xref: /linux/mm/slub.c (revision f5db8841ebe59dbdf07fda797c88ccb51e0c893d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slub_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
314 #else
315 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0U)
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated frozen slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * freeptr_t represents a SLUB freelist pointer, which might be encoded
470  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471  */
472 typedef struct { unsigned long v; } freeptr_t;
473 
474 /*
475  * Returns freelist pointer (ptr). With hardening, this is obfuscated
476  * with an XOR of the address where the pointer is held and a per-cache
477  * random number.
478  */
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 					    void *ptr, unsigned long ptr_addr)
481 {
482 	unsigned long encoded;
483 
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486 #else
487 	encoded = (unsigned long)ptr;
488 #endif
489 	return (freeptr_t){.v = encoded};
490 }
491 
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 					freeptr_t ptr, unsigned long ptr_addr)
494 {
495 	void *decoded;
496 
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499 #else
500 	decoded = (void *)ptr.v;
501 #endif
502 	return decoded;
503 }
504 
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
506 {
507 	unsigned long ptr_addr;
508 	freeptr_t p;
509 
510 	object = kasan_reset_tag(object);
511 	ptr_addr = (unsigned long)object + s->offset;
512 	p = *(freeptr_t *)(ptr_addr);
513 	return freelist_ptr_decode(s, p, ptr_addr);
514 }
515 
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518 {
519 	prefetchw(object + s->offset);
520 }
521 #endif
522 
523 /*
524  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525  * pointer value in the case the current thread loses the race for the next
526  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528  * KMSAN will still check all arguments of cmpxchg because of imperfect
529  * handling of inline assembly.
530  * To work around this problem, we apply __no_kmsan_checks to ensure that
531  * get_freepointer_safe() returns initialized memory.
532  */
533 __no_kmsan_checks
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535 {
536 	unsigned long freepointer_addr;
537 	freeptr_t p;
538 
539 	if (!debug_pagealloc_enabled_static())
540 		return get_freepointer(s, object);
541 
542 	object = kasan_reset_tag(object);
543 	freepointer_addr = (unsigned long)object + s->offset;
544 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 	return freelist_ptr_decode(s, p, freepointer_addr);
546 }
547 
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549 {
550 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
551 
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 	BUG_ON(object == fp); /* naive detection of double free or corruption */
554 #endif
555 
556 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558 }
559 
560 /* Loop over all objects in a slab */
561 #define for_each_object(__p, __s, __addr, __objects) \
562 	for (__p = fixup_red_left(__s, __addr); \
563 		__p < (__addr) + (__objects) * (__s)->size; \
564 		__p += (__s)->size)
565 
566 static inline unsigned int order_objects(unsigned int order, unsigned int size)
567 {
568 	return ((unsigned int)PAGE_SIZE << order) / size;
569 }
570 
571 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
572 		unsigned int size)
573 {
574 	struct kmem_cache_order_objects x = {
575 		(order << OO_SHIFT) + order_objects(order, size)
576 	};
577 
578 	return x;
579 }
580 
581 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
582 {
583 	return x.x >> OO_SHIFT;
584 }
585 
586 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
587 {
588 	return x.x & OO_MASK;
589 }
590 
591 #ifdef CONFIG_SLUB_CPU_PARTIAL
592 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
593 {
594 	unsigned int nr_slabs;
595 
596 	s->cpu_partial = nr_objects;
597 
598 	/*
599 	 * We take the number of objects but actually limit the number of
600 	 * slabs on the per cpu partial list, in order to limit excessive
601 	 * growth of the list. For simplicity we assume that the slabs will
602 	 * be half-full.
603 	 */
604 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
605 	s->cpu_partial_slabs = nr_slabs;
606 }
607 #else
608 static inline void
609 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
610 {
611 }
612 #endif /* CONFIG_SLUB_CPU_PARTIAL */
613 
614 /*
615  * Per slab locking using the pagelock
616  */
617 static __always_inline void slab_lock(struct slab *slab)
618 {
619 	struct page *page = slab_page(slab);
620 
621 	VM_BUG_ON_PAGE(PageTail(page), page);
622 	bit_spin_lock(PG_locked, &page->flags);
623 }
624 
625 static __always_inline void slab_unlock(struct slab *slab)
626 {
627 	struct page *page = slab_page(slab);
628 
629 	VM_BUG_ON_PAGE(PageTail(page), page);
630 	bit_spin_unlock(PG_locked, &page->flags);
631 }
632 
633 static inline bool
634 __update_freelist_fast(struct slab *slab,
635 		      void *freelist_old, unsigned long counters_old,
636 		      void *freelist_new, unsigned long counters_new)
637 {
638 #ifdef system_has_freelist_aba
639 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
640 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
641 
642 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
643 #else
644 	return false;
645 #endif
646 }
647 
648 static inline bool
649 __update_freelist_slow(struct slab *slab,
650 		      void *freelist_old, unsigned long counters_old,
651 		      void *freelist_new, unsigned long counters_new)
652 {
653 	bool ret = false;
654 
655 	slab_lock(slab);
656 	if (slab->freelist == freelist_old &&
657 	    slab->counters == counters_old) {
658 		slab->freelist = freelist_new;
659 		slab->counters = counters_new;
660 		ret = true;
661 	}
662 	slab_unlock(slab);
663 
664 	return ret;
665 }
666 
667 /*
668  * Interrupts must be disabled (for the fallback code to work right), typically
669  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
670  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
671  * allocation/ free operation in hardirq context. Therefore nothing can
672  * interrupt the operation.
673  */
674 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
675 		void *freelist_old, unsigned long counters_old,
676 		void *freelist_new, unsigned long counters_new,
677 		const char *n)
678 {
679 	bool ret;
680 
681 	if (USE_LOCKLESS_FAST_PATH())
682 		lockdep_assert_irqs_disabled();
683 
684 	if (s->flags & __CMPXCHG_DOUBLE) {
685 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
686 				            freelist_new, counters_new);
687 	} else {
688 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
689 				            freelist_new, counters_new);
690 	}
691 	if (likely(ret))
692 		return true;
693 
694 	cpu_relax();
695 	stat(s, CMPXCHG_DOUBLE_FAIL);
696 
697 #ifdef SLUB_DEBUG_CMPXCHG
698 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
699 #endif
700 
701 	return false;
702 }
703 
704 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
705 		void *freelist_old, unsigned long counters_old,
706 		void *freelist_new, unsigned long counters_new,
707 		const char *n)
708 {
709 	bool ret;
710 
711 	if (s->flags & __CMPXCHG_DOUBLE) {
712 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
713 				            freelist_new, counters_new);
714 	} else {
715 		unsigned long flags;
716 
717 		local_irq_save(flags);
718 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
719 				            freelist_new, counters_new);
720 		local_irq_restore(flags);
721 	}
722 	if (likely(ret))
723 		return true;
724 
725 	cpu_relax();
726 	stat(s, CMPXCHG_DOUBLE_FAIL);
727 
728 #ifdef SLUB_DEBUG_CMPXCHG
729 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
730 #endif
731 
732 	return false;
733 }
734 
735 #ifdef CONFIG_SLUB_DEBUG
736 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
737 static DEFINE_SPINLOCK(object_map_lock);
738 
739 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
740 		       struct slab *slab)
741 {
742 	void *addr = slab_address(slab);
743 	void *p;
744 
745 	bitmap_zero(obj_map, slab->objects);
746 
747 	for (p = slab->freelist; p; p = get_freepointer(s, p))
748 		set_bit(__obj_to_index(s, addr, p), obj_map);
749 }
750 
751 #if IS_ENABLED(CONFIG_KUNIT)
752 static bool slab_add_kunit_errors(void)
753 {
754 	struct kunit_resource *resource;
755 
756 	if (!kunit_get_current_test())
757 		return false;
758 
759 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
760 	if (!resource)
761 		return false;
762 
763 	(*(int *)resource->data)++;
764 	kunit_put_resource(resource);
765 	return true;
766 }
767 #else
768 static inline bool slab_add_kunit_errors(void) { return false; }
769 #endif
770 
771 static inline unsigned int size_from_object(struct kmem_cache *s)
772 {
773 	if (s->flags & SLAB_RED_ZONE)
774 		return s->size - s->red_left_pad;
775 
776 	return s->size;
777 }
778 
779 static inline void *restore_red_left(struct kmem_cache *s, void *p)
780 {
781 	if (s->flags & SLAB_RED_ZONE)
782 		p -= s->red_left_pad;
783 
784 	return p;
785 }
786 
787 /*
788  * Debug settings:
789  */
790 #if defined(CONFIG_SLUB_DEBUG_ON)
791 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
792 #else
793 static slab_flags_t slub_debug;
794 #endif
795 
796 static char *slub_debug_string;
797 static int disable_higher_order_debug;
798 
799 /*
800  * slub is about to manipulate internal object metadata.  This memory lies
801  * outside the range of the allocated object, so accessing it would normally
802  * be reported by kasan as a bounds error.  metadata_access_enable() is used
803  * to tell kasan that these accesses are OK.
804  */
805 static inline void metadata_access_enable(void)
806 {
807 	kasan_disable_current();
808 }
809 
810 static inline void metadata_access_disable(void)
811 {
812 	kasan_enable_current();
813 }
814 
815 /*
816  * Object debugging
817  */
818 
819 /* Verify that a pointer has an address that is valid within a slab page */
820 static inline int check_valid_pointer(struct kmem_cache *s,
821 				struct slab *slab, void *object)
822 {
823 	void *base;
824 
825 	if (!object)
826 		return 1;
827 
828 	base = slab_address(slab);
829 	object = kasan_reset_tag(object);
830 	object = restore_red_left(s, object);
831 	if (object < base || object >= base + slab->objects * s->size ||
832 		(object - base) % s->size) {
833 		return 0;
834 	}
835 
836 	return 1;
837 }
838 
839 static void print_section(char *level, char *text, u8 *addr,
840 			  unsigned int length)
841 {
842 	metadata_access_enable();
843 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
844 			16, 1, kasan_reset_tag((void *)addr), length, 1);
845 	metadata_access_disable();
846 }
847 
848 /*
849  * See comment in calculate_sizes().
850  */
851 static inline bool freeptr_outside_object(struct kmem_cache *s)
852 {
853 	return s->offset >= s->inuse;
854 }
855 
856 /*
857  * Return offset of the end of info block which is inuse + free pointer if
858  * not overlapping with object.
859  */
860 static inline unsigned int get_info_end(struct kmem_cache *s)
861 {
862 	if (freeptr_outside_object(s))
863 		return s->inuse + sizeof(void *);
864 	else
865 		return s->inuse;
866 }
867 
868 static struct track *get_track(struct kmem_cache *s, void *object,
869 	enum track_item alloc)
870 {
871 	struct track *p;
872 
873 	p = object + get_info_end(s);
874 
875 	return kasan_reset_tag(p + alloc);
876 }
877 
878 #ifdef CONFIG_STACKDEPOT
879 static noinline depot_stack_handle_t set_track_prepare(void)
880 {
881 	depot_stack_handle_t handle;
882 	unsigned long entries[TRACK_ADDRS_COUNT];
883 	unsigned int nr_entries;
884 
885 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
886 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
887 
888 	return handle;
889 }
890 #else
891 static inline depot_stack_handle_t set_track_prepare(void)
892 {
893 	return 0;
894 }
895 #endif
896 
897 static void set_track_update(struct kmem_cache *s, void *object,
898 			     enum track_item alloc, unsigned long addr,
899 			     depot_stack_handle_t handle)
900 {
901 	struct track *p = get_track(s, object, alloc);
902 
903 #ifdef CONFIG_STACKDEPOT
904 	p->handle = handle;
905 #endif
906 	p->addr = addr;
907 	p->cpu = smp_processor_id();
908 	p->pid = current->pid;
909 	p->when = jiffies;
910 }
911 
912 static __always_inline void set_track(struct kmem_cache *s, void *object,
913 				      enum track_item alloc, unsigned long addr)
914 {
915 	depot_stack_handle_t handle = set_track_prepare();
916 
917 	set_track_update(s, object, alloc, addr, handle);
918 }
919 
920 static void init_tracking(struct kmem_cache *s, void *object)
921 {
922 	struct track *p;
923 
924 	if (!(s->flags & SLAB_STORE_USER))
925 		return;
926 
927 	p = get_track(s, object, TRACK_ALLOC);
928 	memset(p, 0, 2*sizeof(struct track));
929 }
930 
931 static void print_track(const char *s, struct track *t, unsigned long pr_time)
932 {
933 	depot_stack_handle_t handle __maybe_unused;
934 
935 	if (!t->addr)
936 		return;
937 
938 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
939 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
940 #ifdef CONFIG_STACKDEPOT
941 	handle = READ_ONCE(t->handle);
942 	if (handle)
943 		stack_depot_print(handle);
944 	else
945 		pr_err("object allocation/free stack trace missing\n");
946 #endif
947 }
948 
949 void print_tracking(struct kmem_cache *s, void *object)
950 {
951 	unsigned long pr_time = jiffies;
952 	if (!(s->flags & SLAB_STORE_USER))
953 		return;
954 
955 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
956 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
957 }
958 
959 static void print_slab_info(const struct slab *slab)
960 {
961 	struct folio *folio = (struct folio *)slab_folio(slab);
962 
963 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
964 	       slab, slab->objects, slab->inuse, slab->freelist,
965 	       folio_flags(folio, 0));
966 }
967 
968 /*
969  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
970  * family will round up the real request size to these fixed ones, so
971  * there could be an extra area than what is requested. Save the original
972  * request size in the meta data area, for better debug and sanity check.
973  */
974 static inline void set_orig_size(struct kmem_cache *s,
975 				void *object, unsigned int orig_size)
976 {
977 	void *p = kasan_reset_tag(object);
978 	unsigned int kasan_meta_size;
979 
980 	if (!slub_debug_orig_size(s))
981 		return;
982 
983 	/*
984 	 * KASAN can save its free meta data inside of the object at offset 0.
985 	 * If this meta data size is larger than 'orig_size', it will overlap
986 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
987 	 * 'orig_size' to be as at least as big as KASAN's meta data.
988 	 */
989 	kasan_meta_size = kasan_metadata_size(s, true);
990 	if (kasan_meta_size > orig_size)
991 		orig_size = kasan_meta_size;
992 
993 	p += get_info_end(s);
994 	p += sizeof(struct track) * 2;
995 
996 	*(unsigned int *)p = orig_size;
997 }
998 
999 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1000 {
1001 	void *p = kasan_reset_tag(object);
1002 
1003 	if (!slub_debug_orig_size(s))
1004 		return s->object_size;
1005 
1006 	p += get_info_end(s);
1007 	p += sizeof(struct track) * 2;
1008 
1009 	return *(unsigned int *)p;
1010 }
1011 
1012 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1013 {
1014 	set_orig_size(s, (void *)object, s->object_size);
1015 }
1016 
1017 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1018 {
1019 	struct va_format vaf;
1020 	va_list args;
1021 
1022 	va_start(args, fmt);
1023 	vaf.fmt = fmt;
1024 	vaf.va = &args;
1025 	pr_err("=============================================================================\n");
1026 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1027 	pr_err("-----------------------------------------------------------------------------\n\n");
1028 	va_end(args);
1029 }
1030 
1031 __printf(2, 3)
1032 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1033 {
1034 	struct va_format vaf;
1035 	va_list args;
1036 
1037 	if (slab_add_kunit_errors())
1038 		return;
1039 
1040 	va_start(args, fmt);
1041 	vaf.fmt = fmt;
1042 	vaf.va = &args;
1043 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1044 	va_end(args);
1045 }
1046 
1047 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1048 {
1049 	unsigned int off;	/* Offset of last byte */
1050 	u8 *addr = slab_address(slab);
1051 
1052 	print_tracking(s, p);
1053 
1054 	print_slab_info(slab);
1055 
1056 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1057 	       p, p - addr, get_freepointer(s, p));
1058 
1059 	if (s->flags & SLAB_RED_ZONE)
1060 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1061 			      s->red_left_pad);
1062 	else if (p > addr + 16)
1063 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1064 
1065 	print_section(KERN_ERR,         "Object   ", p,
1066 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1067 	if (s->flags & SLAB_RED_ZONE)
1068 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1069 			s->inuse - s->object_size);
1070 
1071 	off = get_info_end(s);
1072 
1073 	if (s->flags & SLAB_STORE_USER)
1074 		off += 2 * sizeof(struct track);
1075 
1076 	if (slub_debug_orig_size(s))
1077 		off += sizeof(unsigned int);
1078 
1079 	off += kasan_metadata_size(s, false);
1080 
1081 	if (off != size_from_object(s))
1082 		/* Beginning of the filler is the free pointer */
1083 		print_section(KERN_ERR, "Padding  ", p + off,
1084 			      size_from_object(s) - off);
1085 
1086 	dump_stack();
1087 }
1088 
1089 static void object_err(struct kmem_cache *s, struct slab *slab,
1090 			u8 *object, char *reason)
1091 {
1092 	if (slab_add_kunit_errors())
1093 		return;
1094 
1095 	slab_bug(s, "%s", reason);
1096 	print_trailer(s, slab, object);
1097 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1098 }
1099 
1100 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1101 			       void **freelist, void *nextfree)
1102 {
1103 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1104 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1105 		object_err(s, slab, *freelist, "Freechain corrupt");
1106 		*freelist = NULL;
1107 		slab_fix(s, "Isolate corrupted freechain");
1108 		return true;
1109 	}
1110 
1111 	return false;
1112 }
1113 
1114 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1115 			const char *fmt, ...)
1116 {
1117 	va_list args;
1118 	char buf[100];
1119 
1120 	if (slab_add_kunit_errors())
1121 		return;
1122 
1123 	va_start(args, fmt);
1124 	vsnprintf(buf, sizeof(buf), fmt, args);
1125 	va_end(args);
1126 	slab_bug(s, "%s", buf);
1127 	print_slab_info(slab);
1128 	dump_stack();
1129 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1130 }
1131 
1132 static void init_object(struct kmem_cache *s, void *object, u8 val)
1133 {
1134 	u8 *p = kasan_reset_tag(object);
1135 	unsigned int poison_size = s->object_size;
1136 
1137 	if (s->flags & SLAB_RED_ZONE) {
1138 		memset(p - s->red_left_pad, val, s->red_left_pad);
1139 
1140 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1141 			/*
1142 			 * Redzone the extra allocated space by kmalloc than
1143 			 * requested, and the poison size will be limited to
1144 			 * the original request size accordingly.
1145 			 */
1146 			poison_size = get_orig_size(s, object);
1147 		}
1148 	}
1149 
1150 	if (s->flags & __OBJECT_POISON) {
1151 		memset(p, POISON_FREE, poison_size - 1);
1152 		p[poison_size - 1] = POISON_END;
1153 	}
1154 
1155 	if (s->flags & SLAB_RED_ZONE)
1156 		memset(p + poison_size, val, s->inuse - poison_size);
1157 }
1158 
1159 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1160 						void *from, void *to)
1161 {
1162 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1163 	memset(from, data, to - from);
1164 }
1165 
1166 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1167 			u8 *object, char *what,
1168 			u8 *start, unsigned int value, unsigned int bytes)
1169 {
1170 	u8 *fault;
1171 	u8 *end;
1172 	u8 *addr = slab_address(slab);
1173 
1174 	metadata_access_enable();
1175 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1176 	metadata_access_disable();
1177 	if (!fault)
1178 		return 1;
1179 
1180 	end = start + bytes;
1181 	while (end > fault && end[-1] == value)
1182 		end--;
1183 
1184 	if (slab_add_kunit_errors())
1185 		goto skip_bug_print;
1186 
1187 	slab_bug(s, "%s overwritten", what);
1188 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1189 					fault, end - 1, fault - addr,
1190 					fault[0], value);
1191 	print_trailer(s, slab, object);
1192 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1193 
1194 skip_bug_print:
1195 	restore_bytes(s, what, value, fault, end);
1196 	return 0;
1197 }
1198 
1199 /*
1200  * Object layout:
1201  *
1202  * object address
1203  * 	Bytes of the object to be managed.
1204  * 	If the freepointer may overlay the object then the free
1205  *	pointer is at the middle of the object.
1206  *
1207  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1208  * 	0xa5 (POISON_END)
1209  *
1210  * object + s->object_size
1211  * 	Padding to reach word boundary. This is also used for Redzoning.
1212  * 	Padding is extended by another word if Redzoning is enabled and
1213  * 	object_size == inuse.
1214  *
1215  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1216  * 	0xcc (RED_ACTIVE) for objects in use.
1217  *
1218  * object + s->inuse
1219  * 	Meta data starts here.
1220  *
1221  * 	A. Free pointer (if we cannot overwrite object on free)
1222  * 	B. Tracking data for SLAB_STORE_USER
1223  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1224  *	D. Padding to reach required alignment boundary or at minimum
1225  * 		one word if debugging is on to be able to detect writes
1226  * 		before the word boundary.
1227  *
1228  *	Padding is done using 0x5a (POISON_INUSE)
1229  *
1230  * object + s->size
1231  * 	Nothing is used beyond s->size.
1232  *
1233  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1234  * ignored. And therefore no slab options that rely on these boundaries
1235  * may be used with merged slabcaches.
1236  */
1237 
1238 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1239 {
1240 	unsigned long off = get_info_end(s);	/* The end of info */
1241 
1242 	if (s->flags & SLAB_STORE_USER) {
1243 		/* We also have user information there */
1244 		off += 2 * sizeof(struct track);
1245 
1246 		if (s->flags & SLAB_KMALLOC)
1247 			off += sizeof(unsigned int);
1248 	}
1249 
1250 	off += kasan_metadata_size(s, false);
1251 
1252 	if (size_from_object(s) == off)
1253 		return 1;
1254 
1255 	return check_bytes_and_report(s, slab, p, "Object padding",
1256 			p + off, POISON_INUSE, size_from_object(s) - off);
1257 }
1258 
1259 /* Check the pad bytes at the end of a slab page */
1260 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1261 {
1262 	u8 *start;
1263 	u8 *fault;
1264 	u8 *end;
1265 	u8 *pad;
1266 	int length;
1267 	int remainder;
1268 
1269 	if (!(s->flags & SLAB_POISON))
1270 		return;
1271 
1272 	start = slab_address(slab);
1273 	length = slab_size(slab);
1274 	end = start + length;
1275 	remainder = length % s->size;
1276 	if (!remainder)
1277 		return;
1278 
1279 	pad = end - remainder;
1280 	metadata_access_enable();
1281 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1282 	metadata_access_disable();
1283 	if (!fault)
1284 		return;
1285 	while (end > fault && end[-1] == POISON_INUSE)
1286 		end--;
1287 
1288 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1289 			fault, end - 1, fault - start);
1290 	print_section(KERN_ERR, "Padding ", pad, remainder);
1291 
1292 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1293 }
1294 
1295 static int check_object(struct kmem_cache *s, struct slab *slab,
1296 					void *object, u8 val)
1297 {
1298 	u8 *p = object;
1299 	u8 *endobject = object + s->object_size;
1300 	unsigned int orig_size, kasan_meta_size;
1301 
1302 	if (s->flags & SLAB_RED_ZONE) {
1303 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1304 			object - s->red_left_pad, val, s->red_left_pad))
1305 			return 0;
1306 
1307 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1308 			endobject, val, s->inuse - s->object_size))
1309 			return 0;
1310 
1311 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1312 			orig_size = get_orig_size(s, object);
1313 
1314 			if (s->object_size > orig_size  &&
1315 				!check_bytes_and_report(s, slab, object,
1316 					"kmalloc Redzone", p + orig_size,
1317 					val, s->object_size - orig_size)) {
1318 				return 0;
1319 			}
1320 		}
1321 	} else {
1322 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1323 			check_bytes_and_report(s, slab, p, "Alignment padding",
1324 				endobject, POISON_INUSE,
1325 				s->inuse - s->object_size);
1326 		}
1327 	}
1328 
1329 	if (s->flags & SLAB_POISON) {
1330 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1331 			/*
1332 			 * KASAN can save its free meta data inside of the
1333 			 * object at offset 0. Thus, skip checking the part of
1334 			 * the redzone that overlaps with the meta data.
1335 			 */
1336 			kasan_meta_size = kasan_metadata_size(s, true);
1337 			if (kasan_meta_size < s->object_size - 1 &&
1338 			    !check_bytes_and_report(s, slab, p, "Poison",
1339 					p + kasan_meta_size, POISON_FREE,
1340 					s->object_size - kasan_meta_size - 1))
1341 				return 0;
1342 			if (kasan_meta_size < s->object_size &&
1343 			    !check_bytes_and_report(s, slab, p, "End Poison",
1344 					p + s->object_size - 1, POISON_END, 1))
1345 				return 0;
1346 		}
1347 		/*
1348 		 * check_pad_bytes cleans up on its own.
1349 		 */
1350 		check_pad_bytes(s, slab, p);
1351 	}
1352 
1353 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1354 		/*
1355 		 * Object and freepointer overlap. Cannot check
1356 		 * freepointer while object is allocated.
