xref: /linux/mm/slub.c (revision f220d3ebba8343dcbd8c83e4bb4fa6fbcfc616c6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operatios
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38 
39 #include <trace/events/kmem.h>
40 
41 #include "internal.h"
42 
43 /*
44  * Lock order:
45  *   1. slab_mutex (Global Mutex)
46  *   2. node->list_lock
47  *   3. slab_lock(page) (Only on some arches and for debugging)
48  *
49  *   slab_mutex
50  *
51  *   The role of the slab_mutex is to protect the list of all the slabs
52  *   and to synchronize major metadata changes to slab cache structures.
53  *
54  *   The slab_lock is only used for debugging and on arches that do not
55  *   have the ability to do a cmpxchg_double. It only protects:
56  *	A. page->freelist	-> List of object free in a page
57  *	B. page->inuse		-> Number of objects in use
58  *	C. page->objects	-> Number of objects in page
59  *	D. page->frozen		-> frozen state
60  *
61  *   If a slab is frozen then it is exempt from list management. It is not
62  *   on any list. The processor that froze the slab is the one who can
63  *   perform list operations on the page. Other processors may put objects
64  *   onto the freelist but the processor that froze the slab is the only
65  *   one that can retrieve the objects from the page's freelist.
66  *
67  *   The list_lock protects the partial and full list on each node and
68  *   the partial slab counter. If taken then no new slabs may be added or
69  *   removed from the lists nor make the number of partial slabs be modified.
70  *   (Note that the total number of slabs is an atomic value that may be
71  *   modified without taking the list lock).
72  *
73  *   The list_lock is a centralized lock and thus we avoid taking it as
74  *   much as possible. As long as SLUB does not have to handle partial
75  *   slabs, operations can continue without any centralized lock. F.e.
76  *   allocating a long series of objects that fill up slabs does not require
77  *   the list lock.
78  *   Interrupts are disabled during allocation and deallocation in order to
79  *   make the slab allocator safe to use in the context of an irq. In addition
80  *   interrupts are disabled to ensure that the processor does not change
81  *   while handling per_cpu slabs, due to kernel preemption.
82  *
83  * SLUB assigns one slab for allocation to each processor.
84  * Allocations only occur from these slabs called cpu slabs.
85  *
86  * Slabs with free elements are kept on a partial list and during regular
87  * operations no list for full slabs is used. If an object in a full slab is
88  * freed then the slab will show up again on the partial lists.
89  * We track full slabs for debugging purposes though because otherwise we
90  * cannot scan all objects.
91  *
92  * Slabs are freed when they become empty. Teardown and setup is
93  * minimal so we rely on the page allocators per cpu caches for
94  * fast frees and allocs.
95  *
96  * Overloading of page flags that are otherwise used for LRU management.
97  *
98  * PageActive 		The slab is frozen and exempt from list processing.
99  * 			This means that the slab is dedicated to a purpose
100  * 			such as satisfying allocations for a specific
101  * 			processor. Objects may be freed in the slab while
102  * 			it is frozen but slab_free will then skip the usual
103  * 			list operations. It is up to the processor holding
104  * 			the slab to integrate the slab into the slab lists
105  * 			when the slab is no longer needed.
106  *
107  * 			One use of this flag is to mark slabs that are
108  * 			used for allocations. Then such a slab becomes a cpu
109  * 			slab. The cpu slab may be equipped with an additional
110  * 			freelist that allows lockless access to
111  * 			free objects in addition to the regular freelist
112  * 			that requires the slab lock.
113  *
114  * PageError		Slab requires special handling due to debug
115  * 			options set. This moves	slab handling out of
116  * 			the fast path and disables lockless freelists.
117  */
118 
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 	return 0;
125 #endif
126 }
127 
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 		p += s->red_left_pad;
132 
133 	return p;
134 }
135 
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 	return !kmem_cache_debug(s);
140 #else
141 	return false;
142 #endif
143 }
144 
145 /*
146  * Issues still to be resolved:
147  *
148  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149  *
150  * - Variable sizing of the per node arrays
151  */
152 
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155 
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158 
159 /*
160  * Mininum number of partial slabs. These will be left on the partial
161  * lists even if they are empty. kmem_cache_shrink may reclaim them.
162  */
163 #define MIN_PARTIAL 5
164 
165 /*
166  * Maximum number of desirable partial slabs.
167  * The existence of more partial slabs makes kmem_cache_shrink
168  * sort the partial list by the number of objects in use.
169  */
170 #define MAX_PARTIAL 10
171 
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 				SLAB_POISON | SLAB_STORE_USER)
174 
175 /*
176  * These debug flags cannot use CMPXCHG because there might be consistency
177  * issues when checking or reading debug information
178  */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 				SLAB_TRACE)
181 
182 
183 /*
184  * Debugging flags that require metadata to be stored in the slab.  These get
185  * disabled when slub_debug=O is used and a cache's min order increases with
186  * metadata.
187  */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 
190 #define OO_SHIFT	16
191 #define OO_MASK		((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193 
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
199 
200 /*
201  * Tracking user of a slab.
202  */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 	unsigned long addr;	/* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
208 #endif
209 	int cpu;		/* Was running on cpu */
210 	int pid;		/* Pid context */
211 	unsigned long when;	/* When did the operation occur */
212 };
213 
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 							{ return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228 
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 	/*
233 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 	 * avoid this_cpu_add()'s irq-disable overhead.
235 	 */
236 	raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239 
240 /********************************************************************
241  * 			Core slab cache functions
242  *******************************************************************/
243 
244 /*
245  * Returns freelist pointer (ptr). With hardening, this is obfuscated
246  * with an XOR of the address where the pointer is held and a per-cache
247  * random number.
248  */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 				 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 	return ptr;
256 #endif
257 }
258 
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 					 void *ptr_addr)
262 {
263 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 			    (unsigned long)ptr_addr);
265 }
266 
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 {
269 	return freelist_dereference(s, object + s->offset);
270 }
271 
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273 {
274 	prefetch(object + s->offset);
275 }
276 
277 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
278 {
279 	unsigned long freepointer_addr;
280 	void *p;
281 
282 	if (!debug_pagealloc_enabled())
283 		return get_freepointer(s, object);
284 
285 	freepointer_addr = (unsigned long)object + s->offset;
286 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
287 	return freelist_ptr(s, p, freepointer_addr);
288 }
289 
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291 {
292 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
293 
294 #ifdef CONFIG_SLAB_FREELIST_HARDENED
295 	BUG_ON(object == fp); /* naive detection of double free or corruption */
296 #endif
297 
298 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
299 }
300 
301 /* Loop over all objects in a slab */
302 #define for_each_object(__p, __s, __addr, __objects) \
303 	for (__p = fixup_red_left(__s, __addr); \
304 		__p < (__addr) + (__objects) * (__s)->size; \
305 		__p += (__s)->size)
306 
307 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
308 	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
309 		__idx <= __objects; \
310 		__p += (__s)->size, __idx++)
311 
312 /* Determine object index from a given position */
313 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
314 {
315 	return (p - addr) / s->size;
316 }
317 
318 static inline unsigned int order_objects(unsigned int order, unsigned int size)
319 {
320 	return ((unsigned int)PAGE_SIZE << order) / size;
321 }
322 
323 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
324 		unsigned int size)
325 {
326 	struct kmem_cache_order_objects x = {
327 		(order << OO_SHIFT) + order_objects(order, size)
328 	};
329 
330 	return x;
331 }
332 
333 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
334 {
335 	return x.x >> OO_SHIFT;
336 }
337 
338 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
339 {
340 	return x.x & OO_MASK;
341 }
342 
343 /*
344  * Per slab locking using the pagelock
345  */
346 static __always_inline void slab_lock(struct page *page)
347 {
348 	VM_BUG_ON_PAGE(PageTail(page), page);
349 	bit_spin_lock(PG_locked, &page->flags);
350 }
351 
352 static __always_inline void slab_unlock(struct page *page)
353 {
354 	VM_BUG_ON_PAGE(PageTail(page), page);
355 	__bit_spin_unlock(PG_locked, &page->flags);
356 }
357 
358 /* Interrupts must be disabled (for the fallback code to work right) */
359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 		void *freelist_old, unsigned long counters_old,
361 		void *freelist_new, unsigned long counters_new,
362 		const char *n)
363 {
364 	VM_BUG_ON(!irqs_disabled());
365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367 	if (s->flags & __CMPXCHG_DOUBLE) {
368 		if (cmpxchg_double(&page->freelist, &page->counters,
369 				   freelist_old, counters_old,
370 				   freelist_new, counters_new))
371 			return true;
372 	} else
373 #endif
374 	{
375 		slab_lock(page);
376 		if (page->freelist == freelist_old &&
377 					page->counters == counters_old) {
378 			page->freelist = freelist_new;
379 			page->counters = counters_new;
380 			slab_unlock(page);
381 			return true;
382 		}
383 		slab_unlock(page);
384 	}
385 
386 	cpu_relax();
387 	stat(s, CMPXCHG_DOUBLE_FAIL);
388 
389 #ifdef SLUB_DEBUG_CMPXCHG
390 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
391 #endif
392 
393 	return false;
394 }
395 
396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
397 		void *freelist_old, unsigned long counters_old,
398 		void *freelist_new, unsigned long counters_new,
399 		const char *n)
400 {
401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
402     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403 	if (s->flags & __CMPXCHG_DOUBLE) {
404 		if (cmpxchg_double(&page->freelist, &page->counters,
405 				   freelist_old, counters_old,
406 				   freelist_new, counters_new))
407 			return true;
408 	} else
409 #endif
410 	{
411 		unsigned long flags;
412 
413 		local_irq_save(flags);
414 		slab_lock(page);
415 		if (page->freelist == freelist_old &&
416 					page->counters == counters_old) {
417 			page->freelist = freelist_new;
418 			page->counters = counters_new;
419 			slab_unlock(page);
420 			local_irq_restore(flags);
421 			return true;
422 		}
423 		slab_unlock(page);
424 		local_irq_restore(flags);
425 	}
426 
427 	cpu_relax();
428 	stat(s, CMPXCHG_DOUBLE_FAIL);
429 
430 #ifdef SLUB_DEBUG_CMPXCHG
431 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
432 #endif
433 
434 	return false;
435 }
436 
437 #ifdef CONFIG_SLUB_DEBUG
438 /*
439  * Determine a map of object in use on a page.
440  *
441  * Node listlock must be held to guarantee that the page does
442  * not vanish from under us.
443  */
444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445 {
446 	void *p;
447 	void *addr = page_address(page);
448 
449 	for (p = page->freelist; p; p = get_freepointer(s, p))
450 		set_bit(slab_index(p, s, addr), map);
451 }
452 
453 static inline unsigned int size_from_object(struct kmem_cache *s)
454 {
455 	if (s->flags & SLAB_RED_ZONE)
456 		return s->size - s->red_left_pad;
457 
458 	return s->size;
459 }
460 
461 static inline void *restore_red_left(struct kmem_cache *s, void *p)
462 {
463 	if (s->flags & SLAB_RED_ZONE)
464 		p -= s->red_left_pad;
465 
466 	return p;
467 }
468 
469 /*
470  * Debug settings:
471  */
472 #if defined(CONFIG_SLUB_DEBUG_ON)
473 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
474 #else
475 static slab_flags_t slub_debug;
476 #endif
477 
478 static char *slub_debug_slabs;
479 static int disable_higher_order_debug;
480 
481 /*
482  * slub is about to manipulate internal object metadata.  This memory lies
483  * outside the range of the allocated object, so accessing it would normally
484  * be reported by kasan as a bounds error.  metadata_access_enable() is used
485  * to tell kasan that these accesses are OK.
