1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/bit_spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/bitops.h> 16 #include <linux/slab.h> 17 #include <linux/seq_file.h> 18 #include <linux/cpu.h> 19 #include <linux/cpuset.h> 20 #include <linux/mempolicy.h> 21 #include <linux/ctype.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/memory.h> 25 #include <linux/math64.h> 26 27 /* 28 * Lock order: 29 * 1. slab_lock(page) 30 * 2. slab->list_lock 31 * 32 * The slab_lock protects operations on the object of a particular 33 * slab and its metadata in the page struct. If the slab lock 34 * has been taken then no allocations nor frees can be performed 35 * on the objects in the slab nor can the slab be added or removed 36 * from the partial or full lists since this would mean modifying 37 * the page_struct of the slab. 38 * 39 * The list_lock protects the partial and full list on each node and 40 * the partial slab counter. If taken then no new slabs may be added or 41 * removed from the lists nor make the number of partial slabs be modified. 42 * (Note that the total number of slabs is an atomic value that may be 43 * modified without taking the list lock). 44 * 45 * The list_lock is a centralized lock and thus we avoid taking it as 46 * much as possible. As long as SLUB does not have to handle partial 47 * slabs, operations can continue without any centralized lock. F.e. 48 * allocating a long series of objects that fill up slabs does not require 49 * the list lock. 50 * 51 * The lock order is sometimes inverted when we are trying to get a slab 52 * off a list. We take the list_lock and then look for a page on the list 53 * to use. While we do that objects in the slabs may be freed. We can 54 * only operate on the slab if we have also taken the slab_lock. So we use 55 * a slab_trylock() on the slab. If trylock was successful then no frees 56 * can occur anymore and we can use the slab for allocations etc. If the 57 * slab_trylock() does not succeed then frees are in progress in the slab and 58 * we must stay away from it for a while since we may cause a bouncing 59 * cacheline if we try to acquire the lock. So go onto the next slab. 60 * If all pages are busy then we may allocate a new slab instead of reusing 61 * a partial slab. A new slab has noone operating on it and thus there is 62 * no danger of cacheline contention. 63 * 64 * Interrupts are disabled during allocation and deallocation in order to 65 * make the slab allocator safe to use in the context of an irq. In addition 66 * interrupts are disabled to ensure that the processor does not change 67 * while handling per_cpu slabs, due to kernel preemption. 68 * 69 * SLUB assigns one slab for allocation to each processor. 70 * Allocations only occur from these slabs called cpu slabs. 71 * 72 * Slabs with free elements are kept on a partial list and during regular 73 * operations no list for full slabs is used. If an object in a full slab is 74 * freed then the slab will show up again on the partial lists. 75 * We track full slabs for debugging purposes though because otherwise we 76 * cannot scan all objects. 77 * 78 * Slabs are freed when they become empty. Teardown and setup is 79 * minimal so we rely on the page allocators per cpu caches for 80 * fast frees and allocs. 81 * 82 * Overloading of page flags that are otherwise used for LRU management. 83 * 84 * PageActive The slab is frozen and exempt from list processing. 85 * This means that the slab is dedicated to a purpose 86 * such as satisfying allocations for a specific 87 * processor. Objects may be freed in the slab while 88 * it is frozen but slab_free will then skip the usual 89 * list operations. It is up to the processor holding 90 * the slab to integrate the slab into the slab lists 91 * when the slab is no longer needed. 92 * 93 * One use of this flag is to mark slabs that are 94 * used for allocations. Then such a slab becomes a cpu 95 * slab. The cpu slab may be equipped with an additional 96 * freelist that allows lockless access to 97 * free objects in addition to the regular freelist 98 * that requires the slab lock. 99 * 100 * PageError Slab requires special handling due to debug 101 * options set. This moves slab handling out of 102 * the fast path and disables lockless freelists. 103 */ 104 105 #ifdef CONFIG_SLUB_DEBUG 106 #define SLABDEBUG 1 107 #else 108 #define SLABDEBUG 0 109 #endif 110 111 /* 112 * Issues still to be resolved: 113 * 114 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 115 * 116 * - Variable sizing of the per node arrays 117 */ 118 119 /* Enable to test recovery from slab corruption on boot */ 120 #undef SLUB_RESILIENCY_TEST 121 122 /* 123 * Mininum number of partial slabs. These will be left on the partial 124 * lists even if they are empty. kmem_cache_shrink may reclaim them. 125 */ 126 #define MIN_PARTIAL 5 127 128 /* 129 * Maximum number of desirable partial slabs. 130 * The existence of more partial slabs makes kmem_cache_shrink 131 * sort the partial list by the number of objects in the. 132 */ 133 #define MAX_PARTIAL 10 134 135 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 136 SLAB_POISON | SLAB_STORE_USER) 137 138 /* 139 * Set of flags that will prevent slab merging 140 */ 141 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 142 SLAB_TRACE | SLAB_DESTROY_BY_RCU) 143 144 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 145 SLAB_CACHE_DMA) 146 147 #ifndef ARCH_KMALLOC_MINALIGN 148 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 149 #endif 150 151 #ifndef ARCH_SLAB_MINALIGN 152 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 153 #endif 154 155 /* Internal SLUB flags */ 156 #define __OBJECT_POISON 0x80000000 /* Poison object */ 157 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 158 159 static int kmem_size = sizeof(struct kmem_cache); 160 161 #ifdef CONFIG_SMP 162 static struct notifier_block slab_notifier; 163 #endif 164 165 static enum { 166 DOWN, /* No slab functionality available */ 167 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 168 UP, /* Everything works but does not show up in sysfs */ 169 SYSFS /* Sysfs up */ 170 } slab_state = DOWN; 171 172 /* A list of all slab caches on the system */ 173 static DECLARE_RWSEM(slub_lock); 174 static LIST_HEAD(slab_caches); 175 176 /* 177 * Tracking user of a slab. 178 */ 179 struct track { 180 void *addr; /* Called from address */ 181 int cpu; /* Was running on cpu */ 182 int pid; /* Pid context */ 183 unsigned long when; /* When did the operation occur */ 184 }; 185 186 enum track_item { TRACK_ALLOC, TRACK_FREE }; 187 188 #ifdef CONFIG_SLUB_DEBUG 189 static int sysfs_slab_add(struct kmem_cache *); 190 static int sysfs_slab_alias(struct kmem_cache *, const char *); 191 static void sysfs_slab_remove(struct kmem_cache *); 192 193 #else 194 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 195 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 196 { return 0; } 197 static inline void sysfs_slab_remove(struct kmem_cache *s) 198 { 199 kfree(s); 200 } 201 202 #endif 203 204 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) 205 { 206 #ifdef CONFIG_SLUB_STATS 207 c->stat[si]++; 208 #endif 209 } 210 211 /******************************************************************** 212 * Core slab cache functions 213 *******************************************************************/ 214 215 int slab_is_available(void) 216 { 217 return slab_state >= UP; 218 } 219 220 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 221 { 222 #ifdef CONFIG_NUMA 223 return s->node[node]; 224 #else 225 return &s->local_node; 226 #endif 227 } 228 229 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 230 { 231 #ifdef CONFIG_SMP 232 return s->cpu_slab[cpu]; 233 #else 234 return &s->cpu_slab; 235 #endif 236 } 237 238 /* Verify that a pointer has an address that is valid within a slab page */ 239 static inline int check_valid_pointer(struct kmem_cache *s, 240 struct page *page, const void *object) 241 { 242 void *base; 243 244 if (!object) 245 return 1; 246 247 base = page_address(page); 248 if (object < base || object >= base + page->objects * s->size || 249 (object - base) % s->size) { 250 return 0; 251 } 252 253 return 1; 254 } 255 256 /* 257 * Slow version of get and set free pointer. 258 * 259 * This version requires touching the cache lines of kmem_cache which 260 * we avoid to do in the fast alloc free paths. There we obtain the offset 261 * from the page struct. 262 */ 263 static inline void *get_freepointer(struct kmem_cache *s, void *object) 264 { 265 return *(void **)(object + s->offset); 266 } 267 268 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 269 { 270 *(void **)(object + s->offset) = fp; 271 } 272 273 /* Loop over all objects in a slab */ 274 #define for_each_object(__p, __s, __addr, __objects) \ 275 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 276 __p += (__s)->size) 277 278 /* Scan freelist */ 279 #define for_each_free_object(__p, __s, __free) \ 280 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 281 282 /* Determine object index from a given position */ 283 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 284 { 285 return (p - addr) / s->size; 286 } 287 288 static inline struct kmem_cache_order_objects oo_make(int order, 289 unsigned long size) 290 { 291 struct kmem_cache_order_objects x = { 292 (order << 16) + (PAGE_SIZE << order) / size 293 }; 294 295 return x; 296 } 297 298 static inline int oo_order(struct kmem_cache_order_objects x) 299 { 300 return x.x >> 16; 301 } 302 303 static inline int oo_objects(struct kmem_cache_order_objects x) 304 { 305 return x.x & ((1 << 16) - 1); 306 } 307 308 #ifdef CONFIG_SLUB_DEBUG 309 /* 310 * Debug settings: 311 */ 312 #ifdef CONFIG_SLUB_DEBUG_ON 313 static int slub_debug = DEBUG_DEFAULT_FLAGS; 314 #else 315 static int slub_debug; 316 #endif 317 318 static char *slub_debug_slabs; 319 320 /* 321 * Object debugging 322 */ 323 static void print_section(char *text, u8 *addr, unsigned int length) 324 { 325 int i, offset; 326 int newline = 1; 327 char ascii[17]; 328 329 ascii[16] = 0; 330 331 for (i = 0; i < length; i++) { 332 if (newline) { 333 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 334 newline = 0; 335 } 336 printk(KERN_CONT " %02x", addr[i]); 337 offset = i % 16; 338 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 339 if (offset == 15) { 340 printk(KERN_CONT " %s\n", ascii); 341 newline = 1; 342 } 343 } 344 if (!newline) { 345 i %= 16; 346 while (i < 16) { 347 printk(KERN_CONT " "); 348 ascii[i] = ' '; 349 i++; 350 } 351 printk(KERN_CONT " %s\n", ascii); 352 } 353 } 354 355 static struct track *get_track(struct kmem_cache *s, void *object, 356 enum track_item alloc) 357 { 358 struct track *p; 359 360 if (s->offset) 361 p = object + s->offset + sizeof(void *); 362 else 363 p = object + s->inuse; 364 365 return p + alloc; 366 } 367 368 static void set_track(struct kmem_cache *s, void *object, 369 enum track_item alloc, void *addr) 370 { 371 struct track *p; 372 373 if (s->offset) 374 p = object + s->offset + sizeof(void *); 375 else 376 p = object + s->inuse; 377 378 p += alloc; 379 if (addr) { 380 p->addr = addr; 381 p->cpu = smp_processor_id(); 382 p->pid = current->pid; 383 p->when = jiffies; 384 } else 385 memset(p, 0, sizeof(struct track)); 386 } 387 388 static void init_tracking(struct kmem_cache *s, void *object) 389 { 390 if (!(s->flags & SLAB_STORE_USER)) 391 return; 392 393 set_track(s, object, TRACK_FREE, NULL); 394 set_track(s, object, TRACK_ALLOC, NULL); 395 } 396 397 static void print_track(const char *s, struct track *t) 398 { 399 if (!t->addr) 400 return; 401 402 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 403 s, t->addr, jiffies - t->when, t->cpu, t->pid); 404 } 405 406 static void print_tracking(struct kmem_cache *s, void *object) 407 { 408 if (!(s->flags & SLAB_STORE_USER)) 409 return; 410 411 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 412 print_track("Freed", get_track(s, object, TRACK_FREE)); 413 } 414 415 static void print_page_info(struct page *page) 416 { 417 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 418 page, page->objects, page->inuse, page->freelist, page->flags); 419 420 } 421 422 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 423 { 424 va_list args; 425 char buf[100]; 426 427 va_start(args, fmt); 428 vsnprintf(buf, sizeof(buf), fmt, args); 429 va_end(args); 430 printk(KERN_ERR "========================================" 431 "=====================================\n"); 432 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 433 printk(KERN_ERR "----------------------------------------" 434 "-------------------------------------\n\n"); 435 } 436 437 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 438 { 439 va_list args; 440 char buf[100]; 441 442 va_start(args, fmt); 443 vsnprintf(buf, sizeof(buf), fmt, args); 444 va_end(args); 445 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 446 } 447 448 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 449 { 450 unsigned int off; /* Offset of last byte */ 451 u8 *addr = page_address(page); 452 453 print_tracking(s, p); 454 455 print_page_info(page); 456 457 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 458 p, p - addr, get_freepointer(s, p)); 459 460 if (p > addr + 16) 461 print_section("Bytes b4", p - 16, 16); 462 463 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 464 465 if (s->flags & SLAB_RED_ZONE) 466 print_section("Redzone", p + s->objsize, 467 s->inuse - s->objsize); 468 469 if (s->offset) 470 off = s->offset + sizeof(void *); 471 else 472 off = s->inuse; 473 474 if (s->flags & SLAB_STORE_USER) 475 off += 2 * sizeof(struct track); 476 477 if (off != s->size) 478 /* Beginning of the filler is the free pointer */ 479 print_section("Padding", p + off, s->size - off); 480 481 dump_stack(); 482 } 483 484 static void object_err(struct kmem_cache *s, struct page *page, 485 u8 *object, char *reason) 486 { 487 slab_bug(s, "%s", reason); 488 print_trailer(s, page, object); 489 } 490 491 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 492 { 493 va_list args; 494 char buf[100]; 495 496 va_start(args, fmt); 497 vsnprintf(buf, sizeof(buf), fmt, args); 498 va_end(args); 499 slab_bug(s, "%s", buf); 500 print_page_info(page); 501 dump_stack(); 502 } 503 504 static void init_object(struct kmem_cache *s, void *object, int active) 505 { 506 u8 *p = object; 507 508 if (s->flags & __OBJECT_POISON) { 509 memset(p, POISON_FREE, s->objsize - 1); 510 p[s->objsize - 1] = POISON_END; 511 } 512 513 if (s->flags & SLAB_RED_ZONE) 514 memset(p + s->objsize, 515 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 516 s->inuse - s->objsize); 517 } 518 519 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 520 { 521 while (bytes) { 522 if (*start != (u8)value) 523 return start; 524 start++; 525 bytes--; 526 } 527 return NULL; 528 } 529 530 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 531 void *from, void *to) 532 { 533 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 534 memset(from, data, to - from); 535 } 536 537 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 538 u8 *object, char *what, 539 u8 *start, unsigned int value, unsigned int bytes) 540 { 541 u8 *fault; 542 u8 *end; 543 544 fault = check_bytes(start, value, bytes); 545 if (!fault) 546 return 1; 547 548 end = start + bytes; 549 while (end > fault && end[-1] == value) 550 end--; 551 552 slab_bug(s, "%s overwritten", what); 553 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 554 fault, end - 1, fault[0], value); 555 print_trailer(s, page, object); 556 557 restore_bytes(s, what, value, fault, end); 558 return 0; 559 } 560 561 /* 562 * Object layout: 563 * 564 * object address 565 * Bytes of the object to be managed. 