1357 		 */
1358 		return 1;
1359 
1360 	/* Check free pointer validity */
1361 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1362 		object_err(s, slab, p, "Freepointer corrupt");
1363 		/*
1364 		 * No choice but to zap it and thus lose the remainder
1365 		 * of the free objects in this slab. May cause
1366 		 * another error because the object count is now wrong.
1367 		 */
1368 		set_freepointer(s, p, NULL);
1369 		return 0;
1370 	}
1371 	return 1;
1372 }
1373 
1374 static int check_slab(struct kmem_cache *s, struct slab *slab)
1375 {
1376 	int maxobj;
1377 
1378 	if (!folio_test_slab(slab_folio(slab))) {
1379 		slab_err(s, slab, "Not a valid slab page");
1380 		return 0;
1381 	}
1382 
1383 	maxobj = order_objects(slab_order(slab), s->size);
1384 	if (slab->objects > maxobj) {
1385 		slab_err(s, slab, "objects %u > max %u",
1386 			slab->objects, maxobj);
1387 		return 0;
1388 	}
1389 	if (slab->inuse > slab->objects) {
1390 		slab_err(s, slab, "inuse %u > max %u",
1391 			slab->inuse, slab->objects);
1392 		return 0;
1393 	}
1394 	/* Slab_pad_check fixes things up after itself */
1395 	slab_pad_check(s, slab);
1396 	return 1;
1397 }
1398 
1399 /*
1400  * Determine if a certain object in a slab is on the freelist. Must hold the
1401  * slab lock to guarantee that the chains are in a consistent state.
1402  */
1403 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1404 {
1405 	int nr = 0;
1406 	void *fp;
1407 	void *object = NULL;
1408 	int max_objects;
1409 
1410 	fp = slab->freelist;
1411 	while (fp && nr <= slab->objects) {
1412 		if (fp == search)
1413 			return 1;
1414 		if (!check_valid_pointer(s, slab, fp)) {
1415 			if (object) {
1416 				object_err(s, slab, object,
1417 					"Freechain corrupt");
1418 				set_freepointer(s, object, NULL);
1419 			} else {
1420 				slab_err(s, slab, "Freepointer corrupt");
1421 				slab->freelist = NULL;
1422 				slab->inuse = slab->objects;
1423 				slab_fix(s, "Freelist cleared");
1424 				return 0;
1425 			}
1426 			break;
1427 		}
1428 		object = fp;
1429 		fp = get_freepointer(s, object);
1430 		nr++;
1431 	}
1432 
1433 	max_objects = order_objects(slab_order(slab), s->size);
1434 	if (max_objects > MAX_OBJS_PER_PAGE)
1435 		max_objects = MAX_OBJS_PER_PAGE;
1436 
1437 	if (slab->objects != max_objects) {
1438 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1439 			 slab->objects, max_objects);
1440 		slab->objects = max_objects;
1441 		slab_fix(s, "Number of objects adjusted");
1442 	}
1443 	if (slab->inuse != slab->objects - nr) {
1444 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1445 			 slab->inuse, slab->objects - nr);
1446 		slab->inuse = slab->objects - nr;
1447 		slab_fix(s, "Object count adjusted");
1448 	}
1449 	return search == NULL;
1450 }
1451 
1452 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1453 								int alloc)
1454 {
1455 	if (s->flags & SLAB_TRACE) {
1456 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1457 			s->name,
1458 			alloc ? "alloc" : "free",
1459 			object, slab->inuse,
1460 			slab->freelist);
1461 
1462 		if (!alloc)
1463 			print_section(KERN_INFO, "Object ", (void *)object,
1464 					s->object_size);
1465 
1466 		dump_stack();
1467 	}
1468 }
1469 
1470 /*
1471  * Tracking of fully allocated slabs for debugging purposes.
1472  */
1473 static void add_full(struct kmem_cache *s,
1474 	struct kmem_cache_node *n, struct slab *slab)
1475 {
1476 	if (!(s->flags & SLAB_STORE_USER))
1477 		return;
1478 
1479 	lockdep_assert_held(&n->list_lock);
1480 	list_add(&slab->slab_list, &n->full);
1481 }
1482 
1483 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1484 {
1485 	if (!(s->flags & SLAB_STORE_USER))
1486 		return;
1487 
1488 	lockdep_assert_held(&n->list_lock);
1489 	list_del(&slab->slab_list);
1490 }
1491 
1492 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1493 {
1494 	return atomic_long_read(&n->nr_slabs);
1495 }
1496 
1497 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1498 {
1499 	struct kmem_cache_node *n = get_node(s, node);
1500 
1501 	/*
1502 	 * May be called early in order to allocate a slab for the
1503 	 * kmem_cache_node structure. Solve the chicken-egg
1504 	 * dilemma by deferring the increment of the count during
1505 	 * bootstrap (see early_kmem_cache_node_alloc).
1506 	 */
1507 	if (likely(n)) {
1508 		atomic_long_inc(&n->nr_slabs);
1509 		atomic_long_add(objects, &n->total_objects);
1510 	}
1511 }
1512 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1513 {
1514 	struct kmem_cache_node *n = get_node(s, node);
1515 
1516 	atomic_long_dec(&n->nr_slabs);
1517 	atomic_long_sub(objects, &n->total_objects);
1518 }
1519 
1520 /* Object debug checks for alloc/free paths */
1521 static void setup_object_debug(struct kmem_cache *s, void *object)
1522 {
1523 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1524 		return;
1525 
1526 	init_object(s, object, SLUB_RED_INACTIVE);
1527 	init_tracking(s, object);
1528 }
1529 
1530 static
1531 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1532 {
1533 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1534 		return;
1535 
1536 	metadata_access_enable();
1537 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1538 	metadata_access_disable();
1539 }
1540 
1541 static inline int alloc_consistency_checks(struct kmem_cache *s,
1542 					struct slab *slab, void *object)
1543 {
1544 	if (!check_slab(s, slab))
1545 		return 0;
1546 
1547 	if (!check_valid_pointer(s, slab, object)) {
1548 		object_err(s, slab, object, "Freelist Pointer check fails");
1549 		return 0;
1550 	}
1551 
1552 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1553 		return 0;
1554 
1555 	return 1;
1556 }
1557 
1558 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1559 			struct slab *slab, void *object, int orig_size)
1560 {
1561 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1562 		if (!alloc_consistency_checks(s, slab, object))
1563 			goto bad;
1564 	}
1565 
1566 	/* Success. Perform special debug activities for allocs */
1567 	trace(s, slab, object, 1);
1568 	set_orig_size(s, object, orig_size);
1569 	init_object(s, object, SLUB_RED_ACTIVE);
1570 	return true;
1571 
1572 bad:
1573 	if (folio_test_slab(slab_folio(slab))) {
1574 		/*
1575 		 * If this is a slab page then lets do the best we can
1576 		 * to avoid issues in the future. Marking all objects
1577 		 * as used avoids touching the remaining objects.
1578 		 */
1579 		slab_fix(s, "Marking all objects used");
1580 		slab->inuse = slab->objects;
1581 		slab->freelist = NULL;
1582 	}
1583 	return false;
1584 }
1585 
1586 static inline int free_consistency_checks(struct kmem_cache *s,
1587 		struct slab *slab, void *object, unsigned long addr)
1588 {
1589 	if (!check_valid_pointer(s, slab, object)) {
1590 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1591 		return 0;
1592 	}
1593 
1594 	if (on_freelist(s, slab, object)) {
1595 		object_err(s, slab, object, "Object already free");
1596 		return 0;
1597 	}
1598 
1599 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1600 		return 0;
1601 
1602 	if (unlikely(s != slab->slab_cache)) {
1603 		if (!folio_test_slab(slab_folio(slab))) {
1604 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1605 				 object);
1606 		} else if (!slab->slab_cache) {
1607 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1608 			       object);
1609 			dump_stack();
1610 		} else
1611 			object_err(s, slab, object,
1612 					"page slab pointer corrupt.");
1613 		return 0;
1614 	}
1615 	return 1;
1616 }
1617 
1618 /*
1619  * Parse a block of slub_debug options. Blocks are delimited by ';'
1620  *
1621  * @str:    start of block
1622  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1623  * @slabs:  return start of list of slabs, or NULL when there's no list
1624  * @init:   assume this is initial parsing and not per-kmem-create parsing
1625  *
1626  * returns the start of next block if there's any, or NULL
1627  */
1628 static char *
1629 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1630 {
1631 	bool higher_order_disable = false;
1632 
1633 	/* Skip any completely empty blocks */
1634 	while (*str && *str == ';')
1635 		str++;
1636 
1637 	if (*str == ',') {
1638 		/*
1639 		 * No options but restriction on slabs. This means full
1640 		 * debugging for slabs matching a pattern.
1641 		 */
1642 		*flags = DEBUG_DEFAULT_FLAGS;
1643 		goto check_slabs;
1644 	}
1645 	*flags = 0;
1646 
1647 	/* Determine which debug features should be switched on */
1648 	for (; *str && *str != ',' && *str != ';'; str++) {
1649 		switch (tolower(*str)) {
1650 		case '-':
1651 			*flags = 0;
1652 			break;
1653 		case 'f':
1654 			*flags |= SLAB_CONSISTENCY_CHECKS;
1655 			break;
1656 		case 'z':
1657 			*flags |= SLAB_RED_ZONE;
1658 			break;
1659 		case 'p':
1660 			*flags |= SLAB_POISON;
1661 			break;
1662 		case 'u':
1663 			*flags |= SLAB_STORE_USER;
1664 			break;
1665 		case 't':
1666 			*flags |= SLAB_TRACE;
1667 			break;
1668 		case 'a':
1669 			*flags |= SLAB_FAILSLAB;
1670 			break;
1671 		case 'o':
1672 			/*
1673 			 * Avoid enabling debugging on caches if its minimum
1674 			 * order would increase as a result.
1675 			 */
1676 			higher_order_disable = true;
1677 			break;
1678 		default:
1679 			if (init)
1680 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1681 		}
1682 	}
1683 check_slabs:
1684 	if (*str == ',')
1685 		*slabs = ++str;
1686 	else
1687 		*slabs = NULL;
1688 
1689 	/* Skip over the slab list */
1690 	while (*str && *str != ';')
1691 		str++;
1692 
1693 	/* Skip any completely empty blocks */
1694 	while (*str && *str == ';')
1695 		str++;
1696 
1697 	if (init && higher_order_disable)
1698 		disable_higher_order_debug = 1;
1699 
1700 	if (*str)
1701 		return str;
1702 	else
1703 		return NULL;
1704 }
1705 
1706 static int __init setup_slub_debug(char *str)
1707 {
1708 	slab_flags_t flags;
1709 	slab_flags_t global_flags;
1710 	char *saved_str;
1711 	char *slab_list;
1712 	bool global_slub_debug_changed = false;
1713 	bool slab_list_specified = false;
1714 
1715 	global_flags = DEBUG_DEFAULT_FLAGS;
1716 	if (*str++ != '=' || !*str)
1717 		/*
1718 		 * No options specified. Switch on full debugging.
1719 		 */
1720 		goto out;
1721 
1722 	saved_str = str;
1723 	while (str) {
1724 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1725 
1726 		if (!slab_list) {
1727 			global_flags = flags;
1728 			global_slub_debug_changed = true;
1729 		} else {
1730 			slab_list_specified = true;
1731 			if (flags & SLAB_STORE_USER)
1732 				stack_depot_request_early_init();
1733 		}
1734 	}
1735 
1736 	/*
1737 	 * For backwards compatibility, a single list of flags with list of
1738 	 * slabs means debugging is only changed for those slabs, so the global
1739 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1740 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1741 	 * long as there is no option specifying flags without a slab list.
1742 	 */
1743 	if (slab_list_specified) {
1744 		if (!global_slub_debug_changed)
1745 			global_flags = slub_debug;
1746 		slub_debug_string = saved_str;
1747 	}
1748 out:
1749 	slub_debug = global_flags;
1750 	if (slub_debug & SLAB_STORE_USER)
1751 		stack_depot_request_early_init();
1752 	if (slub_debug != 0 || slub_debug_string)
1753 		static_branch_enable(&slub_debug_enabled);
1754 	else
1755 		static_branch_disable(&slub_debug_enabled);
1756 	if ((static_branch_unlikely(&init_on_alloc) ||
1757 	     static_branch_unlikely(&init_on_free)) &&
1758 	    (slub_debug & SLAB_POISON))
1759 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1760 	return 1;
1761 }
1762 
1763 __setup("slub_debug", setup_slub_debug);
1764 
1765 /*
1766  * kmem_cache_flags - apply debugging options to the cache
1767  * @object_size:	the size of an object without meta data
1768  * @flags:		flags to set
1769  * @name:		name of the cache
1770  *
1771  * Debug option(s) are applied to @flags. In addition to the debug
1772  * option(s), if a slab name (or multiple) is specified i.e.
1773  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1774  * then only the select slabs will receive the debug option(s).
1775  */
1776 slab_flags_t kmem_cache_flags(unsigned int object_size,
1777 	slab_flags_t flags, const char *name)
1778 {
1779 	char *iter;
1780 	size_t len;
1781 	char *next_block;
1782 	slab_flags_t block_flags;
1783 	slab_flags_t slub_debug_local = slub_debug;
1784 
1785 	if (flags & SLAB_NO_USER_FLAGS)
1786 		return flags;
1787 
1788 	/*
1789 	 * If the slab cache is for debugging (e.g. kmemleak) then
1790 	 * don't store user (stack trace) information by default,
1791 	 * but let the user enable it via the command line below.
1792 	 */
1793 	if (flags & SLAB_NOLEAKTRACE)
1794 		slub_debug_local &= ~SLAB_STORE_USER;
1795 
1796 	len = strlen(name);
1797 	next_block = slub_debug_string;
1798 	/* Go through all blocks of debug options, see if any matches our slab's name */
1799 	while (next_block) {
1800 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1801 		if (!iter)
1802 			continue;
1803 		/* Found a block that has a slab list, search it */
1804 		while (*iter) {
1805 			char *end, *glob;
1806 			size_t cmplen;
1807 
1808 			end = strchrnul(iter, ',');
1809 			if (next_block && next_block < end)
1810 				end = next_block - 1;
1811 
1812 			glob = strnchr(iter, end - iter, '*');
1813 			if (glob)
1814 				cmplen = glob - iter;
1815 			else
1816 				cmplen = max_t(size_t, len, (end - iter));
1817 
1818 			if (!strncmp(name, iter, cmplen)) {
1819 				flags |= block_flags;
1820 				return flags;
1821 			}
1822 
1823 			if (!*end || *end == ';')
1824 				break;
1825 			iter = end + 1;
1826 		}
1827 	}
1828 
1829 	return flags | slub_debug_local;
1830 }
1831 #else /* !CONFIG_SLUB_DEBUG */
1832 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1833 static inline
1834 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1835 
1836 static inline bool alloc_debug_processing(struct kmem_cache *s,
1837 	struct slab *slab, void *object, int orig_size) { return true; }
1838 
1839 static inline bool free_debug_processing(struct kmem_cache *s,
1840 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1841 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1842 
1843 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1844 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1845 			void *object, u8 val) { return 1; }
1846 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1847 static inline void set_track(struct kmem_cache *s, void *object,
1848 			     enum track_item alloc, unsigned long addr) {}
1849 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1850 					struct slab *slab) {}
1851 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1852 					struct slab *slab) {}
1853 slab_flags_t kmem_cache_flags(unsigned int object_size,
1854 	slab_flags_t flags, const char *name)
1855 {
1856 	return flags;
1857 }
1858 #define slub_debug 0
1859 
1860 #define disable_higher_order_debug 0
1861 
1862 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1863 							{ return 0; }
1864 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1865 							int objects) {}
1866 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1867 							int objects) {}
1868 
1869 #ifndef CONFIG_SLUB_TINY
1870 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1871 			       void **freelist, void *nextfree)
1872 {
1873 	return false;
1874 }
1875 #endif
1876 #endif /* CONFIG_SLUB_DEBUG */
1877 
1878 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
1879 {
1880 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1881 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
1882 }
1883 
1884 #ifdef CONFIG_MEMCG_KMEM
1885 static inline void memcg_free_slab_cgroups(struct slab *slab)
1886 {
1887 	kfree(slab_objcgs(slab));
1888 	slab->memcg_data = 0;
1889 }
1890 
1891 static inline size_t obj_full_size(struct kmem_cache *s)
1892 {
1893 	/*
1894 	 * For each accounted object there is an extra space which is used
1895 	 * to store obj_cgroup membership. Charge it too.
1896 	 */
1897 	return s->size + sizeof(struct obj_cgroup *);
1898 }
1899 
1900 /*
1901  * Returns false if the allocation should fail.
1902  */
1903 static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
1904 					struct list_lru *lru,
1905 					struct obj_cgroup **objcgp,
1906 					size_t objects, gfp_t flags)
1907 {
1908 	/*
1909 	 * The obtained objcg pointer is safe to use within the current scope,
1910 	 * defined by current task or set_active_memcg() pair.
1911 	 * obj_cgroup_get() is used to get a permanent reference.
1912 	 */
1913 	struct obj_cgroup *objcg = current_obj_cgroup();
1914 	if (!objcg)
1915 		return true;
1916 
1917 	if (lru) {
1918 		int ret;
1919 		struct mem_cgroup *memcg;
1920 
1921 		memcg = get_mem_cgroup_from_objcg(objcg);
1922 		ret = memcg_list_lru_alloc(memcg, lru, flags);
1923 		css_put(&memcg->css);
1924 
1925 		if (ret)
1926 			return false;
1927 	}
1928 
1929 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
1930 		return false;
1931 
1932 	*objcgp = objcg;
1933 	return true;
1934 }
1935 
1936 /*
1937  * Returns false if the allocation should fail.
1938  */
1939 static __fastpath_inline
1940 bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
1941 			       struct obj_cgroup **objcgp, size_t objects,
1942 			       gfp_t flags)
1943 {
1944 	if (!memcg_kmem_online())
1945 		return true;
1946 
1947 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
1948 		return true;
1949 
1950 	return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
1951 						  flags));
1952 }
1953 
1954 static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
1955 					 struct obj_cgroup *objcg,
1956 					 gfp_t flags, size_t size,
1957 					 void **p)
1958 {
1959 	struct slab *slab;
1960 	unsigned long off;
1961 	size_t i;
1962 
1963 	flags &= gfp_allowed_mask;
1964 
1965 	for (i = 0; i < size; i++) {
1966 		if (likely(p[i])) {
1967 			slab = virt_to_slab(p[i]);
1968 
1969 			if (!slab_objcgs(slab) &&
1970 			    memcg_alloc_slab_cgroups(slab, s, flags, false)) {
1971 				obj_cgroup_uncharge(objcg, obj_full_size(s));
1972 				continue;
1973 			}
1974 
1975 			off = obj_to_index(s, slab, p[i]);
1976 			obj_cgroup_get(objcg);
1977 			slab_objcgs(slab)[off] = objcg;
1978 			mod_objcg_state(objcg, slab_pgdat(slab),
1979 					cache_vmstat_idx(s), obj_full_size(s));
1980 		} else {
1981 			obj_cgroup_uncharge(objcg, obj_full_size(s));
1982 		}
1983 	}
1984 }
1985 
1986 static __fastpath_inline
1987 void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
1988 				gfp_t flags, size_t size, void **p)
1989 {
1990 	if (likely(!memcg_kmem_online() || !objcg))
1991 		return;
1992 
1993 	return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
1994 }
1995 
1996 static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
1997 				   void **p, int objects,
1998 				   struct obj_cgroup **objcgs)
1999 {
2000 	for (int i = 0; i < objects; i++) {
2001 		struct obj_cgroup *objcg;
2002 		unsigned int off;
2003 
2004 		off = obj_to_index(s, slab, p[i]);
2005 		objcg = objcgs[off];
2006 		if (!objcg)
2007 			continue;
2008 
2009 		objcgs[off] = NULL;
2010 		obj_cgroup_uncharge(objcg, obj_full_size(s));
2011 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
2012 				-obj_full_size(s));
2013 		obj_cgroup_put(objcg);
2014 	}
2015 }
2016 
2017 static __fastpath_inline
2018 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2019 			  int objects)
2020 {
2021 	struct obj_cgroup **objcgs;
2022 
2023 	if (!memcg_kmem_online())
2024 		return;
2025 
2026 	objcgs = slab_objcgs(slab);
2027 	if (likely(!objcgs))
2028 		return;
2029 
2030 	__memcg_slab_free_hook(s, slab, p, objects, objcgs);
2031 }
2032 
2033 static inline
2034 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2035 			   struct obj_cgroup *objcg)
2036 {
2037 	if (objcg)
2038 		obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
2039 }
2040 #else /* CONFIG_MEMCG_KMEM */
2041 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
2042 {
2043 	return NULL;
2044 }
2045 
2046 static inline void memcg_free_slab_cgroups(struct slab *slab)
2047 {
2048 }
2049 
2050 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
2051 					     struct list_lru *lru,
2052 					     struct obj_cgroup **objcgp,
2053 					     size_t objects, gfp_t flags)
2054 {
2055 	return true;
2056 }
2057 
2058 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
2059 					      struct obj_cgroup *objcg,
2060 					      gfp_t flags, size_t size,
2061 					      void **p)
2062 {
2063 }
2064 
2065 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2066 					void **p, int objects)
2067 {
2068 }
2069 
2070 static inline
2071 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2072 				 struct obj_cgroup *objcg)
2073 {
2074 }
2075 #endif /* CONFIG_MEMCG_KMEM */
2076 
2077 /*
2078  * Hooks for other subsystems that check memory allocations. In a typical
2079  * production configuration these hooks all should produce no code at all.
2080  *
2081  * Returns true if freeing of the object can proceed, false if its reuse
2082  * was delayed by KASAN quarantine, or it was returned to KFENCE.
2083  */
2084 static __always_inline
2085 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2086 {
2087 	kmemleak_free_recursive(x, s->flags);
2088 	kmsan_slab_free(s, x);
2089 
2090 	debug_check_no_locks_freed(x, s->object_size);
2091 
2092 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2093 		debug_check_no_obj_freed(x, s->object_size);
2094 
2095 	/* Use KCSAN to help debug racy use-after-free. */
2096 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2097 		__kcsan_check_access(x, s->object_size,
2098 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2099 
2100 	if (kfence_free(x))
2101 		return false;
2102 
2103 	/*
2104 	 * As memory initialization might be integrated into KASAN,
2105 	 * kasan_slab_free and initialization memset's must be
2106 	 * kept together to avoid discrepancies in behavior.
2107 	 *
2108 	 * The initialization memset's clear the object and the metadata,
2109 	 * but don't touch the SLAB redzone.
2110 	 */
2111 	if (unlikely(init)) {
2112 		int rsize;
2113 
2114 		if (!kasan_has_integrated_init())
2115 			memset(kasan_reset_tag(x), 0, s->object_size);
2116 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2117 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
2118 		       s->size - s->inuse - rsize);
2119 	}
2120 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2121 	return !kasan_slab_free(s, x, init);
2122 }
2123 
2124 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
2125 					   void **head, void **tail,
2126 					   int *cnt)
2127 {
2128 
2129 	void *object;
2130 	void *next = *head;
2131 	void *old_tail = *tail;
2132 	bool init;
2133 
2134 	if (is_kfence_address(next)) {
2135 		slab_free_hook(s, next, false);
2136 		return false;
2137 	}
2138 
2139 	/* Head and tail of the reconstructed freelist */
2140 	*head = NULL;
2141 	*tail = NULL;
2142 
2143 	init = slab_want_init_on_free(s);
2144 
2145 	do {
2146 		object = next;
2147 		next = get_freepointer(s, object);
2148 
2149 		/* If object's reuse doesn't have to be delayed */
2150 		if (likely(slab_free_hook(s, object, init))) {
2151 			/* Move object to the new freelist */
2152 			set_freepointer(s, object, *head);
2153 			*head = object;
2154 			if (!*tail)
2155 				*tail = object;
2156 		} else {
2157 			/*
2158 			 * Adjust the reconstructed freelist depth
2159 			 * accordingly if object's reuse is delayed.