486  */
487 static inline void metadata_access_enable(void)
488 {
489 	kasan_disable_current();
490 }
491 
492 static inline void metadata_access_disable(void)
493 {
494 	kasan_enable_current();
495 }
496 
497 /*
498  * Object debugging
499  */
500 
501 /* Verify that a pointer has an address that is valid within a slab page */
502 static inline int check_valid_pointer(struct kmem_cache *s,
503 				struct page *page, void *object)
504 {
505 	void *base;
506 
507 	if (!object)
508 		return 1;
509 
510 	base = page_address(page);
511 	object = restore_red_left(s, object);
512 	if (object < base || object >= base + page->objects * s->size ||
513 		(object - base) % s->size) {
514 		return 0;
515 	}
516 
517 	return 1;
518 }
519 
520 static void print_section(char *level, char *text, u8 *addr,
521 			  unsigned int length)
522 {
523 	metadata_access_enable();
524 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
525 			length, 1);
526 	metadata_access_disable();
527 }
528 
529 static struct track *get_track(struct kmem_cache *s, void *object,
530 	enum track_item alloc)
531 {
532 	struct track *p;
533 
534 	if (s->offset)
535 		p = object + s->offset + sizeof(void *);
536 	else
537 		p = object + s->inuse;
538 
539 	return p + alloc;
540 }
541 
542 static void set_track(struct kmem_cache *s, void *object,
543 			enum track_item alloc, unsigned long addr)
544 {
545 	struct track *p = get_track(s, object, alloc);
546 
547 	if (addr) {
548 #ifdef CONFIG_STACKTRACE
549 		struct stack_trace trace;
550 		int i;
551 
552 		trace.nr_entries = 0;
553 		trace.max_entries = TRACK_ADDRS_COUNT;
554 		trace.entries = p->addrs;
555 		trace.skip = 3;
556 		metadata_access_enable();
557 		save_stack_trace(&trace);
558 		metadata_access_disable();
559 
560 		/* See rant in lockdep.c */
561 		if (trace.nr_entries != 0 &&
562 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
563 			trace.nr_entries--;
564 
565 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
566 			p->addrs[i] = 0;
567 #endif
568 		p->addr = addr;
569 		p->cpu = smp_processor_id();
570 		p->pid = current->pid;
571 		p->when = jiffies;
572 	} else
573 		memset(p, 0, sizeof(struct track));
574 }
575 
576 static void init_tracking(struct kmem_cache *s, void *object)
577 {
578 	if (!(s->flags & SLAB_STORE_USER))
579 		return;
580 
581 	set_track(s, object, TRACK_FREE, 0UL);
582 	set_track(s, object, TRACK_ALLOC, 0UL);
583 }
584 
585 static void print_track(const char *s, struct track *t, unsigned long pr_time)
586 {
587 	if (!t->addr)
588 		return;
589 
590 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
591 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
592 #ifdef CONFIG_STACKTRACE
593 	{
594 		int i;
595 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
596 			if (t->addrs[i])
597 				pr_err("\t%pS\n", (void *)t->addrs[i]);
598 			else
599 				break;
600 	}
601 #endif
602 }
603 
604 static void print_tracking(struct kmem_cache *s, void *object)
605 {
606 	unsigned long pr_time = jiffies;
607 	if (!(s->flags & SLAB_STORE_USER))
608 		return;
609 
610 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
611 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
612 }
613 
614 static void print_page_info(struct page *page)
615 {
616 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
617 	       page, page->objects, page->inuse, page->freelist, page->flags);
618 
619 }
620 
621 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
622 {
623 	struct va_format vaf;
624 	va_list args;
625 
626 	va_start(args, fmt);
627 	vaf.fmt = fmt;
628 	vaf.va = &args;
629 	pr_err("=============================================================================\n");
630 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
631 	pr_err("-----------------------------------------------------------------------------\n\n");
632 
633 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
634 	va_end(args);
635 }
636 
637 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
638 {
639 	struct va_format vaf;
640 	va_list args;
641 
642 	va_start(args, fmt);
643 	vaf.fmt = fmt;
644 	vaf.va = &args;
645 	pr_err("FIX %s: %pV\n", s->name, &vaf);
646 	va_end(args);
647 }
648 
649 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
650 {
651 	unsigned int off;	/* Offset of last byte */
652 	u8 *addr = page_address(page);
653 
654 	print_tracking(s, p);
655 
656 	print_page_info(page);
657 
658 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
659 	       p, p - addr, get_freepointer(s, p));
660 
661 	if (s->flags & SLAB_RED_ZONE)
662 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
663 			      s->red_left_pad);
664 	else if (p > addr + 16)
665 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
666 
667 	print_section(KERN_ERR, "Object ", p,
668 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
669 	if (s->flags & SLAB_RED_ZONE)
670 		print_section(KERN_ERR, "Redzone ", p + s->object_size,
671 			s->inuse - s->object_size);
672 
673 	if (s->offset)
674 		off = s->offset + sizeof(void *);
675 	else
676 		off = s->inuse;
677 
678 	if (s->flags & SLAB_STORE_USER)
679 		off += 2 * sizeof(struct track);
680 
681 	off += kasan_metadata_size(s);
682 
683 	if (off != size_from_object(s))
684 		/* Beginning of the filler is the free pointer */
685 		print_section(KERN_ERR, "Padding ", p + off,
686 			      size_from_object(s) - off);
687 
688 	dump_stack();
689 }
690 
691 void object_err(struct kmem_cache *s, struct page *page,
692 			u8 *object, char *reason)
693 {
694 	slab_bug(s, "%s", reason);
695 	print_trailer(s, page, object);
696 }
697 
698 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
699 			const char *fmt, ...)
700 {
701 	va_list args;
702 	char buf[100];
703 
704 	va_start(args, fmt);
705 	vsnprintf(buf, sizeof(buf), fmt, args);
706 	va_end(args);
707 	slab_bug(s, "%s", buf);
708 	print_page_info(page);
709 	dump_stack();
710 }
711 
712 static void init_object(struct kmem_cache *s, void *object, u8 val)
713 {
714 	u8 *p = object;
715 
716 	if (s->flags & SLAB_RED_ZONE)
717 		memset(p - s->red_left_pad, val, s->red_left_pad);
718 
719 	if (s->flags & __OBJECT_POISON) {
720 		memset(p, POISON_FREE, s->object_size - 1);
721 		p[s->object_size - 1] = POISON_END;
722 	}
723 
724 	if (s->flags & SLAB_RED_ZONE)
725 		memset(p + s->object_size, val, s->inuse - s->object_size);
726 }
727 
728 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
729 						void *from, void *to)
730 {
731 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
732 	memset(from, data, to - from);
733 }
734 
735 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
736 			u8 *object, char *what,
737 			u8 *start, unsigned int value, unsigned int bytes)
738 {
739 	u8 *fault;
740 	u8 *end;
741 
742 	metadata_access_enable();
743 	fault = memchr_inv(start, value, bytes);
744 	metadata_access_disable();
745 	if (!fault)
746 		return 1;
747 
748 	end = start + bytes;
749 	while (end > fault && end[-1] == value)
750 		end--;
751 
752 	slab_bug(s, "%s overwritten", what);
753 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
754 					fault, end - 1, fault[0], value);
755 	print_trailer(s, page, object);
756 
757 	restore_bytes(s, what, value, fault, end);
758 	return 0;
759 }
760 
761 /*
762  * Object layout:
763  *
764  * object address
765  * 	Bytes of the object to be managed.
766  * 	If the freepointer may overlay the object then the free
767  * 	pointer is the first word of the object.
768  *
769  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
770  * 	0xa5 (POISON_END)
771  *
772  * object + s->object_size
773  * 	Padding to reach word boundary. This is also used for Redzoning.
774  * 	Padding is extended by another word if Redzoning is enabled and
775  * 	object_size == inuse.
776  *
777  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
778  * 	0xcc (RED_ACTIVE) for objects in use.
779  *
780  * object + s->inuse
781  * 	Meta data starts here.
782  *
783  * 	A. Free pointer (if we cannot overwrite object on free)
784  * 	B. Tracking data for SLAB_STORE_USER
785  * 	C. Padding to reach required alignment boundary or at mininum
786  * 		one word if debugging is on to be able to detect writes
787  * 		before the word boundary.
788  *
789  *	Padding is done using 0x5a (POISON_INUSE)
790  *
791  * object + s->size
792  * 	Nothing is used beyond s->size.
793  *
794  * If slabcaches are merged then the object_size and inuse boundaries are mostly
795  * ignored. And therefore no slab options that rely on these boundaries
796  * may be used with merged slabcaches.
797  */
798 
799 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
800 {
801 	unsigned long off = s->inuse;	/* The end of info */
802 
803 	if (s->offset)
804 		/* Freepointer is placed after the object. */
805 		off += sizeof(void *);
806 
807 	if (s->flags & SLAB_STORE_USER)
808 		/* We also have user information there */
809 		off += 2 * sizeof(struct track);
810 
811 	off += kasan_metadata_size(s);
812 
813 	if (size_from_object(s) == off)
814 		return 1;
815 
816 	return check_bytes_and_report(s, page, p, "Object padding",
817 			p + off, POISON_INUSE, size_from_object(s) - off);
818 }
819 
820 /* Check the pad bytes at the end of a slab page */
821 static int slab_pad_check(struct kmem_cache *s, struct page *page)
822 {
823 	u8 *start;
824 	u8 *fault;
825 	u8 *end;
826 	u8 *pad;
827 	int length;
828 	int remainder;
829 
830 	if (!(s->flags & SLAB_POISON))
831 		return 1;
832 
833 	start = page_address(page);
834 	length = PAGE_SIZE << compound_order(page);
835 	end = start + length;
836 	remainder = length % s->size;
837 	if (!remainder)
838 		return 1;
839 
840 	pad = end - remainder;
841 	metadata_access_enable();
842 	fault = memchr_inv(pad, POISON_INUSE, remainder);
843 	metadata_access_disable();
844 	if (!fault)
845 		return 1;
846 	while (end > fault && end[-1] == POISON_INUSE)
847 		end--;
848 
849 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
850 	print_section(KERN_ERR, "Padding ", pad, remainder);
851 
852 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
853 	return 0;
854 }
855 
856 static int check_object(struct kmem_cache *s, struct page *page,
857 					void *object, u8 val)
858 {
859 	u8 *p = object;
860 	u8 *endobject = object + s->object_size;
861 
862 	if (s->flags & SLAB_RED_ZONE) {
863 		if (!check_bytes_and_report(s, page, object, "Redzone",
864 			object - s->red_left_pad, val, s->red_left_pad))
865 			return 0;
866 
867 		if (!check_bytes_and_report(s, page, object, "Redzone",
868 			endobject, val, s->inuse - s->object_size))
869 			return 0;
870 	} else {
871 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
872 			check_bytes_and_report(s, page, p, "Alignment padding",
873 				endobject, POISON_INUSE,
874 				s->inuse - s->object_size);
875 		}
876 	}
877 
878 	if (s->flags & SLAB_POISON) {
879 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
880 			(!check_bytes_and_report(s, page, p, "Poison", p,
881 					POISON_FREE, s->object_size - 1) ||
882 			 !check_bytes_and_report(s, page, p, "Poison",
883 				p + s->object_size - 1, POISON_END, 1)))
884 			return 0;
885 		/*
886 		 * check_pad_bytes cleans up on its own.
887 		 */
888 		check_pad_bytes(s, page, p);
889 	}
890 
891 	if (!s->offset && val == SLUB_RED_ACTIVE)
892 		/*
893 		 * Object and freepointer overlap. Cannot check
894 		 * freepointer while object is allocated.
895 		 */
896 		return 1;
897 
898 	/* Check free pointer validity */
899 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
900 		object_err(s, page, p, "Freepointer corrupt");
901 		/*
902 		 * No choice but to zap it and thus lose the remainder
903 		 * of the free objects in this slab. May cause
904 		 * another error because the object count is now wrong.
905 		 */
906 		set_freepointer(s, p, NULL);
907 		return 0;
908 	}
909 	return 1;
910 }
911 
912 static int check_slab(struct kmem_cache *s, struct page *page)
913 {
914 	int maxobj;
915 
916 	VM_BUG_ON(!irqs_disabled());
917 
918 	if (!PageSlab(page)) {
919 		slab_err(s, page, "Not a valid slab page");
920 		return 0;
921 	}
922 
923 	maxobj = order_objects(compound_order(page), s->size);
924 	if (page->objects > maxobj) {
925 		slab_err(s, page, "objects %u > max %u",
926 			page->objects, maxobj);
927 		return 0;
928 	}
929 	if (page->inuse > page->objects) {
930 		slab_err(s, page, "inuse %u > max %u",
931 			page->inuse, page->objects);
932 		return 0;
933 	}
934 	/* Slab_pad_check fixes things up after itself */
935 	slab_pad_check(s, page);
936 	return 1;
937 }
938 
939 /*
940  * Determine if a certain object on a page is on the freelist. Must hold the
941  * slab lock to guarantee that the chains are in a consistent state.
