1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/vmalloc.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/cpu.h> 28 #include <linux/cpuset.h> 29 #include <linux/mempolicy.h> 30 #include <linux/ctype.h> 31 #include <linux/stackdepot.h> 32 #include <linux/debugobjects.h> 33 #include <linux/kallsyms.h> 34 #include <linux/kfence.h> 35 #include <linux/memory.h> 36 #include <linux/math64.h> 37 #include <linux/fault-inject.h> 38 #include <linux/kmemleak.h> 39 #include <linux/stacktrace.h> 40 #include <linux/prefetch.h> 41 #include <linux/memcontrol.h> 42 #include <linux/random.h> 43 #include <kunit/test.h> 44 #include <kunit/test-bug.h> 45 #include <linux/sort.h> 46 47 #include <linux/debugfs.h> 48 #include <trace/events/kmem.h> 49 50 #include "internal.h" 51 52 /* 53 * Lock order: 54 * 1. slab_mutex (Global Mutex) 55 * 2. node->list_lock (Spinlock) 56 * 3. kmem_cache->cpu_slab->lock (Local lock) 57 * 4. slab_lock(slab) (Only on some arches) 58 * 5. object_map_lock (Only for debugging) 59 * 60 * slab_mutex 61 * 62 * The role of the slab_mutex is to protect the list of all the slabs 63 * and to synchronize major metadata changes to slab cache structures. 64 * Also synchronizes memory hotplug callbacks. 65 * 66 * slab_lock 67 * 68 * The slab_lock is a wrapper around the page lock, thus it is a bit 69 * spinlock. 70 * 71 * The slab_lock is only used on arches that do not have the ability 72 * to do a cmpxchg_double. It only protects: 73 * 74 * A. slab->freelist -> List of free objects in a slab 75 * B. slab->inuse -> Number of objects in use 76 * C. slab->objects -> Number of objects in slab 77 * D. slab->frozen -> frozen state 78 * 79 * Frozen slabs 80 * 81 * If a slab is frozen then it is exempt from list management. It is 82 * the cpu slab which is actively allocated from by the processor that 83 * froze it and it is not on any list. The processor that froze the 84 * slab is the one who can perform list operations on the slab. Other 85 * processors may put objects onto the freelist but the processor that 86 * froze the slab is the only one that can retrieve the objects from the 87 * slab's freelist. 88 * 89 * CPU partial slabs 90 * 91 * The partially empty slabs cached on the CPU partial list are used 92 * for performance reasons, which speeds up the allocation process. 93 * These slabs are not frozen, but are also exempt from list management, 94 * by clearing the PG_workingset flag when moving out of the node 95 * partial list. Please see __slab_free() for more details. 96 * 97 * To sum up, the current scheme is: 98 * - node partial slab: PG_Workingset && !frozen 99 * - cpu partial slab: !PG_Workingset && !frozen 100 * - cpu slab: !PG_Workingset && frozen 101 * - full slab: !PG_Workingset && !frozen 102 * 103 * list_lock 104 * 105 * The list_lock protects the partial and full list on each node and 106 * the partial slab counter. If taken then no new slabs may be added or 107 * removed from the lists nor make the number of partial slabs be modified. 108 * (Note that the total number of slabs is an atomic value that may be 109 * modified without taking the list lock). 110 * 111 * The list_lock is a centralized lock and thus we avoid taking it as 112 * much as possible. As long as SLUB does not have to handle partial 113 * slabs, operations can continue without any centralized lock. F.e. 114 * allocating a long series of objects that fill up slabs does not require 115 * the list lock. 116 * 117 * For debug caches, all allocations are forced to go through a list_lock 118 * protected region to serialize against concurrent validation. 119 * 120 * cpu_slab->lock local lock 121 * 122 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 123 * except the stat counters. This is a percpu structure manipulated only by 124 * the local cpu, so the lock protects against being preempted or interrupted 125 * by an irq. Fast path operations rely on lockless operations instead. 126 * 127 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 128 * which means the lockless fastpath cannot be used as it might interfere with 129 * an in-progress slow path operations. In this case the local lock is always 130 * taken but it still utilizes the freelist for the common operations. 131 * 132 * lockless fastpaths 133 * 134 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 135 * are fully lockless when satisfied from the percpu slab (and when 136 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 137 * They also don't disable preemption or migration or irqs. They rely on 138 * the transaction id (tid) field to detect being preempted or moved to 139 * another cpu. 140 * 141 * irq, preemption, migration considerations 142 * 143 * Interrupts are disabled as part of list_lock or local_lock operations, or 144 * around the slab_lock operation, in order to make the slab allocator safe 145 * to use in the context of an irq. 146 * 147 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 148 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 149 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 150 * doesn't have to be revalidated in each section protected by the local lock. 151 * 152 * SLUB assigns one slab for allocation to each processor. 153 * Allocations only occur from these slabs called cpu slabs. 154 * 155 * Slabs with free elements are kept on a partial list and during regular 156 * operations no list for full slabs is used. If an object in a full slab is 157 * freed then the slab will show up again on the partial lists. 158 * We track full slabs for debugging purposes though because otherwise we 159 * cannot scan all objects. 160 * 161 * Slabs are freed when they become empty. Teardown and setup is 162 * minimal so we rely on the page allocators per cpu caches for 163 * fast frees and allocs. 164 * 165 * slab->frozen The slab is frozen and exempt from list processing. 166 * This means that the slab is dedicated to a purpose 167 * such as satisfying allocations for a specific 168 * processor. Objects may be freed in the slab while 169 * it is frozen but slab_free will then skip the usual 170 * list operations. It is up to the processor holding 171 * the slab to integrate the slab into the slab lists 172 * when the slab is no longer needed. 173 * 174 * One use of this flag is to mark slabs that are 175 * used for allocations. Then such a slab becomes a cpu 176 * slab. The cpu slab may be equipped with an additional 177 * freelist that allows lockless access to 178 * free objects in addition to the regular freelist 179 * that requires the slab lock. 180 * 181 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 182 * options set. This moves slab handling out of 183 * the fast path and disables lockless freelists. 184 */ 185 186 /* 187 * We could simply use migrate_disable()/enable() but as long as it's a 188 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 189 */ 190 #ifndef CONFIG_PREEMPT_RT 191 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 192 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 193 #define USE_LOCKLESS_FAST_PATH() (true) 194 #else 195 #define slub_get_cpu_ptr(var) \ 196 ({ \ 197 migrate_disable(); \ 198 this_cpu_ptr(var); \ 199 }) 200 #define slub_put_cpu_ptr(var) \ 201 do { \ 202 (void)(var); \ 203 migrate_enable(); \ 204 } while (0) 205 #define USE_LOCKLESS_FAST_PATH() (false) 206 #endif 207 208 #ifndef CONFIG_SLUB_TINY 209 #define __fastpath_inline __always_inline 210 #else 211 #define __fastpath_inline 212 #endif 213 214 #ifdef CONFIG_SLUB_DEBUG 215 #ifdef CONFIG_SLUB_DEBUG_ON 216 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 217 #else 218 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 219 #endif 220 #endif /* CONFIG_SLUB_DEBUG */ 221 222 #ifdef CONFIG_NUMA 223 static DEFINE_STATIC_KEY_FALSE(strict_numa); 224 #endif 225 226 /* Structure holding parameters for get_partial() call chain */ 227 struct partial_context { 228 gfp_t flags; 229 unsigned int orig_size; 230 void *object; 231 }; 232 233 static inline bool kmem_cache_debug(struct kmem_cache *s) 234 { 235 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 236 } 237 238 void *fixup_red_left(struct kmem_cache *s, void *p) 239 { 240 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 241 p += s->red_left_pad; 242 243 return p; 244 } 245 246 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 247 { 248 #ifdef CONFIG_SLUB_CPU_PARTIAL 249 return !kmem_cache_debug(s); 250 #else 251 return false; 252 #endif 253 } 254 255 /* 256 * Issues still to be resolved: 257 * 258 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 259 * 260 * - Variable sizing of the per node arrays 261 */ 262 263 /* Enable to log cmpxchg failures */ 264 #undef SLUB_DEBUG_CMPXCHG 265 266 #ifndef CONFIG_SLUB_TINY 267 /* 268 * Minimum number of partial slabs. These will be left on the partial 269 * lists even if they are empty. kmem_cache_shrink may reclaim them. 270 */ 271 #define MIN_PARTIAL 5 272 273 /* 274 * Maximum number of desirable partial slabs. 275 * The existence of more partial slabs makes kmem_cache_shrink 276 * sort the partial list by the number of objects in use. 277 */ 278 #define MAX_PARTIAL 10 279 #else 280 #define MIN_PARTIAL 0 281 #define MAX_PARTIAL 0 282 #endif 283 284 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 285 SLAB_POISON | SLAB_STORE_USER) 286 287 /* 288 * These debug flags cannot use CMPXCHG because there might be consistency 289 * issues when checking or reading debug information 290 */ 291 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 292 SLAB_TRACE) 293 294 295 /* 296 * Debugging flags that require metadata to be stored in the slab. These get 297 * disabled when slab_debug=O is used and a cache's min order increases with 298 * metadata. 299 */ 300 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 301 302 #define OO_SHIFT 16 303 #define OO_MASK ((1 << OO_SHIFT) - 1) 304 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 305 306 /* Internal SLUB flags */ 307 /* Poison object */ 308 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 309 /* Use cmpxchg_double */ 310 311 #ifdef system_has_freelist_aba 312 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 313 #else 314 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 315 #endif 316 317 /* 318 * Tracking user of a slab. 319 */ 320 #define TRACK_ADDRS_COUNT 16 321 struct track { 322 unsigned long addr; /* Called from address */ 323 #ifdef CONFIG_STACKDEPOT 324 depot_stack_handle_t handle; 325 #endif 326 int cpu; /* Was running on cpu */ 327 int pid; /* Pid context */ 328 unsigned long when; /* When did the operation occur */ 329 }; 330 331 enum track_item { TRACK_ALLOC, TRACK_FREE }; 332 333 #ifdef SLAB_SUPPORTS_SYSFS 334 static int sysfs_slab_add(struct kmem_cache *); 335 static int sysfs_slab_alias(struct kmem_cache *, const char *); 336 #else 337 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 338 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 339 { return 0; } 340 #endif 341 342 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 343 static void debugfs_slab_add(struct kmem_cache *); 344 #else 345 static inline void debugfs_slab_add(struct kmem_cache *s) { } 346 #endif 347 348 enum stat_item { 349 ALLOC_FASTPATH, /* Allocation from cpu slab */ 350 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 351 FREE_FASTPATH, /* Free to cpu slab */ 352 FREE_SLOWPATH, /* Freeing not to cpu slab */ 353 FREE_FROZEN, /* Freeing to frozen slab */ 354 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 355 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 356 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 357 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 358 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 359 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 360 FREE_SLAB, /* Slab freed to the page allocator */ 361 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 362 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 363 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 364 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 365 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 366 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 367 DEACTIVATE_BYPASS, /* Implicit deactivation */ 368 ORDER_FALLBACK, /* Number of times fallback was necessary */ 369 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 370 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 371 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 372 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 373 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 374 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 375 NR_SLUB_STAT_ITEMS 376 }; 377 378 #ifndef CONFIG_SLUB_TINY 379 /* 380 * When changing the layout, make sure freelist and tid are still compatible 381 * with this_cpu_cmpxchg_double() alignment requirements. 382 */ 383 struct kmem_cache_cpu { 384 union { 385 struct { 386 void **freelist; /* Pointer to next available object */ 387 unsigned long tid; /* Globally unique transaction id */ 388 }; 389 freelist_aba_t freelist_tid; 390 }; 391 struct slab *slab; /* The slab from which we are allocating */ 392 #ifdef CONFIG_SLUB_CPU_PARTIAL 393 struct slab *partial; /* Partially allocated slabs */ 394 #endif 395 local_lock_t lock; /* Protects the fields above */ 396 #ifdef CONFIG_SLUB_STATS 397 unsigned int stat[NR_SLUB_STAT_ITEMS]; 398 #endif 399 }; 400 #endif /* CONFIG_SLUB_TINY */ 401 402 static inline void stat(const struct kmem_cache *s, enum stat_item si) 403 { 404 #ifdef CONFIG_SLUB_STATS 405 /* 406 * The rmw is racy on a preemptible kernel but this is acceptable, so 407 * avoid this_cpu_add()'s irq-disable overhead. 408 */ 409 raw_cpu_inc(s->cpu_slab->stat[si]); 410 #endif 411 } 412 413 static inline 414 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 415 { 416 #ifdef CONFIG_SLUB_STATS 417 raw_cpu_add(s->cpu_slab->stat[si], v); 418 #endif 419 } 420 421 /* 422 * The slab lists for all objects. 423 */ 424 struct kmem_cache_node { 425 spinlock_t list_lock; 426 unsigned long nr_partial; 427 struct list_head partial; 428 #ifdef CONFIG_SLUB_DEBUG 429 atomic_long_t nr_slabs; 430 atomic_long_t total_objects; 431 struct list_head full; 432 #endif 433 }; 434 435 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 436 { 437 return s->node[node]; 438 } 439 440 /* 441 * Iterator over all nodes. The body will be executed for each node that has 442 * a kmem_cache_node structure allocated (which is true for all online nodes) 443 */ 444 #define for_each_kmem_cache_node(__s, __node, __n) \ 445 for (__node = 0; __node < nr_node_ids; __node++) \ 446 if ((__n = get_node(__s, __node))) 447 448 /* 449 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 450 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 451 * differ during memory hotplug/hotremove operations. 452 * Protected by slab_mutex. 453 */ 454 static nodemask_t slab_nodes; 455 456 #ifndef CONFIG_SLUB_TINY 457 /* 458 * Workqueue used for flush_cpu_slab(). 459 */ 460 static struct workqueue_struct *flushwq; 461 #endif 462 463 /******************************************************************** 464 * Core slab cache functions 465 *******************************************************************/ 466 467 /* 468 * Returns freelist pointer (ptr). With hardening, this is obfuscated 469 * with an XOR of the address where the pointer is held and a per-cache 470 * random number. 471 */ 472 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 473 void *ptr, unsigned long ptr_addr) 474 { 475 unsigned long encoded; 476 477 #ifdef CONFIG_SLAB_FREELIST_HARDENED 478 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 479 #else 480 encoded = (unsigned long)ptr; 481 #endif 482 return (freeptr_t){.v = encoded}; 483 } 484 485 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 486 freeptr_t ptr, unsigned long ptr_addr) 487 { 488 void *decoded; 489 490 #ifdef CONFIG_SLAB_FREELIST_HARDENED 491 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 492 #else 493 decoded = (void *)ptr.v; 494 #endif 495 return decoded; 496 } 497 498 static inline void *get_freepointer(struct kmem_cache *s, void *object) 499 { 500 unsigned long ptr_addr; 501 freeptr_t p; 502 503 object = kasan_reset_tag(object); 504 ptr_addr = (unsigned long)object + s->offset; 505 p = *(freeptr_t *)(ptr_addr); 506 return freelist_ptr_decode(s, p, ptr_addr); 507 } 508 509 #ifndef CONFIG_SLUB_TINY 510 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 511 { 512 prefetchw(object + s->offset); 513 } 514 #endif 515 516 /* 517 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 518 * pointer value in the case the current thread loses the race for the next 519 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 520 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 521 * KMSAN will still check all arguments of cmpxchg because of imperfect 522 * handling of inline assembly. 523 * To work around this problem, we apply __no_kmsan_checks to ensure that 524 * get_freepointer_safe() returns initialized memory. 525 */ 526 __no_kmsan_checks 527 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 528 { 529 unsigned long freepointer_addr; 530 freeptr_t p; 531 532 if (!debug_pagealloc_enabled_static()) 533 return get_freepointer(s, object); 534 535 object = kasan_reset_tag(object); 536 freepointer_addr = (unsigned long)object + s->offset; 537 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 538 return freelist_ptr_decode(s, p, freepointer_addr); 539 } 540 541 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 542 { 543 unsigned long freeptr_addr = (unsigned long)object + s->offset; 544 545 #ifdef CONFIG_SLAB_FREELIST_HARDENED 546 BUG_ON(object == fp); /* naive detection of double free or corruption */ 547 #endif 548 549 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 550 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 551 } 552 553 /* 554 * See comment in calculate_sizes(). 555 */ 556 static inline bool freeptr_outside_object(struct kmem_cache *s) 557 { 558 return s->offset >= s->inuse; 559 } 560 561 /* 562 * Return offset of the end of info block which is inuse + free pointer if 563 * not overlapping with object. 564 */ 565 static inline unsigned int get_info_end(struct kmem_cache *s) 566 { 567 if (freeptr_outside_object(s)) 568 return s->inuse + sizeof(void *); 569 else 570 return s->inuse; 571 } 572 573 /* Loop over all objects in a slab */ 574 #define for_each_object(__p, __s, __addr, __objects) \ 575 for (__p = fixup_red_left(__s, __addr); \ 576 __p < (__addr) + (__objects) * (__s)->size; \ 577 __p += (__s)->size) 578 579 static inline unsigned int order_objects(unsigned int order, unsigned int size) 580 { 581 return ((unsigned int)PAGE_SIZE << order) / size; 582 } 583 584 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 585 unsigned int size) 586 { 587 struct kmem_cache_order_objects x = { 588 (order << OO_SHIFT) + order_objects(order, size) 589 }; 590 591 return x; 592 } 593 594 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 595 { 596 return x.x >> OO_SHIFT; 597 } 598 599 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 600 { 601 return x.x & OO_MASK; 602 } 603 604 #ifdef CONFIG_SLUB_CPU_PARTIAL 605 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 606 { 607 unsigned int nr_slabs; 608 609 s->cpu_partial = nr_objects; 610 611 /* 612 * We take the number of objects but actually limit the number of 613 * slabs on the per cpu partial list, in order to limit excessive 614 * growth of the list. For simplicity we assume that the slabs will 615 * be half-full. 616 */ 617 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 618 s->cpu_partial_slabs = nr_slabs; 619 } 620 621 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 622 { 623 return s->cpu_partial_slabs; 624 } 625 #else 626 static inline void 627 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 628 { 629 } 630 631 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 632 { 633 return 0; 634 } 635 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 636 637 /* 638 * Per slab locking using the pagelock 639 */ 640 static __always_inline void slab_lock(struct slab *slab) 641 { 642 bit_spin_lock(PG_locked, &slab->__page_flags); 643 } 644 645 static __always_inline void slab_unlock(struct slab *slab) 646 { 647 bit_spin_unlock(PG_locked, &slab->__page_flags); 648 } 649 650 static inline bool 651 __update_freelist_fast(struct slab *slab, 652 void *freelist_old, unsigned long counters_old, 653 void *freelist_new, unsigned long counters_new) 654 { 655 #ifdef system_has_freelist_aba 656 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 657 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 658 659 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 660 #else 661 return false; 662 #endif 663 } 664 665 static inline bool 666 __update_freelist_slow(struct slab *slab, 667 void *freelist_old, unsigned long counters_old, 668 void *freelist_new, unsigned long counters_new) 669 { 670 bool ret = false; 671 672 slab_lock(slab); 673 if (slab->freelist == freelist_old && 674 slab->counters == counters_old) { 675 slab->freelist = freelist_new; 676 slab->counters = counters_new; 677 ret = true; 678 } 679 slab_unlock(slab); 680 681 return ret; 682 } 683 684 /* 685 * Interrupts must be disabled (for the fallback code to work right), typically 686 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 687 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 688 * allocation/ free operation in hardirq context. Therefore nothing can 689 * interrupt the operation. 690 */ 691 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 692 void *freelist_old, unsigned long counters_old, 693 void *freelist_new, unsigned long counters_new, 694 const char *n) 695 { 696 bool ret; 697 698 if (USE_LOCKLESS_FAST_PATH()) 699 lockdep_assert_irqs_disabled(); 700 701 if (s->flags & __CMPXCHG_DOUBLE) { 702 ret = __update_freelist_fast(slab, freelist_old, counters_old, 703 freelist_new, counters_new); 704 } else { 705 ret = __update_freelist_slow(slab, freelist_old, counters_old, 706 freelist_new, counters_new); 707 } 708 if (likely(ret)) 709 return true; 710 711 cpu_relax(); 712 stat(s, CMPXCHG_DOUBLE_FAIL); 713 714 #ifdef SLUB_DEBUG_CMPXCHG 715 pr_info("%s %s: cmpxchg double redo ", n, s->name); 716 #endif 717 718 return false; 719 } 720 721 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 722 void *freelist_old, unsigned long counters_old, 723 void *freelist_new, unsigned long counters_new, 724 const char *n) 725 { 726 bool ret; 727 728 if (s->flags & __CMPXCHG_DOUBLE) { 729 ret = __update_freelist_fast(slab, freelist_old, counters_old, 730 freelist_new, counters_new); 731 } else { 732 unsigned long flags; 733 734 local_irq_save(flags); 735 ret = __update_freelist_slow(slab, freelist_old, counters_old, 736 freelist_new, counters_new); 737 local_irq_restore(flags); 738 } 739 if (likely(ret)) 740 return true; 741 742 cpu_relax(); 743 stat(s, CMPXCHG_DOUBLE_FAIL); 744 745 #ifdef SLUB_DEBUG_CMPXCHG 746 pr_info("%s %s: cmpxchg double redo ", n, s->name); 747 #endif 748 749 return false; 750 } 751 752 /* 753 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 754 * family will round up the real request size to these fixed ones, so 755 * there could be an extra area than what is requested. Save the original 756 * request size in the meta data area, for better debug and sanity check. 757 */ 758 static inline void set_orig_size(struct kmem_cache *s, 759 void *object, unsigned int orig_size) 760 { 761 void *p = kasan_reset_tag(object); 762 763 if (!slub_debug_orig_size(s)) 764 return; 765 766 p += get_info_end(s); 767 p += sizeof(struct track) * 2; 768 769 *(unsigned int *)p = orig_size; 770 } 771 772 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 773 { 774 void *p = kasan_reset_tag(object); 775 776 if (is_kfence_address(object)) 777 return kfence_ksize(object); 778 779 if (!slub_debug_orig_size(s)) 780 return s->object_size; 781 782 p += get_info_end(s); 783 p += sizeof(struct track) * 2; 784 785 return *(unsigned int *)p; 786 } 787 788 #ifdef CONFIG_SLUB_DEBUG 789 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 790 static DEFINE_SPINLOCK(object_map_lock); 791 792 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 793 struct slab *slab) 794 { 795 void *addr = slab_address(slab); 796 void *p; 797 798 bitmap_zero(obj_map, slab->objects); 799 800 for (p = slab->freelist; p; p = get_freepointer(s, p)) 801 set_bit(__obj_to_index(s, addr, p), obj_map); 802 } 803 804 #if IS_ENABLED(CONFIG_KUNIT) 805 static bool slab_add_kunit_errors(void) 806 { 807 struct kunit_resource *resource; 808 809 if (!kunit_get_current_test()) 810 return false; 811 812 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 813 if (!resource) 814 return false; 815 816 (*(int *)resource->data)++; 817 kunit_put_resource(resource); 818 return true; 819 } 820 821 bool slab_in_kunit_test(void) 822 { 823 struct kunit_resource *resource; 824 825 if (!kunit_get_current_test()) 826 return false; 827 828 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 829 if (!resource) 830 return false; 831 832 kunit_put_resource(resource); 833 return true; 834 } 835 #else 836 static inline bool slab_add_kunit_errors(void) { return false; } 837 #endif 838 839 static inline unsigned int size_from_object(struct kmem_cache *s) 840 { 841 if (s->flags & SLAB_RED_ZONE) 842 return s->size - s->red_left_pad; 843 844 return s->size; 845 } 846 847 static inline void *restore_red_left(struct kmem_cache *s, void *p) 848 { 849 if (s->flags & SLAB_RED_ZONE) 850 p -= s->red_left_pad; 851 852 return p; 853 } 854 855 /* 856 * Debug settings: 857 */ 858 #if defined(CONFIG_SLUB_DEBUG_ON) 859 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 860 #else 861 static slab_flags_t slub_debug; 862 #endif 863 864 static char *slub_debug_string; 865 static int disable_higher_order_debug; 866 867 /* 868 * slub is about to manipulate internal object metadata. This memory lies 869 * outside the range of the allocated object, so accessing it would normally 870 * be reported by kasan as a bounds error. metadata_access_enable() is used 871 * to tell kasan that these accesses are OK. 872 */ 873 static inline void metadata_access_enable(void) 874 { 875 kasan_disable_current(); 876 kmsan_disable_current(); 877 } 878 879 static inline void metadata_access_disable(void) 880 { 881 kmsan_enable_current(); 882 kasan_enable_current(); 883 } 884 885 /* 886 * Object debugging 887 */ 888 889 /* Verify that a pointer has an address that is valid within a slab page */ 890 static inline int check_valid_pointer(struct kmem_cache *s, 891 struct slab *slab, void *object) 892 { 893 void *base; 894 895 if (!object) 896 return 1; 897 898 base = slab_address(slab); 899 object = kasan_reset_tag(object); 900 object = restore_red_left(s, object); 901 if (object < base || object >= base + slab->objects * s->size || 902 (object - base) % s->size) { 903 return 0; 904 } 905 906 return 1; 907 } 908 909 static void print_section(char *level, char *text, u8 *addr, 910 unsigned int length) 911 { 912 metadata_access_enable(); 913 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 914 16, 1, kasan_reset_tag((void *)addr), length, 1); 915 metadata_access_disable(); 916 } 917 918 static struct track *get_track(struct kmem_cache *s, void *object, 919 enum track_item alloc) 920 { 921 struct track *p; 922 923 p = object + get_info_end(s); 924 925 return kasan_reset_tag(p + alloc); 926 } 927 928 #ifdef CONFIG_STACKDEPOT 929 static noinline depot_stack_handle_t set_track_prepare(void) 930 { 931 depot_stack_handle_t handle; 932 unsigned long entries[TRACK_ADDRS_COUNT]; 933 unsigned int nr_entries; 934 935 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 936 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 937 938 return handle; 939 } 940 #else 941 static inline depot_stack_handle_t set_track_prepare(void) 942 { 943 return 0; 944 } 945 #endif 946 947 static void set_track_update(struct kmem_cache *s, void *object, 948 enum track_item alloc, unsigned long addr, 949 depot_stack_handle_t handle) 950 { 951 struct track *p = get_track(s, object, alloc); 952 953 #ifdef CONFIG_STACKDEPOT 954 p->handle = handle; 955 #endif 956 p->addr = addr; 957 p->cpu = smp_processor_id(); 958 p->pid = current->pid; 959 p->when = jiffies; 960 } 961 962 static __always_inline void set_track(struct kmem_cache *s, void *object, 963 enum track_item alloc, unsigned long addr) 964 { 965 depot_stack_handle_t handle = set_track_prepare(); 966 967 set_track_update(s, object, alloc, addr, handle); 968 } 969 970 static void init_tracking(struct kmem_cache *s, void *object) 971 { 972 struct track *p; 973 974 if (!