2160 			 */
2161 			--(*cnt);
2162 		}
2163 	} while (object != old_tail);
2164 
2165 	return *head != NULL;
2166 }
2167 
2168 static void *setup_object(struct kmem_cache *s, void *object)
2169 {
2170 	setup_object_debug(s, object);
2171 	object = kasan_init_slab_obj(s, object);
2172 	if (unlikely(s->ctor)) {
2173 		kasan_unpoison_new_object(s, object);
2174 		s->ctor(object);
2175 		kasan_poison_new_object(s, object);
2176 	}
2177 	return object;
2178 }
2179 
2180 /*
2181  * Slab allocation and freeing
2182  */
2183 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2184 		struct kmem_cache_order_objects oo)
2185 {
2186 	struct folio *folio;
2187 	struct slab *slab;
2188 	unsigned int order = oo_order(oo);
2189 
2190 	folio = (struct folio *)alloc_pages_node(node, flags, order);
2191 	if (!folio)
2192 		return NULL;
2193 
2194 	slab = folio_slab(folio);
2195 	__folio_set_slab(folio);
2196 	/* Make the flag visible before any changes to folio->mapping */
2197 	smp_wmb();
2198 	if (folio_is_pfmemalloc(folio))
2199 		slab_set_pfmemalloc(slab);
2200 
2201 	return slab;
2202 }
2203 
2204 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2205 /* Pre-initialize the random sequence cache */
2206 static int init_cache_random_seq(struct kmem_cache *s)
2207 {
2208 	unsigned int count = oo_objects(s->oo);
2209 	int err;
2210 
2211 	/* Bailout if already initialised */
2212 	if (s->random_seq)
2213 		return 0;
2214 
2215 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2216 	if (err) {
2217 		pr_err("SLUB: Unable to initialize free list for %s\n",
2218 			s->name);
2219 		return err;
2220 	}
2221 
2222 	/* Transform to an offset on the set of pages */
2223 	if (s->random_seq) {
2224 		unsigned int i;
2225 
2226 		for (i = 0; i < count; i++)
2227 			s->random_seq[i] *= s->size;
2228 	}
2229 	return 0;
2230 }
2231 
2232 /* Initialize each random sequence freelist per cache */
2233 static void __init init_freelist_randomization(void)
2234 {
2235 	struct kmem_cache *s;
2236 
2237 	mutex_lock(&slab_mutex);
2238 
2239 	list_for_each_entry(s, &slab_caches, list)
2240 		init_cache_random_seq(s);
2241 
2242 	mutex_unlock(&slab_mutex);
2243 }
2244 
2245 /* Get the next entry on the pre-computed freelist randomized */
2246 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
2247 				unsigned long *pos, void *start,
2248 				unsigned long page_limit,
2249 				unsigned long freelist_count)
2250 {
2251 	unsigned int idx;
2252 
2253 	/*
2254 	 * If the target page allocation failed, the number of objects on the
2255 	 * page might be smaller than the usual size defined by the cache.
2256 	 */
2257 	do {
2258 		idx = s->random_seq[*pos];
2259 		*pos += 1;
2260 		if (*pos >= freelist_count)
2261 			*pos = 0;
2262 	} while (unlikely(idx >= page_limit));
2263 
2264 	return (char *)start + idx;
2265 }
2266 
2267 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2268 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2269 {
2270 	void *start;
2271 	void *cur;
2272 	void *next;
2273 	unsigned long idx, pos, page_limit, freelist_count;
2274 
2275 	if (slab->objects < 2 || !s->random_seq)
2276 		return false;
2277 
2278 	freelist_count = oo_objects(s->oo);
2279 	pos = get_random_u32_below(freelist_count);
2280 
2281 	page_limit = slab->objects * s->size;
2282 	start = fixup_red_left(s, slab_address(slab));
2283 
2284 	/* First entry is used as the base of the freelist */
2285 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
2286 				freelist_count);
2287 	cur = setup_object(s, cur);
2288 	slab->freelist = cur;
2289 
2290 	for (idx = 1; idx < slab->objects; idx++) {
2291 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
2292 			freelist_count);
2293 		next = setup_object(s, next);
2294 		set_freepointer(s, cur, next);
2295 		cur = next;
2296 	}
2297 	set_freepointer(s, cur, NULL);
2298 
2299 	return true;
2300 }
2301 #else
2302 static inline int init_cache_random_seq(struct kmem_cache *s)
2303 {
2304 	return 0;
2305 }
2306 static inline void init_freelist_randomization(void) { }
2307 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2308 {
2309 	return false;
2310 }
2311 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2312 
2313 static __always_inline void account_slab(struct slab *slab, int order,
2314 					 struct kmem_cache *s, gfp_t gfp)
2315 {
2316 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2317 		memcg_alloc_slab_cgroups(slab, s, gfp, true);
2318 
2319 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2320 			    PAGE_SIZE << order);
2321 }
2322 
2323 static __always_inline void unaccount_slab(struct slab *slab, int order,
2324 					   struct kmem_cache *s)
2325 {
2326 	if (memcg_kmem_online())
2327 		memcg_free_slab_cgroups(slab);
2328 
2329 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2330 			    -(PAGE_SIZE << order));
2331 }
2332 
2333 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2334 {
2335 	struct slab *slab;
2336 	struct kmem_cache_order_objects oo = s->oo;
2337 	gfp_t alloc_gfp;
2338 	void *start, *p, *next;
2339 	int idx;
2340 	bool shuffle;
2341 
2342 	flags &= gfp_allowed_mask;
2343 
2344 	flags |= s->allocflags;
2345 
2346 	/*
2347 	 * Let the initial higher-order allocation fail under memory pressure
2348 	 * so we fall-back to the minimum order allocation.
2349 	 */
2350 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2351 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2352 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2353 
2354 	slab = alloc_slab_page(alloc_gfp, node, oo);
2355 	if (unlikely(!slab)) {
2356 		oo = s->min;
2357 		alloc_gfp = flags;
2358 		/*
2359 		 * Allocation may have failed due to fragmentation.
2360 		 * Try a lower order alloc if possible
2361 		 */
2362 		slab = alloc_slab_page(alloc_gfp, node, oo);
2363 		if (unlikely(!slab))
2364 			return NULL;
2365 		stat(s, ORDER_FALLBACK);
2366 	}
2367 
2368 	slab->objects = oo_objects(oo);
2369 	slab->inuse = 0;
2370 	slab->frozen = 0;
2371 
2372 	account_slab(slab, oo_order(oo), s, flags);
2373 
2374 	slab->slab_cache = s;
2375 
2376 	kasan_poison_slab(slab);
2377 
2378 	start = slab_address(slab);
2379 
2380 	setup_slab_debug(s, slab, start);
2381 
2382 	shuffle = shuffle_freelist(s, slab);
2383 
2384 	if (!shuffle) {
2385 		start = fixup_red_left(s, start);
2386 		start = setup_object(s, start);
2387 		slab->freelist = start;
2388 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2389 			next = p + s->size;
2390 			next = setup_object(s, next);
2391 			set_freepointer(s, p, next);
2392 			p = next;
2393 		}
2394 		set_freepointer(s, p, NULL);
2395 	}
2396 
2397 	return slab;
2398 }
2399 
2400 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2401 {
2402 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2403 		flags = kmalloc_fix_flags(flags);
2404 
2405 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2406 
2407 	return allocate_slab(s,
2408 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2409 }
2410 
2411 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2412 {
2413 	struct folio *folio = slab_folio(slab);
2414 	int order = folio_order(folio);
2415 	int pages = 1 << order;
2416 
2417 	__slab_clear_pfmemalloc(slab);
2418 	folio->mapping = NULL;
2419 	/* Make the mapping reset visible before clearing the flag */
2420 	smp_wmb();
2421 	__folio_clear_slab(folio);
2422 	mm_account_reclaimed_pages(pages);
2423 	unaccount_slab(slab, order, s);
2424 	__free_pages(&folio->page, order);
2425 }
2426 
2427 static void rcu_free_slab(struct rcu_head *h)
2428 {
2429 	struct slab *slab = container_of(h, struct slab, rcu_head);
2430 
2431 	__free_slab(slab->slab_cache, slab);
2432 }
2433 
2434 static void free_slab(struct kmem_cache *s, struct slab *slab)
2435 {
2436 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2437 		void *p;
2438 
2439 		slab_pad_check(s, slab);
2440 		for_each_object(p, s, slab_address(slab), slab->objects)
2441 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2442 	}
2443 
2444 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2445 		call_rcu(&slab->rcu_head, rcu_free_slab);
2446 	else
2447 		__free_slab(s, slab);
2448 }
2449 
2450 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2451 {
2452 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2453 	free_slab(s, slab);
2454 }
2455 
2456 /*
2457  * SLUB reuses PG_workingset bit to keep track of whether it's on
2458  * the per-node partial list.
2459  */
2460 static inline bool slab_test_node_partial(const struct slab *slab)
2461 {
2462 	return folio_test_workingset((struct folio *)slab_folio(slab));
2463 }
2464 
2465 static inline void slab_set_node_partial(struct slab *slab)
2466 {
2467 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2468 }
2469 
2470 static inline void slab_clear_node_partial(struct slab *slab)
2471 {
2472 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2473 }
2474 
2475 /*
2476  * Management of partially allocated slabs.
2477  */
2478 static inline void
2479 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2480 {
2481 	n->nr_partial++;
2482 	if (tail == DEACTIVATE_TO_TAIL)
2483 		list_add_tail(&slab->slab_list, &n->partial);
2484 	else
2485 		list_add(&slab->slab_list, &n->partial);
2486 	slab_set_node_partial(slab);
2487 }
2488 
2489 static inline void add_partial(struct kmem_cache_node *n,
2490 				struct slab *slab, int tail)
2491 {
2492 	lockdep_assert_held(&n->list_lock);
2493 	__add_partial(n, slab, tail);
2494 }
2495 
2496 static inline void remove_partial(struct kmem_cache_node *n,
2497 					struct slab *slab)
2498 {
2499 	lockdep_assert_held(&n->list_lock);
2500 	list_del(&slab->slab_list);
2501 	slab_clear_node_partial(slab);
2502 	n->nr_partial--;
2503 }
2504 
2505 /*
2506  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2507  * slab from the n->partial list. Remove only a single object from the slab, do
2508  * the alloc_debug_processing() checks and leave the slab on the list, or move
2509  * it to full list if it was the last free object.
2510  */
2511 static void *alloc_single_from_partial(struct kmem_cache *s,
2512 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2513 {
2514 	void *object;
2515 
2516 	lockdep_assert_held(&n->list_lock);
2517 
2518 	object = slab->freelist;
2519 	slab->freelist = get_freepointer(s, object);
2520 	slab->inuse++;
2521 
2522 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2523 		remove_partial(n, slab);
2524 		return NULL;
2525 	}
2526 
2527 	if (slab->inuse == slab->objects) {
2528 		remove_partial(n, slab);
2529 		add_full(s, n, slab);
2530 	}
2531 
2532 	return object;
2533 }
2534 
2535 /*
2536  * Called only for kmem_cache_debug() caches to allocate from a freshly
2537  * allocated slab. Allocate a single object instead of whole freelist
2538  * and put the slab to the partial (or full) list.
2539  */
2540 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2541 					struct slab *slab, int orig_size)
2542 {
2543 	int nid = slab_nid(slab);
2544 	struct kmem_cache_node *n = get_node(s, nid);
2545 	unsigned long flags;
2546 	void *object;
2547 
2548 
2549 	object = slab->freelist;
2550 	slab->freelist = get_freepointer(s, object);
2551 	slab->inuse = 1;
2552 
2553 	if (!alloc_debug_processing(s, slab, object, orig_size))
2554 		/*
2555 		 * It's not really expected that this would fail on a
2556 		 * freshly allocated slab, but a concurrent memory
2557 		 * corruption in theory could cause that.
2558 		 */
2559 		return NULL;
2560 
2561 	spin_lock_irqsave(&n->list_lock, flags);
2562 
2563 	if (slab->inuse == slab->objects)
2564 		add_full(s, n, slab);
2565 	else
2566 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2567 
2568 	inc_slabs_node(s, nid, slab->objects);
2569 	spin_unlock_irqrestore(&n->list_lock, flags);
2570 
2571 	return object;
2572 }
2573 
2574 #ifdef CONFIG_SLUB_CPU_PARTIAL
2575 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2576 #else
2577 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2578 				   int drain) { }
2579 #endif
2580 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2581 
2582 /*
2583  * Try to allocate a partial slab from a specific node.
2584  */
2585 static struct slab *get_partial_node(struct kmem_cache *s,
2586 				     struct kmem_cache_node *n,
2587 				     struct partial_context *pc)
2588 {
2589 	struct slab *slab, *slab2, *partial = NULL;
2590 	unsigned long flags;
2591 	unsigned int partial_slabs = 0;
2592 
2593 	/*
2594 	 * Racy check. If we mistakenly see no partial slabs then we
2595 	 * just allocate an empty slab. If we mistakenly try to get a
2596 	 * partial slab and there is none available then get_partial()
2597 	 * will return NULL.
2598 	 */
2599 	if (!n || !n->nr_partial)
2600 		return NULL;
2601 
2602 	spin_lock_irqsave(&n->list_lock, flags);
2603 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2604 		if (!pfmemalloc_match(slab, pc->flags))
2605 			continue;
2606 
2607 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2608 			void *object = alloc_single_from_partial(s, n, slab,
2609 							pc->orig_size);
2610 			if (object) {
2611 				partial = slab;
2612 				pc->object = object;
2613 				break;
2614 			}
2615 			continue;
2616 		}
2617 
2618 		remove_partial(n, slab);
2619 
2620 		if (!partial) {
2621 			partial = slab;
2622 			stat(s, ALLOC_FROM_PARTIAL);
2623 		} else {
2624 			put_cpu_partial(s, slab, 0);
2625 			stat(s, CPU_PARTIAL_NODE);
2626 			partial_slabs++;
2627 		}
2628 #ifdef CONFIG_SLUB_CPU_PARTIAL
2629 		if (!kmem_cache_has_cpu_partial(s)
2630 			|| partial_slabs > s->cpu_partial_slabs / 2)
2631 			break;
2632 #else
2633 		break;
2634 #endif
2635 
2636 	}
2637 	spin_unlock_irqrestore(&n->list_lock, flags);
2638 	return partial;
2639 }
2640 
2641 /*
2642  * Get a slab from somewhere. Search in increasing NUMA distances.
2643  */
2644 static struct slab *get_any_partial(struct kmem_cache *s,
2645 				    struct partial_context *pc)
2646 {
2647 #ifdef CONFIG_NUMA
2648 	struct zonelist *zonelist;
2649 	struct zoneref *z;
2650 	struct zone *zone;
2651 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2652 	struct slab *slab;
2653 	unsigned int cpuset_mems_cookie;
2654 
2655 	/*
2656 	 * The defrag ratio allows a configuration of the tradeoffs between
2657 	 * inter node defragmentation and node local allocations. A lower
2658 	 * defrag_ratio increases the tendency to do local allocations
2659 	 * instead of attempting to obtain partial slabs from other nodes.
2660 	 *
2661 	 * If the defrag_ratio is set to 0 then kmalloc() always
2662 	 * returns node local objects. If the ratio is higher then kmalloc()
2663 	 * may return off node objects because partial slabs are obtained
2664 	 * from other nodes and filled up.
2665 	 *
2666 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2667 	 * (which makes defrag_ratio = 1000) then every (well almost)
2668 	 * allocation will first attempt to defrag slab caches on other nodes.
2669 	 * This means scanning over all nodes to look for partial slabs which
2670 	 * may be expensive if we do it every time we are trying to find a slab
2671 	 * with available objects.
2672 	 */
2673 	if (!s->remote_node_defrag_ratio ||
2674 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2675 		return NULL;
2676 
2677 	do {
2678 		cpuset_mems_cookie = read_mems_allowed_begin();
2679 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2680 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2681 			struct kmem_cache_node *n;
2682 
2683 			n = get_node(s, zone_to_nid(zone));
2684 
2685 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2686 					n->nr_partial > s->min_partial) {
2687 				slab = get_partial_node(s, n, pc);
2688 				if (slab) {
2689 					/*
2690 					 * Don't check read_mems_allowed_retry()
2691 					 * here - if mems_allowed was updated in
2692 					 * parallel, that was a harmless race
2693 					 * between allocation and the cpuset
2694 					 * update
2695 					 */
2696 					return slab;
2697 				}
2698 			}
2699 		}
2700 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2701 #endif	/* CONFIG_NUMA */
2702 	return NULL;
2703 }
2704 
2705 /*
2706  * Get a partial slab, lock it and return it.
2707  */
2708 static struct slab *get_partial(struct kmem_cache *s, int node,
2709 				struct partial_context *pc)
2710 {
2711 	struct slab *slab;
2712 	int searchnode = node;
2713 
2714 	if (node == NUMA_NO_NODE)
2715 		searchnode = numa_mem_id();
2716 
2717 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2718 	if (slab || node != NUMA_NO_NODE)
2719 		return slab;
2720 
2721 	return get_any_partial(s, pc);
2722 }
2723 
2724 #ifndef CONFIG_SLUB_TINY
2725 
2726 #ifdef CONFIG_PREEMPTION
2727 /*
2728  * Calculate the next globally unique transaction for disambiguation
2729  * during cmpxchg. The transactions start with the cpu number and are then
2730  * incremented by CONFIG_NR_CPUS.
2731  */
2732 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2733 #else
2734 /*
2735  * No preemption supported therefore also no need to check for
2736  * different cpus.
2737  */
2738 #define TID_STEP 1
2739 #endif /* CONFIG_PREEMPTION */
2740 
2741 static inline unsigned long next_tid(unsigned long tid)
2742 {
2743 	return tid + TID_STEP;
2744 }
2745 
2746 #ifdef SLUB_DEBUG_CMPXCHG
2747 static inline unsigned int tid_to_cpu(unsigned long tid)
2748 {
2749 	return tid % TID_STEP;
2750 }
2751 
2752 static inline unsigned long tid_to_event(unsigned long tid)
2753 {
2754 	return tid / TID_STEP;
2755 }
2756 #endif
2757 
2758 static inline unsigned int init_tid(int cpu)
2759 {
2760 	return cpu;
2761 }
2762 
2763 static inline void note_cmpxchg_failure(const char *n,
2764 		const struct kmem_cache *s, unsigned long tid)
2765 {
2766 #ifdef SLUB_DEBUG_CMPXCHG
2767 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2768 
2769 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2770 
2771 #ifdef CONFIG_PREEMPTION
2772 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2773 		pr_warn("due to cpu change %d -> %d\n",
2774 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2775 	else
2776 #endif
2777 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2778 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2779 			tid_to_event(tid), tid_to_event(actual_tid));
2780 	else
2781 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2782 			actual_tid, tid, next_tid(tid));
2783 #endif
2784 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2785 }
2786 
2787 static void init_kmem_cache_cpus(struct kmem_cache *s)
2788 {
2789 	int cpu;
2790 	struct kmem_cache_cpu *c;
2791 
2792 	for_each_possible_cpu(cpu) {
2793 		c = per_cpu_ptr(s->cpu_slab, cpu);
2794 		local_lock_init(&c->lock);
2795 		c->tid = init_tid(cpu);
2796 	}
2797 }
2798 
2799 /*
2800  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2801  * unfreezes the slabs and puts it on the proper list.
2802  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2803  * by the caller.
2804  */
2805 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2806 			    void *freelist)
2807 {
2808 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2809 	int free_delta = 0;
2810 	void *nextfree, *freelist_iter, *freelist_tail;
2811 	int tail = DEACTIVATE_TO_HEAD;
2812 	unsigned long flags = 0;
2813 	struct slab new;
2814 	struct slab old;
2815 
2816 	if (slab->freelist) {
2817 		stat(s, DEACTIVATE_REMOTE_FREES);
2818 		tail = DEACTIVATE_TO_TAIL;
2819 	}
2820 
2821 	/*
2822 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2823 	 * remember the last object in freelist_tail for later splicing.
2824 	 */
2825 	freelist_tail = NULL;
2826 	freelist_iter = freelist;
2827 	while (freelist_iter) {
2828 		nextfree = get_freepointer(s, freelist_iter);
2829 
2830 		/*
2831 		 * If 'nextfree' is invalid, it is possible that the object at
2832 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2833 		 * starting at 'freelist_iter' by skipping them.
2834 		 */
2835 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2836 			break;
2837 
2838 		freelist_tail = freelist_iter;
2839 		free_delta++;
2840 
2841 		freelist_iter = nextfree;
2842 	}
2843 
2844 	/*
2845 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2846 	 * freelist to the head of slab's freelist.
2847 	 */
2848 	do {
2849 		old.freelist = READ_ONCE(slab->freelist);
2850 		old.counters = READ_ONCE(slab->counters);
2851 		VM_BUG_ON(!old.frozen);
2852 
2853 		/* Determine target state of the slab */
2854 		new.counters = old.counters;
2855 		new.frozen = 0;
2856 		if (freelist_tail) {
2857 			new.inuse -= free_delta;
2858 			set_freepointer(s, freelist_tail, old.freelist);
2859 			new.freelist = freelist;
2860 		} else {
2861 			new.freelist = old.freelist;
2862 		}
2863 	} while (!slab_update_freelist(s, slab,
2864 		old.freelist, old.counters,
2865 		new.freelist, new.counters,
2866 		"unfreezing slab"));
2867 
2868 	/*
2869 	 * Stage three: Manipulate the slab list based on the updated state.
2870 	 */
2871 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2872 		stat(s, DEACTIVATE_EMPTY);
2873 		discard_slab(s, slab);
2874 		stat(s, FREE_SLAB);
2875 	} else if (new.freelist) {
2876 		spin_lock_irqsave(&n->list_lock, flags);
2877 		add_partial(n, slab, tail);
2878 		spin_unlock_irqrestore(&n->list_lock, flags);
2879 		stat(s, tail);
2880 	} else {
2881 		stat(s, DEACTIVATE_FULL);
2882 	}
2883 }
2884 
2885 #ifdef CONFIG_SLUB_CPU_PARTIAL
2886 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
2887 {
2888 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2889 	struct slab *slab, *slab_to_discard = NULL;
2890 	unsigned long flags = 0;
2891 
2892 	while (partial_slab) {
2893 		slab = partial_slab;
2894 		partial_slab = slab->next;
2895 
2896 		n2 = get_node(s, slab_nid(slab));
2897 		if (n != n2) {
2898 			if (n)
2899 				spin_unlock_irqrestore(&n->list_lock, flags);
2900 
2901 			n = n2;
2902 			spin_lock_irqsave(&n->list_lock, flags);
2903 		}
2904 
2905 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
2906 			slab->next = slab_to_discard;
2907 			slab_to_discard = slab;
2908 		} else {
2909 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2910 			stat(s, FREE_ADD_PARTIAL);
2911 		}
2912 	}
2913 
2914 	if (n)
2915 		spin_unlock_irqrestore(&n->list_lock, flags);
2916 
2917 	while (slab_to_discard) {
2918 		slab = slab_to_discard;
2919 		slab_to_discard = slab_to_discard->next;
2920 
2921 		stat(s, DEACTIVATE_EMPTY);
2922 		discard_slab(s, slab);
2923 		stat(s, FREE_SLAB);
2924 	}
2925 }
2926 
2927 /*
2928  * Put all the cpu partial slabs to the node partial list.
2929  */
2930 static void put_partials(struct kmem_cache *s)
2931 {
2932 	struct slab *partial_slab;
2933 	unsigned long flags;
2934 
2935 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2936 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2937 	this_cpu_write(s->cpu_slab->partial, NULL);
2938 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2939 
2940 	if (partial_slab)
2941 		__put_partials(s, partial_slab);
2942 }
2943 
2944 static void put_partials_cpu(struct kmem_cache *s,
2945 			     struct kmem_cache_cpu *c)
2946 {
2947 	struct slab *partial_slab;
2948 
2949 	partial_slab = slub_percpu_partial(c);
2950 	c->partial = NULL;
2951 
2952 	if (partial_slab)
2953 		__put_partials(s, partial_slab);
2954 }
2955 
2956 /*
2957  * Put a slab into a partial slab slot if available.
2958  *
2959  * If we did not find a slot then simply move all the partials to the
2960  * per node partial list.
2961  */
2962 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2963 {
2964 	struct slab *oldslab;
2965 	struct slab *slab_to_put = NULL;
2966 	unsigned long flags;
2967 	int slabs = 0;
2968 
2969 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2970 
2971 	oldslab = this_cpu_read(s->cpu_slab->partial);
2972 
2973 	if (oldslab) {
2974 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2975 			/*
2976 			 * Partial array is full. Move the existing set to the
2977 			 * per node partial list. Postpone the actual unfreezing
2978 			 * outside of the critical section.