942  */
943 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
944 {
945 	int nr = 0;
946 	void *fp;
947 	void *object = NULL;
948 	int max_objects;
949 
950 	fp = page->freelist;
951 	while (fp && nr <= page->objects) {
952 		if (fp == search)
953 			return 1;
954 		if (!check_valid_pointer(s, page, fp)) {
955 			if (object) {
956 				object_err(s, page, object,
957 					"Freechain corrupt");
958 				set_freepointer(s, object, NULL);
959 			} else {
960 				slab_err(s, page, "Freepointer corrupt");
961 				page->freelist = NULL;
962 				page->inuse = page->objects;
963 				slab_fix(s, "Freelist cleared");
964 				return 0;
965 			}
966 			break;
967 		}
968 		object = fp;
969 		fp = get_freepointer(s, object);
970 		nr++;
971 	}
972 
973 	max_objects = order_objects(compound_order(page), s->size);
974 	if (max_objects > MAX_OBJS_PER_PAGE)
975 		max_objects = MAX_OBJS_PER_PAGE;
976 
977 	if (page->objects != max_objects) {
978 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
979 			 page->objects, max_objects);
980 		page->objects = max_objects;
981 		slab_fix(s, "Number of objects adjusted.");
982 	}
983 	if (page->inuse != page->objects - nr) {
984 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
985 			 page->inuse, page->objects - nr);
986 		page->inuse = page->objects - nr;
987 		slab_fix(s, "Object count adjusted.");
988 	}
989 	return search == NULL;
990 }
991 
992 static void trace(struct kmem_cache *s, struct page *page, void *object,
993 								int alloc)
994 {
995 	if (s->flags & SLAB_TRACE) {
996 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
997 			s->name,
998 			alloc ? "alloc" : "free",
999 			object, page->inuse,
1000 			page->freelist);
1001 
1002 		if (!alloc)
1003 			print_section(KERN_INFO, "Object ", (void *)object,
1004 					s->object_size);
1005 
1006 		dump_stack();
1007 	}
1008 }
1009 
1010 /*
1011  * Tracking of fully allocated slabs for debugging purposes.
1012  */
1013 static void add_full(struct kmem_cache *s,
1014 	struct kmem_cache_node *n, struct page *page)
1015 {
1016 	if (!(s->flags & SLAB_STORE_USER))
1017 		return;
1018 
1019 	lockdep_assert_held(&n->list_lock);
1020 	list_add(&page->lru, &n->full);
1021 }
1022 
1023 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1024 {
1025 	if (!(s->flags & SLAB_STORE_USER))
1026 		return;
1027 
1028 	lockdep_assert_held(&n->list_lock);
1029 	list_del(&page->lru);
1030 }
1031 
1032 /* Tracking of the number of slabs for debugging purposes */
1033 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1034 {
1035 	struct kmem_cache_node *n = get_node(s, node);
1036 
1037 	return atomic_long_read(&n->nr_slabs);
1038 }
1039 
1040 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1041 {
1042 	return atomic_long_read(&n->nr_slabs);
1043 }
1044 
1045 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1046 {
1047 	struct kmem_cache_node *n = get_node(s, node);
1048 
1049 	/*
1050 	 * May be called early in order to allocate a slab for the
1051 	 * kmem_cache_node structure. Solve the chicken-egg
1052 	 * dilemma by deferring the increment of the count during
1053 	 * bootstrap (see early_kmem_cache_node_alloc).
1054 	 */
1055 	if (likely(n)) {
1056 		atomic_long_inc(&n->nr_slabs);
1057 		atomic_long_add(objects, &n->total_objects);
1058 	}
1059 }
1060 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1061 {
1062 	struct kmem_cache_node *n = get_node(s, node);
1063 
1064 	atomic_long_dec(&n->nr_slabs);
1065 	atomic_long_sub(objects, &n->total_objects);
1066 }
1067 
1068 /* Object debug checks for alloc/free paths */
1069 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1070 								void *object)
1071 {
1072 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1073 		return;
1074 
1075 	init_object(s, object, SLUB_RED_INACTIVE);
1076 	init_tracking(s, object);
1077 }
1078 
1079 static inline int alloc_consistency_checks(struct kmem_cache *s,
1080 					struct page *page,
1081 					void *object, unsigned long addr)
1082 {
1083 	if (!check_slab(s, page))
1084 		return 0;
1085 
1086 	if (!check_valid_pointer(s, page, object)) {
1087 		object_err(s, page, object, "Freelist Pointer check fails");
1088 		return 0;
1089 	}
1090 
1091 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1092 		return 0;
1093 
1094 	return 1;
1095 }
1096 
1097 static noinline int alloc_debug_processing(struct kmem_cache *s,
1098 					struct page *page,
1099 					void *object, unsigned long addr)
1100 {
1101 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1102 		if (!alloc_consistency_checks(s, page, object, addr))
1103 			goto bad;
1104 	}
1105 
1106 	/* Success perform special debug activities for allocs */
1107 	if (s->flags & SLAB_STORE_USER)
1108 		set_track(s, object, TRACK_ALLOC, addr);
1109 	trace(s, page, object, 1);
1110 	init_object(s, object, SLUB_RED_ACTIVE);
1111 	return 1;
1112 
1113 bad:
1114 	if (PageSlab(page)) {
1115 		/*
1116 		 * If this is a slab page then lets do the best we can
1117 		 * to avoid issues in the future. Marking all objects
1118 		 * as used avoids touching the remaining objects.
1119 		 */
1120 		slab_fix(s, "Marking all objects used");
1121 		page->inuse = page->objects;
1122 		page->freelist = NULL;
1123 	}
1124 	return 0;
1125 }
1126 
1127 static inline int free_consistency_checks(struct kmem_cache *s,
1128 		struct page *page, void *object, unsigned long addr)
1129 {
1130 	if (!check_valid_pointer(s, page, object)) {
1131 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1132 		return 0;
1133 	}
1134 
1135 	if (on_freelist(s, page, object)) {
1136 		object_err(s, page, object, "Object already free");
1137 		return 0;
1138 	}
1139 
1140 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1141 		return 0;
1142 
1143 	if (unlikely(s != page->slab_cache)) {
1144 		if (!PageSlab(page)) {
1145 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1146 				 object);
1147 		} else if (!page->slab_cache) {
1148 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1149 			       object);
1150 			dump_stack();
1151 		} else
1152 			object_err(s, page, object,
1153 					"page slab pointer corrupt.");
1154 		return 0;
1155 	}
1156 	return 1;
1157 }
1158 
1159 /* Supports checking bulk free of a constructed freelist */
1160 static noinline int free_debug_processing(
1161 	struct kmem_cache *s, struct page *page,
1162 	void *head, void *tail, int bulk_cnt,
1163 	unsigned long addr)
1164 {
1165 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1166 	void *object = head;
1167 	int cnt = 0;
1168 	unsigned long uninitialized_var(flags);
1169 	int ret = 0;
1170 
1171 	spin_lock_irqsave(&n->list_lock, flags);
1172 	slab_lock(page);
1173 
1174 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1175 		if (!check_slab(s, page))
1176 			goto out;
1177 	}
1178 
1179 next_object:
1180 	cnt++;
1181 
1182 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1183 		if (!free_consistency_checks(s, page, object, addr))
1184 			goto out;
1185 	}
1186 
1187 	if (s->flags & SLAB_STORE_USER)
1188 		set_track(s, object, TRACK_FREE, addr);
1189 	trace(s, page, object, 0);
1190 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1191 	init_object(s, object, SLUB_RED_INACTIVE);
1192 
1193 	/* Reached end of constructed freelist yet? */
1194 	if (object != tail) {
1195 		object = get_freepointer(s, object);
1196 		goto next_object;
1197 	}
1198 	ret = 1;
1199 
1200 out:
1201 	if (cnt != bulk_cnt)
1202 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1203 			 bulk_cnt, cnt);
1204 
1205 	slab_unlock(page);
1206 	spin_unlock_irqrestore(&n->list_lock, flags);
1207 	if (!ret)
1208 		slab_fix(s, "Object at 0x%p not freed", object);
1209 	return ret;
1210 }
1211 
1212 static int __init setup_slub_debug(char *str)
1213 {
1214 	slub_debug = DEBUG_DEFAULT_FLAGS;
1215 	if (*str++ != '=' || !*str)
1216 		/*
1217 		 * No options specified. Switch on full debugging.
1218 		 */
1219 		goto out;
1220 
1221 	if (*str == ',')
1222 		/*
1223 		 * No options but restriction on slabs. This means full
1224 		 * debugging for slabs matching a pattern.
1225 		 */
1226 		goto check_slabs;
1227 
1228 	slub_debug = 0;
1229 	if (*str == '-')
1230 		/*
1231 		 * Switch off all debugging measures.
1232 		 */
1233 		goto out;
1234 
1235 	/*
1236 	 * Determine which debug features should be switched on
1237 	 */
1238 	for (; *str && *str != ','; str++) {
1239 		switch (tolower(*str)) {
1240 		case 'f':
1241 			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1242 			break;
1243 		case 'z':
1244 			slub_debug |= SLAB_RED_ZONE;
1245 			break;
1246 		case 'p':
1247 			slub_debug |= SLAB_POISON;
1248 			break;
1249 		case 'u':
1250 			slub_debug |= SLAB_STORE_USER;
1251 			break;
1252 		case 't':
1253 			slub_debug |= SLAB_TRACE;
1254 			break;
1255 		case 'a':
1256 			slub_debug |= SLAB_FAILSLAB;
1257 			break;
1258 		case 'o':
1259 			/*
1260 			 * Avoid enabling debugging on caches if its minimum
1261 			 * order would increase as a result.
1262 			 */
1263 			disable_higher_order_debug = 1;
1264 			break;
1265 		default:
1266 			pr_err("slub_debug option '%c' unknown. skipped\n",
1267 			       *str);
1268 		}
1269 	}
1270 
1271 check_slabs:
1272 	if (*str == ',')
1273 		slub_debug_slabs = str + 1;
1274 out:
1275 	return 1;
1276 }
1277 
1278 __setup("slub_debug", setup_slub_debug);
1279 
1280 slab_flags_t kmem_cache_flags(unsigned int object_size,
1281 	slab_flags_t flags, const char *name,
1282 	void (*ctor)(void *))
1283 {
1284 	/*
1285 	 * Enable debugging if selected on the kernel commandline.
1286 	 */
1287 	if (slub_debug && (!slub_debug_slabs || (name &&
1288 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1289 		flags |= slub_debug;
1290 
1291 	return flags;
1292 }
1293 #else /* !CONFIG_SLUB_DEBUG */
1294 static inline void setup_object_debug(struct kmem_cache *s,
1295 			struct page *page, void *object) {}
1296 
1297 static inline int alloc_debug_processing(struct kmem_cache *s,
1298 	struct page *page, void *object, unsigned long addr) { return 0; }
1299 
1300 static inline int free_debug_processing(
1301 	struct kmem_cache *s, struct page *page,
1302 	void *head, void *tail, int bulk_cnt,
1303 	unsigned long addr) { return 0; }
1304 
1305 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1306 			{ return 1; }
1307 static inline int check_object(struct kmem_cache *s, struct page *page,
1308 			void *object, u8 val) { return 1; }
1309 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1310 					struct page *page) {}
1311 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1312 					struct page *page) {}
1313 slab_flags_t kmem_cache_flags(unsigned int object_size,
1314 	slab_flags_t flags, const char *name,
1315 	void (*ctor)(void *))
1316 {
1317 	return flags;
1318 }
1319 #define slub_debug 0
1320 
1321 #define disable_higher_order_debug 0
1322 
1323 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1324 							{ return 0; }
1325 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1326 							{ return 0; }
1327 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1328 							int objects) {}
1329 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1330 							int objects) {}
1331 
1332 #endif /* CONFIG_SLUB_DEBUG */
1333 
1334 /*
1335  * Hooks for other subsystems that check memory allocations. In a typical
1336  * production configuration these hooks all should produce no code at all.
1337  */
1338 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1339 {
1340 	kmemleak_alloc(ptr, size, 1, flags);
1341 	kasan_kmalloc_large(ptr, size, flags);
1342 }
1343 
1344 static __always_inline void kfree_hook(void *x)
1345 {
1346 	kmemleak_free(x);
1347 	kasan_kfree_large(x, _RET_IP_);
1348 }
1349 
1350 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1351 {
1352 	kmemleak_free_recursive(x, s->flags);
1353 
1354 	/*
1355 	 * Trouble is that we may no longer disable interrupts in the fast path
1356 	 * So in order to make the debug calls that expect irqs to be
1357 	 * disabled we need to disable interrupts temporarily.
