xref: /linux/mm/slub.c (revision f8343685643f2901fe11aa9d0358cafbeaf7b4c3)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 
24 /*
25  * Lock order:
26  *   1. slab_lock(page)
27  *   2. slab->list_lock
28  *
29  *   The slab_lock protects operations on the object of a particular
30  *   slab and its metadata in the page struct. If the slab lock
31  *   has been taken then no allocations nor frees can be performed
32  *   on the objects in the slab nor can the slab be added or removed
33  *   from the partial or full lists since this would mean modifying
34  *   the page_struct of the slab.
35  *
36  *   The list_lock protects the partial and full list on each node and
37  *   the partial slab counter. If taken then no new slabs may be added or
38  *   removed from the lists nor make the number of partial slabs be modified.
39  *   (Note that the total number of slabs is an atomic value that may be
40  *   modified without taking the list lock).
41  *
42  *   The list_lock is a centralized lock and thus we avoid taking it as
43  *   much as possible. As long as SLUB does not have to handle partial
44  *   slabs, operations can continue without any centralized lock. F.e.
45  *   allocating a long series of objects that fill up slabs does not require
46  *   the list lock.
47  *
48  *   The lock order is sometimes inverted when we are trying to get a slab
49  *   off a list. We take the list_lock and then look for a page on the list
50  *   to use. While we do that objects in the slabs may be freed. We can
51  *   only operate on the slab if we have also taken the slab_lock. So we use
52  *   a slab_trylock() on the slab. If trylock was successful then no frees
53  *   can occur anymore and we can use the slab for allocations etc. If the
54  *   slab_trylock() does not succeed then frees are in progress in the slab and
55  *   we must stay away from it for a while since we may cause a bouncing
56  *   cacheline if we try to acquire the lock. So go onto the next slab.
57  *   If all pages are busy then we may allocate a new slab instead of reusing
58  *   a partial slab. A new slab has noone operating on it and thus there is
59  *   no danger of cacheline contention.
60  *
61  *   Interrupts are disabled during allocation and deallocation in order to
62  *   make the slab allocator safe to use in the context of an irq. In addition
63  *   interrupts are disabled to ensure that the processor does not change
64  *   while handling per_cpu slabs, due to kernel preemption.
65  *
66  * SLUB assigns one slab for allocation to each processor.
67  * Allocations only occur from these slabs called cpu slabs.
68  *
69  * Slabs with free elements are kept on a partial list and during regular
70  * operations no list for full slabs is used. If an object in a full slab is
71  * freed then the slab will show up again on the partial lists.
72  * We track full slabs for debugging purposes though because otherwise we
73  * cannot scan all objects.
74  *
75  * Slabs are freed when they become empty. Teardown and setup is
76  * minimal so we rely on the page allocators per cpu caches for
77  * fast frees and allocs.
78  *
79  * Overloading of page flags that are otherwise used for LRU management.
80  *
81  * PageActive 		The slab is frozen and exempt from list processing.
82  * 			This means that the slab is dedicated to a purpose
83  * 			such as satisfying allocations for a specific
84  * 			processor. Objects may be freed in the slab while
85  * 			it is frozen but slab_free will then skip the usual
86  * 			list operations. It is up to the processor holding
87  * 			the slab to integrate the slab into the slab lists
88  * 			when the slab is no longer needed.
89  *
90  * 			One use of this flag is to mark slabs that are
91  * 			used for allocations. Then such a slab becomes a cpu
92  * 			slab. The cpu slab may be equipped with an additional
93  * 			lockless_freelist that allows lockless access to
94  * 			free objects in addition to the regular freelist
95  * 			that requires the slab lock.
96  *
97  * PageError		Slab requires special handling due to debug
98  * 			options set. This moves	slab handling out of
99  * 			the fast path and disables lockless freelists.
100  */
101 
102 #define FROZEN (1 << PG_active)
103 
104 #ifdef CONFIG_SLUB_DEBUG
105 #define SLABDEBUG (1 << PG_error)
106 #else
107 #define SLABDEBUG 0
108 #endif
109 
110 static inline int SlabFrozen(struct page *page)
111 {
112 	return page->flags & FROZEN;
113 }
114 
115 static inline void SetSlabFrozen(struct page *page)
116 {
117 	page->flags |= FROZEN;
118 }
119 
120 static inline void ClearSlabFrozen(struct page *page)
121 {
122 	page->flags &= ~FROZEN;
123 }
124 
125 static inline int SlabDebug(struct page *page)
126 {
127 	return page->flags & SLABDEBUG;
128 }
129 
130 static inline void SetSlabDebug(struct page *page)
131 {
132 	page->flags |= SLABDEBUG;
133 }
134 
135 static inline void ClearSlabDebug(struct page *page)
136 {
137 	page->flags &= ~SLABDEBUG;
138 }
139 
140 /*
141  * Issues still to be resolved:
142  *
143  * - The per cpu array is updated for each new slab and and is a remote
144  *   cacheline for most nodes. This could become a bouncing cacheline given
145  *   enough frequent updates. There are 16 pointers in a cacheline, so at
146  *   max 16 cpus could compete for the cacheline which may be okay.
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 #if PAGE_SHIFT <= 12
157 
158 /*
159  * Small page size. Make sure that we do not fragment memory
160  */
161 #define DEFAULT_MAX_ORDER 1
162 #define DEFAULT_MIN_OBJECTS 4
163 
164 #else
165 
166 /*
167  * Large page machines are customarily able to handle larger
168  * page orders.
169  */
170 #define DEFAULT_MAX_ORDER 2
171 #define DEFAULT_MIN_OBJECTS 8
172 
173 #endif
174 
175 /*
176  * Mininum number of partial slabs. These will be left on the partial
177  * lists even if they are empty. kmem_cache_shrink may reclaim them.
178  */
179 #define MIN_PARTIAL 2
180 
181 /*
182  * Maximum number of desirable partial slabs.
183  * The existence of more partial slabs makes kmem_cache_shrink
184  * sort the partial list by the number of objects in the.
185  */
186 #define MAX_PARTIAL 10
187 
188 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 				SLAB_POISON | SLAB_STORE_USER)
190 
191 /*
192  * Set of flags that will prevent slab merging
193  */
194 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196 
197 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 		SLAB_CACHE_DMA)
199 
200 #ifndef ARCH_KMALLOC_MINALIGN
201 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
202 #endif
203 
204 #ifndef ARCH_SLAB_MINALIGN
205 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
206 #endif
207 
208 /* Internal SLUB flags */
209 #define __OBJECT_POISON 0x80000000	/* Poison object */
210 
211 /* Not all arches define cache_line_size */
212 #ifndef cache_line_size
213 #define cache_line_size()	L1_CACHE_BYTES
214 #endif
215 
216 static int kmem_size = sizeof(struct kmem_cache);
217 
218 #ifdef CONFIG_SMP
219 static struct notifier_block slab_notifier;
220 #endif
221 
222 static enum {
223 	DOWN,		/* No slab functionality available */
224 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
225 	UP,		/* Everything works but does not show up in sysfs */
226 	SYSFS		/* Sysfs up */
227 } slab_state = DOWN;
228 
229 /* A list of all slab caches on the system */
230 static DECLARE_RWSEM(slub_lock);
231 LIST_HEAD(slab_caches);
232 
233 /*
234  * Tracking user of a slab.
235  */
236 struct track {
237 	void *addr;		/* Called from address */
238 	int cpu;		/* Was running on cpu */
239 	int pid;		/* Pid context */
240 	unsigned long when;	/* When did the operation occur */
241 };
242 
243 enum track_item { TRACK_ALLOC, TRACK_FREE };
244 
245 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
246 static int sysfs_slab_add(struct kmem_cache *);
247 static int sysfs_slab_alias(struct kmem_cache *, const char *);
248 static void sysfs_slab_remove(struct kmem_cache *);
249 #else
250 static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251 static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
252 static void sysfs_slab_remove(struct kmem_cache *s) {}
253 #endif
254 
255 /********************************************************************
256  * 			Core slab cache functions
257  *******************************************************************/
258 
259 int slab_is_available(void)
260 {
261 	return slab_state >= UP;
262 }
263 
264 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
265 {
266 #ifdef CONFIG_NUMA
267 	return s->node[node];
268 #else
269 	return &s->local_node;
270 #endif
271 }
272 
273 static inline int check_valid_pointer(struct kmem_cache *s,
274 				struct page *page, const void *object)
275 {
276 	void *base;
277 
278 	if (!object)
279 		return 1;
280 
281 	base = page_address(page);
282 	if (object < base || object >= base + s->objects * s->size ||
283 		(object - base) % s->size) {
284 		return 0;
285 	}
286 
287 	return 1;
288 }
289 
290 /*
291  * Slow version of get and set free pointer.
292  *
293  * This version requires touching the cache lines of kmem_cache which
294  * we avoid to do in the fast alloc free paths. There we obtain the offset
295  * from the page struct.
296  */
297 static inline void *get_freepointer(struct kmem_cache *s, void *object)
298 {
299 	return *(void **)(object + s->offset);
300 }
301 
302 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
303 {
304 	*(void **)(object + s->offset) = fp;
305 }
306 
307 /* Loop over all objects in a slab */
308 #define for_each_object(__p, __s, __addr) \
309 	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
310 			__p += (__s)->size)
311 
312 /* Scan freelist */
313 #define for_each_free_object(__p, __s, __free) \
314 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
315 
316 /* Determine object index from a given position */
317 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
318 {
319 	return (p - addr) / s->size;
320 }
321 
322 #ifdef CONFIG_SLUB_DEBUG
323 /*
324  * Debug settings:
325  */
326 static int slub_debug;
327 
328 static char *slub_debug_slabs;
329 
330 /*
331  * Object debugging
332  */
333 static void print_section(char *text, u8 *addr, unsigned int length)
334 {
335 	int i, offset;
336 	int newline = 1;
337 	char ascii[17];
338 
339 	ascii[16] = 0;
340 
341 	for (i = 0; i < length; i++) {
342 		if (newline) {
343 			printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
344 			newline = 0;
345 		}
346 		printk(" %02x", addr[i]);
347 		offset = i % 16;
348 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
349 		if (offset == 15) {
350 			printk(" %s\n",ascii);
351 			newline = 1;
352 		}
353 	}
354 	if (!newline) {
355 		i %= 16;
356 		while (i < 16) {
357 			printk("   ");
358 			ascii[i] = ' ';
359 			i++;
360 		}
361 		printk(" %s\n", ascii);
362 	}
363 }
364 
365 static struct track *get_track(struct kmem_cache *s, void *object,
366 	enum track_item alloc)
367 {
368 	struct track *p;
369 
370 	if (s->offset)
371 		p = object + s->offset + sizeof(void *);
372 	else
373 		p = object + s->inuse;
374 
375 	return p + alloc;
376 }
377 
378 static void set_track(struct kmem_cache *s, void *object,
379 				enum track_item alloc, void *addr)
380 {
381 	struct track *p;
382 
383 	if (s->offset)
384 		p = object + s->offset + sizeof(void *);
385 	else
386 		p = object + s->inuse;
387 
388 	p += alloc;
389 	if (addr) {
390 		p->addr = addr;
391 		p->cpu = smp_processor_id();
392 		p->pid = current ? current->pid : -1;
393 		p->when = jiffies;
394 	} else
395 		memset(p, 0, sizeof(struct track));
396 }
397 
398 static void init_tracking(struct kmem_cache *s, void *object)
399 {
400 	if (s->flags & SLAB_STORE_USER) {
401 		set_track(s, object, TRACK_FREE, NULL);
402 		set_track(s, object, TRACK_ALLOC, NULL);
403 	}
404 }
405 
406 static void print_track(const char *s, struct track *t)
407 {
408 	if (!t->addr)
409 		return;
410 
411 	printk(KERN_ERR "%s: ", s);
412 	__print_symbol("%s", (unsigned long)t->addr);
413 	printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
414 }
415 
416 static void print_trailer(struct kmem_cache *s, u8 *p)
417 {
418 	unsigned int off;	/* Offset of last byte */
419 
420 	if (s->flags & SLAB_RED_ZONE)
421 		print_section("Redzone", p + s->objsize,
422 			s->inuse - s->objsize);
423 
424 	printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
425 			p + s->offset,
426 			get_freepointer(s, p));
427 
428 	if (s->offset)
429 		off = s->offset + sizeof(void *);
430 	else
431 		off = s->inuse;
432 
433 	if (s->flags & SLAB_STORE_USER) {
434 		print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
435 		print_track("Last free ", get_track(s, p, TRACK_FREE));
436 		off += 2 * sizeof(struct track);
437 	}
438 
439 	if (off != s->size)
440 		/* Beginning of the filler is the free pointer */
441 		print_section("Filler", p + off, s->size - off);
442 }
443 
444 static void object_err(struct kmem_cache *s, struct page *page,
445 			u8 *object, char *reason)
446 {
447 	u8 *addr = page_address(page);
448 
449 	printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
450 			s->name, reason, object, page);
451 	printk(KERN_ERR "    offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
452 		object - addr, page->flags, page->inuse, page->freelist);
453 	if (object > addr + 16)
454 		print_section("Bytes b4", object - 16, 16);
455 	print_section("Object", object, min(s->objsize, 128));
456 	print_trailer(s, object);
457 	dump_stack();
458 }
459 
460 static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
461 {
462 	va_list args;
463 	char buf[100];
464 
465 	va_start(args, reason);
466 	vsnprintf(buf, sizeof(buf), reason, args);
467 	va_end(args);
468 	printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
469 		page);
470 	dump_stack();
471 }
472 
473 static void init_object(struct kmem_cache *s, void *object, int active)
474 {
475 	u8 *p = object;
476 
477 	if (s->flags & __OBJECT_POISON) {
478 		memset(p, POISON_FREE, s->objsize - 1);
479 		p[s->objsize -1] = POISON_END;
480 	}
481 
482 	if (s->flags & SLAB_RED_ZONE)
483 		memset(p + s->objsize,
484 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
485 			s->inuse - s->objsize);
486 }
487 
488 static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
489 {
490 	while (bytes) {
491 		if (*start != (u8)value)
492 			return 0;
493 		start++;
494 		bytes--;
495 	}
496 	return 1;
497 }
498 
499 /*
500  * Object layout:
501  *
502  * object address
503  * 	Bytes of the object to be managed.