(s->flags & SLAB_STORE_USER)) 975 return; 976 977 p = get_track(s, object, TRACK_ALLOC); 978 memset(p, 0, 2*sizeof(struct track)); 979 } 980 981 static void print_track(const char *s, struct track *t, unsigned long pr_time) 982 { 983 depot_stack_handle_t handle __maybe_unused; 984 985 if (!t->addr) 986 return; 987 988 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 989 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 990 #ifdef CONFIG_STACKDEPOT 991 handle = READ_ONCE(t->handle); 992 if (handle) 993 stack_depot_print(handle); 994 else 995 pr_err("object allocation/free stack trace missing\n"); 996 #endif 997 } 998 999 void print_tracking(struct kmem_cache *s, void *object) 1000 { 1001 unsigned long pr_time = jiffies; 1002 if (!(s->flags & SLAB_STORE_USER)) 1003 return; 1004 1005 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 1006 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 1007 } 1008 1009 static void print_slab_info(const struct slab *slab) 1010 { 1011 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 1012 slab, slab->objects, slab->inuse, slab->freelist, 1013 &slab->__page_flags); 1014 } 1015 1016 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1017 { 1018 set_orig_size(s, (void *)object, s->object_size); 1019 } 1020 1021 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp) 1022 { 1023 struct va_format vaf; 1024 va_list args; 1025 1026 va_copy(args, argsp); 1027 vaf.fmt = fmt; 1028 vaf.va = &args; 1029 pr_err("=============================================================================\n"); 1030 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf); 1031 pr_err("-----------------------------------------------------------------------------\n\n"); 1032 va_end(args); 1033 } 1034 1035 static void slab_bug(struct kmem_cache *s, const char *fmt, ...) 1036 { 1037 va_list args; 1038 1039 va_start(args, fmt); 1040 __slab_bug(s, fmt, args); 1041 va_end(args); 1042 } 1043 1044 __printf(2, 3) 1045 static void slab_fix(struct kmem_cache *s, const char *fmt, ...) 1046 { 1047 struct va_format vaf; 1048 va_list args; 1049 1050 if (slab_add_kunit_errors()) 1051 return; 1052 1053 va_start(args, fmt); 1054 vaf.fmt = fmt; 1055 vaf.va = &args; 1056 pr_err("FIX %s: %pV\n", s->name, &vaf); 1057 va_end(args); 1058 } 1059 1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1061 { 1062 unsigned int off; /* Offset of last byte */ 1063 u8 *addr = slab_address(slab); 1064 1065 print_tracking(s, p); 1066 1067 print_slab_info(slab); 1068 1069 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1070 p, p - addr, get_freepointer(s, p)); 1071 1072 if (s->flags & SLAB_RED_ZONE) 1073 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1074 s->red_left_pad); 1075 else if (p > addr + 16) 1076 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1077 1078 print_section(KERN_ERR, "Object ", p, 1079 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1080 if (s->flags & SLAB_RED_ZONE) 1081 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1082 s->inuse - s->object_size); 1083 1084 off = get_info_end(s); 1085 1086 if (s->flags & SLAB_STORE_USER) 1087 off += 2 * sizeof(struct track); 1088 1089 if (slub_debug_orig_size(s)) 1090 off += sizeof(unsigned int); 1091 1092 off += kasan_metadata_size(s, false); 1093 1094 if (off != size_from_object(s)) 1095 /* Beginning of the filler is the free pointer */ 1096 print_section(KERN_ERR, "Padding ", p + off, 1097 size_from_object(s) - off); 1098 } 1099 1100 static void object_err(struct kmem_cache *s, struct slab *slab, 1101 u8 *object, const char *reason) 1102 { 1103 if (slab_add_kunit_errors()) 1104 return; 1105 1106 slab_bug(s, reason); 1107 print_trailer(s, slab, object); 1108 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1109 1110 WARN_ON(1); 1111 } 1112 1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1114 void **freelist, void *nextfree) 1115 { 1116 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1117 !check_valid_pointer(s, slab, nextfree) && freelist) { 1118 object_err(s, slab, *freelist, "Freechain corrupt"); 1119 *freelist = NULL; 1120 slab_fix(s, "Isolate corrupted freechain"); 1121 return true; 1122 } 1123 1124 return false; 1125 } 1126 1127 static void __slab_err(struct slab *slab) 1128 { 1129 if (slab_in_kunit_test()) 1130 return; 1131 1132 print_slab_info(slab); 1133 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1134 1135 WARN_ON(1); 1136 } 1137 1138 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1139 const char *fmt, ...) 1140 { 1141 va_list args; 1142 1143 if (slab_add_kunit_errors()) 1144 return; 1145 1146 va_start(args, fmt); 1147 __slab_bug(s, fmt, args); 1148 va_end(args); 1149 1150 __slab_err(slab); 1151 } 1152 1153 static void init_object(struct kmem_cache *s, void *object, u8 val) 1154 { 1155 u8 *p = kasan_reset_tag(object); 1156 unsigned int poison_size = s->object_size; 1157 1158 if (s->flags & SLAB_RED_ZONE) { 1159 /* 1160 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1161 * the shadow makes it possible to distinguish uninit-value 1162 * from use-after-free. 1163 */ 1164 memset_no_sanitize_memory(p - s->red_left_pad, val, 1165 s->red_left_pad); 1166 1167 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1168 /* 1169 * Redzone the extra allocated space by kmalloc than 1170 * requested, and the poison size will be limited to 1171 * the original request size accordingly. 1172 */ 1173 poison_size = get_orig_size(s, object); 1174 } 1175 } 1176 1177 if (s->flags & __OBJECT_POISON) { 1178 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1179 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1180 } 1181 1182 if (s->flags & SLAB_RED_ZONE) 1183 memset_no_sanitize_memory(p + poison_size, val, 1184 s->inuse - poison_size); 1185 } 1186 1187 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data, 1188 void *from, void *to) 1189 { 1190 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1191 memset(from, data, to - from); 1192 } 1193 1194 #ifdef CONFIG_KMSAN 1195 #define pad_check_attributes noinline __no_kmsan_checks 1196 #else 1197 #define pad_check_attributes 1198 #endif 1199 1200 static pad_check_attributes int 1201 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1202 u8 *object, const char *what, u8 *start, unsigned int value, 1203 unsigned int bytes, bool slab_obj_print) 1204 { 1205 u8 *fault; 1206 u8 *end; 1207 u8 *addr = slab_address(slab); 1208 1209 metadata_access_enable(); 1210 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1211 metadata_access_disable(); 1212 if (!fault) 1213 return 1; 1214 1215 end = start + bytes; 1216 while (end > fault && end[-1] == value) 1217 end--; 1218 1219 if (slab_add_kunit_errors()) 1220 goto skip_bug_print; 1221 1222 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1223 what, fault, end - 1, fault - addr, fault[0], value); 1224 1225 if (slab_obj_print) 1226 object_err(s, slab, object, "Object corrupt"); 1227 1228 skip_bug_print: 1229 restore_bytes(s, what, value, fault, end); 1230 return 0; 1231 } 1232 1233 /* 1234 * Object layout: 1235 * 1236 * object address 1237 * Bytes of the object to be managed. 1238 * If the freepointer may overlay the object then the free 1239 * pointer is at the middle of the object. 1240 * 1241 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1242 * 0xa5 (POISON_END) 1243 * 1244 * object + s->object_size 1245 * Padding to reach word boundary. This is also used for Redzoning. 1246 * Padding is extended by another word if Redzoning is enabled and 1247 * object_size == inuse. 1248 * 1249 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1250 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1251 * 1252 * object + s->inuse 1253 * Meta data starts here. 1254 * 1255 * A. Free pointer (if we cannot overwrite object on free) 1256 * B. Tracking data for SLAB_STORE_USER 1257 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1258 * D. Padding to reach required alignment boundary or at minimum 1259 * one word if debugging is on to be able to detect writes 1260 * before the word boundary. 1261 * 1262 * Padding is done using 0x5a (POISON_INUSE) 1263 * 1264 * object + s->size 1265 * Nothing is used beyond s->size. 1266 * 1267 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1268 * ignored. And therefore no slab options that rely on these boundaries 1269 * may be used with merged slabcaches. 1270 */ 1271 1272 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1273 { 1274 unsigned long off = get_info_end(s); /* The end of info */ 1275 1276 if (s->flags & SLAB_STORE_USER) { 1277 /* We also have user information there */ 1278 off += 2 * sizeof(struct track); 1279 1280 if (s->flags & SLAB_KMALLOC) 1281 off += sizeof(unsigned int); 1282 } 1283 1284 off += kasan_metadata_size(s, false); 1285 1286 if (size_from_object(s) == off) 1287 return 1; 1288 1289 return check_bytes_and_report(s, slab, p, "Object padding", 1290 p + off, POISON_INUSE, size_from_object(s) - off, true); 1291 } 1292 1293 /* Check the pad bytes at the end of a slab page */ 1294 static pad_check_attributes void 1295 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1296 { 1297 u8 *start; 1298 u8 *fault; 1299 u8 *end; 1300 u8 *pad; 1301 int length; 1302 int remainder; 1303 1304 if (!(s->flags & SLAB_POISON)) 1305 return; 1306 1307 start = slab_address(slab); 1308 length = slab_size(slab); 1309 end = start + length; 1310 remainder = length % s->size; 1311 if (!remainder) 1312 return; 1313 1314 pad = end - remainder; 1315 metadata_access_enable(); 1316 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1317 metadata_access_disable(); 1318 if (!fault) 1319 return; 1320 while (end > fault && end[-1] == POISON_INUSE) 1321 end--; 1322 1323 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1324 fault, end - 1, fault - start); 1325 print_section(KERN_ERR, "Padding ", pad, remainder); 1326 __slab_err(slab); 1327 1328 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1329 } 1330 1331 static int check_object(struct kmem_cache *s, struct slab *slab, 1332 void *object, u8 val) 1333 { 1334 u8 *p = object; 1335 u8 *endobject = object + s->object_size; 1336 unsigned int orig_size, kasan_meta_size; 1337 int ret = 1; 1338 1339 if (s->flags & SLAB_RED_ZONE) { 1340 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1341 object - s->red_left_pad, val, s->red_left_pad, ret)) 1342 ret = 0; 1343 1344 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1345 endobject, val, s->inuse - s->object_size, ret)) 1346 ret = 0; 1347 1348 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1349 orig_size = get_orig_size(s, object); 1350 1351 if (s->object_size > orig_size && 1352 !check_bytes_and_report(s, slab, object, 1353 "kmalloc Redzone", p + orig_size, 1354 val, s->object_size - orig_size, ret)) { 1355 ret = 0; 1356 } 1357 } 1358 } else { 1359 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1360 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1361 endobject, POISON_INUSE, 1362 s->inuse - s->object_size, ret)) 1363 ret = 0; 1364 } 1365 } 1366 1367 if (s->flags & SLAB_POISON) { 1368 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1369 /* 1370 * KASAN can save its free meta data inside of the 1371 * object at offset 0. Thus, skip checking the part of 1372 * the redzone that overlaps with the meta data. 1373 */ 1374 kasan_meta_size = kasan_metadata_size(s, true); 1375 if (kasan_meta_size < s->object_size - 1 && 1376 !check_bytes_and_report(s, slab, p, "Poison", 1377 p + kasan_meta_size, POISON_FREE, 1378 s->object_size - kasan_meta_size - 1, ret)) 1379 ret = 0; 1380 if (kasan_meta_size < s->object_size && 1381 !check_bytes_and_report(s, slab, p, "End Poison", 1382 p + s->object_size - 1, POISON_END, 1, ret)) 1383 ret = 0; 1384 } 1385 /* 1386 * check_pad_bytes cleans up on its own. 1387 */ 1388 if (!check_pad_bytes(s, slab, p)) 1389 ret = 0; 1390 } 1391 1392 /* 1393 * Cannot check freepointer while object is allocated if 1394 * object and freepointer overlap. 1395 */ 1396 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1397 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1398 object_err(s, slab, p, "Freepointer corrupt"); 1399 /* 1400 * No choice but to zap it and thus lose the remainder 1401 * of the free objects in this slab. May cause 1402 * another error because the object count is now wrong. 1403 */ 1404 set_freepointer(s, p, NULL); 1405 ret = 0; 1406 } 1407 1408 return ret; 1409 } 1410 1411 static int check_slab(struct kmem_cache *s, struct slab *slab) 1412 { 1413 int maxobj; 1414 1415 if (!folio_test_slab(slab_folio(slab))) { 1416 slab_err(s, slab, "Not a valid slab page"); 1417 return 0; 1418 } 1419 1420 maxobj = order_objects(slab_order(slab), s->size); 1421 if (slab->objects > maxobj) { 1422 slab_err(s, slab, "objects %u > max %u", 1423 slab->objects, maxobj); 1424 return 0; 1425 } 1426 if (slab->inuse > slab->objects) { 1427 slab_err(s, slab, "inuse %u > max %u", 1428 slab->inuse, slab->objects); 1429 return 0; 1430 } 1431 if (slab->frozen) { 1432 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1433 return 0; 1434 } 1435 1436 /* Slab_pad_check fixes things up after itself */ 1437 slab_pad_check(s, slab); 1438 return 1; 1439 } 1440 1441 /* 1442 * Determine if a certain object in a slab is on the freelist. Must hold the 1443 * slab lock to guarantee that the chains are in a consistent state. 1444 */ 1445 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1446 { 1447 int nr = 0; 1448 void *fp; 1449 void *object = NULL; 1450 int max_objects; 1451 1452 fp = slab->freelist; 1453 while (fp && nr <= slab->objects) { 1454 if (fp == search) 1455 return true; 1456 if (!check_valid_pointer(s, slab, fp)) { 1457 if (object) { 1458 object_err(s, slab, object, 1459 "Freechain corrupt"); 1460 set_freepointer(s, object, NULL); 1461 break; 1462 } else { 1463 slab_err(s, slab, "Freepointer corrupt"); 1464 slab->freelist = NULL; 1465 slab->inuse = slab->objects; 1466 slab_fix(s, "Freelist cleared"); 1467 return false; 1468 } 1469 } 1470 object = fp; 1471 fp = get_freepointer(s, object); 1472 nr++; 1473 } 1474 1475 if (nr > slab->objects) { 1476 slab_err(s, slab, "Freelist cycle detected"); 1477 slab->freelist = NULL; 1478 slab->inuse = slab->objects; 1479 slab_fix(s, "Freelist cleared"); 1480 return false; 1481 } 1482 1483 max_objects = order_objects(slab_order(slab), s->size); 1484 if (max_objects > MAX_OBJS_PER_PAGE) 1485 max_objects = MAX_OBJS_PER_PAGE; 1486 1487 if (slab->objects != max_objects) { 1488 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1489 slab->objects, max_objects); 1490 slab->objects = max_objects; 1491 slab_fix(s, "Number of objects adjusted"); 1492 } 1493 if (slab->inuse != slab->objects - nr) { 1494 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1495 slab->inuse, slab->objects - nr); 1496 slab->inuse = slab->objects - nr; 1497 slab_fix(s, "Object count adjusted"); 1498 } 1499 return search == NULL; 1500 } 1501 1502 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1503 int alloc) 1504 { 1505 if (s->flags & SLAB_TRACE) { 1506 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1507 s->name, 1508 alloc ? "alloc" : "free", 1509 object, slab->inuse, 1510 slab->freelist); 1511 1512 if (!alloc) 1513 print_section(KERN_INFO, "Object ", (void *)object, 1514 s->object_size); 1515 1516 dump_stack(); 1517 } 1518 } 1519 1520 /* 1521 * Tracking of fully allocated slabs for debugging purposes. 1522 */ 1523 static void add_full(struct kmem_cache *s, 1524 struct kmem_cache_node *n, struct slab *slab) 1525 { 1526 if (!(s->flags & SLAB_STORE_USER)) 1527 return; 1528 1529 lockdep_assert_held(&n->list_lock); 1530 list_add(&slab->slab_list, &n->full); 1531 } 1532 1533 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1534 { 1535 if (!(s->flags & SLAB_STORE_USER)) 1536 return; 1537 1538 lockdep_assert_held(&n->list_lock); 1539 list_del(&slab->slab_list); 1540 } 1541 1542 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1543 { 1544 return atomic_long_read(&n->nr_slabs); 1545 } 1546 1547 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1548 { 1549 struct kmem_cache_node *n = get_node(s, node); 1550 1551 atomic_long_inc(&n->nr_slabs); 1552 atomic_long_add(objects, &n->total_objects); 1553 } 1554 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1555 { 1556 struct kmem_cache_node *n = get_node(s, node); 1557 1558 atomic_long_dec(&n->nr_slabs); 1559 atomic_long_sub(objects, &n->total_objects); 1560 } 1561 1562 /* Object debug checks for alloc/free paths */ 1563 static void setup_object_debug(struct kmem_cache *s, void *object) 1564 { 1565 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1566 return; 1567 1568 init_object(s, object, SLUB_RED_INACTIVE); 1569 init_tracking(s, object); 1570 } 1571 1572 static 1573 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1574 { 1575 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1576 return; 1577 1578 metadata_access_enable(); 1579 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1580 metadata_access_disable(); 1581 } 1582 1583 static inline int alloc_consistency_checks(struct kmem_cache *s, 1584 struct slab *slab, void *object) 1585 { 1586 if (!check_slab(s, slab)) 1587 return 0; 1588 1589 if (!check_valid_pointer(s, slab, object)) { 1590 object_err(s, slab, object, "Freelist Pointer check fails"); 1591 return 0; 1592 } 1593 1594 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1595 return 0; 1596 1597 return 1; 1598 } 1599 1600 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1601 struct slab *slab, void *object, int orig_size) 1602 { 1603 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1604 if (!alloc_consistency_checks(s, slab, object)) 1605 goto bad; 1606 } 1607 1608 /* Success. Perform special debug activities for allocs */ 1609 trace(s, slab, object, 1); 1610 set_orig_size(s, object, orig_size); 1611 init_object(s, object, SLUB_RED_ACTIVE); 1612 return true; 1613 1614 bad: 1615 if (folio_test_slab(slab_folio(slab))) { 1616 /* 1617 * If this is a slab page then lets do the best we can 1618 * to avoid issues in the future. Marking all objects 1619 * as used avoids touching the remaining objects. 1620 */ 1621 slab_fix(s, "Marking all objects used"); 1622 slab->inuse = slab->objects; 1623 slab->freelist = NULL; 1624 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1625 } 1626 return false; 1627 } 1628 1629 static inline int free_consistency_checks(struct kmem_cache *s, 1630 struct slab *slab, void *object, unsigned long addr) 1631 { 1632 if (!check_valid_pointer(s, slab, object)) { 1633 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1634 return 0; 1635 } 1636 1637 if (on_freelist(s, slab, object)) { 1638 object_err(s, slab, object, "Object already free"); 1639 return 0; 1640 } 1641 1642 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1643 return 0; 1644 1645 if (unlikely(s != slab->slab_cache)) { 1646 if (!folio_test_slab(slab_folio(slab))) { 1647 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1648 object); 1649 } else if (!slab->slab_cache) { 1650 slab_err(NULL, slab, "No slab cache for object 0x%p", 1651 object); 1652 } else { 1653 object_err(s, slab, object, 1654 "page slab pointer corrupt."); 1655 } 1656 return 0; 1657 } 1658 return 1; 1659 } 1660 1661 /* 1662 * Parse a block of slab_debug options. Blocks are delimited by ';' 1663 * 1664 * @str: start of block 1665 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1666 * @slabs: return start of list of slabs, or NULL when there's no list 1667 * @init: assume this is initial parsing and not per-kmem-create parsing 1668 * 1669 * returns the start of next block if there's any, or NULL 1670 */ 1671 static char * 1672 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1673 { 1674 bool higher_order_disable = false; 1675 1676 /* Skip any completely empty blocks */ 1677 while (*str && *str == ';') 1678 str++; 1679 1680 if (*str == ',') { 1681 /* 1682 * No options but restriction on slabs. This means full 1683 * debugging for slabs matching a pattern. 1684 */ 1685 *flags = DEBUG_DEFAULT_FLAGS; 1686 goto check_slabs; 1687 } 1688 *flags = 0; 1689 1690 /* Determine which debug features should be switched on */ 1691 for (; *str && *str != ',' && *str != ';'; str++) { 1692 switch (tolower(*str)) { 1693 case '-': 1694 *flags = 0; 1695 break; 1696 case 'f': 1697 *flags |= SLAB_CONSISTENCY_CHECKS; 1698 break; 1699 case 'z': 1700 *flags |= SLAB_RED_ZONE; 1701 break; 1702 case 'p': 1703 *flags |= SLAB_POISON; 1704 break; 1705 case 'u': 1706 *flags |= SLAB_STORE_USER; 1707 break; 1708 case 't': 1709 *flags |= SLAB_TRACE; 1710 break; 1711 case 'a': 1712 *flags |= SLAB_FAILSLAB; 1713 break; 1714 case 'o': 1715 /* 1716 * Avoid enabling debugging on caches if its minimum 1717 * order would increase as a result. 1718 */ 1719 higher_order_disable = true; 1720 break; 1721 default: 1722 if (init) 1723 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1724 } 1725 } 1726 check_slabs: 1727 if (*str == ',') 1728 *slabs = ++str; 1729 else 1730 *slabs = NULL; 1731 1732 /* Skip over the slab list */ 1733 while (*str && *str != ';') 1734 str++; 1735 1736 /* Skip any completely empty blocks */ 1737 while (*str && *str == ';') 1738 str++; 1739 1740 if (init && higher_order_disable) 1741 disable_higher_order_debug = 1; 1742 1743 if (*str) 1744 return str; 1745 else 1746 return NULL; 1747 } 1748 1749 static int __init setup_slub_debug(char *str) 1750 { 1751 slab_flags_t flags; 1752 slab_flags_t global_flags; 1753 char *saved_str; 1754 char *slab_list; 1755 bool global_slub_debug_changed = false; 1756 bool slab_list_specified = false; 1757 1758 global_flags = DEBUG_DEFAULT_FLAGS; 1759 if (*str++ != '=' || !*str) 1760 /* 1761 * No options specified. Switch on full debugging. 1762 */ 1763 goto out; 1764 1765 saved_str = str; 1766 while (str) { 1767 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1768 1769 if (!slab_list) { 1770 global_flags = flags; 1771 global_slub_debug_changed = true; 1772 } else { 1773 slab_list_specified = true; 1774 if (flags & SLAB_STORE_USER) 1775 stack_depot_request_early_init(); 1776 } 1777 } 1778 1779 /* 1780 * For backwards compatibility, a single list of flags with list of 1781 * slabs means debugging is only changed for those slabs, so the global 1782 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1783 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1784 * long as there is no option specifying flags without a slab list. 1785 */ 1786 if (slab_list_specified) { 1787 if (!global_slub_debug_changed) 1788 global_flags = slub_debug; 1789 slub_debug_string = saved_str; 1790 } 1791 out: 1792 slub_debug = global_flags; 1793 if (slub_debug & SLAB_STORE_USER) 1794 stack_depot_request_early_init(); 1795 if (slub_debug != 0 || slub_debug_string) 1796 static_branch_enable(&slub_debug_enabled); 1797 else 1798 static_branch_disable(&slub_debug_enabled); 1799 if ((static_branch_unlikely(&init_on_alloc) || 1800 static_branch_unlikely(&init_on_free)) && 1801 (slub_debug & SLAB_POISON)) 1802 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1803 return 1; 1804 } 1805 1806 __setup("slab_debug", setup_slub_debug); 1807 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1808 1809 /* 1810 * kmem_cache_flags - apply debugging options to the cache 1811 * @flags: flags to set 1812 * @name: name of the cache 1813 * 1814 * Debug option(s) are applied to @flags. In addition to the debug 1815 * option(s), if a slab name (or multiple) is specified i.e. 1816 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1817 * then only the select slabs will receive the debug option(s). 1818 */ 1819 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1820 { 1821 char *iter; 1822 size_t len; 1823 char *next_block; 1824 slab_flags_t block_flags; 1825 slab_flags_t slub_debug_local = slub_debug; 1826 1827 if (flags & SLAB_NO_USER_FLAGS) 1828 return flags; 1829 1830 /* 1831 * If the slab cache is for debugging (e.g. kmemleak) then 1832 * don't store user (stack trace) information by default, 1833 * but let the user enable it via the command line below. 1834 */ 1835 if (flags & SLAB_NOLEAKTRACE) 1836 slub_debug_local &= ~SLAB_STORE_USER; 1837 1838 len = strlen(name); 1839 next_block = slub_debug_string; 1840 /* Go through all blocks of debug options, see if any matches our slab's name */ 1841 while (next_block) { 1842 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1843 if (!iter) 1844 continue; 1845 /* Found a block that has a slab list, search it */ 1846 while (*iter) { 1847 char *end, *glob; 1848 size_t cmplen; 1849 1850 end = strchrnul(iter, ','); 1851 if (next_block && next_block < end) 1852 end = next_block - 1; 1853 1854 glob = strnchr(iter, end - iter, '*'); 1855 if (glob) 1856 cmplen = glob - iter; 1857 else 1858 cmplen = max_t(size_t, len, (end - iter)); 1859 1860 if (!strncmp(name, iter, cmplen)) { 1861 flags |= block_flags; 1862 return flags; 1863 } 1864 1865 if (!*end || *end == ';') 1866 break; 1867 iter = end + 1; 1868 } 1869 } 1870 1871 return flags | slub_debug_local; 1872 } 1873 #else /* !CONFIG_SLUB_DEBUG */ 1874 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1875 static inline 1876 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1877 1878 static inline bool alloc_debug_processing(struct kmem_cache *s, 1879 struct slab *slab, void *object, int orig_size) { return true; } 1880 1881 static inline bool free_debug_processing(struct kmem_cache *s, 1882 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1883 unsigned long addr, depot_stack_handle_t handle) { return true; } 1884 1885 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1886 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1887 void *object, u8 val) { return 1; } 1888 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1889 static inline void set_track(struct kmem_cache *s, void *object, 1890 enum track_item alloc, unsigned long addr) {} 1891 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1892 struct slab *slab) {} 1893 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1894 struct slab *slab) {} 1895 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1896 { 1897 return flags; 1898 } 1899 #define slub_debug 0 1900 1901 #define disable_higher_order_debug 0 1902 1903 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1904 { return 0; } 1905 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1906 int objects) {} 1907 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1908 int objects) {} 1909 #ifndef CONFIG_SLUB_TINY 1910 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1911 void **freelist, void *nextfree) 1912 { 1913 return false; 1914 } 1915 #endif 1916 #endif /* CONFIG_SLUB_DEBUG */ 1917 1918 #ifdef CONFIG_SLAB_OBJ_EXT 1919 1920 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1921 1922 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1923 { 1924 struct slabobj_ext *slab_exts; 1925 struct slab *obj_exts_slab; 1926 1927 obj_exts_slab = virt_to_slab(obj_exts); 1928 slab_exts = slab_obj_exts(obj_exts_slab); 1929 if (slab_exts) { 1930 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1931 obj_exts_slab, obj_exts); 1932 /* codetag should be NULL */ 1933 WARN_ON(slab_exts[offs].ref.ct); 1934 set_codetag_empty(&slab_exts[offs].ref); 1935 } 1936 } 1937 1938 static inline void mark_failed_objexts_alloc(struct slab *slab) 1939 { 1940 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1941 } 1942 1943 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1944 struct slabobj_ext *vec, unsigned int objects) 1945 { 1946 /* 1947 * If vector previously failed to allocate then we have live 1948 * objects with no tag reference. Mark all references in this 1949 * vector as empty to avoid warnings later on. 1950 */ 1951 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1952 unsigned int i; 1953 1954 for (i = 0; i < objects; i++) 1955 set_codetag_empty(&vec[i].ref); 1956 } 1957 } 1958 1959 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1960 1961 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1962 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1963 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1964 struct slabobj_ext *vec, unsigned int objects) {} 1965 1966 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1967 1968 /* 1969 * The allocated objcg pointers array is not accounted directly. 