1358 	 */
1359 #ifdef CONFIG_LOCKDEP
1360 	{
1361 		unsigned long flags;
1362 
1363 		local_irq_save(flags);
1364 		debug_check_no_locks_freed(x, s->object_size);
1365 		local_irq_restore(flags);
1366 	}
1367 #endif
1368 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1369 		debug_check_no_obj_freed(x, s->object_size);
1370 
1371 	/* KASAN might put x into memory quarantine, delaying its reuse */
1372 	return kasan_slab_free(s, x, _RET_IP_);
1373 }
1374 
1375 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1376 					   void **head, void **tail)
1377 {
1378 /*
1379  * Compiler cannot detect this function can be removed if slab_free_hook()
1380  * evaluates to nothing.  Thus, catch all relevant config debug options here.
1381  */
1382 #if defined(CONFIG_LOCKDEP)	||		\
1383 	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
1384 	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
1385 	defined(CONFIG_KASAN)
1386 
1387 	void *object;
1388 	void *next = *head;
1389 	void *old_tail = *tail ? *tail : *head;
1390 
1391 	/* Head and tail of the reconstructed freelist */
1392 	*head = NULL;
1393 	*tail = NULL;
1394 
1395 	do {
1396 		object = next;
1397 		next = get_freepointer(s, object);
1398 		/* If object's reuse doesn't have to be delayed */
1399 		if (!slab_free_hook(s, object)) {
1400 			/* Move object to the new freelist */
1401 			set_freepointer(s, object, *head);
1402 			*head = object;
1403 			if (!*tail)
1404 				*tail = object;
1405 		}
1406 	} while (object != old_tail);
1407 
1408 	if (*head == *tail)
1409 		*tail = NULL;
1410 
1411 	return *head != NULL;
1412 #else
1413 	return true;
1414 #endif
1415 }
1416 
1417 static void setup_object(struct kmem_cache *s, struct page *page,
1418 				void *object)
1419 {
1420 	setup_object_debug(s, page, object);
1421 	kasan_init_slab_obj(s, object);
1422 	if (unlikely(s->ctor)) {
1423 		kasan_unpoison_object_data(s, object);
1424 		s->ctor(object);
1425 		kasan_poison_object_data(s, object);
1426 	}
1427 }
1428 
1429 /*
1430  * Slab allocation and freeing
1431  */
1432 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1433 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1434 {
1435 	struct page *page;
1436 	unsigned int order = oo_order(oo);
1437 
1438 	if (node == NUMA_NO_NODE)
1439 		page = alloc_pages(flags, order);
1440 	else
1441 		page = __alloc_pages_node(node, flags, order);
1442 
1443 	if (page && memcg_charge_slab(page, flags, order, s)) {
1444 		__free_pages(page, order);
1445 		page = NULL;
1446 	}
1447 
1448 	return page;
1449 }
1450 
1451 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1452 /* Pre-initialize the random sequence cache */
1453 static int init_cache_random_seq(struct kmem_cache *s)
1454 {
1455 	unsigned int count = oo_objects(s->oo);
1456 	int err;
1457 
1458 	/* Bailout if already initialised */
1459 	if (s->random_seq)
1460 		return 0;
1461 
1462 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1463 	if (err) {
1464 		pr_err("SLUB: Unable to initialize free list for %s\n",
1465 			s->name);
1466 		return err;
1467 	}
1468 
1469 	/* Transform to an offset on the set of pages */
1470 	if (s->random_seq) {
1471 		unsigned int i;
1472 
1473 		for (i = 0; i < count; i++)
1474 			s->random_seq[i] *= s->size;
1475 	}
1476 	return 0;
1477 }
1478 
1479 /* Initialize each random sequence freelist per cache */
1480 static void __init init_freelist_randomization(void)
1481 {
1482 	struct kmem_cache *s;
1483 
1484 	mutex_lock(&slab_mutex);
1485 
1486 	list_for_each_entry(s, &slab_caches, list)
1487 		init_cache_random_seq(s);
1488 
1489 	mutex_unlock(&slab_mutex);
1490 }
1491 
1492 /* Get the next entry on the pre-computed freelist randomized */
1493 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1494 				unsigned long *pos, void *start,
1495 				unsigned long page_limit,
1496 				unsigned long freelist_count)
1497 {
1498 	unsigned int idx;
1499 
1500 	/*
1501 	 * If the target page allocation failed, the number of objects on the
1502 	 * page might be smaller than the usual size defined by the cache.
1503 	 */
1504 	do {
1505 		idx = s->random_seq[*pos];
1506 		*pos += 1;
1507 		if (*pos >= freelist_count)
1508 			*pos = 0;
1509 	} while (unlikely(idx >= page_limit));
1510 
1511 	return (char *)start + idx;
1512 }
1513 
1514 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1515 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1516 {
1517 	void *start;
1518 	void *cur;
1519 	void *next;
1520 	unsigned long idx, pos, page_limit, freelist_count;
1521 
1522 	if (page->objects < 2 || !s->random_seq)
1523 		return false;
1524 
1525 	freelist_count = oo_objects(s->oo);
1526 	pos = get_random_int() % freelist_count;
1527 
1528 	page_limit = page->objects * s->size;
1529 	start = fixup_red_left(s, page_address(page));
1530 
1531 	/* First entry is used as the base of the freelist */
1532 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1533 				freelist_count);
1534 	page->freelist = cur;
1535 
1536 	for (idx = 1; idx < page->objects; idx++) {
1537 		setup_object(s, page, cur);
1538 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1539 			freelist_count);
1540 		set_freepointer(s, cur, next);
1541 		cur = next;
1542 	}
1543 	setup_object(s, page, cur);
1544 	set_freepointer(s, cur, NULL);
1545 
1546 	return true;
1547 }
1548 #else
1549 static inline int init_cache_random_seq(struct kmem_cache *s)
1550 {
1551 	return 0;
1552 }
1553 static inline void init_freelist_randomization(void) { }
1554 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1555 {
1556 	return false;
1557 }
1558 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1559 
1560 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1561 {
1562 	struct page *page;
1563 	struct kmem_cache_order_objects oo = s->oo;
1564 	gfp_t alloc_gfp;
1565 	void *start, *p;
1566 	int idx, order;
1567 	bool shuffle;
1568 
1569 	flags &= gfp_allowed_mask;
1570 
1571 	if (gfpflags_allow_blocking(flags))
1572 		local_irq_enable();
1573 
1574 	flags |= s->allocflags;
1575 
1576 	/*
1577 	 * Let the initial higher-order allocation fail under memory pressure
1578 	 * so we fall-back to the minimum order allocation.
1579 	 */
1580 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1581 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1582 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1583 
1584 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1585 	if (unlikely(!page)) {
1586 		oo = s->min;
1587 		alloc_gfp = flags;
1588 		/*
1589 		 * Allocation may have failed due to fragmentation.
1590 		 * Try a lower order alloc if possible
1591 		 */
1592 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1593 		if (unlikely(!page))
1594 			goto out;
1595 		stat(s, ORDER_FALLBACK);
1596 	}
1597 
1598 	page->objects = oo_objects(oo);
1599 
1600 	order = compound_order(page);
1601 	page->slab_cache = s;
1602 	__SetPageSlab(page);
1603 	if (page_is_pfmemalloc(page))
1604 		SetPageSlabPfmemalloc(page);
1605 
1606 	start = page_address(page);
1607 
1608 	if (unlikely(s->flags & SLAB_POISON))
1609 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1610 
1611 	kasan_poison_slab(page);
1612 
1613 	shuffle = shuffle_freelist(s, page);
1614 
1615 	if (!shuffle) {
1616 		for_each_object_idx(p, idx, s, start, page->objects) {
1617 			setup_object(s, page, p);
1618 			if (likely(idx < page->objects))
1619 				set_freepointer(s, p, p + s->size);
1620 			else
1621 				set_freepointer(s, p, NULL);
1622 		}
1623 		page->freelist = fixup_red_left(s, start);
1624 	}
1625 
1626 	page->inuse = page->objects;
1627 	page->frozen = 1;
1628 
1629 out:
1630 	if (gfpflags_allow_blocking(flags))
1631 		local_irq_disable();
1632 	if (!page)
1633 		return NULL;
1634 
1635 	mod_lruvec_page_state(page,
1636 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1637 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1638 		1 << oo_order(oo));
1639 
1640 	inc_slabs_node(s, page_to_nid(page), page->objects);
1641 
1642 	return page;
1643 }
1644 
1645 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1646 {
1647 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1648 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1649 		flags &= ~GFP_SLAB_BUG_MASK;
1650 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1651 				invalid_mask, &invalid_mask, flags, &flags);
1652 		dump_stack();
1653 	}
1654 
1655 	return allocate_slab(s,
1656 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1657 }
1658 
1659 static void __free_slab(struct kmem_cache *s, struct page *page)
1660 {
1661 	int order = compound_order(page);
1662 	int pages = 1 << order;
1663 
1664 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1665 		void *p;
1666 
1667 		slab_pad_check(s, page);
1668 		for_each_object(p, s, page_address(page),
1669 						page->objects)
1670 			check_object(s, page, p, SLUB_RED_INACTIVE);
1671 	}
1672 
1673 	mod_lruvec_page_state(page,
1674 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1675 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1676 		-pages);
1677 
1678 	__ClearPageSlabPfmemalloc(page);
1679 	__ClearPageSlab(page);
1680 
1681 	page->mapping = NULL;
1682 	if (current->reclaim_state)
1683 		current->reclaim_state->reclaimed_slab += pages;
1684 	memcg_uncharge_slab(page, order, s);
1685 	__free_pages(page, order);
1686 }
1687 
1688 static void rcu_free_slab(struct rcu_head *h)
1689 {
1690 	struct page *page = container_of(h, struct page, rcu_head);
1691 
1692 	__free_slab(page->slab_cache, page);
1693 }
1694 
1695 static void free_slab(struct kmem_cache *s, struct page *page)
1696 {
1697 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1698 		call_rcu(&page->rcu_head, rcu_free_slab);
1699 	} else
1700 		__free_slab(s, page);
1701 }
1702 
1703 static void discard_slab(struct kmem_cache *s, struct page *page)
1704 {
1705 	dec_slabs_node(s, page_to_nid(page), page->objects);
1706 	free_slab(s, page);
1707 }
1708 
1709 /*
1710  * Management of partially allocated slabs.
1711  */
1712 static inline void
1713 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1714 {
1715 	n->nr_partial++;
1716 	if (tail == DEACTIVATE_TO_TAIL)
1717 		list_add_tail(&page->lru, &n->partial);
1718 	else
1719 		list_add(&page->lru, &n->partial);
1720 }
1721 
1722 static inline void add_partial(struct kmem_cache_node *n,
1723 				struct page *page, int tail)
1724 {
1725 	lockdep_assert_held(&n->list_lock);
1726 	__add_partial(n, page, tail);
1727 }
1728 
1729 static inline void remove_partial(struct kmem_cache_node *n,
1730 					struct page *page)
1731 {
1732 	lockdep_assert_held(&n->list_lock);
1733 	list_del(&page->lru);
1734 	n->nr_partial--;
1735 }
1736 
1737 /*
1738  * Remove slab from the partial list, freeze it and
1739  * return the pointer to the freelist.
1740  *
1741  * Returns a list of objects or NULL if it fails.
1742  */
1743 static inline void *acquire_slab(struct kmem_cache *s,
1744 		struct kmem_cache_node *n, struct page *page,
1745 		int mode, int *objects)
1746 {
1747 	void *freelist;
1748 	unsigned long counters;
1749 	struct page new;
1750 
1751 	lockdep_assert_held(&n->list_lock);
1752 
1753 	/*
1754 	 * Zap the freelist and set the frozen bit.
1755 	 * The old freelist is the list of objects for the
1756 	 * per cpu allocation list.