504  * 	If the freepointer may overlay the object then the free
505  * 	pointer is the first word of the object.
506  *
507  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
508  * 	0xa5 (POISON_END)
509  *
510  * object + s->objsize
511  * 	Padding to reach word boundary. This is also used for Redzoning.
512  * 	Padding is extended by another word if Redzoning is enabled and
513  * 	objsize == inuse.
514  *
515  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
516  * 	0xcc (RED_ACTIVE) for objects in use.
517  *
518  * object + s->inuse
519  * 	Meta data starts here.
520  *
521  * 	A. Free pointer (if we cannot overwrite object on free)
522  * 	B. Tracking data for SLAB_STORE_USER
523  * 	C. Padding to reach required alignment boundary or at mininum
524  * 		one word if debuggin is on to be able to detect writes
525  * 		before the word boundary.
526  *
527  *	Padding is done using 0x5a (POISON_INUSE)
528  *
529  * object + s->size
530  * 	Nothing is used beyond s->size.
531  *
532  * If slabcaches are merged then the objsize and inuse boundaries are mostly
533  * ignored. And therefore no slab options that rely on these boundaries
534  * may be used with merged slabcaches.
535  */
536 
537 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
538 						void *from, void *to)
539 {
540 	printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
541 		s->name, message, data, from, to - 1);
542 	memset(from, data, to - from);
543 }
544 
545 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
546 {
547 	unsigned long off = s->inuse;	/* The end of info */
548 
549 	if (s->offset)
550 		/* Freepointer is placed after the object. */
551 		off += sizeof(void *);
552 
553 	if (s->flags & SLAB_STORE_USER)
554 		/* We also have user information there */
555 		off += 2 * sizeof(struct track);
556 
557 	if (s->size == off)
558 		return 1;
559 
560 	if (check_bytes(p + off, POISON_INUSE, s->size - off))
561 		return 1;
562 
563 	object_err(s, page, p, "Object padding check fails");
564 
565 	/*
566 	 * Restore padding
567 	 */
568 	restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
569 	return 0;
570 }
571 
572 static int slab_pad_check(struct kmem_cache *s, struct page *page)
573 {
574 	u8 *p;
575 	int length, remainder;
576 
577 	if (!(s->flags & SLAB_POISON))
578 		return 1;
579 
580 	p = page_address(page);
581 	length = s->objects * s->size;
582 	remainder = (PAGE_SIZE << s->order) - length;
583 	if (!remainder)
584 		return 1;
585 
586 	if (!check_bytes(p + length, POISON_INUSE, remainder)) {
587 		slab_err(s, page, "Padding check failed");
588 		restore_bytes(s, "slab padding", POISON_INUSE, p + length,
589 			p + length + remainder);
590 		return 0;
591 	}
592 	return 1;
593 }
594 
595 static int check_object(struct kmem_cache *s, struct page *page,
596 					void *object, int active)
597 {
598 	u8 *p = object;
599 	u8 *endobject = object + s->objsize;
600 
601 	if (s->flags & SLAB_RED_ZONE) {
602 		unsigned int red =
603 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
604 
605 		if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
606 			object_err(s, page, object,
607 			active ? "Redzone Active" : "Redzone Inactive");
608 			restore_bytes(s, "redzone", red,
609 				endobject, object + s->inuse);
610 			return 0;
611 		}
612 	} else {
613 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
614 			!check_bytes(endobject, POISON_INUSE,
615 					s->inuse - s->objsize)) {
616 		object_err(s, page, p, "Alignment padding check fails");
617 		/*
618 		 * Fix it so that there will not be another report.
619 		 *
620 		 * Hmmm... We may be corrupting an object that now expects
621 		 * to be longer than allowed.
622 		 */
623 		restore_bytes(s, "alignment padding", POISON_INUSE,
624 			endobject, object + s->inuse);
625 		}
626 	}
627 
628 	if (s->flags & SLAB_POISON) {
629 		if (!active && (s->flags & __OBJECT_POISON) &&
630 			(!check_bytes(p, POISON_FREE, s->objsize - 1) ||
631 				p[s->objsize - 1] != POISON_END)) {
632 
633 			object_err(s, page, p, "Poison check failed");
634 			restore_bytes(s, "Poison", POISON_FREE,
635 						p, p + s->objsize -1);
636 			restore_bytes(s, "Poison", POISON_END,
637 					p + s->objsize - 1, p + s->objsize);
638 			return 0;
639 		}
640 		/*
641 		 * check_pad_bytes cleans up on its own.
642 		 */
643 		check_pad_bytes(s, page, p);
644 	}
645 
646 	if (!s->offset && active)
647 		/*
648 		 * Object and freepointer overlap. Cannot check
649 		 * freepointer while object is allocated.
650 		 */
651 		return 1;
652 
653 	/* Check free pointer validity */
654 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
655 		object_err(s, page, p, "Freepointer corrupt");
656 		/*
657 		 * No choice but to zap it and thus loose the remainder
658 		 * of the free objects in this slab. May cause
659 		 * another error because the object count is now wrong.
660 		 */
661 		set_freepointer(s, p, NULL);
662 		return 0;
663 	}
664 	return 1;
665 }
666 
667 static int check_slab(struct kmem_cache *s, struct page *page)
668 {
669 	VM_BUG_ON(!irqs_disabled());
670 
671 	if (!PageSlab(page)) {
672 		slab_err(s, page, "Not a valid slab page flags=%lx "
673 			"mapping=0x%p count=%d", page->flags, page->mapping,
674 			page_count(page));
675 		return 0;
676 	}
677 	if (page->offset * sizeof(void *) != s->offset) {
678 		slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
679 			"mapping=0x%p count=%d",
680 			(unsigned long)(page->offset * sizeof(void *)),
681 			page->flags,
682 			page->mapping,
683 			page_count(page));
684 		return 0;
685 	}
686 	if (page->inuse > s->objects) {
687 		slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
688 			"mapping=0x%p count=%d",
689 			s->name, page->inuse, s->objects, page->flags,
690 			page->mapping, page_count(page));
691 		return 0;
692 	}
693 	/* Slab_pad_check fixes things up after itself */
694 	slab_pad_check(s, page);
695 	return 1;
696 }
697 
698 /*
699  * Determine if a certain object on a page is on the freelist. Must hold the
700  * slab lock to guarantee that the chains are in a consistent state.
701  */
702 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
703 {
704 	int nr = 0;
705 	void *fp = page->freelist;
706 	void *object = NULL;
707 
708 	while (fp && nr <= s->objects) {
709 		if (fp == search)
710 			return 1;
711 		if (!check_valid_pointer(s, page, fp)) {
712 			if (object) {
713 				object_err(s, page, object,
714 					"Freechain corrupt");
715 				set_freepointer(s, object, NULL);
716 				break;
717 			} else {
718 				slab_err(s, page, "Freepointer 0x%p corrupt",
719 									fp);
720 				page->freelist = NULL;
721 				page->inuse = s->objects;
722 				printk(KERN_ERR "@@@ SLUB %s: Freelist "
723 					"cleared. Slab 0x%p\n",
724 					s->name, page);
725 				return 0;
726 			}
727 			break;
728 		}
729 		object = fp;
730 		fp = get_freepointer(s, object);
731 		nr++;
732 	}
733 
734 	if (page->inuse != s->objects - nr) {
735 		slab_err(s, page, "Wrong object count. Counter is %d but "
736 			"counted were %d", s, page, page->inuse,
737 							s->objects - nr);
738 		page->inuse = s->objects - nr;
739 		printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
740 			"Slab @0x%p\n", s->name, page);
741 	}
742 	return search == NULL;
743 }
744 
745 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
746 {
747 	if (s->flags & SLAB_TRACE) {
748 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
749 			s->name,
750 			alloc ? "alloc" : "free",
751 			object, page->inuse,
752 			page->freelist);
753 
754 		if (!alloc)
755 			print_section("Object", (void *)object, s->objsize);
756 
757 		dump_stack();
758 	}
759 }
760 
761 /*
762  * Tracking of fully allocated slabs for debugging purposes.
763  */
764 static void add_full(struct kmem_cache_node *n, struct page *page)
765 {
766 	spin_lock(&n->list_lock);
767 	list_add(&page->lru, &n->full);
768 	spin_unlock(&n->list_lock);
769 }
770 
771 static void remove_full(struct kmem_cache *s, struct page *page)
772 {
773 	struct kmem_cache_node *n;
774 
775 	if (!(s->flags & SLAB_STORE_USER))
776 		return;
777 
778 	n = get_node(s, page_to_nid(page));
779 
780 	spin_lock(&n->list_lock);
781 	list_del(&page->lru);
782 	spin_unlock(&n->list_lock);
783 }
784 
785 static void setup_object_debug(struct kmem_cache *s, struct page *page,
786 								void *object)
787 {
788 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
789 		return;
790 
791 	init_object(s, object, 0);
792 	init_tracking(s, object);
793 }
794 
795 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
796 						void *object, void *addr)
797 {
798 	if (!check_slab(s, page))
799 		goto bad;
800 
801 	if (object && !on_freelist(s, page, object)) {
802 		slab_err(s, page, "Object 0x%p already allocated", object);
803 		goto bad;
804 	}
805 
806 	if (!check_valid_pointer(s, page, object)) {
807 		object_err(s, page, object, "Freelist Pointer check fails");
808 		goto bad;
809 	}
810 
811 	if (object && !check_object(s, page, object, 0))
812 		goto bad;
813 
814 	/* Success perform special debug activities for allocs */
815 	if (s->flags & SLAB_STORE_USER)
816 		set_track(s, object, TRACK_ALLOC, addr);
817 	trace(s, page, object, 1);
818 	init_object(s, object, 1);
819 	return 1;
820 
821 bad:
822 	if (PageSlab(page)) {
823 		/*
824 		 * If this is a slab page then lets do the best we can
825 		 * to avoid issues in the future. Marking all objects
826 		 * as used avoids touching the remaining objects.
827 		 */
828 		printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
829 			s->name, page);
830 		page->inuse = s->objects;
831 		page->freelist = NULL;
832 		/* Fix up fields that may be corrupted */
833 		page->offset = s->offset / sizeof(void *);
834 	}
835 	return 0;
836 }
837 
838 static int free_debug_processing(struct kmem_cache *s, struct page *page,
839 						void *object, void *addr)
840 {
841 	if (!check_slab(s, page))
842 		goto fail;
843 
844 	if (!check_valid_pointer(s, page, object)) {
845 		slab_err(s, page, "Invalid object pointer 0x%p", object);
846 		goto fail;
847 	}
848 
849 	if (on_freelist(s, page, object)) {
850 		slab_err(s, page, "Object 0x%p already free", object);
851 		goto fail;
852 	}
853 
854 	if (!check_object(s, page, object, 1))
855 		return 0;
856 
857 	if (unlikely(s != page->slab)) {
858 		if (!PageSlab(page))
859 			slab_err(s, page, "Attempt to free object(0x%p) "
860 				"outside of slab", object);
861 		else
862 		if (!page->slab) {
863 			printk(KERN_ERR
864 				"SLUB <none>: no slab for object 0x%p.\n",
865 						object);
866 			dump_stack();
867 		}
868 		else
869 			slab_err(s, page, "object at 0x%p belongs "
870 				"to slab %s", object, page->slab->name);
871 		goto fail;
872 	}
873 
874 	/* Special debug activities for freeing objects */
875 	if (!SlabFrozen(page) && !page->freelist)
876 		remove_full(s, page);
877 	if (s->flags & SLAB_STORE_USER)
878 		set_track(s, object, TRACK_FREE, addr);
879 	trace(s, page, object, 0);
880 	init_object(s, object, 0);
881 	return 1;
882 
883 fail:
884 	printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
885 		s->name, page, object);
886 	return 0;
887 }
888 
889 static int __init setup_slub_debug(char *str)
890 {
891 	if (!str || *str != '=')
892 		slub_debug = DEBUG_DEFAULT_FLAGS;
893 	else {
894 		str++;
895 		if (*str == 0 || *str == ',')
896 			slub_debug = DEBUG_DEFAULT_FLAGS;
897 		else
898 		for( ;*str && *str != ','; str++)
899 			switch (*str) {
900 			case 'f' : case 'F' :
901 				slub_debug |= SLAB_DEBUG_FREE;
902 				break;
903 			case 'z' : case 'Z' :
904 				slub_debug |= SLAB_RED_ZONE;
905 				break;
906 			case 'p' : case 'P' :
907 				slub_debug |= SLAB_POISON;
908 				break;
909 			case 'u' : case 'U' :
910 				slub_debug |= SLAB_STORE_USER;
911 				break;
912 			case 't' : case 'T' :
913 				slub_debug |= SLAB_TRACE;
914 				break;
915 			default:
916 				printk(KERN_ERR "slub_debug option '%c' "
917 					"unknown. skipped\n",*str);
918 			}
919 	}
920 
921 	if (*str == ',')
922 		slub_debug_slabs = str + 1;
923 	return 1;
924 }
925 
926 __setup("slub_debug", setup_slub_debug);
927 
928 static void kmem_cache_open_debug_check(struct kmem_cache *s)
929 {
930 	/*
931 	 * The page->offset field is only 16 bit wide. This is an offset
932 	 * in units of words from the beginning of an object. If the slab
933 	 * size is bigger then we cannot move the free pointer behind the
934 	 * object anymore.
935 	 *
936 	 * On 32 bit platforms the limit is 256k. On 64bit platforms
937 	 * the limit is 512k.
938 	 *
939 	 * Debugging or ctor may create a need to move the free
940 	 * pointer. Fail if this happens.