566 * If the freepointer may overlay the object then the free 567 * pointer is the first word of the object. 568 * 569 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 570 * 0xa5 (POISON_END) 571 * 572 * object + s->objsize 573 * Padding to reach word boundary. This is also used for Redzoning. 574 * Padding is extended by another word if Redzoning is enabled and 575 * objsize == inuse. 576 * 577 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 578 * 0xcc (RED_ACTIVE) for objects in use. 579 * 580 * object + s->inuse 581 * Meta data starts here. 582 * 583 * A. Free pointer (if we cannot overwrite object on free) 584 * B. Tracking data for SLAB_STORE_USER 585 * C. Padding to reach required alignment boundary or at mininum 586 * one word if debugging is on to be able to detect writes 587 * before the word boundary. 588 * 589 * Padding is done using 0x5a (POISON_INUSE) 590 * 591 * object + s->size 592 * Nothing is used beyond s->size. 593 * 594 * If slabcaches are merged then the objsize and inuse boundaries are mostly 595 * ignored. And therefore no slab options that rely on these boundaries 596 * may be used with merged slabcaches. 597 */ 598 599 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 600 { 601 unsigned long off = s->inuse; /* The end of info */ 602 603 if (s->offset) 604 /* Freepointer is placed after the object. */ 605 off += sizeof(void *); 606 607 if (s->flags & SLAB_STORE_USER) 608 /* We also have user information there */ 609 off += 2 * sizeof(struct track); 610 611 if (s->size == off) 612 return 1; 613 614 return check_bytes_and_report(s, page, p, "Object padding", 615 p + off, POISON_INUSE, s->size - off); 616 } 617 618 /* Check the pad bytes at the end of a slab page */ 619 static int slab_pad_check(struct kmem_cache *s, struct page *page) 620 { 621 u8 *start; 622 u8 *fault; 623 u8 *end; 624 int length; 625 int remainder; 626 627 if (!(s->flags & SLAB_POISON)) 628 return 1; 629 630 start = page_address(page); 631 length = (PAGE_SIZE << compound_order(page)); 632 end = start + length; 633 remainder = length % s->size; 634 if (!remainder) 635 return 1; 636 637 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 638 if (!fault) 639 return 1; 640 while (end > fault && end[-1] == POISON_INUSE) 641 end--; 642 643 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 644 print_section("Padding", end - remainder, remainder); 645 646 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 647 return 0; 648 } 649 650 static int check_object(struct kmem_cache *s, struct page *page, 651 void *object, int active) 652 { 653 u8 *p = object; 654 u8 *endobject = object + s->objsize; 655 656 if (s->flags & SLAB_RED_ZONE) { 657 unsigned int red = 658 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 659 660 if (!check_bytes_and_report(s, page, object, "Redzone", 661 endobject, red, s->inuse - s->objsize)) 662 return 0; 663 } else { 664 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 665 check_bytes_and_report(s, page, p, "Alignment padding", 666 endobject, POISON_INUSE, s->inuse - s->objsize); 667 } 668 } 669 670 if (s->flags & SLAB_POISON) { 671 if (!active && (s->flags & __OBJECT_POISON) && 672 (!check_bytes_and_report(s, page, p, "Poison", p, 673 POISON_FREE, s->objsize - 1) || 674 !check_bytes_and_report(s, page, p, "Poison", 675 p + s->objsize - 1, POISON_END, 1))) 676 return 0; 677 /* 678 * check_pad_bytes cleans up on its own. 679 */ 680 check_pad_bytes(s, page, p); 681 } 682 683 if (!s->offset && active) 684 /* 685 * Object and freepointer overlap. Cannot check 686 * freepointer while object is allocated. 687 */ 688 return 1; 689 690 /* Check free pointer validity */ 691 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 692 object_err(s, page, p, "Freepointer corrupt"); 693 /* 694 * No choice but to zap it and thus loose the remainder 695 * of the free objects in this slab. May cause 696 * another error because the object count is now wrong. 697 */ 698 set_freepointer(s, p, NULL); 699 return 0; 700 } 701 return 1; 702 } 703 704 static int check_slab(struct kmem_cache *s, struct page *page) 705 { 706 int maxobj; 707 708 VM_BUG_ON(!irqs_disabled()); 709 710 if (!PageSlab(page)) { 711 slab_err(s, page, "Not a valid slab page"); 712 return 0; 713 } 714 715 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 716 if (page->objects > maxobj) { 717 slab_err(s, page, "objects %u > max %u", 718 s->name, page->objects, maxobj); 719 return 0; 720 } 721 if (page->inuse > page->objects) { 722 slab_err(s, page, "inuse %u > max %u", 723 s->name, page->inuse, page->objects); 724 return 0; 725 } 726 /* Slab_pad_check fixes things up after itself */ 727 slab_pad_check(s, page); 728 return 1; 729 } 730 731 /* 732 * Determine if a certain object on a page is on the freelist. Must hold the 733 * slab lock to guarantee that the chains are in a consistent state. 734 */ 735 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 736 { 737 int nr = 0; 738 void *fp = page->freelist; 739 void *object = NULL; 740 unsigned long max_objects; 741 742 while (fp && nr <= page->objects) { 743 if (fp == search) 744 return 1; 745 if (!check_valid_pointer(s, page, fp)) { 746 if (object) { 747 object_err(s, page, object, 748 "Freechain corrupt"); 749 set_freepointer(s, object, NULL); 750 break; 751 } else { 752 slab_err(s, page, "Freepointer corrupt"); 753 page->freelist = NULL; 754 page->inuse = page->objects; 755 slab_fix(s, "Freelist cleared"); 756 return 0; 757 } 758 break; 759 } 760 object = fp; 761 fp = get_freepointer(s, object); 762 nr++; 763 } 764 765 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 766 if (max_objects > 65535) 767 max_objects = 65535; 768 769 if (page->objects != max_objects) { 770 slab_err(s, page, "Wrong number of objects. Found %d but " 771 "should be %d", page->objects, max_objects); 772 page->objects = max_objects; 773 slab_fix(s, "Number of objects adjusted."); 774 } 775 if (page->inuse != page->objects - nr) { 776 slab_err(s, page, "Wrong object count. Counter is %d but " 777 "counted were %d", page->inuse, page->objects - nr); 778 page->inuse = page->objects - nr; 779 slab_fix(s, "Object count adjusted."); 780 } 781 return search == NULL; 782 } 783 784 static void trace(struct kmem_cache *s, struct page *page, void *object, 785 int alloc) 786 { 787 if (s->flags & SLAB_TRACE) { 788 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 789 s->name, 790 alloc ? "alloc" : "free", 791 object, page->inuse, 792 page->freelist); 793 794 if (!alloc) 795 print_section("Object", (void *)object, s->objsize); 796 797 dump_stack(); 798 } 799 } 800 801 /* 802 * Tracking of fully allocated slabs for debugging purposes. 803 */ 804 static void add_full(struct kmem_cache_node *n, struct page *page) 805 { 806 spin_lock(&n->list_lock); 807 list_add(&page->lru, &n->full); 808 spin_unlock(&n->list_lock); 809 } 810 811 static void remove_full(struct kmem_cache *s, struct page *page) 812 { 813 struct kmem_cache_node *n; 814 815 if (!(s->flags & SLAB_STORE_USER)) 816 return; 817 818 n = get_node(s, page_to_nid(page)); 819 820 spin_lock(&n->list_lock); 821 list_del(&page->lru); 822 spin_unlock(&n->list_lock); 823 } 824 825 /* Tracking of the number of slabs for debugging purposes */ 826 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 827 { 828 struct kmem_cache_node *n = get_node(s, node); 829 830 return atomic_long_read(&n->nr_slabs); 831 } 832 833 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 834 { 835 struct kmem_cache_node *n = get_node(s, node); 836 837 /* 838 * May be called early in order to allocate a slab for the 839 * kmem_cache_node structure. Solve the chicken-egg 840 * dilemma by deferring the increment of the count during 841 * bootstrap (see early_kmem_cache_node_alloc). 842 */ 843 if (!NUMA_BUILD || n) { 844 atomic_long_inc(&n->nr_slabs); 845 atomic_long_add(objects, &n->total_objects); 846 } 847 } 848 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 849 { 850 struct kmem_cache_node *n = get_node(s, node); 851 852 atomic_long_dec(&n->nr_slabs); 853 atomic_long_sub(objects, &n->total_objects); 854 } 855 856 /* Object debug checks for alloc/free paths */ 857 static void setup_object_debug(struct kmem_cache *s, struct page *page, 858 void *object) 859 { 860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 861 return; 862 863 init_object(s, object, 0); 864 init_tracking(s, object); 865 } 866 867 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 868 void *object, void *addr) 869 { 870 if (!check_slab(s, page)) 871 goto bad; 872 873 if (!on_freelist(s, page, object)) { 874 object_err(s, page, object, "Object already allocated"); 875 goto bad; 876 } 877 878 if (!check_valid_pointer(s, page, object)) { 879 object_err(s, page, object, "Freelist Pointer check fails"); 880 goto bad; 881 } 882 883 if (!check_object(s, page, object, 0)) 884 goto bad; 885 886 /* Success perform special debug activities for allocs */ 887 if (s->flags & SLAB_STORE_USER) 888 set_track(s, object, TRACK_ALLOC, addr); 889 trace(s, page, object, 1); 890 init_object(s, object, 1); 891 return 1; 892 893 bad: 894 if (PageSlab(page)) { 895 /* 896 * If this is a slab page then lets do the best we can 897 * to avoid issues in the future. Marking all objects 898 * as used avoids touching the remaining objects. 899 */ 900 slab_fix(s, "Marking all objects used"); 901 page->inuse = page->objects; 902 page->freelist = NULL; 903 } 904 return 0; 905 } 906 907 static int free_debug_processing(struct kmem_cache *s, struct page *page, 908 void *object, void *addr) 909 { 910 if (!check_slab(s, page)) 911 goto fail; 912 913 if (!check_valid_pointer(s, page, object)) { 914 slab_err(s, page, "Invalid object pointer 0x%p", object); 915 goto fail; 916 } 917 918 if (on_freelist(s, page, object)) { 919 object_err(s, page, object, "Object already free"); 920 goto fail; 921 } 922 923 if (!check_object(s, page, object, 1)) 924 return 0; 925 926 if (unlikely(s != page->slab)) { 927 if (!PageSlab(page)) { 928 slab_err(s, page, "Attempt to free object(0x%p) " 929 "outside of slab", object); 930 } else if (!page->slab) { 931 printk(KERN_ERR 932 "SLUB <none>: no slab for object 0x%p.\n", 933 object); 934 dump_stack(); 935 } else 936 object_err(s, page, object, 937 "page slab pointer corrupt."); 938 goto fail; 939 } 940 941 /* Special debug activities for freeing objects */ 942 if (!PageSlubFrozen(page) && !page->freelist) 943 remove_full(s, page); 944 if (s->flags & SLAB_STORE_USER) 945 set_track(s, object, TRACK_FREE, addr); 946 trace(s, page, object, 0); 947 init_object(s, object, 0); 948 return 1; 949 950 fail: 951 slab_fix(s, "Object at 0x%p not freed", object); 952 return 0; 953 } 954 955 static int __init setup_slub_debug(char *str) 956 { 957 slub_debug = DEBUG_DEFAULT_FLAGS; 958 if (*str++ != '=' || !*str) 959 /* 960 * No options specified. Switch on full debugging. 961 */ 962 goto out; 963 964 if (*str == ',') 965 /* 966 * No options but restriction on slabs. This means full 967 * debugging for slabs matching a pattern. 968 */ 969 goto check_slabs; 970 971 slub_debug = 0; 972 if (*str == '-') 973 /* 974 * Switch off all debugging measures. 975 */ 976 goto out; 977 978 /* 979 * Determine which debug features should be switched on 980 */ 981 for (; *str && *str != ','; str++) { 982 switch (tolower(*str)) { 983 case 'f': 984 slub_debug |= SLAB_DEBUG_FREE; 985 break; 986 case 'z': 987 slub_debug |= SLAB_RED_ZONE; 988 break; 989 case 'p': 990 slub_debug |= SLAB_POISON; 991 break; 992 case 'u': 993 slub_debug |= SLAB_STORE_USER; 994 break; 995 case 't': 996 slub_debug |= SLAB_TRACE; 997 break; 998 default: 999 printk(KERN_ERR "slub_debug option '%c' " 1000 "unknown. skipped\n", *str); 1001 } 1002 } 1003 1004 check_slabs: 1005 if (*str == ',') 1006 slub_debug_slabs = str + 1; 1007 out: 1008 return 1; 1009 } 1010 1011 __setup("slub_debug", setup_slub_debug); 1012 1013 static unsigned long kmem_cache_flags(unsigned long objsize, 1014 unsigned long flags, const char *name, 1015 void (*ctor)(void *)) 1016 { 1017 /* 1018 * Enable debugging if selected on the kernel commandline. 1019 */ 1020 if (slub_debug && (!slub_debug_slabs || 1021 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) 1022 flags |= slub_debug; 1023 1024 return flags; 1025 } 1026 #else 1027 static inline void setup_object_debug(struct kmem_cache *s, 1028 struct page *page, void *object) {} 1029 1030 static inline int alloc_debug_processing(struct kmem_cache *s, 1031 struct page *page, void *object, void *addr) { return 0; } 1032 1033 static inline int free_debug_processing(struct kmem_cache *s, 1034 struct page *page, void *object, void *addr) { return 0; } 1035 1036 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1037 { return 1; } 1038 static inline int check_object(struct kmem_cache *s, struct page *page, 1039 void *object, int active) { return 1; } 1040 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1041 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1042 unsigned long flags, const char *name, 1043 void (*ctor)(void *)) 1044 { 1045 return flags; 1046 } 1047 #define slub_debug 0 1048 1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1050 { return 0; } 1051 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1052 int objects) {} 1053 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1054 int objects) {} 1055 #endif 1056 1057 /* 1058 * Slab allocation and freeing 1059 */ 1060 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1061 struct kmem_cache_order_objects oo) 1062 { 1063 int order = oo_order(oo); 1064 1065 if (node == -1) 1066 return alloc_pages(flags, order); 1067 else 1068 return alloc_pages_node(node, flags, order); 1069 } 1070 1071 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1072 { 1073 struct page *page; 1074 struct kmem_cache_order_objects oo = s->oo; 1075 1076 flags |= s->allocflags; 1077 1078 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, 1079 oo); 1080 if (unlikely(!page)) { 1081 oo = s->min; 1082 /* 1083 * Allocation may have failed due to fragmentation. 