1757 	 */
1758 	freelist = page->freelist;
1759 	counters = page->counters;
1760 	new.counters = counters;
1761 	*objects = new.objects - new.inuse;
1762 	if (mode) {
1763 		new.inuse = page->objects;
1764 		new.freelist = NULL;
1765 	} else {
1766 		new.freelist = freelist;
1767 	}
1768 
1769 	VM_BUG_ON(new.frozen);
1770 	new.frozen = 1;
1771 
1772 	if (!__cmpxchg_double_slab(s, page,
1773 			freelist, counters,
1774 			new.freelist, new.counters,
1775 			"acquire_slab"))
1776 		return NULL;
1777 
1778 	remove_partial(n, page);
1779 	WARN_ON(!freelist);
1780 	return freelist;
1781 }
1782 
1783 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1784 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1785 
1786 /*
1787  * Try to allocate a partial slab from a specific node.
1788  */
1789 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1790 				struct kmem_cache_cpu *c, gfp_t flags)
1791 {
1792 	struct page *page, *page2;
1793 	void *object = NULL;
1794 	unsigned int available = 0;
1795 	int objects;
1796 
1797 	/*
1798 	 * Racy check. If we mistakenly see no partial slabs then we
1799 	 * just allocate an empty slab. If we mistakenly try to get a
1800 	 * partial slab and there is none available then get_partials()
1801 	 * will return NULL.
1802 	 */
1803 	if (!n || !n->nr_partial)
1804 		return NULL;
1805 
1806 	spin_lock(&n->list_lock);
1807 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1808 		void *t;
1809 
1810 		if (!pfmemalloc_match(page, flags))
1811 			continue;
1812 
1813 		t = acquire_slab(s, n, page, object == NULL, &objects);
1814 		if (!t)
1815 			break;
1816 
1817 		available += objects;
1818 		if (!object) {
1819 			c->page = page;
1820 			stat(s, ALLOC_FROM_PARTIAL);
1821 			object = t;
1822 		} else {
1823 			put_cpu_partial(s, page, 0);
1824 			stat(s, CPU_PARTIAL_NODE);
1825 		}
1826 		if (!kmem_cache_has_cpu_partial(s)
1827 			|| available > slub_cpu_partial(s) / 2)
1828 			break;
1829 
1830 	}
1831 	spin_unlock(&n->list_lock);
1832 	return object;
1833 }
1834 
1835 /*
1836  * Get a page from somewhere. Search in increasing NUMA distances.
1837  */
1838 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1839 		struct kmem_cache_cpu *c)
1840 {
1841 #ifdef CONFIG_NUMA
1842 	struct zonelist *zonelist;
1843 	struct zoneref *z;
1844 	struct zone *zone;
1845 	enum zone_type high_zoneidx = gfp_zone(flags);
1846 	void *object;
1847 	unsigned int cpuset_mems_cookie;
1848 
1849 	/*
1850 	 * The defrag ratio allows a configuration of the tradeoffs between
1851 	 * inter node defragmentation and node local allocations. A lower
1852 	 * defrag_ratio increases the tendency to do local allocations
1853 	 * instead of attempting to obtain partial slabs from other nodes.
1854 	 *
1855 	 * If the defrag_ratio is set to 0 then kmalloc() always
1856 	 * returns node local objects. If the ratio is higher then kmalloc()
1857 	 * may return off node objects because partial slabs are obtained
1858 	 * from other nodes and filled up.
1859 	 *
1860 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1861 	 * (which makes defrag_ratio = 1000) then every (well almost)
1862 	 * allocation will first attempt to defrag slab caches on other nodes.
1863 	 * This means scanning over all nodes to look for partial slabs which
1864 	 * may be expensive if we do it every time we are trying to find a slab
1865 	 * with available objects.
1866 	 */
1867 	if (!s->remote_node_defrag_ratio ||
1868 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1869 		return NULL;
1870 
1871 	do {
1872 		cpuset_mems_cookie = read_mems_allowed_begin();
1873 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1874 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1875 			struct kmem_cache_node *n;
1876 
1877 			n = get_node(s, zone_to_nid(zone));
1878 
1879 			if (n && cpuset_zone_allowed(zone, flags) &&
1880 					n->nr_partial > s->min_partial) {
1881 				object = get_partial_node(s, n, c, flags);
1882 				if (object) {
1883 					/*
1884 					 * Don't check read_mems_allowed_retry()
1885 					 * here - if mems_allowed was updated in
1886 					 * parallel, that was a harmless race
1887 					 * between allocation and the cpuset
1888 					 * update
1889 					 */
1890 					return object;
1891 				}
1892 			}
1893 		}
1894 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1895 #endif
1896 	return NULL;
1897 }
1898 
1899 /*
1900  * Get a partial page, lock it and return it.
1901  */
1902 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1903 		struct kmem_cache_cpu *c)
1904 {
1905 	void *object;
1906 	int searchnode = node;
1907 
1908 	if (node == NUMA_NO_NODE)
1909 		searchnode = numa_mem_id();
1910 	else if (!node_present_pages(node))
1911 		searchnode = node_to_mem_node(node);
1912 
1913 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1914 	if (object || node != NUMA_NO_NODE)
1915 		return object;
1916 
1917 	return get_any_partial(s, flags, c);
1918 }
1919 
1920 #ifdef CONFIG_PREEMPT
1921 /*
1922  * Calculate the next globally unique transaction for disambiguiation
1923  * during cmpxchg. The transactions start with the cpu number and are then
1924  * incremented by CONFIG_NR_CPUS.
1925  */
1926 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1927 #else
1928 /*
1929  * No preemption supported therefore also no need to check for
1930  * different cpus.
1931  */
1932 #define TID_STEP 1
1933 #endif
1934 
1935 static inline unsigned long next_tid(unsigned long tid)
1936 {
1937 	return tid + TID_STEP;
1938 }
1939 
1940 static inline unsigned int tid_to_cpu(unsigned long tid)
1941 {
1942 	return tid % TID_STEP;
1943 }
1944 
1945 static inline unsigned long tid_to_event(unsigned long tid)
1946 {
1947 	return tid / TID_STEP;
1948 }
1949 
1950 static inline unsigned int init_tid(int cpu)
1951 {
1952 	return cpu;
1953 }
1954 
1955 static inline void note_cmpxchg_failure(const char *n,
1956 		const struct kmem_cache *s, unsigned long tid)
1957 {
1958 #ifdef SLUB_DEBUG_CMPXCHG
1959 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1960 
1961 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1962 
1963 #ifdef CONFIG_PREEMPT
1964 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1965 		pr_warn("due to cpu change %d -> %d\n",
1966 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1967 	else
1968 #endif
1969 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1970 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1971 			tid_to_event(tid), tid_to_event(actual_tid));
1972 	else
1973 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1974 			actual_tid, tid, next_tid(tid));
1975 #endif
1976 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1977 }
1978 
1979 static void init_kmem_cache_cpus(struct kmem_cache *s)
1980 {
1981 	int cpu;
1982 
1983 	for_each_possible_cpu(cpu)
1984 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1985 }
1986 
1987 /*
1988  * Remove the cpu slab
1989  */
1990 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1991 				void *freelist, struct kmem_cache_cpu *c)
1992 {
1993 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1994 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1995 	int lock = 0;
1996 	enum slab_modes l = M_NONE, m = M_NONE;
1997 	void *nextfree;
1998 	int tail = DEACTIVATE_TO_HEAD;
1999 	struct page new;
2000 	struct page old;
2001 
2002 	if (page->freelist) {
2003 		stat(s, DEACTIVATE_REMOTE_FREES);
2004 		tail = DEACTIVATE_TO_TAIL;
2005 	}
2006 
2007 	/*
2008 	 * Stage one: Free all available per cpu objects back
2009 	 * to the page freelist while it is still frozen. Leave the
2010 	 * last one.
2011 	 *
2012 	 * There is no need to take the list->lock because the page
2013 	 * is still frozen.
2014 	 */
2015 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
2016 		void *prior;
2017 		unsigned long counters;
2018 
2019 		do {
2020 			prior = page->freelist;
2021 			counters = page->counters;
2022 			set_freepointer(s, freelist, prior);
2023 			new.counters = counters;
2024 			new.inuse--;
2025 			VM_BUG_ON(!new.frozen);
2026 
2027 		} while (!__cmpxchg_double_slab(s, page,
2028 			prior, counters,
2029 			freelist, new.counters,
2030 			"drain percpu freelist"));
2031 
2032 		freelist = nextfree;
2033 	}
2034 
2035 	/*
2036 	 * Stage two: Ensure that the page is unfrozen while the
2037 	 * list presence reflects the actual number of objects
2038 	 * during unfreeze.
2039 	 *
2040 	 * We setup the list membership and then perform a cmpxchg
2041 	 * with the count. If there is a mismatch then the page
2042 	 * is not unfrozen but the page is on the wrong list.
2043 	 *
2044 	 * Then we restart the process which may have to remove
2045 	 * the page from the list that we just put it on again
2046 	 * because the number of objects in the slab may have
2047 	 * changed.
2048 	 */
2049 redo:
2050 
2051 	old.freelist = page->freelist;
2052 	old.counters = page->counters;
2053 	VM_BUG_ON(!old.frozen);
2054 
2055 	/* Determine target state of the slab */
2056 	new.counters = old.counters;
2057 	if (freelist) {
2058 		new.inuse--;
2059 		set_freepointer(s, freelist, old.freelist);
2060 		new.freelist = freelist;
2061 	} else
2062 		new.freelist = old.freelist;
2063 
2064 	new.frozen = 0;
2065 
2066 	if (!new.inuse && n->nr_partial >= s->min_partial)
2067 		m = M_FREE;
2068 	else if (new.freelist) {
2069 		m = M_PARTIAL;
2070 		if (!lock) {
2071 			lock = 1;
2072 			/*
2073 			 * Taking the spinlock removes the possiblity
2074 			 * that acquire_slab() will see a slab page that
2075 			 * is frozen
2076 			 */
2077 			spin_lock(&n->list_lock);
2078 		}
2079 	} else {
2080 		m = M_FULL;
2081 		if (kmem_cache_debug(s) && !lock) {
2082 			lock = 1;
2083 			/*
2084 			 * This also ensures that the scanning of full
2085 			 * slabs from diagnostic functions will not see
2086 			 * any frozen slabs.
2087 			 */
2088 			spin_lock(&n->list_lock);
2089 		}
2090 	}
2091 
2092 	if (l != m) {
2093 
2094 		if (l == M_PARTIAL)
2095 
2096 			remove_partial(n, page);
2097 
2098 		else if (l == M_FULL)
2099 
2100 			remove_full(s, n, page);
2101 
2102 		if (m == M_PARTIAL) {
2103 
2104 			add_partial(n, page, tail);
2105 			stat(s, tail);
2106 
2107 		} else if (m == M_FULL) {
2108 
2109 			stat(s, DEACTIVATE_FULL);
2110 			add_full(s, n, page);
2111 
2112 		}
2113 	}
2114 
2115 	l = m;
2116 	if (!__cmpxchg_double_slab(s, page,
2117 				old.freelist, old.counters,
2118 				new.freelist, new.counters,
2119 				"unfreezing slab"))
2120 		goto redo;
2121 
2122 	if (lock)
2123 		spin_unlock(&n->list_lock);
2124 
2125 	if (m == M_FREE) {
2126 		stat(s, DEACTIVATE_EMPTY);
2127 		discard_slab(s, page);
2128 		stat(s, FREE_SLAB);
2129 	}
2130 
2131 	c->page = NULL;
2132 	c->freelist = NULL;
2133 }
2134 
2135 /*
2136  * Unfreeze all the cpu partial slabs.
2137  *
2138  * This function must be called with interrupts disabled
2139  * for the cpu using c (or some other guarantee must be there
2140  * to guarantee no concurrent accesses).