941 	 */
942 	if (s->objsize >= 65535 * sizeof(void *)) {
943 		BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
944 				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
945 		BUG_ON(s->ctor);
946 	}
947 	else
948 		/*
949 		 * Enable debugging if selected on the kernel commandline.
950 		 */
951 		if (slub_debug && (!slub_debug_slabs ||
952 		    strncmp(slub_debug_slabs, s->name,
953 		    	strlen(slub_debug_slabs)) == 0))
954 				s->flags |= slub_debug;
955 }
956 #else
957 static inline void setup_object_debug(struct kmem_cache *s,
958 			struct page *page, void *object) {}
959 
960 static inline int alloc_debug_processing(struct kmem_cache *s,
961 	struct page *page, void *object, void *addr) { return 0; }
962 
963 static inline int free_debug_processing(struct kmem_cache *s,
964 	struct page *page, void *object, void *addr) { return 0; }
965 
966 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
967 			{ return 1; }
968 static inline int check_object(struct kmem_cache *s, struct page *page,
969 			void *object, int active) { return 1; }
970 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
971 static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
972 #define slub_debug 0
973 #endif
974 /*
975  * Slab allocation and freeing
976  */
977 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
978 {
979 	struct page * page;
980 	int pages = 1 << s->order;
981 
982 	if (s->order)
983 		flags |= __GFP_COMP;
984 
985 	if (s->flags & SLAB_CACHE_DMA)
986 		flags |= SLUB_DMA;
987 
988 	if (node == -1)
989 		page = alloc_pages(flags, s->order);
990 	else
991 		page = alloc_pages_node(node, flags, s->order);
992 
993 	if (!page)
994 		return NULL;
995 
996 	mod_zone_page_state(page_zone(page),
997 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
998 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
999 		pages);
1000 
1001 	return page;
1002 }
1003 
1004 static void setup_object(struct kmem_cache *s, struct page *page,
1005 				void *object)
1006 {
1007 	setup_object_debug(s, page, object);
1008 	if (unlikely(s->ctor))
1009 		s->ctor(object, s, 0);
1010 }
1011 
1012 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1013 {
1014 	struct page *page;
1015 	struct kmem_cache_node *n;
1016 	void *start;
1017 	void *end;
1018 	void *last;
1019 	void *p;
1020 
1021 	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1022 
1023 	if (flags & __GFP_WAIT)
1024 		local_irq_enable();
1025 
1026 	page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1027 	if (!page)
1028 		goto out;
1029 
1030 	n = get_node(s, page_to_nid(page));
1031 	if (n)
1032 		atomic_long_inc(&n->nr_slabs);
1033 	page->offset = s->offset / sizeof(void *);
1034 	page->slab = s;
1035 	page->flags |= 1 << PG_slab;
1036 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1037 			SLAB_STORE_USER | SLAB_TRACE))
1038 		SetSlabDebug(page);
1039 
1040 	start = page_address(page);
1041 	end = start + s->objects * s->size;
1042 
1043 	if (unlikely(s->flags & SLAB_POISON))
1044 		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1045 
1046 	last = start;
1047 	for_each_object(p, s, start) {
1048 		setup_object(s, page, last);
1049 		set_freepointer(s, last, p);
1050 		last = p;
1051 	}
1052 	setup_object(s, page, last);
1053 	set_freepointer(s, last, NULL);
1054 
1055 	page->freelist = start;
1056 	page->lockless_freelist = NULL;
1057 	page->inuse = 0;
1058 out:
1059 	if (flags & __GFP_WAIT)
1060 		local_irq_disable();
1061 	return page;
1062 }
1063 
1064 static void __free_slab(struct kmem_cache *s, struct page *page)
1065 {
1066 	int pages = 1 << s->order;
1067 
1068 	if (unlikely(SlabDebug(page))) {
1069 		void *p;
1070 
1071 		slab_pad_check(s, page);
1072 		for_each_object(p, s, page_address(page))
1073 			check_object(s, page, p, 0);
1074 	}
1075 
1076 	mod_zone_page_state(page_zone(page),
1077 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1078 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1079 		- pages);
1080 
1081 	page->mapping = NULL;
1082 	__free_pages(page, s->order);
1083 }
1084 
1085 static void rcu_free_slab(struct rcu_head *h)
1086 {
1087 	struct page *page;
1088 
1089 	page = container_of((struct list_head *)h, struct page, lru);
1090 	__free_slab(page->slab, page);
1091 }
1092 
1093 static void free_slab(struct kmem_cache *s, struct page *page)
1094 {
1095 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1096 		/*
1097 		 * RCU free overloads the RCU head over the LRU
1098 		 */
1099 		struct rcu_head *head = (void *)&page->lru;
1100 
1101 		call_rcu(head, rcu_free_slab);
1102 	} else
1103 		__free_slab(s, page);
1104 }
1105 
1106 static void discard_slab(struct kmem_cache *s, struct page *page)
1107 {
1108 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1109 
1110 	atomic_long_dec(&n->nr_slabs);
1111 	reset_page_mapcount(page);
1112 	ClearSlabDebug(page);
1113 	__ClearPageSlab(page);
1114 	free_slab(s, page);
1115 }
1116 
1117 /*
1118  * Per slab locking using the pagelock
1119  */
1120 static __always_inline void slab_lock(struct page *page)
1121 {
1122 	bit_spin_lock(PG_locked, &page->flags);
1123 }
1124 
1125 static __always_inline void slab_unlock(struct page *page)
1126 {
1127 	bit_spin_unlock(PG_locked, &page->flags);
1128 }
1129 
1130 static __always_inline int slab_trylock(struct page *page)
1131 {
1132 	int rc = 1;
1133 
1134 	rc = bit_spin_trylock(PG_locked, &page->flags);
1135 	return rc;
1136 }
1137 
1138 /*
1139  * Management of partially allocated slabs
1140  */
1141 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1142 {
1143 	spin_lock(&n->list_lock);
1144 	n->nr_partial++;
1145 	list_add_tail(&page->lru, &n->partial);
1146 	spin_unlock(&n->list_lock);
1147 }
1148 
1149 static void add_partial(struct kmem_cache_node *n, struct page *page)
1150 {
1151 	spin_lock(&n->list_lock);
1152 	n->nr_partial++;
1153 	list_add(&page->lru, &n->partial);
1154 	spin_unlock(&n->list_lock);
1155 }
1156 
1157 static void remove_partial(struct kmem_cache *s,
1158 						struct page *page)
1159 {
1160 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1161 
1162 	spin_lock(&n->list_lock);
1163 	list_del(&page->lru);
1164 	n->nr_partial--;
1165 	spin_unlock(&n->list_lock);
1166 }
1167 
1168 /*
1169  * Lock slab and remove from the partial list.
1170  *
1171  * Must hold list_lock.
1172  */
1173 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1174 {
1175 	if (slab_trylock(page)) {
1176 		list_del(&page->lru);
1177 		n->nr_partial--;
1178 		SetSlabFrozen(page);
1179 		return 1;
1180 	}
1181 	return 0;
1182 }
1183 
1184 /*
1185  * Try to allocate a partial slab from a specific node.
1186  */
1187 static struct page *get_partial_node(struct kmem_cache_node *n)
1188 {
1189 	struct page *page;
1190 
1191 	/*
1192 	 * Racy check. If we mistakenly see no partial slabs then we
1193 	 * just allocate an empty slab. If we mistakenly try to get a
1194 	 * partial slab and there is none available then get_partials()
1195 	 * will return NULL.
1196 	 */
1197 	if (!n || !n->nr_partial)
1198 		return NULL;
1199 
1200 	spin_lock(&n->list_lock);
1201 	list_for_each_entry(page, &n->partial, lru)
1202 		if (lock_and_freeze_slab(n, page))
1203 			goto out;
1204 	page = NULL;
1205 out:
1206 	spin_unlock(&n->list_lock);
1207 	return page;
1208 }
1209 
1210 /*
1211  * Get a page from somewhere. Search in increasing NUMA distances.
1212  */
1213 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1214 {
1215 #ifdef CONFIG_NUMA
1216 	struct zonelist *zonelist;
1217 	struct zone **z;
1218 	struct page *page;
1219 
1220 	/*
1221 	 * The defrag ratio allows a configuration of the tradeoffs between
1222 	 * inter node defragmentation and node local allocations. A lower
1223 	 * defrag_ratio increases the tendency to do local allocations
1224 	 * instead of attempting to obtain partial slabs from other nodes.
1225 	 *
1226 	 * If the defrag_ratio is set to 0 then kmalloc() always
1227 	 * returns node local objects. If the ratio is higher then kmalloc()
1228 	 * may return off node objects because partial slabs are obtained
1229 	 * from other nodes and filled up.
1230 	 *
1231 	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1232 	 * defrag_ratio = 1000) then every (well almost) allocation will
1233 	 * first attempt to defrag slab caches on other nodes. This means
1234 	 * scanning over all nodes to look for partial slabs which may be
1235 	 * expensive if we do it every time we are trying to find a slab
1236 	 * with available objects.
1237 	 */
1238 	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1239 		return NULL;
1240 
1241 	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1242 					->node_zonelists[gfp_zone(flags)];
1243 	for (z = zonelist->zones; *z; z++) {
1244 		struct kmem_cache_node *n;
1245 
1246 		n = get_node(s, zone_to_nid(*z));
1247 
1248 		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1249 				n->nr_partial > MIN_PARTIAL) {
1250 			page = get_partial_node(n);
1251 			if (page)
1252 				return page;
1253 		}
1254 	}
1255 #endif
1256 	return NULL;
1257 }
1258 
1259 /*
1260  * Get a partial page, lock it and return it.
1261  */
1262 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1263 {
1264 	struct page *page;
1265 	int searchnode = (node == -1) ? numa_node_id() : node;
1266 
1267 	page = get_partial_node(get_node(s, searchnode));
1268 	if (page || (flags & __GFP_THISNODE))
1269 		return page;
1270 
1271 	return get_any_partial(s, flags);
1272 }
1273 
1274 /*
1275  * Move a page back to the lists.
1276  *
1277  * Must be called with the slab lock held.
1278  *
1279  * On exit the slab lock will have been dropped.
1280  */
1281 static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1282 {
1283 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1284 
1285 	ClearSlabFrozen(page);
1286 	if (page->inuse) {
1287 
1288 		if (page->freelist)
1289 			add_partial(n, page);
1290 		else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1291 			add_full(n, page);
1292 		slab_unlock(page);
1293 
1294 	} else {
1295 		if (n->nr_partial < MIN_PARTIAL) {
1296 			/*
1297 			 * Adding an empty slab to the partial slabs in order
1298 			 * to avoid page allocator overhead. This slab needs
1299 			 * to come after the other slabs with objects in
1300 			 * order to fill them up. That way the size of the
1301 			 * partial list stays small. kmem_cache_shrink can
1302 			 * reclaim empty slabs from the partial list.
1303 			 */
1304 			add_partial_tail(n, page);
1305 			slab_unlock(page);
1306 		} else {
1307 			slab_unlock(page);
1308 			discard_slab(s, page);
1309 		}
1310 	}
1311 }
1312 
1313 /*
1314  * Remove the cpu slab
1315  */
1316 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1317 {
1318 	/*
1319 	 * Merge cpu freelist into freelist. Typically we get here
1320 	 * because both freelists are empty. So this is unlikely
1321 	 * to occur.
1322 	 */
1323 	while (unlikely(page->lockless_freelist)) {
1324 		void **object;
1325 
1326 		/* Retrieve object from cpu_freelist */
1327 		object = page->lockless_freelist;
1328 		page->lockless_freelist = page->lockless_freelist[page->offset];
1329 
1330 		/* And put onto the regular freelist */
1331 		object[page->offset] = page->freelist;
1332 		page->freelist = object;
1333 		page->inuse--;
1334 	}
1335 	s->cpu_slab[cpu] = NULL;
1336 	unfreeze_slab(s, page);
1337 }
1338 
1339 static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1340 {
1341 	slab_lock(page);
1342 	deactivate_slab(s, page, cpu);
1343 }
1344 
1345 /*
1346  * Flush cpu slab.
1347  * Called from IPI handler with interrupts disabled.
1348  */
1349 static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1350 {
1351 	struct page *page = s->cpu_slab[cpu];
1352 
1353 	if (likely(page))
1354 		flush_slab(s, page, cpu);
1355 }
1356 
1357 static void flush_cpu_slab(void *d)
1358 {
1359 	struct kmem_cache *s = d;
1360 	int cpu = smp_processor_id();
1361 
1362 	__flush_cpu_slab(s, cpu);
1363 }
1364 
1365 static void flush_all(struct kmem_cache *s)
1366 {
1367 #ifdef CONFIG_SMP
1368 	on_each_cpu(flush_cpu_slab, s, 1, 1);
1369 #else
1370 	unsigned long flags;
1371 
1372 	local_irq_save(flags);
1373 	flush_cpu_slab(s);
1374 	local_irq_restore(flags);
1375 #endif
1376 }
1377 
1378 /*
1379  * Slow path. The lockless freelist is empty or we need to perform
1380  * debugging duties.
1381  *
1382  * Interrupts are disabled.
1383  *
1384  * Processing is still very fast if new objects have been freed to the
1385  * regular freelist. In that case we simply take over the regular freelist
1386  * as the lockless freelist and zap the regular freelist.
1387  *
1388  * If that is not working then we fall back to the partial lists. We take the
1389  * first element of the freelist as the object to allocate now and move the
1390  * rest of the freelist to the lockless freelist.
1391  *
1392  * And if we were unable to get a new slab from the partial slab lists then
1393  * we need to allocate a new slab. This is slowest path since we may sleep.