2979 			 */
2980 			slab_to_put = oldslab;
2981 			oldslab = NULL;
2982 		} else {
2983 			slabs = oldslab->slabs;
2984 		}
2985 	}
2986 
2987 	slabs++;
2988 
2989 	slab->slabs = slabs;
2990 	slab->next = oldslab;
2991 
2992 	this_cpu_write(s->cpu_slab->partial, slab);
2993 
2994 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2995 
2996 	if (slab_to_put) {
2997 		__put_partials(s, slab_to_put);
2998 		stat(s, CPU_PARTIAL_DRAIN);
2999 	}
3000 }
3001 
3002 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3003 
3004 static inline void put_partials(struct kmem_cache *s) { }
3005 static inline void put_partials_cpu(struct kmem_cache *s,
3006 				    struct kmem_cache_cpu *c) { }
3007 
3008 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3009 
3010 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3011 {
3012 	unsigned long flags;
3013 	struct slab *slab;
3014 	void *freelist;
3015 
3016 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3017 
3018 	slab = c->slab;
3019 	freelist = c->freelist;
3020 
3021 	c->slab = NULL;
3022 	c->freelist = NULL;
3023 	c->tid = next_tid(c->tid);
3024 
3025 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3026 
3027 	if (slab) {
3028 		deactivate_slab(s, slab, freelist);
3029 		stat(s, CPUSLAB_FLUSH);
3030 	}
3031 }
3032 
3033 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3034 {
3035 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3036 	void *freelist = c->freelist;
3037 	struct slab *slab = c->slab;
3038 
3039 	c->slab = NULL;
3040 	c->freelist = NULL;
3041 	c->tid = next_tid(c->tid);
3042 
3043 	if (slab) {
3044 		deactivate_slab(s, slab, freelist);
3045 		stat(s, CPUSLAB_FLUSH);
3046 	}
3047 
3048 	put_partials_cpu(s, c);
3049 }
3050 
3051 struct slub_flush_work {
3052 	struct work_struct work;
3053 	struct kmem_cache *s;
3054 	bool skip;
3055 };
3056 
3057 /*
3058  * Flush cpu slab.
3059  *
3060  * Called from CPU work handler with migration disabled.
3061  */
3062 static void flush_cpu_slab(struct work_struct *w)
3063 {
3064 	struct kmem_cache *s;
3065 	struct kmem_cache_cpu *c;
3066 	struct slub_flush_work *sfw;
3067 
3068 	sfw = container_of(w, struct slub_flush_work, work);
3069 
3070 	s = sfw->s;
3071 	c = this_cpu_ptr(s->cpu_slab);
3072 
3073 	if (c->slab)
3074 		flush_slab(s, c);
3075 
3076 	put_partials(s);
3077 }
3078 
3079 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3080 {
3081 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3082 
3083 	return c->slab || slub_percpu_partial(c);
3084 }
3085 
3086 static DEFINE_MUTEX(flush_lock);
3087 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3088 
3089 static void flush_all_cpus_locked(struct kmem_cache *s)
3090 {
3091 	struct slub_flush_work *sfw;
3092 	unsigned int cpu;
3093 
3094 	lockdep_assert_cpus_held();
3095 	mutex_lock(&flush_lock);
3096 
3097 	for_each_online_cpu(cpu) {
3098 		sfw = &per_cpu(slub_flush, cpu);
3099 		if (!has_cpu_slab(cpu, s)) {
3100 			sfw->skip = true;
3101 			continue;
3102 		}
3103 		INIT_WORK(&sfw->work, flush_cpu_slab);
3104 		sfw->skip = false;
3105 		sfw->s = s;
3106 		queue_work_on(cpu, flushwq, &sfw->work);
3107 	}
3108 
3109 	for_each_online_cpu(cpu) {
3110 		sfw = &per_cpu(slub_flush, cpu);
3111 		if (sfw->skip)
3112 			continue;
3113 		flush_work(&sfw->work);
3114 	}
3115 
3116 	mutex_unlock(&flush_lock);
3117 }
3118 
3119 static void flush_all(struct kmem_cache *s)
3120 {
3121 	cpus_read_lock();
3122 	flush_all_cpus_locked(s);
3123 	cpus_read_unlock();
3124 }
3125 
3126 /*
3127  * Use the cpu notifier to insure that the cpu slabs are flushed when
3128  * necessary.
3129  */
3130 static int slub_cpu_dead(unsigned int cpu)
3131 {
3132 	struct kmem_cache *s;
3133 
3134 	mutex_lock(&slab_mutex);
3135 	list_for_each_entry(s, &slab_caches, list)
3136 		__flush_cpu_slab(s, cpu);
3137 	mutex_unlock(&slab_mutex);
3138 	return 0;
3139 }
3140 
3141 #else /* CONFIG_SLUB_TINY */
3142 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3143 static inline void flush_all(struct kmem_cache *s) { }
3144 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3145 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3146 #endif /* CONFIG_SLUB_TINY */
3147 
3148 /*
3149  * Check if the objects in a per cpu structure fit numa
3150  * locality expectations.
3151  */
3152 static inline int node_match(struct slab *slab, int node)
3153 {
3154 #ifdef CONFIG_NUMA
3155 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3156 		return 0;
3157 #endif
3158 	return 1;
3159 }
3160 
3161 #ifdef CONFIG_SLUB_DEBUG
3162 static int count_free(struct slab *slab)
3163 {
3164 	return slab->objects - slab->inuse;
3165 }
3166 
3167 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3168 {
3169 	return atomic_long_read(&n->total_objects);
3170 }
3171 
3172 /* Supports checking bulk free of a constructed freelist */
3173 static inline bool free_debug_processing(struct kmem_cache *s,
3174 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3175 	unsigned long addr, depot_stack_handle_t handle)
3176 {
3177 	bool checks_ok = false;
3178 	void *object = head;
3179 	int cnt = 0;
3180 
3181 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3182 		if (!check_slab(s, slab))
3183 			goto out;
3184 	}
3185 
3186 	if (slab->inuse < *bulk_cnt) {
3187 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3188 			 slab->inuse, *bulk_cnt);
3189 		goto out;
3190 	}
3191 
3192 next_object:
3193 
3194 	if (++cnt > *bulk_cnt)
3195 		goto out_cnt;
3196 
3197 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3198 		if (!free_consistency_checks(s, slab, object, addr))
3199 			goto out;
3200 	}
3201 
3202 	if (s->flags & SLAB_STORE_USER)
3203 		set_track_update(s, object, TRACK_FREE, addr, handle);
3204 	trace(s, slab, object, 0);
3205 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3206 	init_object(s, object, SLUB_RED_INACTIVE);
3207 
3208 	/* Reached end of constructed freelist yet? */
3209 	if (object != tail) {
3210 		object = get_freepointer(s, object);
3211 		goto next_object;
3212 	}
3213 	checks_ok = true;
3214 
3215 out_cnt:
3216 	if (cnt != *bulk_cnt) {
3217 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3218 			 *bulk_cnt, cnt);
3219 		*bulk_cnt = cnt;
3220 	}
3221 
3222 out:
3223 
3224 	if (!checks_ok)
3225 		slab_fix(s, "Object at 0x%p not freed", object);
3226 
3227 	return checks_ok;
3228 }
3229 #endif /* CONFIG_SLUB_DEBUG */
3230 
3231 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3232 static unsigned long count_partial(struct kmem_cache_node *n,
3233 					int (*get_count)(struct slab *))
3234 {
3235 	unsigned long flags;
3236 	unsigned long x = 0;
3237 	struct slab *slab;
3238 
3239 	spin_lock_irqsave(&n->list_lock, flags);
3240 	list_for_each_entry(slab, &n->partial, slab_list)
3241 		x += get_count(slab);
3242 	spin_unlock_irqrestore(&n->list_lock, flags);
3243 	return x;
3244 }
3245 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3246 
3247 #ifdef CONFIG_SLUB_DEBUG
3248 static noinline void
3249 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3250 {
3251 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3252 				      DEFAULT_RATELIMIT_BURST);
3253 	int node;
3254 	struct kmem_cache_node *n;
3255 
3256 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3257 		return;
3258 
3259 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3260 		nid, gfpflags, &gfpflags);
3261 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3262 		s->name, s->object_size, s->size, oo_order(s->oo),
3263 		oo_order(s->min));
3264 
3265 	if (oo_order(s->min) > get_order(s->object_size))
3266 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
3267 			s->name);
3268 
3269 	for_each_kmem_cache_node(s, node, n) {
3270 		unsigned long nr_slabs;
3271 		unsigned long nr_objs;
3272 		unsigned long nr_free;
3273 
3274 		nr_free  = count_partial(n, count_free);
3275 		nr_slabs = node_nr_slabs(n);
3276 		nr_objs  = node_nr_objs(n);
3277 
3278 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3279 			node, nr_slabs, nr_objs, nr_free);
3280 	}
3281 }
3282 #else /* CONFIG_SLUB_DEBUG */
3283 static inline void
3284 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3285 #endif
3286 
3287 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3288 {
3289 	if (unlikely(slab_test_pfmemalloc(slab)))
3290 		return gfp_pfmemalloc_allowed(gfpflags);
3291 
3292 	return true;
3293 }
3294 
3295 #ifndef CONFIG_SLUB_TINY
3296 static inline bool
3297 __update_cpu_freelist_fast(struct kmem_cache *s,
3298 			   void *freelist_old, void *freelist_new,
3299 			   unsigned long tid)
3300 {
3301 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3302 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3303 
3304 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3305 					     &old.full, new.full);
3306 }
3307 
3308 /*
3309  * Check the slab->freelist and either transfer the freelist to the
3310  * per cpu freelist or deactivate the slab.
3311  *
3312  * The slab is still frozen if the return value is not NULL.
3313  *
3314  * If this function returns NULL then the slab has been unfrozen.
3315  */
3316 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3317 {
3318 	struct slab new;
3319 	unsigned long counters;
3320 	void *freelist;
3321 
3322 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3323 
3324 	do {
3325 		freelist = slab->freelist;
3326 		counters = slab->counters;
3327 
3328 		new.counters = counters;
3329 		VM_BUG_ON(!new.frozen);
3330 
3331 		new.inuse = slab->objects;
3332 		new.frozen = freelist != NULL;
3333 
3334 	} while (!__slab_update_freelist(s, slab,
3335 		freelist, counters,
3336 		NULL, new.counters,
3337 		"get_freelist"));
3338 
3339 	return freelist;
3340 }
3341 
3342 /*
3343  * Freeze the partial slab and return the pointer to the freelist.
3344  */
3345 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3346 {
3347 	struct slab new;
3348 	unsigned long counters;
3349 	void *freelist;
3350 
3351 	do {
3352 		freelist = slab->freelist;
3353 		counters = slab->counters;
3354 
3355 		new.counters = counters;
3356 		VM_BUG_ON(new.frozen);
3357 
3358 		new.inuse = slab->objects;
3359 		new.frozen = 1;
3360 
3361 	} while (!slab_update_freelist(s, slab,
3362 		freelist, counters,
3363 		NULL, new.counters,
3364 		"freeze_slab"));
3365 
3366 	return freelist;
3367 }
3368 
3369 /*
3370  * Slow path. The lockless freelist is empty or we need to perform
3371  * debugging duties.
3372  *
3373  * Processing is still very fast if new objects have been freed to the
3374  * regular freelist. In that case we simply take over the regular freelist
3375  * as the lockless freelist and zap the regular freelist.
3376  *
3377  * If that is not working then we fall back to the partial lists. We take the
3378  * first element of the freelist as the object to allocate now and move the
3379  * rest of the freelist to the lockless freelist.
3380  *
3381  * And if we were unable to get a new slab from the partial slab lists then
3382  * we need to allocate a new slab. This is the slowest path since it involves
3383  * a call to the page allocator and the setup of a new slab.
3384  *
3385  * Version of __slab_alloc to use when we know that preemption is
3386  * already disabled (which is the case for bulk allocation).
3387  */
3388 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3389 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3390 {
3391 	void *freelist;
3392 	struct slab *slab;
3393 	unsigned long flags;
3394 	struct partial_context pc;
3395 
3396 	stat(s, ALLOC_SLOWPATH);
3397 
3398 reread_slab:
3399 
3400 	slab = READ_ONCE(c->slab);
3401 	if (!slab) {
3402 		/*
3403 		 * if the node is not online or has no normal memory, just
3404 		 * ignore the node constraint
3405 		 */
3406 		if (unlikely(node != NUMA_NO_NODE &&
3407 			     !node_isset(node, slab_nodes)))
3408 			node = NUMA_NO_NODE;
3409 		goto new_slab;
3410 	}
3411 
3412 	if (unlikely(!node_match(slab, node))) {
3413 		/*
3414 		 * same as above but node_match() being false already
3415 		 * implies node != NUMA_NO_NODE
3416 		 */
3417 		if (!node_isset(node, slab_nodes)) {
3418 			node = NUMA_NO_NODE;
3419 		} else {
3420 			stat(s, ALLOC_NODE_MISMATCH);
3421 			goto deactivate_slab;
3422 		}
3423 	}
3424 
3425 	/*
3426 	 * By rights, we should be searching for a slab page that was
3427 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3428 	 * information when the page leaves the per-cpu allocator
3429 	 */
3430 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3431 		goto deactivate_slab;
3432 
3433 	/* must check again c->slab in case we got preempted and it changed */
3434 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3435 	if (unlikely(slab != c->slab)) {
3436 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3437 		goto reread_slab;
3438 	}
3439 	freelist = c->freelist;
3440 	if (freelist)
3441 		goto load_freelist;
3442 
3443 	freelist = get_freelist(s, slab);
3444 
3445 	if (!freelist) {
3446 		c->slab = NULL;
3447 		c->tid = next_tid(c->tid);
3448 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3449 		stat(s, DEACTIVATE_BYPASS);
3450 		goto new_slab;
3451 	}
3452 
3453 	stat(s, ALLOC_REFILL);
3454 
3455 load_freelist:
3456 
3457 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3458 
3459 	/*
3460 	 * freelist is pointing to the list of objects to be used.
3461 	 * slab is pointing to the slab from which the objects are obtained.
3462 	 * That slab must be frozen for per cpu allocations to work.
3463 	 */
3464 	VM_BUG_ON(!c->slab->frozen);
3465 	c->freelist = get_freepointer(s, freelist);
3466 	c->tid = next_tid(c->tid);
3467 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3468 	return freelist;
3469 
3470 deactivate_slab:
3471 
3472 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3473 	if (slab != c->slab) {
3474 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3475 		goto reread_slab;
3476 	}
3477 	freelist = c->freelist;
3478 	c->slab = NULL;
3479 	c->freelist = NULL;
3480 	c->tid = next_tid(c->tid);
3481 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3482 	deactivate_slab(s, slab, freelist);
3483 
3484 new_slab:
3485 
3486 #ifdef CONFIG_SLUB_CPU_PARTIAL
3487 	while (slub_percpu_partial(c)) {
3488 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3489 		if (unlikely(c->slab)) {
3490 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3491 			goto reread_slab;
3492 		}
3493 		if (unlikely(!slub_percpu_partial(c))) {
3494 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3495 			/* we were preempted and partial list got empty */
3496 			goto new_objects;
3497 		}
3498 
3499 		slab = slub_percpu_partial(c);
3500 		slub_set_percpu_partial(c, slab);
3501 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3502 		stat(s, CPU_PARTIAL_ALLOC);
3503 
3504 		if (unlikely(!node_match(slab, node) ||
3505 			     !pfmemalloc_match(slab, gfpflags))) {
3506 			slab->next = NULL;
3507 			__put_partials(s, slab);
3508 			continue;
3509 		}
3510 
3511 		freelist = freeze_slab(s, slab);
3512 		goto retry_load_slab;
3513 	}
3514 #endif
3515 
3516 new_objects:
3517 
3518 	pc.flags = gfpflags;
3519 	pc.orig_size = orig_size;
3520 	slab = get_partial(s, node, &pc);
3521 	if (slab) {
3522 		if (kmem_cache_debug(s)) {
3523 			freelist = pc.object;
3524 			/*
3525 			 * For debug caches here we had to go through
3526 			 * alloc_single_from_partial() so just store the
3527 			 * tracking info and return the object.
3528 			 */
3529 			if (s->flags & SLAB_STORE_USER)
3530 				set_track(s, freelist, TRACK_ALLOC, addr);
3531 
3532 			return freelist;
3533 		}
3534 
3535 		freelist = freeze_slab(s, slab);
3536 		goto retry_load_slab;
3537 	}
3538 
3539 	slub_put_cpu_ptr(s->cpu_slab);
3540 	slab = new_slab(s, gfpflags, node);
3541 	c = slub_get_cpu_ptr(s->cpu_slab);
3542 
3543 	if (unlikely(!slab)) {
3544 		slab_out_of_memory(s, gfpflags, node);
3545 		return NULL;
3546 	}
3547 
3548 	stat(s, ALLOC_SLAB);
3549 
3550 	if (kmem_cache_debug(s)) {
3551 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3552 
3553 		if (unlikely(!freelist))
3554 			goto new_objects;
3555 
3556 		if (s->flags & SLAB_STORE_USER)
3557 			set_track(s, freelist, TRACK_ALLOC, addr);
3558 
3559 		return freelist;
3560 	}
3561 
3562 	/*
3563 	 * No other reference to the slab yet so we can
3564 	 * muck around with it freely without cmpxchg
3565 	 */
3566 	freelist = slab->freelist;
3567 	slab->freelist = NULL;
3568 	slab->inuse = slab->objects;
3569 	slab->frozen = 1;
3570 
3571 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3572 
3573 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3574 		/*
3575 		 * For !pfmemalloc_match() case we don't load freelist so that
3576 		 * we don't make further mismatched allocations easier.
3577 		 */
3578 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3579 		return freelist;
3580 	}
3581 
3582 retry_load_slab:
3583 
3584 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3585 	if (unlikely(c->slab)) {
3586 		void *flush_freelist = c->freelist;
3587 		struct slab *flush_slab = c->slab;
3588 
3589 		c->slab = NULL;
3590 		c->freelist = NULL;
3591 		c->tid = next_tid(c->tid);
3592 
3593 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3594 
3595 		deactivate_slab(s, flush_slab, flush_freelist);
3596 
3597 		stat(s, CPUSLAB_FLUSH);
3598 
3599 		goto retry_load_slab;
3600 	}
3601 	c->slab = slab;
3602 
3603 	goto load_freelist;
3604 }
3605 
3606 /*
3607  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3608  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3609  * pointer.
3610  */
3611 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3612 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3613 {
3614 	void *p;
3615 
3616 #ifdef CONFIG_PREEMPT_COUNT
3617 	/*
3618 	 * We may have been preempted and rescheduled on a different
3619 	 * cpu before disabling preemption. Need to reload cpu area
3620 	 * pointer.
3621 	 */
3622 	c = slub_get_cpu_ptr(s->cpu_slab);
3623 #endif
3624 
3625 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3626 #ifdef CONFIG_PREEMPT_COUNT
3627 	slub_put_cpu_ptr(s->cpu_slab);
3628 #endif
3629 	return p;
3630 }
3631 
3632 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3633 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3634 {
3635 	struct kmem_cache_cpu *c;
3636 	struct slab *slab;
3637 	unsigned long tid;
3638 	void *object;
3639 
3640 redo:
3641 	/*
3642 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3643 	 * enabled. We may switch back and forth between cpus while
3644 	 * reading from one cpu area. That does not matter as long
3645 	 * as we end up on the original cpu again when doing the cmpxchg.
3646 	 *
3647 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3648 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3649 	 * the tid. If we are preempted and switched to another cpu between the
3650 	 * two reads, it's OK as the two are still associated with the same cpu
3651 	 * and cmpxchg later will validate the cpu.
3652 	 */
3653 	c = raw_cpu_ptr(s->cpu_slab);
3654 	tid = READ_ONCE(c->tid);
3655 
3656 	/*
3657 	 * Irqless object alloc/free algorithm used here depends on sequence
3658 	 * of fetching cpu_slab's data. tid should be fetched before anything
3659 	 * on c to guarantee that object and slab associated with previous tid
3660 	 * won't be used with current tid. If we fetch tid first, object and
3661 	 * slab could be one associated with next tid and our alloc/free
3662 	 * request will be failed. In this case, we will retry. So, no problem.
3663 	 */
3664 	barrier();
3665 
3666 	/*
3667 	 * The transaction ids are globally unique per cpu and per operation on
3668 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3669 	 * occurs on the right processor and that there was no operation on the
3670 	 * linked list in between.
3671 	 */
3672 
3673 	object = c->freelist;
3674 	slab = c->slab;
3675 
3676 	if (!USE_LOCKLESS_FAST_PATH() ||
3677 	    unlikely(!object || !slab || !node_match(slab, node))) {
3678 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3679 	} else {
3680 		void *next_object = get_freepointer_safe(s, object);
3681 
3682 		/*
3683 		 * The cmpxchg will only match if there was no additional
3684 		 * operation and if we are on the right processor.
3685 		 *
3686 		 * The cmpxchg does the following atomically (without lock
3687 		 * semantics!)
3688 		 * 1. Relocate first pointer to the current per cpu area.
3689 		 * 2. Verify that tid and freelist have not been changed
3690 		 * 3. If they were not changed replace tid and freelist
3691 		 *
3692 		 * Since this is without lock semantics the protection is only
3693 		 * against code executing on this cpu *not* from access by
3694 		 * other cpus.
3695 		 */
3696 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3697 			note_cmpxchg_failure("slab_alloc", s, tid);
3698 			goto redo;
3699 		}
3700 		prefetch_freepointer(s, next_object);
3701 		stat(s, ALLOC_FASTPATH);
3702 	}
3703 
3704 	return object;
3705 }
3706 #else /* CONFIG_SLUB_TINY */
3707 static void *__slab_alloc_node(struct kmem_cache *s,
3708 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3709 {
3710 	struct partial_context pc;
3711 	struct slab *slab;
3712 	void *object;
3713 
3714 	pc.flags = gfpflags;
3715 	pc.orig_size = orig_size;
3716 	slab = get_partial(s, node, &pc);
3717 
3718 	if (slab)
3719 		return pc.object;
3720 
3721 	slab = new_slab(s, gfpflags, node);
3722 	if (unlikely(!slab)) {
3723 		slab_out_of_memory(s, gfpflags, node);
3724 		return NULL;
3725 	}
3726 
3727 	object = alloc_single_from_new_slab(s, slab, orig_size);
3728 
3729 	return object;
3730 }
3731 #endif /* CONFIG_SLUB_TINY */
3732 
3733 /*
3734  * If the object has been wiped upon free, make sure it's fully initialized by
3735  * zeroing out freelist pointer.
3736  */
3737 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3738 						   void *obj)
3739 {
3740 	if (unlikely(slab_want_init_on_free(s)) && obj)
3741 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3742 			0, sizeof(void *));
3743 }
3744 
3745 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3746 {
3747 	if (__should_failslab(s, gfpflags))
3748 		return -ENOMEM;
3749 	return 0;
3750 }
3751 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3752 
3753 static __fastpath_inline
3754 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
3755 				       struct list_lru *lru,
3756 				       struct obj_cgroup **objcgp,
3757 				       size_t size, gfp_t flags)
3758 {
3759 	flags &= gfp_allowed_mask;
3760 
3761 	might_alloc(flags);
3762 
3763 	if (unlikely(should_failslab(s, flags)))
3764 		return NULL;
3765 
3766 	if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
3767 		return NULL;
3768 
3769 	return s;
3770 }
3771 
3772 static __fastpath_inline
3773 void slab_post_alloc_hook(struct kmem_cache *s,	struct obj_cgroup *objcg,
3774 			  gfp_t flags, size_t size, void **p, bool init,
3775 			  unsigned int orig_size)
3776 {
3777 	unsigned int zero_size = s->object_size;
3778 	bool kasan_init = init;
3779 	size_t i;
3780 	gfp_t init_flags = flags & gfp_allowed_mask;
3781 
3782 	/*
3783 	 * For kmalloc object, the allocated memory size(object_size) is likely
3784 	 * larger than the requested size(orig_size). If redzone check is
3785 	 * enabled for the extra space, don't zero it, as it will be redzoned
3786 	 * soon. The redzone operation for this extra space could be seen as a
3787 	 * replacement of current poisoning under certain debug option, and
3788 	 * won't break other sanity checks.
3789 	 */
3790 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3791 	    (s->flags & SLAB_KMALLOC))
3792 		zero_size = orig_size;
3793 
3794 	/*
3795 	 * When slub_debug is enabled, avoid memory initialization integrated
3796 	 * into KASAN and instead zero out the memory via the memset below with
3797 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3798 	 * cause false-positive reports. This does not lead to a performance
3799 	 * penalty on production builds, as slub_debug is not intended to be
3800 	 * enabled there.
3801 	 */
3802 	if (__slub_debug_enabled())
3803 		kasan_init = false;
3804 
3805 	/*
3806 	 * As memory initialization might be integrated into KASAN,
3807 	 * kasan_slab_alloc and initialization memset must be
3808 	 * kept together to avoid discrepancies in behavior.
3809 	 *
3810 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3811 	 */
3812 	for (i = 0; i < size; i++) {
3813 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3814 		if (p[i] && init && (!kasan_init ||
3815 				     !kasan_has_integrated_init()))
3816 			memset(p[i], 0, zero_size);
3817 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3818 					 s->flags, init_flags);
3819 		kmsan_slab_alloc(s, p[i], init_flags);
3820 	}
3821 
3822 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
3823 }
3824 
3825 /*
3826  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3827  * have the fastpath folded into their functions. So no function call
3828  * overhead for requests that can be satisfied on the fastpath.
3829  *
3830  * The fastpath works by first checking if the lockless freelist can be used.
3831  * If not then __slab_alloc is called for slow processing.
3832  *
3833  * Otherwise we can simply pick the next object from the lockless free list.