1970 * Moreover, it should not come from DMA buffer and is not readily 1971 * reclaimable. So those GFP bits should be masked off. 1972 */ 1973 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1974 __GFP_ACCOUNT | __GFP_NOFAIL) 1975 1976 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1977 gfp_t gfp, bool new_slab) 1978 { 1979 unsigned int objects = objs_per_slab(s, slab); 1980 unsigned long new_exts; 1981 unsigned long old_exts; 1982 struct slabobj_ext *vec; 1983 1984 gfp &= ~OBJCGS_CLEAR_MASK; 1985 /* Prevent recursive extension vector allocation */ 1986 gfp |= __GFP_NO_OBJ_EXT; 1987 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1988 slab_nid(slab)); 1989 if (!vec) { 1990 /* Mark vectors which failed to allocate */ 1991 if (new_slab) 1992 mark_failed_objexts_alloc(slab); 1993 1994 return -ENOMEM; 1995 } 1996 1997 new_exts = (unsigned long)vec; 1998 #ifdef CONFIG_MEMCG 1999 new_exts |= MEMCG_DATA_OBJEXTS; 2000 #endif 2001 old_exts = READ_ONCE(slab->obj_exts); 2002 handle_failed_objexts_alloc(old_exts, vec, objects); 2003 if (new_slab) { 2004 /* 2005 * If the slab is brand new and nobody can yet access its 2006 * obj_exts, no synchronization is required and obj_exts can 2007 * be simply assigned. 2008 */ 2009 slab->obj_exts = new_exts; 2010 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 2011 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 2012 /* 2013 * If the slab is already in use, somebody can allocate and 2014 * assign slabobj_exts in parallel. In this case the existing 2015 * objcg vector should be reused. 2016 */ 2017 mark_objexts_empty(vec); 2018 kfree(vec); 2019 return 0; 2020 } 2021 2022 kmemleak_not_leak(vec); 2023 return 0; 2024 } 2025 2026 /* Should be called only if mem_alloc_profiling_enabled() */ 2027 static noinline void free_slab_obj_exts(struct slab *slab) 2028 { 2029 struct slabobj_ext *obj_exts; 2030 2031 obj_exts = slab_obj_exts(slab); 2032 if (!obj_exts) 2033 return; 2034 2035 /* 2036 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2037 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2038 * warning if slab has extensions but the extension of an object is 2039 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2040 * the extension for obj_exts is expected to be NULL. 2041 */ 2042 mark_objexts_empty(obj_exts); 2043 kfree(obj_exts); 2044 slab->obj_exts = 0; 2045 } 2046 2047 static inline bool need_slab_obj_ext(void) 2048 { 2049 if (mem_alloc_profiling_enabled()) 2050 return true; 2051 2052 /* 2053 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally 2054 * inside memcg_slab_post_alloc_hook. No other users for now. 2055 */ 2056 return false; 2057 } 2058 2059 #else /* CONFIG_SLAB_OBJ_EXT */ 2060 2061 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2062 gfp_t gfp, bool new_slab) 2063 { 2064 return 0; 2065 } 2066 2067 static inline void free_slab_obj_exts(struct slab *slab) 2068 { 2069 } 2070 2071 static inline bool need_slab_obj_ext(void) 2072 { 2073 return false; 2074 } 2075 2076 #endif /* CONFIG_SLAB_OBJ_EXT */ 2077 2078 #ifdef CONFIG_MEM_ALLOC_PROFILING 2079 2080 static inline struct slabobj_ext * 2081 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2082 { 2083 struct slab *slab; 2084 2085 if (!p) 2086 return NULL; 2087 2088 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2089 return NULL; 2090 2091 if (flags & __GFP_NO_OBJ_EXT) 2092 return NULL; 2093 2094 slab = virt_to_slab(p); 2095 if (!slab_obj_exts(slab) && 2096 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2097 "%s, %s: Failed to create slab extension vector!\n", 2098 __func__, s->name)) 2099 return NULL; 2100 2101 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2102 } 2103 2104 /* Should be called only if mem_alloc_profiling_enabled() */ 2105 static noinline void 2106 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2107 { 2108 struct slabobj_ext *obj_exts; 2109 2110 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2111 /* 2112 * Currently obj_exts is used only for allocation profiling. 2113 * If other users appear then mem_alloc_profiling_enabled() 2114 * check should be added before alloc_tag_add(). 2115 */ 2116 if (likely(obj_exts)) 2117 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2118 } 2119 2120 static inline void 2121 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2122 { 2123 if (need_slab_obj_ext()) 2124 __alloc_tagging_slab_alloc_hook(s, object, flags); 2125 } 2126 2127 /* Should be called only if mem_alloc_profiling_enabled() */ 2128 static noinline void 2129 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2130 int objects) 2131 { 2132 struct slabobj_ext *obj_exts; 2133 int i; 2134 2135 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2136 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2137 return; 2138 2139 obj_exts = slab_obj_exts(slab); 2140 if (!obj_exts) 2141 return; 2142 2143 for (i = 0; i < objects; i++) { 2144 unsigned int off = obj_to_index(s, slab, p[i]); 2145 2146 alloc_tag_sub(&obj_exts[off].ref, s->size); 2147 } 2148 } 2149 2150 static inline void 2151 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2152 int objects) 2153 { 2154 if (mem_alloc_profiling_enabled()) 2155 __alloc_tagging_slab_free_hook(s, slab, p, objects); 2156 } 2157 2158 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2159 2160 static inline void 2161 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2162 { 2163 } 2164 2165 static inline void 2166 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2167 int objects) 2168 { 2169 } 2170 2171 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2172 2173 2174 #ifdef CONFIG_MEMCG 2175 2176 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2177 2178 static __fastpath_inline 2179 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2180 gfp_t flags, size_t size, void **p) 2181 { 2182 if (likely(!memcg_kmem_online())) 2183 return true; 2184 2185 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2186 return true; 2187 2188 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2189 return true; 2190 2191 if (likely(size == 1)) { 2192 memcg_alloc_abort_single(s, *p); 2193 *p = NULL; 2194 } else { 2195 kmem_cache_free_bulk(s, size, p); 2196 } 2197 2198 return false; 2199 } 2200 2201 static __fastpath_inline 2202 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2203 int objects) 2204 { 2205 struct slabobj_ext *obj_exts; 2206 2207 if (!memcg_kmem_online()) 2208 return; 2209 2210 obj_exts = slab_obj_exts(slab); 2211 if (likely(!obj_exts)) 2212 return; 2213 2214 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2215 } 2216 2217 static __fastpath_inline 2218 bool memcg_slab_post_charge(void *p, gfp_t flags) 2219 { 2220 struct slabobj_ext *slab_exts; 2221 struct kmem_cache *s; 2222 struct folio *folio; 2223 struct slab *slab; 2224 unsigned long off; 2225 2226 folio = virt_to_folio(p); 2227 if (!folio_test_slab(folio)) { 2228 int size; 2229 2230 if (folio_memcg_kmem(folio)) 2231 return true; 2232 2233 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags, 2234 folio_order(folio))) 2235 return false; 2236 2237 /* 2238 * This folio has already been accounted in the global stats but 2239 * not in the memcg stats. So, subtract from the global and use 2240 * the interface which adds to both global and memcg stats. 2241 */ 2242 size = folio_size(folio); 2243 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size); 2244 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size); 2245 return true; 2246 } 2247 2248 slab = folio_slab(folio); 2249 s = slab->slab_cache; 2250 2251 /* 2252 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency 2253 * of slab_obj_exts being allocated from the same slab and thus the slab 2254 * becoming effectively unfreeable. 2255 */ 2256 if (is_kmalloc_normal(s)) 2257 return true; 2258 2259 /* Ignore already charged objects. */ 2260 slab_exts = slab_obj_exts(slab); 2261 if (slab_exts) { 2262 off = obj_to_index(s, slab, p); 2263 if (unlikely(slab_exts[off].objcg)) 2264 return true; 2265 } 2266 2267 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); 2268 } 2269 2270 #else /* CONFIG_MEMCG */ 2271 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2272 struct list_lru *lru, 2273 gfp_t flags, size_t size, 2274 void **p) 2275 { 2276 return true; 2277 } 2278 2279 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2280 void **p, int objects) 2281 { 2282 } 2283 2284 static inline bool memcg_slab_post_charge(void *p, gfp_t flags) 2285 { 2286 return true; 2287 } 2288 #endif /* CONFIG_MEMCG */ 2289 2290 #ifdef CONFIG_SLUB_RCU_DEBUG 2291 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); 2292 2293 struct rcu_delayed_free { 2294 struct rcu_head head; 2295 void *object; 2296 }; 2297 #endif 2298 2299 /* 2300 * Hooks for other subsystems that check memory allocations. In a typical 2301 * production configuration these hooks all should produce no code at all. 2302 * 2303 * Returns true if freeing of the object can proceed, false if its reuse 2304 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned 2305 * to KFENCE. 2306 */ 2307 static __always_inline 2308 bool slab_free_hook(struct kmem_cache *s, void *x, bool init, 2309 bool after_rcu_delay) 2310 { 2311 /* Are the object contents still accessible? */ 2312 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; 2313 2314 kmemleak_free_recursive(x, s->flags); 2315 kmsan_slab_free(s, x); 2316 2317 debug_check_no_locks_freed(x, s->object_size); 2318 2319 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2320 debug_check_no_obj_freed(x, s->object_size); 2321 2322 /* Use KCSAN to help debug racy use-after-free. */ 2323 if (!still_accessible) 2324 __kcsan_check_access(x, s->object_size, 2325 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2326 2327 if (kfence_free(x)) 2328 return false; 2329 2330 /* 2331 * Give KASAN a chance to notice an invalid free operation before we 2332 * modify the object. 2333 */ 2334 if (kasan_slab_pre_free(s, x)) 2335 return false; 2336 2337 #ifdef CONFIG_SLUB_RCU_DEBUG 2338 if (still_accessible) { 2339 struct rcu_delayed_free *delayed_free; 2340 2341 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); 2342 if (delayed_free) { 2343 /* 2344 * Let KASAN track our call stack as a "related work 2345 * creation", just like if the object had been freed 2346 * normally via kfree_rcu(). 2347 * We have to do this manually because the rcu_head is 2348 * not located inside the object. 2349 */ 2350 kasan_record_aux_stack(x); 2351 2352 delayed_free->object = x; 2353 call_rcu(&delayed_free->head, slab_free_after_rcu_debug); 2354 return false; 2355 } 2356 } 2357 #endif /* CONFIG_SLUB_RCU_DEBUG */ 2358 2359 /* 2360 * As memory initialization might be integrated into KASAN, 2361 * kasan_slab_free and initialization memset's must be 2362 * kept together to avoid discrepancies in behavior. 2363 * 2364 * The initialization memset's clear the object and the metadata, 2365 * but don't touch the SLAB redzone. 2366 * 2367 * The object's freepointer is also avoided if stored outside the 2368 * object. 2369 */ 2370 if (unlikely(init)) { 2371 int rsize; 2372 unsigned int inuse, orig_size; 2373 2374 inuse = get_info_end(s); 2375 orig_size = get_orig_size(s, x); 2376 if (!kasan_has_integrated_init()) 2377 memset(kasan_reset_tag(x), 0, orig_size); 2378 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2379 memset((char *)kasan_reset_tag(x) + inuse, 0, 2380 s->size - inuse - rsize); 2381 /* 2382 * Restore orig_size, otherwize kmalloc redzone overwritten 2383 * would be reported 2384 */ 2385 set_orig_size(s, x, orig_size); 2386 2387 } 2388 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2389 return !kasan_slab_free(s, x, init, still_accessible); 2390 } 2391 2392 static __fastpath_inline 2393 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2394 int *cnt) 2395 { 2396 2397 void *object; 2398 void *next = *head; 2399 void *old_tail = *tail; 2400 bool init; 2401 2402 if (is_kfence_address(next)) { 2403 slab_free_hook(s, next, false, false); 2404 return false; 2405 } 2406 2407 /* Head and tail of the reconstructed freelist */ 2408 *head = NULL; 2409 *tail = NULL; 2410 2411 init = slab_want_init_on_free(s); 2412 2413 do { 2414 object = next; 2415 next = get_freepointer(s, object); 2416 2417 /* If object's reuse doesn't have to be delayed */ 2418 if (likely(slab_free_hook(s, object, init, false))) { 2419 /* Move object to the new freelist */ 2420 set_freepointer(s, object, *head); 2421 *head = object; 2422 if (!*tail) 2423 *tail = object; 2424 } else { 2425 /* 2426 * Adjust the reconstructed freelist depth 2427 * accordingly if object's reuse is delayed. 2428 */ 2429 --(*cnt); 2430 } 2431 } while (object != old_tail); 2432 2433 return *head != NULL; 2434 } 2435 2436 static void *setup_object(struct kmem_cache *s, void *object) 2437 { 2438 setup_object_debug(s, object); 2439 object = kasan_init_slab_obj(s, object); 2440 if (unlikely(s->ctor)) { 2441 kasan_unpoison_new_object(s, object); 2442 s->ctor(object); 2443 kasan_poison_new_object(s, object); 2444 } 2445 return object; 2446 } 2447 2448 /* 2449 * Slab allocation and freeing 2450 */ 2451 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2452 struct kmem_cache_order_objects oo) 2453 { 2454 struct folio *folio; 2455 struct slab *slab; 2456 unsigned int order = oo_order(oo); 2457 2458 if (node == NUMA_NO_NODE) 2459 folio = (struct folio *)alloc_frozen_pages(flags, order); 2460 else 2461 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL); 2462 2463 if (!folio) 2464 return NULL; 2465 2466 slab = folio_slab(folio); 2467 __folio_set_slab(folio); 2468 if (folio_is_pfmemalloc(folio)) 2469 slab_set_pfmemalloc(slab); 2470 2471 return slab; 2472 } 2473 2474 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2475 /* Pre-initialize the random sequence cache */ 2476 static int init_cache_random_seq(struct kmem_cache *s) 2477 { 2478 unsigned int count = oo_objects(s->oo); 2479 int err; 2480 2481 /* Bailout if already initialised */ 2482 if (s->random_seq) 2483 return 0; 2484 2485 err = cache_random_seq_create(s, count, GFP_KERNEL); 2486 if (err) { 2487 pr_err("SLUB: Unable to initialize free list for %s\n", 2488 s->name); 2489 return err; 2490 } 2491 2492 /* Transform to an offset on the set of pages */ 2493 if (s->random_seq) { 2494 unsigned int i; 2495 2496 for (i = 0; i < count; i++) 2497 s->random_seq[i] *= s->size; 2498 } 2499 return 0; 2500 } 2501 2502 /* Initialize each random sequence freelist per cache */ 2503 static void __init init_freelist_randomization(void) 2504 { 2505 struct kmem_cache *s; 2506 2507 mutex_lock(&slab_mutex); 2508 2509 list_for_each_entry(s, &slab_caches, list) 2510 init_cache_random_seq(s); 2511 2512 mutex_unlock(&slab_mutex); 2513 } 2514 2515 /* Get the next entry on the pre-computed freelist randomized */ 2516 static void *next_freelist_entry(struct kmem_cache *s, 2517 unsigned long *pos, void *start, 2518 unsigned long page_limit, 2519 unsigned long freelist_count) 2520 { 2521 unsigned int idx; 2522 2523 /* 2524 * If the target page allocation failed, the number of objects on the 2525 * page might be smaller than the usual size defined by the cache. 2526 */ 2527 do { 2528 idx = s->random_seq[*pos]; 2529 *pos += 1; 2530 if (*pos >= freelist_count) 2531 *pos = 0; 2532 } while (unlikely(idx >= page_limit)); 2533 2534 return (char *)start + idx; 2535 } 2536 2537 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2538 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2539 { 2540 void *start; 2541 void *cur; 2542 void *next; 2543 unsigned long idx, pos, page_limit, freelist_count; 2544 2545 if (slab->objects < 2 || !s->random_seq) 2546 return false; 2547 2548 freelist_count = oo_objects(s->oo); 2549 pos = get_random_u32_below(freelist_count); 2550 2551 page_limit = slab->objects * s->size; 2552 start = fixup_red_left(s, slab_address(slab)); 2553 2554 /* First entry is used as the base of the freelist */ 2555 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2556 cur = setup_object(s, cur); 2557 slab->freelist = cur; 2558 2559 for (idx = 1; idx < slab->objects; idx++) { 2560 next = next_freelist_entry(s, &pos, start, page_limit, 2561 freelist_count); 2562 next = setup_object(s, next); 2563 set_freepointer(s, cur, next); 2564 cur = next; 2565 } 2566 set_freepointer(s, cur, NULL); 2567 2568 return true; 2569 } 2570 #else 2571 static inline int init_cache_random_seq(struct kmem_cache *s) 2572 { 2573 return 0; 2574 } 2575 static inline void init_freelist_randomization(void) { } 2576 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2577 { 2578 return false; 2579 } 2580 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2581 2582 static __always_inline void account_slab(struct slab *slab, int order, 2583 struct kmem_cache *s, gfp_t gfp) 2584 { 2585 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2586 alloc_slab_obj_exts(slab, s, gfp, true); 2587 2588 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2589 PAGE_SIZE << order); 2590 } 2591 2592 static __always_inline void unaccount_slab(struct slab *slab, int order, 2593 struct kmem_cache *s) 2594 { 2595 if (memcg_kmem_online() || need_slab_obj_ext()) 2596 free_slab_obj_exts(slab); 2597 2598 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2599 -(PAGE_SIZE << order)); 2600 } 2601 2602 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2603 { 2604 struct slab *slab; 2605 struct kmem_cache_order_objects oo = s->oo; 2606 gfp_t alloc_gfp; 2607 void *start, *p, *next; 2608 int idx; 2609 bool shuffle; 2610 2611 flags &= gfp_allowed_mask; 2612 2613 flags |= s->allocflags; 2614 2615 /* 2616 * Let the initial higher-order allocation fail under memory pressure 2617 * so we fall-back to the minimum order allocation. 2618 */ 2619 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2620 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2621 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2622 2623 slab = alloc_slab_page(alloc_gfp, node, oo); 2624 if (unlikely(!slab)) { 2625 oo = s->min; 2626 alloc_gfp = flags; 2627 /* 2628 * Allocation may have failed due to fragmentation. 2629 * Try a lower order alloc if possible 2630 */ 2631 slab = alloc_slab_page(alloc_gfp, node, oo); 2632 if (unlikely(!slab)) 2633 return NULL; 2634 stat(s, ORDER_FALLBACK); 2635 } 2636 2637 slab->objects = oo_objects(oo); 2638 slab->inuse = 0; 2639 slab->frozen = 0; 2640 2641 account_slab(slab, oo_order(oo), s, flags); 2642 2643 slab->slab_cache = s; 2644 2645 kasan_poison_slab(slab); 2646 2647 start = slab_address(slab); 2648 2649 setup_slab_debug(s, slab, start); 2650 2651 shuffle = shuffle_freelist(s, slab); 2652 2653 if (!shuffle) { 2654 start = fixup_red_left(s, start); 2655 start = setup_object(s, start); 2656 slab->freelist = start; 2657 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2658 next = p + s->size; 2659 next = setup_object(s, next); 2660 set_freepointer(s, p, next); 2661 p = next; 2662 } 2663 set_freepointer(s, p, NULL); 2664 } 2665 2666 return slab; 2667 } 2668 2669 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2670 { 2671 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2672 flags = kmalloc_fix_flags(flags); 2673 2674 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2675 2676 return allocate_slab(s, 2677 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2678 } 2679 2680 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2681 { 2682 struct folio *folio = slab_folio(slab); 2683 int order = folio_order(folio); 2684 int pages = 1 << order; 2685 2686 __slab_clear_pfmemalloc(slab); 2687 folio->mapping = NULL; 2688 __folio_clear_slab(folio); 2689 mm_account_reclaimed_pages(pages); 2690 unaccount_slab(slab, order, s); 2691 free_frozen_pages(&folio->page, order); 2692 } 2693 2694 static void rcu_free_slab(struct rcu_head *h) 2695 { 2696 struct slab *slab = container_of(h, struct slab, rcu_head); 2697 2698 __free_slab(slab->slab_cache, slab); 2699 } 2700 2701 static void free_slab(struct kmem_cache *s, struct slab *slab) 2702 { 2703 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2704 void *p; 2705 2706 slab_pad_check(s, slab); 2707 for_each_object(p, s, slab_address(slab), slab->objects) 2708 check_object(s, slab, p, SLUB_RED_INACTIVE); 2709 } 2710 2711 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2712 call_rcu(&slab->rcu_head, rcu_free_slab); 2713 else 2714 __free_slab(s, slab); 2715 } 2716 2717 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2718 { 2719 dec_slabs_node(s, slab_nid(slab), slab->objects); 2720 free_slab(s, slab); 2721 } 2722 2723 /* 2724 * SLUB reuses PG_workingset bit to keep track of whether it's on 2725 * the per-node partial list. 2726 */ 2727 static inline bool slab_test_node_partial(const struct slab *slab) 2728 { 2729 return folio_test_workingset(slab_folio(slab)); 2730 } 2731 2732 static inline void slab_set_node_partial(struct slab *slab) 2733 { 2734 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2735 } 2736 2737 static inline void slab_clear_node_partial(struct slab *slab) 2738 { 2739 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2740 } 2741 2742 /* 2743 * Management of partially allocated slabs. 2744 */ 2745 static inline void 2746 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2747 { 2748 n->nr_partial++; 2749 if (tail == DEACTIVATE_TO_TAIL) 2750 list_add_tail(&slab->slab_list, &n->partial); 2751 else 2752 list_add(&slab->slab_list, &n->partial); 2753 slab_set_node_partial(slab); 2754 } 2755 2756 static inline void add_partial(struct kmem_cache_node *n, 2757 struct slab *slab, int tail) 2758 { 2759 lockdep_assert_held(&n->list_lock); 2760 __add_partial(n, slab, tail); 2761 } 2762 2763 static inline void remove_partial(struct kmem_cache_node *n, 2764 struct slab *slab) 2765 { 2766 lockdep_assert_held(&n->list_lock); 2767 list_del(&slab->slab_list); 2768 slab_clear_node_partial(slab); 2769 n->nr_partial--; 2770 } 2771 2772 /* 2773 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2774 * slab from the n->partial list. Remove only a single object from the slab, do 2775 * the alloc_debug_processing() checks and leave the slab on the list, or move 2776 * it to full list if it was the last free object. 2777 */ 2778 static void *alloc_single_from_partial(struct kmem_cache *s, 2779 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2780 { 2781 void *object; 2782 2783 lockdep_assert_held(&n->list_lock); 2784 2785 object = slab->freelist; 2786 slab->freelist = get_freepointer(s, object); 2787 slab->inuse++; 2788 2789 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2790 if (folio_test_slab(slab_folio(slab))) 2791 remove_partial(n, slab); 2792 return NULL; 2793 } 2794 2795 if (slab->inuse == slab->objects) { 2796 remove_partial(n, slab); 2797 add_full(s, n, slab); 2798 } 2799 2800 return object; 2801 } 2802 2803 /* 2804 * Called only for kmem_cache_debug() caches to allocate from a freshly 2805 * allocated slab. Allocate a single object instead of whole freelist 2806 * and put the slab to the partial (or full) list. 2807 */ 2808 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2809 struct slab *slab, int orig_size) 2810 { 2811 int nid = slab_nid(slab); 2812 struct kmem_cache_node *n = get_node(s, nid); 2813 unsigned long flags; 2814 void *object; 2815 2816 2817 object = slab->freelist; 2818 slab->freelist = get_freepointer(s, object); 2819 slab->inuse = 1; 2820 2821 if (!alloc_debug_processing(s, slab, object, orig_size)) 2822 /* 2823 * It's not really expected that this would fail on a 2824 * freshly allocated slab, but a concurrent memory 2825 * corruption in theory could cause that. 2826 */ 2827 return NULL; 2828 2829 spin_lock_irqsave(&n->list_lock, flags); 2830 2831 if (slab->inuse == slab->objects) 2832 add_full(s, n, slab); 2833 else 2834 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2835 2836 inc_slabs_node(s, nid, slab->objects); 2837 spin_unlock_irqrestore(&n->list_lock, flags); 2838 2839 return object; 2840 } 2841 2842 #ifdef CONFIG_SLUB_CPU_PARTIAL 2843 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2844 #else 2845 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2846 int drain) { } 2847 #endif 2848 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2849 2850 /* 2851 * Try to allocate a partial slab from a specific node. 2852 */ 2853 static struct slab *get_partial_node(struct kmem_cache *s, 2854 struct kmem_cache_node *n, 2855 struct partial_context *pc) 2856 { 2857 struct slab *slab, *slab2, *partial = NULL; 2858 unsigned long flags; 2859 unsigned int partial_slabs = 0; 2860 2861 /* 2862 * Racy check. If we mistakenly see no partial slabs then we 2863 * just allocate an empty slab. If we mistakenly try to get a 2864 * partial slab and there is none available then get_partial() 2865 * will return NULL. 2866 */ 2867 if (!n || !n->nr_partial) 2868 return NULL; 2869 2870 spin_lock_irqsave(&n->list_lock, flags); 2871 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2872 if (!pfmemalloc_match(slab, pc->flags)) 2873 continue; 2874 2875 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2876 void *object = alloc_single_from_partial(s, n, slab, 2877 pc->orig_size); 2878 if (object) { 2879 partial = slab; 2880 pc->object = object; 2881 break; 2882 } 2883 continue; 2884 } 2885 2886 remove_partial(n, slab); 2887 2888 if (!partial) { 2889 partial = slab; 2890 stat(s, ALLOC_FROM_PARTIAL); 2891 2892 if ((slub_get_cpu_partial(s) == 0)) { 2893 break; 2894 } 2895 } else { 2896 put_cpu_partial(s, slab, 0); 2897 stat(s, CPU_PARTIAL_NODE); 2898 2899 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2900 break; 2901 } 2902 } 2903 } 2904 spin_unlock_irqrestore(&n->list_lock, flags); 2905 return partial; 2906 } 2907 2908 /* 2909 * Get a slab from somewhere. Search in increasing NUMA distances. 2910 */ 2911 static struct slab *get_any_partial(struct kmem_cache *s, 2912 struct partial_context *pc) 2913 { 2914 #ifdef CONFIG_NUMA 2915 struct zonelist *zonelist; 2916 struct zoneref *z; 2917 struct zone *zone; 2918 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2919 struct slab *slab; 2920 unsigned int cpuset_mems_cookie; 2921 2922 /* 2923 * The defrag ratio allows a configuration of the tradeoffs between 2924 * inter node defragmentation and node local allocations. A lower 2925 * defrag_ratio increases the tendency to do local allocations 2926 * instead of attempting to obtain partial slabs from other nodes. 2927 * 2928 * If the defrag_ratio is set to 0 then kmalloc() always 2929 * returns node local objects. If the ratio is higher then kmalloc() 2930 * may return off node objects because partial slabs are obtained 2931 * from other nodes and filled up. 2932 * 2933 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2934 * (which makes defrag_ratio = 1000) then every (well almost) 2935 * allocation will first attempt to defrag slab caches on other nodes. 