1394  */
1395 static void *__slab_alloc(struct kmem_cache *s,
1396 		gfp_t gfpflags, int node, void *addr, struct page *page)
1397 {
1398 	void **object;
1399 	int cpu = smp_processor_id();
1400 
1401 	if (!page)
1402 		goto new_slab;
1403 
1404 	slab_lock(page);
1405 	if (unlikely(node != -1 && page_to_nid(page) != node))
1406 		goto another_slab;
1407 load_freelist:
1408 	object = page->freelist;
1409 	if (unlikely(!object))
1410 		goto another_slab;
1411 	if (unlikely(SlabDebug(page)))
1412 		goto debug;
1413 
1414 	object = page->freelist;
1415 	page->lockless_freelist = object[page->offset];
1416 	page->inuse = s->objects;
1417 	page->freelist = NULL;
1418 	slab_unlock(page);
1419 	return object;
1420 
1421 another_slab:
1422 	deactivate_slab(s, page, cpu);
1423 
1424 new_slab:
1425 	page = get_partial(s, gfpflags, node);
1426 	if (page) {
1427 		s->cpu_slab[cpu] = page;
1428 		goto load_freelist;
1429 	}
1430 
1431 	page = new_slab(s, gfpflags, node);
1432 	if (page) {
1433 		cpu = smp_processor_id();
1434 		if (s->cpu_slab[cpu]) {
1435 			/*
1436 			 * Someone else populated the cpu_slab while we
1437 			 * enabled interrupts, or we have gotten scheduled
1438 			 * on another cpu. The page may not be on the
1439 			 * requested node even if __GFP_THISNODE was
1440 			 * specified. So we need to recheck.
1441 			 */
1442 			if (node == -1 ||
1443 				page_to_nid(s->cpu_slab[cpu]) == node) {
1444 				/*
1445 				 * Current cpuslab is acceptable and we
1446 				 * want the current one since its cache hot
1447 				 */
1448 				discard_slab(s, page);
1449 				page = s->cpu_slab[cpu];
1450 				slab_lock(page);
1451 				goto load_freelist;
1452 			}
1453 			/* New slab does not fit our expectations */
1454 			flush_slab(s, s->cpu_slab[cpu], cpu);
1455 		}
1456 		slab_lock(page);
1457 		SetSlabFrozen(page);
1458 		s->cpu_slab[cpu] = page;
1459 		goto load_freelist;
1460 	}
1461 	return NULL;
1462 debug:
1463 	object = page->freelist;
1464 	if (!alloc_debug_processing(s, page, object, addr))
1465 		goto another_slab;
1466 
1467 	page->inuse++;
1468 	page->freelist = object[page->offset];
1469 	slab_unlock(page);
1470 	return object;
1471 }
1472 
1473 /*
1474  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1475  * have the fastpath folded into their functions. So no function call
1476  * overhead for requests that can be satisfied on the fastpath.
1477  *
1478  * The fastpath works by first checking if the lockless freelist can be used.
1479  * If not then __slab_alloc is called for slow processing.
1480  *
1481  * Otherwise we can simply pick the next object from the lockless free list.
1482  */
1483 static void __always_inline *slab_alloc(struct kmem_cache *s,
1484 				gfp_t gfpflags, int node, void *addr)
1485 {
1486 	struct page *page;
1487 	void **object;
1488 	unsigned long flags;
1489 
1490 	local_irq_save(flags);
1491 	page = s->cpu_slab[smp_processor_id()];
1492 	if (unlikely(!page || !page->lockless_freelist ||
1493 			(node != -1 && page_to_nid(page) != node)))
1494 
1495 		object = __slab_alloc(s, gfpflags, node, addr, page);
1496 
1497 	else {
1498 		object = page->lockless_freelist;
1499 		page->lockless_freelist = object[page->offset];
1500 	}
1501 	local_irq_restore(flags);
1502 	return object;
1503 }
1504 
1505 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1506 {
1507 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1508 }
1509 EXPORT_SYMBOL(kmem_cache_alloc);
1510 
1511 #ifdef CONFIG_NUMA
1512 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1513 {
1514 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1515 }
1516 EXPORT_SYMBOL(kmem_cache_alloc_node);
1517 #endif
1518 
1519 /*
1520  * Slow patch handling. This may still be called frequently since objects
1521  * have a longer lifetime than the cpu slabs in most processing loads.
1522  *
1523  * So we still attempt to reduce cache line usage. Just take the slab
1524  * lock and free the item. If there is no additional partial page
1525  * handling required then we can return immediately.
1526  */
1527 static void __slab_free(struct kmem_cache *s, struct page *page,
1528 					void *x, void *addr)
1529 {
1530 	void *prior;
1531 	void **object = (void *)x;
1532 
1533 	slab_lock(page);
1534 
1535 	if (unlikely(SlabDebug(page)))
1536 		goto debug;
1537 checks_ok:
1538 	prior = object[page->offset] = page->freelist;
1539 	page->freelist = object;
1540 	page->inuse--;
1541 
1542 	if (unlikely(SlabFrozen(page)))
1543 		goto out_unlock;
1544 
1545 	if (unlikely(!page->inuse))
1546 		goto slab_empty;
1547 
1548 	/*
1549 	 * Objects left in the slab. If it
1550 	 * was not on the partial list before
1551 	 * then add it.
1552 	 */
1553 	if (unlikely(!prior))
1554 		add_partial(get_node(s, page_to_nid(page)), page);
1555 
1556 out_unlock:
1557 	slab_unlock(page);
1558 	return;
1559 
1560 slab_empty:
1561 	if (prior)
1562 		/*
1563 		 * Slab still on the partial list.
1564 		 */
1565 		remove_partial(s, page);
1566 
1567 	slab_unlock(page);
1568 	discard_slab(s, page);
1569 	return;
1570 
1571 debug:
1572 	if (!free_debug_processing(s, page, x, addr))
1573 		goto out_unlock;
1574 	goto checks_ok;
1575 }
1576 
1577 /*
1578  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1579  * can perform fastpath freeing without additional function calls.
1580  *
1581  * The fastpath is only possible if we are freeing to the current cpu slab
1582  * of this processor. This typically the case if we have just allocated
1583  * the item before.
1584  *
1585  * If fastpath is not possible then fall back to __slab_free where we deal
1586  * with all sorts of special processing.
1587  */
1588 static void __always_inline slab_free(struct kmem_cache *s,
1589 			struct page *page, void *x, void *addr)
1590 {
1591 	void **object = (void *)x;
1592 	unsigned long flags;
1593 
1594 	local_irq_save(flags);
1595 	if (likely(page == s->cpu_slab[smp_processor_id()] &&
1596 						!SlabDebug(page))) {
1597 		object[page->offset] = page->lockless_freelist;
1598 		page->lockless_freelist = object;
1599 	} else
1600 		__slab_free(s, page, x, addr);
1601 
1602 	local_irq_restore(flags);
1603 }
1604 
1605 void kmem_cache_free(struct kmem_cache *s, void *x)
1606 {
1607 	struct page *page;
1608 
1609 	page = virt_to_head_page(x);
1610 
1611 	slab_free(s, page, x, __builtin_return_address(0));
1612 }
1613 EXPORT_SYMBOL(kmem_cache_free);
1614 
1615 /* Figure out on which slab object the object resides */
1616 static struct page *get_object_page(const void *x)
1617 {
1618 	struct page *page = virt_to_head_page(x);
1619 
1620 	if (!PageSlab(page))
1621 		return NULL;
1622 
1623 	return page;
1624 }
1625 
1626 /*
1627  * Object placement in a slab is made very easy because we always start at
1628  * offset 0. If we tune the size of the object to the alignment then we can
1629  * get the required alignment by putting one properly sized object after
1630  * another.
1631  *
1632  * Notice that the allocation order determines the sizes of the per cpu
1633  * caches. Each processor has always one slab available for allocations.
1634  * Increasing the allocation order reduces the number of times that slabs
1635  * must be moved on and off the partial lists and is therefore a factor in
1636  * locking overhead.
1637  */
1638 
1639 /*
1640  * Mininum / Maximum order of slab pages. This influences locking overhead
1641  * and slab fragmentation. A higher order reduces the number of partial slabs
1642  * and increases the number of allocations possible without having to
1643  * take the list_lock.
1644  */
1645 static int slub_min_order;
1646 static int slub_max_order = DEFAULT_MAX_ORDER;
1647 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1648 
1649 /*
1650  * Merge control. If this is set then no merging of slab caches will occur.
1651  * (Could be removed. This was introduced to pacify the merge skeptics.)
1652  */
1653 static int slub_nomerge;
1654 
1655 /*
1656  * Calculate the order of allocation given an slab object size.
1657  *
1658  * The order of allocation has significant impact on performance and other
1659  * system components. Generally order 0 allocations should be preferred since
1660  * order 0 does not cause fragmentation in the page allocator. Larger objects
1661  * be problematic to put into order 0 slabs because there may be too much
1662  * unused space left. We go to a higher order if more than 1/8th of the slab
1663  * would be wasted.
1664  *
1665  * In order to reach satisfactory performance we must ensure that a minimum
1666  * number of objects is in one slab. Otherwise we may generate too much
1667  * activity on the partial lists which requires taking the list_lock. This is
1668  * less a concern for large slabs though which are rarely used.
1669  *
1670  * slub_max_order specifies the order where we begin to stop considering the
1671  * number of objects in a slab as critical. If we reach slub_max_order then
1672  * we try to keep the page order as low as possible. So we accept more waste
1673  * of space in favor of a small page order.
1674  *
1675  * Higher order allocations also allow the placement of more objects in a
1676  * slab and thereby reduce object handling overhead. If the user has
1677  * requested a higher mininum order then we start with that one instead of
1678  * the smallest order which will fit the object.
1679  */
1680 static inline int slab_order(int size, int min_objects,
1681 				int max_order, int fract_leftover)
1682 {
1683 	int order;
1684 	int rem;
1685 
1686 	for (order = max(slub_min_order,
1687 				fls(min_objects * size - 1) - PAGE_SHIFT);
1688 			order <= max_order; order++) {
1689 
1690 		unsigned long slab_size = PAGE_SIZE << order;
1691 
1692 		if (slab_size < min_objects * size)
1693 			continue;
1694 
1695 		rem = slab_size % size;
1696 
1697 		if (rem <= slab_size / fract_leftover)
1698 			break;
1699 
1700 	}
1701 
1702 	return order;
1703 }
1704 
1705 static inline int calculate_order(int size)
1706 {
1707 	int order;
1708 	int min_objects;
1709 	int fraction;
1710 
1711 	/*
1712 	 * Attempt to find best configuration for a slab. This
1713 	 * works by first attempting to generate a layout with
1714 	 * the best configuration and backing off gradually.
1715 	 *
1716 	 * First we reduce the acceptable waste in a slab. Then
1717 	 * we reduce the minimum objects required in a slab.
1718 	 */
1719 	min_objects = slub_min_objects;
1720 	while (min_objects > 1) {
1721 		fraction = 8;
1722 		while (fraction >= 4) {
1723 			order = slab_order(size, min_objects,
1724 						slub_max_order, fraction);
1725 			if (order <= slub_max_order)
1726 				return order;
1727 			fraction /= 2;
1728 		}
1729 		min_objects /= 2;
1730 	}
1731 
1732 	/*
1733 	 * We were unable to place multiple objects in a slab. Now
1734 	 * lets see if we can place a single object there.
1735 	 */
1736 	order = slab_order(size, 1, slub_max_order, 1);
1737 	if (order <= slub_max_order)
1738 		return order;
1739 
1740 	/*
1741 	 * Doh this slab cannot be placed using slub_max_order.
1742 	 */
1743 	order = slab_order(size, 1, MAX_ORDER, 1);
1744 	if (order <= MAX_ORDER)
1745 		return order;
1746 	return -ENOSYS;
1747 }
1748 
1749 /*
1750  * Figure out what the alignment of the objects will be.
1751  */
1752 static unsigned long calculate_alignment(unsigned long flags,
1753 		unsigned long align, unsigned long size)
1754 {
1755 	/*
1756 	 * If the user wants hardware cache aligned objects then
1757 	 * follow that suggestion if the object is sufficiently
1758 	 * large.
1759 	 *
1760 	 * The hardware cache alignment cannot override the
1761 	 * specified alignment though. If that is greater
1762 	 * then use it.
1763 	 */
1764 	if ((flags & SLAB_HWCACHE_ALIGN) &&
1765 			size > cache_line_size() / 2)
1766 		return max_t(unsigned long, align, cache_line_size());
1767 
1768 	if (align < ARCH_SLAB_MINALIGN)
1769 		return ARCH_SLAB_MINALIGN;
1770 
1771 	return ALIGN(align, sizeof(void *));
1772 }
1773 
1774 static void init_kmem_cache_node(struct kmem_cache_node *n)
1775 {
1776 	n->nr_partial = 0;
1777 	atomic_long_set(&n->nr_slabs, 0);
1778 	spin_lock_init(&n->list_lock);
1779 	INIT_LIST_HEAD(&n->partial);
1780 	INIT_LIST_HEAD(&n->full);
1781 }
1782 
1783 #ifdef CONFIG_NUMA
1784 /*
1785  * No kmalloc_node yet so do it by hand. We know that this is the first
1786  * slab on the node for this slabcache. There are no concurrent accesses
1787  * possible.
1788  *
1789  * Note that this function only works on the kmalloc_node_cache
1790  * when allocating for the kmalloc_node_cache.