1084 * Try a lower order alloc if possible 1085 */ 1086 page = alloc_slab_page(flags, node, oo); 1087 if (!page) 1088 return NULL; 1089 1090 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); 1091 } 1092 page->objects = oo_objects(oo); 1093 mod_zone_page_state(page_zone(page), 1094 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1095 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1096 1 << oo_order(oo)); 1097 1098 return page; 1099 } 1100 1101 static void setup_object(struct kmem_cache *s, struct page *page, 1102 void *object) 1103 { 1104 setup_object_debug(s, page, object); 1105 if (unlikely(s->ctor)) 1106 s->ctor(object); 1107 } 1108 1109 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1110 { 1111 struct page *page; 1112 void *start; 1113 void *last; 1114 void *p; 1115 1116 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1117 1118 page = allocate_slab(s, 1119 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1120 if (!page) 1121 goto out; 1122 1123 inc_slabs_node(s, page_to_nid(page), page->objects); 1124 page->slab = s; 1125 page->flags |= 1 << PG_slab; 1126 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1127 SLAB_STORE_USER | SLAB_TRACE)) 1128 __SetPageSlubDebug(page); 1129 1130 start = page_address(page); 1131 1132 if (unlikely(s->flags & SLAB_POISON)) 1133 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1134 1135 last = start; 1136 for_each_object(p, s, start, page->objects) { 1137 setup_object(s, page, last); 1138 set_freepointer(s, last, p); 1139 last = p; 1140 } 1141 setup_object(s, page, last); 1142 set_freepointer(s, last, NULL); 1143 1144 page->freelist = start; 1145 page->inuse = 0; 1146 out: 1147 return page; 1148 } 1149 1150 static void __free_slab(struct kmem_cache *s, struct page *page) 1151 { 1152 int order = compound_order(page); 1153 int pages = 1 << order; 1154 1155 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1156 void *p; 1157 1158 slab_pad_check(s, page); 1159 for_each_object(p, s, page_address(page), 1160 page->objects) 1161 check_object(s, page, p, 0); 1162 __ClearPageSlubDebug(page); 1163 } 1164 1165 mod_zone_page_state(page_zone(page), 1166 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1167 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1168 -pages); 1169 1170 __ClearPageSlab(page); 1171 reset_page_mapcount(page); 1172 __free_pages(page, order); 1173 } 1174 1175 static void rcu_free_slab(struct rcu_head *h) 1176 { 1177 struct page *page; 1178 1179 page = container_of((struct list_head *)h, struct page, lru); 1180 __free_slab(page->slab, page); 1181 } 1182 1183 static void free_slab(struct kmem_cache *s, struct page *page) 1184 { 1185 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1186 /* 1187 * RCU free overloads the RCU head over the LRU 1188 */ 1189 struct rcu_head *head = (void *)&page->lru; 1190 1191 call_rcu(head, rcu_free_slab); 1192 } else 1193 __free_slab(s, page); 1194 } 1195 1196 static void discard_slab(struct kmem_cache *s, struct page *page) 1197 { 1198 dec_slabs_node(s, page_to_nid(page), page->objects); 1199 free_slab(s, page); 1200 } 1201 1202 /* 1203 * Per slab locking using the pagelock 1204 */ 1205 static __always_inline void slab_lock(struct page *page) 1206 { 1207 bit_spin_lock(PG_locked, &page->flags); 1208 } 1209 1210 static __always_inline void slab_unlock(struct page *page) 1211 { 1212 __bit_spin_unlock(PG_locked, &page->flags); 1213 } 1214 1215 static __always_inline int slab_trylock(struct page *page) 1216 { 1217 int rc = 1; 1218 1219 rc = bit_spin_trylock(PG_locked, &page->flags); 1220 return rc; 1221 } 1222 1223 /* 1224 * Management of partially allocated slabs 1225 */ 1226 static void add_partial(struct kmem_cache_node *n, 1227 struct page *page, int tail) 1228 { 1229 spin_lock(&n->list_lock); 1230 n->nr_partial++; 1231 if (tail) 1232 list_add_tail(&page->lru, &n->partial); 1233 else 1234 list_add(&page->lru, &n->partial); 1235 spin_unlock(&n->list_lock); 1236 } 1237 1238 static void remove_partial(struct kmem_cache *s, struct page *page) 1239 { 1240 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1241 1242 spin_lock(&n->list_lock); 1243 list_del(&page->lru); 1244 n->nr_partial--; 1245 spin_unlock(&n->list_lock); 1246 } 1247 1248 /* 1249 * Lock slab and remove from the partial list. 1250 * 1251 * Must hold list_lock. 1252 */ 1253 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1254 struct page *page) 1255 { 1256 if (slab_trylock(page)) { 1257 list_del(&page->lru); 1258 n->nr_partial--; 1259 __SetPageSlubFrozen(page); 1260 return 1; 1261 } 1262 return 0; 1263 } 1264 1265 /* 1266 * Try to allocate a partial slab from a specific node. 1267 */ 1268 static struct page *get_partial_node(struct kmem_cache_node *n) 1269 { 1270 struct page *page; 1271 1272 /* 1273 * Racy check. If we mistakenly see no partial slabs then we 1274 * just allocate an empty slab. If we mistakenly try to get a 1275 * partial slab and there is none available then get_partials() 1276 * will return NULL. 1277 */ 1278 if (!n || !n->nr_partial) 1279 return NULL; 1280 1281 spin_lock(&n->list_lock); 1282 list_for_each_entry(page, &n->partial, lru) 1283 if (lock_and_freeze_slab(n, page)) 1284 goto out; 1285 page = NULL; 1286 out: 1287 spin_unlock(&n->list_lock); 1288 return page; 1289 } 1290 1291 /* 1292 * Get a page from somewhere. Search in increasing NUMA distances. 1293 */ 1294 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1295 { 1296 #ifdef CONFIG_NUMA 1297 struct zonelist *zonelist; 1298 struct zoneref *z; 1299 struct zone *zone; 1300 enum zone_type high_zoneidx = gfp_zone(flags); 1301 struct page *page; 1302 1303 /* 1304 * The defrag ratio allows a configuration of the tradeoffs between 1305 * inter node defragmentation and node local allocations. A lower 1306 * defrag_ratio increases the tendency to do local allocations 1307 * instead of attempting to obtain partial slabs from other nodes. 1308 * 1309 * If the defrag_ratio is set to 0 then kmalloc() always 1310 * returns node local objects. If the ratio is higher then kmalloc() 1311 * may return off node objects because partial slabs are obtained 1312 * from other nodes and filled up. 1313 * 1314 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1315 * defrag_ratio = 1000) then every (well almost) allocation will 1316 * first attempt to defrag slab caches on other nodes. This means 1317 * scanning over all nodes to look for partial slabs which may be 1318 * expensive if we do it every time we are trying to find a slab 1319 * with available objects. 1320 */ 1321 if (!s->remote_node_defrag_ratio || 1322 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1323 return NULL; 1324 1325 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1326 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1327 struct kmem_cache_node *n; 1328 1329 n = get_node(s, zone_to_nid(zone)); 1330 1331 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1332 n->nr_partial > n->min_partial) { 1333 page = get_partial_node(n); 1334 if (page) 1335 return page; 1336 } 1337 } 1338 #endif 1339 return NULL; 1340 } 1341 1342 /* 1343 * Get a partial page, lock it and return it. 1344 */ 1345 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1346 { 1347 struct page *page; 1348 int searchnode = (node == -1) ? numa_node_id() : node; 1349 1350 page = get_partial_node(get_node(s, searchnode)); 1351 if (page || (flags & __GFP_THISNODE)) 1352 return page; 1353 1354 return get_any_partial(s, flags); 1355 } 1356 1357 /* 1358 * Move a page back to the lists. 1359 * 1360 * Must be called with the slab lock held. 1361 * 1362 * On exit the slab lock will have been dropped. 1363 */ 1364 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1365 { 1366 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1367 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); 1368 1369 __ClearPageSlubFrozen(page); 1370 if (page->inuse) { 1371 1372 if (page->freelist) { 1373 add_partial(n, page, tail); 1374 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1375 } else { 1376 stat(c, DEACTIVATE_FULL); 1377 if (SLABDEBUG && PageSlubDebug(page) && 1378 (s->flags & SLAB_STORE_USER)) 1379 add_full(n, page); 1380 } 1381 slab_unlock(page); 1382 } else { 1383 stat(c, DEACTIVATE_EMPTY); 1384 if (n->nr_partial < n->min_partial) { 1385 /* 1386 * Adding an empty slab to the partial slabs in order 1387 * to avoid page allocator overhead. This slab needs 1388 * to come after the other slabs with objects in 1389 * so that the others get filled first. That way the 1390 * size of the partial list stays small. 1391 * 1392 * kmem_cache_shrink can reclaim any empty slabs from 1393 * the partial list. 1394 */ 1395 add_partial(n, page, 1); 1396 slab_unlock(page); 1397 } else { 1398 slab_unlock(page); 1399 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); 1400 discard_slab(s, page); 1401 } 1402 } 1403 } 1404 1405 /* 1406 * Remove the cpu slab 1407 */ 1408 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1409 { 1410 struct page *page = c->page; 1411 int tail = 1; 1412 1413 if (page->freelist) 1414 stat(c, DEACTIVATE_REMOTE_FREES); 1415 /* 1416 * Merge cpu freelist into slab freelist. Typically we get here 1417 * because both freelists are empty. So this is unlikely 1418 * to occur. 1419 */ 1420 while (unlikely(c->freelist)) { 1421 void **object; 1422 1423 tail = 0; /* Hot objects. Put the slab first */ 1424 1425 /* Retrieve object from cpu_freelist */ 1426 object = c->freelist; 1427 c->freelist = c->freelist[c->offset]; 1428 1429 /* And put onto the regular freelist */ 1430 object[c->offset] = page->freelist; 1431 page->freelist = object; 1432 page->inuse--; 1433 } 1434 c->page = NULL; 1435 unfreeze_slab(s, page, tail); 1436 } 1437 1438 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1439 { 1440 stat(c, CPUSLAB_FLUSH); 1441 slab_lock(c->page); 1442 deactivate_slab(s, c); 1443 } 1444 1445 /* 1446 * Flush cpu slab. 1447 * 1448 * Called from IPI handler with interrupts disabled. 1449 */ 1450 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1451 { 1452 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1453 1454 if (likely(c && c->page)) 1455 flush_slab(s, c); 1456 } 1457 1458 static void flush_cpu_slab(void *d) 1459 { 1460 struct kmem_cache *s = d; 1461 1462 __flush_cpu_slab(s, smp_processor_id()); 1463 } 1464 1465 static void flush_all(struct kmem_cache *s) 1466 { 1467 on_each_cpu(flush_cpu_slab, s, 1); 1468 } 1469 1470 /* 1471 * Check if the objects in a per cpu structure fit numa 1472 * locality expectations. 1473 */ 1474 static inline int node_match(struct kmem_cache_cpu *c, int node) 1475 { 1476 #ifdef CONFIG_NUMA 1477 if (node != -1 && c->node != node) 1478 return 0; 1479 #endif 1480 return 1; 1481 } 1482 1483 /* 1484 * Slow path. The lockless freelist is empty or we need to perform 1485 * debugging duties. 1486 * 1487 * Interrupts are disabled. 1488 * 1489 * Processing is still very fast if new objects have been freed to the 1490 * regular freelist. In that case we simply take over the regular freelist 1491 * as the lockless freelist and zap the regular freelist. 1492 * 1493 * If that is not working then we fall back to the partial lists. We take the 1494 * first element of the freelist as the object to allocate now and move the 1495 * rest of the freelist to the lockless freelist. 1496 * 1497 * And if we were unable to get a new slab from the partial slab lists then 1498 * we need to allocate a new slab. This is the slowest path since it involves 1499 * a call to the page allocator and the setup of a new slab. 1500 */ 1501 static void *__slab_alloc(struct kmem_cache *s, 1502 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) 1503 { 1504 void **object; 1505 struct page *new; 1506 1507 /* We handle __GFP_ZERO in the caller */ 1508 gfpflags &= ~__GFP_ZERO; 1509 1510 if (!c->page) 1511 goto new_slab; 1512 1513 slab_lock(c->page); 1514 if (unlikely(!node_match(c, node))) 1515 goto another_slab; 1516 1517 stat(c, ALLOC_REFILL); 1518 1519 load_freelist: 1520 object = c->page->freelist; 1521 if (unlikely(!object)) 1522 goto another_slab; 1523 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1524 goto debug; 1525 1526 c->freelist = object[c->offset]; 1527 c->page->inuse = c->page->objects; 1528 c->page->freelist = NULL; 1529 c->node = page_to_nid(c->page); 1530 unlock_out: 1531 slab_unlock(c->page); 1532 stat(c, ALLOC_SLOWPATH); 1533 return object; 1534 1535 another_slab: 1536 deactivate_slab(s, c); 1537 1538 new_slab: 1539 new = get_partial(s, gfpflags, node); 1540 if (new) { 1541 c->page = new; 1542 stat(c, ALLOC_FROM_PARTIAL); 1543 goto load_freelist; 1544 } 1545 1546 if (gfpflags & __GFP_WAIT) 1547 local_irq_enable(); 1548 1549 new = new_slab(s, gfpflags, node); 1550 1551 if (gfpflags & __GFP_WAIT) 1552 local_irq_disable(); 1553 1554 if (new) { 1555 c = get_cpu_slab(s, smp_processor_id()); 1556 stat(c, ALLOC_SLAB); 1557 if (c->page) 1558 flush_slab(s, c); 1559 slab_lock(new); 1560 __SetPageSlubFrozen(new); 1561 c->page = new; 1562 goto load_freelist; 1563 } 1564 return NULL; 1565 debug: 1566 if (!alloc_debug_processing(s, c->page, object, addr)) 1567 goto another_slab; 1568 1569 c->page->inuse++; 1570 c->page->freelist = object[c->offset]; 1571 c->node = -1; 1572 goto unlock_out; 1573 } 1574 1575 /* 1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1577 * have the fastpath folded into their functions. So no function call 1578 * overhead for requests that can be satisfied on the fastpath. 1579 * 1580 * The fastpath works by first checking if the lockless freelist can be used. 1581 * If not then __slab_alloc is called for slow processing. 1582 * 1583 * Otherwise we can simply pick the next object from the lockless free list. 1584 */ 1585 static __always_inline void *slab_alloc(struct kmem_cache *s, 1586 gfp_t gfpflags, int node, void *addr) 1587 { 1588 void **object; 1589 struct kmem_cache_cpu *c; 1590 unsigned long flags; 1591 unsigned int objsize; 1592 1593 local_irq_save(flags); 1594 c = get_cpu_slab(s, smp_processor_id()); 1595 objsize = c->objsize; 1596 if (unlikely(!c->freelist || !node_match(c, node))) 1597 1598 object = __slab_alloc(s, gfpflags, node, addr, c); 1599 1600 else { 1601 object = c->freelist; 1602 c->freelist = object[c->offset]; 1603 stat(c, ALLOC_FASTPATH); 1604 } 1605 local_irq_restore(flags); 1606 1607 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1608 memset(object, 0, objsize); 1609 1610 return object; 1611 } 1612 1613 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1614 { 1615 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); 1616 } 1617 EXPORT_SYMBOL(kmem_cache_alloc); 1618 1619 #ifdef CONFIG_NUMA 1620 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1621 { 1622 return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); 1623 } 1624 EXPORT_SYMBOL(kmem_cache_alloc_node); 1625 #endif 1626 1627 /* 1628 * Slow patch handling. This may still be called frequently since objects 1629 * have a longer lifetime than the cpu slabs in most processing loads. 1630 * 1631 * So we still attempt to reduce cache line usage. Just take the slab 1632 * lock and free the item. If there is no additional partial page 1633 * handling required then we can return immediately. 