259 if (flags & SO_ALL) { 6260 struct kmem_cache_node *n; 6261 6262 for_each_kmem_cache_node(s, node, n) { 6263 6264 if (flags & SO_TOTAL) 6265 x = node_nr_objs(n); 6266 else if (flags & SO_OBJECTS) 6267 x = node_nr_objs(n) - count_partial(n, count_free); 6268 else 6269 x = node_nr_slabs(n); 6270 total += x; 6271 nodes[node] += x; 6272 } 6273 6274 } else 6275 #endif 6276 if (flags & SO_PARTIAL) { 6277 struct kmem_cache_node *n; 6278 6279 for_each_kmem_cache_node(s, node, n) { 6280 if (flags & SO_TOTAL) 6281 x = count_partial(n, count_total); 6282 else if (flags & SO_OBJECTS) 6283 x = count_partial(n, count_inuse); 6284 else 6285 x = n->nr_partial; 6286 total += x; 6287 nodes[node] += x; 6288 } 6289 } 6290 6291 len += sysfs_emit_at(buf, len, "%lu", total); 6292 #ifdef CONFIG_NUMA 6293 for (node = 0; node < nr_node_ids; node++) { 6294 if (nodes[node]) 6295 len += sysfs_emit_at(buf, len, " N%d=%lu", 6296 node, nodes[node]); 6297 } 6298 #endif 6299 len += sysfs_emit_at(buf, len, "\n"); 6300 kfree(nodes); 6301 6302 return len; 6303 } 6304 6305 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6306 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6307 6308 struct slab_attribute { 6309 struct attribute attr; 6310 ssize_t (*show)(struct kmem_cache *s, char *buf); 6311 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6312 }; 6313 6314 #define SLAB_ATTR_RO(_name) \ 6315 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6316 6317 #define SLAB_ATTR(_name) \ 6318 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6319 6320 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6321 { 6322 return sysfs_emit(buf, "%u\n", s->size); 6323 } 6324 SLAB_ATTR_RO(slab_size); 6325 6326 static ssize_t align_show(struct kmem_cache *s, char *buf) 6327 { 6328 return sysfs_emit(buf, "%u\n", s->align); 6329 } 6330 SLAB_ATTR_RO(align); 6331 6332 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6333 { 6334 return sysfs_emit(buf, "%u\n", s->object_size); 6335 } 6336 SLAB_ATTR_RO(object_size); 6337 6338 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6339 { 6340 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6341 } 6342 SLAB_ATTR_RO(objs_per_slab); 6343 6344 static ssize_t order_show(struct kmem_cache *s, char *buf) 6345 { 6346 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6347 } 6348 SLAB_ATTR_RO(order); 6349 6350 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6351 { 6352 return sysfs_emit(buf, "%lu\n", s->min_partial); 6353 } 6354 6355 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6356 size_t length) 6357 { 6358 unsigned long min; 6359 int err; 6360 6361 err = kstrtoul(buf, 10, &min); 6362 if (err) 6363 return err; 6364 6365 s->min_partial = min; 6366 return length; 6367 } 6368 SLAB_ATTR(min_partial); 6369 6370 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6371 { 6372 unsigned int nr_partial = 0; 6373 #ifdef CONFIG_SLUB_CPU_PARTIAL 6374 nr_partial = s->cpu_partial; 6375 #endif 6376 6377 return sysfs_emit(buf, "%u\n", nr_partial); 6378 } 6379 6380 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6381 size_t length) 6382 { 6383 unsigned int objects; 6384 int err; 6385 6386 err = kstrtouint(buf, 10, &objects); 6387 if (err) 6388 return err; 6389 if (objects && !kmem_cache_has_cpu_partial(s)) 6390 return -EINVAL; 6391 6392 slub_set_cpu_partial(s, objects); 6393 flush_all(s); 6394 return length; 6395 } 6396 SLAB_ATTR(cpu_partial); 6397 6398 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6399 { 6400 if (!s->ctor) 6401 return 0; 6402 return sysfs_emit(buf, "%pS\n", s->ctor); 6403 } 6404 SLAB_ATTR_RO(ctor); 6405 6406 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6407 { 6408 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6409 } 6410 SLAB_ATTR_RO(aliases); 6411 6412 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6413 { 6414 