2936 * This means scanning over all nodes to look for partial slabs which 2937 * may be expensive if we do it every time we are trying to find a slab 2938 * with available objects. 2939 */ 2940 if (!s->remote_node_defrag_ratio || 2941 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2942 return NULL; 2943 2944 do { 2945 cpuset_mems_cookie = read_mems_allowed_begin(); 2946 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2947 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2948 struct kmem_cache_node *n; 2949 2950 n = get_node(s, zone_to_nid(zone)); 2951 2952 if (n && cpuset_zone_allowed(zone, pc->flags) && 2953 n->nr_partial > s->min_partial) { 2954 slab = get_partial_node(s, n, pc); 2955 if (slab) { 2956 /* 2957 * Don't check read_mems_allowed_retry() 2958 * here - if mems_allowed was updated in 2959 * parallel, that was a harmless race 2960 * between allocation and the cpuset 2961 * update 2962 */ 2963 return slab; 2964 } 2965 } 2966 } 2967 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2968 #endif /* CONFIG_NUMA */ 2969 return NULL; 2970 } 2971 2972 /* 2973 * Get a partial slab, lock it and return it. 2974 */ 2975 static struct slab *get_partial(struct kmem_cache *s, int node, 2976 struct partial_context *pc) 2977 { 2978 struct slab *slab; 2979 int searchnode = node; 2980 2981 if (node == NUMA_NO_NODE) 2982 searchnode = numa_mem_id(); 2983 2984 slab = get_partial_node(s, get_node(s, searchnode), pc); 2985 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2986 return slab; 2987 2988 return get_any_partial(s, pc); 2989 } 2990 2991 #ifndef CONFIG_SLUB_TINY 2992 2993 #ifdef CONFIG_PREEMPTION 2994 /* 2995 * Calculate the next globally unique transaction for disambiguation 2996 * during cmpxchg. The transactions start with the cpu number and are then 2997 * incremented by CONFIG_NR_CPUS. 2998 */ 2999 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 3000 #else 3001 /* 3002 * No preemption supported therefore also no need to check for 3003 * different cpus. 3004 */ 3005 #define TID_STEP 1 3006 #endif /* CONFIG_PREEMPTION */ 3007 3008 static inline unsigned long next_tid(unsigned long tid) 3009 { 3010 return tid + TID_STEP; 3011 } 3012 3013 #ifdef SLUB_DEBUG_CMPXCHG 3014 static inline unsigned int tid_to_cpu(unsigned long tid) 3015 { 3016 return tid % TID_STEP; 3017 } 3018 3019 static inline unsigned long tid_to_event(unsigned long tid) 3020 { 3021 return tid / TID_STEP; 3022 } 3023 #endif 3024 3025 static inline unsigned int init_tid(int cpu) 3026 { 3027 return cpu; 3028 } 3029 3030 static inline void note_cmpxchg_failure(const char *n, 3031 const struct kmem_cache *s, unsigned long tid) 3032 { 3033 #ifdef SLUB_DEBUG_CMPXCHG 3034 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 3035 3036 pr_info("%s %s: cmpxchg redo ", n, s->name); 3037 3038 #ifdef CONFIG_PREEMPTION 3039 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 3040 pr_warn("due to cpu change %d -> %d\n", 3041 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 3042 else 3043 #endif 3044 if (tid_to_event(tid) != tid_to_event(actual_tid)) 3045 pr_warn("due to cpu running other code. Event %ld->%ld\n", 3046 tid_to_event(tid), tid_to_event(actual_tid)); 3047 else 3048 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 3049 actual_tid, tid, next_tid(tid)); 3050 #endif 3051 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 3052 } 3053 3054 static void init_kmem_cache_cpus(struct kmem_cache *s) 3055 { 3056 int cpu; 3057 struct kmem_cache_cpu *c; 3058 3059 for_each_possible_cpu(cpu) { 3060 c = per_cpu_ptr(s->cpu_slab, cpu); 3061 local_lock_init(&c->lock); 3062 c->tid = init_tid(cpu); 3063 } 3064 } 3065 3066 /* 3067 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 3068 * unfreezes the slabs and puts it on the proper list. 3069 * Assumes the slab has been already safely taken away from kmem_cache_cpu 3070 * by the caller. 3071 */ 3072 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 3073 void *freelist) 3074 { 3075 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3076 int free_delta = 0; 3077 void *nextfree, *freelist_iter, *freelist_tail; 3078 int tail = DEACTIVATE_TO_HEAD; 3079 unsigned long flags = 0; 3080 struct slab new; 3081 struct slab old; 3082 3083 if (READ_ONCE(slab->freelist)) { 3084 stat(s, DEACTIVATE_REMOTE_FREES); 3085 tail = DEACTIVATE_TO_TAIL; 3086 } 3087 3088 /* 3089 * Stage one: Count the objects on cpu's freelist as free_delta and 3090 * remember the last object in freelist_tail for later splicing. 3091 */ 3092 freelist_tail = NULL; 3093 freelist_iter = freelist; 3094 while (freelist_iter) { 3095 nextfree = get_freepointer(s, freelist_iter); 3096 3097 /* 3098 * If 'nextfree' is invalid, it is possible that the object at 3099 * 'freelist_iter' is already corrupted. So isolate all objects 3100 * starting at 'freelist_iter' by skipping them. 3101 */ 3102 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 3103 break; 3104 3105 freelist_tail = freelist_iter; 3106 free_delta++; 3107 3108 freelist_iter = nextfree; 3109 } 3110 3111 /* 3112 * Stage two: Unfreeze the slab while splicing the per-cpu 3113 * freelist to the head of slab's freelist. 3114 */ 3115 do { 3116 old.freelist = READ_ONCE(slab->freelist); 3117 old.counters = READ_ONCE(slab->counters); 3118 VM_BUG_ON(!old.frozen); 3119 3120 /* Determine target state of the slab */ 3121 new.counters = old.counters; 3122 new.frozen = 0; 3123 if (freelist_tail) { 3124 new.inuse -= free_delta; 3125 set_freepointer(s, freelist_tail, old.freelist); 3126 new.freelist = freelist; 3127 } else { 3128 new.freelist = old.freelist; 3129 } 3130 } while (!slab_update_freelist(s, slab, 3131 old.freelist, old.counters, 3132 new.freelist, new.counters, 3133 "unfreezing slab")); 3134 3135 /* 3136 * Stage three: Manipulate the slab list based on the updated state. 3137 */ 3138 if (!new.inuse && n->nr_partial >= s->min_partial) { 3139 stat(s, DEACTIVATE_EMPTY); 3140 discard_slab(s, slab); 3141 stat(s, FREE_SLAB); 3142 } else if (new.freelist) { 3143 spin_lock_irqsave(&n->list_lock, flags); 3144 add_partial(n, slab, tail); 3145 spin_unlock_irqrestore(&n->list_lock, flags); 3146 stat(s, tail); 3147 } else { 3148 stat(s, DEACTIVATE_FULL); 3149 } 3150 } 3151 3152 #ifdef CONFIG_SLUB_CPU_PARTIAL 3153 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3154 { 3155 struct kmem_cache_node *n = NULL, *n2 = NULL; 3156 struct slab *slab, *slab_to_discard = NULL; 3157 unsigned long flags = 0; 3158 3159 while (partial_slab) { 3160 slab = partial_slab; 3161 partial_slab = slab->next; 3162 3163 n2 = get_node(s, slab_nid(slab)); 3164 if (n != n2) { 3165 if (n) 3166 spin_unlock_irqrestore(&n->list_lock, flags); 3167 3168 n = n2; 3169 spin_lock_irqsave(&n->list_lock, flags); 3170 } 3171 3172 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3173 slab->next = slab_to_discard; 3174 slab_to_discard = slab; 3175 } else { 3176 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3177 stat(s, FREE_ADD_PARTIAL); 3178 } 3179 } 3180 3181 if (n) 3182 spin_unlock_irqrestore(&n->list_lock, flags); 3183 3184 while (slab_to_discard) { 3185 slab = slab_to_discard; 3186 slab_to_discard = slab_to_discard->next; 3187 3188 stat(s, DEACTIVATE_EMPTY); 3189 discard_slab(s, slab); 3190 stat(s, FREE_SLAB); 3191 } 3192 } 3193 3194 /* 3195 * Put all the cpu partial slabs to the node partial list. 3196 */ 3197 static void put_partials(struct kmem_cache *s) 3198 { 3199 struct slab *partial_slab; 3200 unsigned long flags; 3201 3202 local_lock_irqsave(&s->cpu_slab->lock, flags); 3203 partial_slab = this_cpu_read(s->cpu_slab->partial); 3204 this_cpu_write(s->cpu_slab->partial, NULL); 3205 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3206 3207 if (partial_slab) 3208 __put_partials(s, partial_slab); 3209 } 3210 3211 static void put_partials_cpu(struct kmem_cache *s, 3212 struct kmem_cache_cpu *c) 3213 { 3214 struct slab *partial_slab; 3215 3216 partial_slab = slub_percpu_partial(c); 3217 c->partial = NULL; 3218 3219 if (partial_slab) 3220 __put_partials(s, partial_slab); 3221 } 3222 3223 /* 3224 * Put a slab into a partial slab slot if available. 3225 * 3226 * If we did not find a slot then simply move all the partials to the 3227 * per node partial list. 3228 */ 3229 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3230 { 3231 struct slab *oldslab; 3232 struct slab *slab_to_put = NULL; 3233 unsigned long flags; 3234 int slabs = 0; 3235 3236 local_lock_irqsave(&s->cpu_slab->lock, flags); 3237 3238 oldslab = this_cpu_read(s->cpu_slab->partial); 3239 3240 if (oldslab) { 3241 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3242 /* 3243 * Partial array is full. Move the existing set to the 3244 * per node partial list. Postpone the actual unfreezing 3245 * outside of the critical section. 3246 */ 3247 slab_to_put = oldslab; 3248 oldslab = NULL; 3249 } else { 3250 slabs = oldslab->slabs; 3251 } 3252 } 3253 3254 slabs++; 3255 3256 slab->slabs = slabs; 3257 slab->next = oldslab; 3258 3259 this_cpu_write(s->cpu_slab->partial, slab); 3260 3261 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3262 3263 if (slab_to_put) { 3264 __put_partials(s, slab_to_put); 3265 stat(s, CPU_PARTIAL_DRAIN); 3266 } 3267 } 3268 3269 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3270 3271 static inline void put_partials(struct kmem_cache *s) { } 3272 static inline void put_partials_cpu(struct kmem_cache *s, 3273 struct kmem_cache_cpu *c) { } 3274 3275 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3276 3277 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3278 { 3279 unsigned long flags; 3280 struct slab *slab; 3281 void *freelist; 3282 3283 local_lock_irqsave(&s->cpu_slab->lock, flags); 3284 3285 slab = c->slab; 3286 freelist = c->freelist; 3287 3288 c->slab = NULL; 3289 c->freelist = NULL; 3290 c->tid = next_tid(c->tid); 3291 3292 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3293 3294 if (slab) { 3295 deactivate_slab(s, slab, freelist); 3296 stat(s, CPUSLAB_FLUSH); 3297 } 3298 } 3299 3300 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3301 { 3302 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3303 void *freelist = c->freelist; 3304 struct slab *slab = c->slab; 3305 3306 c->slab = NULL; 3307 c->freelist = NULL; 3308 c->tid = next_tid(c->tid); 3309 3310 if (slab) { 3311 deactivate_slab(s, slab, freelist); 3312 stat(s, CPUSLAB_FLUSH); 3313 } 3314 3315 put_partials_cpu(s, c); 3316 } 3317 3318 struct slub_flush_work { 3319 struct work_struct work; 3320 struct kmem_cache *s; 3321 bool skip; 3322 }; 3323 3324 /* 3325 * Flush cpu slab. 3326 * 3327 * Called from CPU work handler with migration disabled. 3328 */ 3329 static void flush_cpu_slab(struct work_struct *w) 3330 { 3331 struct kmem_cache *s; 3332 struct kmem_cache_cpu *c; 3333 struct slub_flush_work *sfw; 3334 3335 sfw = container_of(w, struct slub_flush_work, work); 3336 3337 s = sfw->s; 3338 c = this_cpu_ptr(s->cpu_slab); 3339 3340 if (c->slab) 3341 flush_slab(s, c); 3342 3343 put_partials(s); 3344 } 3345 3346 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3347 { 3348 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3349 3350 return c->slab || slub_percpu_partial(c); 3351 } 3352 3353 static DEFINE_MUTEX(flush_lock); 3354 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3355 3356 static void flush_all_cpus_locked(struct kmem_cache *s) 3357 { 3358 struct slub_flush_work *sfw; 3359 unsigned int cpu; 3360 3361 lockdep_assert_cpus_held(); 3362 mutex_lock(&flush_lock); 3363 3364 for_each_online_cpu(cpu) { 3365 sfw = &per_cpu(slub_flush, cpu); 3366 if (!has_cpu_slab(cpu, s)) { 3367 sfw->skip = true; 3368 continue; 3369 } 3370 INIT_WORK(&sfw->work, flush_cpu_slab); 3371 sfw->skip = false; 3372 sfw->s = s; 3373 queue_work_on(cpu, flushwq, &sfw->work); 3374 } 3375 3376 for_each_online_cpu(cpu) { 3377 sfw = &per_cpu(slub_flush, cpu); 3378 if (sfw->skip) 3379 continue; 3380 flush_work(&sfw->work); 3381 } 3382 3383 mutex_unlock(&flush_lock); 3384 } 3385 3386 static void flush_all(struct kmem_cache *s) 3387 { 3388 cpus_read_lock(); 3389 flush_all_cpus_locked(s); 3390 cpus_read_unlock(); 3391 } 3392 3393 /* 3394 * Use the cpu notifier to insure that the cpu slabs are flushed when 3395 * necessary. 3396 */ 3397 static int slub_cpu_dead(unsigned int cpu) 3398 { 3399 struct kmem_cache *s; 3400 3401 mutex_lock(&slab_mutex); 3402 list_for_each_entry(s, &slab_caches, list) 3403 __flush_cpu_slab(s, cpu); 3404 mutex_unlock(&slab_mutex); 3405 return 0; 3406 } 3407 3408 #else /* CONFIG_SLUB_TINY */ 3409 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3410 static inline void flush_all(struct kmem_cache *s) { } 3411 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3412 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3413 #endif /* CONFIG_SLUB_TINY */ 3414 3415 /* 3416 * Check if the objects in a per cpu structure fit numa 3417 * locality expectations. 3418 */ 3419 static inline int node_match(struct slab *slab, int node) 3420 { 3421 #ifdef CONFIG_NUMA 3422 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3423 return 0; 3424 #endif 3425 return 1; 3426 } 3427 3428 #ifdef CONFIG_SLUB_DEBUG 3429 static int count_free(struct slab *slab) 3430 { 3431 return slab->objects - slab->inuse; 3432 } 3433 3434 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3435 { 3436 return atomic_long_read(&n->total_objects); 3437 } 3438 3439 /* Supports checking bulk free of a constructed freelist */ 3440 static inline bool free_debug_processing(struct kmem_cache *s, 3441 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3442 unsigned long addr, depot_stack_handle_t handle) 3443 { 3444 bool checks_ok = false; 3445 void *object = head; 3446 int cnt = 0; 3447 3448 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3449 if (!check_slab(s, slab)) 3450 goto out; 3451 } 3452 3453 if (slab->inuse < *bulk_cnt) { 3454 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3455 slab->inuse, *bulk_cnt); 3456 goto out; 3457 } 3458 3459 next_object: 3460 3461 if (++cnt > *bulk_cnt) 3462 goto out_cnt; 3463 3464 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3465 if (!free_consistency_checks(s, slab, object, addr)) 3466 goto out; 3467 } 3468 3469 if (s->flags & SLAB_STORE_USER) 3470 set_track_update(s, object, TRACK_FREE, addr, handle); 3471 trace(s, slab, object, 0); 3472 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3473 init_object(s, object, SLUB_RED_INACTIVE); 3474 3475 /* Reached end of constructed freelist yet? */ 3476 if (object != tail) { 3477 object = get_freepointer(s, object); 3478 goto next_object; 3479 } 3480 checks_ok = true; 3481 3482 out_cnt: 3483 if (cnt != *bulk_cnt) { 3484 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3485 *bulk_cnt, cnt); 3486 *bulk_cnt = cnt; 3487 } 3488 3489 out: 3490 3491 if (!checks_ok) 3492 slab_fix(s, "Object at 0x%p not freed", object); 3493 3494 return checks_ok; 3495 } 3496 #endif /* CONFIG_SLUB_DEBUG */ 3497 3498 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3499 static unsigned long count_partial(struct kmem_cache_node *n, 3500 int (*get_count)(struct slab *)) 3501 { 3502 unsigned long flags; 3503 unsigned long x = 0; 3504 struct slab *slab; 3505 3506 spin_lock_irqsave(&n->list_lock, flags); 3507 list_for_each_entry(slab, &n->partial, slab_list) 3508 x += get_count(slab); 3509 spin_unlock_irqrestore(&n->list_lock, flags); 3510 return x; 3511 } 3512 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3513 3514 #ifdef CONFIG_SLUB_DEBUG 3515 #define MAX_PARTIAL_TO_SCAN 10000 3516 3517 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3518 { 3519 unsigned long flags; 3520 unsigned long x = 0; 3521 struct slab *slab; 3522 3523 spin_lock_irqsave(&n->list_lock, flags); 3524 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3525 list_for_each_entry(slab, &n->partial, slab_list) 3526 x += slab->objects - slab->inuse; 3527 } else { 3528 /* 3529 * For a long list, approximate the total count of objects in 3530 * it to meet the limit on the number of slabs to scan. 3531 * Scan from both the list's head and tail for better accuracy. 3532 */ 3533 unsigned long scanned = 0; 3534 3535 list_for_each_entry(slab, &n->partial, slab_list) { 3536 x += slab->objects - slab->inuse; 3537 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3538 break; 3539 } 3540 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3541 x += slab->objects - slab->inuse; 3542 if (++scanned == MAX_PARTIAL_TO_SCAN) 3543 break; 3544 } 3545 x = mult_frac(x, n->nr_partial, scanned); 3546 x = min(x, node_nr_objs(n)); 3547 } 3548 spin_unlock_irqrestore(&n->list_lock, flags); 3549 return x; 3550 } 3551 3552 static noinline void 3553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3554 { 3555 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3556 DEFAULT_RATELIMIT_BURST); 3557 int cpu = raw_smp_processor_id(); 3558 int node; 3559 struct kmem_cache_node *n; 3560 3561 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3562 return; 3563 3564 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", 3565 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); 3566 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3567 s->name, s->object_size, s->size, oo_order(s->oo), 3568 oo_order(s->min)); 3569 3570 if (oo_order(s->min) > get_order(s->object_size)) 3571 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3572 s->name); 3573 3574 for_each_kmem_cache_node(s, node, n) { 3575 unsigned long nr_slabs; 3576 unsigned long nr_objs; 3577 unsigned long nr_free; 3578 3579 nr_free = count_partial_free_approx(n); 3580 nr_slabs = node_nr_slabs(n); 3581 nr_objs = node_nr_objs(n); 3582 3583 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3584 node, nr_slabs, nr_objs, nr_free); 3585 } 3586 } 3587 #else /* CONFIG_SLUB_DEBUG */ 3588 static inline void 3589 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3590 #endif 3591 3592 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3593 { 3594 if (unlikely(slab_test_pfmemalloc(slab))) 3595 return gfp_pfmemalloc_allowed(gfpflags); 3596 3597 return true; 3598 } 3599 3600 #ifndef CONFIG_SLUB_TINY 3601 static inline bool 3602 __update_cpu_freelist_fast(struct kmem_cache *s, 3603 void *freelist_old, void *freelist_new, 3604 unsigned long tid) 3605 { 3606 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3607 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3608 3609 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3610 &old.full, new.full); 3611 } 3612 3613 /* 3614 * Check the slab->freelist and either transfer the freelist to the 3615 * per cpu freelist or deactivate the slab. 3616 * 3617 * The slab is still frozen if the return value is not NULL. 3618 * 3619 * If this function returns NULL then the slab has been unfrozen. 3620 */ 3621 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3622 { 3623 struct slab new; 3624 unsigned long counters; 3625 void *freelist; 3626 3627 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3628 3629 do { 3630 freelist = slab->freelist; 3631 counters = slab->counters; 3632 3633 new.counters = counters; 3634 3635 new.inuse = slab->objects; 3636 new.frozen = freelist != NULL; 3637 3638 } while (!__slab_update_freelist(s, slab, 3639 freelist, counters, 3640 NULL, new.counters, 3641 "get_freelist")); 3642 3643 return freelist; 3644 } 3645 3646 /* 3647 * Freeze the partial slab and return the pointer to the freelist. 3648 */ 3649 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3650 { 3651 struct slab new; 3652 unsigned long counters; 3653 void *freelist; 3654 3655 do { 3656 freelist = slab->freelist; 3657 counters = slab->counters; 3658 3659 new.counters = counters; 3660 VM_BUG_ON(new.frozen); 3661 3662 new.inuse = slab->objects; 3663 new.frozen = 1; 3664 3665 } while (!slab_update_freelist(s, slab, 3666 freelist, counters, 3667 NULL, new.counters, 3668 "freeze_slab")); 3669 3670 return freelist; 3671 } 3672 3673 /* 3674 * Slow path. The lockless freelist is empty or we need to perform 3675 * debugging duties. 3676 * 3677 * Processing is still very fast if new objects have been freed to the 3678 * regular freelist. In that case we simply take over the regular freelist 3679 * as the lockless freelist and zap the regular freelist. 3680 * 3681 * If that is not working then we fall back to the partial lists. We take the 3682 * first element of the freelist as the object to allocate now and move the 3683 * rest of the freelist to the lockless freelist. 3684 * 3685 * And if we were unable to get a new slab from the partial slab lists then 3686 * we need to allocate a new slab. This is the slowest path since it involves 3687 * a call to the page allocator and the setup of a new slab. 3688 * 3689 * Version of __slab_alloc to use when we know that preemption is 3690 * already disabled (which is the case for bulk allocation). 3691 */ 3692 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3693 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3694 { 3695 void *freelist; 3696 struct slab *slab; 3697 unsigned long flags; 3698 struct partial_context pc; 3699 bool try_thisnode = true; 3700 3701 stat(s, ALLOC_SLOWPATH); 3702 3703 reread_slab: 3704 3705 slab = READ_ONCE(c->slab); 3706 if (!slab) { 3707 /* 3708 * if the node is not online or has no normal memory, just 3709 * ignore the node constraint 3710 */ 3711 if (unlikely(node != NUMA_NO_NODE && 3712 !node_isset(node, slab_nodes))) 3713 node = NUMA_NO_NODE; 3714 goto new_slab; 3715 } 3716 3717 if (unlikely(!node_match(slab, node))) { 3718 /* 3719 * same as above but node_match() being false already 3720 * implies node != NUMA_NO_NODE 3721 */ 3722 if (!node_isset(node, slab_nodes)) { 3723 node = NUMA_NO_NODE; 3724 } else { 3725 stat(s, ALLOC_NODE_MISMATCH); 3726 goto deactivate_slab; 3727 } 3728 } 3729 3730 /* 3731 * By rights, we should be searching for a slab page that was 3732 * PFMEMALLOC but right now, we are losing the pfmemalloc 3733 * information when the page leaves the per-cpu allocator 3734 */ 3735 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3736 goto deactivate_slab; 3737 3738 /* must check again c->slab in case we got preempted and it changed */ 3739 local_lock_irqsave(&s->cpu_slab->lock, flags); 3740 if (unlikely(slab != c->slab)) { 3741 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3742 goto reread_slab; 3743 } 3744 freelist = c->freelist; 3745 if (freelist) 3746 goto load_freelist; 3747 3748 freelist = get_freelist(s, slab); 3749 3750 if (!freelist) { 3751 c->slab = NULL; 3752 c->tid = next_tid(c->tid); 3753 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3754 stat(s, DEACTIVATE_BYPASS); 3755 goto new_slab; 3756 } 3757 3758 stat(s, ALLOC_REFILL); 3759 3760 load_freelist: 3761 3762 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3763 3764 /* 3765 * freelist is pointing to the list of objects to be used. 3766 * slab is pointing to the slab from which the objects are obtained. 3767 * That slab must be frozen for per cpu allocations to work. 3768 */ 3769 VM_BUG_ON(!c->slab->frozen); 3770 c->freelist = get_freepointer(s, freelist); 3771 c->tid = next_tid(c->tid); 3772 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3773 return freelist; 3774 3775 deactivate_slab: 3776 3777 local_lock_irqsave(&s->cpu_slab->lock, flags); 3778 if (slab != c->slab) { 3779 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3780 goto reread_slab; 3781 } 3782 freelist = c->freelist; 3783 c->slab = NULL; 3784 c->freelist = NULL; 3785 c->tid = next_tid(c->tid); 3786 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3787 deactivate_slab(s, slab, freelist); 3788 3789 new_slab: 3790 3791 #ifdef CONFIG_SLUB_CPU_PARTIAL 3792 while (slub_percpu_partial(c)) { 3793 local_lock_irqsave(&s->cpu_slab->lock, flags); 3794 if (unlikely(c->slab)) { 3795 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3796 goto reread_slab; 3797 } 3798 if (unlikely(!slub_percpu_partial(c))) { 3799 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3800 /* we were preempted and partial list got empty */ 3801 goto new_objects; 3802 } 3803 3804 slab = slub_percpu_partial(c); 3805 slub_set_percpu_partial(c, slab); 3806 3807 if (likely(node_match(slab, node) && 3808 pfmemalloc_match(slab, gfpflags))) { 3809 c->slab = slab; 3810 freelist = get_freelist(s, slab); 3811 VM_BUG_ON(!freelist); 3812 stat(s, CPU_PARTIAL_ALLOC); 3813 goto load_freelist; 3814 } 3815 3816 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3817 3818 slab->next = NULL; 3819 __put_partials(s, slab); 3820 } 3821 #endif 3822 3823 new_objects: 3824 3825 pc.flags = gfpflags; 3826 /* 3827 * When a preferred node is indicated but no __GFP_THISNODE 3828 * 3829 * 1) try to get a partial slab from target node only by having 3830 * __GFP_THISNODE in pc.flags for get_partial() 3831 * 2) if 1) failed, try to allocate a new slab from target node with 3832 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3833 * 3) if 2) failed, retry with original gfpflags which will allow 3834 * get_partial() try partial lists of other nodes before potentially 3835 * allocating new page from other nodes 3836 */ 3837 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3838 && try_thisnode)) 3839 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3840 3841 pc.orig_size = orig_size; 3842 slab = get_partial(s, node, &pc); 3843 if (slab) { 3844 if (kmem_cache_debug(s)) { 3845 freelist = pc.object; 3846 /* 3847 * For debug caches here we had to go through 3848 * alloc_single_from_partial() so just store the 3849 * tracking info and return the object. 3850 */ 3851 if (s->flags & SLAB_STORE_USER) 3852 set_track(s, freelist, TRACK_ALLOC, addr); 3853 3854 return freelist; 3855 } 3856 3857 freelist = freeze_slab(s, slab); 3858 goto retry_load_slab; 3859 } 3860 3861 slub_put_cpu_ptr(s->cpu_slab); 3862 slab = new_slab(s, pc.flags, node); 3863 c = slub_get_cpu_ptr(s->cpu_slab); 3864 3865 if (unlikely(!slab)) { 3866 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3867 && try_thisnode) { 3868 try_thisnode = false; 3869 goto new_objects; 3870 } 3871 slab_out_of_memory(s, gfpflags, node); 3872 return NULL; 3873 } 3874 3875 stat(s, ALLOC_SLAB); 3876 3877 if (kmem_cache_debug(s)) { 3878 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3879 3880 if (unlikely(!freelist)) 3881 goto new_objects; 3882 3883 if (s->flags & SLAB_STORE_USER) 3884 set_track(s, freelist, TRACK_ALLOC, addr); 3885 3886 return freelist; 3887 } 3888 3889 /* 3890 * No other reference to the slab yet so we can 3891 * muck around with it freely without cmpxchg 3892 */ 3893 freelist = slab->freelist; 3894 slab->freelist = NULL; 3895 slab->inuse = slab->objects; 3896 slab->frozen = 1; 3897 3898 inc_slabs_node(s, slab_nid(slab), slab->objects); 3899 3900 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3901 /* 3902 * For !pfmemalloc_match() case we don't load freelist so that 3903 * we don't make further mismatched allocations easier. 3904 */ 3905 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3906 return freelist; 3907 } 3908 3909 retry_load_slab: 3910 3911 local_lock_irqsave(&s->cpu_slab->lock, flags); 3912 if (unlikely(c->slab)) { 3913 void *flush_freelist = c->freelist; 3914 struct slab *flush_slab = c->slab; 3915 3916 c->slab = NULL; 3917 c->freelist = NULL; 3918 c->tid = next_tid(c->tid); 3919 3920 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3921 3922 deactivate_slab(s, flush_slab, flush_freelist); 3923 3924 stat(s, CPUSLAB_FLUSH); 3925 3926 goto retry_load_slab; 3927 } 3928 c->slab = slab; 3929 3930 goto load_freelist; 3931 } 3932 3933 /* 3934 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3935 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3936 * pointer. 