1634 */ 1635 static void __slab_free(struct kmem_cache *s, struct page *page, 1636 void *x, void *addr, unsigned int offset) 1637 { 1638 void *prior; 1639 void **object = (void *)x; 1640 struct kmem_cache_cpu *c; 1641 1642 c = get_cpu_slab(s, raw_smp_processor_id()); 1643 stat(c, FREE_SLOWPATH); 1644 slab_lock(page); 1645 1646 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1647 goto debug; 1648 1649 checks_ok: 1650 prior = object[offset] = page->freelist; 1651 page->freelist = object; 1652 page->inuse--; 1653 1654 if (unlikely(PageSlubFrozen(page))) { 1655 stat(c, FREE_FROZEN); 1656 goto out_unlock; 1657 } 1658 1659 if (unlikely(!page->inuse)) 1660 goto slab_empty; 1661 1662 /* 1663 * Objects left in the slab. If it was not on the partial list before 1664 * then add it. 1665 */ 1666 if (unlikely(!prior)) { 1667 add_partial(get_node(s, page_to_nid(page)), page, 1); 1668 stat(c, FREE_ADD_PARTIAL); 1669 } 1670 1671 out_unlock: 1672 slab_unlock(page); 1673 return; 1674 1675 slab_empty: 1676 if (prior) { 1677 /* 1678 * Slab still on the partial list. 1679 */ 1680 remove_partial(s, page); 1681 stat(c, FREE_REMOVE_PARTIAL); 1682 } 1683 slab_unlock(page); 1684 stat(c, FREE_SLAB); 1685 discard_slab(s, page); 1686 return; 1687 1688 debug: 1689 if (!free_debug_processing(s, page, x, addr)) 1690 goto out_unlock; 1691 goto checks_ok; 1692 } 1693 1694 /* 1695 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1696 * can perform fastpath freeing without additional function calls. 1697 * 1698 * The fastpath is only possible if we are freeing to the current cpu slab 1699 * of this processor. This typically the case if we have just allocated 1700 * the item before. 1701 * 1702 * If fastpath is not possible then fall back to __slab_free where we deal 1703 * with all sorts of special processing. 1704 */ 1705 static __always_inline void slab_free(struct kmem_cache *s, 1706 struct page *page, void *x, void *addr) 1707 { 1708 void **object = (void *)x; 1709 struct kmem_cache_cpu *c; 1710 unsigned long flags; 1711 1712 local_irq_save(flags); 1713 c = get_cpu_slab(s, smp_processor_id()); 1714 debug_check_no_locks_freed(object, c->objsize); 1715 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1716 debug_check_no_obj_freed(object, s->objsize); 1717 if (likely(page == c->page && c->node >= 0)) { 1718 object[c->offset] = c->freelist; 1719 c->freelist = object; 1720 stat(c, FREE_FASTPATH); 1721 } else 1722 __slab_free(s, page, x, addr, c->offset); 1723 1724 local_irq_restore(flags); 1725 } 1726 1727 void kmem_cache_free(struct kmem_cache *s, void *x) 1728 { 1729 struct page *page; 1730 1731 page = virt_to_head_page(x); 1732 1733 slab_free(s, page, x, __builtin_return_address(0)); 1734 } 1735 EXPORT_SYMBOL(kmem_cache_free); 1736 1737 /* Figure out on which slab object the object resides */ 1738 static struct page *get_object_page(const void *x) 1739 { 1740 struct page *page = virt_to_head_page(x); 1741 1742 if (!PageSlab(page)) 1743 return NULL; 1744 1745 return page; 1746 } 1747 1748 /* 1749 * Object placement in a slab is made very easy because we always start at 1750 * offset 0. If we tune the size of the object to the alignment then we can 1751 * get the required alignment by putting one properly sized object after 1752 * another. 1753 * 1754 * Notice that the allocation order determines the sizes of the per cpu 1755 * caches. Each processor has always one slab available for allocations. 1756 * Increasing the allocation order reduces the number of times that slabs 1757 * must be moved on and off the partial lists and is therefore a factor in 1758 * locking overhead. 1759 */ 1760 1761 /* 1762 * Mininum / Maximum order of slab pages. This influences locking overhead 1763 * and slab fragmentation. A higher order reduces the number of partial slabs 1764 * and increases the number of allocations possible without having to 1765 * take the list_lock. 1766 */ 1767 static int slub_min_order; 1768 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1769 static int slub_min_objects; 1770 1771 /* 1772 * Merge control. If this is set then no merging of slab caches will occur. 1773 * (Could be removed. This was introduced to pacify the merge skeptics.) 1774 */ 1775 static int slub_nomerge; 1776 1777 /* 1778 * Calculate the order of allocation given an slab object size. 1779 * 1780 * The order of allocation has significant impact on performance and other 1781 * system components. Generally order 0 allocations should be preferred since 1782 * order 0 does not cause fragmentation in the page allocator. Larger objects 1783 * be problematic to put into order 0 slabs because there may be too much 1784 * unused space left. We go to a higher order if more than 1/16th of the slab 1785 * would be wasted. 1786 * 1787 * In order to reach satisfactory performance we must ensure that a minimum 1788 * number of objects is in one slab. Otherwise we may generate too much 1789 * activity on the partial lists which requires taking the list_lock. This is 1790 * less a concern for large slabs though which are rarely used. 1791 * 1792 * slub_max_order specifies the order where we begin to stop considering the 1793 * number of objects in a slab as critical. If we reach slub_max_order then 1794 * we try to keep the page order as low as possible. So we accept more waste 1795 * of space in favor of a small page order. 1796 * 1797 * Higher order allocations also allow the placement of more objects in a 1798 * slab and thereby reduce object handling overhead. If the user has 1799 * requested a higher mininum order then we start with that one instead of 1800 * the smallest order which will fit the object. 1801 */ 1802 static inline int slab_order(int size, int min_objects, 1803 int max_order, int fract_leftover) 1804 { 1805 int order; 1806 int rem; 1807 int min_order = slub_min_order; 1808 1809 if ((PAGE_SIZE << min_order) / size > 65535) 1810 return get_order(size * 65535) - 1; 1811 1812 for (order = max(min_order, 1813 fls(min_objects * size - 1) - PAGE_SHIFT); 1814 order <= max_order; order++) { 1815 1816 unsigned long slab_size = PAGE_SIZE << order; 1817 1818 if (slab_size < min_objects * size) 1819 continue; 1820 1821 rem = slab_size % size; 1822 1823 if (rem <= slab_size / fract_leftover) 1824 break; 1825 1826 } 1827 1828 return order; 1829 } 1830 1831 static inline int calculate_order(int size) 1832 { 1833 int order; 1834 int min_objects; 1835 int fraction; 1836 1837 /* 1838 * Attempt to find best configuration for a slab. This 1839 * works by first attempting to generate a layout with 1840 * the best configuration and backing off gradually. 1841 * 1842 * First we reduce the acceptable waste in a slab. Then 1843 * we reduce the minimum objects required in a slab. 1844 */ 1845 min_objects = slub_min_objects; 1846 if (!min_objects) 1847 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1848 while (min_objects > 1) { 1849 fraction = 16; 1850 while (fraction >= 4) { 1851 order = slab_order(size, min_objects, 1852 slub_max_order, fraction); 1853 if (order <= slub_max_order) 1854 return order; 1855 fraction /= 2; 1856 } 1857 min_objects /= 2; 1858 } 1859 1860 /* 1861 * We were unable to place multiple objects in a slab. Now 1862 * lets see if we can place a single object there. 1863 */ 1864 order = slab_order(size, 1, slub_max_order, 1); 1865 if (order <= slub_max_order) 1866 return order; 1867 1868 /* 1869 * Doh this slab cannot be placed using slub_max_order. 1870 */ 1871 order = slab_order(size, 1, MAX_ORDER, 1); 1872 if (order <= MAX_ORDER) 1873 return order; 1874 return -ENOSYS; 1875 } 1876 1877 /* 1878 * Figure out what the alignment of the objects will be. 1879 */ 1880 static unsigned long calculate_alignment(unsigned long flags, 1881 unsigned long align, unsigned long size) 1882 { 1883 /* 1884 * If the user wants hardware cache aligned objects then follow that 1885 * suggestion if the object is sufficiently large. 1886 * 1887 * The hardware cache alignment cannot override the specified 1888 * alignment though. If that is greater then use it. 1889 */ 1890 if (flags & SLAB_HWCACHE_ALIGN) { 1891 unsigned long ralign = cache_line_size(); 1892 while (size <= ralign / 2) 1893 ralign /= 2; 1894 align = max(align, ralign); 1895 } 1896 1897 if (align < ARCH_SLAB_MINALIGN) 1898 align = ARCH_SLAB_MINALIGN; 1899 1900 return ALIGN(align, sizeof(void *)); 1901 } 1902 1903 static void init_kmem_cache_cpu(struct kmem_cache *s, 1904 struct kmem_cache_cpu *c) 1905 { 1906 c->page = NULL; 1907 c->freelist = NULL; 1908 c->node = 0; 1909 c->offset = s->offset / sizeof(void *); 1910 c->objsize = s->objsize; 1911 #ifdef CONFIG_SLUB_STATS 1912 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); 1913 #endif 1914 } 1915 1916 static void 1917 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 1918 { 1919 n->nr_partial = 0; 1920 1921 /* 1922 * The larger the object size is, the more pages we want on the partial 1923 * list to avoid pounding the page allocator excessively. 1924 */ 1925 n->min_partial = ilog2(s->size); 1926 if (n->min_partial < MIN_PARTIAL) 1927 n->min_partial = MIN_PARTIAL; 1928 else if (n->min_partial > MAX_PARTIAL) 1929 n->min_partial = MAX_PARTIAL; 1930 1931 spin_lock_init(&n->list_lock); 1932 INIT_LIST_HEAD(&n->partial); 1933 #ifdef CONFIG_SLUB_DEBUG 1934 atomic_long_set(&n->nr_slabs, 0); 1935 atomic_long_set(&n->total_objects, 0); 1936 INIT_LIST_HEAD(&n->full); 1937 #endif 1938 } 1939 1940 #ifdef CONFIG_SMP 1941 /* 1942 * Per cpu array for per cpu structures. 1943 * 1944 * The per cpu array places all kmem_cache_cpu structures from one processor 1945 * close together meaning that it becomes possible that multiple per cpu 1946 * structures are contained in one cacheline. This may be particularly 1947 * beneficial for the kmalloc caches. 1948 * 1949 * A desktop system typically has around 60-80 slabs. With 100 here we are 1950 * likely able to get per cpu structures for all caches from the array defined 1951 * here. We must be able to cover all kmalloc caches during bootstrap. 1952 * 1953 * If the per cpu array is exhausted then fall back to kmalloc 1954 * of individual cachelines. No sharing is possible then. 1955 */ 1956 #define NR_KMEM_CACHE_CPU 100 1957 1958 static DEFINE_PER_CPU(struct kmem_cache_cpu, 1959 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 1960 1961 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 1962 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; 1963 1964 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 1965 int cpu, gfp_t flags) 1966 { 1967 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 1968 1969 if (c) 1970 per_cpu(kmem_cache_cpu_free, cpu) = 1971 (void *)c->freelist; 1972 else { 1973 /* Table overflow: So allocate ourselves */ 1974 c = kmalloc_node( 1975 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 1976 flags, cpu_to_node(cpu)); 1977 if (!c) 1978 return NULL; 1979 } 1980 1981 init_kmem_cache_cpu(s, c); 1982 return c; 1983 } 1984 1985 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 1986 { 1987 if (c < per_cpu(kmem_cache_cpu, cpu) || 1988 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 1989 kfree(c); 1990 return; 1991 } 1992 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 1993 per_cpu(kmem_cache_cpu_free, cpu) = c; 1994 } 1995 1996 static void free_kmem_cache_cpus(struct kmem_cache *s) 1997 { 1998 int cpu; 1999 2000 for_each_online_cpu(cpu) { 2001 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2002 2003 if (c) { 2004 s->cpu_slab[cpu] = NULL; 2005 free_kmem_cache_cpu(c, cpu); 2006 } 2007 } 2008 } 2009 2010 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2011 { 2012 int cpu; 2013 2014 for_each_online_cpu(cpu) { 2015 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2016 2017 if (c) 2018 continue; 2019 2020 c = alloc_kmem_cache_cpu(s, cpu, flags); 2021 if (!c) { 2022 free_kmem_cache_cpus(s); 2023 return 0; 2024 } 2025 s->cpu_slab[cpu] = c; 2026 } 2027 return 1; 2028 } 2029 2030 /* 2031 * Initialize the per cpu array. 2032 */ 2033 static void init_alloc_cpu_cpu(int cpu) 2034 { 2035 int i; 2036 2037 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) 2038 return; 2039 2040 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 2041 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 2042 2043 cpu_set(cpu, kmem_cach_cpu_free_init_once); 2044 } 2045 2046 static void __init init_alloc_cpu(void) 2047 { 2048 int cpu; 2049 2050 for_each_online_cpu(cpu) 2051 init_alloc_cpu_cpu(cpu); 2052 } 2053 2054 #else 2055 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 2056 static inline void init_alloc_cpu(void) {} 2057 2058 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2059 { 2060 init_kmem_cache_cpu(s, &s->cpu_slab); 2061 return 1; 2062 } 2063 #endif 2064 2065 #ifdef CONFIG_NUMA 2066 /* 2067 * No kmalloc_node yet so do it by hand. We know that this is the first 2068 * slab on the node for this slabcache. There are no concurrent accesses 2069 * possible. 2070 * 2071 * Note that this function only works on the kmalloc_node_cache 2072 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2073 * memory on a fresh node that has no slab structures yet. 2074 */ 2075 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, 2076 int node) 2077 { 2078 struct page *page; 2079 struct kmem_cache_node *n; 2080 unsigned long flags; 2081 2082 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2083 2084 page = new_slab(kmalloc_caches, gfpflags, node); 2085 2086 BUG_ON(!page); 2087 if (page_to_nid(page) != node) { 2088 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2089 "node %d\n", node); 2090 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2091 "in order to be able to continue\n"); 2092 } 2093 2094 n = page->freelist; 2095 BUG_ON(!n); 2096 page->freelist = get_freepointer(kmalloc_caches, n); 2097 page->inuse++; 2098 kmalloc_caches->node[node] = n; 2099 #ifdef CONFIG_SLUB_DEBUG 2100 init_object(kmalloc_caches, n, 1); 2101 init_tracking(kmalloc_caches, n); 2102 #endif 2103 init_kmem_cache_node(n, kmalloc_caches); 2104 inc_slabs_node(kmalloc_caches, node, page->objects); 2105 2106 /* 2107 * lockdep requires consistent irq usage for each lock 2108 * so even though there cannot be a race this early in 2109 * the boot sequence, we still disable irqs. 2110 */ 2111 local_irq_save(flags); 2112 add_partial(n, page, 0); 2113 local_irq_restore(flags); 2114 return n; 2115 } 2116 2117 static void free_kmem_cache_nodes(struct kmem_cache *s) 2118 { 2119 int node; 2120 2121 for_each_node_state(node, N_NORMAL_MEMORY) { 2122 struct kmem_cache_node *n = s->node[node]; 2123 if (n && n != &s->local_node) 2124 kmem_cache_free(kmalloc_caches, n); 2125 s->node[node] = NULL; 2126 } 2127 } 2128 2129 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2130 { 2131 int node; 2132 int local_node; 2133 2134 if (slab_state >= UP) 2135 local_node = page_to_nid(virt_to_page(s)); 2136 else 2137 local_node = 0; 2138 2139 for_each_node_state(node, N_NORMAL_MEMORY) { 2140 struct kmem_cache_node *n; 2141 2142 if (local_node == node) 2143 n = &s->local_node; 2144 else { 2145 if (slab_state == DOWN) { 2146 n = early_kmem_cache_node_alloc(gfpflags, 2147 node); 2148 continue; 2149 } 2150 n = kmem_cache_alloc_node(kmalloc_caches, 2151 gfpflags, node); 2152 2153 if (!n) { 2154 free_kmem_cache_nodes(s); 2155 return 0; 2156 } 2157 2158 } 2159 s->node[node] = n; 2160 init_kmem_cache_node(n, s); 2161 } 2162 return 1; 2163 } 2164 #else 2165 static void free_kmem_cache_nodes(struct kmem_cache *s) 2166 { 2167 } 2168 2169 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2170 { 2171 init_kmem_cache_node(&s->local_node, s); 2172 return 1; 2173 } 2174 #endif 2175 2176 /* 2177 * calculate_sizes() determines the order and the distribution of data within 2178 * a slab object. 