return show_slab_objects(s, buf, SO_PARTIAL); 6415 } 6416 SLAB_ATTR_RO(partial); 6417 6418 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6419 { 6420 return show_slab_objects(s, buf, SO_CPU); 6421 } 6422 SLAB_ATTR_RO(cpu_slabs); 6423 6424 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6425 { 6426 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6427 } 6428 SLAB_ATTR_RO(objects_partial); 6429 6430 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6431 { 6432 int objects = 0; 6433 int slabs = 0; 6434 int cpu __maybe_unused; 6435 int len = 0; 6436 6437 #ifdef CONFIG_SLUB_CPU_PARTIAL 6438 for_each_online_cpu(cpu) { 6439 struct slab *slab; 6440 6441 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6442 6443 if (slab) 6444 slabs += data_race(slab->slabs); 6445 } 6446 #endif 6447 6448 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6449 objects = (slabs * oo_objects(s->oo)) / 2; 6450 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6451 6452 #ifdef CONFIG_SLUB_CPU_PARTIAL 6453 for_each_online_cpu(cpu) { 6454 struct slab *slab; 6455 6456 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6457 if (slab) { 6458 slabs = data_race(slab->slabs); 6459 objects = (slabs * oo_objects(s->oo)) / 2; 6460 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6461 cpu, objects, slabs); 6462 } 6463 } 6464 #endif 6465 len += sysfs_emit_at(buf, len, "\n"); 6466 6467 return len; 6468 } 6469 SLAB_ATTR_RO(slabs_cpu_partial); 6470 6471 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6472 { 6473 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6474 } 6475 SLAB_ATTR_RO(reclaim_account); 6476 6477 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6478 { 6479 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6480 } 6481 SLAB_ATTR_RO(hwcache_align); 6482 6483 #ifdef CONFIG_ZONE_DMA 6484 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6485 { 6486 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6487 } 6488 SLAB_ATTR_RO(cache_dma); 6489 #endif 6490 6491 #ifdef CONFIG_HARDENED_USERCOPY 6492 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6493 { 6494 return sysfs_emit(buf, "%u\n", s->usersize); 6495 } 6496 SLAB_ATTR_RO(usersize); 6497 #endif 6498 6499 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6500 { 6501 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6502 } 6503 SLAB_ATTR_RO(destroy_by_rcu); 6504 6505 #ifdef CONFIG_SLUB_DEBUG 6506 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6507 { 6508 return show_slab_objects(s, buf, SO_ALL); 6509 } 6510 SLAB_ATTR_RO(slabs); 6511 6512 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6513 { 6514 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6515 } 6516 SLAB_ATTR_RO(total_objects); 6517 6518 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6519 { 6520 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6521 } 6522 SLAB_ATTR_RO(objects); 6523 6524 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6525 { 6526 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6527 } 6528 SLAB_ATTR_RO(sanity_checks); 6529 6530 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6531 { 6532 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6533 } 6534 SLAB_ATTR_RO(trace); 6535 6536 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6537 { 6538 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6539 } 6540 6541 SLAB_ATTR_RO(red_zone); 6542 6543 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6544 { 6545 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6546 } 6547 6548 SLAB_ATTR_RO(poison); 6549 6550 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6551 { 6552 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6553 } 6554 6555 SLAB_ATTR_RO(store_user); 6556 6557 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6558 { 6559 return 0; 6560 } 6561 6562 static