3834  */
3835 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3836 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3837 {
3838 	void *object;
3839 	struct obj_cgroup *objcg = NULL;
3840 	bool init = false;
3841 
3842 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3843 	if (unlikely(!s))
3844 		return NULL;
3845 
3846 	object = kfence_alloc(s, orig_size, gfpflags);
3847 	if (unlikely(object))
3848 		goto out;
3849 
3850 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3851 
3852 	maybe_wipe_obj_freeptr(s, object);
3853 	init = slab_want_init_on_alloc(gfpflags, s);
3854 
3855 out:
3856 	/*
3857 	 * When init equals 'true', like for kzalloc() family, only
3858 	 * @orig_size bytes might be zeroed instead of s->object_size
3859 	 */
3860 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3861 
3862 	return object;
3863 }
3864 
3865 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3866 {
3867 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
3868 				    s->object_size);
3869 
3870 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3871 
3872 	return ret;
3873 }
3874 EXPORT_SYMBOL(kmem_cache_alloc);
3875 
3876 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3877 			   gfp_t gfpflags)
3878 {
3879 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
3880 				    s->object_size);
3881 
3882 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3883 
3884 	return ret;
3885 }
3886 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3887 
3888 /**
3889  * kmem_cache_alloc_node - Allocate an object on the specified node
3890  * @s: The cache to allocate from.
3891  * @gfpflags: See kmalloc().
3892  * @node: node number of the target node.
3893  *
3894  * Identical to kmem_cache_alloc but it will allocate memory on the given
3895  * node, which can improve the performance for cpu bound structures.
3896  *
3897  * Fallback to other node is possible if __GFP_THISNODE is not set.
3898  *
3899  * Return: pointer to the new object or %NULL in case of error
3900  */
3901 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3902 {
3903 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3904 
3905 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3906 
3907 	return ret;
3908 }
3909 EXPORT_SYMBOL(kmem_cache_alloc_node);
3910 
3911 /*
3912  * To avoid unnecessary overhead, we pass through large allocation requests
3913  * directly to the page allocator. We use __GFP_COMP, because we will need to
3914  * know the allocation order to free the pages properly in kfree.
3915  */
3916 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
3917 {
3918 	struct folio *folio;
3919 	void *ptr = NULL;
3920 	unsigned int order = get_order(size);
3921 
3922 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3923 		flags = kmalloc_fix_flags(flags);
3924 
3925 	flags |= __GFP_COMP;
3926 	folio = (struct folio *)alloc_pages_node(node, flags, order);
3927 	if (folio) {
3928 		ptr = folio_address(folio);
3929 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
3930 				      PAGE_SIZE << order);
3931 	}
3932 
3933 	ptr = kasan_kmalloc_large(ptr, size, flags);
3934 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
3935 	kmemleak_alloc(ptr, size, 1, flags);
3936 	kmsan_kmalloc_large(ptr, size, flags);
3937 
3938 	return ptr;
3939 }
3940 
3941 void *kmalloc_large(size_t size, gfp_t flags)
3942 {
3943 	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
3944 
3945 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3946 		      flags, NUMA_NO_NODE);
3947 	return ret;
3948 }
3949 EXPORT_SYMBOL(kmalloc_large);
3950 
3951 void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3952 {
3953 	void *ret = __kmalloc_large_node(size, flags, node);
3954 
3955 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3956 		      flags, node);
3957 	return ret;
3958 }
3959 EXPORT_SYMBOL(kmalloc_large_node);
3960 
3961 static __always_inline
3962 void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
3963 			unsigned long caller)
3964 {
3965 	struct kmem_cache *s;
3966 	void *ret;
3967 
3968 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3969 		ret = __kmalloc_large_node(size, flags, node);
3970 		trace_kmalloc(caller, ret, size,
3971 			      PAGE_SIZE << get_order(size), flags, node);
3972 		return ret;
3973 	}
3974 
3975 	if (unlikely(!size))
3976 		return ZERO_SIZE_PTR;
3977 
3978 	s = kmalloc_slab(size, flags, caller);
3979 
3980 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
3981 	ret = kasan_kmalloc(s, ret, size, flags);
3982 	trace_kmalloc(caller, ret, size, s->size, flags, node);
3983 	return ret;
3984 }
3985 
3986 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3987 {
3988 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3989 }
3990 EXPORT_SYMBOL(__kmalloc_node);
3991 
3992 void *__kmalloc(size_t size, gfp_t flags)
3993 {
3994 	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
3995 }
3996 EXPORT_SYMBOL(__kmalloc);
3997 
3998 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3999 				  int node, unsigned long caller)
4000 {
4001 	return __do_kmalloc_node(size, flags, node, caller);
4002 }
4003 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4004 
4005 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4006 {
4007 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4008 					    _RET_IP_, size);
4009 
4010 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4011 
4012 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4013 	return ret;
4014 }
4015 EXPORT_SYMBOL(kmalloc_trace);
4016 
4017 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
4018 			 int node, size_t size)
4019 {
4020 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4021 
4022 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4023 
4024 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4025 	return ret;
4026 }
4027 EXPORT_SYMBOL(kmalloc_node_trace);
4028 
4029 static noinline void free_to_partial_list(
4030 	struct kmem_cache *s, struct slab *slab,
4031 	void *head, void *tail, int bulk_cnt,
4032 	unsigned long addr)
4033 {
4034 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4035 	struct slab *slab_free = NULL;
4036 	int cnt = bulk_cnt;
4037 	unsigned long flags;
4038 	depot_stack_handle_t handle = 0;
4039 
4040 	if (s->flags & SLAB_STORE_USER)
4041 		handle = set_track_prepare();
4042 
4043 	spin_lock_irqsave(&n->list_lock, flags);
4044 
4045 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4046 		void *prior = slab->freelist;
4047 
4048 		/* Perform the actual freeing while we still hold the locks */
4049 		slab->inuse -= cnt;
4050 		set_freepointer(s, tail, prior);
4051 		slab->freelist = head;
4052 
4053 		/*
4054 		 * If the slab is empty, and node's partial list is full,
4055 		 * it should be discarded anyway no matter it's on full or
4056 		 * partial list.
4057 		 */
4058 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4059 			slab_free = slab;
4060 
4061 		if (!prior) {
4062 			/* was on full list */
4063 			remove_full(s, n, slab);
4064 			if (!slab_free) {
4065 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4066 				stat(s, FREE_ADD_PARTIAL);
4067 			}
4068 		} else if (slab_free) {
4069 			remove_partial(n, slab);
4070 			stat(s, FREE_REMOVE_PARTIAL);
4071 		}
4072 	}
4073 
4074 	if (slab_free) {
4075 		/*
4076 		 * Update the counters while still holding n->list_lock to
4077 		 * prevent spurious validation warnings
4078 		 */
4079 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4080 	}
4081 
4082 	spin_unlock_irqrestore(&n->list_lock, flags);
4083 
4084 	if (slab_free) {
4085 		stat(s, FREE_SLAB);
4086 		free_slab(s, slab_free);
4087 	}
4088 }
4089 
4090 /*
4091  * Slow path handling. This may still be called frequently since objects
4092  * have a longer lifetime than the cpu slabs in most processing loads.
4093  *
4094  * So we still attempt to reduce cache line usage. Just take the slab
4095  * lock and free the item. If there is no additional partial slab
4096  * handling required then we can return immediately.
4097  */
4098 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4099 			void *head, void *tail, int cnt,
4100 			unsigned long addr)
4101 
4102 {
4103 	void *prior;
4104 	int was_frozen;
4105 	struct slab new;
4106 	unsigned long counters;
4107 	struct kmem_cache_node *n = NULL;
4108 	unsigned long flags;
4109 	bool on_node_partial;
4110 
4111 	stat(s, FREE_SLOWPATH);
4112 
4113 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4114 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4115 		return;
4116 	}
4117 
4118 	do {
4119 		if (unlikely(n)) {
4120 			spin_unlock_irqrestore(&n->list_lock, flags);
4121 			n = NULL;
4122 		}
4123 		prior = slab->freelist;
4124 		counters = slab->counters;
4125 		set_freepointer(s, tail, prior);
4126 		new.counters = counters;
4127 		was_frozen = new.frozen;
4128 		new.inuse -= cnt;
4129 		if ((!new.inuse || !prior) && !was_frozen) {
4130 			/* Needs to be taken off a list */
4131 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4132 
4133 				n = get_node(s, slab_nid(slab));
4134 				/*
4135 				 * Speculatively acquire the list_lock.
4136 				 * If the cmpxchg does not succeed then we may
4137 				 * drop the list_lock without any processing.
4138 				 *
4139 				 * Otherwise the list_lock will synchronize with
4140 				 * other processors updating the list of slabs.
4141 				 */
4142 				spin_lock_irqsave(&n->list_lock, flags);
4143 
4144 				on_node_partial = slab_test_node_partial(slab);
4145 			}
4146 		}
4147 
4148 	} while (!slab_update_freelist(s, slab,
4149 		prior, counters,
4150 		head, new.counters,
4151 		"__slab_free"));
4152 
4153 	if (likely(!n)) {
4154 
4155 		if (likely(was_frozen)) {
4156 			/*
4157 			 * The list lock was not taken therefore no list
4158 			 * activity can be necessary.
4159 			 */
4160 			stat(s, FREE_FROZEN);
4161 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4162 			/*
4163 			 * If we started with a full slab then put it onto the
4164 			 * per cpu partial list.
4165 			 */
4166 			put_cpu_partial(s, slab, 1);
4167 			stat(s, CPU_PARTIAL_FREE);
4168 		}
4169 
4170 		return;
4171 	}
4172 
4173 	/*
4174 	 * This slab was partially empty but not on the per-node partial list,
4175 	 * in which case we shouldn't manipulate its list, just return.
4176 	 */
4177 	if (prior && !on_node_partial) {
4178 		spin_unlock_irqrestore(&n->list_lock, flags);
4179 		return;
4180 	}
4181 
4182 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4183 		goto slab_empty;
4184 
4185 	/*
4186 	 * Objects left in the slab. If it was not on the partial list before
4187 	 * then add it.
4188 	 */
4189 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4190 		remove_full(s, n, slab);
4191 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4192 		stat(s, FREE_ADD_PARTIAL);
4193 	}
4194 	spin_unlock_irqrestore(&n->list_lock, flags);
4195 	return;
4196 
4197 slab_empty:
4198 	if (prior) {
4199 		/*
4200 		 * Slab on the partial list.
4201 		 */
4202 		remove_partial(n, slab);
4203 		stat(s, FREE_REMOVE_PARTIAL);
4204 	} else {
4205 		/* Slab must be on the full list */
4206 		remove_full(s, n, slab);
4207 	}
4208 
4209 	spin_unlock_irqrestore(&n->list_lock, flags);
4210 	stat(s, FREE_SLAB);
4211 	discard_slab(s, slab);
4212 }
4213 
4214 #ifndef CONFIG_SLUB_TINY
4215 /*
4216  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4217  * can perform fastpath freeing without additional function calls.
4218  *
4219  * The fastpath is only possible if we are freeing to the current cpu slab
4220  * of this processor. This typically the case if we have just allocated
4221  * the item before.
4222  *
4223  * If fastpath is not possible then fall back to __slab_free where we deal
4224  * with all sorts of special processing.
4225  *
4226  * Bulk free of a freelist with several objects (all pointing to the
4227  * same slab) possible by specifying head and tail ptr, plus objects
4228  * count (cnt). Bulk free indicated by tail pointer being set.
4229  */
4230 static __always_inline void do_slab_free(struct kmem_cache *s,
4231 				struct slab *slab, void *head, void *tail,
4232 				int cnt, unsigned long addr)
4233 {
4234 	struct kmem_cache_cpu *c;
4235 	unsigned long tid;
4236 	void **freelist;
4237 
4238 redo:
4239 	/*
4240 	 * Determine the currently cpus per cpu slab.
4241 	 * The cpu may change afterward. However that does not matter since
4242 	 * data is retrieved via this pointer. If we are on the same cpu
4243 	 * during the cmpxchg then the free will succeed.
4244 	 */
4245 	c = raw_cpu_ptr(s->cpu_slab);
4246 	tid = READ_ONCE(c->tid);
4247 
4248 	/* Same with comment on barrier() in slab_alloc_node() */
4249 	barrier();
4250 
4251 	if (unlikely(slab != c->slab)) {
4252 		__slab_free(s, slab, head, tail, cnt, addr);
4253 		return;
4254 	}
4255 
4256 	if (USE_LOCKLESS_FAST_PATH()) {
4257 		freelist = READ_ONCE(c->freelist);
4258 
4259 		set_freepointer(s, tail, freelist);
4260 
4261 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4262 			note_cmpxchg_failure("slab_free", s, tid);
4263 			goto redo;
4264 		}
4265 	} else {
4266 		/* Update the free list under the local lock */
4267 		local_lock(&s->cpu_slab->lock);
4268 		c = this_cpu_ptr(s->cpu_slab);
4269 		if (unlikely(slab != c->slab)) {
4270 			local_unlock(&s->cpu_slab->lock);
4271 			goto redo;
4272 		}
4273 		tid = c->tid;
4274 		freelist = c->freelist;
4275 
4276 		set_freepointer(s, tail, freelist);
4277 		c->freelist = head;
4278 		c->tid = next_tid(tid);
4279 
4280 		local_unlock(&s->cpu_slab->lock);
4281 	}
4282 	stat_add(s, FREE_FASTPATH, cnt);
4283 }
4284 #else /* CONFIG_SLUB_TINY */
4285 static void do_slab_free(struct kmem_cache *s,
4286 				struct slab *slab, void *head, void *tail,
4287 				int cnt, unsigned long addr)
4288 {
4289 	__slab_free(s, slab, head, tail, cnt, addr);
4290 }
4291 #endif /* CONFIG_SLUB_TINY */
4292 
4293 static __fastpath_inline
4294 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4295 	       unsigned long addr)
4296 {
4297 	memcg_slab_free_hook(s, slab, &object, 1);
4298 
4299 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4300 		do_slab_free(s, slab, object, object, 1, addr);
4301 }
4302 
4303 static __fastpath_inline
4304 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4305 		    void *tail, void **p, int cnt, unsigned long addr)
4306 {
4307 	memcg_slab_free_hook(s, slab, p, cnt);
4308 	/*
4309 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4310 	 * to remove objects, whose reuse must be delayed.
4311 	 */
4312 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4313 		do_slab_free(s, slab, head, tail, cnt, addr);
4314 }
4315 
4316 #ifdef CONFIG_KASAN_GENERIC
4317 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4318 {
4319 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4320 }
4321 #endif
4322 
4323 static inline struct kmem_cache *virt_to_cache(const void *obj)
4324 {
4325 	struct slab *slab;
4326 
4327 	slab = virt_to_slab(obj);
4328 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4329 		return NULL;
4330 	return slab->slab_cache;
4331 }
4332 
4333 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4334 {
4335 	struct kmem_cache *cachep;
4336 
4337 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4338 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4339 		return s;
4340 
4341 	cachep = virt_to_cache(x);
4342 	if (WARN(cachep && cachep != s,
4343 		 "%s: Wrong slab cache. %s but object is from %s\n",
4344 		 __func__, s->name, cachep->name))
4345 		print_tracking(cachep, x);
4346 	return cachep;
4347 }
4348 
4349 /**
4350  * kmem_cache_free - Deallocate an object
4351  * @s: The cache the allocation was from.
4352  * @x: The previously allocated object.
4353  *
4354  * Free an object which was previously allocated from this
4355  * cache.
4356  */
4357 void kmem_cache_free(struct kmem_cache *s, void *x)
4358 {
4359 	s = cache_from_obj(s, x);
4360 	if (!s)
4361 		return;
4362 	trace_kmem_cache_free(_RET_IP_, x, s);
4363 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4364 }
4365 EXPORT_SYMBOL(kmem_cache_free);
4366 
4367 static void free_large_kmalloc(struct folio *folio, void *object)
4368 {
4369 	unsigned int order = folio_order(folio);
4370 
4371 	if (WARN_ON_ONCE(order == 0))
4372 		pr_warn_once("object pointer: 0x%p\n", object);
4373 
4374 	kmemleak_free(object);
4375 	kasan_kfree_large(object);
4376 	kmsan_kfree_large(object);
4377 
4378 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4379 			      -(PAGE_SIZE << order));
4380 	folio_put(folio);
4381 }
4382 
4383 /**
4384  * kfree - free previously allocated memory
4385  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4386  *
4387  * If @object is NULL, no operation is performed.
4388  */
4389 void kfree(const void *object)
4390 {
4391 	struct folio *folio;
4392 	struct slab *slab;
4393 	struct kmem_cache *s;
4394 	void *x = (void *)object;
4395 
4396 	trace_kfree(_RET_IP_, object);
4397 
4398 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4399 		return;
4400 
4401 	folio = virt_to_folio(object);
4402 	if (unlikely(!folio_test_slab(folio))) {
4403 		free_large_kmalloc(folio, (void *)object);
4404 		return;
4405 	}
4406 
4407 	slab = folio_slab(folio);
4408 	s = slab->slab_cache;
4409 	slab_free(s, slab, x, _RET_IP_);
4410 }
4411 EXPORT_SYMBOL(kfree);
4412 
4413 struct detached_freelist {
4414 	struct slab *slab;
4415 	void *tail;
4416 	void *freelist;
4417 	int cnt;
4418 	struct kmem_cache *s;
4419 };
4420 
4421 /*
4422  * This function progressively scans the array with free objects (with
4423  * a limited look ahead) and extract objects belonging to the same
4424  * slab.  It builds a detached freelist directly within the given
4425  * slab/objects.  This can happen without any need for
4426  * synchronization, because the objects are owned by running process.
4427  * The freelist is build up as a single linked list in the objects.
4428  * The idea is, that this detached freelist can then be bulk
4429  * transferred to the real freelist(s), but only requiring a single
4430  * synchronization primitive.  Look ahead in the array is limited due
4431  * to performance reasons.
4432  */
4433 static inline
4434 int build_detached_freelist(struct kmem_cache *s, size_t size,
4435 			    void **p, struct detached_freelist *df)
4436 {
4437 	int lookahead = 3;
4438 	void *object;
4439 	struct folio *folio;
4440 	size_t same;
4441 
4442 	object = p[--size];
4443 	folio = virt_to_folio(object);
4444 	if (!s) {
4445 		/* Handle kalloc'ed objects */
4446 		if (unlikely(!folio_test_slab(folio))) {
4447 			free_large_kmalloc(folio, object);
4448 			df->slab = NULL;
4449 			return size;
4450 		}
4451 		/* Derive kmem_cache from object */
4452 		df->slab = folio_slab(folio);
4453 		df->s = df->slab->slab_cache;
4454 	} else {
4455 		df->slab = folio_slab(folio);
4456 		df->s = cache_from_obj(s, object); /* Support for memcg */
4457 	}
4458 
4459 	/* Start new detached freelist */
4460 	df->tail = object;
4461 	df->freelist = object;
4462 	df->cnt = 1;
4463 
4464 	if (is_kfence_address(object))
4465 		return size;
4466 
4467 	set_freepointer(df->s, object, NULL);
4468 
4469 	same = size;
4470 	while (size) {
4471 		object = p[--size];
4472 		/* df->slab is always set at this point */
4473 		if (df->slab == virt_to_slab(object)) {
4474 			/* Opportunity build freelist */
4475 			set_freepointer(df->s, object, df->freelist);
4476 			df->freelist = object;
4477 			df->cnt++;
4478 			same--;
4479 			if (size != same)
4480 				swap(p[size], p[same]);
4481 			continue;
4482 		}
4483 
4484 		/* Limit look ahead search */
4485 		if (!--lookahead)
4486 			break;
4487 	}
4488 
4489 	return same;
4490 }
4491 
4492 /*
4493  * Internal bulk free of objects that were not initialised by the post alloc
4494  * hooks and thus should not be processed by the free hooks
4495  */
4496 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4497 {
4498 	if (!size)
4499 		return;
4500 
4501 	do {
4502 		struct detached_freelist df;
4503 
4504 		size = build_detached_freelist(s, size, p, &df);
4505 		if (!df.slab)
4506 			continue;
4507 
4508 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4509 			     _RET_IP_);
4510 	} while (likely(size));
4511 }
4512 
4513 /* Note that interrupts must be enabled when calling this function. */
4514 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4515 {
4516 	if (!size)
4517 		return;
4518 
4519 	do {
4520 		struct detached_freelist df;
4521 
4522 		size = build_detached_freelist(s, size, p, &df);
4523 		if (!df.slab)
4524 			continue;
4525 
4526 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4527 			       df.cnt, _RET_IP_);
4528 	} while (likely(size));
4529 }
4530 EXPORT_SYMBOL(kmem_cache_free_bulk);
4531 
4532 #ifndef CONFIG_SLUB_TINY
4533 static inline
4534 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4535 			    void **p)
4536 {
4537 	struct kmem_cache_cpu *c;
4538 	unsigned long irqflags;
4539 	int i;
4540 
4541 	/*
4542 	 * Drain objects in the per cpu slab, while disabling local
4543 	 * IRQs, which protects against PREEMPT and interrupts
4544 	 * handlers invoking normal fastpath.
4545 	 */
4546 	c = slub_get_cpu_ptr(s->cpu_slab);
4547 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4548 
4549 	for (i = 0; i < size; i++) {
4550 		void *object = kfence_alloc(s, s->object_size, flags);
4551 
4552 		if (unlikely(object)) {
4553 			p[i] = object;
4554 			continue;
4555 		}
4556 
4557 		object = c->freelist;
4558 		if (unlikely(!object)) {
4559 			/*
4560 			 * We may have removed an object from c->freelist using
4561 			 * the fastpath in the previous iteration; in that case,
4562 			 * c->tid has not been bumped yet.
4563 			 * Since ___slab_alloc() may reenable interrupts while
4564 			 * allocating memory, we should bump c->tid now.
4565 			 */
4566 			c->tid = next_tid(c->tid);
4567 
4568 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4569 
4570 			/*
4571 			 * Invoking slow path likely have side-effect
4572 			 * of re-populating per CPU c->freelist
4573 			 */
4574 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4575 					    _RET_IP_, c, s->object_size);
4576 			if (unlikely(!p[i]))
4577 				goto error;
4578 
4579 			c = this_cpu_ptr(s->cpu_slab);
4580 			maybe_wipe_obj_freeptr(s, p[i]);
4581 
4582 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4583 
4584 			continue; /* goto for-loop */
4585 		}
4586 		c->freelist = get_freepointer(s, object);
4587 		p[i] = object;
4588 		maybe_wipe_obj_freeptr(s, p[i]);
4589 		stat(s, ALLOC_FASTPATH);
4590 	}
4591 	c->tid = next_tid(c->tid);
4592 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4593 	slub_put_cpu_ptr(s->cpu_slab);
4594 
4595 	return i;
4596 
4597 error:
4598 	slub_put_cpu_ptr(s->cpu_slab);
4599 	__kmem_cache_free_bulk(s, i, p);
4600 	return 0;
4601 
4602 }
4603 #else /* CONFIG_SLUB_TINY */
4604 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4605 				   size_t size, void **p)
4606 {
4607 	int i;
4608 
4609 	for (i = 0; i < size; i++) {
4610 		void *object = kfence_alloc(s, s->object_size, flags);
4611 
4612 		if (unlikely(object)) {
4613 			p[i] = object;
4614 			continue;
4615 		}
4616 
4617 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4618 					 _RET_IP_, s->object_size);
4619 		if (unlikely(!p[i]))
4620 			goto error;
4621 
4622 		maybe_wipe_obj_freeptr(s, p[i]);
4623 	}
4624 
4625 	return i;
4626 
4627 error:
4628 	__kmem_cache_free_bulk(s, i, p);
4629 	return 0;
4630 }
4631 #endif /* CONFIG_SLUB_TINY */
4632 
4633 /* Note that interrupts must be enabled when calling this function. */
4634 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4635 			  void **p)
4636 {
4637 	int i;
4638 	struct obj_cgroup *objcg = NULL;
4639 
4640 	if (!size)
4641 		return 0;
4642 
4643 	/* memcg and kmem_cache debug support */
4644 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4645 	if (unlikely(!s))
4646 		return 0;
4647 
4648 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4649 
4650 	/*
4651 	 * memcg and kmem_cache debug support and memory initialization.
4652 	 * Done outside of the IRQ disabled fastpath loop.
4653 	 */
4654 	if (likely(i != 0)) {
4655 		slab_post_alloc_hook(s, objcg, flags, size, p,
4656 			slab_want_init_on_alloc(flags, s), s->object_size);
4657 	} else {
4658 		memcg_slab_alloc_error_hook(s, size, objcg);
4659 	}
4660 
4661 	return i;
4662 }
4663 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4664 
4665 
4666 /*
4667  * Object placement in a slab is made very easy because we always start at
4668  * offset 0. If we tune the size of the object to the alignment then we can
4669  * get the required alignment by putting one properly sized object after
4670  * another.