2179 */ 2180 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2181 { 2182 unsigned long flags = s->flags; 2183 unsigned long size = s->objsize; 2184 unsigned long align = s->align; 2185 int order; 2186 2187 /* 2188 * Round up object size to the next word boundary. We can only 2189 * place the free pointer at word boundaries and this determines 2190 * the possible location of the free pointer. 2191 */ 2192 size = ALIGN(size, sizeof(void *)); 2193 2194 #ifdef CONFIG_SLUB_DEBUG 2195 /* 2196 * Determine if we can poison the object itself. If the user of 2197 * the slab may touch the object after free or before allocation 2198 * then we should never poison the object itself. 2199 */ 2200 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2201 !s->ctor) 2202 s->flags |= __OBJECT_POISON; 2203 else 2204 s->flags &= ~__OBJECT_POISON; 2205 2206 2207 /* 2208 * If we are Redzoning then check if there is some space between the 2209 * end of the object and the free pointer. If not then add an 2210 * additional word to have some bytes to store Redzone information. 2211 */ 2212 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2213 size += sizeof(void *); 2214 #endif 2215 2216 /* 2217 * With that we have determined the number of bytes in actual use 2218 * by the object. This is the potential offset to the free pointer. 2219 */ 2220 s->inuse = size; 2221 2222 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2223 s->ctor)) { 2224 /* 2225 * Relocate free pointer after the object if it is not 2226 * permitted to overwrite the first word of the object on 2227 * kmem_cache_free. 2228 * 2229 * This is the case if we do RCU, have a constructor or 2230 * destructor or are poisoning the objects. 2231 */ 2232 s->offset = size; 2233 size += sizeof(void *); 2234 } 2235 2236 #ifdef CONFIG_SLUB_DEBUG 2237 if (flags & SLAB_STORE_USER) 2238 /* 2239 * Need to store information about allocs and frees after 2240 * the object. 2241 */ 2242 size += 2 * sizeof(struct track); 2243 2244 if (flags & SLAB_RED_ZONE) 2245 /* 2246 * Add some empty padding so that we can catch 2247 * overwrites from earlier objects rather than let 2248 * tracking information or the free pointer be 2249 * corrupted if an user writes before the start 2250 * of the object. 2251 */ 2252 size += sizeof(void *); 2253 #endif 2254 2255 /* 2256 * Determine the alignment based on various parameters that the 2257 * user specified and the dynamic determination of cache line size 2258 * on bootup. 2259 */ 2260 align = calculate_alignment(flags, align, s->objsize); 2261 2262 /* 2263 * SLUB stores one object immediately after another beginning from 2264 * offset 0. In order to align the objects we have to simply size 2265 * each object to conform to the alignment. 2266 */ 2267 size = ALIGN(size, align); 2268 s->size = size; 2269 if (forced_order >= 0) 2270 order = forced_order; 2271 else 2272 order = calculate_order(size); 2273 2274 if (order < 0) 2275 return 0; 2276 2277 s->allocflags = 0; 2278 if (order) 2279 s->allocflags |= __GFP_COMP; 2280 2281 if (s->flags & SLAB_CACHE_DMA) 2282 s->allocflags |= SLUB_DMA; 2283 2284 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2285 s->allocflags |= __GFP_RECLAIMABLE; 2286 2287 /* 2288 * Determine the number of objects per slab 2289 */ 2290 s->oo = oo_make(order, size); 2291 s->min = oo_make(get_order(size), size); 2292 if (oo_objects(s->oo) > oo_objects(s->max)) 2293 s->max = s->oo; 2294 2295 return !!oo_objects(s->oo); 2296 2297 } 2298 2299 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2300 const char *name, size_t size, 2301 size_t align, unsigned long flags, 2302 void (*ctor)(void *)) 2303 { 2304 memset(s, 0, kmem_size); 2305 s->name = name; 2306 s->ctor = ctor; 2307 s->objsize = size; 2308 s->align = align; 2309 s->flags = kmem_cache_flags(size, flags, name, ctor); 2310 2311 if (!calculate_sizes(s, -1)) 2312 goto error; 2313 2314 s->refcount = 1; 2315 #ifdef CONFIG_NUMA 2316 s->remote_node_defrag_ratio = 1000; 2317 #endif 2318 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2319 goto error; 2320 2321 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2322 return 1; 2323 free_kmem_cache_nodes(s); 2324 error: 2325 if (flags & SLAB_PANIC) 2326 panic("Cannot create slab %s size=%lu realsize=%u " 2327 "order=%u offset=%u flags=%lx\n", 2328 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2329 s->offset, flags); 2330 return 0; 2331 } 2332 2333 /* 2334 * Check if a given pointer is valid 2335 */ 2336 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2337 { 2338 struct page *page; 2339 2340 page = get_object_page(object); 2341 2342 if (!page || s != page->slab) 2343 /* No slab or wrong slab */ 2344 return 0; 2345 2346 if (!check_valid_pointer(s, page, object)) 2347 return 0; 2348 2349 /* 2350 * We could also check if the object is on the slabs freelist. 2351 * But this would be too expensive and it seems that the main 2352 * purpose of kmem_ptr_valid() is to check if the object belongs 2353 * to a certain slab. 2354 */ 2355 return 1; 2356 } 2357 EXPORT_SYMBOL(kmem_ptr_validate); 2358 2359 /* 2360 * Determine the size of a slab object 2361 */ 2362 unsigned int kmem_cache_size(struct kmem_cache *s) 2363 { 2364 return s->objsize; 2365 } 2366 EXPORT_SYMBOL(kmem_cache_size); 2367 2368 const char *kmem_cache_name(struct kmem_cache *s) 2369 { 2370 return s->name; 2371 } 2372 EXPORT_SYMBOL(kmem_cache_name); 2373 2374 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2375 const char *text) 2376 { 2377 #ifdef CONFIG_SLUB_DEBUG 2378 void *addr = page_address(page); 2379 void *p; 2380 DECLARE_BITMAP(map, page->objects); 2381 2382 bitmap_zero(map, page->objects); 2383 slab_err(s, page, "%s", text); 2384 slab_lock(page); 2385 for_each_free_object(p, s, page->freelist) 2386 set_bit(slab_index(p, s, addr), map); 2387 2388 for_each_object(p, s, addr, page->objects) { 2389 2390 if (!test_bit(slab_index(p, s, addr), map)) { 2391 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2392 p, p - addr); 2393 print_tracking(s, p); 2394 } 2395 } 2396 slab_unlock(page); 2397 #endif 2398 } 2399 2400 /* 2401 * Attempt to free all partial slabs on a node. 2402 */ 2403 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2404 { 2405 unsigned long flags; 2406 struct page *page, *h; 2407 2408 spin_lock_irqsave(&n->list_lock, flags); 2409 list_for_each_entry_safe(page, h, &n->partial, lru) { 2410 if (!page->inuse) { 2411 list_del(&page->lru); 2412 discard_slab(s, page); 2413 n->nr_partial--; 2414 } else { 2415 list_slab_objects(s, page, 2416 "Objects remaining on kmem_cache_close()"); 2417 } 2418 } 2419 spin_unlock_irqrestore(&n->list_lock, flags); 2420 } 2421 2422 /* 2423 * Release all resources used by a slab cache. 2424 */ 2425 static inline int kmem_cache_close(struct kmem_cache *s) 2426 { 2427 int node; 2428 2429 flush_all(s); 2430 2431 /* Attempt to free all objects */ 2432 free_kmem_cache_cpus(s); 2433 for_each_node_state(node, N_NORMAL_MEMORY) { 2434 struct kmem_cache_node *n = get_node(s, node); 2435 2436 free_partial(s, n); 2437 if (n->nr_partial || slabs_node(s, node)) 2438 return 1; 2439 } 2440 free_kmem_cache_nodes(s); 2441 return 0; 2442 } 2443 2444 /* 2445 * Close a cache and release the kmem_cache structure 2446 * (must be used for caches created using kmem_cache_create) 2447 */ 2448 void kmem_cache_destroy(struct kmem_cache *s) 2449 { 2450 down_write(&slub_lock); 2451 s->refcount--; 2452 if (!s->refcount) { 2453 list_del(&s->list); 2454 up_write(&slub_lock); 2455 if (kmem_cache_close(s)) { 2456 printk(KERN_ERR "SLUB %s: %s called for cache that " 2457 "still has objects.\n", s->name, __func__); 2458 dump_stack(); 2459 } 2460 sysfs_slab_remove(s); 2461 } else 2462 up_write(&slub_lock); 2463 } 2464 EXPORT_SYMBOL(kmem_cache_destroy); 2465 2466 /******************************************************************** 2467 * Kmalloc subsystem 2468 *******************************************************************/ 2469 2470 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; 2471 EXPORT_SYMBOL(kmalloc_caches); 2472 2473 static int __init setup_slub_min_order(char *str) 2474 { 2475 get_option(&str, &slub_min_order); 2476 2477 return 1; 2478 } 2479 2480 __setup("slub_min_order=", setup_slub_min_order); 2481 2482 static int __init setup_slub_max_order(char *str) 2483 { 2484 get_option(&str, &slub_max_order); 2485 2486 return 1; 2487 } 2488 2489 __setup("slub_max_order=", setup_slub_max_order); 2490 2491 static int __init setup_slub_min_objects(char *str) 2492 { 2493 get_option(&str, &slub_min_objects); 2494 2495 return 1; 2496 } 2497 2498 __setup("slub_min_objects=", setup_slub_min_objects); 2499 2500 static int __init setup_slub_nomerge(char *str) 2501 { 2502 slub_nomerge = 1; 2503 return 1; 2504 } 2505 2506 __setup("slub_nomerge", setup_slub_nomerge); 2507 2508 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2509 const char *name, int size, gfp_t gfp_flags) 2510 { 2511 unsigned int flags = 0; 2512 2513 if (gfp_flags & SLUB_DMA) 2514 flags = SLAB_CACHE_DMA; 2515 2516 down_write(&slub_lock); 2517 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2518 flags, NULL)) 2519 goto panic; 2520 2521 list_add(&s->list, &slab_caches); 2522 up_write(&slub_lock); 2523 if (sysfs_slab_add(s)) 2524 goto panic; 2525 return s; 2526 2527 panic: 2528 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2529 } 2530 2531 #ifdef CONFIG_ZONE_DMA 2532 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; 2533 2534 static void sysfs_add_func(struct work_struct *w) 2535 { 2536 struct kmem_cache *s; 2537 2538 down_write(&slub_lock); 2539 list_for_each_entry(s, &slab_caches, list) { 2540 if (s->flags & __SYSFS_ADD_DEFERRED) { 2541 s->flags &= ~__SYSFS_ADD_DEFERRED; 2542 sysfs_slab_add(s); 2543 } 2544 } 2545 up_write(&slub_lock); 2546 } 2547 2548 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2549 2550 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2551 { 2552 struct kmem_cache *s; 2553 char *text; 2554 size_t realsize; 2555 2556 s = kmalloc_caches_dma[index]; 2557 if (s) 2558 return s; 2559 2560 /* Dynamically create dma cache */ 2561 if (flags & __GFP_WAIT) 2562 down_write(&slub_lock); 2563 else { 2564 if (!down_write_trylock(&slub_lock)) 2565 goto out; 2566 } 2567 2568 if (kmalloc_caches_dma[index]) 2569 goto unlock_out; 2570 2571 realsize = kmalloc_caches[index].objsize; 2572 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2573 (unsigned int)realsize); 2574 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2575 2576 if (!s || !text || !kmem_cache_open(s, flags, text, 2577 realsize, ARCH_KMALLOC_MINALIGN, 2578 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2579 kfree(s); 2580 kfree(text); 2581 goto unlock_out; 2582 } 2583 2584 list_add(&s->list, &slab_caches); 2585 kmalloc_caches_dma[index] = s; 2586 2587 schedule_work(&sysfs_add_work); 2588 2589 unlock_out: 2590 up_write(&slub_lock); 2591 out: 2592 return kmalloc_caches_dma[index]; 2593 } 2594 #endif 2595 2596 /* 2597 * Conversion table for small slabs sizes / 8 to the index in the 2598 * kmalloc array. This is necessary for slabs < 192 since we have non power 2599 * of two cache sizes there. The size of larger slabs can be determined using 2600 * fls. 2601 */ 2602 static s8 size_index[24] = { 2603 3, /* 8 */ 2604 4, /* 16 */ 2605 5, /* 24 */ 2606 5, /* 32 */ 2607 6, /* 40 */ 2608 6, /* 48 */ 2609 6, /* 56 */ 2610 6, /* 64 */ 2611 1, /* 72 */ 2612 1, /* 80 */ 2613 1, /* 88 */ 2614 1, /* 96 */ 2615 7, /* 104 */ 2616 7, /* 112 */ 2617 7, /* 120 */ 2618 7, /* 128 */ 2619 2, /* 136 */ 2620 2, /* 144 */ 2621 2, /* 152 */ 2622 2, /* 160 */ 2623 2, /* 168 */ 2624 2, /* 176 */ 2625 2, /* 184 */ 2626 2 /* 192 */ 2627 }; 2628 2629 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2630 { 2631 int index; 2632 2633 if (size <= 192) { 2634 if (!size) 2635 return ZERO_SIZE_PTR; 2636 2637 index = size_index[(size - 1) / 8]; 2638 } else 2639 index = fls(size - 1); 2640 2641 #ifdef CONFIG_ZONE_DMA 2642 if (unlikely((flags & SLUB_DMA))) 2643 return dma_kmalloc_cache(index, flags); 2644 2645 #endif 2646 return &kmalloc_caches[index]; 2647 } 2648 2649 void *__kmalloc(size_t size, gfp_t flags) 2650 { 2651 struct kmem_cache *s; 2652 2653 if (unlikely(size > PAGE_SIZE)) 2654 return kmalloc_large(size, flags); 2655 2656 s = get_slab(size, flags); 2657 2658 if (unlikely(ZERO_OR_NULL_PTR(s))) 2659 return s; 2660 2661 return slab_alloc(s, flags, -1, __builtin_return_address(0)); 2662 } 2663 EXPORT_SYMBOL(__kmalloc); 2664 2665 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2666 { 2667 struct page *page = alloc_pages_node(node, flags | __GFP_COMP, 2668 get_order(size)); 2669 2670 if (page) 2671 return page_address(page); 2672 else 2673 return NULL; 2674 } 2675 2676 #ifdef CONFIG_NUMA 2677 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2678 { 2679 struct kmem_cache *s; 2680 2681 if (unlikely(size > PAGE_SIZE)) 2682 return kmalloc_large_node(size, flags, node); 2683 2684 s = get_slab(size, flags); 2685 2686 if (unlikely(ZERO_OR_NULL_PTR(s))) 2687 return s; 2688 2689 return slab_alloc(s, flags, node, __builtin_return_address(0)); 2690 } 2691 EXPORT_SYMBOL(__kmalloc_node); 2692 #endif 2693 2694 size_t ksize(const void *object) 2695 { 2696 struct page *page; 2697 struct kmem_cache *s; 2698 2699 if (unlikely(object == ZERO_SIZE_PTR)) 2700 return 0; 2701 2702 page = virt_to_head_page(object); 2703 2704 if (unlikely(!PageSlab(page))) { 2705 WARN_ON(!PageCompound(page)); 2706 return PAGE_SIZE << compound_order(page); 2707 } 2708 s = page->slab; 2709 2710 #ifdef CONFIG_SLUB_DEBUG 2711 /* 2712 * Debugging requires use of the padding between object 2713 * and whatever may come after it. 2714 */ 2715 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2716 return s->objsize; 2717 2718 #endif 2719 /* 2720 * If we have the need to store the freelist pointer 2721 * back there or track user information then we can 2722 * only use the space before that information. 2723 */ 2724 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2725 return s->inuse; 2726 /* 2727 * Else we can use all the padding etc for the allocation 2728 */ 2729 return s->size; 2730 } 2731 2732 void kfree(const void *x) 2733 { 2734 struct page *page; 2735 void *object = (void *)x; 2736 2737 if (unlikely(ZERO_OR_NULL_PTR(x))) 2738 return; 2739 2740 page = virt_to_head_page(x); 2741 if (unlikely(!PageSlab(page))) { 2742 BUG_ON(!PageCompound(page)); 2743 put_page(page); 2744 return; 2745 } 2746 slab_free(page->slab, page, object, __builtin_return_address(0)); 2747 } 2748 EXPORT_SYMBOL(kfree); 2749 2750 /* 2751 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2752 * the remaining slabs by the number of items in use. The slabs with the 2753 * most items in use come first. New allocations will then fill those up 2754 * and thus they can be removed from the partial lists. 