ssize_t validate_store(struct kmem_cache *s, 6563 const char *buf, size_t length) 6564 { 6565 int ret = -EINVAL; 6566 6567 if (buf[0] == '1' && kmem_cache_debug(s)) { 6568 ret = validate_slab_cache(s); 6569 if (ret >= 0) 6570 ret = length; 6571 } 6572 return ret; 6573 } 6574 SLAB_ATTR(validate); 6575 6576 #endif /* CONFIG_SLUB_DEBUG */ 6577 6578 #ifdef CONFIG_FAILSLAB 6579 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6580 { 6581 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6582 } 6583 6584 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6585 size_t length) 6586 { 6587 if (s->refcount > 1) 6588 return -EINVAL; 6589 6590 if (buf[0] == '1') 6591 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6592 else 6593 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6594 6595 return length; 6596 } 6597 SLAB_ATTR(failslab); 6598 #endif 6599 6600 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6601 { 6602 return 0; 6603 } 6604 6605 static ssize_t shrink_store(struct kmem_cache *s, 6606 const char *buf, size_t length) 6607 { 6608 if (buf[0] == '1') 6609 kmem_cache_shrink(s); 6610 else 6611 return -EINVAL; 6612 return length; 6613 } 6614 SLAB_ATTR(shrink); 6615 6616 #ifdef CONFIG_NUMA 6617 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6618 { 6619 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6620 } 6621 6622 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6623 const char *buf, size_t length) 6624 { 6625 unsigned int ratio; 6626 int err; 6627 6628 err = kstrtouint(buf, 10, &ratio); 6629 if (err) 6630 return err; 6631 if (ratio > 100) 6632 return -ERANGE; 6633 6634 s->remote_node_defrag_ratio = ratio * 10; 6635 6636 return length; 6637 } 6638 SLAB_ATTR(remote_node_defrag_ratio); 6639 #endif 6640 6641 #ifdef CONFIG_SLUB_STATS 6642 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6643 { 6644 unsigned long sum = 0; 6645 int cpu; 6646 int len = 0; 6647 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6648 6649 if (!data) 6650 return -ENOMEM; 6651 6652 for_each_online_cpu(cpu) { 6653 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6654 6655 data[cpu] = x; 6656 sum += x; 6657 } 6658 6659 len += sysfs_emit_at(buf, len, "%lu", sum); 6660 6661 #ifdef CONFIG_SMP 6662 for_each_online_cpu(cpu) { 6663 if (data[cpu]) 6664 len += sysfs_emit_at(buf, len, " C%d=%u", 6665 cpu, data[cpu]); 6666 } 6667 #endif 6668 kfree(data); 6669 len += sysfs_emit_at(buf, len, "\n"); 6670 6671 return len; 6672 } 6673 6674 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6675 { 6676 int cpu; 6677 6678 for_each_online_cpu(cpu) 6679 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6680 } 6681 6682 #define STAT_ATTR(si, text) \ 6683 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6684 { \ 6685 return show_stat(s, buf, si); \ 6686 } \ 6687 static ssize_t text##_store(struct kmem_cache *s, \ 6688 const char *buf, size_t length) \ 6689 { \ 6690 if (buf[0] != '0') \ 6691 return -EINVAL; \ 6692 clear_stat(s, si); \ 6693 return length; \ 6694 } \ 6695 SLAB_ATTR(text); \ 6696 6697 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 6698 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 6699 STAT_ATTR(FREE_FASTPATH, free_fastpath); 6700 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 6701 STAT_ATTR(FREE_FROZEN, free_frozen); 6702 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 6703 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 6704 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 6705 STAT_ATTR(ALLOC_SLAB, alloc_slab); 6706 STAT_ATTR(ALLOC_REFILL, alloc_refill); 6707 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 6708 STAT_ATTR(FREE_SLAB, free_slab); 6709 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 6710 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 6711 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 