3937 */ 3938 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3939 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3940 { 3941 void *p; 3942 3943 #ifdef CONFIG_PREEMPT_COUNT 3944 /* 3945 * We may have been preempted and rescheduled on a different 3946 * cpu before disabling preemption. Need to reload cpu area 3947 * pointer. 3948 */ 3949 c = slub_get_cpu_ptr(s->cpu_slab); 3950 #endif 3951 3952 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3953 #ifdef CONFIG_PREEMPT_COUNT 3954 slub_put_cpu_ptr(s->cpu_slab); 3955 #endif 3956 return p; 3957 } 3958 3959 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3960 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3961 { 3962 struct kmem_cache_cpu *c; 3963 struct slab *slab; 3964 unsigned long tid; 3965 void *object; 3966 3967 redo: 3968 /* 3969 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3970 * enabled. We may switch back and forth between cpus while 3971 * reading from one cpu area. That does not matter as long 3972 * as we end up on the original cpu again when doing the cmpxchg. 3973 * 3974 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3975 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3976 * the tid. If we are preempted and switched to another cpu between the 3977 * two reads, it's OK as the two are still associated with the same cpu 3978 * and cmpxchg later will validate the cpu. 3979 */ 3980 c = raw_cpu_ptr(s->cpu_slab); 3981 tid = READ_ONCE(c->tid); 3982 3983 /* 3984 * Irqless object alloc/free algorithm used here depends on sequence 3985 * of fetching cpu_slab's data. tid should be fetched before anything 3986 * on c to guarantee that object and slab associated with previous tid 3987 * won't be used with current tid. If we fetch tid first, object and 3988 * slab could be one associated with next tid and our alloc/free 3989 * request will be failed. In this case, we will retry. So, no problem. 3990 */ 3991 barrier(); 3992 3993 /* 3994 * The transaction ids are globally unique per cpu and per operation on 3995 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3996 * occurs on the right processor and that there was no operation on the 3997 * linked list in between. 3998 */ 3999 4000 object = c->freelist; 4001 slab = c->slab; 4002 4003 #ifdef CONFIG_NUMA 4004 if (static_branch_unlikely(&strict_numa) && 4005 node == NUMA_NO_NODE) { 4006 4007 struct mempolicy *mpol = current->mempolicy; 4008 4009 if (mpol) { 4010 /* 4011 * Special BIND rule support. If existing slab 4012 * is in permitted set then do not redirect 4013 * to a particular node. 4014 * Otherwise we apply the memory policy to get 4015 * the node we need to allocate on. 4016 */ 4017 if (mpol->mode != MPOL_BIND || !slab || 4018 !node_isset(slab_nid(slab), mpol->nodes)) 4019 4020 node = mempolicy_slab_node(); 4021 } 4022 } 4023 #endif 4024 4025 if (!USE_LOCKLESS_FAST_PATH() || 4026 unlikely(!object || !slab || !node_match(slab, node))) { 4027 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 4028 } else { 4029 void *next_object = get_freepointer_safe(s, object); 4030 4031 /* 4032 * The cmpxchg will only match if there was no additional 4033 * operation and if we are on the right processor. 4034 * 4035 * The cmpxchg does the following atomically (without lock 4036 * semantics!) 4037 * 1. Relocate first pointer to the current per cpu area. 4038 * 2. Verify that tid and freelist have not been changed 4039 * 3. If they were not changed replace tid and freelist 4040 * 4041 * Since this is without lock semantics the protection is only 4042 * against code executing on this cpu *not* from access by 4043 * other cpus. 4044 */ 4045 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 4046 note_cmpxchg_failure("slab_alloc", s, tid); 4047 goto redo; 4048 } 4049 prefetch_freepointer(s, next_object); 4050 stat(s, ALLOC_FASTPATH); 4051 } 4052 4053 return object; 4054 } 4055 #else /* CONFIG_SLUB_TINY */ 4056 static void *__slab_alloc_node(struct kmem_cache *s, 4057 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4058 { 4059 struct partial_context pc; 4060 struct slab *slab; 4061 void *object; 4062 4063 pc.flags = gfpflags; 4064 pc.orig_size = orig_size; 4065 slab = get_partial(s, node, &pc); 4066 4067 if (slab) 4068 return pc.object; 4069 4070 slab = new_slab(s, gfpflags, node); 4071 if (unlikely(!slab)) { 4072 slab_out_of_memory(s, gfpflags, node); 4073 return NULL; 4074 } 4075 4076 object = alloc_single_from_new_slab(s, slab, orig_size); 4077 4078 return object; 4079 } 4080 #endif /* CONFIG_SLUB_TINY */ 4081 4082 /* 4083 * If the object has been wiped upon free, make sure it's fully initialized by 4084 * zeroing out freelist pointer. 4085 * 4086 * Note that we also wipe custom freelist pointers. 4087 */ 4088 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 4089 void *obj) 4090 { 4091 if (unlikely(slab_want_init_on_free(s)) && obj && 4092 !freeptr_outside_object(s)) 4093 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 4094 0, sizeof(void *)); 4095 } 4096 4097 static __fastpath_inline 4098 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 4099 { 4100 flags &= gfp_allowed_mask; 4101 4102 might_alloc(flags); 4103 4104 if (unlikely(should_failslab(s, flags))) 4105 return NULL; 4106 4107 return s; 4108 } 4109 4110 static __fastpath_inline 4111 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 4112 gfp_t flags, size_t size, void **p, bool init, 4113 unsigned int orig_size) 4114 { 4115 unsigned int zero_size = s->object_size; 4116 bool kasan_init = init; 4117 size_t i; 4118 gfp_t init_flags = flags & gfp_allowed_mask; 4119 4120 /* 4121 * For kmalloc object, the allocated memory size(object_size) is likely 4122 * larger than the requested size(orig_size). If redzone check is 4123 * enabled for the extra space, don't zero it, as it will be redzoned 4124 * soon. The redzone operation for this extra space could be seen as a 4125 * replacement of current poisoning under certain debug option, and 4126 * won't break other sanity checks. 4127 */ 4128 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 4129 (s->flags & SLAB_KMALLOC)) 4130 zero_size = orig_size; 4131 4132 /* 4133 * When slab_debug is enabled, avoid memory initialization integrated 4134 * into KASAN and instead zero out the memory via the memset below with 4135 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 4136 * cause false-positive reports. This does not lead to a performance 4137 * penalty on production builds, as slab_debug is not intended to be 4138 * enabled there. 4139 */ 4140 if (__slub_debug_enabled()) 4141 kasan_init = false; 4142 4143 /* 4144 * As memory initialization might be integrated into KASAN, 4145 * kasan_slab_alloc and initialization memset must be 4146 * kept together to avoid discrepancies in behavior. 4147 * 4148 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 4149 */ 4150 for (i = 0; i < size; i++) { 4151 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 4152 if (p[i] && init && (!kasan_init || 4153 !kasan_has_integrated_init())) 4154 memset(p[i], 0, zero_size); 4155 kmemleak_alloc_recursive(p[i], s->object_size, 1, 4156 s->flags, init_flags); 4157 kmsan_slab_alloc(s, p[i], init_flags); 4158 alloc_tagging_slab_alloc_hook(s, p[i], flags); 4159 } 4160 4161 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4162 } 4163 4164 /* 4165 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4166 * have the fastpath folded into their functions. So no function call 4167 * overhead for requests that can be satisfied on the fastpath. 4168 * 4169 * The fastpath works by first checking if the lockless freelist can be used. 4170 * If not then __slab_alloc is called for slow processing. 4171 * 4172 * Otherwise we can simply pick the next object from the lockless free list. 4173 */ 4174 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4175 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4176 { 4177 void *object; 4178 bool init = false; 4179 4180 s = slab_pre_alloc_hook(s, gfpflags); 4181 if (unlikely(!s)) 4182 return NULL; 4183 4184 object = kfence_alloc(s, orig_size, gfpflags); 4185 if (unlikely(object)) 4186 goto out; 4187 4188 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4189 4190 maybe_wipe_obj_freeptr(s, object); 4191 init = slab_want_init_on_alloc(gfpflags, s); 4192 4193 out: 4194 /* 4195 * When init equals 'true', like for kzalloc() family, only 4196 * @orig_size bytes might be zeroed instead of s->object_size 4197 * In case this fails due to memcg_slab_post_alloc_hook(), 4198 * object is set to NULL 4199 */ 4200 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4201 4202 return object; 4203 } 4204 4205 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4206 { 4207 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4208 s->object_size); 4209 4210 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4211 4212 return ret; 4213 } 4214 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4215 4216 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4217 gfp_t gfpflags) 4218 { 4219 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4220 s->object_size); 4221 4222 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4223 4224 return ret; 4225 } 4226 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4227 4228 bool kmem_cache_charge(void *objp, gfp_t gfpflags) 4229 { 4230 if (!memcg_kmem_online()) 4231 return true; 4232 4233 return memcg_slab_post_charge(objp, gfpflags); 4234 } 4235 EXPORT_SYMBOL(kmem_cache_charge); 4236 4237 /** 4238 * kmem_cache_alloc_node - Allocate an object on the specified node 4239 * @s: The cache to allocate from. 4240 * @gfpflags: See kmalloc(). 4241 * @node: node number of the target node. 4242 * 4243 * Identical to kmem_cache_alloc but it will allocate memory on the given 4244 * node, which can improve the performance for cpu bound structures. 4245 * 4246 * Fallback to other node is possible if __GFP_THISNODE is not set. 4247 * 4248 * Return: pointer to the new object or %NULL in case of error 4249 */ 4250 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4251 { 4252 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4253 4254 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4255 4256 return ret; 4257 } 4258 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4259 4260 /* 4261 * To avoid unnecessary overhead, we pass through large allocation requests 4262 * directly to the page allocator. We use __GFP_COMP, because we will need to 4263 * know the allocation order to free the pages properly in kfree. 4264 */ 4265 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4266 { 4267 struct folio *folio; 4268 void *ptr = NULL; 4269 unsigned int order = get_order(size); 4270 4271 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4272 flags = kmalloc_fix_flags(flags); 4273 4274 flags |= __GFP_COMP; 4275 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4276 if (folio) { 4277 ptr = folio_address(folio); 4278 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4279 PAGE_SIZE << order); 4280 __folio_set_large_kmalloc(folio); 4281 } 4282 4283 ptr = kasan_kmalloc_large(ptr, size, flags); 4284 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4285 kmemleak_alloc(ptr, size, 1, flags); 4286 kmsan_kmalloc_large(ptr, size, flags); 4287 4288 return ptr; 4289 } 4290 4291 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4292 { 4293 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4294 4295 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4296 flags, NUMA_NO_NODE); 4297 return ret; 4298 } 4299 EXPORT_SYMBOL(__kmalloc_large_noprof); 4300 4301 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4302 { 4303 void *ret = ___kmalloc_large_node(size, flags, node); 4304 4305 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4306 flags, node); 4307 return ret; 4308 } 4309 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4310 4311 static __always_inline 4312 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4313 unsigned long caller) 4314 { 4315 struct kmem_cache *s; 4316 void *ret; 4317 4318 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4319 ret = __kmalloc_large_node_noprof(size, flags, node); 4320 trace_kmalloc(caller, ret, size, 4321 PAGE_SIZE << get_order(size), flags, node); 4322 return ret; 4323 } 4324 4325 if (unlikely(!size)) 4326 return ZERO_SIZE_PTR; 4327 4328 s = kmalloc_slab(size, b, flags, caller); 4329 4330 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4331 ret = kasan_kmalloc(s, ret, size, flags); 4332 trace_kmalloc(caller, ret, size, s->size, flags, node); 4333 return ret; 4334 } 4335 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4336 { 4337 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4338 } 4339 EXPORT_SYMBOL(__kmalloc_node_noprof); 4340 4341 void *__kmalloc_noprof(size_t size, gfp_t flags) 4342 { 4343 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4344 } 4345 EXPORT_SYMBOL(__kmalloc_noprof); 4346 4347 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4348 int node, unsigned long caller) 4349 { 4350 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4351 4352 } 4353 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4354 4355 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4356 { 4357 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4358 _RET_IP_, size); 4359 4360 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4361 4362 ret = kasan_kmalloc(s, ret, size, gfpflags); 4363 return ret; 4364 } 4365 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4366 4367 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4368 int node, size_t size) 4369 { 4370 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4371 4372 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4373 4374 ret = kasan_kmalloc(s, ret, size, gfpflags); 4375 return ret; 4376 } 4377 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4378 4379 static noinline void free_to_partial_list( 4380 struct kmem_cache *s, struct slab *slab, 4381 void *head, void *tail, int bulk_cnt, 4382 unsigned long addr) 4383 { 4384 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4385 struct slab *slab_free = NULL; 4386 int cnt = bulk_cnt; 4387 unsigned long flags; 4388 depot_stack_handle_t handle = 0; 4389 4390 if (s->flags & SLAB_STORE_USER) 4391 handle = set_track_prepare(); 4392 4393 spin_lock_irqsave(&n->list_lock, flags); 4394 4395 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4396 void *prior = slab->freelist; 4397 4398 /* Perform the actual freeing while we still hold the locks */ 4399 slab->inuse -= cnt; 4400 set_freepointer(s, tail, prior); 4401 slab->freelist = head; 4402 4403 /* 4404 * If the slab is empty, and node's partial list is full, 4405 * it should be discarded anyway no matter it's on full or 4406 * partial list. 4407 */ 4408 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4409 slab_free = slab; 4410 4411 if (!prior) { 4412 /* was on full list */ 4413 remove_full(s, n, slab); 4414 if (!slab_free) { 4415 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4416 stat(s, FREE_ADD_PARTIAL); 4417 } 4418 } else if (slab_free) { 4419 remove_partial(n, slab); 4420 stat(s, FREE_REMOVE_PARTIAL); 4421 } 4422 } 4423 4424 if (slab_free) { 4425 /* 4426 * Update the counters while still holding n->list_lock to 4427 * prevent spurious validation warnings 4428 */ 4429 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4430 } 4431 4432 spin_unlock_irqrestore(&n->list_lock, flags); 4433 4434 if (slab_free) { 4435 stat(s, FREE_SLAB); 4436 free_slab(s, slab_free); 4437 } 4438 } 4439 4440 /* 4441 * Slow path handling. This may still be called frequently since objects 4442 * have a longer lifetime than the cpu slabs in most processing loads. 4443 * 4444 * So we still attempt to reduce cache line usage. Just take the slab 4445 * lock and free the item. If there is no additional partial slab 4446 * handling required then we can return immediately. 4447 */ 4448 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4449 void *head, void *tail, int cnt, 4450 unsigned long addr) 4451 4452 { 4453 void *prior; 4454 int was_frozen; 4455 struct slab new; 4456 unsigned long counters; 4457 struct kmem_cache_node *n = NULL; 4458 unsigned long flags; 4459 bool on_node_partial; 4460 4461 stat(s, FREE_SLOWPATH); 4462 4463 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4464 free_to_partial_list(s, slab, head, tail, cnt, addr); 4465 return; 4466 } 4467 4468 do { 4469 if (unlikely(n)) { 4470 spin_unlock_irqrestore(&n->list_lock, flags); 4471 n = NULL; 4472 } 4473 prior = slab->freelist; 4474 counters = slab->counters; 4475 set_freepointer(s, tail, prior); 4476 new.counters = counters; 4477 was_frozen = new.frozen; 4478 new.inuse -= cnt; 4479 if ((!new.inuse || !prior) && !was_frozen) { 4480 /* Needs to be taken off a list */ 4481 if (!kmem_cache_has_cpu_partial(s) || prior) { 4482 4483 n = get_node(s, slab_nid(slab)); 4484 /* 4485 * Speculatively acquire the list_lock. 4486 * If the cmpxchg does not succeed then we may 4487 * drop the list_lock without any processing. 4488 * 4489 * Otherwise the list_lock will synchronize with 4490 * other processors updating the list of slabs. 4491 */ 4492 spin_lock_irqsave(&n->list_lock, flags); 4493 4494 on_node_partial = slab_test_node_partial(slab); 4495 } 4496 } 4497 4498 } while (!slab_update_freelist(s, slab, 4499 prior, counters, 4500 head, new.counters, 4501 "__slab_free")); 4502 4503 if (likely(!n)) { 4504 4505 if (likely(was_frozen)) { 4506 /* 4507 * The list lock was not taken therefore no list 4508 * activity can be necessary. 4509 */ 4510 stat(s, FREE_FROZEN); 4511 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4512 /* 4513 * If we started with a full slab then put it onto the 4514 * per cpu partial list. 4515 */ 4516 put_cpu_partial(s, slab, 1); 4517 stat(s, CPU_PARTIAL_FREE); 4518 } 4519 4520 return; 4521 } 4522 4523 /* 4524 * This slab was partially empty but not on the per-node partial list, 4525 * in which case we shouldn't manipulate its list, just return. 4526 */ 4527 if (prior && !on_node_partial) { 4528 spin_unlock_irqrestore(&n->list_lock, flags); 4529 return; 4530 } 4531 4532 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4533 goto slab_empty; 4534 4535 /* 4536 * Objects left in the slab. If it was not on the partial list before 4537 * then add it. 4538 */ 4539 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4540 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4541 stat(s, FREE_ADD_PARTIAL); 4542 } 4543 spin_unlock_irqrestore(&n->list_lock, flags); 4544 return; 4545 4546 slab_empty: 4547 if (prior) { 4548 /* 4549 * Slab on the partial list. 4550 */ 4551 remove_partial(n, slab); 4552 stat(s, FREE_REMOVE_PARTIAL); 4553 } 4554 4555 spin_unlock_irqrestore(&n->list_lock, flags); 4556 stat(s, FREE_SLAB); 4557 discard_slab(s, slab); 4558 } 4559 4560 #ifndef CONFIG_SLUB_TINY 4561 /* 4562 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4563 * can perform fastpath freeing without additional function calls. 4564 * 4565 * The fastpath is only possible if we are freeing to the current cpu slab 4566 * of this processor. This typically the case if we have just allocated 4567 * the item before. 4568 * 4569 * If fastpath is not possible then fall back to __slab_free where we deal 4570 * with all sorts of special processing. 4571 * 4572 * Bulk free of a freelist with several objects (all pointing to the 4573 * same slab) possible by specifying head and tail ptr, plus objects 4574 * count (cnt). Bulk free indicated by tail pointer being set. 4575 */ 4576 static __always_inline void do_slab_free(struct kmem_cache *s, 4577 struct slab *slab, void *head, void *tail, 4578 int cnt, unsigned long addr) 4579 { 4580 struct kmem_cache_cpu *c; 4581 unsigned long tid; 4582 void **freelist; 4583 4584 redo: 4585 /* 4586 * Determine the currently cpus per cpu slab. 4587 * The cpu may change afterward. However that does not matter since 4588 * data is retrieved via this pointer. If we are on the same cpu 4589 * during the cmpxchg then the free will succeed. 4590 */ 4591 c = raw_cpu_ptr(s->cpu_slab); 4592 tid = READ_ONCE(c->tid); 4593 4594 /* Same with comment on barrier() in __slab_alloc_node() */ 4595 barrier(); 4596 4597 if (unlikely(slab != c->slab)) { 4598 __slab_free(s, slab, head, tail, cnt, addr); 4599 return; 4600 } 4601 4602 if (USE_LOCKLESS_FAST_PATH()) { 4603 freelist = READ_ONCE(c->freelist); 4604 4605 set_freepointer(s, tail, freelist); 4606 4607 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4608 note_cmpxchg_failure("slab_free", s, tid); 4609 goto redo; 4610 } 4611 } else { 4612 /* Update the free list under the local lock */ 4613 local_lock(&s->cpu_slab->lock); 4614 c = this_cpu_ptr(s->cpu_slab); 4615 if (unlikely(slab != c->slab)) { 4616 local_unlock(&s->cpu_slab->lock); 4617 goto redo; 4618 } 4619 tid = c->tid; 4620 freelist = c->freelist; 4621 4622 set_freepointer(s, tail, freelist); 4623 c->freelist = head; 4624 c->tid = next_tid(tid); 4625 4626 local_unlock(&s->cpu_slab->lock); 4627 } 4628 stat_add(s, FREE_FASTPATH, cnt); 4629 } 4630 #else /* CONFIG_SLUB_TINY */ 4631 static void do_slab_free(struct kmem_cache *s, 4632 struct slab *slab, void *head, void *tail, 4633 int cnt, unsigned long addr) 4634 { 4635 __slab_free(s, slab, head, tail, cnt, addr); 4636 } 4637 #endif /* CONFIG_SLUB_TINY */ 4638 4639 static __fastpath_inline 4640 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4641 unsigned long addr) 4642 { 4643 memcg_slab_free_hook(s, slab, &object, 1); 4644 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4645 4646 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4647 do_slab_free(s, slab, object, object, 1, addr); 4648 } 4649 4650 #ifdef CONFIG_MEMCG 4651 /* Do not inline the rare memcg charging failed path into the allocation path */ 4652 static noinline 4653 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4654 { 4655 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4656 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4657 } 4658 #endif 4659 4660 static __fastpath_inline 4661 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4662 void *tail, void **p, int cnt, unsigned long addr) 4663 { 4664 memcg_slab_free_hook(s, slab, p, cnt); 4665 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4666 /* 4667 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4668 * to remove objects, whose reuse must be delayed. 4669 */ 4670 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4671 do_slab_free(s, slab, head, tail, cnt, addr); 4672 } 4673 4674 #ifdef CONFIG_SLUB_RCU_DEBUG 4675 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) 4676 { 4677 struct rcu_delayed_free *delayed_free = 4678 container_of(rcu_head, struct rcu_delayed_free, head); 4679 void *object = delayed_free->object; 4680 struct slab *slab = virt_to_slab(object); 4681 struct kmem_cache *s; 4682 4683 kfree(delayed_free); 4684 4685 if (WARN_ON(is_kfence_address(object))) 4686 return; 4687 4688 /* find the object and the cache again */ 4689 if (WARN_ON(!slab)) 4690 return; 4691 s = slab->slab_cache; 4692 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) 4693 return; 4694 4695 /* resume freeing */ 4696 if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) 4697 do_slab_free(s, slab, object, object, 1, _THIS_IP_); 4698 } 4699 #endif /* CONFIG_SLUB_RCU_DEBUG */ 4700 4701 #ifdef CONFIG_KASAN_GENERIC 4702 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4703 { 4704 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4705 } 4706 #endif 4707 4708 static inline struct kmem_cache *virt_to_cache(const void *obj) 4709 { 4710 struct slab *slab; 4711 4712 slab = virt_to_slab(obj); 4713 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4714 return NULL; 4715 return slab->slab_cache; 4716 } 4717 4718 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4719 { 4720 struct kmem_cache *cachep; 4721 4722 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4723 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4724 return s; 4725 4726 cachep = virt_to_cache(x); 4727 if (WARN(cachep && cachep != s, 4728 "%s: Wrong slab cache. %s but object is from %s\n", 4729 __func__, s->name, cachep->name)) 4730 print_tracking(cachep, x); 4731 return cachep; 4732 } 4733 4734 /** 4735 * kmem_cache_free - Deallocate an object 4736 * @s: The cache the allocation was from. 4737 * @x: The previously allocated object. 4738 * 4739 * Free an object which was previously allocated from this 4740 * cache. 4741 */ 4742 void kmem_cache_free(struct kmem_cache *s, void *x) 4743 { 4744 s = cache_from_obj(s, x); 4745 if (!s) 4746 return; 4747 trace_kmem_cache_free(_RET_IP_, x, s); 4748 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4749 } 4750 EXPORT_SYMBOL(kmem_cache_free); 4751 4752 static void free_large_kmalloc(struct folio *folio, void *object) 4753 { 4754 unsigned int order = folio_order(folio); 4755 4756 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) { 4757 dump_page(&folio->page, "Not a kmalloc allocation"); 4758 return; 4759 } 4760 4761 if (WARN_ON_ONCE(order == 0)) 4762 pr_warn_once("object pointer: 0x%p\n", object); 4763 4764 kmemleak_free(object); 4765 kasan_kfree_large(object); 4766 kmsan_kfree_large(object); 4767 4768 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4769 -(PAGE_SIZE << order)); 4770 __folio_clear_large_kmalloc(folio); 4771 folio_put(folio); 4772 } 4773 4774 /* 4775 * Given an rcu_head embedded within an object obtained from kvmalloc at an 4776 * offset < 4k, free the object in question. 4777 */ 4778 void kvfree_rcu_cb(struct rcu_head *head) 4779 { 4780 void *obj = head; 4781 struct folio *folio; 4782 struct slab *slab; 4783 struct kmem_cache *s; 4784 void *slab_addr; 4785 4786 if (is_vmalloc_addr(obj)) { 4787 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 4788 vfree(obj); 4789 return; 4790 } 4791 4792 folio = virt_to_folio(obj); 4793 if (!folio_test_slab(folio)) { 4794 /* 4795 * rcu_head offset can be only less than page size so no need to 4796 * consider folio order 4797 */ 4798 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj); 4799 free_large_kmalloc(folio, obj); 4800 return; 4801 } 4802 4803 slab = folio_slab(folio); 4804 s = slab->slab_cache; 4805 slab_addr = folio_address(folio); 4806 4807 if (is_kfence_address(obj)) { 4808 obj = kfence_object_start(obj); 4809 } else { 4810 unsigned int idx = __obj_to_index(s, slab_addr, obj); 4811 4812 obj = slab_addr + s->size * idx; 4813 obj = fixup_red_left(s, obj); 4814 } 4815 4816 slab_free(s, slab, obj, _RET_IP_); 4817 } 4818 4819 /** 4820 * kfree - free previously allocated memory 4821 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4822 * 4823 * If @object is NULL, no operation is performed. 