2141  */
2142 static void unfreeze_partials(struct kmem_cache *s,
2143 		struct kmem_cache_cpu *c)
2144 {
2145 #ifdef CONFIG_SLUB_CPU_PARTIAL
2146 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2147 	struct page *page, *discard_page = NULL;
2148 
2149 	while ((page = c->partial)) {
2150 		struct page new;
2151 		struct page old;
2152 
2153 		c->partial = page->next;
2154 
2155 		n2 = get_node(s, page_to_nid(page));
2156 		if (n != n2) {
2157 			if (n)
2158 				spin_unlock(&n->list_lock);
2159 
2160 			n = n2;
2161 			spin_lock(&n->list_lock);
2162 		}
2163 
2164 		do {
2165 
2166 			old.freelist = page->freelist;
2167 			old.counters = page->counters;
2168 			VM_BUG_ON(!old.frozen);
2169 
2170 			new.counters = old.counters;
2171 			new.freelist = old.freelist;
2172 
2173 			new.frozen = 0;
2174 
2175 		} while (!__cmpxchg_double_slab(s, page,
2176 				old.freelist, old.counters,
2177 				new.freelist, new.counters,
2178 				"unfreezing slab"));
2179 
2180 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2181 			page->next = discard_page;
2182 			discard_page = page;
2183 		} else {
2184 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2185 			stat(s, FREE_ADD_PARTIAL);
2186 		}
2187 	}
2188 
2189 	if (n)
2190 		spin_unlock(&n->list_lock);
2191 
2192 	while (discard_page) {
2193 		page = discard_page;
2194 		discard_page = discard_page->next;
2195 
2196 		stat(s, DEACTIVATE_EMPTY);
2197 		discard_slab(s, page);
2198 		stat(s, FREE_SLAB);
2199 	}
2200 #endif
2201 }
2202 
2203 /*
2204  * Put a page that was just frozen (in __slab_free) into a partial page
2205  * slot if available.
2206  *
2207  * If we did not find a slot then simply move all the partials to the
2208  * per node partial list.
2209  */
2210 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2211 {
2212 #ifdef CONFIG_SLUB_CPU_PARTIAL
2213 	struct page *oldpage;
2214 	int pages;
2215 	int pobjects;
2216 
2217 	preempt_disable();
2218 	do {
2219 		pages = 0;
2220 		pobjects = 0;
2221 		oldpage = this_cpu_read(s->cpu_slab->partial);
2222 
2223 		if (oldpage) {
2224 			pobjects = oldpage->pobjects;
2225 			pages = oldpage->pages;
2226 			if (drain && pobjects > s->cpu_partial) {
2227 				unsigned long flags;
2228 				/*
2229 				 * partial array is full. Move the existing
2230 				 * set to the per node partial list.
2231 				 */
2232 				local_irq_save(flags);
2233 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2234 				local_irq_restore(flags);
2235 				oldpage = NULL;
2236 				pobjects = 0;
2237 				pages = 0;
2238 				stat(s, CPU_PARTIAL_DRAIN);
2239 			}
2240 		}
2241 
2242 		pages++;
2243 		pobjects += page->objects - page->inuse;
2244 
2245 		page->pages = pages;
2246 		page->pobjects = pobjects;
2247 		page->next = oldpage;
2248 
2249 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2250 								!= oldpage);
2251 	if (unlikely(!s->cpu_partial)) {
2252 		unsigned long flags;
2253 
2254 		local_irq_save(flags);
2255 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2256 		local_irq_restore(flags);
2257 	}
2258 	preempt_enable();
2259 #endif
2260 }
2261 
2262 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2263 {
2264 	stat(s, CPUSLAB_FLUSH);
2265 	deactivate_slab(s, c->page, c->freelist, c);
2266 
2267 	c->tid = next_tid(c->tid);
2268 }
2269 
2270 /*
2271  * Flush cpu slab.
2272  *
2273  * Called from IPI handler with interrupts disabled.
2274  */
2275 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2276 {
2277 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2278 
2279 	if (likely(c)) {
2280 		if (c->page)
2281 			flush_slab(s, c);
2282 
2283 		unfreeze_partials(s, c);
2284 	}
2285 }
2286 
2287 static void flush_cpu_slab(void *d)
2288 {
2289 	struct kmem_cache *s = d;
2290 
2291 	__flush_cpu_slab(s, smp_processor_id());
2292 }
2293 
2294 static bool has_cpu_slab(int cpu, void *info)
2295 {
2296 	struct kmem_cache *s = info;
2297 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2298 
2299 	return c->page || slub_percpu_partial(c);
2300 }
2301 
2302 static void flush_all(struct kmem_cache *s)
2303 {
2304 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2305 }
2306 
2307 /*
2308  * Use the cpu notifier to insure that the cpu slabs are flushed when
2309  * necessary.
2310  */
2311 static int slub_cpu_dead(unsigned int cpu)
2312 {
2313 	struct kmem_cache *s;
2314 	unsigned long flags;
2315 
2316 	mutex_lock(&slab_mutex);
2317 	list_for_each_entry(s, &slab_caches, list) {
2318 		local_irq_save(flags);
2319 		__flush_cpu_slab(s, cpu);
2320 		local_irq_restore(flags);
2321 	}
2322 	mutex_unlock(&slab_mutex);
2323 	return 0;
2324 }
2325 
2326 /*
2327  * Check if the objects in a per cpu structure fit numa
2328  * locality expectations.
2329  */
2330 static inline int node_match(struct page *page, int node)
2331 {
2332 #ifdef CONFIG_NUMA
2333 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2334 		return 0;
2335 #endif
2336 	return 1;
2337 }
2338 
2339 #ifdef CONFIG_SLUB_DEBUG
2340 static int count_free(struct page *page)
2341 {
2342 	return page->objects - page->inuse;
2343 }
2344 
2345 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2346 {
2347 	return atomic_long_read(&n->total_objects);
2348 }
2349 #endif /* CONFIG_SLUB_DEBUG */
2350 
2351 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2352 static unsigned long count_partial(struct kmem_cache_node *n,
2353 					int (*get_count)(struct page *))
2354 {
2355 	unsigned long flags;
2356 	unsigned long x = 0;
2357 	struct page *page;
2358 
2359 	spin_lock_irqsave(&n->list_lock, flags);
2360 	list_for_each_entry(page, &n->partial, lru)
2361 		x += get_count(page);
2362 	spin_unlock_irqrestore(&n->list_lock, flags);
2363 	return x;
2364 }
2365 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2366 
2367 static noinline void
2368 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2369 {
2370 #ifdef CONFIG_SLUB_DEBUG
2371 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2372 				      DEFAULT_RATELIMIT_BURST);
2373 	int node;
2374 	struct kmem_cache_node *n;
2375 
2376 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2377 		return;
2378 
2379 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2380 		nid, gfpflags, &gfpflags);
2381 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2382 		s->name, s->object_size, s->size, oo_order(s->oo),
2383 		oo_order(s->min));
2384 
2385 	if (oo_order(s->min) > get_order(s->object_size))
2386 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2387 			s->name);
2388 
2389 	for_each_kmem_cache_node(s, node, n) {
2390 		unsigned long nr_slabs;
2391 		unsigned long nr_objs;
2392 		unsigned long nr_free;
2393 
2394 		nr_free  = count_partial(n, count_free);
2395 		nr_slabs = node_nr_slabs(n);
2396 		nr_objs  = node_nr_objs(n);
2397 
2398 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2399 			node, nr_slabs, nr_objs, nr_free);
2400 	}
2401 #endif
2402 }
2403 
2404 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2405 			int node, struct kmem_cache_cpu **pc)
2406 {
2407 	void *freelist;
2408 	struct kmem_cache_cpu *c = *pc;
2409 	struct page *page;
2410 
2411 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2412 
2413 	freelist = get_partial(s, flags, node, c);
2414 
2415 	if (freelist)
2416 		return freelist;
2417 
2418 	page = new_slab(s, flags, node);
2419 	if (page) {
2420 		c = raw_cpu_ptr(s->cpu_slab);
2421 		if (c->page)
2422 			flush_slab(s, c);
2423 
2424 		/*
2425 		 * No other reference to the page yet so we can
2426 		 * muck around with it freely without cmpxchg
2427 		 */
2428 		freelist = page->freelist;
2429 		page->freelist = NULL;
2430 
2431 		stat(s, ALLOC_SLAB);
2432 		c->page = page;
2433 		*pc = c;
2434 	} else
2435 		freelist = NULL;
2436 
2437 	return freelist;
2438 }
2439 
2440 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2441 {
2442 	if (unlikely(PageSlabPfmemalloc(page)))
2443 		return gfp_pfmemalloc_allowed(gfpflags);
2444 
2445 	return true;
2446 }
2447 
2448 /*
2449  * Check the page->freelist of a page and either transfer the freelist to the
2450  * per cpu freelist or deactivate the page.
2451  *
2452  * The page is still frozen if the return value is not NULL.
2453  *
2454  * If this function returns NULL then the page has been unfrozen.
2455  *
2456  * This function must be called with interrupt disabled.
2457  */
2458 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2459 {
2460 	struct page new;
2461 	unsigned long counters;
2462 	void *freelist;
2463 
2464 	do {
2465 		freelist = page->freelist;
2466 		counters = page->counters;
2467 
2468 		new.counters = counters;
2469 		VM_BUG_ON(!new.frozen);
2470 
2471 		new.inuse = page->objects;
2472 		new.frozen = freelist != NULL;
2473 
2474 	} while (!__cmpxchg_double_slab(s, page,
2475 		freelist, counters,
2476 		NULL, new.counters,
2477 		"get_freelist"));
2478 
2479 	return freelist;
2480 }
2481 
2482 /*
2483  * Slow path. The lockless freelist is empty or we need to perform
2484  * debugging duties.
2485  *
2486  * Processing is still very fast if new objects have been freed to the
2487  * regular freelist. In that case we simply take over the regular freelist
2488  * as the lockless freelist and zap the regular freelist.
2489  *
2490  * If that is not working then we fall back to the partial lists. We take the
2491  * first element of the freelist as the object to allocate now and move the
2492  * rest of the freelist to the lockless freelist.
2493  *
2494  * And if we were unable to get a new slab from the partial slab lists then
2495  * we need to allocate a new slab. This is the slowest path since it involves
2496  * a call to the page allocator and the setup of a new slab.
2497  *
2498  * Version of __slab_alloc to use when we know that interrupts are
2499  * already disabled (which is the case for bulk allocation).
2500  */
2501 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2502 			  unsigned long addr, struct kmem_cache_cpu *c)
2503 {
2504 	void *freelist;
2505 	struct page *page;
2506 
2507 	page = c->page;
2508 	if (!page)
2509 		goto new_slab;
2510 redo:
2511 
2512 	if (unlikely(!node_match(page, node))) {
2513 		int searchnode = node;
2514 
2515 		if (node != NUMA_NO_NODE && !node_present_pages(node))
2516 			searchnode = node_to_mem_node(node);
2517 
2518 		if (unlikely(!node_match(page, searchnode))) {
2519 			stat(s, ALLOC_NODE_MISMATCH);
2520 			deactivate_slab(s, page, c->freelist, c);
2521 			goto new_slab;
2522 		}
2523 	}
2524 
2525 	/*
2526 	 * By rights, we should be searching for a slab page that was
2527 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2528 	 * information when the page leaves the per-cpu allocator
2529 	 */
2530 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2531 		deactivate_slab(s, page, c->freelist, c);
2532 		goto new_slab;
2533 	}
2534 
2535 	/* must check again c->freelist in case of cpu migration or IRQ */
2536 	freelist = c->freelist;
2537 	if (freelist)
2538 		goto load_freelist;
2539 
2540 	freelist = get_freelist(s, page);
2541 
2542 	if (!freelist) {
2543 		c->page = NULL;
2544 		stat(s, DEACTIVATE_BYPASS);
2545 		goto new_slab;
2546 	}
2547 
2548 	stat(s, ALLOC_REFILL);
2549 
2550 load_freelist:
2551 	/*
2552 	 * freelist is pointing to the list of objects to be used.
2553 	 * page is pointing to the page from which the objects are obtained.
2554 	 * That page must be frozen for per cpu allocations to work.
2555 	 */
2556 	VM_BUG_ON(!c->page->frozen);
2557 	c->freelist = get_freepointer(s, freelist);
2558 	c->tid = next_tid(c->tid);
2559 	return freelist;
2560 
2561 new_slab:
2562 
2563 	if (slub_percpu_partial(c)) {
2564 		page = c->page = slub_percpu_partial(c);
2565 		slub_set_percpu_partial(c, page);
2566 		stat(s, CPU_PARTIAL_ALLOC);
2567 		goto redo;
2568 	}
2569 
2570 	freelist = new_slab_objects(s, gfpflags, node, &c);
2571 
2572 	if (unlikely(!freelist)) {
2573 		slab_out_of_memory(s, gfpflags, node);
2574 		return NULL;
2575 	}
2576 
2577 	page = c->page;
2578 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2579 		goto load_freelist;
2580 
2581 	/* Only entered in the debug case */
2582 	if (kmem_cache_debug(s) &&
2583 			!alloc_debug_processing(s, page, freelist, addr))
2584 		goto new_slab;	/* Slab failed checks. Next slab needed */
2585 
2586 	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2587 	return freelist;
2588 }
2589 
2590 /*
2591  * Another one that disabled interrupt and compensates for possible
2592  * cpu changes by refetching the per cpu area pointer.