1791  */
1792 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1793 								int node)
1794 {
1795 	struct page *page;
1796 	struct kmem_cache_node *n;
1797 
1798 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1799 
1800 	page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1801 	/* new_slab() disables interupts */
1802 	local_irq_enable();
1803 
1804 	BUG_ON(!page);
1805 	n = page->freelist;
1806 	BUG_ON(!n);
1807 	page->freelist = get_freepointer(kmalloc_caches, n);
1808 	page->inuse++;
1809 	kmalloc_caches->node[node] = n;
1810 	setup_object_debug(kmalloc_caches, page, n);
1811 	init_kmem_cache_node(n);
1812 	atomic_long_inc(&n->nr_slabs);
1813 	add_partial(n, page);
1814 	return n;
1815 }
1816 
1817 static void free_kmem_cache_nodes(struct kmem_cache *s)
1818 {
1819 	int node;
1820 
1821 	for_each_online_node(node) {
1822 		struct kmem_cache_node *n = s->node[node];
1823 		if (n && n != &s->local_node)
1824 			kmem_cache_free(kmalloc_caches, n);
1825 		s->node[node] = NULL;
1826 	}
1827 }
1828 
1829 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1830 {
1831 	int node;
1832 	int local_node;
1833 
1834 	if (slab_state >= UP)
1835 		local_node = page_to_nid(virt_to_page(s));
1836 	else
1837 		local_node = 0;
1838 
1839 	for_each_online_node(node) {
1840 		struct kmem_cache_node *n;
1841 
1842 		if (local_node == node)
1843 			n = &s->local_node;
1844 		else {
1845 			if (slab_state == DOWN) {
1846 				n = early_kmem_cache_node_alloc(gfpflags,
1847 								node);
1848 				continue;
1849 			}
1850 			n = kmem_cache_alloc_node(kmalloc_caches,
1851 							gfpflags, node);
1852 
1853 			if (!n) {
1854 				free_kmem_cache_nodes(s);
1855 				return 0;
1856 			}
1857 
1858 		}
1859 		s->node[node] = n;
1860 		init_kmem_cache_node(n);
1861 	}
1862 	return 1;
1863 }
1864 #else
1865 static void free_kmem_cache_nodes(struct kmem_cache *s)
1866 {
1867 }
1868 
1869 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1870 {
1871 	init_kmem_cache_node(&s->local_node);
1872 	return 1;
1873 }
1874 #endif
1875 
1876 /*
1877  * calculate_sizes() determines the order and the distribution of data within
1878  * a slab object.
1879  */
1880 static int calculate_sizes(struct kmem_cache *s)
1881 {
1882 	unsigned long flags = s->flags;
1883 	unsigned long size = s->objsize;
1884 	unsigned long align = s->align;
1885 
1886 	/*
1887 	 * Determine if we can poison the object itself. If the user of
1888 	 * the slab may touch the object after free or before allocation
1889 	 * then we should never poison the object itself.
1890 	 */
1891 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1892 			!s->ctor)
1893 		s->flags |= __OBJECT_POISON;
1894 	else
1895 		s->flags &= ~__OBJECT_POISON;
1896 
1897 	/*
1898 	 * Round up object size to the next word boundary. We can only
1899 	 * place the free pointer at word boundaries and this determines
1900 	 * the possible location of the free pointer.
1901 	 */
1902 	size = ALIGN(size, sizeof(void *));
1903 
1904 #ifdef CONFIG_SLUB_DEBUG
1905 	/*
1906 	 * If we are Redzoning then check if there is some space between the
1907 	 * end of the object and the free pointer. If not then add an
1908 	 * additional word to have some bytes to store Redzone information.
1909 	 */
1910 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1911 		size += sizeof(void *);
1912 #endif
1913 
1914 	/*
1915 	 * With that we have determined the number of bytes in actual use
1916 	 * by the object. This is the potential offset to the free pointer.
1917 	 */
1918 	s->inuse = size;
1919 
1920 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1921 		s->ctor)) {
1922 		/*
1923 		 * Relocate free pointer after the object if it is not
1924 		 * permitted to overwrite the first word of the object on
1925 		 * kmem_cache_free.
1926 		 *
1927 		 * This is the case if we do RCU, have a constructor or
1928 		 * destructor or are poisoning the objects.
1929 		 */
1930 		s->offset = size;
1931 		size += sizeof(void *);
1932 	}
1933 
1934 #ifdef CONFIG_SLUB_DEBUG
1935 	if (flags & SLAB_STORE_USER)
1936 		/*
1937 		 * Need to store information about allocs and frees after
1938 		 * the object.
1939 		 */
1940 		size += 2 * sizeof(struct track);
1941 
1942 	if (flags & SLAB_RED_ZONE)
1943 		/*
1944 		 * Add some empty padding so that we can catch
1945 		 * overwrites from earlier objects rather than let
1946 		 * tracking information or the free pointer be
1947 		 * corrupted if an user writes before the start
1948 		 * of the object.
1949 		 */
1950 		size += sizeof(void *);
1951 #endif
1952 
1953 	/*
1954 	 * Determine the alignment based on various parameters that the
1955 	 * user specified and the dynamic determination of cache line size
1956 	 * on bootup.
1957 	 */
1958 	align = calculate_alignment(flags, align, s->objsize);
1959 
1960 	/*
1961 	 * SLUB stores one object immediately after another beginning from
1962 	 * offset 0. In order to align the objects we have to simply size
1963 	 * each object to conform to the alignment.
1964 	 */
1965 	size = ALIGN(size, align);
1966 	s->size = size;
1967 
1968 	s->order = calculate_order(size);
1969 	if (s->order < 0)
1970 		return 0;
1971 
1972 	/*
1973 	 * Determine the number of objects per slab
1974 	 */
1975 	s->objects = (PAGE_SIZE << s->order) / size;
1976 
1977 	/*
1978 	 * Verify that the number of objects is within permitted limits.
1979 	 * The page->inuse field is only 16 bit wide! So we cannot have
1980 	 * more than 64k objects per slab.
1981 	 */
1982 	if (!s->objects || s->objects > 65535)
1983 		return 0;
1984 	return 1;
1985 
1986 }
1987 
1988 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1989 		const char *name, size_t size,
1990 		size_t align, unsigned long flags,
1991 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
1992 {
1993 	memset(s, 0, kmem_size);
1994 	s->name = name;
1995 	s->ctor = ctor;
1996 	s->objsize = size;
1997 	s->flags = flags;
1998 	s->align = align;
1999 	kmem_cache_open_debug_check(s);
2000 
2001 	if (!calculate_sizes(s))
2002 		goto error;
2003 
2004 	s->refcount = 1;
2005 #ifdef CONFIG_NUMA
2006 	s->defrag_ratio = 100;
2007 #endif
2008 
2009 	if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2010 		return 1;
2011 error:
2012 	if (flags & SLAB_PANIC)
2013 		panic("Cannot create slab %s size=%lu realsize=%u "
2014 			"order=%u offset=%u flags=%lx\n",
2015 			s->name, (unsigned long)size, s->size, s->order,
2016 			s->offset, flags);
2017 	return 0;
2018 }
2019 EXPORT_SYMBOL(kmem_cache_open);
2020 
2021 /*
2022  * Check if a given pointer is valid
2023  */
2024 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2025 {
2026 	struct page * page;
2027 
2028 	page = get_object_page(object);
2029 
2030 	if (!page || s != page->slab)
2031 		/* No slab or wrong slab */
2032 		return 0;
2033 
2034 	if (!check_valid_pointer(s, page, object))
2035 		return 0;
2036 
2037 	/*
2038 	 * We could also check if the object is on the slabs freelist.
2039 	 * But this would be too expensive and it seems that the main
2040 	 * purpose of kmem_ptr_valid is to check if the object belongs
2041 	 * to a certain slab.
2042 	 */
2043 	return 1;
2044 }
2045 EXPORT_SYMBOL(kmem_ptr_validate);
2046 
2047 /*
2048  * Determine the size of a slab object
2049  */
2050 unsigned int kmem_cache_size(struct kmem_cache *s)
2051 {
2052 	return s->objsize;
2053 }
2054 EXPORT_SYMBOL(kmem_cache_size);
2055 
2056 const char *kmem_cache_name(struct kmem_cache *s)
2057 {
2058 	return s->name;
2059 }
2060 EXPORT_SYMBOL(kmem_cache_name);
2061 
2062 /*
2063  * Attempt to free all slabs on a node. Return the number of slabs we
2064  * were unable to free.
2065  */
2066 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2067 			struct list_head *list)
2068 {
2069 	int slabs_inuse = 0;
2070 	unsigned long flags;
2071 	struct page *page, *h;
2072 
2073 	spin_lock_irqsave(&n->list_lock, flags);
2074 	list_for_each_entry_safe(page, h, list, lru)
2075 		if (!page->inuse) {
2076 			list_del(&page->lru);
2077 			discard_slab(s, page);
2078 		} else
2079 			slabs_inuse++;
2080 	spin_unlock_irqrestore(&n->list_lock, flags);
2081 	return slabs_inuse;
2082 }
2083 
2084 /*
2085  * Release all resources used by a slab cache.
2086  */
2087 static int kmem_cache_close(struct kmem_cache *s)
2088 {
2089 	int node;
2090 
2091 	flush_all(s);
2092 
2093 	/* Attempt to free all objects */
2094 	for_each_online_node(node) {
2095 		struct kmem_cache_node *n = get_node(s, node);
2096 
2097 		n->nr_partial -= free_list(s, n, &n->partial);
2098 		if (atomic_long_read(&n->nr_slabs))
2099 			return 1;
2100 	}
2101 	free_kmem_cache_nodes(s);
2102 	return 0;
2103 }
2104 
2105 /*
2106  * Close a cache and release the kmem_cache structure
2107  * (must be used for caches created using kmem_cache_create)
2108  */
2109 void kmem_cache_destroy(struct kmem_cache *s)
2110 {
2111 	down_write(&slub_lock);
2112 	s->refcount--;
2113 	if (!s->refcount) {
2114 		list_del(&s->list);
2115 		if (kmem_cache_close(s))
2116 			WARN_ON(1);
2117 		sysfs_slab_remove(s);
2118 		kfree(s);
2119 	}
2120 	up_write(&slub_lock);
2121 }
2122 EXPORT_SYMBOL(kmem_cache_destroy);
2123 
2124 /********************************************************************
2125  *		Kmalloc subsystem
2126  *******************************************************************/
2127 
2128 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2129 EXPORT_SYMBOL(kmalloc_caches);
2130 
2131 #ifdef CONFIG_ZONE_DMA
2132 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2133 #endif
2134 
2135 static int __init setup_slub_min_order(char *str)
2136 {
2137 	get_option (&str, &slub_min_order);
2138 
2139 	return 1;
2140 }
2141 
2142 __setup("slub_min_order=", setup_slub_min_order);
2143 
2144 static int __init setup_slub_max_order(char *str)
2145 {
2146 	get_option (&str, &slub_max_order);
2147 
2148 	return 1;
2149 }
2150 
2151 __setup("slub_max_order=", setup_slub_max_order);
2152 
2153 static int __init setup_slub_min_objects(char *str)
2154 {
2155 	get_option (&str, &slub_min_objects);
2156 
2157 	return 1;
2158 }
2159 
2160 __setup("slub_min_objects=", setup_slub_min_objects);
2161 
2162 static int __init setup_slub_nomerge(char *str)
2163 {
2164 	slub_nomerge = 1;
2165 	return 1;
2166 }
2167 
2168 __setup("slub_nomerge", setup_slub_nomerge);
2169 
2170 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2171 		const char *name, int size, gfp_t gfp_flags)
2172 {
2173 	unsigned int flags = 0;
2174 
2175 	if (gfp_flags & SLUB_DMA)
2176 		flags = SLAB_CACHE_DMA;
2177 
2178 	down_write(&slub_lock);
2179 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2180 			flags, NULL))
2181 		goto panic;
2182 
2183 	list_add(&s->list, &slab_caches);
2184 	up_write(&slub_lock);
2185 	if (sysfs_slab_add(s))
2186 		goto panic;
2187 	return s;
2188 
2189 panic:
2190 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2191 }
2192 
2193 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2194 {
2195 	int index = kmalloc_index(size);
2196 
2197 	if (!index)
2198 		return NULL;
2199 
2200 	/* Allocation too large? */
2201 	BUG_ON(index < 0);
2202 
2203 #ifdef CONFIG_ZONE_DMA
2204 	if ((flags & SLUB_DMA)) {
2205 		struct kmem_cache *s;
2206 		struct kmem_cache *x;
2207 		char *text;
2208 		size_t realsize;
2209 
2210 		s = kmalloc_caches_dma[index];
2211 		if (s)
2212 			return s;
2213 
2214 		/* Dynamically create dma cache */
2215 		x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2216 		if (!x)
2217 			panic("Unable to allocate memory for dma cache\n");
2218 
2219 		if (index <= KMALLOC_SHIFT_HIGH)
2220 			realsize = 1 << index;
2221 		else {
2222 			if (index == 1)
2223 				realsize = 96;
2224 			else
2225 				realsize = 192;
2226 		}
2227 
2228 		text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2229 				(unsigned int)realsize);
2230 		s = create_kmalloc_cache(x, text, realsize, flags);
2231 		kmalloc_caches_dma[index] = s;
2232 		return s;
2233 	}
2234 #endif
2235 	return &kmalloc_caches[index];
2236 }
2237 
2238 void *__kmalloc(size_t size, gfp_t flags)
2239 {
2240 	struct kmem_cache *s = get_slab(size, flags);
2241 
2242 	if (s)
2243 		return slab_alloc(s, flags, -1, __builtin_return_address(0));
2244 	return NULL;
2245 }
2246 EXPORT_SYMBOL(__kmalloc);
2247 
2248 #ifdef CONFIG_NUMA
2249 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2250 {
2251 	struct kmem_cache *s = get_slab(size, flags);
2252 
2253 	if (s)
2254 		return slab_alloc(s, flags, node, __builtin_return_address(0));
2255 	return NULL;
2256 }
2257 EXPORT_SYMBOL(__kmalloc_node);
2258 #endif
2259 
2260 size_t ksize(const void *object)
2261 {
2262 	struct page *page = get_object_page(object);
2263 	struct kmem_cache *s;
2264 
2265 	BUG_ON(!page);
2266 	s = page->slab;
2267 	BUG_ON(!s);
2268 
2269 	/*
2270 	 * Debugging requires use of the padding between object
2271 	 * and whatever may come after it.
2272 	 */
2273 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2274 		return s->objsize;
2275 
2276 	/*
2277 	 * If we have the need to store the freelist pointer
2278 	 * back there or track user information then we can
2279 	 * only use the space before that information.