4824 */ 4825 void kfree(const void *object) 4826 { 4827 struct folio *folio; 4828 struct slab *slab; 4829 struct kmem_cache *s; 4830 void *x = (void *)object; 4831 4832 trace_kfree(_RET_IP_, object); 4833 4834 if (unlikely(ZERO_OR_NULL_PTR(object))) 4835 return; 4836 4837 folio = virt_to_folio(object); 4838 if (unlikely(!folio_test_slab(folio))) { 4839 free_large_kmalloc(folio, (void *)object); 4840 return; 4841 } 4842 4843 slab = folio_slab(folio); 4844 s = slab->slab_cache; 4845 slab_free(s, slab, x, _RET_IP_); 4846 } 4847 EXPORT_SYMBOL(kfree); 4848 4849 static __always_inline __realloc_size(2) void * 4850 __do_krealloc(const void *p, size_t new_size, gfp_t flags) 4851 { 4852 void *ret; 4853 size_t ks = 0; 4854 int orig_size = 0; 4855 struct kmem_cache *s = NULL; 4856 4857 if (unlikely(ZERO_OR_NULL_PTR(p))) 4858 goto alloc_new; 4859 4860 /* Check for double-free. */ 4861 if (!kasan_check_byte(p)) 4862 return NULL; 4863 4864 if (is_kfence_address(p)) { 4865 ks = orig_size = kfence_ksize(p); 4866 } else { 4867 struct folio *folio; 4868 4869 folio = virt_to_folio(p); 4870 if (unlikely(!folio_test_slab(folio))) { 4871 /* Big kmalloc object */ 4872 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE); 4873 WARN_ON(p != folio_address(folio)); 4874 ks = folio_size(folio); 4875 } else { 4876 s = folio_slab(folio)->slab_cache; 4877 orig_size = get_orig_size(s, (void *)p); 4878 ks = s->object_size; 4879 } 4880 } 4881 4882 /* If the old object doesn't fit, allocate a bigger one */ 4883 if (new_size > ks) 4884 goto alloc_new; 4885 4886 /* Zero out spare memory. */ 4887 if (want_init_on_alloc(flags)) { 4888 kasan_disable_current(); 4889 if (orig_size && orig_size < new_size) 4890 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); 4891 else 4892 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); 4893 kasan_enable_current(); 4894 } 4895 4896 /* Setup kmalloc redzone when needed */ 4897 if (s && slub_debug_orig_size(s)) { 4898 set_orig_size(s, (void *)p, new_size); 4899 if (s->flags & SLAB_RED_ZONE && new_size < ks) 4900 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, 4901 SLUB_RED_ACTIVE, ks - new_size); 4902 } 4903 4904 p = kasan_krealloc(p, new_size, flags); 4905 return (void *)p; 4906 4907 alloc_new: 4908 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_); 4909 if (ret && p) { 4910 /* Disable KASAN checks as the object's redzone is accessed. */ 4911 kasan_disable_current(); 4912 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); 4913 kasan_enable_current(); 4914 } 4915 4916 return ret; 4917 } 4918 4919 /** 4920 * krealloc - reallocate memory. The contents will remain unchanged. 4921 * @p: object to reallocate memory for. 4922 * @new_size: how many bytes of memory are required. 4923 * @flags: the type of memory to allocate. 4924 * 4925 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 4926 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 4927 * 4928 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4929 * initial memory allocation, every subsequent call to this API for the same 4930 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4931 * __GFP_ZERO is not fully honored by this API. 4932 * 4933 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket 4934 * size of an allocation (but not the exact size it was allocated with) and 4935 * hence implements the following semantics for shrinking and growing buffers 4936 * with __GFP_ZERO. 4937 * 4938 * new bucket 4939 * 0 size size 4940 * |--------|----------------| 4941 * | keep | zero | 4942 * 4943 * Otherwise, the original allocation size 'orig_size' could be used to 4944 * precisely clear the requested size, and the new size will also be stored 4945 * as the new 'orig_size'. 4946 * 4947 * In any case, the contents of the object pointed to are preserved up to the 4948 * lesser of the new and old sizes. 4949 * 4950 * Return: pointer to the allocated memory or %NULL in case of error 4951 */ 4952 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags) 4953 { 4954 void *ret; 4955 4956 if (unlikely(!new_size)) { 4957 kfree(p); 4958 return ZERO_SIZE_PTR; 4959 } 4960 4961 ret = __do_krealloc(p, new_size, flags); 4962 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 4963 kfree(p); 4964 4965 return ret; 4966 } 4967 EXPORT_SYMBOL(krealloc_noprof); 4968 4969 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size) 4970 { 4971 /* 4972 * We want to attempt a large physically contiguous block first because 4973 * it is less likely to fragment multiple larger blocks and therefore 4974 * contribute to a long term fragmentation less than vmalloc fallback. 4975 * However make sure that larger requests are not too disruptive - no 4976 * OOM killer and no allocation failure warnings as we have a fallback. 4977 */ 4978 if (size > PAGE_SIZE) { 4979 flags |= __GFP_NOWARN; 4980 4981 if (!(flags & __GFP_RETRY_MAYFAIL)) 4982 flags |= __GFP_NORETRY; 4983 4984 /* nofail semantic is implemented by the vmalloc fallback */ 4985 flags &= ~__GFP_NOFAIL; 4986 } 4987 4988 return flags; 4989 } 4990 4991 /** 4992 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon 4993 * failure, fall back to non-contiguous (vmalloc) allocation. 4994 * @size: size of the request. 4995 * @b: which set of kmalloc buckets to allocate from. 4996 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 4997 * @node: numa node to allocate from 4998 * 4999 * Uses kmalloc to get the memory but if the allocation fails then falls back 5000 * to the vmalloc allocator. Use kvfree for freeing the memory. 5001 * 5002 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 5003 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 5004 * preferable to the vmalloc fallback, due to visible performance drawbacks. 5005 * 5006 * Return: pointer to the allocated memory of %NULL in case of failure 5007 */ 5008 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 5009 { 5010 void *ret; 5011 5012 /* 5013 * It doesn't really make sense to fallback to vmalloc for sub page 5014 * requests 5015 */ 5016 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), 5017 kmalloc_gfp_adjust(flags, size), 5018 node, _RET_IP_); 5019 if (ret || size <= PAGE_SIZE) 5020 return ret; 5021 5022 /* non-sleeping allocations are not supported by vmalloc */ 5023 if (!gfpflags_allow_blocking(flags)) 5024 return NULL; 5025 5026 /* Don't even allow crazy sizes */ 5027 if (unlikely(size > INT_MAX)) { 5028 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 5029 return NULL; 5030 } 5031 5032 /* 5033 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 5034 * since the callers already cannot assume anything 5035 * about the resulting pointer, and cannot play 5036 * protection games. 5037 */ 5038 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END, 5039 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 5040 node, __builtin_return_address(0)); 5041 } 5042 EXPORT_SYMBOL(__kvmalloc_node_noprof); 5043 5044 /** 5045 * kvfree() - Free memory. 5046 * @addr: Pointer to allocated memory. 5047 * 5048 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 5049 * It is slightly more efficient to use kfree() or vfree() if you are certain 5050 * that you know which one to use. 5051 * 5052 * Context: Either preemptible task context or not-NMI interrupt. 5053 */ 5054 void kvfree(const void *addr) 5055 { 5056 if (is_vmalloc_addr(addr)) 5057 vfree(addr); 5058 else 5059 kfree(addr); 5060 } 5061 EXPORT_SYMBOL(kvfree); 5062 5063 /** 5064 * kvfree_sensitive - Free a data object containing sensitive information. 5065 * @addr: address of the data object to be freed. 5066 * @len: length of the data object. 5067 * 5068 * Use the special memzero_explicit() function to clear the content of a 5069 * kvmalloc'ed object containing sensitive data to make sure that the 5070 * compiler won't optimize out the data clearing. 5071 */ 5072 void kvfree_sensitive(const void *addr, size_t len) 5073 { 5074 if (likely(!ZERO_OR_NULL_PTR(addr))) { 5075 memzero_explicit((void *)addr, len); 5076 kvfree(addr); 5077 } 5078 } 5079 EXPORT_SYMBOL(kvfree_sensitive); 5080 5081 /** 5082 * kvrealloc - reallocate memory; contents remain unchanged 5083 * @p: object to reallocate memory for 5084 * @size: the size to reallocate 5085 * @flags: the flags for the page level allocator 5086 * 5087 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0 5088 * and @p is not a %NULL pointer, the object pointed to is freed. 5089 * 5090 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 5091 * initial memory allocation, every subsequent call to this API for the same 5092 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 5093 * __GFP_ZERO is not fully honored by this API. 5094 * 5095 * In any case, the contents of the object pointed to are preserved up to the 5096 * lesser of the new and old sizes. 5097 * 5098 * This function must not be called concurrently with itself or kvfree() for the 5099 * same memory allocation. 5100 * 5101 * Return: pointer to the allocated memory or %NULL in case of error 5102 */ 5103 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags) 5104 { 5105 void *n; 5106 5107 if (is_vmalloc_addr(p)) 5108 return vrealloc_noprof(p, size, flags); 5109 5110 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size)); 5111 if (!n) { 5112 /* We failed to krealloc(), fall back to kvmalloc(). */ 5113 n = kvmalloc_noprof(size, flags); 5114 if (!n) 5115 return NULL; 5116 5117 if (p) { 5118 /* We already know that `p` is not a vmalloc address. */ 5119 kasan_disable_current(); 5120 memcpy(n, kasan_reset_tag(p), ksize(p)); 5121 kasan_enable_current(); 5122 5123 kfree(p); 5124 } 5125 } 5126 5127 return n; 5128 } 5129 EXPORT_SYMBOL(kvrealloc_noprof); 5130 5131 struct detached_freelist { 5132 struct slab *slab; 5133 void *tail; 5134 void *freelist; 5135 int cnt; 5136 struct kmem_cache *s; 5137 }; 5138 5139 /* 5140 * This function progressively scans the array with free objects (with 5141 * a limited look ahead) and extract objects belonging to the same 5142 * slab. It builds a detached freelist directly within the given 5143 * slab/objects. This can happen without any need for 5144 * synchronization, because the objects are owned by running process. 5145 * The freelist is build up as a single linked list in the objects. 5146 * The idea is, that this detached freelist can then be bulk 5147 * transferred to the real freelist(s), but only requiring a single 5148 * synchronization primitive. Look ahead in the array is limited due 5149 * to performance reasons. 5150 */ 5151 static inline 5152 int build_detached_freelist(struct kmem_cache *s, size_t size, 5153 void **p, struct detached_freelist *df) 5154 { 5155 int lookahead = 3; 5156 void *object; 5157 struct folio *folio; 5158 size_t same; 5159 5160 object = p[--size]; 5161 folio = virt_to_folio(object); 5162 if (!s) { 5163 /* Handle kalloc'ed objects */ 5164 if (unlikely(!folio_test_slab(folio))) { 5165 free_large_kmalloc(folio, object); 5166 df->slab = NULL; 5167 return size; 5168 } 5169 /* Derive kmem_cache from object */ 5170 df->slab = folio_slab(folio); 5171 df->s = df->slab->slab_cache; 5172 } else { 5173 df->slab = folio_slab(folio); 5174 df->s = cache_from_obj(s, object); /* Support for memcg */ 5175 } 5176 5177 /* Start new detached freelist */ 5178 df->tail = object; 5179 df->freelist = object; 5180 df->cnt = 1; 5181 5182 if (is_kfence_address(object)) 5183 return size; 5184 5185 set_freepointer(df->s, object, NULL); 5186 5187 same = size; 5188 while (size) { 5189 object = p[--size]; 5190 /* df->slab is always set at this point */ 5191 if (df->slab == virt_to_slab(object)) { 5192 /* Opportunity build freelist */ 5193 set_freepointer(df->s, object, df->freelist); 5194 df->freelist = object; 5195 df->cnt++; 5196 same--; 5197 if (size != same) 5198 swap(p[size], p[same]); 5199 continue; 5200 } 5201 5202 /* Limit look ahead search */ 5203 if (!--lookahead) 5204 break; 5205 } 5206 5207 return same; 5208 } 5209 5210 /* 5211 * Internal bulk free of objects that were not initialised by the post alloc 5212 * hooks and thus should not be processed by the free hooks 5213 */ 5214 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 5215 { 5216 if (!size) 5217 return; 5218 5219 do { 5220 struct detached_freelist df; 5221 5222 size = build_detached_freelist(s, size, p, &df); 5223 if (!df.slab) 5224 continue; 5225 5226 if (kfence_free(df.freelist)) 5227 continue; 5228 5229 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 5230 _RET_IP_); 5231 } while (likely(size)); 5232 } 5233 5234 /* Note that interrupts must be enabled when calling this function. */ 5235 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 5236 { 5237 if (!size) 5238 return; 5239 5240 do { 5241 struct detached_freelist df; 5242 5243 size = build_detached_freelist(s, size, p, &df); 5244 if (!df.slab) 5245 continue; 5246 5247 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 5248 df.cnt, _RET_IP_); 5249 } while (likely(size)); 5250 } 5251 EXPORT_SYMBOL(kmem_cache_free_bulk); 5252 5253 #ifndef CONFIG_SLUB_TINY 5254 static inline 5255 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 5256 void **p) 5257 { 5258 struct kmem_cache_cpu *c; 5259 unsigned long irqflags; 5260 int i; 5261 5262 /* 5263 * Drain objects in the per cpu slab, while disabling local 5264 * IRQs, which protects against PREEMPT and interrupts 5265 * handlers invoking normal fastpath. 5266 */ 5267 c = slub_get_cpu_ptr(s->cpu_slab); 5268 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5269 5270 for (i = 0; i < size; i++) { 5271 void *object = kfence_alloc(s, s->object_size, flags); 5272 5273 if (unlikely(object)) { 5274 p[i] = object; 5275 continue; 5276 } 5277 5278 object = c->freelist; 5279 if (unlikely(!object)) { 5280 /* 5281 * We may have removed an object from c->freelist using 5282 * the fastpath in the previous iteration; in that case, 5283 * c->tid has not been bumped yet. 5284 * Since ___slab_alloc() may reenable interrupts while 5285 * allocating memory, we should bump c->tid now. 5286 */ 5287 c->tid = next_tid(c->tid); 5288 5289 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5290 5291 /* 5292 * Invoking slow path likely have side-effect 5293 * of re-populating per CPU c->freelist 5294 */ 5295 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 5296 _RET_IP_, c, s->object_size); 5297 if (unlikely(!p[i])) 5298 goto error; 5299 5300 c = this_cpu_ptr(s->cpu_slab); 5301 maybe_wipe_obj_freeptr(s, p[i]); 5302 5303 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5304 5305 continue; /* goto for-loop */ 5306 } 5307 c->freelist = get_freepointer(s, object); 5308 p[i] = object; 5309 maybe_wipe_obj_freeptr(s, p[i]); 5310 stat(s, ALLOC_FASTPATH); 5311 } 5312 c->tid = next_tid(c->tid); 5313 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5314 slub_put_cpu_ptr(s->cpu_slab); 5315 5316 return i; 5317 5318 error: 5319 slub_put_cpu_ptr(s->cpu_slab); 5320 __kmem_cache_free_bulk(s, i, p); 5321 return 0; 5322 5323 } 5324 #else /* CONFIG_SLUB_TINY */ 5325 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 5326 size_t size, void **p) 5327 { 5328 int i; 5329 5330 for (i = 0; i < size; i++) { 5331 void *object = kfence_alloc(s, s->object_size, flags); 5332 5333 if (unlikely(object)) { 5334 p[i] = object; 5335 continue; 5336 } 5337 5338 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 5339 _RET_IP_, s->object_size); 5340 if (unlikely(!p[i])) 5341 goto error; 5342 5343 maybe_wipe_obj_freeptr(s, p[i]); 5344 } 5345 5346 return i; 5347 5348 error: 5349 __kmem_cache_free_bulk(s, i, p); 5350 return 0; 5351 } 5352 #endif /* CONFIG_SLUB_TINY */ 5353 5354 /* Note that interrupts must be enabled when calling this function. */ 5355 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 5356 void **p) 5357 { 5358 int i; 5359 5360 if (!size) 5361 return 0; 5362 5363 s = slab_pre_alloc_hook(s, flags); 5364 if (unlikely(!s)) 5365 return 0; 5366 5367 i = __kmem_cache_alloc_bulk(s, flags, size, p); 5368 if (unlikely(i == 0)) 5369 return 0; 5370 5371 /* 5372 * memcg and kmem_cache debug support and memory initialization. 5373 * Done outside of the IRQ disabled fastpath loop. 5374 */ 5375 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 5376 slab_want_init_on_alloc(flags, s), s->object_size))) { 5377 return 0; 5378 } 5379 return i; 5380 } 5381 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 5382 5383 5384 /* 5385 * Object placement in a slab is made very easy because we always start at 5386 * offset 0. If we tune the size of the object to the alignment then we can 5387 * get the required alignment by putting one properly sized object after 5388 * another. 5389 * 5390 * Notice that the allocation order determines the sizes of the per cpu 5391 * caches. Each processor has always one slab available for allocations. 5392 * Increasing the allocation order reduces the number of times that slabs 5393 * must be moved on and off the partial lists and is therefore a factor in 5394 * locking overhead. 5395 */ 5396 5397 /* 5398 * Minimum / Maximum order of slab pages. This influences locking overhead 5399 * and slab fragmentation. A higher order reduces the number of partial slabs 5400 * and increases the number of allocations possible without having to 5401 * take the list_lock. 5402 */ 5403 static unsigned int slub_min_order; 5404 static unsigned int slub_max_order = 5405 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 5406 static unsigned int slub_min_objects; 5407 5408 /* 5409 * Calculate the order of allocation given an slab object size. 5410 * 5411 * The order of allocation has significant impact on performance and other 5412 * system components. Generally order 0 allocations should be preferred since 5413 * order 0 does not cause fragmentation in the page allocator. Larger objects 5414 * be problematic to put into order 0 slabs because there may be too much 5415 * unused space left. We go to a higher order if more than 1/16th of the slab 5416 * would be wasted. 5417 * 5418 * In order to reach satisfactory performance we must ensure that a minimum 5419 * number of objects is in one slab. Otherwise we may generate too much 5420 * activity on the partial lists which requires taking the list_lock. This is 5421 * less a concern for large slabs though which are rarely used. 5422 * 5423 * slab_max_order specifies the order where we begin to stop considering the 5424 * number of objects in a slab as critical. If we reach slab_max_order then 5425 * we try to keep the page order as low as possible. So we accept more waste 5426 * of space in favor of a small page order. 5427 * 5428 * Higher order allocations also allow the placement of more objects in a 5429 * slab and thereby reduce object handling overhead. If the user has 5430 * requested a higher minimum order then we start with that one instead of 5431 * the smallest order which will fit the object. 5432 */ 5433 static inline unsigned int calc_slab_order(unsigned int size, 5434 unsigned int min_order, unsigned int max_order, 5435 unsigned int fract_leftover) 5436 { 5437 unsigned int order; 5438 5439 for (order = min_order; order <= max_order; order++) { 5440 5441 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 5442 unsigned int rem; 5443 5444 rem = slab_size % size; 5445 5446 if (rem <= slab_size / fract_leftover) 5447 break; 5448 } 5449 5450 return order; 5451 } 5452 5453 static inline int calculate_order(unsigned int size) 5454 { 5455 unsigned int order; 5456 unsigned int min_objects; 5457 unsigned int max_objects; 5458 unsigned int min_order; 5459 5460 min_objects = slub_min_objects; 5461 if (!min_objects) { 5462 /* 5463 * Some architectures will only update present cpus when 5464 * onlining them, so don't trust the number if it's just 1. But 5465 * we also don't want to use nr_cpu_ids always, as on some other 5466 * architectures, there can be many possible cpus, but never 5467 * onlined. Here we compromise between trying to avoid too high 5468 * order on systems that appear larger than they are, and too 5469 * low order on systems that appear smaller than they are. 5470 */ 5471 unsigned int nr_cpus = num_present_cpus(); 5472 if (nr_cpus <= 1) 5473 nr_cpus = nr_cpu_ids; 5474 min_objects = 4 * (fls(nr_cpus) + 1); 5475 } 5476 /* min_objects can't be 0 because get_order(0) is undefined */ 5477 max_objects = max(order_objects(slub_max_order, size), 1U); 5478 min_objects = min(min_objects, max_objects); 5479 5480 min_order = max_t(unsigned int, slub_min_order, 5481 get_order(min_objects * size)); 5482 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 5483 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 5484 5485 /* 5486 * Attempt to find best configuration for a slab. This works by first 5487 * attempting to generate a layout with the best possible configuration 5488 * and backing off gradually. 5489 * 5490 * We start with accepting at most 1/16 waste and try to find the 5491 * smallest order from min_objects-derived/slab_min_order up to 5492 * slab_max_order that will satisfy the constraint. Note that increasing 5493 * the order can only result in same or less fractional waste, not more. 5494 * 5495 * If that fails, we increase the acceptable fraction of waste and try 5496 * again. The last iteration with fraction of 1/2 would effectively 5497 * accept any waste and give us the order determined by min_objects, as 5498 * long as at least single object fits within slab_max_order. 5499 */ 5500 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 5501 order = calc_slab_order(size, min_order, slub_max_order, 5502 fraction); 5503 if (order <= slub_max_order) 5504 return order; 5505 } 5506 5507 /* 5508 * Doh this slab cannot be placed using slab_max_order. 5509 */ 5510 order = get_order(size); 5511 if (order <= MAX_PAGE_ORDER) 5512 return order; 5513 return -ENOSYS; 5514 } 5515 5516 static void 5517 init_kmem_cache_node(struct kmem_cache_node *n) 5518 { 5519 n->nr_partial = 0; 5520 spin_lock_init(&n->list_lock); 5521 INIT_LIST_HEAD(&n->partial); 5522 #ifdef CONFIG_SLUB_DEBUG 5523 atomic_long_set(&n->nr_slabs, 0); 5524 atomic_long_set(&n->total_objects, 0); 5525 INIT_LIST_HEAD(&n->full); 5526 #endif 5527 } 5528 5529 #ifndef CONFIG_SLUB_TINY 5530 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5531 { 5532 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 5533 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 5534 sizeof(struct kmem_cache_cpu)); 5535 5536 /* 5537 * Must align to double word boundary for the double cmpxchg 5538 * instructions to work; see __pcpu_double_call_return_bool(). 5539 */ 5540 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 5541 2 * sizeof(void *)); 5542 5543 if (!s->cpu_slab) 5544 return 0; 5545 5546 init_kmem_cache_cpus(s); 5547 5548 return 1; 5549 } 5550 #else 5551 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5552 { 5553 return 1; 5554 } 5555 #endif /* CONFIG_SLUB_TINY */ 5556 5557 static struct kmem_cache *kmem_cache_node; 5558 5559 /* 5560 * No kmalloc_node yet so do it by hand. We know that this is the first 5561 * slab on the node for this slabcache. There are no concurrent accesses 5562 * possible. 5563 * 5564 * Note that this function only works on the kmem_cache_node 5565 * when allocating for the kmem_cache_node. This is used for bootstrapping 5566 * memory on a fresh node that has no slab structures yet. 5567 */ 5568 static void early_kmem_cache_node_alloc(int node) 5569 { 5570 struct slab *slab; 5571 struct kmem_cache_node *n; 5572 5573 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5574 5575 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5576 5577 BUG_ON(!slab); 5578 if (slab_nid(slab) != node) { 5579 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5580 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5581 } 5582 5583 n = slab->freelist; 5584 BUG_ON(!n); 5585 #ifdef CONFIG_SLUB_DEBUG 5586 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5587 #endif 5588 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5589 slab->freelist = get_freepointer(kmem_cache_node, n); 5590 slab->inuse = 1; 5591 kmem_cache_node->node[node] = n; 5592 init_kmem_cache_node(n); 5593 inc_slabs_node(kmem_cache_node, node, slab->objects); 5594 5595 /* 5596 * No locks need to be taken here as it has just been 5597 * initialized and there is no concurrent access. 5598 */ 5599 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5600 } 5601 5602 static void free_kmem_cache_nodes(struct kmem_cache *s) 5603 { 5604 int node; 5605 struct kmem_cache_node *n; 5606 5607 for_each_kmem_cache_node(s, node, n) { 5608 s->node[node] = NULL; 5609 kmem_cache_free(kmem_cache_node, n); 5610 } 5611 } 5612 5613 void __kmem_cache_release(struct kmem_cache *s) 5614 { 5615 cache_random_seq_destroy(s); 5616 #ifndef CONFIG_SLUB_TINY 5617 free_percpu(s->cpu_slab); 5618 #endif 5619 free_kmem_cache_nodes(s); 5620 } 5621 5622 static int init_kmem_cache_nodes(struct kmem_cache *s) 5623 { 5624 int node; 5625 5626 for_each_node_mask(node, slab_nodes) { 5627 struct kmem_cache_node *n; 5628 5629 if (slab_state == DOWN) { 5630 early_kmem_cache_node_alloc(node); 5631 continue; 5632 } 5633 n = kmem_cache_alloc_node(kmem_cache_node, 5634 GFP_KERNEL, node); 5635 5636 if (!n) { 5637 free_kmem_cache_nodes(s); 5638 return 0; 5639 } 5640 5641 init_kmem_cache_node(n); 5642 s->node[node] = n; 5643 } 5644 return 1; 5645 } 5646 5647 static void set_cpu_partial(struct kmem_cache *s) 5648 { 5649 #ifdef CONFIG_SLUB_CPU_PARTIAL 5650 unsigned int nr_objects; 5651 5652 /* 5653 * cpu_partial determined the maximum number of objects kept in the 5654 * per cpu partial lists of a processor. 5655 * 5656 * Per cpu partial lists mainly contain slabs that just have one 5657 * object freed. If they are used for allocation then they can be 5658 * filled up again with minimal effort. The slab will never hit the 5659 * per node partial lists and therefore no locking will be required. 5660 * 5661 * For backwards compatibility reasons, this is determined as number 5662 * of objects, even though we now limit maximum number of pages, see 5663 * slub_set_cpu_partial() 5664 */ 5665 if (!kmem_cache_has_cpu_partial(s)) 5666 nr_objects = 0; 5667 else if (s->size >= PAGE_SIZE) 5668 nr_objects = 6; 5669 else if (s->size >= 1024) 5670 nr_objects = 24; 5671 else if (s->size >= 256) 5672 nr_objects = 52; 5673 else 5674 nr_objects = 120; 5675 5676 slub_set_cpu_partial(s, nr_objects); 5677 #endif 5678 } 5679 5680 /* 5681 * calculate_sizes() determines the order and the distribution of data within 5682 * a slab object. 5683 */ 5684 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) 5685 { 5686 slab_flags_t flags = s->flags; 5687 unsigned int size = s->object_size; 5688 unsigned int order; 5689 5690 /* 5691 * Round up object size to the next word boundary. We can only 5692 * place the free pointer at word boundaries and this determines 5693 * the possible location of the free pointer. 5694 */ 5695 size = ALIGN(size, sizeof(void *)); 5696 5697 #ifdef CONFIG_SLUB_DEBUG 5698 /* 5699 * Determine if we can poison the object itself. If the user of 5700 * the slab may touch the object after free or before allocation 5701 * then we should never poison the object itself. 5702 */ 5703 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5704 !s->ctor) 5705 s->flags |= __OBJECT_POISON; 5706 else 5707 s->flags &= ~__OBJECT_POISON; 5708 5709 5710 /* 5711 * If we are Redzoning then check if there is some space between the 5712 * end of the object and the free pointer. If not then add an 5713 * additional word to have some bytes to store Redzone information. 5714 */ 5715 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5716 size += sizeof(void *); 5717 #endif 5718 5719 /* 5720 * With that we have determined the number of bytes in actual use 5721 * by the object and redzoning. 5722 */ 5723 s->inuse = size; 5724 5725 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || 5726 (flags & SLAB_POISON) || s->ctor || 5727 ((flags & SLAB_RED_ZONE) && 5728 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5729 /* 5730 * Relocate free pointer after the object if it is not 5731 * permitted to overwrite the first word of the object on 5732 * kmem_cache_free. 5733 * 5734 * This is the case if we do RCU, have a constructor or 5735 * destructor, are poisoning the objects, or are 5736 * redzoning an object smaller than sizeof(void *) or are 5737 * redzoning an object with slub_debug_orig_size() enabled, 5738 * in which case the right redzone may be extended. 5739 * 5740 * The assumption that s->offset >= s->inuse means free 5741 * pointer is outside of the object is used in the 5742 * freeptr_outside_object() function. If that is no 5743 * longer true, the function needs to be modified. 5744 */ 5745 s->offset = size; 5746 size += sizeof(void *); 5747 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { 5748 s->offset = args->freeptr_offset; 5749 } else { 5750 /* 5751 * Store freelist pointer near middle of object to keep 5752 * it away from the edges of the object to avoid small 5753 * sized over/underflows from neighboring allocations. 5754 */ 5755 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5756 } 5757 5758 #ifdef CONFIG_SLUB_DEBUG 5759 if (flags & SLAB_STORE_USER) { 5760 /* 5761 * Need to store information about allocs and frees after 5762 * the object. 