2593  */
2594 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2595 			  unsigned long addr, struct kmem_cache_cpu *c)
2596 {
2597 	void *p;
2598 	unsigned long flags;
2599 
2600 	local_irq_save(flags);
2601 #ifdef CONFIG_PREEMPT
2602 	/*
2603 	 * We may have been preempted and rescheduled on a different
2604 	 * cpu before disabling interrupts. Need to reload cpu area
2605 	 * pointer.
2606 	 */
2607 	c = this_cpu_ptr(s->cpu_slab);
2608 #endif
2609 
2610 	p = ___slab_alloc(s, gfpflags, node, addr, c);
2611 	local_irq_restore(flags);
2612 	return p;
2613 }
2614 
2615 /*
2616  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2617  * have the fastpath folded into their functions. So no function call
2618  * overhead for requests that can be satisfied on the fastpath.
2619  *
2620  * The fastpath works by first checking if the lockless freelist can be used.
2621  * If not then __slab_alloc is called for slow processing.
2622  *
2623  * Otherwise we can simply pick the next object from the lockless free list.
2624  */
2625 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2626 		gfp_t gfpflags, int node, unsigned long addr)
2627 {
2628 	void *object;
2629 	struct kmem_cache_cpu *c;
2630 	struct page *page;
2631 	unsigned long tid;
2632 
2633 	s = slab_pre_alloc_hook(s, gfpflags);
2634 	if (!s)
2635 		return NULL;
2636 redo:
2637 	/*
2638 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2639 	 * enabled. We may switch back and forth between cpus while
2640 	 * reading from one cpu area. That does not matter as long
2641 	 * as we end up on the original cpu again when doing the cmpxchg.
2642 	 *
2643 	 * We should guarantee that tid and kmem_cache are retrieved on
2644 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2645 	 * to check if it is matched or not.
2646 	 */
2647 	do {
2648 		tid = this_cpu_read(s->cpu_slab->tid);
2649 		c = raw_cpu_ptr(s->cpu_slab);
2650 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2651 		 unlikely(tid != READ_ONCE(c->tid)));
2652 
2653 	/*
2654 	 * Irqless object alloc/free algorithm used here depends on sequence
2655 	 * of fetching cpu_slab's data. tid should be fetched before anything
2656 	 * on c to guarantee that object and page associated with previous tid
2657 	 * won't be used with current tid. If we fetch tid first, object and
2658 	 * page could be one associated with next tid and our alloc/free
2659 	 * request will be failed. In this case, we will retry. So, no problem.
2660 	 */
2661 	barrier();
2662 
2663 	/*
2664 	 * The transaction ids are globally unique per cpu and per operation on
2665 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2666 	 * occurs on the right processor and that there was no operation on the
2667 	 * linked list in between.
2668 	 */
2669 
2670 	object = c->freelist;
2671 	page = c->page;
2672 	if (unlikely(!object || !node_match(page, node))) {
2673 		object = __slab_alloc(s, gfpflags, node, addr, c);
2674 		stat(s, ALLOC_SLOWPATH);
2675 	} else {
2676 		void *next_object = get_freepointer_safe(s, object);
2677 
2678 		/*
2679 		 * The cmpxchg will only match if there was no additional
2680 		 * operation and if we are on the right processor.
2681 		 *
2682 		 * The cmpxchg does the following atomically (without lock
2683 		 * semantics!)
2684 		 * 1. Relocate first pointer to the current per cpu area.
2685 		 * 2. Verify that tid and freelist have not been changed
2686 		 * 3. If they were not changed replace tid and freelist
2687 		 *
2688 		 * Since this is without lock semantics the protection is only
2689 		 * against code executing on this cpu *not* from access by
2690 		 * other cpus.
2691 		 */
2692 		if (unlikely(!this_cpu_cmpxchg_double(
2693 				s->cpu_slab->freelist, s->cpu_slab->tid,
2694 				object, tid,
2695 				next_object, next_tid(tid)))) {
2696 
2697 			note_cmpxchg_failure("slab_alloc", s, tid);
2698 			goto redo;
2699 		}
2700 		prefetch_freepointer(s, next_object);
2701 		stat(s, ALLOC_FASTPATH);
2702 	}
2703 
2704 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2705 		memset(object, 0, s->object_size);
2706 
2707 	slab_post_alloc_hook(s, gfpflags, 1, &object);
2708 
2709 	return object;
2710 }
2711 
2712 static __always_inline void *slab_alloc(struct kmem_cache *s,
2713 		gfp_t gfpflags, unsigned long addr)
2714 {
2715 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2716 }
2717 
2718 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2719 {
2720 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2721 
2722 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2723 				s->size, gfpflags);
2724 
2725 	return ret;
2726 }
2727 EXPORT_SYMBOL(kmem_cache_alloc);
2728 
2729 #ifdef CONFIG_TRACING
2730 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2731 {
2732 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2733 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2734 	kasan_kmalloc(s, ret, size, gfpflags);
2735 	return ret;
2736 }
2737 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2738 #endif
2739 
2740 #ifdef CONFIG_NUMA
2741 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2742 {
2743 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2744 
2745 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2746 				    s->object_size, s->size, gfpflags, node);
2747 
2748 	return ret;
2749 }
2750 EXPORT_SYMBOL(kmem_cache_alloc_node);
2751 
2752 #ifdef CONFIG_TRACING
2753 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2754 				    gfp_t gfpflags,
2755 				    int node, size_t size)
2756 {
2757 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2758 
2759 	trace_kmalloc_node(_RET_IP_, ret,
2760 			   size, s->size, gfpflags, node);
2761 
2762 	kasan_kmalloc(s, ret, size, gfpflags);
2763 	return ret;
2764 }
2765 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2766 #endif
2767 #endif
2768 
2769 /*
2770  * Slow path handling. This may still be called frequently since objects
2771  * have a longer lifetime than the cpu slabs in most processing loads.
2772  *
2773  * So we still attempt to reduce cache line usage. Just take the slab
2774  * lock and free the item. If there is no additional partial page
2775  * handling required then we can return immediately.
2776  */
2777 static void __slab_free(struct kmem_cache *s, struct page *page,
2778 			void *head, void *tail, int cnt,
2779 			unsigned long addr)
2780 
2781 {
2782 	void *prior;
2783 	int was_frozen;
2784 	struct page new;
2785 	unsigned long counters;
2786 	struct kmem_cache_node *n = NULL;
2787 	unsigned long uninitialized_var(flags);
2788 
2789 	stat(s, FREE_SLOWPATH);
2790 
2791 	if (kmem_cache_debug(s) &&
2792 	    !free_debug_processing(s, page, head, tail, cnt, addr))
2793 		return;
2794 
2795 	do {
2796 		if (unlikely(n)) {
2797 			spin_unlock_irqrestore(&n->list_lock, flags);
2798 			n = NULL;
2799 		}
2800 		prior = page->freelist;
2801 		counters = page->counters;
2802 		set_freepointer(s, tail, prior);
2803 		new.counters = counters;
2804 		was_frozen = new.frozen;
2805 		new.inuse -= cnt;
2806 		if ((!new.inuse || !prior) && !was_frozen) {
2807 
2808 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2809 
2810 				/*
2811 				 * Slab was on no list before and will be
2812 				 * partially empty
2813 				 * We can defer the list move and instead
2814 				 * freeze it.
2815 				 */
2816 				new.frozen = 1;
2817 
2818 			} else { /* Needs to be taken off a list */
2819 
2820 				n = get_node(s, page_to_nid(page));
2821 				/*
2822 				 * Speculatively acquire the list_lock.
2823 				 * If the cmpxchg does not succeed then we may
2824 				 * drop the list_lock without any processing.
2825 				 *
2826 				 * Otherwise the list_lock will synchronize with
2827 				 * other processors updating the list of slabs.
2828 				 */
2829 				spin_lock_irqsave(&n->list_lock, flags);
2830 
2831 			}
2832 		}
2833 
2834 	} while (!cmpxchg_double_slab(s, page,
2835 		prior, counters,
2836 		head, new.counters,
2837 		"__slab_free"));
2838 
2839 	if (likely(!n)) {
2840 
2841 		/*
2842 		 * If we just froze the page then put it onto the
2843 		 * per cpu partial list.
2844 		 */
2845 		if (new.frozen && !was_frozen) {
2846 			put_cpu_partial(s, page, 1);
2847 			stat(s, CPU_PARTIAL_FREE);
2848 		}
2849 		/*
2850 		 * The list lock was not taken therefore no list
2851 		 * activity can be necessary.
2852 		 */
2853 		if (was_frozen)
2854 			stat(s, FREE_FROZEN);
2855 		return;
2856 	}
2857 
2858 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2859 		goto slab_empty;
2860 
2861 	/*
2862 	 * Objects left in the slab. If it was not on the partial list before
2863 	 * then add it.
2864 	 */
2865 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2866 		if (kmem_cache_debug(s))
2867 			remove_full(s, n, page);
2868 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2869 		stat(s, FREE_ADD_PARTIAL);
2870 	}
2871 	spin_unlock_irqrestore(&n->list_lock, flags);
2872 	return;
2873 
2874 slab_empty:
2875 	if (prior) {
2876 		/*
2877 		 * Slab on the partial list.
2878 		 */
2879 		remove_partial(n, page);
2880 		stat(s, FREE_REMOVE_PARTIAL);
2881 	} else {
2882 		/* Slab must be on the full list */
2883 		remove_full(s, n, page);
2884 	}
2885 
2886 	spin_unlock_irqrestore(&n->list_lock, flags);
2887 	stat(s, FREE_SLAB);
2888 	discard_slab(s, page);
2889 }
2890 
2891 /*
2892  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2893  * can perform fastpath freeing without additional function calls.
2894  *
2895  * The fastpath is only possible if we are freeing to the current cpu slab
2896  * of this processor. This typically the case if we have just allocated
2897  * the item before.
2898  *
2899  * If fastpath is not possible then fall back to __slab_free where we deal
2900  * with all sorts of special processing.
2901  *
2902  * Bulk free of a freelist with several objects (all pointing to the
2903  * same page) possible by specifying head and tail ptr, plus objects
2904  * count (cnt). Bulk free indicated by tail pointer being set.
2905  */
2906 static __always_inline void do_slab_free(struct kmem_cache *s,
2907 				struct page *page, void *head, void *tail,
2908 				int cnt, unsigned long addr)
2909 {
2910 	void *tail_obj = tail ? : head;
2911 	struct kmem_cache_cpu *c;
2912 	unsigned long tid;
2913 redo:
2914 	/*
2915 	 * Determine the currently cpus per cpu slab.
2916 	 * The cpu may change afterward. However that does not matter since
2917 	 * data is retrieved via this pointer. If we are on the same cpu
2918 	 * during the cmpxchg then the free will succeed.
2919 	 */
2920 	do {
2921 		tid = this_cpu_read(s->cpu_slab->tid);
2922 		c = raw_cpu_ptr(s->cpu_slab);
2923 	} while (IS_ENABLED(CONFIG_PREEMPT) &&
2924 		 unlikely(tid != READ_ONCE(c->tid)));
2925 
2926 	/* Same with comment on barrier() in slab_alloc_node() */
2927 	barrier();
2928 
2929 	if (likely(page == c->page)) {
2930 		set_freepointer(s, tail_obj, c->freelist);
2931 
2932 		if (unlikely(!this_cpu_cmpxchg_double(
2933 				s->cpu_slab->freelist, s->cpu_slab->tid,
2934 				c->freelist, tid,
2935 				head, next_tid(tid)))) {
2936 
2937 			note_cmpxchg_failure("slab_free", s, tid);
2938 			goto redo;
2939 		}
2940 		stat(s, FREE_FASTPATH);
2941 	} else
2942 		__slab_free(s, page, head, tail_obj, cnt, addr);
2943 
2944 }
2945 
2946 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2947 				      void *head, void *tail, int cnt,
2948 				      unsigned long addr)
2949 {
2950 	/*
2951 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2952 	 * to remove objects, whose reuse must be delayed.