2280 	 */
2281 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2282 		return s->inuse;
2283 
2284 	/*
2285 	 * Else we can use all the padding etc for the allocation
2286 	 */
2287 	return s->size;
2288 }
2289 EXPORT_SYMBOL(ksize);
2290 
2291 void kfree(const void *x)
2292 {
2293 	struct kmem_cache *s;
2294 	struct page *page;
2295 
2296 	if (!x)
2297 		return;
2298 
2299 	page = virt_to_head_page(x);
2300 	s = page->slab;
2301 
2302 	slab_free(s, page, (void *)x, __builtin_return_address(0));
2303 }
2304 EXPORT_SYMBOL(kfree);
2305 
2306 /*
2307  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2308  * the remaining slabs by the number of items in use. The slabs with the
2309  * most items in use come first. New allocations will then fill those up
2310  * and thus they can be removed from the partial lists.
2311  *
2312  * The slabs with the least items are placed last. This results in them
2313  * being allocated from last increasing the chance that the last objects
2314  * are freed in them.
2315  */
2316 int kmem_cache_shrink(struct kmem_cache *s)
2317 {
2318 	int node;
2319 	int i;
2320 	struct kmem_cache_node *n;
2321 	struct page *page;
2322 	struct page *t;
2323 	struct list_head *slabs_by_inuse =
2324 		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2325 	unsigned long flags;
2326 
2327 	if (!slabs_by_inuse)
2328 		return -ENOMEM;
2329 
2330 	flush_all(s);
2331 	for_each_online_node(node) {
2332 		n = get_node(s, node);
2333 
2334 		if (!n->nr_partial)
2335 			continue;
2336 
2337 		for (i = 0; i < s->objects; i++)
2338 			INIT_LIST_HEAD(slabs_by_inuse + i);
2339 
2340 		spin_lock_irqsave(&n->list_lock, flags);
2341 
2342 		/*
2343 		 * Build lists indexed by the items in use in each slab.
2344 		 *
2345 		 * Note that concurrent frees may occur while we hold the
2346 		 * list_lock. page->inuse here is the upper limit.
2347 		 */
2348 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2349 			if (!page->inuse && slab_trylock(page)) {
2350 				/*
2351 				 * Must hold slab lock here because slab_free
2352 				 * may have freed the last object and be
2353 				 * waiting to release the slab.
2354 				 */
2355 				list_del(&page->lru);
2356 				n->nr_partial--;
2357 				slab_unlock(page);
2358 				discard_slab(s, page);
2359 			} else {
2360 				if (n->nr_partial > MAX_PARTIAL)
2361 					list_move(&page->lru,
2362 					slabs_by_inuse + page->inuse);
2363 			}
2364 		}
2365 
2366 		if (n->nr_partial <= MAX_PARTIAL)
2367 			goto out;
2368 
2369 		/*
2370 		 * Rebuild the partial list with the slabs filled up most
2371 		 * first and the least used slabs at the end.
2372 		 */
2373 		for (i = s->objects - 1; i >= 0; i--)
2374 			list_splice(slabs_by_inuse + i, n->partial.prev);
2375 
2376 	out:
2377 		spin_unlock_irqrestore(&n->list_lock, flags);
2378 	}
2379 
2380 	kfree(slabs_by_inuse);
2381 	return 0;
2382 }
2383 EXPORT_SYMBOL(kmem_cache_shrink);
2384 
2385 /**
2386  * krealloc - reallocate memory. The contents will remain unchanged.
2387  * @p: object to reallocate memory for.
2388  * @new_size: how many bytes of memory are required.
2389  * @flags: the type of memory to allocate.
2390  *
2391  * The contents of the object pointed to are preserved up to the
2392  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
2393  * behaves exactly like kmalloc().  If @size is 0 and @p is not a
2394  * %NULL pointer, the object pointed to is freed.
2395  */
2396 void *krealloc(const void *p, size_t new_size, gfp_t flags)
2397 {
2398 	void *ret;
2399 	size_t ks;
2400 
2401 	if (unlikely(!p))
2402 		return kmalloc(new_size, flags);
2403 
2404 	if (unlikely(!new_size)) {
2405 		kfree(p);
2406 		return NULL;
2407 	}
2408 
2409 	ks = ksize(p);
2410 	if (ks >= new_size)
2411 		return (void *)p;
2412 
2413 	ret = kmalloc(new_size, flags);
2414 	if (ret) {
2415 		memcpy(ret, p, min(new_size, ks));
2416 		kfree(p);
2417 	}
2418 	return ret;
2419 }
2420 EXPORT_SYMBOL(krealloc);
2421 
2422 /********************************************************************
2423  *			Basic setup of slabs
2424  *******************************************************************/
2425 
2426 void __init kmem_cache_init(void)
2427 {
2428 	int i;
2429 
2430 #ifdef CONFIG_NUMA
2431 	/*
2432 	 * Must first have the slab cache available for the allocations of the
2433 	 * struct kmem_cache_node's. There is special bootstrap code in
2434 	 * kmem_cache_open for slab_state == DOWN.
2435 	 */
2436 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2437 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2438 	kmalloc_caches[0].refcount = -1;
2439 #endif
2440 
2441 	/* Able to allocate the per node structures */
2442 	slab_state = PARTIAL;
2443 
2444 	/* Caches that are not of the two-to-the-power-of size */
2445 	create_kmalloc_cache(&kmalloc_caches[1],
2446 				"kmalloc-96", 96, GFP_KERNEL);
2447 	create_kmalloc_cache(&kmalloc_caches[2],
2448 				"kmalloc-192", 192, GFP_KERNEL);
2449 
2450 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2451 		create_kmalloc_cache(&kmalloc_caches[i],
2452 			"kmalloc", 1 << i, GFP_KERNEL);
2453 
2454 	slab_state = UP;
2455 
2456 	/* Provide the correct kmalloc names now that the caches are up */
2457 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2458 		kmalloc_caches[i]. name =
2459 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2460 
2461 #ifdef CONFIG_SMP
2462 	register_cpu_notifier(&slab_notifier);
2463 #endif
2464 
2465 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2466 				nr_cpu_ids * sizeof(struct page *);
2467 
2468 	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2469 		" Processors=%d, Nodes=%d\n",
2470 		KMALLOC_SHIFT_HIGH, cache_line_size(),
2471 		slub_min_order, slub_max_order, slub_min_objects,
2472 		nr_cpu_ids, nr_node_ids);
2473 }
2474 
2475 /*
2476  * Find a mergeable slab cache
2477  */
2478 static int slab_unmergeable(struct kmem_cache *s)
2479 {
2480 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2481 		return 1;
2482 
2483 	if (s->ctor)
2484 		return 1;
2485 
2486 	/*
2487 	 * We may have set a slab to be unmergeable during bootstrap.
2488 	 */
2489 	if (s->refcount < 0)
2490 		return 1;
2491 
2492 	return 0;
2493 }
2494 
2495 static struct kmem_cache *find_mergeable(size_t size,
2496 		size_t align, unsigned long flags,
2497 		void (*ctor)(void *, struct kmem_cache *, unsigned long))
2498 {
2499 	struct list_head *h;
2500 
2501 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2502 		return NULL;
2503 
2504 	if (ctor)
2505 		return NULL;
2506 
2507 	size = ALIGN(size, sizeof(void *));
2508 	align = calculate_alignment(flags, align, size);
2509 	size = ALIGN(size, align);
2510 
2511 	list_for_each(h, &slab_caches) {
2512 		struct kmem_cache *s =
2513 			container_of(h, struct kmem_cache, list);
2514 
2515 		if (slab_unmergeable(s))
2516 			continue;
2517 
2518 		if (size > s->size)
2519 			continue;
2520 
2521 		if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2522 			(s->flags & SLUB_MERGE_SAME))
2523 				continue;
2524 		/*
2525 		 * Check if alignment is compatible.
2526 		 * Courtesy of Adrian Drzewiecki
2527 		 */
2528 		if ((s->size & ~(align -1)) != s->size)
2529 			continue;
2530 
2531 		if (s->size - size >= sizeof(void *))
2532 			continue;
2533 
2534 		return s;
2535 	}
2536 	return NULL;
2537 }
2538 
2539 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2540 		size_t align, unsigned long flags,
2541 		void (*ctor)(void *, struct kmem_cache *, unsigned long),
2542 		void (*dtor)(void *, struct kmem_cache *, unsigned long))
2543 {
2544 	struct kmem_cache *s;
2545 
2546 	BUG_ON(dtor);
2547 	down_write(&slub_lock);
2548 	s = find_mergeable(size, align, flags, ctor);
2549 	if (s) {
2550 		s->refcount++;
2551 		/*
2552 		 * Adjust the object sizes so that we clear
2553 		 * the complete object on kzalloc.
2554 		 */
2555 		s->objsize = max(s->objsize, (int)size);
2556 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2557 		if (sysfs_slab_alias(s, name))
2558 			goto err;
2559 	} else {
2560 		s = kmalloc(kmem_size, GFP_KERNEL);
2561 		if (s && kmem_cache_open(s, GFP_KERNEL, name,
2562 				size, align, flags, ctor)) {
2563 			if (sysfs_slab_add(s)) {
2564 				kfree(s);
2565 				goto err;
2566 			}
2567 			list_add(&s->list, &slab_caches);
2568 		} else
2569 			kfree(s);
2570 	}
2571 	up_write(&slub_lock);
2572 	return s;
2573 
2574 err:
2575 	up_write(&slub_lock);
2576 	if (flags & SLAB_PANIC)
2577 		panic("Cannot create slabcache %s\n", name);
2578 	else
2579 		s = NULL;
2580 	return s;
2581 }
2582 EXPORT_SYMBOL(kmem_cache_create);
2583 
2584 void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2585 {
2586 	void *x;
2587 
2588 	x = slab_alloc(s, flags, -1, __builtin_return_address(0));
2589 	if (x)
2590 		memset(x, 0, s->objsize);
2591 	return x;
2592 }
2593 EXPORT_SYMBOL(kmem_cache_zalloc);
2594 
2595 #ifdef CONFIG_SMP
2596 static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2597 {
2598 	struct list_head *h;
2599 
2600 	down_read(&slub_lock);
2601 	list_for_each(h, &slab_caches) {
2602 		struct kmem_cache *s =
2603 			container_of(h, struct kmem_cache, list);
2604 
2605 		func(s, cpu);
2606 	}
2607 	up_read(&slub_lock);
2608 }
2609 
2610 /*
2611  * Use the cpu notifier to insure that the cpu slabs are flushed when
2612  * necessary.
2613  */
2614 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2615 		unsigned long action, void *hcpu)
2616 {
2617 	long cpu = (long)hcpu;
2618 
2619 	switch (action) {
2620 	case CPU_UP_CANCELED:
2621 	case CPU_UP_CANCELED_FROZEN:
2622 	case CPU_DEAD:
2623 	case CPU_DEAD_FROZEN:
2624 		for_all_slabs(__flush_cpu_slab, cpu);
2625 		break;
2626 	default:
2627 		break;
2628 	}
2629 	return NOTIFY_OK;
2630 }
2631 
2632 static struct notifier_block __cpuinitdata slab_notifier =
2633 	{ &slab_cpuup_callback, NULL, 0 };
2634 
2635 #endif
2636 
2637 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2638 {
2639 	struct kmem_cache *s = get_slab(size, gfpflags);
2640 
2641 	if (!s)
2642 		return NULL;
2643 
2644 	return slab_alloc(s, gfpflags, -1, caller);
2645 }
2646 
2647 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2648 					int node, void *caller)
2649 {
2650 	struct kmem_cache *s = get_slab(size, gfpflags);
2651 
2652 	if (!s)
2653 		return NULL;
2654 
2655 	return slab_alloc(s, gfpflags, node, caller);
2656 }
2657 
2658 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
2659 static int validate_slab(struct kmem_cache *s, struct page *page)
2660 {
2661 	void *p;
2662 	void *addr = page_address(page);
2663 	DECLARE_BITMAP(map, s->objects);
2664 
2665 	if (!check_slab(s, page) ||
2666 			!on_freelist(s, page, NULL))
2667 		return 0;
2668 
2669 	/* Now we know that a valid freelist exists */
2670 	bitmap_zero(map, s->objects);
2671 
2672 	for_each_free_object(p, s, page->freelist) {
2673 		set_bit(slab_index(p, s, addr), map);
2674 		if (!check_object(s, page, p, 0))
2675 			return 0;
2676 	}
2677 
2678 	for_each_object(p, s, addr)
2679 		if (!test_bit(slab_index(p, s, addr), map))
2680 			if (!check_object(s, page, p, 1))
2681 				return 0;
2682 	return 1;
2683 }
2684 
2685 static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2686 {
2687 	if (slab_trylock(page)) {
2688 		validate_slab(s, page);
2689 		slab_unlock(page);
2690 	} else
2691 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2692 			s->name, page);
2693 
2694 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
2695 		if (!SlabDebug(page))
2696 			printk(KERN_ERR "SLUB %s: SlabDebug not set "
2697 				"on slab 0x%p\n", s->name, page);
2698 	} else {
2699 		if (SlabDebug(page))
2700 			printk(KERN_ERR "SLUB %s: SlabDebug set on "
2701 				"slab 0x%p\n", s->name, page);
2702 	}
2703 }
2704 
2705 static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2706 {
2707 	unsigned long count = 0;
2708 	struct page *page;
2709 	unsigned long flags;
2710 
2711 	spin_lock_irqsave(&n->list_lock, flags);
2712 
2713 	list_for_each_entry(page, &n->partial, lru) {
2714 		validate_slab_slab(s, page);
2715 		count++;
2716 	}
2717 	if (count != n->nr_partial)
2718 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2719 			"counter=%ld\n", s->name, count, n->nr_partial);
2720 
2721 	if (!(s->flags & SLAB_STORE_USER))
2722 		goto out;
2723 
2724 	list_for_each_entry(page, &n->full, lru) {
2725 		validate_slab_slab(s, page);
2726 		count++;
2727 	}
2728 	if (count != atomic_long_read(&n->nr_slabs))
2729 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2730 			"counter=%ld\n", s->name, count,
2731 			atomic_long_read(&n->nr_slabs));
2732 
2733 out:
2734 	spin_unlock_irqrestore(&n->list_lock, flags);
2735 	return count;
2736 }
2737 
2738 static unsigned long validate_slab_cache(struct kmem_cache *s)
2739 {
2740 	int node;
2741 	unsigned long count = 0;
2742 
2743 	flush_all(s);
2744 	for_each_online_node(node) {
2745 		struct kmem_cache_node *n = get_node(s, node);
2746 
2747 		count += validate_slab_node(s, n);
2748 	}
2749 	return count;
2750 }
2751 
2752 #ifdef SLUB_RESILIENCY_TEST
2753 static void resiliency_test(void)
2754 {
2755 	u8 *p;
2756 
2757 	printk(KERN_ERR "SLUB resiliency testing\n");
2758 	printk(KERN_ERR "-----------------------\n");
2759 	printk(KERN_ERR "A. Corruption after allocation\n");
2760 
2761 	p = kzalloc(16, GFP_KERNEL);
2762 	p[16] = 0x12;
2763 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2764 			" 0x12->0x%p\n\n", p + 16);
2765 
2766 	validate_slab_cache(kmalloc_caches + 4);
2767 
2768 	/* Hmmm... The next two are dangerous */
2769 	p = kzalloc(32, GFP_KERNEL);
2770 	p[32 + sizeof(void *)] = 0x34;
2771 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2772 		 	" 0x34 -> -0x%p\n", p);
2773 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2774 
2775 	validate_slab_cache(kmalloc_caches + 5);
2776 	p = kzalloc(64, GFP_KERNEL);
2777 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2778 	*p = 0x56;
2779 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2780 									p);
2781 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2782 	validate_slab_cache(kmalloc_caches + 6);
2783 
2784 	printk(KERN_ERR "\nB. Corruption after free\n");
2785 	p = kzalloc(128, GFP_KERNEL);
2786 	kfree(p);
2787 	*p = 0x78;
2788 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2789 	validate_slab_cache(kmalloc_caches + 7);
2790 
2791 	p = kzalloc(256, GFP_KERNEL);
2792 	kfree(p);
2793 	p[50] = 0x9a;
2794 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2795 	validate_slab_cache(kmalloc_caches + 8);
2796 
2797 	p = kzalloc(512, GFP_KERNEL);
2798 	kfree(p);
2799 	p[512] = 0xab;
2800 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2801 	validate_slab_cache(kmalloc_caches + 9);
2802 }
2803 #else
2804 static void resiliency_test(void) {};
2805 #endif
2806 
2807 /*
2808  * Generate lists of code addresses where slabcache objects are allocated
2809  * and freed.