4671  *
4672  * Notice that the allocation order determines the sizes of the per cpu
4673  * caches. Each processor has always one slab available for allocations.
4674  * Increasing the allocation order reduces the number of times that slabs
4675  * must be moved on and off the partial lists and is therefore a factor in
4676  * locking overhead.
4677  */
4678 
4679 /*
4680  * Minimum / Maximum order of slab pages. This influences locking overhead
4681  * and slab fragmentation. A higher order reduces the number of partial slabs
4682  * and increases the number of allocations possible without having to
4683  * take the list_lock.
4684  */
4685 static unsigned int slub_min_order;
4686 static unsigned int slub_max_order =
4687 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4688 static unsigned int slub_min_objects;
4689 
4690 /*
4691  * Calculate the order of allocation given an slab object size.
4692  *
4693  * The order of allocation has significant impact on performance and other
4694  * system components. Generally order 0 allocations should be preferred since
4695  * order 0 does not cause fragmentation in the page allocator. Larger objects
4696  * be problematic to put into order 0 slabs because there may be too much
4697  * unused space left. We go to a higher order if more than 1/16th of the slab
4698  * would be wasted.
4699  *
4700  * In order to reach satisfactory performance we must ensure that a minimum
4701  * number of objects is in one slab. Otherwise we may generate too much
4702  * activity on the partial lists which requires taking the list_lock. This is
4703  * less a concern for large slabs though which are rarely used.
4704  *
4705  * slub_max_order specifies the order where we begin to stop considering the
4706  * number of objects in a slab as critical. If we reach slub_max_order then
4707  * we try to keep the page order as low as possible. So we accept more waste
4708  * of space in favor of a small page order.
4709  *
4710  * Higher order allocations also allow the placement of more objects in a
4711  * slab and thereby reduce object handling overhead. If the user has
4712  * requested a higher minimum order then we start with that one instead of
4713  * the smallest order which will fit the object.
4714  */
4715 static inline unsigned int calc_slab_order(unsigned int size,
4716 		unsigned int min_order, unsigned int max_order,
4717 		unsigned int fract_leftover)
4718 {
4719 	unsigned int order;
4720 
4721 	for (order = min_order; order <= max_order; order++) {
4722 
4723 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4724 		unsigned int rem;
4725 
4726 		rem = slab_size % size;
4727 
4728 		if (rem <= slab_size / fract_leftover)
4729 			break;
4730 	}
4731 
4732 	return order;
4733 }
4734 
4735 static inline int calculate_order(unsigned int size)
4736 {
4737 	unsigned int order;
4738 	unsigned int min_objects;
4739 	unsigned int max_objects;
4740 	unsigned int min_order;
4741 
4742 	min_objects = slub_min_objects;
4743 	if (!min_objects) {
4744 		/*
4745 		 * Some architectures will only update present cpus when
4746 		 * onlining them, so don't trust the number if it's just 1. But
4747 		 * we also don't want to use nr_cpu_ids always, as on some other
4748 		 * architectures, there can be many possible cpus, but never
4749 		 * onlined. Here we compromise between trying to avoid too high
4750 		 * order on systems that appear larger than they are, and too
4751 		 * low order on systems that appear smaller than they are.
4752 		 */
4753 		unsigned int nr_cpus = num_present_cpus();
4754 		if (nr_cpus <= 1)
4755 			nr_cpus = nr_cpu_ids;
4756 		min_objects = 4 * (fls(nr_cpus) + 1);
4757 	}
4758 	/* min_objects can't be 0 because get_order(0) is undefined */
4759 	max_objects = max(order_objects(slub_max_order, size), 1U);
4760 	min_objects = min(min_objects, max_objects);
4761 
4762 	min_order = max_t(unsigned int, slub_min_order,
4763 			  get_order(min_objects * size));
4764 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4765 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4766 
4767 	/*
4768 	 * Attempt to find best configuration for a slab. This works by first
4769 	 * attempting to generate a layout with the best possible configuration
4770 	 * and backing off gradually.
4771 	 *
4772 	 * We start with accepting at most 1/16 waste and try to find the
4773 	 * smallest order from min_objects-derived/slub_min_order up to
4774 	 * slub_max_order that will satisfy the constraint. Note that increasing
4775 	 * the order can only result in same or less fractional waste, not more.
4776 	 *
4777 	 * If that fails, we increase the acceptable fraction of waste and try
4778 	 * again. The last iteration with fraction of 1/2 would effectively
4779 	 * accept any waste and give us the order determined by min_objects, as
4780 	 * long as at least single object fits within slub_max_order.
4781 	 */
4782 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4783 		order = calc_slab_order(size, min_order, slub_max_order,
4784 					fraction);
4785 		if (order <= slub_max_order)
4786 			return order;
4787 	}
4788 
4789 	/*
4790 	 * Doh this slab cannot be placed using slub_max_order.
4791 	 */
4792 	order = get_order(size);
4793 	if (order <= MAX_PAGE_ORDER)
4794 		return order;
4795 	return -ENOSYS;
4796 }
4797 
4798 static void
4799 init_kmem_cache_node(struct kmem_cache_node *n)
4800 {
4801 	n->nr_partial = 0;
4802 	spin_lock_init(&n->list_lock);
4803 	INIT_LIST_HEAD(&n->partial);
4804 #ifdef CONFIG_SLUB_DEBUG
4805 	atomic_long_set(&n->nr_slabs, 0);
4806 	atomic_long_set(&n->total_objects, 0);
4807 	INIT_LIST_HEAD(&n->full);
4808 #endif
4809 }
4810 
4811 #ifndef CONFIG_SLUB_TINY
4812 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4813 {
4814 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4815 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4816 			sizeof(struct kmem_cache_cpu));
4817 
4818 	/*
4819 	 * Must align to double word boundary for the double cmpxchg
4820 	 * instructions to work; see __pcpu_double_call_return_bool().
4821 	 */
4822 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4823 				     2 * sizeof(void *));
4824 
4825 	if (!s->cpu_slab)
4826 		return 0;
4827 
4828 	init_kmem_cache_cpus(s);
4829 
4830 	return 1;
4831 }
4832 #else
4833 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4834 {
4835 	return 1;
4836 }
4837 #endif /* CONFIG_SLUB_TINY */
4838 
4839 static struct kmem_cache *kmem_cache_node;
4840 
4841 /*
4842  * No kmalloc_node yet so do it by hand. We know that this is the first
4843  * slab on the node for this slabcache. There are no concurrent accesses
4844  * possible.
4845  *
4846  * Note that this function only works on the kmem_cache_node
4847  * when allocating for the kmem_cache_node. This is used for bootstrapping
4848  * memory on a fresh node that has no slab structures yet.
4849  */
4850 static void early_kmem_cache_node_alloc(int node)
4851 {
4852 	struct slab *slab;
4853 	struct kmem_cache_node *n;
4854 
4855 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4856 
4857 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4858 
4859 	BUG_ON(!slab);
4860 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4861 	if (slab_nid(slab) != node) {
4862 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4863 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4864 	}
4865 
4866 	n = slab->freelist;
4867 	BUG_ON(!n);
4868 #ifdef CONFIG_SLUB_DEBUG
4869 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4870 	init_tracking(kmem_cache_node, n);
4871 #endif
4872 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4873 	slab->freelist = get_freepointer(kmem_cache_node, n);
4874 	slab->inuse = 1;
4875 	kmem_cache_node->node[node] = n;
4876 	init_kmem_cache_node(n);
4877 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4878 
4879 	/*
4880 	 * No locks need to be taken here as it has just been
4881 	 * initialized and there is no concurrent access.
4882 	 */
4883 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4884 }
4885 
4886 static void free_kmem_cache_nodes(struct kmem_cache *s)
4887 {
4888 	int node;
4889 	struct kmem_cache_node *n;
4890 
4891 	for_each_kmem_cache_node(s, node, n) {
4892 		s->node[node] = NULL;
4893 		kmem_cache_free(kmem_cache_node, n);
4894 	}
4895 }
4896 
4897 void __kmem_cache_release(struct kmem_cache *s)
4898 {
4899 	cache_random_seq_destroy(s);
4900 #ifndef CONFIG_SLUB_TINY
4901 	free_percpu(s->cpu_slab);
4902 #endif
4903 	free_kmem_cache_nodes(s);
4904 }
4905 
4906 static int init_kmem_cache_nodes(struct kmem_cache *s)
4907 {
4908 	int node;
4909 
4910 	for_each_node_mask(node, slab_nodes) {
4911 		struct kmem_cache_node *n;
4912 
4913 		if (slab_state == DOWN) {
4914 			early_kmem_cache_node_alloc(node);
4915 			continue;
4916 		}
4917 		n = kmem_cache_alloc_node(kmem_cache_node,
4918 						GFP_KERNEL, node);
4919 
4920 		if (!n) {
4921 			free_kmem_cache_nodes(s);
4922 			return 0;
4923 		}
4924 
4925 		init_kmem_cache_node(n);
4926 		s->node[node] = n;
4927 	}
4928 	return 1;
4929 }
4930 
4931 static void set_cpu_partial(struct kmem_cache *s)
4932 {
4933 #ifdef CONFIG_SLUB_CPU_PARTIAL
4934 	unsigned int nr_objects;
4935 
4936 	/*
4937 	 * cpu_partial determined the maximum number of objects kept in the
4938 	 * per cpu partial lists of a processor.
4939 	 *
4940 	 * Per cpu partial lists mainly contain slabs that just have one
4941 	 * object freed. If they are used for allocation then they can be
4942 	 * filled up again with minimal effort. The slab will never hit the
4943 	 * per node partial lists and therefore no locking will be required.
4944 	 *
4945 	 * For backwards compatibility reasons, this is determined as number
4946 	 * of objects, even though we now limit maximum number of pages, see
4947 	 * slub_set_cpu_partial()
4948 	 */
4949 	if (!kmem_cache_has_cpu_partial(s))
4950 		nr_objects = 0;
4951 	else if (s->size >= PAGE_SIZE)
4952 		nr_objects = 6;
4953 	else if (s->size >= 1024)
4954 		nr_objects = 24;
4955 	else if (s->size >= 256)
4956 		nr_objects = 52;
4957 	else
4958 		nr_objects = 120;
4959 
4960 	slub_set_cpu_partial(s, nr_objects);
4961 #endif
4962 }
4963 
4964 /*
4965  * calculate_sizes() determines the order and the distribution of data within
4966  * a slab object.
4967  */
4968 static int calculate_sizes(struct kmem_cache *s)
4969 {
4970 	slab_flags_t flags = s->flags;
4971 	unsigned int size = s->object_size;
4972 	unsigned int order;
4973 
4974 	/*
4975 	 * Round up object size to the next word boundary. We can only
4976 	 * place the free pointer at word boundaries and this determines
4977 	 * the possible location of the free pointer.
4978 	 */
4979 	size = ALIGN(size, sizeof(void *));
4980 
4981 #ifdef CONFIG_SLUB_DEBUG
4982 	/*
4983 	 * Determine if we can poison the object itself. If the user of
4984 	 * the slab may touch the object after free or before allocation
4985 	 * then we should never poison the object itself.
4986 	 */
4987 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4988 			!s->ctor)
4989 		s->flags |= __OBJECT_POISON;
4990 	else
4991 		s->flags &= ~__OBJECT_POISON;
4992 
4993 
4994 	/*
4995 	 * If we are Redzoning then check if there is some space between the
4996 	 * end of the object and the free pointer. If not then add an
4997 	 * additional word to have some bytes to store Redzone information.
4998 	 */
4999 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5000 		size += sizeof(void *);
5001 #endif
5002 
5003 	/*
5004 	 * With that we have determined the number of bytes in actual use
5005 	 * by the object and redzoning.
5006 	 */
5007 	s->inuse = size;
5008 
5009 	if (slub_debug_orig_size(s) ||
5010 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
5011 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
5012 	    s->ctor) {
5013 		/*
5014 		 * Relocate free pointer after the object if it is not
5015 		 * permitted to overwrite the first word of the object on
5016 		 * kmem_cache_free.
5017 		 *
5018 		 * This is the case if we do RCU, have a constructor or
5019 		 * destructor, are poisoning the objects, or are
5020 		 * redzoning an object smaller than sizeof(void *).
5021 		 *
5022 		 * The assumption that s->offset >= s->inuse means free
5023 		 * pointer is outside of the object is used in the
5024 		 * freeptr_outside_object() function. If that is no
5025 		 * longer true, the function needs to be modified.
5026 		 */
5027 		s->offset = size;
5028 		size += sizeof(void *);
5029 	} else {
5030 		/*
5031 		 * Store freelist pointer near middle of object to keep
5032 		 * it away from the edges of the object to avoid small
5033 		 * sized over/underflows from neighboring allocations.
5034 		 */
5035 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5036 	}
5037 
5038 #ifdef CONFIG_SLUB_DEBUG
5039 	if (flags & SLAB_STORE_USER) {
5040 		/*
5041 		 * Need to store information about allocs and frees after
5042 		 * the object.
5043 		 */
5044 		size += 2 * sizeof(struct track);
5045 
5046 		/* Save the original kmalloc request size */
5047 		if (flags & SLAB_KMALLOC)
5048 			size += sizeof(unsigned int);
5049 	}
5050 #endif
5051 
5052 	kasan_cache_create(s, &size, &s->flags);
5053 #ifdef CONFIG_SLUB_DEBUG
5054 	if (flags & SLAB_RED_ZONE) {
5055 		/*
5056 		 * Add some empty padding so that we can catch
5057 		 * overwrites from earlier objects rather than let
5058 		 * tracking information or the free pointer be
5059 		 * corrupted if a user writes before the start
5060 		 * of the object.
5061 		 */
5062 		size += sizeof(void *);
5063 
5064 		s->red_left_pad = sizeof(void *);
5065 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5066 		size += s->red_left_pad;
5067 	}
5068 #endif
5069 
5070 	/*
5071 	 * SLUB stores one object immediately after another beginning from
5072 	 * offset 0. In order to align the objects we have to simply size
5073 	 * each object to conform to the alignment.
5074 	 */
5075 	size = ALIGN(size, s->align);
5076 	s->size = size;
5077 	s->reciprocal_size = reciprocal_value(size);
5078 	order = calculate_order(size);
5079 
5080 	if ((int)order < 0)
5081 		return 0;
5082 
5083 	s->allocflags = 0;
5084 	if (order)
5085 		s->allocflags |= __GFP_COMP;
5086 
5087 	if (s->flags & SLAB_CACHE_DMA)
5088 		s->allocflags |= GFP_DMA;
5089 
5090 	if (s->flags & SLAB_CACHE_DMA32)
5091 		s->allocflags |= GFP_DMA32;
5092 
5093 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5094 		s->allocflags |= __GFP_RECLAIMABLE;
5095 
5096 	/*
5097 	 * Determine the number of objects per slab
5098 	 */
5099 	s->oo = oo_make(order, size);
5100 	s->min = oo_make(get_order(size), size);
5101 
5102 	return !!oo_objects(s->oo);
5103 }
5104 
5105 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5106 {
5107 	s->flags = kmem_cache_flags(s->size, flags, s->name);
5108 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5109 	s->random = get_random_long();
5110 #endif
5111 
5112 	if (!calculate_sizes(s))
5113 		goto error;
5114 	if (disable_higher_order_debug) {
5115 		/*
5116 		 * Disable debugging flags that store metadata if the min slab
5117 		 * order increased.
5118 		 */
5119 		if (get_order(s->size) > get_order(s->object_size)) {
5120 			s->flags &= ~DEBUG_METADATA_FLAGS;
5121 			s->offset = 0;
5122 			if (!calculate_sizes(s))
5123 				goto error;
5124 		}
5125 	}
5126 
5127 #ifdef system_has_freelist_aba
5128 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5129 		/* Enable fast mode */
5130 		s->flags |= __CMPXCHG_DOUBLE;
5131 	}
5132 #endif
5133 
5134 	/*
5135 	 * The larger the object size is, the more slabs we want on the partial
5136 	 * list to avoid pounding the page allocator excessively.
5137 	 */
5138 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5139 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5140 
5141 	set_cpu_partial(s);
5142 
5143 #ifdef CONFIG_NUMA
5144 	s->remote_node_defrag_ratio = 1000;
5145 #endif
5146 
5147 	/* Initialize the pre-computed randomized freelist if slab is up */
5148 	if (slab_state >= UP) {
5149 		if (init_cache_random_seq(s))
5150 			goto error;
5151 	}
5152 
5153 	if (!init_kmem_cache_nodes(s))
5154 		goto error;
5155 
5156 	if (alloc_kmem_cache_cpus(s))
5157 		return 0;
5158 
5159 error:
5160 	__kmem_cache_release(s);
5161 	return -EINVAL;
5162 }
5163 
5164 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5165 			      const char *text)
5166 {
5167 #ifdef CONFIG_SLUB_DEBUG
5168 	void *addr = slab_address(slab);
5169 	void *p;
5170 
5171 	slab_err(s, slab, text, s->name);
5172 
5173 	spin_lock(&object_map_lock);
5174 	__fill_map(object_map, s, slab);
5175 
5176 	for_each_object(p, s, addr, slab->objects) {
5177 
5178 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5179 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5180 			print_tracking(s, p);
5181 		}
5182 	}
5183 	spin_unlock(&object_map_lock);
5184 #endif
5185 }
5186 
5187 /*
5188  * Attempt to free all partial slabs on a node.
5189  * This is called from __kmem_cache_shutdown(). We must take list_lock
5190  * because sysfs file might still access partial list after the shutdowning.
5191  */
5192 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5193 {
5194 	LIST_HEAD(discard);
5195 	struct slab *slab, *h;
5196 
5197 	BUG_ON(irqs_disabled());
5198 	spin_lock_irq(&n->list_lock);
5199 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5200 		if (!slab->inuse) {
5201 			remove_partial(n, slab);
5202 			list_add(&slab->slab_list, &discard);
5203 		} else {
5204 			list_slab_objects(s, slab,
5205 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5206 		}
5207 	}
5208 	spin_unlock_irq(&n->list_lock);
5209 
5210 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5211 		discard_slab(s, slab);
5212 }
5213 
5214 bool __kmem_cache_empty(struct kmem_cache *s)
5215 {
5216 	int node;
5217 	struct kmem_cache_node *n;
5218 
5219 	for_each_kmem_cache_node(s, node, n)
5220 		if (n->nr_partial || node_nr_slabs(n))
5221 			return false;
5222 	return true;
5223 }
5224 
5225 /*
5226  * Release all resources used by a slab cache.
5227  */
5228 int __kmem_cache_shutdown(struct kmem_cache *s)
5229 {
5230 	int node;
5231 	struct kmem_cache_node *n;
5232 
5233 	flush_all_cpus_locked(s);
5234 	/* Attempt to free all objects */
5235 	for_each_kmem_cache_node(s, node, n) {
5236 		free_partial(s, n);
5237 		if (n->nr_partial || node_nr_slabs(n))
5238 			return 1;
5239 	}
5240 	return 0;
5241 }
5242 
5243 #ifdef CONFIG_PRINTK
5244 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5245 {
5246 	void *base;
5247 	int __maybe_unused i;
5248 	unsigned int objnr;
5249 	void *objp;
5250 	void *objp0;
5251 	struct kmem_cache *s = slab->slab_cache;
5252 	struct track __maybe_unused *trackp;
5253 
5254 	kpp->kp_ptr = object;
5255 	kpp->kp_slab = slab;
5256 	kpp->kp_slab_cache = s;
5257 	base = slab_address(slab);
5258 	objp0 = kasan_reset_tag(object);
5259 #ifdef CONFIG_SLUB_DEBUG
5260 	objp = restore_red_left(s, objp0);
5261 #else
5262 	objp = objp0;
5263 #endif
5264 	objnr = obj_to_index(s, slab, objp);
5265 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5266 	objp = base + s->size * objnr;
5267 	kpp->kp_objp = objp;
5268 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5269 			 || (objp - base) % s->size) ||
5270 	    !(s->flags & SLAB_STORE_USER))
5271 		return;
5272 #ifdef CONFIG_SLUB_DEBUG
5273 	objp = fixup_red_left(s, objp);
5274 	trackp = get_track(s, objp, TRACK_ALLOC);
5275 	kpp->kp_ret = (void *)trackp->addr;
5276 #ifdef CONFIG_STACKDEPOT
5277 	{
5278 		depot_stack_handle_t handle;
5279 		unsigned long *entries;
5280 		unsigned int nr_entries;
5281 
5282 		handle = READ_ONCE(trackp->handle);
5283 		if (handle) {
5284 			nr_entries = stack_depot_fetch(handle, &entries);
5285 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5286 				kpp->kp_stack[i] = (void *)entries[i];
5287 		}
5288 
5289 		trackp = get_track(s, objp, TRACK_FREE);
5290 		handle = READ_ONCE(trackp->handle);
5291 		if (handle) {
5292 			nr_entries = stack_depot_fetch(handle, &entries);
5293 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5294 				kpp->kp_free_stack[i] = (void *)entries[i];
5295 		}
5296 	}
5297 #endif
5298 #endif
5299 }
5300 #endif
5301 
5302 /********************************************************************
5303  *		Kmalloc subsystem
5304  *******************************************************************/
5305 
5306 static int __init setup_slub_min_order(char *str)
5307 {
5308 	get_option(&str, (int *)&slub_min_order);
5309 
5310 	if (slub_min_order > slub_max_order)
5311 		slub_max_order = slub_min_order;
5312 
5313 	return 1;
5314 }
5315 
5316 __setup("slub_min_order=", setup_slub_min_order);
5317 
5318 static int __init setup_slub_max_order(char *str)
5319 {
5320 	get_option(&str, (int *)&slub_max_order);
5321 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5322 
5323 	if (slub_min_order > slub_max_order)
5324 		slub_min_order = slub_max_order;
5325 
5326 	return 1;
5327 }
5328 
5329 __setup("slub_max_order=", setup_slub_max_order);
5330 
5331 static int __init setup_slub_min_objects(char *str)
5332 {
5333 	get_option(&str, (int *)&slub_min_objects);
5334 
5335 	return 1;
5336 }
5337 
5338 __setup("slub_min_objects=", setup_slub_min_objects);
5339 
5340 #ifdef CONFIG_HARDENED_USERCOPY
5341 /*
5342  * Rejects incorrectly sized objects and objects that are to be copied
5343  * to/from userspace but do not fall entirely within the containing slab
5344  * cache's usercopy region.
5345  *
5346  * Returns NULL if check passes, otherwise const char * to name of cache
5347  * to indicate an error.
5348  */
5349 void __check_heap_object(const void *ptr, unsigned long n,
5350 			 const struct slab *slab, bool to_user)
5351 {
5352 	struct kmem_cache *s;
5353 	unsigned int offset;
5354 	bool is_kfence = is_kfence_address(ptr);
5355 
5356 	ptr = kasan_reset_tag(ptr);
5357 
5358 	/* Find object and usable object size. */
5359 	s = slab->slab_cache;
5360 
5361 	/* Reject impossible pointers. */
5362 	if (ptr < slab_address(slab))
5363 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5364 			       to_user, 0, n);
5365 
5366 	/* Find offset within object. */
5367 	if (is_kfence)
5368 		offset = ptr - kfence_object_start(ptr);
5369 	else
5370 		offset = (ptr - slab_address(slab)) % s->size;
5371 
5372 	/* Adjust for redzone and reject if within the redzone. */
5373 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5374 		if (offset < s->red_left_pad)
5375 			usercopy_abort("SLUB object in left red zone",
5376 				       s->name, to_user, offset, n);
5377 		offset -= s->red_left_pad;
5378 	}
5379 
5380 	/* Allow address range falling entirely within usercopy region. */
5381 	if (offset >= s->useroffset &&
5382 	    offset - s->useroffset <= s->usersize &&
5383 	    n <= s->useroffset - offset + s->usersize)
5384 		return;
5385 
5386 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5387 }
5388 #endif /* CONFIG_HARDENED_USERCOPY */
5389 
5390 #define SHRINK_PROMOTE_MAX 32
5391 
5392 /*
5393  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5394  * up most to the head of the partial lists. New allocations will then
5395  * fill those up and thus they can be removed from the partial lists.
5396  *
5397  * The slabs with the least items are placed last. This results in them
5398  * being allocated from last increasing the chance that the last objects
5399  * are freed in them.
5400  */
5401 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5402 {
5403 	int node;
5404 	int i;
5405 	struct kmem_cache_node *n;
5406 	struct slab *slab;
5407 	struct slab *t;
5408 	struct list_head discard;
5409 	struct list_head promote[SHRINK_PROMOTE_MAX];
5410 	unsigned long flags;
5411 	int ret = 0;
5412 
5413 	for_each_kmem_cache_node(s, node, n) {
5414 		INIT_LIST_HEAD(&discard);
5415 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5416 			INIT_LIST_HEAD(promote + i);
5417 
5418 		spin_lock_irqsave(&n->list_lock, flags);
5419 
5420 		/*
5421 		 * Build lists of slabs to discard or promote.