5763 */ 5764 size += 2 * sizeof(struct track); 5765 5766 /* Save the original kmalloc request size */ 5767 if (flags & SLAB_KMALLOC) 5768 size += sizeof(unsigned int); 5769 } 5770 #endif 5771 5772 kasan_cache_create(s, &size, &s->flags); 5773 #ifdef CONFIG_SLUB_DEBUG 5774 if (flags & SLAB_RED_ZONE) { 5775 /* 5776 * Add some empty padding so that we can catch 5777 * overwrites from earlier objects rather than let 5778 * tracking information or the free pointer be 5779 * corrupted if a user writes before the start 5780 * of the object. 5781 */ 5782 size += sizeof(void *); 5783 5784 s->red_left_pad = sizeof(void *); 5785 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5786 size += s->red_left_pad; 5787 } 5788 #endif 5789 5790 /* 5791 * SLUB stores one object immediately after another beginning from 5792 * offset 0. In order to align the objects we have to simply size 5793 * each object to conform to the alignment. 5794 */ 5795 size = ALIGN(size, s->align); 5796 s->size = size; 5797 s->reciprocal_size = reciprocal_value(size); 5798 order = calculate_order(size); 5799 5800 if ((int)order < 0) 5801 return 0; 5802 5803 s->allocflags = __GFP_COMP; 5804 5805 if (s->flags & SLAB_CACHE_DMA) 5806 s->allocflags |= GFP_DMA; 5807 5808 if (s->flags & SLAB_CACHE_DMA32) 5809 s->allocflags |= GFP_DMA32; 5810 5811 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5812 s->allocflags |= __GFP_RECLAIMABLE; 5813 5814 /* 5815 * Determine the number of objects per slab 5816 */ 5817 s->oo = oo_make(order, size); 5818 s->min = oo_make(get_order(size), size); 5819 5820 return !!oo_objects(s->oo); 5821 } 5822 5823 static void list_slab_objects(struct kmem_cache *s, struct slab *slab) 5824 { 5825 #ifdef CONFIG_SLUB_DEBUG 5826 void *addr = slab_address(slab); 5827 void *p; 5828 5829 if (!slab_add_kunit_errors()) 5830 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()"); 5831 5832 spin_lock(&object_map_lock); 5833 __fill_map(object_map, s, slab); 5834 5835 for_each_object(p, s, addr, slab->objects) { 5836 5837 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5838 if (slab_add_kunit_errors()) 5839 continue; 5840 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5841 print_tracking(s, p); 5842 } 5843 } 5844 spin_unlock(&object_map_lock); 5845 5846 __slab_err(slab); 5847 #endif 5848 } 5849 5850 /* 5851 * Attempt to free all partial slabs on a node. 5852 * This is called from __kmem_cache_shutdown(). We must take list_lock 5853 * because sysfs file might still access partial list after the shutdowning. 5854 */ 5855 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5856 { 5857 LIST_HEAD(discard); 5858 struct slab *slab, *h; 5859 5860 BUG_ON(irqs_disabled()); 5861 spin_lock_irq(&n->list_lock); 5862 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5863 if (!slab->inuse) { 5864 remove_partial(n, slab); 5865 list_add(&slab->slab_list, &discard); 5866 } else { 5867 list_slab_objects(s, slab); 5868 } 5869 } 5870 spin_unlock_irq(&n->list_lock); 5871 5872 list_for_each_entry_safe(slab, h, &discard, slab_list) 5873 discard_slab(s, slab); 5874 } 5875 5876 bool __kmem_cache_empty(struct kmem_cache *s) 5877 { 5878 int node; 5879 struct kmem_cache_node *n; 5880 5881 for_each_kmem_cache_node(s, node, n) 5882 if (n->nr_partial || node_nr_slabs(n)) 5883 return false; 5884 return true; 5885 } 5886 5887 /* 5888 * Release all resources used by a slab cache. 5889 */ 5890 int __kmem_cache_shutdown(struct kmem_cache *s) 5891 { 5892 int node; 5893 struct kmem_cache_node *n; 5894 5895 flush_all_cpus_locked(s); 5896 /* Attempt to free all objects */ 5897 for_each_kmem_cache_node(s, node, n) { 5898 free_partial(s, n); 5899 if (n->nr_partial || node_nr_slabs(n)) 5900 return 1; 5901 } 5902 return 0; 5903 } 5904 5905 #ifdef CONFIG_PRINTK 5906 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5907 { 5908 void *base; 5909 int __maybe_unused i; 5910 unsigned int objnr; 5911 void *objp; 5912 void *objp0; 5913 struct kmem_cache *s = slab->slab_cache; 5914 struct track __maybe_unused *trackp; 5915 5916 kpp->kp_ptr = object; 5917 kpp->kp_slab = slab; 5918 kpp->kp_slab_cache = s; 5919 base = slab_address(slab); 5920 objp0 = kasan_reset_tag(object); 5921 #ifdef CONFIG_SLUB_DEBUG 5922 objp = restore_red_left(s, objp0); 5923 #else 5924 objp = objp0; 5925 #endif 5926 objnr = obj_to_index(s, slab, objp); 5927 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5928 objp = base + s->size * objnr; 5929 kpp->kp_objp = objp; 5930 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5931 || (objp - base) % s->size) || 5932 !(s->flags & SLAB_STORE_USER)) 5933 return; 5934 #ifdef CONFIG_SLUB_DEBUG 5935 objp = fixup_red_left(s, objp); 5936 trackp = get_track(s, objp, TRACK_ALLOC); 5937 kpp->kp_ret = (void *)trackp->addr; 5938 #ifdef CONFIG_STACKDEPOT 5939 { 5940 depot_stack_handle_t handle; 5941 unsigned long *entries; 5942 unsigned int nr_entries; 5943 5944 handle = READ_ONCE(trackp->handle); 5945 if (handle) { 5946 nr_entries = stack_depot_fetch(handle, &entries); 5947 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5948 kpp->kp_stack[i] = (void *)entries[i]; 5949 } 5950 5951 trackp = get_track(s, objp, TRACK_FREE); 5952 handle = READ_ONCE(trackp->handle); 5953 if (handle) { 5954 nr_entries = stack_depot_fetch(handle, &entries); 5955 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5956 kpp->kp_free_stack[i] = (void *)entries[i]; 5957 } 5958 } 5959 #endif 5960 #endif 5961 } 5962 #endif 5963 5964 /******************************************************************** 5965 * Kmalloc subsystem 5966 *******************************************************************/ 5967 5968 static int __init setup_slub_min_order(char *str) 5969 { 5970 get_option(&str, (int *)&slub_min_order); 5971 5972 if (slub_min_order > slub_max_order) 5973 slub_max_order = slub_min_order; 5974 5975 return 1; 5976 } 5977 5978 __setup("slab_min_order=", setup_slub_min_order); 5979 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5980 5981 5982 static int __init setup_slub_max_order(char *str) 5983 { 5984 get_option(&str, (int *)&slub_max_order); 5985 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5986 5987 if (slub_min_order > slub_max_order) 5988 slub_min_order = slub_max_order; 5989 5990 return 1; 5991 } 5992 5993 __setup("slab_max_order=", setup_slub_max_order); 5994 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5995 5996 static int __init setup_slub_min_objects(char *str) 5997 { 5998 get_option(&str, (int *)&slub_min_objects); 5999 6000 return 1; 6001 } 6002 6003 __setup("slab_min_objects=", setup_slub_min_objects); 6004 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 6005 6006 #ifdef CONFIG_NUMA 6007 static int __init setup_slab_strict_numa(char *str) 6008 { 6009 if (nr_node_ids > 1) { 6010 static_branch_enable(&strict_numa); 6011 pr_info("SLUB: Strict NUMA enabled.\n"); 6012 } else { 6013 pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); 6014 } 6015 6016 return 1; 6017 } 6018 6019 __setup("slab_strict_numa", setup_slab_strict_numa); 6020 #endif 6021 6022 6023 #ifdef CONFIG_HARDENED_USERCOPY 6024 /* 6025 * Rejects incorrectly sized objects and objects that are to be copied 6026 * to/from userspace but do not fall entirely within the containing slab 6027 * cache's usercopy region. 6028 * 6029 * Returns NULL if check passes, otherwise const char * to name of cache 6030 * to indicate an error. 6031 */ 6032 void __check_heap_object(const void *ptr, unsigned long n, 6033 const struct slab *slab, bool to_user) 6034 { 6035 struct kmem_cache *s; 6036 unsigned int offset; 6037 bool is_kfence = is_kfence_address(ptr); 6038 6039 ptr = kasan_reset_tag(ptr); 6040 6041 /* Find object and usable object size. */ 6042 s = slab->slab_cache; 6043 6044 /* Reject impossible pointers. */ 6045 if (ptr < slab_address(slab)) 6046 usercopy_abort("SLUB object not in SLUB page?!", NULL, 6047 to_user, 0, n); 6048 6049 /* Find offset within object. */ 6050 if (is_kfence) 6051 offset = ptr - kfence_object_start(ptr); 6052 else 6053 offset = (ptr - slab_address(slab)) % s->size; 6054 6055 /* Adjust for redzone and reject if within the redzone. */ 6056 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 6057 if (offset < s->red_left_pad) 6058 usercopy_abort("SLUB object in left red zone", 6059 s->name, to_user, offset, n); 6060 offset -= s->red_left_pad; 6061 } 6062 6063 /* Allow address range falling entirely within usercopy region. */ 6064 if (offset >= s->useroffset && 6065 offset - s->useroffset <= s->usersize && 6066 n <= s->useroffset - offset + s->usersize) 6067 return; 6068 6069 usercopy_abort("SLUB object", s->name, to_user, offset, n); 6070 } 6071 #endif /* CONFIG_HARDENED_USERCOPY */ 6072 6073 #define SHRINK_PROMOTE_MAX 32 6074 6075 /* 6076 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 6077 * up most to the head of the partial lists. New allocations will then 6078 * fill those up and thus they can be removed from the partial lists. 6079 * 6080 * The slabs with the least items are placed last. This results in them 6081 * being allocated from last increasing the chance that the last objects 6082 * are freed in them. 6083 */ 6084 static int __kmem_cache_do_shrink(struct kmem_cache *s) 6085 { 6086 int node; 6087 int i; 6088 struct kmem_cache_node *n; 6089 struct slab *slab; 6090 struct slab *t; 6091 struct list_head discard; 6092 struct list_head promote[SHRINK_PROMOTE_MAX]; 6093 unsigned long flags; 6094 int ret = 0; 6095 6096 for_each_kmem_cache_node(s, node, n) { 6097 INIT_LIST_HEAD(&discard); 6098 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 6099 INIT_LIST_HEAD(promote + i); 6100 6101 spin_lock_irqsave(&n->list_lock, flags); 6102 6103 /* 6104 * Build lists of slabs to discard or promote. 6105 * 6106 * Note that concurrent frees may occur while we hold the 6107 * list_lock. slab->inuse here is the upper limit. 6108 */ 6109 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 6110 int free = slab->objects - slab->inuse; 6111 6112 /* Do not reread slab->inuse */ 6113 barrier(); 6114 6115 /* We do not keep full slabs on the list */ 6116 BUG_ON(free <= 0); 6117 6118 if (free == slab->objects) { 6119 list_move(&slab->slab_list, &discard); 6120 slab_clear_node_partial(slab); 6121 n->nr_partial--; 6122 dec_slabs_node(s, node, slab->objects); 6123 } else if (free <= SHRINK_PROMOTE_MAX) 6124 list_move(&slab->slab_list, promote + free - 1); 6125 } 6126 6127 /* 6128 * Promote the slabs filled up most to the head of the 6129 * partial list. 6130 */ 6131 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 6132 list_splice(promote + i, &n->partial); 6133 6134 spin_unlock_irqrestore(&n->list_lock, flags); 6135 6136 /* Release empty slabs */ 6137 list_for_each_entry_safe(slab, t, &discard, slab_list) 6138 free_slab(s, slab); 6139 6140 if (node_nr_slabs(n)) 6141 ret = 1; 6142 } 6143 6144 return ret; 6145 } 6146 6147 int __kmem_cache_shrink(struct kmem_cache *s) 6148 { 6149 flush_all(s); 6150 return __kmem_cache_do_shrink(s); 6151 } 6152 6153 static int slab_mem_going_offline_callback(void *arg) 6154 { 6155 struct kmem_cache *s; 6156 6157 mutex_lock(&slab_mutex); 6158 list_for_each_entry(s, &slab_caches, list) { 6159 flush_all_cpus_locked(s); 6160 __kmem_cache_do_shrink(s); 6161 } 6162 mutex_unlock(&slab_mutex); 6163 6164 return 0; 6165 } 6166 6167 static void slab_mem_offline_callback(void *arg) 6168 { 6169 struct memory_notify *marg = arg; 6170 int offline_node; 6171 6172 offline_node = marg->status_change_nid_normal; 6173 6174 /* 6175 * If the node still has available memory. we need kmem_cache_node 6176 * for it yet. 6177 */ 6178 if (offline_node < 0) 6179 return; 6180 6181 mutex_lock(&slab_mutex); 6182 node_clear(offline_node, slab_nodes); 6183 /* 6184 * We no longer free kmem_cache_node structures here, as it would be 6185 * racy with all get_node() users, and infeasible to protect them with 6186 * slab_mutex. 6187 */ 6188 mutex_unlock(&slab_mutex); 6189 } 6190 6191 static int slab_mem_going_online_callback(void *arg) 6192 { 6193 struct kmem_cache_node *n; 6194 struct kmem_cache *s; 6195 struct memory_notify *marg = arg; 6196 int nid = marg->status_change_nid_normal; 6197 int ret = 0; 6198 6199 /* 6200 * If the node's memory is already available, then kmem_cache_node is 6201 * already created. Nothing to do. 6202 */ 6203 if (nid < 0) 6204 return 0; 6205 6206 /* 6207 * We are bringing a node online. No memory is available yet. We must 6208 * allocate a kmem_cache_node structure in order to bring the node 6209 * online. 6210 */ 6211 mutex_lock(&slab_mutex); 6212 list_for_each_entry(s, &slab_caches, list) { 6213 /* 6214 * The structure may already exist if the node was previously 6215 * onlined and offlined. 6216 */ 6217 if (get_node(s, nid)) 6218 continue; 6219 /* 6220 * XXX: kmem_cache_alloc_node will fallback to other nodes 6221 * since memory is not yet available from the node that 6222 * is brought up. 6223 */ 6224 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 6225 if (!n) { 6226 ret = -ENOMEM; 6227 goto out; 6228 } 6229 init_kmem_cache_node(n); 6230 s->node[nid] = n; 6231 } 6232 /* 6233 * Any cache created after this point will also have kmem_cache_node 6234 * initialized for the new node. 6235 */ 6236 node_set(nid, slab_nodes); 6237 out: 6238 mutex_unlock(&slab_mutex); 6239 return ret; 6240 } 6241 6242 static int slab_memory_callback(struct notifier_block *self, 6243 unsigned long action, void *arg) 6244 { 6245 int ret = 0; 6246 6247 switch (action) { 6248 case MEM_GOING_ONLINE: 6249 ret = slab_mem_going_online_callback(arg); 6250 break; 6251 case MEM_GOING_OFFLINE: 6252 ret = slab_mem_going_offline_callback(arg); 6253 break; 6254 case MEM_OFFLINE: 6255 case MEM_CANCEL_ONLINE: 6256 slab_mem_offline_callback(arg); 6257 break; 6258 case MEM_ONLINE: 6259 case MEM_CANCEL_OFFLINE: 6260 break; 6261 } 6262 if (ret) 6263 ret = notifier_from_errno(ret); 6264 else 6265 ret = NOTIFY_OK; 6266 return ret; 6267 } 6268 6269 /******************************************************************** 6270 * Basic setup of slabs 6271 *******************************************************************/ 6272 6273 /* 6274 * Used for early kmem_cache structures that were allocated using 6275 * the page allocator. Allocate them properly then fix up the pointers 6276 * that may be pointing to the wrong kmem_cache structure. 6277 */ 6278 6279 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 6280 { 6281 int node; 6282 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 6283 struct kmem_cache_node *n; 6284 6285 memcpy(s, static_cache, kmem_cache->object_size); 6286 6287 /* 6288 * This runs very early, and only the boot processor is supposed to be 6289 * up. Even if it weren't true, IRQs are not up so we couldn't fire 6290 * IPIs around. 6291 */ 6292 __flush_cpu_slab(s, smp_processor_id()); 6293 for_each_kmem_cache_node(s, node, n) { 6294 struct slab *p; 6295 6296 list_for_each_entry(p, &n->partial, slab_list) 6297 p->slab_cache = s; 6298 6299 #ifdef CONFIG_SLUB_DEBUG 6300 list_for_each_entry(p, &n->full, slab_list) 6301 p->slab_cache = s; 6302 #endif 6303 } 6304 list_add(&s->list, &slab_caches); 6305 return s; 6306 } 6307 6308 void __init kmem_cache_init(void) 6309 { 6310 static __initdata struct kmem_cache boot_kmem_cache, 6311 boot_kmem_cache_node; 6312 int node; 6313 6314 if (debug_guardpage_minorder()) 6315 slub_max_order = 0; 6316 6317 /* Print slub debugging pointers without hashing */ 6318 if (__slub_debug_enabled()) 6319 no_hash_pointers_enable(NULL); 6320 6321 kmem_cache_node = &boot_kmem_cache_node; 6322 kmem_cache = &boot_kmem_cache; 6323 6324 /* 6325 * Initialize the nodemask for which we will allocate per node 6326 * structures. Here we don't need taking slab_mutex yet. 6327 */ 6328 for_each_node_state(node, N_NORMAL_MEMORY) 6329 node_set(node, slab_nodes); 6330 6331 create_boot_cache(kmem_cache_node, "kmem_cache_node", 6332 sizeof(struct kmem_cache_node), 6333 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6334 6335 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 6336 6337 /* Able to allocate the per node structures */ 6338 slab_state = PARTIAL; 6339 6340 create_boot_cache(kmem_cache, "kmem_cache", 6341 offsetof(struct kmem_cache, node) + 6342 nr_node_ids * sizeof(struct kmem_cache_node *), 6343 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6344 6345 kmem_cache = bootstrap(&boot_kmem_cache); 6346 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 6347 6348 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 6349 setup_kmalloc_cache_index_table(); 6350 create_kmalloc_caches(); 6351 6352 /* Setup random freelists for each cache */ 6353 init_freelist_randomization(); 6354 6355 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 6356 slub_cpu_dead); 6357 6358 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 6359 cache_line_size(), 6360 slub_min_order, slub_max_order, slub_min_objects, 6361 nr_cpu_ids, nr_node_ids); 6362 } 6363 6364 void __init kmem_cache_init_late(void) 6365 { 6366 #ifndef CONFIG_SLUB_TINY 6367 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 6368 WARN_ON(!flushwq); 6369 #endif 6370 } 6371 6372 struct kmem_cache * 6373 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 6374 slab_flags_t flags, void (*ctor)(void *)) 6375 { 6376 struct kmem_cache *s; 6377 6378 s = find_mergeable(size, align, flags, name, ctor); 6379 if (s) { 6380 if (sysfs_slab_alias(s, name)) 6381 pr_err("SLUB: Unable to add cache alias %s to sysfs\n", 6382 name); 6383 6384 s->refcount++; 6385 6386 /* 6387 * Adjust the object sizes so that we clear 6388 * the complete object on kzalloc. 6389 */ 6390 s->object_size = max(s->object_size, size); 6391 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 6392 } 6393 6394 return s; 6395 } 6396 6397 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 6398 unsigned int size, struct kmem_cache_args *args, 6399 slab_flags_t flags) 6400 { 6401 int err = -EINVAL; 6402 6403 s->name = name; 6404 s->size = s->object_size = size; 6405 6406 s->flags = kmem_cache_flags(flags, s->name); 6407 #ifdef CONFIG_SLAB_FREELIST_HARDENED 6408 s->random = get_random_long(); 6409 #endif 6410 s->align = args->align; 6411 s->ctor = args->ctor; 6412 #ifdef CONFIG_HARDENED_USERCOPY 6413 s->useroffset = args->useroffset; 6414 s->usersize = args->usersize; 6415 #endif 6416 6417 if (!calculate_sizes(args, s)) 6418 goto out; 6419 if (disable_higher_order_debug) { 6420 /* 6421 * Disable debugging flags that store metadata if the min slab 6422 * order increased. 6423 */ 6424 if (get_order(s->size) > get_order(s->object_size)) { 6425 s->flags &= ~DEBUG_METADATA_FLAGS; 6426 s->offset = 0; 6427 if (!calculate_sizes(args, s)) 6428 goto out; 6429 } 6430 } 6431 6432 #ifdef system_has_freelist_aba 6433 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 6434 /* Enable fast mode */ 6435 s->flags |= __CMPXCHG_DOUBLE; 6436 } 6437 #endif 6438 6439 /* 6440 * The larger the object size is, the more slabs we want on the partial 6441 * list to avoid pounding the page allocator excessively. 6442 */ 6443 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 6444 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 6445 6446 set_cpu_partial(s); 6447 6448 #ifdef CONFIG_NUMA 6449 s->remote_node_defrag_ratio = 1000; 6450 #endif 6451 6452 /* Initialize the pre-computed randomized freelist if slab is up */ 6453 if (slab_state >= UP) { 6454 if (init_cache_random_seq(s)) 6455 goto out; 6456 } 6457 6458 if (!init_kmem_cache_nodes(s)) 6459 goto out; 6460 6461 if (!alloc_kmem_cache_cpus(s)) 6462 goto out; 6463 6464 err = 0; 6465 6466 /* Mutex is not taken during early boot */ 6467 if (slab_state <= UP) 6468 goto out; 6469 6470 /* 6471 * Failing to create sysfs files is not critical to SLUB functionality. 6472 * If it fails, proceed with cache creation without these files. 6473 */ 6474 if (sysfs_slab_add(s)) 6475 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); 6476 6477 if (s->flags & SLAB_STORE_USER) 6478 debugfs_slab_add(s); 6479 6480 out: 6481 if (err) 6482 __kmem_cache_release(s); 6483 return err; 6484 } 6485 6486 #ifdef SLAB_SUPPORTS_SYSFS 6487 static int count_inuse(struct slab *slab) 6488 { 6489 return slab->inuse; 6490 } 6491 6492 static int count_total(struct slab *slab) 6493 { 6494 return slab->objects; 6495 } 6496 #endif 6497 6498 #ifdef CONFIG_SLUB_DEBUG 6499 static void validate_slab(struct kmem_cache *s, struct slab *slab, 6500 unsigned long *obj_map) 6501 { 6502 void *p; 6503 void *addr = slab_address(slab); 6504 6505 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 6506 return; 6507 6508 /* Now we know that a valid freelist exists */ 6509 __fill_map(obj_map, s, slab); 6510 for_each_object(p, s, addr, slab->objects) { 6511 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 6512 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 6513 6514 if (!check_object(s, slab, p, val)) 6515 break; 6516 } 6517 } 6518 6519 static int validate_slab_node(struct kmem_cache *s, 6520 struct kmem_cache_node *n, unsigned long *obj_map) 6521 { 6522 unsigned long count = 0; 6523 struct slab *slab; 6524 unsigned long flags; 6525 6526 spin_lock_irqsave(&n->list_lock, flags); 6527 6528 list_for_each_entry(slab, &n->partial, slab_list) { 6529 validate_slab(s, slab, obj_map); 6530 count++; 6531 } 6532 if (count != n->nr_partial) { 6533 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 6534 s->name, count, n->nr_partial); 6535 slab_add_kunit_errors(); 6536 } 6537 6538 if (!(s->flags & SLAB_STORE_USER)) 6539 goto out; 6540 6541 list_for_each_entry(slab, &n->full, slab_list) { 6542 validate_slab(s, slab, obj_map); 6543 count++; 6544 } 6545 if (count != node_nr_slabs(n)) { 6546 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 6547 s->name, count, node_nr_slabs(n)); 6548 slab_add_kunit_errors(); 6549 } 6550 6551 out: 6552 spin_unlock_irqrestore(&n->list_lock, flags); 6553 return count; 6554 } 6555 6556 long validate_slab_cache(struct kmem_cache *s) 6557 { 6558 int node; 6559 unsigned long count = 0; 6560 struct kmem_cache_node *n; 6561 unsigned long *obj_map; 6562 6563 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6564 if (!obj_map) 6565 return -ENOMEM; 6566 6567 flush_all(s); 6568 for_each_kmem_cache_node(s, node, n) 6569 count += validate_slab_node(s, n, obj_map); 6570 6571 bitmap_free(obj_map); 6572 6573 return count; 6574 } 6575 EXPORT_SYMBOL(validate_slab_cache); 6576 6577 #ifdef CONFIG_DEBUG_FS 6578 /* 6579 * Generate lists of code addresses where slabcache objects are allocated 6580 * and freed. 6581 */ 6582 6583 struct location { 6584 depot_stack_handle_t handle; 6585 unsigned long count; 6586 unsigned long addr; 6587 unsigned long waste; 6588 long long sum_time; 6589 long min_time; 6590 long max_time; 6591 long min_pid; 6592 long max_pid; 6593 DECLARE_BITMAP(cpus, NR_CPUS); 6594 nodemask_t nodes; 6595 }; 6596 6597 struct loc_track { 6598 unsigned long max; 6599 unsigned long count; 6600 struct location *loc; 6601 loff_t idx; 6602 }; 6603 6604 static struct dentry *slab_debugfs_root; 6605 6606 static void free_loc_track(struct loc_track *t) 6607 { 6608 if (t->max) 6609 free_pages((unsigned long)t->loc, 6610 get_order(sizeof(struct location) * t->max)); 6611 } 6612 6613 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6614 { 6615 struct location *l; 6616 int order; 6617 6618 order = get_order(sizeof(struct location) * max); 6619 6620 l = (void *)__get_free_pages(flags, order); 6621 if (!l) 6622 return 0; 6623 6624 if (t->count) { 6625 memcpy(l, t->loc, sizeof(struct location) * t->count); 6626 free_loc_track(t); 6627 } 6628 t->max = max; 6629 t->loc = l; 6630 return 1; 6631 } 6632 6633 static int add_location(struct loc_track *t, struct kmem_cache *s, 6634 const struct track *track, 6635 unsigned int orig_size) 6636 { 6637 long start, end, pos; 6638 struct location *l; 6639 unsigned long caddr, chandle, cwaste; 6640 unsigned long age = jiffies - track->when; 6641 depot_stack_handle_t handle = 0; 6642 unsigned int waste = s->object_size - orig_size; 6643 6644 #ifdef CONFIG_STACKDEPOT 6645 handle = READ_ONCE(track->handle); 6646 #endif 6647 start = -1; 6648 end = t->count; 6649 6650 for ( ; ; ) { 6651 pos = start + (end - start + 1) / 2; 6652 6653 /* 6654 * There is nothing at "end". If we end up there 6655 * we need to add something to before end. 6656 */ 6657 if (pos == end) 6658 break; 6659 6660 l = &t->loc[pos]; 6661 caddr = l->addr; 6662 chandle = l->handle; 6663 cwaste = l->waste; 6664 if ((track->addr == caddr) && (handle == chandle) && 6665 (waste == cwaste)) { 6666 6667 l->count++; 6668 if (track->when) { 6669 l->sum_time += age; 6670 if (age < l->min_time) 6671 l->min_time = age; 6672 if (age > l->max_time) 6673 l->max_time = age; 6674 6675 if (track->pid < l->min_pid) 6676 l->min_pid = track->pid; 6677 if (track->pid > l->max_pid) 6678 l->max_pid = track->pid; 6679 6680 cpumask_set_cpu(track->cpu, 6681 to_cpumask(l->cpus)); 6682 } 6683 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6684 return 1; 6685 } 6686 6687 if (track->addr < caddr) 6688 end = pos; 6689 else if (track->addr == caddr && handle < chandle) 6690 end = pos; 6691 else if (track->addr == caddr && handle == chandle && 6692 waste < cwaste) 6693 end = pos; 6694 else 6695 start = pos; 6696 } 6697 6698 /* 6699 * Not found. Insert new tracking element. 