2810  */
2811 
2812 struct location {
2813 	unsigned long count;
2814 	void *addr;
2815 	long long sum_time;
2816 	long min_time;
2817 	long max_time;
2818 	long min_pid;
2819 	long max_pid;
2820 	cpumask_t cpus;
2821 	nodemask_t nodes;
2822 };
2823 
2824 struct loc_track {
2825 	unsigned long max;
2826 	unsigned long count;
2827 	struct location *loc;
2828 };
2829 
2830 static void free_loc_track(struct loc_track *t)
2831 {
2832 	if (t->max)
2833 		free_pages((unsigned long)t->loc,
2834 			get_order(sizeof(struct location) * t->max));
2835 }
2836 
2837 static int alloc_loc_track(struct loc_track *t, unsigned long max)
2838 {
2839 	struct location *l;
2840 	int order;
2841 
2842 	if (!max)
2843 		max = PAGE_SIZE / sizeof(struct location);
2844 
2845 	order = get_order(sizeof(struct location) * max);
2846 
2847 	l = (void *)__get_free_pages(GFP_KERNEL, order);
2848 
2849 	if (!l)
2850 		return 0;
2851 
2852 	if (t->count) {
2853 		memcpy(l, t->loc, sizeof(struct location) * t->count);
2854 		free_loc_track(t);
2855 	}
2856 	t->max = max;
2857 	t->loc = l;
2858 	return 1;
2859 }
2860 
2861 static int add_location(struct loc_track *t, struct kmem_cache *s,
2862 				const struct track *track)
2863 {
2864 	long start, end, pos;
2865 	struct location *l;
2866 	void *caddr;
2867 	unsigned long age = jiffies - track->when;
2868 
2869 	start = -1;
2870 	end = t->count;
2871 
2872 	for ( ; ; ) {
2873 		pos = start + (end - start + 1) / 2;
2874 
2875 		/*
2876 		 * There is nothing at "end". If we end up there
2877 		 * we need to add something to before end.
2878 		 */
2879 		if (pos == end)
2880 			break;
2881 
2882 		caddr = t->loc[pos].addr;
2883 		if (track->addr == caddr) {
2884 
2885 			l = &t->loc[pos];
2886 			l->count++;
2887 			if (track->when) {
2888 				l->sum_time += age;
2889 				if (age < l->min_time)
2890 					l->min_time = age;
2891 				if (age > l->max_time)
2892 					l->max_time = age;
2893 
2894 				if (track->pid < l->min_pid)
2895 					l->min_pid = track->pid;
2896 				if (track->pid > l->max_pid)
2897 					l->max_pid = track->pid;
2898 
2899 				cpu_set(track->cpu, l->cpus);
2900 			}
2901 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
2902 			return 1;
2903 		}
2904 
2905 		if (track->addr < caddr)
2906 			end = pos;
2907 		else
2908 			start = pos;
2909 	}
2910 
2911 	/*
2912 	 * Not found. Insert new tracking element.
2913 	 */
2914 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2915 		return 0;
2916 
2917 	l = t->loc + pos;
2918 	if (pos < t->count)
2919 		memmove(l + 1, l,
2920 			(t->count - pos) * sizeof(struct location));
2921 	t->count++;
2922 	l->count = 1;
2923 	l->addr = track->addr;
2924 	l->sum_time = age;
2925 	l->min_time = age;
2926 	l->max_time = age;
2927 	l->min_pid = track->pid;
2928 	l->max_pid = track->pid;
2929 	cpus_clear(l->cpus);
2930 	cpu_set(track->cpu, l->cpus);
2931 	nodes_clear(l->nodes);
2932 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
2933 	return 1;
2934 }
2935 
2936 static void process_slab(struct loc_track *t, struct kmem_cache *s,
2937 		struct page *page, enum track_item alloc)
2938 {
2939 	void *addr = page_address(page);
2940 	DECLARE_BITMAP(map, s->objects);
2941 	void *p;
2942 
2943 	bitmap_zero(map, s->objects);
2944 	for_each_free_object(p, s, page->freelist)
2945 		set_bit(slab_index(p, s, addr), map);
2946 
2947 	for_each_object(p, s, addr)
2948 		if (!test_bit(slab_index(p, s, addr), map))
2949 			add_location(t, s, get_track(s, p, alloc));
2950 }
2951 
2952 static int list_locations(struct kmem_cache *s, char *buf,
2953 					enum track_item alloc)
2954 {
2955 	int n = 0;
2956 	unsigned long i;
2957 	struct loc_track t;
2958 	int node;
2959 
2960 	t.count = 0;
2961 	t.max = 0;
2962 
2963 	/* Push back cpu slabs */
2964 	flush_all(s);
2965 
2966 	for_each_online_node(node) {
2967 		struct kmem_cache_node *n = get_node(s, node);
2968 		unsigned long flags;
2969 		struct page *page;
2970 
2971 		if (!atomic_read(&n->nr_slabs))
2972 			continue;
2973 
2974 		spin_lock_irqsave(&n->list_lock, flags);
2975 		list_for_each_entry(page, &n->partial, lru)
2976 			process_slab(&t, s, page, alloc);
2977 		list_for_each_entry(page, &n->full, lru)
2978 			process_slab(&t, s, page, alloc);
2979 		spin_unlock_irqrestore(&n->list_lock, flags);
2980 	}
2981 
2982 	for (i = 0; i < t.count; i++) {
2983 		struct location *l = &t.loc[i];
2984 
2985 		if (n > PAGE_SIZE - 100)
2986 			break;
2987 		n += sprintf(buf + n, "%7ld ", l->count);
2988 
2989 		if (l->addr)
2990 			n += sprint_symbol(buf + n, (unsigned long)l->addr);
2991 		else
2992 			n += sprintf(buf + n, "<not-available>");
2993 
2994 		if (l->sum_time != l->min_time) {
2995 			unsigned long remainder;
2996 
2997 			n += sprintf(buf + n, " age=%ld/%ld/%ld",
2998 			l->min_time,
2999 			div_long_long_rem(l->sum_time, l->count, &remainder),
3000 			l->max_time);
3001 		} else
3002 			n += sprintf(buf + n, " age=%ld",
3003 				l->min_time);
3004 
3005 		if (l->min_pid != l->max_pid)
3006 			n += sprintf(buf + n, " pid=%ld-%ld",
3007 				l->min_pid, l->max_pid);
3008 		else
3009 			n += sprintf(buf + n, " pid=%ld",
3010 				l->min_pid);
3011 
3012 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus)) {
3013 			n += sprintf(buf + n, " cpus=");
3014 			n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3015 					l->cpus);
3016 		}
3017 
3018 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes)) {
3019 			n += sprintf(buf + n, " nodes=");
3020 			n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3021 					l->nodes);
3022 		}
3023 
3024 		n += sprintf(buf + n, "\n");
3025 	}
3026 
3027 	free_loc_track(&t);
3028 	if (!t.count)
3029 		n += sprintf(buf, "No data\n");
3030 	return n;
3031 }
3032 
3033 static unsigned long count_partial(struct kmem_cache_node *n)
3034 {
3035 	unsigned long flags;
3036 	unsigned long x = 0;
3037 	struct page *page;
3038 
3039 	spin_lock_irqsave(&n->list_lock, flags);
3040 	list_for_each_entry(page, &n->partial, lru)
3041 		x += page->inuse;
3042 	spin_unlock_irqrestore(&n->list_lock, flags);
3043 	return x;
3044 }
3045 
3046 enum slab_stat_type {
3047 	SL_FULL,
3048 	SL_PARTIAL,
3049 	SL_CPU,
3050 	SL_OBJECTS
3051 };
3052 
3053 #define SO_FULL		(1 << SL_FULL)
3054 #define SO_PARTIAL	(1 << SL_PARTIAL)
3055 #define SO_CPU		(1 << SL_CPU)
3056 #define SO_OBJECTS	(1 << SL_OBJECTS)
3057 
3058 static unsigned long slab_objects(struct kmem_cache *s,
3059 			char *buf, unsigned long flags)
3060 {
3061 	unsigned long total = 0;
3062 	int cpu;
3063 	int node;
3064 	int x;
3065 	unsigned long *nodes;
3066 	unsigned long *per_cpu;
3067 
3068 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3069 	per_cpu = nodes + nr_node_ids;
3070 
3071 	for_each_possible_cpu(cpu) {
3072 		struct page *page = s->cpu_slab[cpu];
3073 		int node;
3074 
3075 		if (page) {
3076 			node = page_to_nid(page);
3077 			if (flags & SO_CPU) {
3078 				int x = 0;
3079 
3080 				if (flags & SO_OBJECTS)
3081 					x = page->inuse;
3082 				else
3083 					x = 1;
3084 				total += x;
3085 				nodes[node] += x;
3086 			}
3087 			per_cpu[node]++;
3088 		}
3089 	}
3090 
3091 	for_each_online_node(node) {
3092 		struct kmem_cache_node *n = get_node(s, node);
3093 
3094 		if (flags & SO_PARTIAL) {
3095 			if (flags & SO_OBJECTS)
3096 				x = count_partial(n);
3097 			else
3098 				x = n->nr_partial;
3099 			total += x;
3100 			nodes[node] += x;
3101 		}
3102 
3103 		if (flags & SO_FULL) {
3104 			int full_slabs = atomic_read(&n->nr_slabs)
3105 					- per_cpu[node]
3106 					- n->nr_partial;
3107 
3108 			if (flags & SO_OBJECTS)
3109 				x = full_slabs * s->objects;
3110 			else
3111 				x = full_slabs;
3112 			total += x;
3113 			nodes[node] += x;
3114 		}
3115 	}
3116 
3117 	x = sprintf(buf, "%lu", total);
3118 #ifdef CONFIG_NUMA
3119 	for_each_online_node(node)
3120 		if (nodes[node])
3121 			x += sprintf(buf + x, " N%d=%lu",
3122 					node, nodes[node]);
3123 #endif
3124 	kfree(nodes);
3125 	return x + sprintf(buf + x, "\n");
3126 }
3127 
3128 static int any_slab_objects(struct kmem_cache *s)
3129 {
3130 	int node;
3131 	int cpu;
3132 
3133 	for_each_possible_cpu(cpu)
3134 		if (s->cpu_slab[cpu])
3135 			return 1;
3136 
3137 	for_each_node(node) {
3138 		struct kmem_cache_node *n = get_node(s, node);
3139 
3140 		if (n->nr_partial || atomic_read(&n->nr_slabs))
3141 			return 1;
3142 	}
3143 	return 0;
3144 }
3145 
3146 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3147 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3148 
3149 struct slab_attribute {
3150 	struct attribute attr;
3151 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3152 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3153 };
3154 
3155 #define SLAB_ATTR_RO(_name) \
3156 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3157 
3158 #define SLAB_ATTR(_name) \
3159 	static struct slab_attribute _name##_attr =  \
3160 	__ATTR(_name, 0644, _name##_show, _name##_store)
3161 
3162 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3163 {
3164 	return sprintf(buf, "%d\n", s->size);
3165 }
3166 SLAB_ATTR_RO(slab_size);
3167 
3168 static ssize_t align_show(struct kmem_cache *s, char *buf)
3169 {
3170 	return sprintf(buf, "%d\n", s->align);
3171 }
3172 SLAB_ATTR_RO(align);
3173 
3174 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3175 {
3176 	return sprintf(buf, "%d\n", s->objsize);
3177 }
3178 SLAB_ATTR_RO(object_size);
3179 
3180 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3181 {
3182 	return sprintf(buf, "%d\n", s->objects);
3183 }
3184 SLAB_ATTR_RO(objs_per_slab);
3185 
3186 static ssize_t order_show(struct kmem_cache *s, char *buf)
3187 {
3188 	return sprintf(buf, "%d\n", s->order);
3189 }
3190 SLAB_ATTR_RO(order);
3191 
3192 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3193 {
3194 	if (s->ctor) {
3195 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3196 
3197 		return n + sprintf(buf + n, "\n");
3198 	}
3199 	return 0;
3200 }
3201 SLAB_ATTR_RO(ctor);
3202 
3203 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3204 {
3205 	return sprintf(buf, "%d\n", s->refcount - 1);
3206 }
3207 SLAB_ATTR_RO(aliases);
3208 
3209 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3210 {
3211 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3212 }
3213 SLAB_ATTR_RO(slabs);
3214 
3215 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3216 {
3217 	return slab_objects(s, buf, SO_PARTIAL);
3218 }
3219 SLAB_ATTR_RO(partial);
3220 
3221 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3222 {
3223 	return slab_objects(s, buf, SO_CPU);
3224 }
3225 SLAB_ATTR_RO(cpu_slabs);
3226 
3227 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3228 {
3229 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3230 }
3231 SLAB_ATTR_RO(objects);
3232 
3233 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3234 {
3235 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3236 }
3237 
3238 static ssize_t sanity_checks_store(struct kmem_cache *s,
3239 				const char *buf, size_t length)
3240 {