5422 		 *
5423 		 * Note that concurrent frees may occur while we hold the
5424 		 * list_lock. slab->inuse here is the upper limit.
5425 		 */
5426 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5427 			int free = slab->objects - slab->inuse;
5428 
5429 			/* Do not reread slab->inuse */
5430 			barrier();
5431 
5432 			/* We do not keep full slabs on the list */
5433 			BUG_ON(free <= 0);
5434 
5435 			if (free == slab->objects) {
5436 				list_move(&slab->slab_list, &discard);
5437 				slab_clear_node_partial(slab);
5438 				n->nr_partial--;
5439 				dec_slabs_node(s, node, slab->objects);
5440 			} else if (free <= SHRINK_PROMOTE_MAX)
5441 				list_move(&slab->slab_list, promote + free - 1);
5442 		}
5443 
5444 		/*
5445 		 * Promote the slabs filled up most to the head of the
5446 		 * partial list.
5447 		 */
5448 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5449 			list_splice(promote + i, &n->partial);
5450 
5451 		spin_unlock_irqrestore(&n->list_lock, flags);
5452 
5453 		/* Release empty slabs */
5454 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5455 			free_slab(s, slab);
5456 
5457 		if (node_nr_slabs(n))
5458 			ret = 1;
5459 	}
5460 
5461 	return ret;
5462 }
5463 
5464 int __kmem_cache_shrink(struct kmem_cache *s)
5465 {
5466 	flush_all(s);
5467 	return __kmem_cache_do_shrink(s);
5468 }
5469 
5470 static int slab_mem_going_offline_callback(void *arg)
5471 {
5472 	struct kmem_cache *s;
5473 
5474 	mutex_lock(&slab_mutex);
5475 	list_for_each_entry(s, &slab_caches, list) {
5476 		flush_all_cpus_locked(s);
5477 		__kmem_cache_do_shrink(s);
5478 	}
5479 	mutex_unlock(&slab_mutex);
5480 
5481 	return 0;
5482 }
5483 
5484 static void slab_mem_offline_callback(void *arg)
5485 {
5486 	struct memory_notify *marg = arg;
5487 	int offline_node;
5488 
5489 	offline_node = marg->status_change_nid_normal;
5490 
5491 	/*
5492 	 * If the node still has available memory. we need kmem_cache_node
5493 	 * for it yet.
5494 	 */
5495 	if (offline_node < 0)
5496 		return;
5497 
5498 	mutex_lock(&slab_mutex);
5499 	node_clear(offline_node, slab_nodes);
5500 	/*
5501 	 * We no longer free kmem_cache_node structures here, as it would be
5502 	 * racy with all get_node() users, and infeasible to protect them with
5503 	 * slab_mutex.
5504 	 */
5505 	mutex_unlock(&slab_mutex);
5506 }
5507 
5508 static int slab_mem_going_online_callback(void *arg)
5509 {
5510 	struct kmem_cache_node *n;
5511 	struct kmem_cache *s;
5512 	struct memory_notify *marg = arg;
5513 	int nid = marg->status_change_nid_normal;
5514 	int ret = 0;
5515 
5516 	/*
5517 	 * If the node's memory is already available, then kmem_cache_node is
5518 	 * already created. Nothing to do.
5519 	 */
5520 	if (nid < 0)
5521 		return 0;
5522 
5523 	/*
5524 	 * We are bringing a node online. No memory is available yet. We must
5525 	 * allocate a kmem_cache_node structure in order to bring the node
5526 	 * online.
5527 	 */
5528 	mutex_lock(&slab_mutex);
5529 	list_for_each_entry(s, &slab_caches, list) {
5530 		/*
5531 		 * The structure may already exist if the node was previously
5532 		 * onlined and offlined.
5533 		 */
5534 		if (get_node(s, nid))
5535 			continue;
5536 		/*
5537 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5538 		 *      since memory is not yet available from the node that
5539 		 *      is brought up.
5540 		 */
5541 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5542 		if (!n) {
5543 			ret = -ENOMEM;
5544 			goto out;
5545 		}
5546 		init_kmem_cache_node(n);
5547 		s->node[nid] = n;
5548 	}
5549 	/*
5550 	 * Any cache created after this point will also have kmem_cache_node
5551 	 * initialized for the new node.
5552 	 */
5553 	node_set(nid, slab_nodes);
5554 out:
5555 	mutex_unlock(&slab_mutex);
5556 	return ret;
5557 }
5558 
5559 static int slab_memory_callback(struct notifier_block *self,
5560 				unsigned long action, void *arg)
5561 {
5562 	int ret = 0;
5563 
5564 	switch (action) {
5565 	case MEM_GOING_ONLINE:
5566 		ret = slab_mem_going_online_callback(arg);
5567 		break;
5568 	case MEM_GOING_OFFLINE:
5569 		ret = slab_mem_going_offline_callback(arg);
5570 		break;
5571 	case MEM_OFFLINE:
5572 	case MEM_CANCEL_ONLINE:
5573 		slab_mem_offline_callback(arg);
5574 		break;
5575 	case MEM_ONLINE:
5576 	case MEM_CANCEL_OFFLINE:
5577 		break;
5578 	}
5579 	if (ret)
5580 		ret = notifier_from_errno(ret);
5581 	else
5582 		ret = NOTIFY_OK;
5583 	return ret;
5584 }
5585 
5586 /********************************************************************
5587  *			Basic setup of slabs
5588  *******************************************************************/
5589 
5590 /*
5591  * Used for early kmem_cache structures that were allocated using
5592  * the page allocator. Allocate them properly then fix up the pointers
5593  * that may be pointing to the wrong kmem_cache structure.
5594  */
5595 
5596 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5597 {
5598 	int node;
5599 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5600 	struct kmem_cache_node *n;
5601 
5602 	memcpy(s, static_cache, kmem_cache->object_size);
5603 
5604 	/*
5605 	 * This runs very early, and only the boot processor is supposed to be
5606 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5607 	 * IPIs around.
5608 	 */
5609 	__flush_cpu_slab(s, smp_processor_id());
5610 	for_each_kmem_cache_node(s, node, n) {
5611 		struct slab *p;
5612 
5613 		list_for_each_entry(p, &n->partial, slab_list)
5614 			p->slab_cache = s;
5615 
5616 #ifdef CONFIG_SLUB_DEBUG
5617 		list_for_each_entry(p, &n->full, slab_list)
5618 			p->slab_cache = s;
5619 #endif
5620 	}
5621 	list_add(&s->list, &slab_caches);
5622 	return s;
5623 }
5624 
5625 void __init kmem_cache_init(void)
5626 {
5627 	static __initdata struct kmem_cache boot_kmem_cache,
5628 		boot_kmem_cache_node;
5629 	int node;
5630 
5631 	if (debug_guardpage_minorder())
5632 		slub_max_order = 0;
5633 
5634 	/* Print slub debugging pointers without hashing */
5635 	if (__slub_debug_enabled())
5636 		no_hash_pointers_enable(NULL);
5637 
5638 	kmem_cache_node = &boot_kmem_cache_node;
5639 	kmem_cache = &boot_kmem_cache;
5640 
5641 	/*
5642 	 * Initialize the nodemask for which we will allocate per node
5643 	 * structures. Here we don't need taking slab_mutex yet.
5644 	 */
5645 	for_each_node_state(node, N_NORMAL_MEMORY)
5646 		node_set(node, slab_nodes);
5647 
5648 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5649 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5650 
5651 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5652 
5653 	/* Able to allocate the per node structures */
5654 	slab_state = PARTIAL;
5655 
5656 	create_boot_cache(kmem_cache, "kmem_cache",
5657 			offsetof(struct kmem_cache, node) +
5658 				nr_node_ids * sizeof(struct kmem_cache_node *),
5659 		       SLAB_HWCACHE_ALIGN, 0, 0);
5660 
5661 	kmem_cache = bootstrap(&boot_kmem_cache);
5662 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5663 
5664 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5665 	setup_kmalloc_cache_index_table();
5666 	create_kmalloc_caches(0);
5667 
5668 	/* Setup random freelists for each cache */
5669 	init_freelist_randomization();
5670 
5671 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5672 				  slub_cpu_dead);
5673 
5674 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5675 		cache_line_size(),
5676 		slub_min_order, slub_max_order, slub_min_objects,
5677 		nr_cpu_ids, nr_node_ids);
5678 }
5679 
5680 void __init kmem_cache_init_late(void)
5681 {
5682 #ifndef CONFIG_SLUB_TINY
5683 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5684 	WARN_ON(!flushwq);
5685 #endif
5686 }
5687 
5688 struct kmem_cache *
5689 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5690 		   slab_flags_t flags, void (*ctor)(void *))
5691 {
5692 	struct kmem_cache *s;
5693 
5694 	s = find_mergeable(size, align, flags, name, ctor);
5695 	if (s) {
5696 		if (sysfs_slab_alias(s, name))
5697 			return NULL;
5698 
5699 		s->refcount++;
5700 
5701 		/*
5702 		 * Adjust the object sizes so that we clear
5703 		 * the complete object on kzalloc.
5704 		 */
5705 		s->object_size = max(s->object_size, size);
5706 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5707 	}
5708 
5709 	return s;
5710 }
5711 
5712 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5713 {
5714 	int err;
5715 
5716 	err = kmem_cache_open(s, flags);
5717 	if (err)
5718 		return err;
5719 
5720 	/* Mutex is not taken during early boot */
5721 	if (slab_state <= UP)
5722 		return 0;
5723 
5724 	err = sysfs_slab_add(s);
5725 	if (err) {
5726 		__kmem_cache_release(s);
5727 		return err;
5728 	}
5729 
5730 	if (s->flags & SLAB_STORE_USER)
5731 		debugfs_slab_add(s);
5732 
5733 	return 0;
5734 }
5735 
5736 #ifdef SLAB_SUPPORTS_SYSFS
5737 static int count_inuse(struct slab *slab)
5738 {
5739 	return slab->inuse;
5740 }
5741 
5742 static int count_total(struct slab *slab)
5743 {
5744 	return slab->objects;
5745 }
5746 #endif
5747 
5748 #ifdef CONFIG_SLUB_DEBUG
5749 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5750 			  unsigned long *obj_map)
5751 {
5752 	void *p;
5753 	void *addr = slab_address(slab);
5754 
5755 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5756 		return;
5757 
5758 	/* Now we know that a valid freelist exists */
5759 	__fill_map(obj_map, s, slab);
5760 	for_each_object(p, s, addr, slab->objects) {
5761 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5762 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5763 
5764 		if (!check_object(s, slab, p, val))
5765 			break;
5766 	}
5767 }
5768 
5769 static int validate_slab_node(struct kmem_cache *s,
5770 		struct kmem_cache_node *n, unsigned long *obj_map)
5771 {
5772 	unsigned long count = 0;
5773 	struct slab *slab;
5774 	unsigned long flags;
5775 
5776 	spin_lock_irqsave(&n->list_lock, flags);
5777 
5778 	list_for_each_entry(slab, &n->partial, slab_list) {
5779 		validate_slab(s, slab, obj_map);
5780 		count++;
5781 	}
5782 	if (count != n->nr_partial) {
5783 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5784 		       s->name, count, n->nr_partial);
5785 		slab_add_kunit_errors();
5786 	}
5787 
5788 	if (!(s->flags & SLAB_STORE_USER))
5789 		goto out;
5790 
5791 	list_for_each_entry(slab, &n->full, slab_list) {
5792 		validate_slab(s, slab, obj_map);
5793 		count++;
5794 	}
5795 	if (count != node_nr_slabs(n)) {
5796 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5797 		       s->name, count, node_nr_slabs(n));
5798 		slab_add_kunit_errors();
5799 	}
5800 
5801 out:
5802 	spin_unlock_irqrestore(&n->list_lock, flags);
5803 	return count;
5804 }
5805 
5806 long validate_slab_cache(struct kmem_cache *s)
5807 {
5808 	int node;
5809 	unsigned long count = 0;
5810 	struct kmem_cache_node *n;
5811 	unsigned long *obj_map;
5812 
5813 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5814 	if (!obj_map)
5815 		return -ENOMEM;
5816 
5817 	flush_all(s);
5818 	for_each_kmem_cache_node(s, node, n)
5819 		count += validate_slab_node(s, n, obj_map);
5820 
5821 	bitmap_free(obj_map);
5822 
5823 	return count;
5824 }
5825 EXPORT_SYMBOL(validate_slab_cache);
5826 
5827 #ifdef CONFIG_DEBUG_FS
5828 /*
5829  * Generate lists of code addresses where slabcache objects are allocated
5830  * and freed.
5831  */
5832 
5833 struct location {
5834 	depot_stack_handle_t handle;
5835 	unsigned long count;
5836 	unsigned long addr;
5837 	unsigned long waste;
5838 	long long sum_time;
5839 	long min_time;
5840 	long max_time;
5841 	long min_pid;
5842 	long max_pid;
5843 	DECLARE_BITMAP(cpus, NR_CPUS);
5844 	nodemask_t nodes;
5845 };
5846 
5847 struct loc_track {
5848 	unsigned long max;
5849 	unsigned long count;
5850 	struct location *loc;
5851 	loff_t idx;
5852 };
5853 
5854 static struct dentry *slab_debugfs_root;
5855 
5856 static void free_loc_track(struct loc_track *t)
5857 {
5858 	if (t->max)
5859 		free_pages((unsigned long)t->loc,
5860 			get_order(sizeof(struct location) * t->max));
5861 }
5862 
5863 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5864 {
5865 	struct location *l;
5866 	int order;
5867 
5868 	order = get_order(sizeof(struct location) * max);
5869 
5870 	l = (void *)__get_free_pages(flags, order);
5871 	if (!l)
5872 		return 0;
5873 
5874 	if (t->count) {
5875 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5876 		free_loc_track(t);
5877 	}
5878 	t->max = max;
5879 	t->loc = l;
5880 	return 1;
5881 }
5882 
5883 static int add_location(struct loc_track *t, struct kmem_cache *s,
5884 				const struct track *track,
5885 				unsigned int orig_size)
5886 {
5887 	long start, end, pos;
5888 	struct location *l;
5889 	unsigned long caddr, chandle, cwaste;
5890 	unsigned long age = jiffies - track->when;
5891 	depot_stack_handle_t handle = 0;
5892 	unsigned int waste = s->object_size - orig_size;
5893 
5894 #ifdef CONFIG_STACKDEPOT
5895 	handle = READ_ONCE(track->handle);
5896 #endif
5897 	start = -1;
5898 	end = t->count;
5899 
5900 	for ( ; ; ) {
5901 		pos = start + (end - start + 1) / 2;
5902 
5903 		/*
5904 		 * There is nothing at "end". If we end up there
5905 		 * we need to add something to before end.
5906 		 */
5907 		if (pos == end)
5908 			break;
5909 
5910 		l = &t->loc[pos];
5911 		caddr = l->addr;
5912 		chandle = l->handle;
5913 		cwaste = l->waste;
5914 		if ((track->addr == caddr) && (handle == chandle) &&
5915 			(waste == cwaste)) {
5916 
5917 			l->count++;
5918 			if (track->when) {
5919 				l->sum_time += age;
5920 				if (age < l->min_time)
5921 					l->min_time = age;
5922 				if (age > l->max_time)
5923 					l->max_time = age;
5924 
5925 				if (track->pid < l->min_pid)
5926 					l->min_pid = track->pid;
5927 				if (track->pid > l->max_pid)
5928 					l->max_pid = track->pid;
5929 
5930 				cpumask_set_cpu(track->cpu,
5931 						to_cpumask(l->cpus));
5932 			}
5933 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5934 			return 1;
5935 		}
5936 
5937 		if (track->addr < caddr)
5938 			end = pos;
5939 		else if (track->addr == caddr && handle < chandle)
5940 			end = pos;
5941 		else if (track->addr == caddr && handle == chandle &&
5942 				waste < cwaste)
5943 			end = pos;
5944 		else
5945 			start = pos;
5946 	}
5947 
5948 	/*
5949 	 * Not found. Insert new tracking element.
5950 	 */
5951 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5952 		return 0;
5953 
5954 	l = t->loc + pos;
5955 	if (pos < t->count)
5956 		memmove(l + 1, l,
5957 			(t->count - pos) * sizeof(struct location));
5958 	t->count++;
5959 	l->count = 1;
5960 	l->addr = track->addr;
5961 	l->sum_time = age;
5962 	l->min_time = age;
5963 	l->max_time = age;
5964 	l->min_pid = track->pid;
5965 	l->max_pid = track->pid;
5966 	l->handle = handle;
5967 	l->waste = waste;
5968 	cpumask_clear(to_cpumask(l->cpus));
5969 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5970 	nodes_clear(l->nodes);
5971 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5972 	return 1;
5973 }
5974 
5975 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5976 		struct slab *slab, enum track_item alloc,
5977 		unsigned long *obj_map)
5978 {
5979 	void *addr = slab_address(slab);
5980 	bool is_alloc = (alloc == TRACK_ALLOC);
5981 	void *p;
5982 
5983 	__fill_map(obj_map, s, slab);
5984 
5985 	for_each_object(p, s, addr, slab->objects)
5986 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5987 			add_location(t, s, get_track(s, p, alloc),
5988 				     is_alloc ? get_orig_size(s, p) :
5989 						s->object_size);
5990 }
5991 #endif  /* CONFIG_DEBUG_FS   */
5992 #endif	/* CONFIG_SLUB_DEBUG */
5993 
5994 #ifdef SLAB_SUPPORTS_SYSFS
5995 enum slab_stat_type {
5996 	SL_ALL,			/* All slabs */
5997 	SL_PARTIAL,		/* Only partially allocated slabs */
5998 	SL_CPU,			/* Only slabs used for cpu caches */
5999 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6000 	SL_TOTAL		/* Determine object capacity not slabs */
6001 };
6002 
6003 #define SO_ALL		(1 << SL_ALL)
6004 #define SO_PARTIAL	(1 << SL_PARTIAL)
6005 #define SO_CPU		(1 << SL_CPU)
6006 #define SO_OBJECTS	(1 << SL_OBJECTS)
6007 #define SO_TOTAL	(1 << SL_TOTAL)
6008 
6009 static ssize_t show_slab_objects(struct kmem_cache *s,
6010 				 char *buf, unsigned long flags)
6011 {
6012 	unsigned long total = 0;
6013 	int node;
6014 	int x;
6015 	unsigned long *nodes;
6016 	int len = 0;
6017 
6018 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6019 	if (!nodes)
6020 		return -ENOMEM;
6021 
6022 	if (flags & SO_CPU) {
6023 		int cpu;
6024 
6025 		for_each_possible_cpu(cpu) {
6026 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6027 							       cpu);
6028 			int node;
6029 			struct slab *slab;
6030 
6031 			slab = READ_ONCE(c->slab);
6032 			if (!slab)
6033 				continue;
6034 
6035 			node = slab_nid(slab);
6036 			if (flags & SO_TOTAL)
6037 				x = slab->objects;
6038 			else if (flags & SO_OBJECTS)
6039 				x = slab->inuse;
6040 			else
6041 				x = 1;
6042 
6043 			total += x;
6044 			nodes[node] += x;
6045 
6046 #ifdef CONFIG_SLUB_CPU_PARTIAL
6047 			slab = slub_percpu_partial_read_once(c);
6048 			if (slab) {
6049 				node = slab_nid(slab);
6050 				if (flags & SO_TOTAL)
6051 					WARN_ON_ONCE(1);
6052 				else if (flags & SO_OBJECTS)
6053 					WARN_ON_ONCE(1);
6054 				else
6055 					x = slab->slabs;
6056 				total += x;
6057 				nodes[node] += x;
6058 			}
6059 #endif
6060 		}
6061 	}
6062 
6063 	/*
6064 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6065 	 * already held which will conflict with an existing lock order:
6066 	 *
6067 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6068 	 *
6069 	 * We don't really need mem_hotplug_lock (to hold off
6070 	 * slab_mem_going_offline_callback) here because slab's memory hot
6071 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6072 	 */
6073 
6074 #ifdef CONFIG_SLUB_DEBUG
6075 	if (flags & SO_ALL) {
6076 		struct kmem_cache_node *n;
6077 
6078 		for_each_kmem_cache_node(s, node, n) {
6079 
6080 			if (flags & SO_TOTAL)
6081 				x = node_nr_objs(n);
6082 			else if (flags & SO_OBJECTS)
6083 				x = node_nr_objs(n) - count_partial(n, count_free);
6084 			else
6085 				x = node_nr_slabs(n);
6086 			total += x;
6087 			nodes[node] += x;
6088 		}
6089 
6090 	} else
6091 #endif
6092 	if (flags & SO_PARTIAL) {
6093 		struct kmem_cache_node *n;
6094 
6095 		for_each_kmem_cache_node(s, node, n) {
6096 			if (flags & SO_TOTAL)
6097 				x = count_partial(n, count_total);
6098 			else if (flags & SO_OBJECTS)
6099 				x = count_partial(n, count_inuse);
6100 			else
6101 				x = n->nr_partial;
6102 			total += x;
6103 			nodes[node] += x;
6104 		}
6105 	}
6106 
6107 	len += sysfs_emit_at(buf, len, "%lu", total);
6108 #ifdef CONFIG_NUMA
6109 	for (node = 0; node < nr_node_ids; node++) {
6110 		if (nodes[node])
6111 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6112 					     node, nodes[node]);
6113 	}
6114 #endif
6115 	len += sysfs_emit_at(buf, len, "\n");
6116 	kfree(nodes);
6117 
6118 	return len;
6119 }
6120 
6121 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6122 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6123 
6124 struct slab_attribute {
6125 	struct attribute attr;
6126 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6127 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6128 };
6129 
6130 #define SLAB_ATTR_RO(_name) \
6131 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6132 
6133 #define SLAB_ATTR(_name) \
6134 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6135 
6136 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6137 {
6138 	return sysfs_emit(buf, "%u\n", s->size);
6139 }
6140 SLAB_ATTR_RO(slab_size);
6141 
6142 static ssize_t align_show(struct kmem_cache *s, char *buf)
6143 {
6144 	return sysfs_emit(buf, "%u\n", s->align);
6145 }
6146 SLAB_ATTR_RO(align);
6147 
6148 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6149 {
6150 	return sysfs_emit(buf, "%u\n", s->object_size);
6151 }
6152 SLAB_ATTR_RO(object_size);
6153 
6154 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6155 {
6156 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6157 }
6158 SLAB_ATTR_RO(objs_per_slab);
6159 
6160 static ssize_t order_show(struct kmem_cache *s, char *buf)
6161 {
6162 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6163 }
6164 SLAB_ATTR_RO(order);
6165 
6166 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6167 {
6168 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6169 }
6170 
6171 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6172 				 size_t length)
6173 {
6174 	unsigned long min;
6175 	int err;
6176 
6177 	err = kstrtoul(buf, 10, &min);
6178 	if (err)
6179 		return err;
6180 
6181 	s->min_partial = min;
6182 	return length;
6183 }
6184 SLAB_ATTR(min_partial);
6185 
6186 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6187 {
6188 	unsigned int nr_partial = 0;
6189 #ifdef CONFIG_SLUB_CPU_PARTIAL
6190 	nr_partial = s->cpu_partial;
6191 #endif
6192 
6193 	return sysfs_emit(buf, "%u\n", nr_partial);
6194 }
6195 
6196 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6197 				 size_t length)
6198 {
6199 	unsigned int objects;
6200 	int err;
6201 
6202 	err = kstrtouint(buf, 10, &objects);
6203 	if (err)
6204 		return err;
6205 	if (objects && !kmem_cache_has_cpu_partial(s))
6206 		return -EINVAL;
6207 
6208 	slub_set_cpu_partial(s, objects);
6209 	flush_all(s);
6210 	return length;
6211 }
6212 SLAB_ATTR(cpu_partial);
6213 
6214 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6215 {
6216 	if (!s->ctor)
6217 		return 0;
6218 	return sysfs_emit(buf, "%pS\n", s->ctor);
6219 }
6220 SLAB_ATTR_RO(ctor);
6221 
6222 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6223 {
6224 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6225 }
6226 SLAB_ATTR_RO(aliases);
6227 
6228 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6229 {
6230 	return show_slab_objects(s, buf, SO_PARTIAL);
6231 }
6232 SLAB_ATTR_RO(partial);
6233 
6234 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6235 {
6236 	return show_slab_objects(s, buf, SO_CPU);
6237 }
6238 SLAB_ATTR_RO(cpu_slabs);
6239 
6240 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6241 {
6242 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6243 }
6244 SLAB_ATTR_RO(objects_partial);
6245 
6246 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6247 {
6248 	int objects = 0;
6249 	int slabs = 0;
6250 	int cpu __maybe_unused;
6251 	int len = 0;
6252 
6253 #ifdef CONFIG_SLUB_CPU_PARTIAL
6254 	for_each_online_cpu(cpu) {
6255 		struct slab *slab;
6256 
6257 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6258 
6259 		if (slab)
6260 			slabs += slab->slabs;
6261 	}
6262 #endif
6263 
6264 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6265 	objects = (slabs * oo_objects(s->oo)) / 2;
6266 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6267 
6268 #ifdef CONFIG_SLUB_CPU_PARTIAL
6269 	for_each_online_cpu(cpu) {
6270 		struct slab *slab;
6271 
6272 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6273 		if (slab) {
6274 			slabs = READ_ONCE(slab->slabs);