2755 * 2756 * The slabs with the least items are placed last. This results in them 2757 * being allocated from last increasing the chance that the last objects 2758 * are freed in them. 2759 */ 2760 int kmem_cache_shrink(struct kmem_cache *s) 2761 { 2762 int node; 2763 int i; 2764 struct kmem_cache_node *n; 2765 struct page *page; 2766 struct page *t; 2767 int objects = oo_objects(s->max); 2768 struct list_head *slabs_by_inuse = 2769 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2770 unsigned long flags; 2771 2772 if (!slabs_by_inuse) 2773 return -ENOMEM; 2774 2775 flush_all(s); 2776 for_each_node_state(node, N_NORMAL_MEMORY) { 2777 n = get_node(s, node); 2778 2779 if (!n->nr_partial) 2780 continue; 2781 2782 for (i = 0; i < objects; i++) 2783 INIT_LIST_HEAD(slabs_by_inuse + i); 2784 2785 spin_lock_irqsave(&n->list_lock, flags); 2786 2787 /* 2788 * Build lists indexed by the items in use in each slab. 2789 * 2790 * Note that concurrent frees may occur while we hold the 2791 * list_lock. page->inuse here is the upper limit. 2792 */ 2793 list_for_each_entry_safe(page, t, &n->partial, lru) { 2794 if (!page->inuse && slab_trylock(page)) { 2795 /* 2796 * Must hold slab lock here because slab_free 2797 * may have freed the last object and be 2798 * waiting to release the slab. 2799 */ 2800 list_del(&page->lru); 2801 n->nr_partial--; 2802 slab_unlock(page); 2803 discard_slab(s, page); 2804 } else { 2805 list_move(&page->lru, 2806 slabs_by_inuse + page->inuse); 2807 } 2808 } 2809 2810 /* 2811 * Rebuild the partial list with the slabs filled up most 2812 * first and the least used slabs at the end. 2813 */ 2814 for (i = objects - 1; i >= 0; i--) 2815 list_splice(slabs_by_inuse + i, n->partial.prev); 2816 2817 spin_unlock_irqrestore(&n->list_lock, flags); 2818 } 2819 2820 kfree(slabs_by_inuse); 2821 return 0; 2822 } 2823 EXPORT_SYMBOL(kmem_cache_shrink); 2824 2825 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2826 static int slab_mem_going_offline_callback(void *arg) 2827 { 2828 struct kmem_cache *s; 2829 2830 down_read(&slub_lock); 2831 list_for_each_entry(s, &slab_caches, list) 2832 kmem_cache_shrink(s); 2833 up_read(&slub_lock); 2834 2835 return 0; 2836 } 2837 2838 static void slab_mem_offline_callback(void *arg) 2839 { 2840 struct kmem_cache_node *n; 2841 struct kmem_cache *s; 2842 struct memory_notify *marg = arg; 2843 int offline_node; 2844 2845 offline_node = marg->status_change_nid; 2846 2847 /* 2848 * If the node still has available memory. we need kmem_cache_node 2849 * for it yet. 2850 */ 2851 if (offline_node < 0) 2852 return; 2853 2854 down_read(&slub_lock); 2855 list_for_each_entry(s, &slab_caches, list) { 2856 n = get_node(s, offline_node); 2857 if (n) { 2858 /* 2859 * if n->nr_slabs > 0, slabs still exist on the node 2860 * that is going down. We were unable to free them, 2861 * and offline_pages() function shoudn't call this 2862 * callback. So, we must fail. 2863 */ 2864 BUG_ON(slabs_node(s, offline_node)); 2865 2866 s->node[offline_node] = NULL; 2867 kmem_cache_free(kmalloc_caches, n); 2868 } 2869 } 2870 up_read(&slub_lock); 2871 } 2872 2873 static int slab_mem_going_online_callback(void *arg) 2874 { 2875 struct kmem_cache_node *n; 2876 struct kmem_cache *s; 2877 struct memory_notify *marg = arg; 2878 int nid = marg->status_change_nid; 2879 int ret = 0; 2880 2881 /* 2882 * If the node's memory is already available, then kmem_cache_node is 2883 * already created. Nothing to do. 2884 */ 2885 if (nid < 0) 2886 return 0; 2887 2888 /* 2889 * We are bringing a node online. No memory is available yet. We must 2890 * allocate a kmem_cache_node structure in order to bring the node 2891 * online. 2892 */ 2893 down_read(&slub_lock); 2894 list_for_each_entry(s, &slab_caches, list) { 2895 /* 2896 * XXX: kmem_cache_alloc_node will fallback to other nodes 2897 * since memory is not yet available from the node that 2898 * is brought up. 2899 */ 2900 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2901 if (!n) { 2902 ret = -ENOMEM; 2903 goto out; 2904 } 2905 init_kmem_cache_node(n, s); 2906 s->node[nid] = n; 2907 } 2908 out: 2909 up_read(&slub_lock); 2910 return ret; 2911 } 2912 2913 static int slab_memory_callback(struct notifier_block *self, 2914 unsigned long action, void *arg) 2915 { 2916 int ret = 0; 2917 2918 switch (action) { 2919 case MEM_GOING_ONLINE: 2920 ret = slab_mem_going_online_callback(arg); 2921 break; 2922 case MEM_GOING_OFFLINE: 2923 ret = slab_mem_going_offline_callback(arg); 2924 break; 2925 case MEM_OFFLINE: 2926 case MEM_CANCEL_ONLINE: 2927 slab_mem_offline_callback(arg); 2928 break; 2929 case MEM_ONLINE: 2930 case MEM_CANCEL_OFFLINE: 2931 break; 2932 } 2933 2934 ret = notifier_from_errno(ret); 2935 return ret; 2936 } 2937 2938 #endif /* CONFIG_MEMORY_HOTPLUG */ 2939 2940 /******************************************************************** 2941 * Basic setup of slabs 2942 *******************************************************************/ 2943 2944 void __init kmem_cache_init(void) 2945 { 2946 int i; 2947 int caches = 0; 2948 2949 init_alloc_cpu(); 2950 2951 #ifdef CONFIG_NUMA 2952 /* 2953 * Must first have the slab cache available for the allocations of the 2954 * struct kmem_cache_node's. There is special bootstrap code in 2955 * kmem_cache_open for slab_state == DOWN. 2956 */ 2957 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 2958 sizeof(struct kmem_cache_node), GFP_KERNEL); 2959 kmalloc_caches[0].refcount = -1; 2960 caches++; 2961 2962 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 2963 #endif 2964 2965 /* Able to allocate the per node structures */ 2966 slab_state = PARTIAL; 2967 2968 /* Caches that are not of the two-to-the-power-of size */ 2969 if (KMALLOC_MIN_SIZE <= 64) { 2970 create_kmalloc_cache(&kmalloc_caches[1], 2971 "kmalloc-96", 96, GFP_KERNEL); 2972 caches++; 2973 create_kmalloc_cache(&kmalloc_caches[2], 2974 "kmalloc-192", 192, GFP_KERNEL); 2975 caches++; 2976 } 2977 2978 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { 2979 create_kmalloc_cache(&kmalloc_caches[i], 2980 "kmalloc", 1 << i, GFP_KERNEL); 2981 caches++; 2982 } 2983 2984 2985 /* 2986 * Patch up the size_index table if we have strange large alignment 2987 * requirements for the kmalloc array. This is only the case for 2988 * MIPS it seems. The standard arches will not generate any code here. 2989 * 2990 * Largest permitted alignment is 256 bytes due to the way we 2991 * handle the index determination for the smaller caches. 2992 * 2993 * Make sure that nothing crazy happens if someone starts tinkering 2994 * around with ARCH_KMALLOC_MINALIGN 2995 */ 2996 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 2997 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 2998 2999 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 3000 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 3001 3002 if (KMALLOC_MIN_SIZE == 128) { 3003 /* 3004 * The 192 byte sized cache is not used if the alignment 3005 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3006 * instead. 3007 */ 3008 for (i = 128 + 8; i <= 192; i += 8) 3009 size_index[(i - 1) / 8] = 8; 3010 } 3011 3012 slab_state = UP; 3013 3014 /* Provide the correct kmalloc names now that the caches are up */ 3015 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) 3016 kmalloc_caches[i]. name = 3017 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 3018 3019 #ifdef CONFIG_SMP 3020 register_cpu_notifier(&slab_notifier); 3021 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 3022 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 3023 #else 3024 kmem_size = sizeof(struct kmem_cache); 3025 #endif 3026 3027 printk(KERN_INFO 3028 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3029 " CPUs=%d, Nodes=%d\n", 3030 caches, cache_line_size(), 3031 slub_min_order, slub_max_order, slub_min_objects, 3032 nr_cpu_ids, nr_node_ids); 3033 } 3034 3035 /* 3036 * Find a mergeable slab cache 3037 */ 3038 static int slab_unmergeable(struct kmem_cache *s) 3039 { 3040 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3041 return 1; 3042 3043 if (s->ctor) 3044 return 1; 3045 3046 /* 3047 * We may have set a slab to be unmergeable during bootstrap. 3048 */ 3049 if (s->refcount < 0) 3050 return 1; 3051 3052 return 0; 3053 } 3054 3055 static struct kmem_cache *find_mergeable(size_t size, 3056 size_t align, unsigned long flags, const char *name, 3057 void (*ctor)(void *)) 3058 { 3059 struct kmem_cache *s; 3060 3061 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3062 return NULL; 3063 3064 if (ctor) 3065 return NULL; 3066 3067 size = ALIGN(size, sizeof(void *)); 3068 align = calculate_alignment(flags, align, size); 3069 size = ALIGN(size, align); 3070 flags = kmem_cache_flags(size, flags, name, NULL); 3071 3072 list_for_each_entry(s, &slab_caches, list) { 3073 if (slab_unmergeable(s)) 3074 continue; 3075 3076 if (size > s->size) 3077 continue; 3078 3079 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3080 continue; 3081 /* 3082 * Check if alignment is compatible. 3083 * Courtesy of Adrian Drzewiecki 3084 */ 3085 if ((s->size & ~(align - 1)) != s->size) 3086 continue; 3087 3088 if (s->size - size >= sizeof(void *)) 3089 continue; 3090 3091 return s; 3092 } 3093 return NULL; 3094 } 3095 3096 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3097 size_t align, unsigned long flags, void (*ctor)(void *)) 3098 { 3099 struct kmem_cache *s; 3100 3101 down_write(&slub_lock); 3102 s = find_mergeable(size, align, flags, name, ctor); 3103 if (s) { 3104 int cpu; 3105 3106 s->refcount++; 3107 /* 3108 * Adjust the object sizes so that we clear 3109 * the complete object on kzalloc. 3110 */ 3111 s->objsize = max(s->objsize, (int)size); 3112 3113 /* 3114 * And then we need to update the object size in the 3115 * per cpu structures 3116 */ 3117 for_each_online_cpu(cpu) 3118 get_cpu_slab(s, cpu)->objsize = s->objsize; 3119 3120 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3121 up_write(&slub_lock); 3122 3123 if (sysfs_slab_alias(s, name)) 3124 goto err; 3125 return s; 3126 } 3127 3128 s = kmalloc(kmem_size, GFP_KERNEL); 3129 if (s) { 3130 if (kmem_cache_open(s, GFP_KERNEL, name, 3131 size, align, flags, ctor)) { 3132 list_add(&s->list, &slab_caches); 3133 up_write(&slub_lock); 3134 if (sysfs_slab_add(s)) 3135 goto err; 3136 return s; 3137 } 3138 kfree(s); 3139 } 3140 up_write(&slub_lock); 3141 3142 err: 3143 if (flags & SLAB_PANIC) 3144 panic("Cannot create slabcache %s\n", name); 3145 else 3146 s = NULL; 3147 return s; 3148 } 3149 EXPORT_SYMBOL(kmem_cache_create); 3150 3151 #ifdef CONFIG_SMP 3152 /* 3153 * Use the cpu notifier to insure that the cpu slabs are flushed when 3154 * necessary. 3155 */ 3156 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3157 unsigned long action, void *hcpu) 3158 { 3159 long cpu = (long)hcpu; 3160 struct kmem_cache *s; 3161 unsigned long flags; 3162 3163 switch (action) { 3164 case CPU_UP_PREPARE: 3165 case CPU_UP_PREPARE_FROZEN: 3166 init_alloc_cpu_cpu(cpu); 3167 down_read(&slub_lock); 3168 list_for_each_entry(s, &slab_caches, list) 3169 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3170 GFP_KERNEL); 3171 up_read(&slub_lock); 3172 break; 3173 3174 case CPU_UP_CANCELED: 3175 case CPU_UP_CANCELED_FROZEN: 3176 case CPU_DEAD: 3177 case CPU_DEAD_FROZEN: 3178 down_read(&slub_lock); 3179 list_for_each_entry(s, &slab_caches, list) { 3180 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3181 3182 local_irq_save(flags); 3183 __flush_cpu_slab(s, cpu); 3184 local_irq_restore(flags); 3185 free_kmem_cache_cpu(c, cpu); 3186 s->cpu_slab[cpu] = NULL; 3187 } 3188 up_read(&slub_lock); 3189 break; 3190 default: 3191 break; 3192 } 3193 return NOTIFY_OK; 3194 } 3195 3196 static struct notifier_block __cpuinitdata slab_notifier = { 3197 .notifier_call = slab_cpuup_callback 3198 }; 3199 3200 #endif 3201 3202 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) 3203 { 3204 struct kmem_cache *s; 3205 3206 if (unlikely(size > PAGE_SIZE)) 3207 return kmalloc_large(size, gfpflags); 3208 3209 s = get_slab(size, gfpflags); 3210 3211 if (unlikely(ZERO_OR_NULL_PTR(s))) 3212 return s; 3213 3214 return slab_alloc(s, gfpflags, -1, caller); 3215 } 3216 3217 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3218 int node, void *caller) 3219 { 3220 struct kmem_cache *s; 3221 3222 if (unlikely(size > PAGE_SIZE)) 3223 return kmalloc_large_node(size, gfpflags, node); 3224 3225 s = get_slab(size, gfpflags); 3226 3227 if (unlikely(ZERO_OR_NULL_PTR(s))) 3228 return s; 3229 3230 return slab_alloc(s, gfpflags, node, caller); 3231 } 3232 3233 #ifdef CONFIG_SLUB_DEBUG 3234 static unsigned long count_partial(struct kmem_cache_node *n, 3235 int (*get_count)(struct page *)) 3236 { 3237 unsigned long flags; 3238 unsigned long x = 0; 3239 struct page *page; 3240 3241 spin_lock_irqsave(&n->list_lock, flags); 3242 list_for_each_entry(page, &n->partial, lru) 3243 x += get_count(page); 3244 spin_unlock_irqrestore(&n->list_lock, flags); 3245 return x; 3246 } 3247 3248 static int count_inuse(struct page *page) 3249 { 3250 return page->inuse; 3251 } 3252 3253 static int count_total(struct page *page) 3254 { 3255 return page->objects; 3256 } 3257 3258 static int count_free(struct page *page) 3259 { 3260 return page->objects - page->inuse; 3261 } 3262 3263 static int validate_slab(struct kmem_cache *s, struct page *page, 3264 unsigned long *map) 3265 { 3266 void *p; 3267 void *addr = page_address(page); 3268 3269 if (!check_slab(s, page) || 3270 !on_freelist(s, page, NULL)) 3271 return 0; 3272 3273 /* Now we know that a valid freelist exists */ 3274 bitmap_zero(map, page->objects); 3275 3276 for_each_free_object(p, s, page->freelist) { 3277 set_bit(slab_index(p, s, addr), map); 3278 if (!check_object(s, page, p, 0)) 3279 return 0; 3280 } 3281 3282 for_each_object(p, s, addr, page->objects) 3283 if (!test_bit(slab_index(p, s, addr), map)) 3284 if (!check_object(s, page, p, 1)) 3285 return 0; 3286 return 1; 3287 } 3288 3289 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3290 unsigned long *map) 3291 { 3292 if (slab_trylock(page)) { 3293 validate_slab(s, page, map); 3294 slab_unlock(page); 3295 } else 3296 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3297 s->name, page); 3298 3299 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3300 if (!PageSlubDebug(page)) 3301 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3302 "on slab 0x%p\n", s->name, page); 3303 } else { 3304 if (PageSlubDebug(page)) 3305 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3306 "slab 0x%p\n", s->name, page); 3307 } 3308 } 3309 3310 static int validate_slab_node(struct kmem_cache *s, 3311 struct kmem_cache_node *n, unsigned long *map) 3312 { 3313 unsigned long count = 0; 3314 struct page *page; 3315 unsigned long flags; 3316 3317 spin_lock_irqsave(&n->list_lock, flags); 3318 3319 list_for_each_entry(page, &n->partial, lru) { 3320 validate_slab_slab(s, page, map); 3321 count++; 3322 } 3323 if (count != n->nr_partial) 3324 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3325 "counter=%ld\n", s->name, count, n->nr_partial); 3326 3327 if (!