3241 	s->flags &= ~SLAB_DEBUG_FREE;
3242 	if (buf[0] == '1')
3243 		s->flags |= SLAB_DEBUG_FREE;
3244 	return length;
3245 }
3246 SLAB_ATTR(sanity_checks);
3247 
3248 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3249 {
3250 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3251 }
3252 
3253 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3254 							size_t length)
3255 {
3256 	s->flags &= ~SLAB_TRACE;
3257 	if (buf[0] == '1')
3258 		s->flags |= SLAB_TRACE;
3259 	return length;
3260 }
3261 SLAB_ATTR(trace);
3262 
3263 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3264 {
3265 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3266 }
3267 
3268 static ssize_t reclaim_account_store(struct kmem_cache *s,
3269 				const char *buf, size_t length)
3270 {
3271 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3272 	if (buf[0] == '1')
3273 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3274 	return length;
3275 }
3276 SLAB_ATTR(reclaim_account);
3277 
3278 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3279 {
3280 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3281 }
3282 SLAB_ATTR_RO(hwcache_align);
3283 
3284 #ifdef CONFIG_ZONE_DMA
3285 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3286 {
3287 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3288 }
3289 SLAB_ATTR_RO(cache_dma);
3290 #endif
3291 
3292 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3293 {
3294 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3295 }
3296 SLAB_ATTR_RO(destroy_by_rcu);
3297 
3298 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3299 {
3300 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3301 }
3302 
3303 static ssize_t red_zone_store(struct kmem_cache *s,
3304 				const char *buf, size_t length)
3305 {
3306 	if (any_slab_objects(s))
3307 		return -EBUSY;
3308 
3309 	s->flags &= ~SLAB_RED_ZONE;
3310 	if (buf[0] == '1')
3311 		s->flags |= SLAB_RED_ZONE;
3312 	calculate_sizes(s);
3313 	return length;
3314 }
3315 SLAB_ATTR(red_zone);
3316 
3317 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3318 {
3319 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3320 }
3321 
3322 static ssize_t poison_store(struct kmem_cache *s,
3323 				const char *buf, size_t length)
3324 {
3325 	if (any_slab_objects(s))
3326 		return -EBUSY;
3327 
3328 	s->flags &= ~SLAB_POISON;
3329 	if (buf[0] == '1')
3330 		s->flags |= SLAB_POISON;
3331 	calculate_sizes(s);
3332 	return length;
3333 }
3334 SLAB_ATTR(poison);
3335 
3336 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3337 {
3338 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3339 }
3340 
3341 static ssize_t store_user_store(struct kmem_cache *s,
3342 				const char *buf, size_t length)
3343 {
3344 	if (any_slab_objects(s))
3345 		return -EBUSY;
3346 
3347 	s->flags &= ~SLAB_STORE_USER;
3348 	if (buf[0] == '1')
3349 		s->flags |= SLAB_STORE_USER;
3350 	calculate_sizes(s);
3351 	return length;
3352 }
3353 SLAB_ATTR(store_user);
3354 
3355 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3356 {
3357 	return 0;
3358 }
3359 
3360 static ssize_t validate_store(struct kmem_cache *s,
3361 			const char *buf, size_t length)
3362 {
3363 	if (buf[0] == '1')
3364 		validate_slab_cache(s);
3365 	else
3366 		return -EINVAL;
3367 	return length;
3368 }
3369 SLAB_ATTR(validate);
3370 
3371 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3372 {
3373 	return 0;
3374 }
3375 
3376 static ssize_t shrink_store(struct kmem_cache *s,
3377 			const char *buf, size_t length)
3378 {
3379 	if (buf[0] == '1') {
3380 		int rc = kmem_cache_shrink(s);
3381 
3382 		if (rc)
3383 			return rc;
3384 	} else
3385 		return -EINVAL;
3386 	return length;
3387 }
3388 SLAB_ATTR(shrink);
3389 
3390 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3391 {
3392 	if (!(s->flags & SLAB_STORE_USER))
3393 		return -ENOSYS;
3394 	return list_locations(s, buf, TRACK_ALLOC);
3395 }
3396 SLAB_ATTR_RO(alloc_calls);
3397 
3398 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3399 {
3400 	if (!(s->flags & SLAB_STORE_USER))
3401 		return -ENOSYS;
3402 	return list_locations(s, buf, TRACK_FREE);
3403 }
3404 SLAB_ATTR_RO(free_calls);
3405 
3406 #ifdef CONFIG_NUMA
3407 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3408 {
3409 	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3410 }
3411 
3412 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3413 				const char *buf, size_t length)
3414 {
3415 	int n = simple_strtoul(buf, NULL, 10);
3416 
3417 	if (n < 100)
3418 		s->defrag_ratio = n * 10;
3419 	return length;
3420 }
3421 SLAB_ATTR(defrag_ratio);
3422 #endif
3423 
3424 static struct attribute * slab_attrs[] = {
3425 	&slab_size_attr.attr,
3426 	&object_size_attr.attr,
3427 	&objs_per_slab_attr.attr,
3428 	&order_attr.attr,
3429 	&objects_attr.attr,
3430 	&slabs_attr.attr,
3431 	&partial_attr.attr,
3432 	&cpu_slabs_attr.attr,
3433 	&ctor_attr.attr,
3434 	&aliases_attr.attr,
3435 	&align_attr.attr,
3436 	&sanity_checks_attr.attr,
3437 	&trace_attr.attr,
3438 	&hwcache_align_attr.attr,
3439 	&reclaim_account_attr.attr,
3440 	&destroy_by_rcu_attr.attr,
3441 	&red_zone_attr.attr,
3442 	&poison_attr.attr,
3443 	&store_user_attr.attr,
3444 	&validate_attr.attr,
3445 	&shrink_attr.attr,
3446 	&alloc_calls_attr.attr,
3447 	&free_calls_attr.attr,
3448 #ifdef CONFIG_ZONE_DMA
3449 	&cache_dma_attr.attr,
3450 #endif
3451 #ifdef CONFIG_NUMA
3452 	&defrag_ratio_attr.attr,
3453 #endif
3454 	NULL
3455 };
3456 
3457 static struct attribute_group slab_attr_group = {
3458 	.attrs = slab_attrs,
3459 };
3460 
3461 static ssize_t slab_attr_show(struct kobject *kobj,
3462 				struct attribute *attr,
3463 				char *buf)
3464 {
3465 	struct slab_attribute *attribute;
3466 	struct kmem_cache *s;
3467 	int err;
3468 
3469 	attribute = to_slab_attr(attr);
3470 	s = to_slab(kobj);
3471 
3472 	if (!attribute->show)
3473 		return -EIO;
3474 
3475 	err = attribute->show(s, buf);
3476 
3477 	return err;
3478 }
3479 
3480 static ssize_t slab_attr_store(struct kobject *kobj,
3481 				struct attribute *attr,
3482 				const char *buf, size_t len)
3483 {
3484 	struct slab_attribute *attribute;
3485 	struct kmem_cache *s;
3486 	int err;
3487 
3488 	attribute = to_slab_attr(attr);
3489 	s = to_slab(kobj);
3490 
3491 	if (!attribute->store)
3492 		return -EIO;
3493 
3494 	err = attribute->store(s, buf, len);
3495 
3496 	return err;
3497 }
3498 
3499 static struct sysfs_ops slab_sysfs_ops = {
3500 	.show = slab_attr_show,
3501 	.store = slab_attr_store,
3502 };
3503 
3504 static struct kobj_type slab_ktype = {
3505 	.sysfs_ops = &slab_sysfs_ops,
3506 };
3507 
3508 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3509 {
3510 	struct kobj_type *ktype = get_ktype(kobj);
3511 
3512 	if (ktype == &slab_ktype)
3513 		return 1;
3514 	return 0;
3515 }
3516 
3517 static struct kset_uevent_ops slab_uevent_ops = {
3518 	.filter = uevent_filter,
3519 };
3520 
3521 decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3522 
3523 #define ID_STR_LENGTH 64
3524 
3525 /* Create a unique string id for a slab cache:
3526  * format
3527  * :[flags-]size:[memory address of kmemcache]
3528  */
3529 static char *create_unique_id(struct kmem_cache *s)
3530 {
3531 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3532 	char *p = name;
3533 
3534 	BUG_ON(!name);
3535 
3536 	*p++ = ':';
3537 	/*
3538 	 * First flags affecting slabcache operations. We will only
3539 	 * get here for aliasable slabs so we do not need to support
3540 	 * too many flags. The flags here must cover all flags that
3541 	 * are matched during merging to guarantee that the id is
3542 	 * unique.
3543 	 */
3544 	if (s->flags & SLAB_CACHE_DMA)
3545 		*p++ = 'd';
3546 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3547 		*p++ = 'a';
3548 	if (s->flags & SLAB_DEBUG_FREE)
3549 		*p++ = 'F';
3550 	if (p != name + 1)
3551 		*p++ = '-';
3552 	p += sprintf(p, "%07d", s->size);
3553 	BUG_ON(p > name + ID_STR_LENGTH - 1);
3554 	return name;
3555 }
3556 
3557 static int sysfs_slab_add(struct kmem_cache *s)
3558 {
3559 	int err;
3560 	const char *name;
3561 	int unmergeable;
3562 
3563 	if (slab_state < SYSFS)
3564 		/* Defer until later */
3565 		return 0;
3566 
3567 	unmergeable = slab_unmergeable(s);
3568 	if (unmergeable) {
3569 		/*
3570 		 * Slabcache can never be merged so we can use the name proper.
3571 		 * This is typically the case for debug situations. In that
3572 		 * case we can catch duplicate names easily.
3573 		 */
3574 		sysfs_remove_link(&slab_subsys.kobj, s->name);
3575 		name = s->name;
3576 	} else {
3577 		/*
3578 		 * Create a unique name for the slab as a target
3579 		 * for the symlinks.
3580 		 */
3581 		name = create_unique_id(s);
3582 	}
3583 
3584 	kobj_set_kset_s(s, slab_subsys);
3585 	kobject_set_name(&s->kobj, name);
3586 	kobject_init(&s->kobj);
3587 	err = kobject_add(&s->kobj);
3588 	if (err)
3589 		return err;
3590 
3591 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
3592 	if (err)
3593 		return err;
3594 	kobject_uevent(&s->kobj, KOBJ_ADD);
3595 	if (!unmergeable) {
3596 		/* Setup first alias */
3597 		sysfs_slab_alias(s, s->name);
3598 		kfree(name);
3599 	}
3600 	return 0;
3601 }
3602 
3603 static void sysfs_slab_remove(struct kmem_cache *s)
3604 {
3605 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
3606 	kobject_del(&s->kobj);
3607 }
3608 
3609 /*
3610  * Need to buffer aliases during bootup until sysfs becomes
3611  * available lest we loose that information.
3612  */
3613 struct saved_alias {
3614 	struct kmem_cache *s;
3615 	const char *name;
3616 	struct saved_alias *next;
3617 };
3618 
3619 struct saved_alias *alias_list;
3620 
3621 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3622 {
3623 	struct saved_alias *al;
3624 
3625 	if (slab_state == SYSFS) {
3626 		/*
3627 		 * If we have a leftover link then remove it.
3628 		 */
3629 		sysfs_remove_link(&slab_subsys.kobj, name);
3630 		return sysfs_create_link(&slab_subsys.kobj,
3631 						&s->kobj, name);
3632 	}
3633 
3634 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3635 	if (!al)
3636 		return -ENOMEM;
3637 
3638 	al->s = s;
3639 	al->name = name;
3640 	al->next = alias_list;
3641 	alias_list = al;
3642 	return 0;
3643 }
3644 
3645 static int __init slab_sysfs_init(void)
3646 {
3647 	struct list_head *h;
3648 	int err;
3649 
3650 	err = subsystem_register(&slab_subsys);
3651 	if (err) {
3652 		printk(KERN_ERR "Cannot register slab subsystem.\n");
3653 		return -ENOSYS;
3654 	}
3655 
3656 	slab_state = SYSFS;
3657 
3658 	list_for_each(h, &slab_caches) {
3659 		struct kmem_cache *s =
3660 			container_of(h, struct kmem_cache, list);
3661 
3662 		err = sysfs_slab_add(s);
3663 		BUG_ON(err);
3664 	}
3665 
3666 	while (alias_list) {
3667 		struct saved_alias *al = alias_list;
3668 
3669 		alias_list = alias_list->next;
3670 		err = sysfs_slab_alias(al->s, al->name);
3671 		BUG_ON(err);
3672 		kfree(al);
3673 	}
3674 
3675 	resiliency_test();
3676 	return 0;
3677 }
3678 
3679 __initcall(slab_sysfs_init);
3680 #endif
3681