6712 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 6713 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 6714 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 6715 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 6716 STAT_ATTR(ORDER_FALLBACK, order_fallback); 6717 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 6718 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 6719 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 6720 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 6721 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 6722 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 6723 #endif /* CONFIG_SLUB_STATS */ 6724 6725 #ifdef CONFIG_KFENCE 6726 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 6727 { 6728 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 6729 } 6730 6731 static ssize_t skip_kfence_store(struct kmem_cache *s, 6732 const char *buf, size_t length) 6733 { 6734 int ret = length; 6735 6736 if (buf[0] == '0') 6737 s->flags &= ~SLAB_SKIP_KFENCE; 6738 else if (buf[0] == '1') 6739 s->flags |= SLAB_SKIP_KFENCE; 6740 else 6741 ret = -EINVAL; 6742 6743 return ret; 6744 } 6745 SLAB_ATTR(skip_kfence); 6746 #endif 6747 6748 static struct attribute *slab_attrs[] = { 6749 &slab_size_attr.attr, 6750 &object_size_attr.attr, 6751 &objs_per_slab_attr.attr, 6752 &order_attr.attr, 6753 &min_partial_attr.attr, 6754 &cpu_partial_attr.attr, 6755 &objects_partial_attr.attr, 6756 &partial_attr.attr, 6757 &cpu_slabs_attr.attr, 6758 &ctor_attr.attr, 6759 &aliases_attr.attr, 6760 &align_attr.attr, 6761 &hwcache_align_attr.attr, 6762 &reclaim_account_attr.attr, 6763 &destroy_by_rcu_attr.attr, 6764 &shrink_attr.attr, 6765 &slabs_cpu_partial_attr.attr, 6766 #ifdef CONFIG_SLUB_DEBUG 6767 &total_objects_attr.attr, 6768 &objects_attr.attr, 6769 &slabs_attr.attr, 6770 &sanity_checks_attr.attr, 6771 &trace_attr.attr, 6772 &red_zone_attr.attr, 6773 &poison_attr.attr, 6774 &store_user_attr.attr, 6775 &validate_attr.attr, 6776 #endif 6777 #ifdef CONFIG_ZONE_DMA 6778 &cache_dma_attr.attr, 6779 #endif 6780 #ifdef CONFIG_NUMA 6781 &remote_node_defrag_ratio_attr.attr, 6782 #endif 6783 #ifdef CONFIG_SLUB_STATS 6784 &alloc_fastpath_attr.attr, 6785 &alloc_slowpath_attr.attr, 6786 &free_fastpath_attr.attr, 6787 &free_slowpath_attr.attr, 6788 &free_frozen_attr.attr, 6789 &free_add_partial_attr.attr, 6790 &free_remove_partial_attr.attr, 6791 &alloc_from_partial_attr.attr, 6792 &alloc_slab_attr.attr, 6793 &alloc_refill_attr.attr, 6794 &alloc_node_mismatch_attr.attr, 6795 &free_slab_attr.attr, 6796 &cpuslab_flush_attr.attr, 6797 &deactivate_full_attr.attr, 6798 &deactivate_empty_attr.attr, 6799 &deactivate_to_head_attr.attr, 6800 &deactivate_to_tail_attr.attr, 6801 &deactivate_remote_frees_attr.attr, 6802 &deactivate_bypass_attr.attr, 6803 &order_fallback_attr.attr, 6804 &cmpxchg_double_fail_attr.attr, 6805 &cmpxchg_double_cpu_fail_attr.attr, 6806 &cpu_partial_alloc_attr.attr, 6807 &cpu_partial_free_attr.attr, 6808 &cpu_partial_node_attr.attr, 6809 &cpu_partial_drain_attr.attr, 6810 #endif 6811 #ifdef CONFIG_FAILSLAB 6812 &failslab_attr.attr, 6813 #endif 6814 #ifdef CONFIG_HARDENED_USERCOPY 6815 &usersize_attr.attr, 6816 #endif 6817 #ifdef CONFIG_KFENCE 6818 &skip_kfence_attr.attr, 6819 #endif 6820 6821 NULL 6822 }; 6823 6824 static const struct attribute_group slab_attr_group = { 6825 .attrs = slab_attrs, 6826 }; 6827 6828 static ssize_t slab_attr_show(struct kobject *kobj, 6829 struct attribute *attr, 6830 char *buf) 6831 { 6832 struct slab_attribute *attribute; 6833 struct kmem_cache *s; 6834 6835 attribute = to_slab_attr(attr); 6836 s = to_slab(kobj); 6837 6838 if (!attribute->show) 6839 return -EIO; 6840 6841 return attribute->show(s, buf); 6842 } 6843 6844 static ssize_t slab_attr_store(struct kobject *kobj, 6845 struct