(s->flags & SLAB_STORE_USER)) 3328 goto out; 3329 3330 list_for_each_entry(page, &n->full, lru) { 3331 validate_slab_slab(s, page, map); 3332 count++; 3333 } 3334 if (count != atomic_long_read(&n->nr_slabs)) 3335 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3336 "counter=%ld\n", s->name, count, 3337 atomic_long_read(&n->nr_slabs)); 3338 3339 out: 3340 spin_unlock_irqrestore(&n->list_lock, flags); 3341 return count; 3342 } 3343 3344 static long validate_slab_cache(struct kmem_cache *s) 3345 { 3346 int node; 3347 unsigned long count = 0; 3348 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3349 sizeof(unsigned long), GFP_KERNEL); 3350 3351 if (!map) 3352 return -ENOMEM; 3353 3354 flush_all(s); 3355 for_each_node_state(node, N_NORMAL_MEMORY) { 3356 struct kmem_cache_node *n = get_node(s, node); 3357 3358 count += validate_slab_node(s, n, map); 3359 } 3360 kfree(map); 3361 return count; 3362 } 3363 3364 #ifdef SLUB_RESILIENCY_TEST 3365 static void resiliency_test(void) 3366 { 3367 u8 *p; 3368 3369 printk(KERN_ERR "SLUB resiliency testing\n"); 3370 printk(KERN_ERR "-----------------------\n"); 3371 printk(KERN_ERR "A. Corruption after allocation\n"); 3372 3373 p = kzalloc(16, GFP_KERNEL); 3374 p[16] = 0x12; 3375 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3376 " 0x12->0x%p\n\n", p + 16); 3377 3378 validate_slab_cache(kmalloc_caches + 4); 3379 3380 /* Hmmm... The next two are dangerous */ 3381 p = kzalloc(32, GFP_KERNEL); 3382 p[32 + sizeof(void *)] = 0x34; 3383 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3384 " 0x34 -> -0x%p\n", p); 3385 printk(KERN_ERR 3386 "If allocated object is overwritten then not detectable\n\n"); 3387 3388 validate_slab_cache(kmalloc_caches + 5); 3389 p = kzalloc(64, GFP_KERNEL); 3390 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3391 *p = 0x56; 3392 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3393 p); 3394 printk(KERN_ERR 3395 "If allocated object is overwritten then not detectable\n\n"); 3396 validate_slab_cache(kmalloc_caches + 6); 3397 3398 printk(KERN_ERR "\nB. Corruption after free\n"); 3399 p = kzalloc(128, GFP_KERNEL); 3400 kfree(p); 3401 *p = 0x78; 3402 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3403 validate_slab_cache(kmalloc_caches + 7); 3404 3405 p = kzalloc(256, GFP_KERNEL); 3406 kfree(p); 3407 p[50] = 0x9a; 3408 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3409 p); 3410 validate_slab_cache(kmalloc_caches + 8); 3411 3412 p = kzalloc(512, GFP_KERNEL); 3413 kfree(p); 3414 p[512] = 0xab; 3415 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3416 validate_slab_cache(kmalloc_caches + 9); 3417 } 3418 #else 3419 static void resiliency_test(void) {}; 3420 #endif 3421 3422 /* 3423 * Generate lists of code addresses where slabcache objects are allocated 3424 * and freed. 3425 */ 3426 3427 struct location { 3428 unsigned long count; 3429 void *addr; 3430 long long sum_time; 3431 long min_time; 3432 long max_time; 3433 long min_pid; 3434 long max_pid; 3435 cpumask_t cpus; 3436 nodemask_t nodes; 3437 }; 3438 3439 struct loc_track { 3440 unsigned long max; 3441 unsigned long count; 3442 struct location *loc; 3443 }; 3444 3445 static void free_loc_track(struct loc_track *t) 3446 { 3447 if (t->max) 3448 free_pages((unsigned long)t->loc, 3449 get_order(sizeof(struct location) * t->max)); 3450 } 3451 3452 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3453 { 3454 struct location *l; 3455 int order; 3456 3457 order = get_order(sizeof(struct location) * max); 3458 3459 l = (void *)__get_free_pages(flags, order); 3460 if (!l) 3461 return 0; 3462 3463 if (t->count) { 3464 memcpy(l, t->loc, sizeof(struct location) * t->count); 3465 free_loc_track(t); 3466 } 3467 t->max = max; 3468 t->loc = l; 3469 return 1; 3470 } 3471 3472 static int add_location(struct loc_track *t, struct kmem_cache *s, 3473 const struct track *track) 3474 { 3475 long start, end, pos; 3476 struct location *l; 3477 void *caddr; 3478 unsigned long age = jiffies - track->when; 3479 3480 start = -1; 3481 end = t->count; 3482 3483 for ( ; ; ) { 3484 pos = start + (end - start + 1) / 2; 3485 3486 /* 3487 * There is nothing at "end". If we end up there 3488 * we need to add something to before end. 3489 */ 3490 if (pos == end) 3491 break; 3492 3493 caddr = t->loc[pos].addr; 3494 if (track->addr == caddr) { 3495 3496 l = &t->loc[pos]; 3497 l->count++; 3498 if (track->when) { 3499 l->sum_time += age; 3500 if (age < l->min_time) 3501 l->min_time = age; 3502 if (age > l->max_time) 3503 l->max_time = age; 3504 3505 if (track->pid < l->min_pid) 3506 l->min_pid = track->pid; 3507 if (track->pid > l->max_pid) 3508 l->max_pid = track->pid; 3509 3510 cpu_set(track->cpu, l->cpus); 3511 } 3512 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3513 return 1; 3514 } 3515 3516 if (track->addr < caddr) 3517 end = pos; 3518 else 3519 start = pos; 3520 } 3521 3522 /* 3523 * Not found. Insert new tracking element. 3524 */ 3525 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3526 return 0; 3527 3528 l = t->loc + pos; 3529 if (pos < t->count) 3530 memmove(l + 1, l, 3531 (t->count - pos) * sizeof(struct location)); 3532 t->count++; 3533 l->count = 1; 3534 l->addr = track->addr; 3535 l->sum_time = age; 3536 l->min_time = age; 3537 l->max_time = age; 3538 l->min_pid = track->pid; 3539 l->max_pid = track->pid; 3540 cpus_clear(l->cpus); 3541 cpu_set(track->cpu, l->cpus); 3542 nodes_clear(l->nodes); 3543 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3544 return 1; 3545 } 3546 3547 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3548 struct page *page, enum track_item alloc) 3549 { 3550 void *addr = page_address(page); 3551 DECLARE_BITMAP(map, page->objects); 3552 void *p; 3553 3554 bitmap_zero(map, page->objects); 3555 for_each_free_object(p, s, page->freelist) 3556 set_bit(slab_index(p, s, addr), map); 3557 3558 for_each_object(p, s, addr, page->objects) 3559 if (!test_bit(slab_index(p, s, addr), map)) 3560 add_location(t, s, get_track(s, p, alloc)); 3561 } 3562 3563 static int list_locations(struct kmem_cache *s, char *buf, 3564 enum track_item alloc) 3565 { 3566 int len = 0; 3567 unsigned long i; 3568 struct loc_track t = { 0, 0, NULL }; 3569 int node; 3570 3571 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3572 GFP_TEMPORARY)) 3573 return sprintf(buf, "Out of memory\n"); 3574 3575 /* Push back cpu slabs */ 3576 flush_all(s); 3577 3578 for_each_node_state(node, N_NORMAL_MEMORY) { 3579 struct kmem_cache_node *n = get_node(s, node); 3580 unsigned long flags; 3581 struct page *page; 3582 3583 if (!atomic_long_read(&n->nr_slabs)) 3584 continue; 3585 3586 spin_lock_irqsave(&n->list_lock, flags); 3587 list_for_each_entry(page, &n->partial, lru) 3588 process_slab(&t, s, page, alloc); 3589 list_for_each_entry(page, &n->full, lru) 3590 process_slab(&t, s, page, alloc); 3591 spin_unlock_irqrestore(&n->list_lock, flags); 3592 } 3593 3594 for (i = 0; i < t.count; i++) { 3595 struct location *l = &t.loc[i]; 3596 3597 if (len > PAGE_SIZE - 100) 3598 break; 3599 len += sprintf(buf + len, "%7ld ", l->count); 3600 3601 if (l->addr) 3602 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3603 else 3604 len += sprintf(buf + len, "<not-available>"); 3605 3606 if (l->sum_time != l->min_time) { 3607 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3608 l->min_time, 3609 (long)div_u64(l->sum_time, l->count), 3610 l->max_time); 3611 } else 3612 len += sprintf(buf + len, " age=%ld", 3613 l->min_time); 3614 3615 if (l->min_pid != l->max_pid) 3616 len += sprintf(buf + len, " pid=%ld-%ld", 3617 l->min_pid, l->max_pid); 3618 else 3619 len += sprintf(buf + len, " pid=%ld", 3620 l->min_pid); 3621 3622 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && 3623 len < PAGE_SIZE - 60) { 3624 len += sprintf(buf + len, " cpus="); 3625 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3626 l->cpus); 3627 } 3628 3629 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3630 len < PAGE_SIZE - 60) { 3631 len += sprintf(buf + len, " nodes="); 3632 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3633 l->nodes); 3634 } 3635 3636 len += sprintf(buf + len, "\n"); 3637 } 3638 3639 free_loc_track(&t); 3640 if (!t.count) 3641 len += sprintf(buf, "No data\n"); 3642 return len; 3643 } 3644 3645 enum slab_stat_type { 3646 SL_ALL, /* All slabs */ 3647 SL_PARTIAL, /* Only partially allocated slabs */ 3648 SL_CPU, /* Only slabs used for cpu caches */ 3649 SL_OBJECTS, /* Determine allocated objects not slabs */ 3650 SL_TOTAL /* Determine object capacity not slabs */ 3651 }; 3652 3653 #define SO_ALL (1 << SL_ALL) 3654 #define SO_PARTIAL (1 << SL_PARTIAL) 3655 #define SO_CPU (1 << SL_CPU) 3656 #define SO_OBJECTS (1 << SL_OBJECTS) 3657 #define SO_TOTAL (1 << SL_TOTAL) 3658 3659 static ssize_t show_slab_objects(struct kmem_cache *s, 3660 char *buf, unsigned long flags) 3661 { 3662 unsigned long total = 0; 3663 int node; 3664 int x; 3665 unsigned long *nodes; 3666 unsigned long *per_cpu; 3667 3668 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3669 if (!nodes) 3670 return -ENOMEM; 3671 per_cpu = nodes + nr_node_ids; 3672 3673 if (flags & SO_CPU) { 3674 int cpu; 3675 3676 for_each_possible_cpu(cpu) { 3677 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3678 3679 if (!c || c->node < 0) 3680 continue; 3681 3682 if (c->page) { 3683 if (flags & SO_TOTAL) 3684 x = c->page->objects; 3685 else if (flags & SO_OBJECTS) 3686 x = c->page->inuse; 3687 else 3688 x = 1; 3689 3690 total += x; 3691 nodes[c->node] += x; 3692 } 3693 per_cpu[c->node]++; 3694 } 3695 } 3696 3697 if (flags & SO_ALL) { 3698 for_each_node_state(node, N_NORMAL_MEMORY) { 3699 struct kmem_cache_node *n = get_node(s, node); 3700 3701 if (flags & SO_TOTAL) 3702 x = atomic_long_read(&n->total_objects); 3703 else if (flags & SO_OBJECTS) 3704 x = atomic_long_read(&n->total_objects) - 3705 count_partial(n, count_free); 3706 3707 else 3708 x = atomic_long_read(&n->nr_slabs); 3709 total += x; 3710 nodes[node] += x; 3711 } 3712 3713 } else if (flags & SO_PARTIAL) { 3714 for_each_node_state(node, N_NORMAL_MEMORY) { 3715 struct kmem_cache_node *n = get_node(s, node); 3716 3717 if (flags & SO_TOTAL) 3718 x = count_partial(n, count_total); 3719 else if (flags & SO_OBJECTS) 3720 x = count_partial(n, count_inuse); 3721 else 3722 x = n->nr_partial; 3723 total += x; 3724 nodes[node] += x; 3725 } 3726 } 3727 x = sprintf(buf, "%lu", total); 3728 #ifdef CONFIG_NUMA 3729 for_each_node_state(node, N_NORMAL_MEMORY) 3730 if (nodes[node]) 3731 x += sprintf(buf + x, " N%d=%lu", 3732 node, nodes[node]); 3733 #endif 3734 kfree(nodes); 3735 return x + sprintf(buf + x, "\n"); 3736 } 3737 3738 static int any_slab_objects(struct kmem_cache *s) 3739 { 3740 int node; 3741 3742 for_each_online_node(node) { 3743 struct kmem_cache_node *n = get_node(s, node); 3744 3745 if (!n) 3746 continue; 3747 3748 if (atomic_long_read(&n->total_objects)) 3749 return 1; 3750 } 3751 return 0; 3752 } 3753 3754 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3755 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3756 3757 struct slab_attribute { 3758 struct attribute attr; 3759 ssize_t (*show)(struct kmem_cache *s, char *buf); 3760 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3761 }; 3762 3763 #define SLAB_ATTR_RO(_name) \ 3764 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3765 3766 #define SLAB_ATTR(_name) \ 3767 static struct slab_attribute _name##_attr = \ 3768 __ATTR(_name, 0644, _name##_show, _name##_store) 3769 3770 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3771 { 3772 return sprintf(buf, "%d\n", s->size); 3773 } 3774 SLAB_ATTR_RO(slab_size); 3775 3776 static ssize_t align_show(struct kmem_cache *s, char *buf) 3777 { 3778 return sprintf(buf, "%d\n", s->align); 3779 } 3780 SLAB_ATTR_RO(align); 3781 3782 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3783 { 3784 return sprintf(buf, "%d\n", s->objsize); 3785 } 3786 SLAB_ATTR_RO(object_size); 3787 3788 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3789 { 3790 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3791 } 3792 SLAB_ATTR_RO(objs_per_slab); 3793 3794 static ssize_t order_store(struct kmem_cache *s, 3795 const char *buf, size_t length) 3796 { 3797 unsigned long order; 3798 int err; 3799 3800 err = strict_strtoul(buf, 10, &order); 3801 if (err) 3802 return err; 3803 3804 if (order > slub_max_order || order < slub_min_order) 3805 return -EINVAL; 3806 3807 calculate_sizes(s, order); 3808 return length; 3809 } 3810 3811 static ssize_t order_show(struct kmem_cache *s, char *buf) 3812 { 3813 return sprintf(buf, "%d\n", oo_order(s->oo)); 3814 } 3815 SLAB_ATTR(order); 3816 3817 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3818 { 3819 if (s->ctor) { 3820 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3821 3822 return n + sprintf(buf + n, "\n"); 3823 } 3824 return 0; 3825 } 3826 SLAB_ATTR_RO(ctor); 3827 3828 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3829 { 3830 return sprintf(buf, "%d\n", s->refcount - 1); 3831 } 3832 SLAB_ATTR_RO(aliases); 3833 3834 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3835 { 3836 return show_slab_objects(s, buf, SO_ALL); 3837 } 3838 SLAB_ATTR_RO(slabs); 3839 3840 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3841 { 3842 return show_slab_objects(s, buf, SO_PARTIAL); 3843 } 3844 SLAB_ATTR_RO(partial); 3845 3846 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3847 { 3848 return show_slab_objects(s, buf, SO_CPU); 3849 } 3850 SLAB_ATTR_RO(cpu_slabs); 3851 3852 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3853 { 3854 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3855 } 3856 SLAB_ATTR_RO(objects); 3857 3858 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3859 { 3860 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3861 } 3862 SLAB_ATTR_RO(objects_partial); 3863 3864 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3865 { 3866 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3867 } 3868 SLAB_ATTR_RO(total_objects); 3869 3870 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3871 { 3872 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3873 } 3874 3875 static ssize_t sanity_checks_store(struct kmem_cache *s, 3876 const char *buf, size_t length) 3877 { 3878 s->flags &= ~SLAB_DEBUG_FREE; 3879 if (buf[0] == '1') 3880 s->flags |= SLAB_DEBUG_FREE; 3881 return length; 3882 } 3883 SLAB_ATTR(sanity_checks); 3884 3885 static ssize_t trace_show(struct kmem_cache *s, char *buf) 3886 { 3887 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 3888 } 3889 3890 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 3891 size_t length) 3892 { 3893 s->flags &= ~SLAB_TRACE; 3894 if (buf[0] == '1') 3895 s->flags |= SLAB_TRACE; 3896 return length; 3897 } 3898 SLAB_ATTR(trace); 3899 3900 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 3901 { 3902 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 3903 } 3904 3905 static ssize_t reclaim_account_store(struct kmem_cache *s, 3906 const char *buf, size_t