6275 			objects = (slabs * oo_objects(s->oo)) / 2;
6276 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6277 					     cpu, objects, slabs);
6278 		}
6279 	}
6280 #endif
6281 	len += sysfs_emit_at(buf, len, "\n");
6282 
6283 	return len;
6284 }
6285 SLAB_ATTR_RO(slabs_cpu_partial);
6286 
6287 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6288 {
6289 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6290 }
6291 SLAB_ATTR_RO(reclaim_account);
6292 
6293 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6294 {
6295 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6296 }
6297 SLAB_ATTR_RO(hwcache_align);
6298 
6299 #ifdef CONFIG_ZONE_DMA
6300 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6301 {
6302 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6303 }
6304 SLAB_ATTR_RO(cache_dma);
6305 #endif
6306 
6307 #ifdef CONFIG_HARDENED_USERCOPY
6308 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6309 {
6310 	return sysfs_emit(buf, "%u\n", s->usersize);
6311 }
6312 SLAB_ATTR_RO(usersize);
6313 #endif
6314 
6315 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6316 {
6317 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6318 }
6319 SLAB_ATTR_RO(destroy_by_rcu);
6320 
6321 #ifdef CONFIG_SLUB_DEBUG
6322 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6323 {
6324 	return show_slab_objects(s, buf, SO_ALL);
6325 }
6326 SLAB_ATTR_RO(slabs);
6327 
6328 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6329 {
6330 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6331 }
6332 SLAB_ATTR_RO(total_objects);
6333 
6334 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6335 {
6336 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6337 }
6338 SLAB_ATTR_RO(objects);
6339 
6340 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6341 {
6342 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6343 }
6344 SLAB_ATTR_RO(sanity_checks);
6345 
6346 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6347 {
6348 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6349 }
6350 SLAB_ATTR_RO(trace);
6351 
6352 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6353 {
6354 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6355 }
6356 
6357 SLAB_ATTR_RO(red_zone);
6358 
6359 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6360 {
6361 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6362 }
6363 
6364 SLAB_ATTR_RO(poison);
6365 
6366 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6367 {
6368 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6369 }
6370 
6371 SLAB_ATTR_RO(store_user);
6372 
6373 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6374 {
6375 	return 0;
6376 }
6377 
6378 static ssize_t validate_store(struct kmem_cache *s,
6379 			const char *buf, size_t length)
6380 {
6381 	int ret = -EINVAL;
6382 
6383 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6384 		ret = validate_slab_cache(s);
6385 		if (ret >= 0)
6386 			ret = length;
6387 	}
6388 	return ret;
6389 }
6390 SLAB_ATTR(validate);
6391 
6392 #endif /* CONFIG_SLUB_DEBUG */
6393 
6394 #ifdef CONFIG_FAILSLAB
6395 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6396 {
6397 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6398 }
6399 
6400 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6401 				size_t length)
6402 {
6403 	if (s->refcount > 1)
6404 		return -EINVAL;
6405 
6406 	if (buf[0] == '1')
6407 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6408 	else
6409 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6410 
6411 	return length;
6412 }
6413 SLAB_ATTR(failslab);
6414 #endif
6415 
6416 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6417 {
6418 	return 0;
6419 }
6420 
6421 static ssize_t shrink_store(struct kmem_cache *s,
6422 			const char *buf, size_t length)
6423 {
6424 	if (buf[0] == '1')
6425 		kmem_cache_shrink(s);
6426 	else
6427 		return -EINVAL;
6428 	return length;
6429 }
6430 SLAB_ATTR(shrink);
6431 
6432 #ifdef CONFIG_NUMA
6433 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6434 {
6435 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6436 }
6437 
6438 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6439 				const char *buf, size_t length)
6440 {
6441 	unsigned int ratio;
6442 	int err;
6443 
6444 	err = kstrtouint(buf, 10, &ratio);
6445 	if (err)
6446 		return err;
6447 	if (ratio > 100)
6448 		return -ERANGE;
6449 
6450 	s->remote_node_defrag_ratio = ratio * 10;
6451 
6452 	return length;
6453 }
6454 SLAB_ATTR(remote_node_defrag_ratio);
6455 #endif
6456 
6457 #ifdef CONFIG_SLUB_STATS
6458 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6459 {
6460 	unsigned long sum  = 0;
6461 	int cpu;
6462 	int len = 0;
6463 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6464 
6465 	if (!data)
6466 		return -ENOMEM;
6467 
6468 	for_each_online_cpu(cpu) {
6469 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6470 
6471 		data[cpu] = x;
6472 		sum += x;
6473 	}
6474 
6475 	len += sysfs_emit_at(buf, len, "%lu", sum);
6476 
6477 #ifdef CONFIG_SMP
6478 	for_each_online_cpu(cpu) {
6479 		if (data[cpu])
6480 			len += sysfs_emit_at(buf, len, " C%d=%u",
6481 					     cpu, data[cpu]);
6482 	}
6483 #endif
6484 	kfree(data);
6485 	len += sysfs_emit_at(buf, len, "\n");
6486 
6487 	return len;
6488 }
6489 
6490 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6491 {
6492 	int cpu;
6493 
6494 	for_each_online_cpu(cpu)
6495 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6496 }
6497 
6498 #define STAT_ATTR(si, text) 					\
6499 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6500 {								\
6501 	return show_stat(s, buf, si);				\
6502 }								\
6503 static ssize_t text##_store(struct kmem_cache *s,		\
6504 				const char *buf, size_t length)	\
6505 {								\
6506 	if (buf[0] != '0')					\
6507 		return -EINVAL;					\
6508 	clear_stat(s, si);					\
6509 	return length;						\
6510 }								\
6511 SLAB_ATTR(text);						\
6512 
6513 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6514 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6515 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6516 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6517 STAT_ATTR(FREE_FROZEN, free_frozen);
6518 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6519 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6520 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6521 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6522 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6523 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6524 STAT_ATTR(FREE_SLAB, free_slab);
6525 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6526 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6527 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6528 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6529 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6530 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6531 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6532 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6533 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6534 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6535 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6536 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6537 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6538 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6539 #endif	/* CONFIG_SLUB_STATS */
6540 
6541 #ifdef CONFIG_KFENCE
6542 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6543 {
6544 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6545 }
6546 
6547 static ssize_t skip_kfence_store(struct kmem_cache *s,
6548 			const char *buf, size_t length)
6549 {
6550 	int ret = length;
6551 
6552 	if (buf[0] == '0')
6553 		s->flags &= ~SLAB_SKIP_KFENCE;
6554 	else if (buf[0] == '1')
6555 		s->flags |= SLAB_SKIP_KFENCE;
6556 	else
6557 		ret = -EINVAL;
6558 
6559 	return ret;
6560 }
6561 SLAB_ATTR(skip_kfence);
6562 #endif
6563 
6564 static struct attribute *slab_attrs[] = {
6565 	&slab_size_attr.attr,
6566 	&object_size_attr.attr,
6567 	&objs_per_slab_attr.attr,
6568 	&order_attr.attr,
6569 	&min_partial_attr.attr,
6570 	&cpu_partial_attr.attr,
6571 	&objects_partial_attr.attr,
6572 	&partial_attr.attr,
6573 	&cpu_slabs_attr.attr,
6574 	&ctor_attr.attr,
6575 	&aliases_attr.attr,
6576 	&align_attr.attr,
6577 	&hwcache_align_attr.attr,
6578 	&reclaim_account_attr.attr,
6579 	&destroy_by_rcu_attr.attr,
6580 	&shrink_attr.attr,
6581 	&slabs_cpu_partial_attr.attr,
6582 #ifdef CONFIG_SLUB_DEBUG
6583 	&total_objects_attr.attr,
6584 	&objects_attr.attr,
6585 	&slabs_attr.attr,
6586 	&sanity_checks_attr.attr,
6587 	&trace_attr.attr,
6588 	&red_zone_attr.attr,
6589 	&poison_attr.attr,
6590 	&store_user_attr.attr,
6591 	&validate_attr.attr,
6592 #endif
6593 #ifdef CONFIG_ZONE_DMA
6594 	&cache_dma_attr.attr,
6595 #endif
6596 #ifdef CONFIG_NUMA
6597 	&remote_node_defrag_ratio_attr.attr,
6598 #endif
6599 #ifdef CONFIG_SLUB_STATS
6600 	&alloc_fastpath_attr.attr,
6601 	&alloc_slowpath_attr.attr,
6602 	&free_fastpath_attr.attr,
6603 	&free_slowpath_attr.attr,
6604 	&free_frozen_attr.attr,
6605 	&free_add_partial_attr.attr,
6606 	&free_remove_partial_attr.attr,
6607 	&alloc_from_partial_attr.attr,
6608 	&alloc_slab_attr.attr,
6609 	&alloc_refill_attr.attr,
6610 	&alloc_node_mismatch_attr.attr,
6611 	&free_slab_attr.attr,
6612 	&cpuslab_flush_attr.attr,
6613 	&deactivate_full_attr.attr,
6614 	&deactivate_empty_attr.attr,
6615 	&deactivate_to_head_attr.attr,
6616 	&deactivate_to_tail_attr.attr,
6617 	&deactivate_remote_frees_attr.attr,
6618 	&deactivate_bypass_attr.attr,
6619 	&order_fallback_attr.attr,
6620 	&cmpxchg_double_fail_attr.attr,
6621 	&cmpxchg_double_cpu_fail_attr.attr,
6622 	&cpu_partial_alloc_attr.attr,
6623 	&cpu_partial_free_attr.attr,
6624 	&cpu_partial_node_attr.attr,
6625 	&cpu_partial_drain_attr.attr,
6626 #endif
6627 #ifdef CONFIG_FAILSLAB
6628 	&failslab_attr.attr,
6629 #endif
6630 #ifdef CONFIG_HARDENED_USERCOPY
6631 	&usersize_attr.attr,
6632 #endif
6633 #ifdef CONFIG_KFENCE
6634 	&skip_kfence_attr.attr,
6635 #endif
6636 
6637 	NULL
6638 };
6639 
6640 static const struct attribute_group slab_attr_group = {
6641 	.attrs = slab_attrs,
6642 };
6643 
6644 static ssize_t slab_attr_show(struct kobject *kobj,
6645 				struct attribute *attr,
6646 				char *buf)
6647 {
6648 	struct slab_attribute *attribute;
6649 	struct kmem_cache *s;
6650 
6651 	attribute = to_slab_attr(attr);
6652 	s = to_slab(kobj);
6653 
6654 	if (!attribute->show)
6655 		return -EIO;
6656 
6657 	return attribute->show(s, buf);
6658 }
6659 
6660 static ssize_t slab_attr_store(struct kobject *kobj,
6661 				struct attribute *attr,
6662 				const char *buf, size_t len)
6663 {
6664 	struct slab_attribute *attribute;
6665 	struct kmem_cache *s;
6666 
6667 	attribute = to_slab_attr(attr);
6668 	s = to_slab(kobj);
6669 
6670 	if (!attribute->store)
6671 		return -EIO;
6672 
6673 	return attribute->store(s, buf, len);
6674 }
6675 
6676 static void kmem_cache_release(struct kobject *k)
6677 {
6678 	slab_kmem_cache_release(to_slab(k));
6679 }
6680 
6681 static const struct sysfs_ops slab_sysfs_ops = {
6682 	.show = slab_attr_show,
6683 	.store = slab_attr_store,
6684 };
6685 
6686 static const struct kobj_type slab_ktype = {
6687 	.sysfs_ops = &slab_sysfs_ops,
6688 	.release = kmem_cache_release,
6689 };
6690 
6691 static struct kset *slab_kset;
6692 
6693 static inline struct kset *cache_kset(struct kmem_cache *s)
6694 {
6695 	return slab_kset;
6696 }
6697 
6698 #define ID_STR_LENGTH 32
6699 
6700 /* Create a unique string id for a slab cache:
6701  *
6702  * Format	:[flags-]size
6703  */
6704 static char *create_unique_id(struct kmem_cache *s)
6705 {
6706 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6707 	char *p = name;
6708 
6709 	if (!name)
6710 		return ERR_PTR(-ENOMEM);
6711 
6712 	*p++ = ':';
6713 	/*
6714 	 * First flags affecting slabcache operations. We will only
6715 	 * get here for aliasable slabs so we do not need to support
6716 	 * too many flags. The flags here must cover all flags that
6717 	 * are matched during merging to guarantee that the id is
6718 	 * unique.
6719 	 */
6720 	if (s->flags & SLAB_CACHE_DMA)
6721 		*p++ = 'd';
6722 	if (s->flags & SLAB_CACHE_DMA32)
6723 		*p++ = 'D';
6724 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6725 		*p++ = 'a';
6726 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6727 		*p++ = 'F';
6728 	if (s->flags & SLAB_ACCOUNT)
6729 		*p++ = 'A';
6730 	if (p != name + 1)
6731 		*p++ = '-';
6732 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6733 
6734 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6735 		kfree(name);
6736 		return ERR_PTR(-EINVAL);
6737 	}
6738 	kmsan_unpoison_memory(name, p - name);
6739 	return name;
6740 }
6741 
6742 static int sysfs_slab_add(struct kmem_cache *s)
6743 {
6744 	int err;
6745 	const char *name;
6746 	struct kset *kset = cache_kset(s);
6747 	int unmergeable = slab_unmergeable(s);
6748 
6749 	if (!unmergeable && disable_higher_order_debug &&
6750 			(slub_debug & DEBUG_METADATA_FLAGS))
6751 		unmergeable = 1;
6752 
6753 	if (unmergeable) {
6754 		/*
6755 		 * Slabcache can never be merged so we can use the name proper.
6756 		 * This is typically the case for debug situations. In that
6757 		 * case we can catch duplicate names easily.
6758 		 */
6759 		sysfs_remove_link(&slab_kset->kobj, s->name);
6760 		name = s->name;
6761 	} else {
6762 		/*
6763 		 * Create a unique name for the slab as a target
6764 		 * for the symlinks.
6765 		 */
6766 		name = create_unique_id(s);
6767 		if (IS_ERR(name))
6768 			return PTR_ERR(name);
6769 	}
6770 
6771 	s->kobj.kset = kset;
6772 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6773 	if (err)
6774 		goto out;
6775 
6776 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6777 	if (err)
6778 		goto out_del_kobj;
6779 
6780 	if (!unmergeable) {
6781 		/* Setup first alias */
6782 		sysfs_slab_alias(s, s->name);
6783 	}
6784 out:
6785 	if (!unmergeable)
6786 		kfree(name);
6787 	return err;
6788 out_del_kobj:
6789 	kobject_del(&s->kobj);
6790 	goto out;
6791 }
6792 
6793 void sysfs_slab_unlink(struct kmem_cache *s)
6794 {
6795 	if (slab_state >= FULL)
6796 		kobject_del(&s->kobj);
6797 }
6798 
6799 void sysfs_slab_release(struct kmem_cache *s)
6800 {
6801 	if (slab_state >= FULL)
6802 		kobject_put(&s->kobj);
6803 }
6804 
6805 /*
6806  * Need to buffer aliases during bootup until sysfs becomes
6807  * available lest we lose that information.
6808  */
6809 struct saved_alias {
6810 	struct kmem_cache *s;
6811 	const char *name;
6812 	struct saved_alias *next;
6813 };
6814 
6815 static struct saved_alias *alias_list;
6816 
6817 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6818 {
6819 	struct saved_alias *al;
6820 
6821 	if (slab_state == FULL) {
6822 		/*
6823 		 * If we have a leftover link then remove it.
6824 		 */
6825 		sysfs_remove_link(&slab_kset->kobj, name);
6826 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6827 	}
6828 
6829 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6830 	if (!al)
6831 		return -ENOMEM;
6832 
6833 	al->s = s;
6834 	al->name = name;
6835 	al->next = alias_list;
6836 	alias_list = al;
6837 	kmsan_unpoison_memory(al, sizeof(*al));
6838 	return 0;
6839 }
6840 
6841 static int __init slab_sysfs_init(void)
6842 {
6843 	struct kmem_cache *s;
6844 	int err;
6845 
6846 	mutex_lock(&slab_mutex);
6847 
6848 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6849 	if (!slab_kset) {
6850 		mutex_unlock(&slab_mutex);
6851 		pr_err("Cannot register slab subsystem.\n");
6852 		return -ENOMEM;
6853 	}
6854 
6855 	slab_state = FULL;
6856 
6857 	list_for_each_entry(s, &slab_caches, list) {
6858 		err = sysfs_slab_add(s);
6859 		if (err)
6860 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6861 			       s->name);
6862 	}
6863 
6864 	while (alias_list) {
6865 		struct saved_alias *al = alias_list;
6866 
6867 		alias_list = alias_list->next;
6868 		err = sysfs_slab_alias(al->s, al->name);
6869 		if (err)
6870 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6871 			       al->name);
6872 		kfree(al);
6873 	}
6874 
6875 	mutex_unlock(&slab_mutex);
6876 	return 0;
6877 }
6878 late_initcall(slab_sysfs_init);
6879 #endif /* SLAB_SUPPORTS_SYSFS */
6880 
6881 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6882 static int slab_debugfs_show(struct seq_file *seq, void *v)
6883 {
6884 	struct loc_track *t = seq->private;
6885 	struct location *l;
6886 	unsigned long idx;
6887 
6888 	idx = (unsigned long) t->idx;
6889 	if (idx < t->count) {
6890 		l = &t->loc[idx];
6891 
6892 		seq_printf(seq, "%7ld ", l->count);
6893 
6894 		if (l->addr)
6895 			seq_printf(seq, "%pS", (void *)l->addr);
6896 		else
6897 			seq_puts(seq, "<not-available>");
6898 
6899 		if (l->waste)
6900 			seq_printf(seq, " waste=%lu/%lu",
6901 				l->count * l->waste, l->waste);
6902 
6903 		if (l->sum_time != l->min_time) {
6904 			seq_printf(seq, " age=%ld/%llu/%ld",
6905 				l->min_time, div_u64(l->sum_time, l->count),
6906 				l->max_time);
6907 		} else
6908 			seq_printf(seq, " age=%ld", l->min_time);
6909 
6910 		if (l->min_pid != l->max_pid)
6911 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6912 		else
6913 			seq_printf(seq, " pid=%ld",
6914 				l->min_pid);
6915 
6916 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6917 			seq_printf(seq, " cpus=%*pbl",
6918 				 cpumask_pr_args(to_cpumask(l->cpus)));
6919 
6920 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6921 			seq_printf(seq, " nodes=%*pbl",
6922 				 nodemask_pr_args(&l->nodes));
6923 
6924 #ifdef CONFIG_STACKDEPOT
6925 		{
6926 			depot_stack_handle_t handle;
6927 			unsigned long *entries;
6928 			unsigned int nr_entries, j;
6929 
6930 			handle = READ_ONCE(l->handle);
6931 			if (handle) {
6932 				nr_entries = stack_depot_fetch(handle, &entries);
6933 				seq_puts(seq, "\n");
6934 				for (j = 0; j < nr_entries; j++)
6935 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6936 			}
6937 		}
6938 #endif
6939 		seq_puts(seq, "\n");
6940 	}
6941 
6942 	if (!idx && !t->count)
6943 		seq_puts(seq, "No data\n");
6944 
6945 	return 0;
6946 }
6947 
6948 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6949 {
6950 }
6951 
6952 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6953 {
6954 	struct loc_track *t = seq->private;
6955 
6956 	t->idx = ++(*ppos);
6957 	if (*ppos <= t->count)
6958 		return ppos;
6959 
6960 	return NULL;
6961 }
6962 
6963 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6964 {
6965 	struct location *loc1 = (struct location *)a;
6966 	struct location *loc2 = (struct location *)b;
6967 
6968 	if (loc1->count > loc2->count)
6969 		return -1;
6970 	else
6971 		return 1;
6972 }
6973 
6974 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6975 {
6976 	struct loc_track *t = seq->private;
6977 
6978 	t->idx = *ppos;
6979 	return ppos;
6980 }
6981 
6982 static const struct seq_operations slab_debugfs_sops = {
6983 	.start  = slab_debugfs_start,
6984 	.next   = slab_debugfs_next,
6985 	.stop   = slab_debugfs_stop,
6986 	.show   = slab_debugfs_show,
6987 };
6988 
6989 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6990 {
6991 
6992 	struct kmem_cache_node *n;
6993 	enum track_item alloc;
6994 	int node;
6995 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6996 						sizeof(struct loc_track));
6997 	struct kmem_cache *s = file_inode(filep)->i_private;
6998 	unsigned long *obj_map;
6999 
7000 	if (!t)
7001 		return -ENOMEM;
7002 
7003 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7004 	if (!obj_map) {
7005 		seq_release_private(inode, filep);
7006 		return -ENOMEM;
7007 	}
7008 
7009 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7010 		alloc = TRACK_ALLOC;
7011 	else
7012 		alloc = TRACK_FREE;
7013 
7014 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7015 		bitmap_free(obj_map);
7016 		seq_release_private(inode, filep);
7017 		return -ENOMEM;
7018 	}
7019 
7020 	for_each_kmem_cache_node(s, node, n) {
7021 		unsigned long flags;
7022 		struct slab *slab;
7023 
7024 		if (!node_nr_slabs(n))
7025 			continue;
7026 
7027 		spin_lock_irqsave(&n->list_lock, flags);
7028 		list_for_each_entry(slab, &n->partial, slab_list)
7029 			process_slab(t, s, slab, alloc, obj_map);
7030 		list_for_each_entry(slab, &n->full, slab_list)
7031 			process_slab(t, s, slab, alloc, obj_map);
7032 		spin_unlock_irqrestore(&n->list_lock, flags);
7033 	}
7034 
7035 	/* Sort locations by count */
7036 	sort_r(t->loc, t->count, sizeof(struct location),
7037 		cmp_loc_by_count, NULL, NULL);
7038 
7039 	bitmap_free(obj_map);
7040 	return 0;
7041 }
7042 
7043 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7044 {
7045 	struct seq_file *seq = file->private_data;
7046 	struct loc_track *t = seq->private;
7047 
7048 	free_loc_track(t);
7049 	return seq_release_private(inode, file);
7050 }
7051 
7052 static const struct file_operations slab_debugfs_fops = {
7053 	.open    = slab_debug_trace_open,
7054 	.read    = seq_read,
7055 	.llseek  = seq_lseek,
7056 	.release = slab_debug_trace_release,
7057 };
7058 
7059 static void debugfs_slab_add(struct kmem_cache *s)
7060 {
7061 	struct dentry *slab_cache_dir;
7062 
7063 	if (unlikely(!slab_debugfs_root))
7064 		return;
7065 
7066 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7067 
7068 	debugfs_create_file("alloc_traces", 0400,
7069 		slab_cache_dir, s, &slab_debugfs_fops);
7070 
7071 	debugfs_create_file("free_traces", 0400,
7072 		slab_cache_dir, s, &slab_debugfs_fops);
7073 }
7074 
7075 void debugfs_slab_release(struct kmem_cache *s)
7076 {
7077 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7078 }
7079 
7080 static int __init slab_debugfs_init(void)
7081 {
7082 	struct kmem_cache *s;
7083 
7084 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7085 
7086 	list_for_each_entry(s, &slab_caches, list)
7087 		if (s->flags & SLAB_STORE_USER)
7088 			debugfs_slab_add(s);
7089 
7090 	return 0;
7091 
7092 }
7093 __initcall(slab_debugfs_init);
7094 #endif
7095 /*
7096  * The /proc/slabinfo ABI
7097  */
7098 #ifdef CONFIG_SLUB_DEBUG
7099 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7100 {
7101 	unsigned long nr_slabs = 0;
7102 	unsigned long nr_objs = 0;
7103 	unsigned long nr_free = 0;
7104 	int node;
7105 	struct kmem_cache_node *n;
7106 
7107 	for_each_kmem_cache_node(s, node, n) {
7108 		nr_slabs += node_nr_slabs(n);
7109 		nr_objs += node_nr_objs(n);
7110 		nr_free += count_partial(n, count_free);
7111 	}
7112 
7113 	sinfo->active_objs = nr_objs - nr_free;
7114 	sinfo->num_objs = nr_objs;
7115 	sinfo->active_slabs = nr_slabs;
7116 	sinfo->num_slabs = nr_slabs;
7117 	sinfo->objects_per_slab = oo_objects(s->oo);
7118 	sinfo->cache_order = oo_order(s->oo);
7119 }
7120 
7121 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7122 {
7123 }
7124 
7125 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
7126 		       size_t count, loff_t *ppos)
7127 {
7128 	return -EIO;
7129 }
7130 #endif /* CONFIG_SLUB_DEBUG */
7131