attribute *attr, 6846 const char *buf, size_t len) 6847 { 6848 struct slab_attribute *attribute; 6849 struct kmem_cache *s; 6850 6851 attribute = to_slab_attr(attr); 6852 s = to_slab(kobj); 6853 6854 if (!attribute->store) 6855 return -EIO; 6856 6857 return attribute->store(s, buf, len); 6858 } 6859 6860 static void kmem_cache_release(struct kobject *k) 6861 { 6862 slab_kmem_cache_release(to_slab(k)); 6863 } 6864 6865 static const struct sysfs_ops slab_sysfs_ops = { 6866 .show = slab_attr_show, 6867 .store = slab_attr_store, 6868 }; 6869 6870 static const struct kobj_type slab_ktype = { 6871 .sysfs_ops = &slab_sysfs_ops, 6872 .release = kmem_cache_release, 6873 }; 6874 6875 static struct kset *slab_kset; 6876 6877 static inline struct kset *cache_kset(struct kmem_cache *s) 6878 { 6879 return slab_kset; 6880 } 6881 6882 #define ID_STR_LENGTH 32 6883 6884 /* Create a unique string id for a slab cache: 6885 * 6886 * Format :[flags-]size 6887 */ 6888 static char *create_unique_id(struct kmem_cache *s) 6889 { 6890 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 6891 char *p = name; 6892 6893 if (!name) 6894 return ERR_PTR(-ENOMEM); 6895 6896 *p++ = ':'; 6897 /* 6898 * First flags affecting slabcache operations. We will only 6899 * get here for aliasable slabs so we do not need to support 6900 * too many flags. The flags here must cover all flags that 6901 * are matched during merging to guarantee that the id is 6902 * unique. 6903 */ 6904 if (s->flags & SLAB_CACHE_DMA) 6905 *p++ = 'd'; 6906 if (s->flags & SLAB_CACHE_DMA32) 6907 *p++ = 'D'; 6908 if (s->flags & SLAB_RECLAIM_ACCOUNT) 6909 *p++ = 'a'; 6910 if (s->flags & SLAB_CONSISTENCY_CHECKS) 6911 *p++ = 'F'; 6912 if (s->flags & SLAB_ACCOUNT) 6913 *p++ = 'A'; 6914 if (p != name + 1) 6915 *p++ = '-'; 6916 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 6917 6918 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 6919 kfree(name); 6920 return ERR_PTR(-EINVAL); 6921 } 6922 kmsan_unpoison_memory(name, p - name); 6923 return name; 6924 } 6925 6926 static int sysfs_slab_add(struct kmem_cache *s) 6927 { 6928 int err; 6929 const char *name; 6930 struct kset *kset = cache_kset(s); 6931 int unmergeable = slab_unmergeable(s); 6932 6933 if (!unmergeable && disable_higher_order_debug && 6934 (slub_debug & DEBUG_METADATA_FLAGS)) 6935 unmergeable = 1; 6936 6937 if (unmergeable) { 6938 /* 6939 * Slabcache can never be merged so we can use the name proper. 6940 * This is typically the case for debug situations. In that 6941 * case we can catch duplicate names easily. 6942 */ 6943 sysfs_remove_link(&slab_kset->kobj, s->name); 6944 name = s->name; 6945 } else { 6946 /* 6947 * Create a unique name for the slab as a target 6948 * for the symlinks. 6949 */ 6950 name = create_unique_id(s); 6951 if (IS_ERR(name)) 6952 return PTR_ERR(name); 6953 } 6954 6955 s->kobj.kset = kset; 6956 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 6957 if (err) 6958 goto out; 6959 6960 err = sysfs_create_group(&s->kobj, &slab_attr_group); 6961 if (err) 6962 goto out_del_kobj; 6963 6964 if (!unmergeable) { 6965 /* Setup first alias */ 6966 sysfs_slab_alias(s, s->name); 6967 } 6968 out: 6969 if (!unmergeable) 6970 kfree(name); 6971 return err; 6972 out_del_kobj: 6973 kobject_del(&s->kobj); 6974 goto out; 6975 } 6976 6977 void sysfs_slab_unlink(struct kmem_cache *s) 6978 { 6979 kobject_del(&s->kobj); 6980 } 6981 6982 void sysfs_slab_release(struct kmem_cache *s) 6983 { 6984 kobject_put(&s->kobj); 6985 } 6986 6987 /* 6988 * Need to buffer aliases during bootup until sysfs becomes 6989 * available lest we lose that information. 