length) 3907 { 3908 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 3909 if (buf[0] == '1') 3910 s->flags |= SLAB_RECLAIM_ACCOUNT; 3911 return length; 3912 } 3913 SLAB_ATTR(reclaim_account); 3914 3915 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 3916 { 3917 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 3918 } 3919 SLAB_ATTR_RO(hwcache_align); 3920 3921 #ifdef CONFIG_ZONE_DMA 3922 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 3923 { 3924 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 3925 } 3926 SLAB_ATTR_RO(cache_dma); 3927 #endif 3928 3929 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 3930 { 3931 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 3932 } 3933 SLAB_ATTR_RO(destroy_by_rcu); 3934 3935 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 3936 { 3937 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 3938 } 3939 3940 static ssize_t red_zone_store(struct kmem_cache *s, 3941 const char *buf, size_t length) 3942 { 3943 if (any_slab_objects(s)) 3944 return -EBUSY; 3945 3946 s->flags &= ~SLAB_RED_ZONE; 3947 if (buf[0] == '1') 3948 s->flags |= SLAB_RED_ZONE; 3949 calculate_sizes(s, -1); 3950 return length; 3951 } 3952 SLAB_ATTR(red_zone); 3953 3954 static ssize_t poison_show(struct kmem_cache *s, char *buf) 3955 { 3956 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 3957 } 3958 3959 static ssize_t poison_store(struct kmem_cache *s, 3960 const char *buf, size_t length) 3961 { 3962 if (any_slab_objects(s)) 3963 return -EBUSY; 3964 3965 s->flags &= ~SLAB_POISON; 3966 if (buf[0] == '1') 3967 s->flags |= SLAB_POISON; 3968 calculate_sizes(s, -1); 3969 return length; 3970 } 3971 SLAB_ATTR(poison); 3972 3973 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 3974 { 3975 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 3976 } 3977 3978 static ssize_t store_user_store(struct kmem_cache *s, 3979 const char *buf, size_t length) 3980 { 3981 if (any_slab_objects(s)) 3982 return -EBUSY; 3983 3984 s->flags &= ~SLAB_STORE_USER; 3985 if (buf[0] == '1') 3986 s->flags |= SLAB_STORE_USER; 3987 calculate_sizes(s, -1); 3988 return length; 3989 } 3990 SLAB_ATTR(store_user); 3991 3992 static ssize_t validate_show(struct kmem_cache *s, char *buf) 3993 { 3994 return 0; 3995 } 3996 3997 static ssize_t validate_store(struct kmem_cache *s, 3998 const char *buf, size_t length) 3999 { 4000 int ret = -EINVAL; 4001 4002 if (buf[0] == '1') { 4003 ret = validate_slab_cache(s); 4004 if (ret >= 0) 4005 ret = length; 4006 } 4007 return ret; 4008 } 4009 SLAB_ATTR(validate); 4010 4011 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4012 { 4013 return 0; 4014 } 4015 4016 static ssize_t shrink_store(struct kmem_cache *s, 4017 const char *buf, size_t length) 4018 { 4019 if (buf[0] == '1') { 4020 int rc = kmem_cache_shrink(s); 4021 4022 if (rc) 4023 return rc; 4024 } else 4025 return -EINVAL; 4026 return length; 4027 } 4028 SLAB_ATTR(shrink); 4029 4030 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4031 { 4032 if (!(s->flags & SLAB_STORE_USER)) 4033 return -ENOSYS; 4034 return list_locations(s, buf, TRACK_ALLOC); 4035 } 4036 SLAB_ATTR_RO(alloc_calls); 4037 4038 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4039 { 4040 if (!(s->flags & SLAB_STORE_USER)) 4041 return -ENOSYS; 4042 return list_locations(s, buf, TRACK_FREE); 4043 } 4044 SLAB_ATTR_RO(free_calls); 4045 4046 #ifdef CONFIG_NUMA 4047 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4048 { 4049 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4050 } 4051 4052 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4053 const char *buf, size_t length) 4054 { 4055 unsigned long ratio; 4056 int err; 4057 4058 err = strict_strtoul(buf, 10, &ratio); 4059 if (err) 4060 return err; 4061 4062 if (ratio <= 100) 4063 s->remote_node_defrag_ratio = ratio * 10; 4064 4065 return length; 4066 } 4067 SLAB_ATTR(remote_node_defrag_ratio); 4068 #endif 4069 4070 #ifdef CONFIG_SLUB_STATS 4071 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4072 { 4073 unsigned long sum = 0; 4074 int cpu; 4075 int len; 4076 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4077 4078 if (!data) 4079 return -ENOMEM; 4080 4081 for_each_online_cpu(cpu) { 4082 unsigned x = get_cpu_slab(s, cpu)->stat[si]; 4083 4084 data[cpu] = x; 4085 sum += x; 4086 } 4087 4088 len = sprintf(buf, "%lu", sum); 4089 4090 #ifdef CONFIG_SMP 4091 for_each_online_cpu(cpu) { 4092 if (data[cpu] && len < PAGE_SIZE - 20) 4093 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4094 } 4095 #endif 4096 kfree(data); 4097 return len + sprintf(buf + len, "\n"); 4098 } 4099 4100 #define STAT_ATTR(si, text) \ 4101 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4102 { \ 4103 return show_stat(s, buf, si); \ 4104 } \ 4105 SLAB_ATTR_RO(text); \ 4106 4107 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4108 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4109 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4110 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4111 STAT_ATTR(FREE_FROZEN, free_frozen); 4112 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4113 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4114 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4115 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4116 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4117 STAT_ATTR(FREE_SLAB, free_slab); 4118 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4119 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4120 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4121 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4122 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4123 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4124 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4125 #endif 4126 4127 static struct attribute *slab_attrs[] = { 4128 &slab_size_attr.attr, 4129 &object_size_attr.attr, 4130 &objs_per_slab_attr.attr, 4131 &order_attr.attr, 4132 &objects_attr.attr, 4133 &objects_partial_attr.attr, 4134 &total_objects_attr.attr, 4135 &slabs_attr.attr, 4136 &partial_attr.attr, 4137 &cpu_slabs_attr.attr, 4138 &ctor_attr.attr, 4139 &aliases_attr.attr, 4140 &align_attr.attr, 4141 &sanity_checks_attr.attr, 4142 &trace_attr.attr, 4143 &hwcache_align_attr.attr, 4144 &reclaim_account_attr.attr, 4145 &destroy_by_rcu_attr.attr, 4146 &red_zone_attr.attr, 4147 &poison_attr.attr, 4148 &store_user_attr.attr, 4149 &validate_attr.attr, 4150 &shrink_attr.attr, 4151 &alloc_calls_attr.attr, 4152 &free_calls_attr.attr, 4153 #ifdef CONFIG_ZONE_DMA 4154 &cache_dma_attr.attr, 4155 #endif 4156 #ifdef CONFIG_NUMA 4157 &remote_node_defrag_ratio_attr.attr, 4158 #endif 4159 #ifdef CONFIG_SLUB_STATS 4160 &alloc_fastpath_attr.attr, 4161 &alloc_slowpath_attr.attr, 4162 &free_fastpath_attr.attr, 4163 &free_slowpath_attr.attr, 4164 &free_frozen_attr.attr, 4165 &free_add_partial_attr.attr, 4166 &free_remove_partial_attr.attr, 4167 &alloc_from_partial_attr.attr, 4168 &alloc_slab_attr.attr, 4169 &alloc_refill_attr.attr, 4170 &free_slab_attr.attr, 4171 &cpuslab_flush_attr.attr, 4172 &deactivate_full_attr.attr, 4173 &deactivate_empty_attr.attr, 4174 &deactivate_to_head_attr.attr, 4175 &deactivate_to_tail_attr.attr, 4176 &deactivate_remote_frees_attr.attr, 4177 &order_fallback_attr.attr, 4178 #endif 4179 NULL 4180 }; 4181 4182 static struct attribute_group slab_attr_group = { 4183 .attrs = slab_attrs, 4184 }; 4185 4186 static ssize_t slab_attr_show(struct kobject *kobj, 4187 struct attribute *attr, 4188 char *buf) 4189 { 4190 struct slab_attribute *attribute; 4191 struct kmem_cache *s; 4192 int err; 4193 4194 attribute = to_slab_attr(attr); 4195 s = to_slab(kobj); 4196 4197 if (!attribute->show) 4198 return -EIO; 4199 4200 err = attribute->show(s, buf); 4201 4202 return err; 4203 } 4204 4205 static ssize_t slab_attr_store(struct kobject *kobj, 4206 struct attribute *attr, 4207 const char *buf, size_t len) 4208 { 4209 struct slab_attribute *attribute; 4210 struct kmem_cache *s; 4211 int err; 4212 4213 attribute = to_slab_attr(attr); 4214 s = to_slab(kobj); 4215 4216 if (!attribute->store) 4217 return -EIO; 4218 4219 err = attribute->store(s, buf, len); 4220 4221 return err; 4222 } 4223 4224 static void kmem_cache_release(struct kobject *kobj) 4225 { 4226 struct kmem_cache *s = to_slab(kobj); 4227 4228 kfree(s); 4229 } 4230 4231 static struct sysfs_ops slab_sysfs_ops = { 4232 .show = slab_attr_show, 4233 .store = slab_attr_store, 4234 }; 4235 4236 static struct kobj_type slab_ktype = { 4237 .sysfs_ops = &slab_sysfs_ops, 4238 .release = kmem_cache_release 4239 }; 4240 4241 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4242 { 4243 struct kobj_type *ktype = get_ktype(kobj); 4244 4245 if (ktype == &slab_ktype) 4246 return 1; 4247 return 0; 4248 } 4249 4250 static struct kset_uevent_ops slab_uevent_ops = { 4251 .filter = uevent_filter, 4252 }; 4253 4254 static struct kset *slab_kset; 4255 4256 #define ID_STR_LENGTH 64 4257 4258 /* Create a unique string id for a slab cache: 4259 * 4260 * Format :[flags-]size 4261 */ 4262 static char *create_unique_id(struct kmem_cache *s) 4263 { 4264 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4265 char *p = name; 4266 4267 BUG_ON(!name); 4268 4269 *p++ = ':'; 4270 /* 4271 * First flags affecting slabcache operations. We will only 4272 * get here for aliasable slabs so we do not need to support 4273 * too many flags. The flags here must cover all flags that 4274 * are matched during merging to guarantee that the id is 4275 * unique. 4276 */ 4277 if (s->flags & SLAB_CACHE_DMA) 4278 *p++ = 'd'; 4279 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4280 *p++ = 'a'; 4281 if (s->flags & SLAB_DEBUG_FREE) 4282 *p++ = 'F'; 4283 if (p != name + 1) 4284 *p++ = '-'; 4285 p += sprintf(p, "%07d", s->size); 4286 BUG_ON(p > name + ID_STR_LENGTH - 1); 4287 return name; 4288 } 4289 4290 static int sysfs_slab_add(struct kmem_cache *s) 4291 { 4292 int err; 4293 const char *name; 4294 int unmergeable; 4295 4296 if (slab_state < SYSFS) 4297 /* Defer until later */ 4298 return 0; 4299 4300 unmergeable = slab_unmergeable(s); 4301 if (unmergeable) { 4302 /* 4303 * Slabcache can never be merged so we can use the name proper. 4304 * This is typically the case for debug situations. In that 4305 * case we can catch duplicate names easily. 4306 */ 4307 sysfs_remove_link(&slab_kset->kobj, s->name); 4308 name = s->name; 4309 } else { 4310 /* 4311 * Create a unique name for the slab as a target 4312 * for the symlinks. 4313 */ 4314 name = create_unique_id(s); 4315 } 4316 4317 s->kobj.kset = slab_kset; 4318 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4319 if (err) { 4320 kobject_put(&s->kobj); 4321 return err; 4322 } 4323 4324 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4325 if (err) 4326 return err; 4327 kobject_uevent(&s->kobj, KOBJ_ADD); 4328 if (!unmergeable) { 4329 /* Setup first alias */ 4330 sysfs_slab_alias(s, s->name); 4331 kfree(name); 4332 } 4333 return 0; 4334 } 4335 4336 static void sysfs_slab_remove(struct kmem_cache *s) 4337 { 4338 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4339 kobject_del(&s->kobj); 4340 kobject_put(&s->kobj); 4341 } 4342 4343 /* 4344 * Need to buffer aliases during bootup until sysfs becomes 4345 * available lest we loose that information. 4346 */ 4347 struct saved_alias { 4348 struct kmem_cache *s; 4349 const char *name; 4350 struct saved_alias *next; 4351 }; 4352 4353 static struct saved_alias *alias_list; 4354 4355 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4356 { 4357 struct saved_alias *al; 4358 4359 if (slab_state == SYSFS) { 4360 /* 4361 * If we have a leftover link then remove it. 4362 */ 4363 sysfs_remove_link(&slab_kset->kobj, name); 4364 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4365 } 4366 4367 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4368 if (!al) 4369 return -ENOMEM; 4370 4371 al->s = s; 4372 al->name = name; 4373 al->next = alias_list; 4374 alias_list = al; 4375 return 0; 4376 } 4377 4378 static int __init slab_sysfs_init(void) 4379 { 4380 struct kmem_cache *s; 4381 int err; 4382 4383 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4384 if (!slab_kset) { 4385 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4386 return -ENOSYS; 4387 } 4388 4389 slab_state = SYSFS; 4390 4391 list_for_each_entry(s, &slab_caches, list) { 4392 err = sysfs_slab_add(s); 4393 if (err) 4394 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4395 " to sysfs\n", s->name); 4396 } 4397 4398 while (alias_list) { 4399 struct saved_alias *al = alias_list; 4400 4401 alias_list = alias_list->next; 4402 err = sysfs_slab_alias(al->s, al->name); 4403 if (err) 4404 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4405 " %s to sysfs\n", s->name); 4406 kfree(al); 4407 } 4408 4409 resiliency_test(); 4410 return 0; 4411 } 4412 4413 __initcall(slab_sysfs_init); 4414 #endif 4415 4416 /* 4417 * The /proc/slabinfo ABI 4418 */ 4419 #ifdef CONFIG_SLABINFO 4420 4421 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 4422 size_t count, loff_t *ppos) 4423 { 4424 return -EINVAL; 4425 } 4426 4427 4428 static void print_slabinfo_header(struct seq_file *m) 4429 { 4430 seq_puts(m, "slabinfo - version: 2.1\n"); 4431 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4432 "<objperslab> <pagesperslab>"); 4433 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4434 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4435 seq_putc(m, '\n'); 4436 } 4437 4438 static void *s_start(struct seq_file *m, loff_t *pos) 4439 { 4440 loff_t n = *pos; 4441 4442 down_read(&slub_lock); 4443 if (!n) 4444 print_slabinfo_header(m); 4445 4446 return seq_list_start(&slab_caches, *pos); 4447 } 4448 4449 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4450 { 4451 return seq_list_next(p, &slab_caches, pos); 4452 } 4453 4454 static void s_stop(struct seq_file *m, void *p) 4455 { 4456 up_read(&slub_lock); 4457 } 4458 4459 static int s_show(struct seq_file *m, void *p) 4460 { 4461 unsigned long nr_partials = 0; 4462 unsigned long nr_slabs = 0; 4463 unsigned long nr_inuse = 0; 4464 unsigned long nr_objs = 0; 4465 unsigned long nr_free = 0; 4466 struct kmem_cache *s; 4467 int node; 4468 4469 s = list_entry(p, struct kmem_cache, list); 4470 4471 for_each_online_node(node) { 4472 struct kmem_cache_node *n = get_node(s, node); 4473 4474 if (!n) 4475 continue; 4476 4477 nr_partials += n->nr_partial; 4478 nr_slabs += atomic_long_read(&n->nr_slabs); 4479 nr_objs += atomic_long_read(&n->total_objects); 4480 nr_free += count_partial(n, count_free); 4481 } 4482 4483 nr_inuse = nr_objs - nr_free; 4484 4485 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4486 nr_objs, s->size, oo_objects(s->oo), 4487 (1 << oo_order(s->oo))); 4488 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4489 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4490 0UL); 4491 seq_putc(m, '\n'); 4492 return 0; 4493 } 4494 4495 const struct seq_operations slabinfo_op = { 4496 .start = s_start, 4497 .next = s_next, 4498 .stop = s_stop, 4499 .show = s_show, 4500 }; 4501 4502 #endif /* CONFIG_SLABINFO */ 4503