6700 */ 6701 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6702 return 0; 6703 6704 l = t->loc + pos; 6705 if (pos < t->count) 6706 memmove(l + 1, l, 6707 (t->count - pos) * sizeof(struct location)); 6708 t->count++; 6709 l->count = 1; 6710 l->addr = track->addr; 6711 l->sum_time = age; 6712 l->min_time = age; 6713 l->max_time = age; 6714 l->min_pid = track->pid; 6715 l->max_pid = track->pid; 6716 l->handle = handle; 6717 l->waste = waste; 6718 cpumask_clear(to_cpumask(l->cpus)); 6719 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6720 nodes_clear(l->nodes); 6721 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6722 return 1; 6723 } 6724 6725 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6726 struct slab *slab, enum track_item alloc, 6727 unsigned long *obj_map) 6728 { 6729 void *addr = slab_address(slab); 6730 bool is_alloc = (alloc == TRACK_ALLOC); 6731 void *p; 6732 6733 __fill_map(obj_map, s, slab); 6734 6735 for_each_object(p, s, addr, slab->objects) 6736 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6737 add_location(t, s, get_track(s, p, alloc), 6738 is_alloc ? get_orig_size(s, p) : 6739 s->object_size); 6740 } 6741 #endif /* CONFIG_DEBUG_FS */ 6742 #endif /* CONFIG_SLUB_DEBUG */ 6743 6744 #ifdef SLAB_SUPPORTS_SYSFS 6745 enum slab_stat_type { 6746 SL_ALL, /* All slabs */ 6747 SL_PARTIAL, /* Only partially allocated slabs */ 6748 SL_CPU, /* Only slabs used for cpu caches */ 6749 SL_OBJECTS, /* Determine allocated objects not slabs */ 6750 SL_TOTAL /* Determine object capacity not slabs */ 6751 }; 6752 6753 #define SO_ALL (1 << SL_ALL) 6754 #define SO_PARTIAL (1 << SL_PARTIAL) 6755 #define SO_CPU (1 << SL_CPU) 6756 #define SO_OBJECTS (1 << SL_OBJECTS) 6757 #define SO_TOTAL (1 << SL_TOTAL) 6758 6759 static ssize_t show_slab_objects(struct kmem_cache *s, 6760 char *buf, unsigned long flags) 6761 { 6762 unsigned long total = 0; 6763 int node; 6764 int x; 6765 unsigned long *nodes; 6766 int len = 0; 6767 6768 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6769 if (!nodes) 6770 return -ENOMEM; 6771 6772 if (flags & SO_CPU) { 6773 int cpu; 6774 6775 for_each_possible_cpu(cpu) { 6776 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6777 cpu); 6778 int node; 6779 struct slab *slab; 6780 6781 slab = READ_ONCE(c->slab); 6782 if (!slab) 6783 continue; 6784 6785 node = slab_nid(slab); 6786 if (flags & SO_TOTAL) 6787 x = slab->objects; 6788 else if (flags & SO_OBJECTS) 6789 x = slab->inuse; 6790 else 6791 x = 1; 6792 6793 total += x; 6794 nodes[node] += x; 6795 6796 #ifdef CONFIG_SLUB_CPU_PARTIAL 6797 slab = slub_percpu_partial_read_once(c); 6798 if (slab) { 6799 node = slab_nid(slab); 6800 if (flags & SO_TOTAL) 6801 WARN_ON_ONCE(1); 6802 else if (flags & SO_OBJECTS) 6803 WARN_ON_ONCE(1); 6804 else 6805 x = data_race(slab->slabs); 6806 total += x; 6807 nodes[node] += x; 6808 } 6809 #endif 6810 } 6811 } 6812 6813 /* 6814 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6815 * already held which will conflict with an existing lock order: 6816 * 6817 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6818 * 6819 * We don't really need mem_hotplug_lock (to hold off 6820 * slab_mem_going_offline_callback) here because slab's memory hot 6821 * unplug code doesn't destroy the kmem_cache->node[] data. 6822 */ 6823 6824 #ifdef CONFIG_SLUB_DEBUG 6825 if (flags & SO_ALL) { 6826 struct kmem_cache_node *n; 6827 6828 for_each_kmem_cache_node(s, node, n) { 6829 6830 if (flags & SO_TOTAL) 6831 x = node_nr_objs(n); 6832 else if (flags & SO_OBJECTS) 6833 x = node_nr_objs(n) - count_partial(n, count_free); 6834 else 6835 x = node_nr_slabs(n); 6836 total += x; 6837 nodes[node] += x; 6838 } 6839 6840 } else 6841 #endif 6842 if (flags & SO_PARTIAL) { 6843 struct kmem_cache_node *n; 6844 6845 for_each_kmem_cache_node(s, node, n) { 6846 if (flags & SO_TOTAL) 6847 x = count_partial(n, count_total); 6848 else if (flags & SO_OBJECTS) 6849 x = count_partial(n, count_inuse); 6850 else 6851 x = n->nr_partial; 6852 total += x; 6853 nodes[node] += x; 6854 } 6855 } 6856 6857 len += sysfs_emit_at(buf, len, "%lu", total); 6858 #ifdef CONFIG_NUMA 6859 for (node = 0; node < nr_node_ids; node++) { 6860 if (nodes[node]) 6861 len += sysfs_emit_at(buf, len, " N%d=%lu", 6862 node, nodes[node]); 6863 } 6864 #endif 6865 len += sysfs_emit_at(buf, len, "\n"); 6866 kfree(nodes); 6867 6868 return len; 6869 } 6870 6871 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6872 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6873 6874 struct slab_attribute { 6875 struct attribute attr; 6876 ssize_t (*show)(struct kmem_cache *s, char *buf); 6877 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6878 }; 6879 6880 #define SLAB_ATTR_RO(_name) \ 6881 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6882 6883 #define SLAB_ATTR(_name) \ 6884 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6885 6886 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6887 { 6888 return sysfs_emit(buf, "%u\n", s->size); 6889 } 6890 SLAB_ATTR_RO(slab_size); 6891 6892 static ssize_t align_show(struct kmem_cache *s, char *buf) 6893 { 6894 return sysfs_emit(buf, "%u\n", s->align); 6895 } 6896 SLAB_ATTR_RO(align); 6897 6898 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6899 { 6900 return sysfs_emit(buf, "%u\n", s->object_size); 6901 } 6902 SLAB_ATTR_RO(object_size); 6903 6904 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6905 { 6906 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6907 } 6908 SLAB_ATTR_RO(objs_per_slab); 6909 6910 static ssize_t order_show(struct kmem_cache *s, char *buf) 6911 { 6912 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6913 } 6914 SLAB_ATTR_RO(order); 6915 6916 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6917 { 6918 return sysfs_emit(buf, "%lu\n", s->min_partial); 6919 } 6920 6921 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6922 size_t length) 6923 { 6924 unsigned long min; 6925 int err; 6926 6927 err = kstrtoul(buf, 10, &min); 6928 if (err) 6929 return err; 6930 6931 s->min_partial = min; 6932 return length; 6933 } 6934 SLAB_ATTR(min_partial); 6935 6936 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6937 { 6938 unsigned int nr_partial = 0; 6939 #ifdef CONFIG_SLUB_CPU_PARTIAL 6940 nr_partial = s->cpu_partial; 6941 #endif 6942 6943 return sysfs_emit(buf, "%u\n", nr_partial); 6944 } 6945 6946 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6947 size_t length) 6948 { 6949 unsigned int objects; 6950 int err; 6951 6952 err = kstrtouint(buf, 10, &objects); 6953 if (err) 6954 return err; 6955 if (objects && !kmem_cache_has_cpu_partial(s)) 6956 return -EINVAL; 6957 6958 slub_set_cpu_partial(s, objects); 6959 flush_all(s); 6960 return length; 6961 } 6962 SLAB_ATTR(cpu_partial); 6963 6964 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6965 { 6966 if (!s->ctor) 6967 return 0; 6968 return sysfs_emit(buf, "%pS\n", s->ctor); 6969 } 6970 SLAB_ATTR_RO(ctor); 6971 6972 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6973 { 6974 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6975 } 6976 SLAB_ATTR_RO(aliases); 6977 6978 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6979 { 6980 return show_slab_objects(s, buf, SO_PARTIAL); 6981 } 6982 SLAB_ATTR_RO(partial); 6983 6984 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6985 { 6986 return show_slab_objects(s, buf, SO_CPU); 6987 } 6988 SLAB_ATTR_RO(cpu_slabs); 6989 6990 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6991 { 6992 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6993 } 6994 SLAB_ATTR_RO(objects_partial); 6995 6996 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6997 { 6998 int objects = 0; 6999 int slabs = 0; 7000 int cpu __maybe_unused; 7001 int len = 0; 7002 7003 #ifdef CONFIG_SLUB_CPU_PARTIAL 7004 for_each_online_cpu(cpu) { 7005 struct slab *slab; 7006 7007 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 7008 7009 if (slab) 7010 slabs += data_race(slab->slabs); 7011 } 7012 #endif 7013 7014 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 7015 objects = (slabs * oo_objects(s->oo)) / 2; 7016 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 7017 7018 #ifdef CONFIG_SLUB_CPU_PARTIAL 7019 for_each_online_cpu(cpu) { 7020 struct slab *slab; 7021 7022 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 7023 if (slab) { 7024 slabs = data_race(slab->slabs); 7025 objects = (slabs * oo_objects(s->oo)) / 2; 7026 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 7027 cpu, objects, slabs); 7028 } 7029 } 7030 #endif 7031 len += sysfs_emit_at(buf, len, "\n"); 7032 7033 return len; 7034 } 7035 SLAB_ATTR_RO(slabs_cpu_partial); 7036 7037 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 7038 { 7039 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 7040 } 7041 SLAB_ATTR_RO(reclaim_account); 7042 7043 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 7044 { 7045 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 7046 } 7047 SLAB_ATTR_RO(hwcache_align); 7048 7049 #ifdef CONFIG_ZONE_DMA 7050 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 7051 { 7052 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 7053 } 7054 SLAB_ATTR_RO(cache_dma); 7055 #endif 7056 7057 #ifdef CONFIG_HARDENED_USERCOPY 7058 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 7059 { 7060 return sysfs_emit(buf, "%u\n", s->usersize); 7061 } 7062 SLAB_ATTR_RO(usersize); 7063 #endif 7064 7065 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 7066 { 7067 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 7068 } 7069 SLAB_ATTR_RO(destroy_by_rcu); 7070 7071 #ifdef CONFIG_SLUB_DEBUG 7072 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 7073 { 7074 return show_slab_objects(s, buf, SO_ALL); 7075 } 7076 SLAB_ATTR_RO(slabs); 7077 7078 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 7079 { 7080 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 7081 } 7082 SLAB_ATTR_RO(total_objects); 7083 7084 static ssize_t objects_show(struct kmem_cache *s, char *buf) 7085 { 7086 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 7087 } 7088 SLAB_ATTR_RO(objects); 7089 7090 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 7091 { 7092 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 7093 } 7094 SLAB_ATTR_RO(sanity_checks); 7095 7096 static ssize_t trace_show(struct kmem_cache *s, char *buf) 7097 { 7098 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 7099 } 7100 SLAB_ATTR_RO(trace); 7101 7102 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 7103 { 7104 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 7105 } 7106 7107 SLAB_ATTR_RO(red_zone); 7108 7109 static ssize_t poison_show(struct kmem_cache *s, char *buf) 7110 { 7111 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 7112 } 7113 7114 SLAB_ATTR_RO(poison); 7115 7116 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 7117 { 7118 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 7119 } 7120 7121 SLAB_ATTR_RO(store_user); 7122 7123 static ssize_t validate_show(struct kmem_cache *s, char *buf) 7124 { 7125 return 0; 7126 } 7127 7128 static ssize_t validate_store(struct kmem_cache *s, 7129 const char *buf, size_t length) 7130 { 7131 int ret = -EINVAL; 7132 7133 if (buf[0] == '1' && kmem_cache_debug(s)) { 7134 ret = validate_slab_cache(s); 7135 if (ret >= 0) 7136 ret = length; 7137 } 7138 return ret; 7139 } 7140 SLAB_ATTR(validate); 7141 7142 #endif /* CONFIG_SLUB_DEBUG */ 7143 7144 #ifdef CONFIG_FAILSLAB 7145 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 7146 { 7147 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 7148 } 7149 7150 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 7151 size_t length) 7152 { 7153 if (s->refcount > 1) 7154 return -EINVAL; 7155 7156 if (buf[0] == '1') 7157 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 7158 else 7159 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 7160 7161 return length; 7162 } 7163 SLAB_ATTR(failslab); 7164 #endif 7165 7166 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 7167 { 7168 return 0; 7169 } 7170 7171 static ssize_t shrink_store(struct kmem_cache *s, 7172 const char *buf, size_t length) 7173 { 7174 if (buf[0] == '1') 7175 kmem_cache_shrink(s); 7176 else 7177 return -EINVAL; 7178 return length; 7179 } 7180 SLAB_ATTR(shrink); 7181 7182 #ifdef CONFIG_NUMA 7183 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 7184 { 7185 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 7186 } 7187 7188 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 7189 const char *buf, size_t length) 7190 { 7191 unsigned int ratio; 7192 int err; 7193 7194 err = kstrtouint(buf, 10, &ratio); 7195 if (err) 7196 return err; 7197 if (ratio > 100) 7198 return -ERANGE; 7199 7200 s->remote_node_defrag_ratio = ratio * 10; 7201 7202 return length; 7203 } 7204 SLAB_ATTR(remote_node_defrag_ratio); 7205 #endif 7206 7207 #ifdef CONFIG_SLUB_STATS 7208 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 7209 { 7210 unsigned long sum = 0; 7211 int cpu; 7212 int len = 0; 7213 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 7214 7215 if (!data) 7216 return -ENOMEM; 7217 7218 for_each_online_cpu(cpu) { 7219 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 7220 7221 data[cpu] = x; 7222 sum += x; 7223 } 7224 7225 len += sysfs_emit_at(buf, len, "%lu", sum); 7226 7227 #ifdef CONFIG_SMP 7228 for_each_online_cpu(cpu) { 7229 if (data[cpu]) 7230 len += sysfs_emit_at(buf, len, " C%d=%u", 7231 cpu, data[cpu]); 7232 } 7233 #endif 7234 kfree(data); 7235 len += sysfs_emit_at(buf, len, "\n"); 7236 7237 return len; 7238 } 7239 7240 static void clear_stat(struct kmem_cache *s, enum stat_item si) 7241 { 7242 int cpu; 7243 7244 for_each_online_cpu(cpu) 7245 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 7246 } 7247 7248 #define STAT_ATTR(si, text) \ 7249 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 7250 { \ 7251 return show_stat(s, buf, si); \ 7252 } \ 7253 static ssize_t text##_store(struct kmem_cache *s, \ 7254 const char *buf, size_t length) \ 7255 { \ 7256 if (buf[0] != '0') \ 7257 return -EINVAL; \ 7258 clear_stat(s, si); \ 7259 return length; \ 7260 } \ 7261 SLAB_ATTR(text); \ 7262 7263 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 7264 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 7265 STAT_ATTR(FREE_FASTPATH, free_fastpath); 7266 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 7267 STAT_ATTR(FREE_FROZEN, free_frozen); 7268 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 7269 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 7270 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 7271 STAT_ATTR(ALLOC_SLAB, alloc_slab); 7272 STAT_ATTR(ALLOC_REFILL, alloc_refill); 7273 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 7274 STAT_ATTR(FREE_SLAB, free_slab); 7275 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 7276 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 7277 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 7278 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 7279 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 7280 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 7281 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 7282 STAT_ATTR(ORDER_FALLBACK, order_fallback); 7283 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 7284 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 7285 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 7286 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 7287 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 7288 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 7289 #endif /* CONFIG_SLUB_STATS */ 7290 7291 #ifdef CONFIG_KFENCE 7292 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 7293 { 7294 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 7295 } 7296 7297 static ssize_t skip_kfence_store(struct kmem_cache *s, 7298 const char *buf, size_t length) 7299 { 7300 int ret = length; 7301 7302 if (buf[0] == '0') 7303 s->flags &= ~SLAB_SKIP_KFENCE; 7304 else if (buf[0] == '1') 7305 s->flags |= SLAB_SKIP_KFENCE; 7306 else 7307 ret = -EINVAL; 7308 7309 return ret; 7310 } 7311 SLAB_ATTR(skip_kfence); 7312 #endif 7313 7314 static struct attribute *slab_attrs[] = { 7315 &slab_size_attr.attr, 7316 &object_size_attr.attr, 7317 &objs_per_slab_attr.attr, 7318 &order_attr.attr, 7319 &min_partial_attr.attr, 7320 &cpu_partial_attr.attr, 7321 &objects_partial_attr.attr, 7322 &partial_attr.attr, 7323 &cpu_slabs_attr.attr, 7324 &ctor_attr.attr, 7325 &aliases_attr.attr, 7326 &align_attr.attr, 7327 &hwcache_align_attr.attr, 7328 &reclaim_account_attr.attr, 7329 &destroy_by_rcu_attr.attr, 7330 &shrink_attr.attr, 7331 &slabs_cpu_partial_attr.attr, 7332 #ifdef CONFIG_SLUB_DEBUG 7333 &total_objects_attr.attr, 7334 &objects_attr.attr, 7335 &slabs_attr.attr, 7336 &sanity_checks_attr.attr, 7337 &trace_attr.attr, 7338 &red_zone_attr.attr, 7339 &poison_attr.attr, 7340 &store_user_attr.attr, 7341 &validate_attr.attr, 7342 #endif 7343 #ifdef CONFIG_ZONE_DMA 7344 &cache_dma_attr.attr, 7345 #endif 7346 #ifdef CONFIG_NUMA 7347 &remote_node_defrag_ratio_attr.attr, 7348 #endif 7349 #ifdef CONFIG_SLUB_STATS 7350 &alloc_fastpath_attr.attr, 7351 &alloc_slowpath_attr.attr, 7352 &free_fastpath_attr.attr, 7353 &free_slowpath_attr.attr, 7354 &free_frozen_attr.attr, 7355 &free_add_partial_attr.attr, 7356 &free_remove_partial_attr.attr, 7357 &alloc_from_partial_attr.attr, 7358 &alloc_slab_attr.attr, 7359 &alloc_refill_attr.attr, 7360 &alloc_node_mismatch_attr.attr, 7361 &free_slab_attr.attr, 7362 &cpuslab_flush_attr.attr, 7363 &deactivate_full_attr.attr, 7364 &deactivate_empty_attr.attr, 7365 &deactivate_to_head_attr.attr, 7366 &deactivate_to_tail_attr.attr, 7367 &deactivate_remote_frees_attr.attr, 7368 &deactivate_bypass_attr.attr, 7369 &order_fallback_attr.attr, 7370 &cmpxchg_double_fail_attr.attr, 7371 &cmpxchg_double_cpu_fail_attr.attr, 7372 &cpu_partial_alloc_attr.attr, 7373 &cpu_partial_free_attr.attr, 7374 &cpu_partial_node_attr.attr, 7375 &cpu_partial_drain_attr.attr, 7376 #endif 7377 #ifdef CONFIG_FAILSLAB 7378 &failslab_attr.attr, 7379 #endif 7380 #ifdef CONFIG_HARDENED_USERCOPY 7381 &usersize_attr.attr, 7382 #endif 7383 #ifdef CONFIG_KFENCE 7384 &skip_kfence_attr.attr, 7385 #endif 7386 7387 NULL 7388 }; 7389 7390 static const struct attribute_group slab_attr_group = { 7391 .attrs = slab_attrs, 7392 }; 7393 7394 static ssize_t slab_attr_show(struct kobject *kobj, 7395 struct attribute *attr, 7396 char *buf) 7397 { 7398 struct slab_attribute *attribute; 7399 struct kmem_cache *s; 7400 7401 attribute = to_slab_attr(attr); 7402 s = to_slab(kobj); 7403 7404 if (!attribute->show) 7405 return -EIO; 7406 7407 return attribute->show(s, buf); 7408 } 7409 7410 static ssize_t slab_attr_store(struct kobject *kobj, 7411 struct attribute *attr, 7412 const char *buf, size_t len) 7413 { 7414 struct slab_attribute *attribute; 7415 struct kmem_cache *s; 7416 7417 attribute = to_slab_attr(attr); 7418 s = to_slab(kobj); 7419 7420 if (!attribute->store) 7421 return -EIO; 7422 7423 return attribute->store(s, buf, len); 7424 } 7425 7426 static void kmem_cache_release(struct kobject *k) 7427 { 7428 slab_kmem_cache_release(to_slab(k)); 7429 } 7430 7431 static const struct sysfs_ops slab_sysfs_ops = { 7432 .show = slab_attr_show, 7433 .store = slab_attr_store, 7434 }; 7435 7436 static const struct kobj_type slab_ktype = { 7437 .sysfs_ops = &slab_sysfs_ops, 7438 .release = kmem_cache_release, 7439 }; 7440 7441 static struct kset *slab_kset; 7442 7443 static inline struct kset *cache_kset(struct kmem_cache *s) 7444 { 7445 return slab_kset; 7446 } 7447 7448 #define ID_STR_LENGTH 32 7449 7450 /* Create a unique string id for a slab cache: 7451 * 7452 * Format :[flags-]size 7453 */ 7454 static char *create_unique_id(struct kmem_cache *s) 7455 { 7456 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 7457 char *p = name; 7458 7459 if (!name) 7460 return ERR_PTR(-ENOMEM); 7461 7462 *p++ = ':'; 7463 /* 7464 * First flags affecting slabcache operations. We will only 7465 * get here for aliasable slabs so we do not need to support 7466 * too many flags. The flags here must cover all flags that 7467 * are matched during merging to guarantee that the id is 7468 * unique. 7469 */ 7470 if (s->flags & SLAB_CACHE_DMA) 7471 *p++ = 'd'; 7472 if (s->flags & SLAB_CACHE_DMA32) 7473 *p++ = 'D'; 7474 if (s->flags & SLAB_RECLAIM_ACCOUNT) 7475 *p++ = 'a'; 7476 if (s->flags & SLAB_CONSISTENCY_CHECKS) 7477 *p++ = 'F'; 7478 if (s->flags & SLAB_ACCOUNT) 7479 *p++ = 'A'; 7480 if (p != name + 1) 7481 *p++ = '-'; 7482 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 7483 7484 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 7485 kfree(name); 7486 return ERR_PTR(-EINVAL); 7487 } 7488 kmsan_unpoison_memory(name, p - name); 7489 return name; 7490 } 7491 7492 static int sysfs_slab_add(struct kmem_cache *s) 7493 { 7494 int err; 7495 const char *name; 7496 struct kset *kset = cache_kset(s); 7497 int unmergeable = slab_unmergeable(s); 7498 7499 if (!unmergeable && disable_higher_order_debug && 7500 (slub_debug & DEBUG_METADATA_FLAGS)) 7501 unmergeable = 1; 7502 7503 if (unmergeable) { 7504 /* 7505 * Slabcache can never be merged so we can use the name proper. 7506 * This is typically the case for debug situations. In that 7507 * case we can catch duplicate names easily. 7508 */ 7509 sysfs_remove_link(&slab_kset->kobj, s->name); 7510 name = s->name; 7511 } else { 7512 /* 7513 * Create a unique name for the slab as a target 7514 * for the symlinks. 7515 */ 7516 name = create_unique_id(s); 7517 if (IS_ERR(name)) 7518 return PTR_ERR(name); 7519 } 7520 7521 s->kobj.kset = kset; 7522 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 7523 if (err) 7524 goto out; 7525 7526 err = sysfs_create_group(&s->kobj, &slab_attr_group); 7527 if (err) 7528 goto out_del_kobj; 7529 7530 if (!unmergeable) { 7531 /* Setup first alias */ 7532 sysfs_slab_alias(s, s->name); 7533 } 7534 out: 7535 if (!unmergeable) 7536 kfree(name); 7537 return err; 7538 out_del_kobj: 7539 kobject_del(&s->kobj); 7540 goto out; 7541 } 7542 7543 void sysfs_slab_unlink(struct kmem_cache *s) 7544 { 7545 if (s->kobj.state_in_sysfs) 7546 kobject_del(&s->kobj); 7547 } 7548 7549 void sysfs_slab_release(struct kmem_cache *s) 7550 { 7551 kobject_put(&s->kobj); 7552 } 7553 7554 /* 7555 * Need to buffer aliases during bootup until sysfs becomes 7556 * available lest we lose that information. 7557 */ 7558 struct saved_alias { 7559 struct kmem_cache *s; 7560 const char *name; 7561 struct saved_alias *next; 7562 }; 7563 7564 static struct saved_alias *alias_list; 7565 7566 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 7567 { 7568 struct saved_alias *al; 7569 7570 if (slab_state == FULL) { 7571 /* 7572 * If we have a leftover link then remove it. 7573 */ 7574 sysfs_remove_link(&slab_kset->kobj, name); 7575 /* 7576 * The original cache may have failed to generate sysfs file. 7577 * In that case, sysfs_create_link() returns -ENOENT and 7578 * symbolic link creation is skipped. 7579 */ 7580 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7581 } 7582 7583 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7584 if (!al) 7585 return -ENOMEM; 7586 7587 al->s = s; 7588 al->name = name; 7589 al->next = alias_list; 7590 alias_list = al; 7591 kmsan_unpoison_memory(al, sizeof(*al)); 7592 return 0; 7593 } 7594 7595 static int __init slab_sysfs_init(void) 7596 { 7597 struct kmem_cache *s; 7598 int err; 7599 7600 mutex_lock(&slab_mutex); 7601 7602 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7603 if (!slab_kset) { 7604 mutex_unlock(&slab_mutex); 7605 pr_err("Cannot register slab subsystem.\n"); 7606 return -ENOMEM; 7607 } 7608 7609 slab_state = FULL; 7610 7611 list_for_each_entry(s, &slab_caches, list) { 7612 err = sysfs_slab_add(s); 7613 if (err) 7614 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7615 s->name); 7616 } 7617 7618 while (alias_list) { 7619 struct saved_alias *al = alias_list; 7620 7621 alias_list = alias_list->next; 7622 err = sysfs_slab_alias(al->s, al->name); 7623 if (err) 7624 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7625 al->name); 7626 kfree(al); 7627 } 7628 7629 mutex_unlock(&slab_mutex); 7630 return 0; 7631 } 7632 late_initcall(slab_sysfs_init); 7633 #endif /* SLAB_SUPPORTS_SYSFS */ 7634 7635 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7636 static int slab_debugfs_show(struct seq_file *seq, void *v) 7637 { 7638 struct loc_track *t = seq->private; 7639 struct location *l; 7640 unsigned long idx; 7641 7642 idx = (unsigned long) t->idx; 7643 if (idx < t->count) { 7644 l = &t->loc[idx]; 7645 7646 seq_printf(seq, "%7ld ", l->count); 7647 7648 if (l->addr) 7649 seq_printf(seq, "%pS", (void *)l->addr); 7650 else 7651 seq_puts(seq, "<not-available>"); 7652 7653 if (l->waste) 7654 seq_printf(seq, " waste=%lu/%lu", 7655 l->count * l->waste, l->waste); 7656 7657 if (l->sum_time != l->min_time) { 7658 seq_printf(seq, " age=%ld/%llu/%ld", 7659 l->min_time, div_u64(l->sum_time, l->count), 7660 l->max_time); 7661 } else 7662 seq_printf(seq, " age=%ld", l->min_time); 7663 7664 if (l->min_pid != l->max_pid) 7665 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7666 else 7667 seq_printf(seq, " pid=%ld", 7668 l->min_pid); 7669 7670 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7671 seq_printf(seq, " cpus=%*pbl", 7672 cpumask_pr_args(to_cpumask(l->cpus))); 7673 7674 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7675 seq_printf(seq, " nodes=%*pbl", 7676 nodemask_pr_args(&l->nodes)); 7677 7678 #ifdef CONFIG_STACKDEPOT 7679 { 7680 depot_stack_handle_t handle; 7681 unsigned long *entries; 7682 unsigned int nr_entries, j; 7683 7684 handle = READ_ONCE(l->handle); 7685 if (handle) { 7686 nr_entries = stack_depot_fetch(handle, &entries); 7687 seq_puts(seq, "\n"); 7688 for (j = 0; j < nr_entries; j++) 7689 seq_printf(seq, " %pS\n", (void *)entries[j]); 7690 } 7691 } 7692 #endif 7693 seq_puts(seq, "\n"); 7694 } 7695 7696 if (!idx && !t->count) 7697 seq_puts(seq, "No data\n"); 7698 7699 return 0; 7700 } 7701 7702 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7703 { 7704 } 7705 7706 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7707 { 7708 struct loc_track *t = seq->private; 7709 7710 t->idx = ++(*ppos); 7711 if (*ppos <= t->count) 7712 return ppos; 7713 7714 return NULL; 7715 } 7716 7717 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7718 { 7719 struct location *loc1 = (struct location *)a; 7720 struct location *loc2 = (struct location *)b; 7721 7722 if (loc1->count > loc2->count) 7723 return -1; 7724 else 7725 return 1; 7726 } 7727 7728 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7729 { 7730 struct loc_track *t = seq->private; 7731 7732 t->idx = *ppos; 7733 return ppos; 7734 } 7735 7736 static const struct seq_operations slab_debugfs_sops = { 7737 .start = slab_debugfs_start, 7738 .next = slab_debugfs_next, 7739 .stop = slab_debugfs_stop, 7740 .show = slab_debugfs_show, 7741 }; 7742 7743 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7744 { 7745 7746 struct kmem_cache_node *n; 7747 enum track_item alloc; 7748 int node; 7749 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7750 sizeof(struct loc_track)); 7751 struct kmem_cache *s = file_inode(filep)->i_private; 7752 unsigned long *obj_map; 7753 7754 if (!t) 7755 return -ENOMEM; 7756 7757 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7758 if (!obj_map) { 7759 seq_release_private(inode, filep); 7760 return -ENOMEM; 7761 } 7762 7763 alloc = debugfs_get_aux_num(filep); 7764 7765 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7766 bitmap_free(obj_map); 7767 seq_release_private(inode, filep); 7768 return -ENOMEM; 7769 } 7770 7771 for_each_kmem_cache_node(s, node, n) { 7772 unsigned long flags; 7773 struct slab *slab; 7774 7775 if (!node_nr_slabs(n)) 7776 continue; 7777 7778 spin_lock_irqsave(&n->list_lock, flags); 7779 list_for_each_entry(slab, &n->partial, slab_list) 7780 process_slab(t, s, slab, alloc, obj_map); 7781 list_for_each_entry(slab, &n->full, slab_list) 7782 process_slab(t, s, slab, alloc, obj_map); 7783 spin_unlock_irqrestore(&n->list_lock, flags); 7784 } 7785 7786 /* Sort locations by count */ 7787 sort_r(t->loc, t->count, sizeof(struct location), 7788 cmp_loc_by_count, NULL, NULL); 7789 7790 bitmap_free(obj_map); 7791 return 0; 7792 } 7793 7794 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7795 { 7796 struct seq_file *seq = file->private_data; 7797 struct loc_track *t = seq->private; 7798 7799 free_loc_track(t); 7800 return seq_release_private(inode, file); 7801 } 7802 7803 static const struct file_operations slab_debugfs_fops = { 7804 .open = slab_debug_trace_open, 7805 .read = seq_read, 7806 .llseek = seq_lseek, 7807 .release = slab_debug_trace_release, 7808 }; 7809 7810 static void debugfs_slab_add(struct kmem_cache *s) 7811 { 7812 struct dentry *slab_cache_dir; 7813 7814 if (unlikely(!slab_debugfs_root)) 7815 return; 7816 7817 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7818 7819 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s, 7820 TRACK_ALLOC, &slab_debugfs_fops); 7821 7822 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s, 7823 TRACK_FREE, &slab_debugfs_fops); 7824 } 7825 7826 void debugfs_slab_release(struct kmem_cache *s) 7827 { 7828 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7829 } 7830 7831 static int __init slab_debugfs_init(void) 7832 { 7833 struct kmem_cache *s; 7834 7835 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7836 7837 list_for_each_entry(s, &slab_caches, list) 7838 if (s->flags & SLAB_STORE_USER) 7839 debugfs_slab_add(s); 7840 7841 return 0; 7842 7843 } 7844 __initcall(slab_debugfs_init); 7845 #endif 7846 /* 7847 * The /proc/slabinfo ABI 7848 */ 7849 #ifdef CONFIG_SLUB_DEBUG 7850 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7851 { 7852 unsigned long nr_slabs = 0; 7853 unsigned long nr_objs = 0; 7854 unsigned long nr_free = 0; 7855 int node; 7856 struct kmem_cache_node *n; 7857 7858 for_each_kmem_cache_node(s, node, n) { 7859 nr_slabs += node_nr_slabs(n); 7860 nr_objs += node_nr_objs(n); 7861 nr_free += count_partial_free_approx(n); 7862 } 7863 7864 sinfo->active_objs = nr_objs - nr_free; 7865 sinfo->num_objs = nr_objs; 7866 sinfo->active_slabs = nr_slabs; 7867 sinfo->num_slabs = nr_slabs; 7868 sinfo->objects_per_slab = oo_objects(s->oo); 7869 sinfo->cache_order = oo_order(s->oo); 7870 } 7871 #endif /* CONFIG_SLUB_DEBUG */ 7872