6990 */ 6991 struct saved_alias { 6992 struct kmem_cache *s; 6993 const char *name; 6994 struct saved_alias *next; 6995 }; 6996 6997 static struct saved_alias *alias_list; 6998 6999 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 7000 { 7001 struct saved_alias *al; 7002 7003 if (slab_state == FULL) { 7004 /* 7005 * If we have a leftover link then remove it. 7006 */ 7007 sysfs_remove_link(&slab_kset->kobj, name); 7008 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7009 } 7010 7011 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7012 if (!al) 7013 return -ENOMEM; 7014 7015 al->s = s; 7016 al->name = name; 7017 al->next = alias_list; 7018 alias_list = al; 7019 kmsan_unpoison_memory(al, sizeof(*al)); 7020 return 0; 7021 } 7022 7023 static int __init slab_sysfs_init(void) 7024 { 7025 struct kmem_cache *s; 7026 int err; 7027 7028 mutex_lock(&slab_mutex); 7029 7030 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7031 if (!slab_kset) { 7032 mutex_unlock(&slab_mutex); 7033 pr_err("Cannot register slab subsystem.\n"); 7034 return -ENOMEM; 7035 } 7036 7037 slab_state = FULL; 7038 7039 list_for_each_entry(s, &slab_caches, list) { 7040 err = sysfs_slab_add(s); 7041 if (err) 7042 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7043 s->name); 7044 } 7045 7046 while (alias_list) { 7047 struct saved_alias *al = alias_list; 7048 7049 alias_list = alias_list->next; 7050 err = sysfs_slab_alias(al->s, al->name); 7051 if (err) 7052 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7053 al->name); 7054 kfree(al); 7055 } 7056 7057 mutex_unlock(&slab_mutex); 7058 return 0; 7059 } 7060 late_initcall(slab_sysfs_init); 7061 #endif /* SLAB_SUPPORTS_SYSFS */ 7062 7063 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7064 static int slab_debugfs_show(struct seq_file *seq, void *v) 7065 { 7066 struct loc_track *t = seq->private; 7067 struct location *l; 7068 unsigned long idx; 7069 7070 idx = (unsigned long) t->idx; 7071 if (idx < t->count) { 7072 l = &t->loc[idx]; 7073 7074 seq_printf(seq, "%7ld ", l->count); 7075 7076 if (l->addr) 7077 seq_printf(seq, "%pS", (void *)l->addr); 7078 else 7079 seq_puts(seq, "<not-available>"); 7080 7081 if (l->waste) 7082 seq_printf(seq, " waste=%lu/%lu", 7083 l->count * l->waste, l->waste); 7084 7085 if (l->sum_time != l->min_time) { 7086 seq_printf(seq, " age=%ld/%llu/%ld", 7087 l->min_time, div_u64(l->sum_time, l->count), 7088 l->max_time); 7089 } else 7090 seq_printf(seq, " age=%ld", l->min_time); 7091 7092 if (l->min_pid != l->max_pid) 7093 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7094 else 7095 seq_printf(seq, " pid=%ld", 7096 l->min_pid); 7097 7098 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7099 seq_printf(seq, " cpus=%*pbl", 7100 cpumask_pr_args(to_cpumask(l->cpus))); 7101 7102 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7103 seq_printf(seq, " nodes=%*pbl", 7104 nodemask_pr_args(&l->nodes)); 7105 7106 #ifdef CONFIG_STACKDEPOT 7107 { 7108 depot_stack_handle_t handle; 7109 unsigned long *entries; 7110 unsigned int nr_entries, j; 7111 7112 handle = READ_ONCE(l->handle); 7113 if (handle) { 7114 nr_entries = stack_depot_fetch(handle, &entries); 7115 seq_puts(seq, "\n"); 7116 for (j = 0; j < nr_entries; j++) 7117 seq_printf(seq, " %pS\n", (void *)entries[j]); 7118 } 7119 } 7120 #endif 7121 seq_puts(seq, "\n"); 7122 } 7123 7124 if (!idx && !t->count) 7125 seq_puts(seq, "No data\n"); 7126 7127 return 0; 7128 } 7129 7130 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7131 { 7132 } 7133 7134 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7135 { 7136 struct loc_track *t = seq->private; 7137 7138 t->idx = ++(*ppos); 7139 if (*ppos <= t->count) 7140 return ppos; 7141 7142 return NULL; 7143 } 7144 7145 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7146 { 7147 struct location *loc1 = (struct location *)a; 7148 struct location *loc2 = (struct location *)b; 7149 7150 if (loc1->count > loc2->count) 7151 return -1; 7152 else 7153 return 1; 7154 } 7155 7156 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7157 { 7158 struct loc_track *t = seq->private; 7159 7160 t->idx = *ppos; 7161 return ppos; 7162 } 7163 7164 static const struct seq_operations slab_debugfs_sops = { 7165 .start = slab_debugfs_start, 7166 .next = slab_debugfs_next, 7167 .stop = slab_debugfs_stop, 7168 .show = slab_debugfs_show, 7169 }; 7170 7171 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7172 { 7173 7174 struct kmem_cache_node *n; 7175 enum track_item alloc; 7176 int node; 7177 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7178 sizeof(struct loc_track)); 7179 struct kmem_cache *s = file_inode(filep)->i_private; 7180 unsigned long *obj_map; 7181 7182 if (!t) 7183 return -ENOMEM; 7184 7185 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7186 if (!obj_map) { 7187 seq_release_private(inode, filep); 7188 return -ENOMEM; 7189 } 7190 7191 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 7192 alloc = TRACK_ALLOC; 7193 else 7194 alloc = TRACK_FREE; 7195 7196 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7197 bitmap_free(obj_map); 7198 seq_release_private(inode, filep); 7199 return -ENOMEM; 7200 } 7201 7202 for_each_kmem_cache_node(s, node, n) { 7203 unsigned long flags; 7204 struct slab *slab; 7205 7206 if (!node_nr_slabs(n)) 7207 continue; 7208 7209 spin_lock_irqsave(&n->list_lock, flags); 7210 list_for_each_entry(slab, &n->partial, slab_list) 7211 process_slab(t, s, slab, alloc, obj_map); 7212 list_for_each_entry(slab, &n->full, slab_list) 7213 process_slab(t, s, slab, alloc, obj_map); 7214 spin_unlock_irqrestore(&n->list_lock, flags); 7215 } 7216 7217 /* Sort locations by count */ 7218 sort_r(t->loc, t->count, sizeof(struct location), 7219 cmp_loc_by_count, NULL, NULL); 7220 7221 bitmap_free(obj_map); 7222 return 0; 7223 } 7224 7225 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7226 { 7227 struct seq_file *seq = file->private_data; 7228 struct loc_track *t = seq->private; 7229 7230 free_loc_track(t); 7231 return seq_release_private(inode, file); 7232 } 7233 7234 static const struct file_operations slab_debugfs_fops = { 7235 .open = slab_debug_trace_open, 7236 .read = seq_read, 7237 .llseek = seq_lseek, 7238 .release = slab_debug_trace_release, 7239 }; 7240 7241 static void debugfs_slab_add(struct kmem_cache *s) 7242 { 7243 struct dentry *slab_cache_dir; 7244 7245 if (unlikely(!slab_debugfs_root)) 7246 return; 7247 7248 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7249 7250 debugfs_create_file("alloc_traces", 0400, 7251 slab_cache_dir, s, &slab_debugfs_fops); 7252 7253 debugfs_create_file("free_traces", 0400, 7254 slab_cache_dir, s, &slab_debugfs_fops); 7255 } 7256 7257 void debugfs_slab_release(struct kmem_cache *s) 7258 { 7259 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7260 } 7261 7262 static int __init slab_debugfs_init(void) 7263 { 7264 struct kmem_cache *s; 7265 7266 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7267 7268 list_for_each_entry(s, &slab_caches, list) 7269 if (s->flags & SLAB_STORE_USER) 7270 debugfs_slab_add(s); 7271 7272 return 0; 7273 7274 } 7275 __initcall(slab_debugfs_init); 7276 #endif 7277 /* 7278 * The /proc/slabinfo ABI 7279 */ 7280 #ifdef CONFIG_SLUB_DEBUG 7281 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7282 { 7283 unsigned long nr_slabs = 0; 7284 unsigned long nr_objs = 0; 7285 unsigned long nr_free = 0; 7286 int node; 7287 struct kmem_cache_node *n; 7288 7289 for_each_kmem_cache_node(s, node, n) { 7290 nr_slabs += node_nr_slabs(n); 7291 nr_objs += node_nr_objs(n); 7292 nr_free += count_partial_free_approx(n); 7293 } 7294 7295 sinfo->active_objs = nr_objs - nr_free; 7296 sinfo->num_objs = nr_objs; 7297 sinfo->active_slabs = nr_slabs; 7298 sinfo->num_slabs = nr_slabs; 7299 sinfo->objects_per_slab = oo_objects(s->oo); 7300 sinfo->cache_order = oo_order(s->oo); 7301 } 7302 #endif /* CONFIG_SLUB_DEBUG */ 7303