2953 	 */
2954 	if (slab_free_freelist_hook(s, &head, &tail))
2955 		do_slab_free(s, page, head, tail, cnt, addr);
2956 }
2957 
2958 #ifdef CONFIG_KASAN
2959 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2960 {
2961 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2962 }
2963 #endif
2964 
2965 void kmem_cache_free(struct kmem_cache *s, void *x)
2966 {
2967 	s = cache_from_obj(s, x);
2968 	if (!s)
2969 		return;
2970 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2971 	trace_kmem_cache_free(_RET_IP_, x);
2972 }
2973 EXPORT_SYMBOL(kmem_cache_free);
2974 
2975 struct detached_freelist {
2976 	struct page *page;
2977 	void *tail;
2978 	void *freelist;
2979 	int cnt;
2980 	struct kmem_cache *s;
2981 };
2982 
2983 /*
2984  * This function progressively scans the array with free objects (with
2985  * a limited look ahead) and extract objects belonging to the same
2986  * page.  It builds a detached freelist directly within the given
2987  * page/objects.  This can happen without any need for
2988  * synchronization, because the objects are owned by running process.
2989  * The freelist is build up as a single linked list in the objects.
2990  * The idea is, that this detached freelist can then be bulk
2991  * transferred to the real freelist(s), but only requiring a single
2992  * synchronization primitive.  Look ahead in the array is limited due
2993  * to performance reasons.
2994  */
2995 static inline
2996 int build_detached_freelist(struct kmem_cache *s, size_t size,
2997 			    void **p, struct detached_freelist *df)
2998 {
2999 	size_t first_skipped_index = 0;
3000 	int lookahead = 3;
3001 	void *object;
3002 	struct page *page;
3003 
3004 	/* Always re-init detached_freelist */
3005 	df->page = NULL;
3006 
3007 	do {
3008 		object = p[--size];
3009 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3010 	} while (!object && size);
3011 
3012 	if (!object)
3013 		return 0;
3014 
3015 	page = virt_to_head_page(object);
3016 	if (!s) {
3017 		/* Handle kalloc'ed objects */
3018 		if (unlikely(!PageSlab(page))) {
3019 			BUG_ON(!PageCompound(page));
3020 			kfree_hook(object);
3021 			__free_pages(page, compound_order(page));
3022 			p[size] = NULL; /* mark object processed */
3023 			return size;
3024 		}
3025 		/* Derive kmem_cache from object */
3026 		df->s = page->slab_cache;
3027 	} else {
3028 		df->s = cache_from_obj(s, object); /* Support for memcg */
3029 	}
3030 
3031 	/* Start new detached freelist */
3032 	df->page = page;
3033 	set_freepointer(df->s, object, NULL);
3034 	df->tail = object;
3035 	df->freelist = object;
3036 	p[size] = NULL; /* mark object processed */
3037 	df->cnt = 1;
3038 
3039 	while (size) {
3040 		object = p[--size];
3041 		if (!object)
3042 			continue; /* Skip processed objects */
3043 
3044 		/* df->page is always set at this point */
3045 		if (df->page == virt_to_head_page(object)) {
3046 			/* Opportunity build freelist */
3047 			set_freepointer(df->s, object, df->freelist);
3048 			df->freelist = object;
3049 			df->cnt++;
3050 			p[size] = NULL; /* mark object processed */
3051 
3052 			continue;
3053 		}
3054 
3055 		/* Limit look ahead search */
3056 		if (!--lookahead)
3057 			break;
3058 
3059 		if (!first_skipped_index)
3060 			first_skipped_index = size + 1;
3061 	}
3062 
3063 	return first_skipped_index;
3064 }
3065 
3066 /* Note that interrupts must be enabled when calling this function. */
3067 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3068 {
3069 	if (WARN_ON(!size))
3070 		return;
3071 
3072 	do {
3073 		struct detached_freelist df;
3074 
3075 		size = build_detached_freelist(s, size, p, &df);
3076 		if (!df.page)
3077 			continue;
3078 
3079 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3080 	} while (likely(size));
3081 }
3082 EXPORT_SYMBOL(kmem_cache_free_bulk);
3083 
3084 /* Note that interrupts must be enabled when calling this function. */
3085 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3086 			  void **p)
3087 {
3088 	struct kmem_cache_cpu *c;
3089 	int i;
3090 
3091 	/* memcg and kmem_cache debug support */
3092 	s = slab_pre_alloc_hook(s, flags);
3093 	if (unlikely(!s))
3094 		return false;
3095 	/*
3096 	 * Drain objects in the per cpu slab, while disabling local
3097 	 * IRQs, which protects against PREEMPT and interrupts
3098 	 * handlers invoking normal fastpath.
3099 	 */
3100 	local_irq_disable();
3101 	c = this_cpu_ptr(s->cpu_slab);
3102 
3103 	for (i = 0; i < size; i++) {
3104 		void *object = c->freelist;
3105 
3106 		if (unlikely(!object)) {
3107 			/*
3108 			 * Invoking slow path likely have side-effect
3109 			 * of re-populating per CPU c->freelist
3110 			 */
3111 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3112 					    _RET_IP_, c);
3113 			if (unlikely(!p[i]))
3114 				goto error;
3115 
3116 			c = this_cpu_ptr(s->cpu_slab);
3117 			continue; /* goto for-loop */
3118 		}
3119 		c->freelist = get_freepointer(s, object);
3120 		p[i] = object;
3121 	}
3122 	c->tid = next_tid(c->tid);
3123 	local_irq_enable();
3124 
3125 	/* Clear memory outside IRQ disabled fastpath loop */
3126 	if (unlikely(flags & __GFP_ZERO)) {
3127 		int j;
3128 
3129 		for (j = 0; j < i; j++)
3130 			memset(p[j], 0, s->object_size);
3131 	}
3132 
3133 	/* memcg and kmem_cache debug support */
3134 	slab_post_alloc_hook(s, flags, size, p);
3135 	return i;
3136 error:
3137 	local_irq_enable();
3138 	slab_post_alloc_hook(s, flags, i, p);
3139 	__kmem_cache_free_bulk(s, i, p);
3140 	return 0;
3141 }
3142 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3143 
3144 
3145 /*
3146  * Object placement in a slab is made very easy because we always start at
3147  * offset 0. If we tune the size of the object to the alignment then we can
3148  * get the required alignment by putting one properly sized object after
3149  * another.
3150  *
3151  * Notice that the allocation order determines the sizes of the per cpu
3152  * caches. Each processor has always one slab available for allocations.
3153  * Increasing the allocation order reduces the number of times that slabs
3154  * must be moved on and off the partial lists and is therefore a factor in
3155  * locking overhead.
3156  */
3157 
3158 /*
3159  * Mininum / Maximum order of slab pages. This influences locking overhead
3160  * and slab fragmentation. A higher order reduces the number of partial slabs
3161  * and increases the number of allocations possible without having to
3162  * take the list_lock.
3163  */
3164 static unsigned int slub_min_order;
3165 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3166 static unsigned int slub_min_objects;
3167 
3168 /*
3169  * Calculate the order of allocation given an slab object size.
3170  *
3171  * The order of allocation has significant impact on performance and other
3172  * system components. Generally order 0 allocations should be preferred since
3173  * order 0 does not cause fragmentation in the page allocator. Larger objects
3174  * be problematic to put into order 0 slabs because there may be too much
3175  * unused space left. We go to a higher order if more than 1/16th of the slab
3176  * would be wasted.
3177  *
3178  * In order to reach satisfactory performance we must ensure that a minimum
3179  * number of objects is in one slab. Otherwise we may generate too much
3180  * activity on the partial lists which requires taking the list_lock. This is
3181  * less a concern for large slabs though which are rarely used.
3182  *
3183  * slub_max_order specifies the order where we begin to stop considering the
3184  * number of objects in a slab as critical. If we reach slub_max_order then
3185  * we try to keep the page order as low as possible. So we accept more waste
3186  * of space in favor of a small page order.
3187  *
3188  * Higher order allocations also allow the placement of more objects in a
3189  * slab and thereby reduce object handling overhead. If the user has
3190  * requested a higher mininum order then we start with that one instead of
3191  * the smallest order which will fit the object.
3192  */
3193 static inline unsigned int slab_order(unsigned int size,
3194 		unsigned int min_objects, unsigned int max_order,
3195 		unsigned int fract_leftover)
3196 {
3197 	unsigned int min_order = slub_min_order;
3198 	unsigned int order;
3199 
3200 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3201 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3202 
3203 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3204 			order <= max_order; order++) {
3205 
3206 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3207 		unsigned int rem;
3208 
3209 		rem = slab_size % size;
3210 
3211 		if (rem <= slab_size / fract_leftover)
3212 			break;
3213 	}
3214 
3215 	return order;
3216 }
3217 
3218 static inline int calculate_order(unsigned int size)
3219 {
3220 	unsigned int order;
3221 	unsigned int min_objects;
3222 	unsigned int max_objects;
3223 
3224 	/*
3225 	 * Attempt to find best configuration for a slab. This
3226 	 * works by first attempting to generate a layout with
3227 	 * the best configuration and backing off gradually.
3228 	 *
3229 	 * First we increase the acceptable waste in a slab. Then
3230 	 * we reduce the minimum objects required in a slab.
3231 	 */
3232 	min_objects = slub_min_objects;
3233 	if (!min_objects)
3234 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3235 	max_objects = order_objects(slub_max_order, size);
3236 	min_objects = min(min_objects, max_objects);
3237 
3238 	while (min_objects > 1) {
3239 		unsigned int fraction;
3240 
3241 		fraction = 16;
3242 		while (fraction >= 4) {
3243 			order = slab_order(size, min_objects,
3244 					slub_max_order, fraction);
3245 			if (order <= slub_max_order)
3246 				return order;
3247 			fraction /= 2;
3248 		}
3249 		min_objects--;
3250 	}
3251 
3252 	/*
3253 	 * We were unable to place multiple objects in a slab. Now
3254 	 * lets see if we can place a single object there.
3255 	 */
3256 	order = slab_order(size, 1, slub_max_order, 1);
3257 	if (order <= slub_max_order)
3258 		return order;
3259 
3260 	/*
3261 	 * Doh this slab cannot be placed using slub_max_order.
3262 	 */
3263 	order = slab_order(size, 1, MAX_ORDER, 1);
3264 	if (order < MAX_ORDER)
3265 		return order;
3266 	return -ENOSYS;
3267 }
3268 
3269 static void
3270 init_kmem_cache_node(struct kmem_cache_node *n)
3271 {
3272 	n->nr_partial = 0;
3273 	spin_lock_init(&n->list_lock);
3274 	INIT_LIST_HEAD(&n->partial);
3275 #ifdef CONFIG_SLUB_DEBUG
3276 	atomic_long_set(&n->nr_slabs, 0);
3277 	atomic_long_set(&n->total_objects, 0);
3278 	INIT_LIST_HEAD(&n->full);
3279 #endif
3280 }
3281 
3282 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3283 {
3284 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3285 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3286 
3287 	/*
3288 	 * Must align to double word boundary for the double cmpxchg
3289 	 * instructions to work; see __pcpu_double_call_return_bool().
3290 	 */
3291 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3292 				     2 * sizeof(void *));
3293 
3294 	if (!s->cpu_slab)
3295 		return 0;
3296 
3297 	init_kmem_cache_cpus(s);
3298 
3299 	return 1;
3300 }
3301 
3302 static struct kmem_cache *kmem_cache_node;
3303 
3304 /*
3305  * No kmalloc_node yet so do it by hand. We know that this is the first
3306  * slab on the node for this slabcache. There are no concurrent accesses
3307  * possible.
3308  *
3309  * Note that this function only works on the kmem_cache_node
3310  * when allocating for the kmem_cache_node. This is used for bootstrapping
3311  * memory on a fresh node that has no slab structures yet.
3312  */
3313 static void early_kmem_cache_node_alloc(int node)
3314 {
3315 	struct page *page;
3316 	struct kmem_cache_node *n;
3317 
3318 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3319 
3320 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3321 
3322 	BUG_ON(!page);
3323 	if (page_to_nid(page) != node) {
3324 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3325 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3326 	}
3327 
3328 	n = page->freelist;
3329 	BUG_ON(!n);
3330 	page->freelist = get_freepointer(kmem_cache_node, n);
3331 	page->inuse = 1;
3332 	page->frozen = 0;
3333 	kmem_cache_node->node[node] = n;
3334 #ifdef CONFIG_SLUB_DEBUG
3335 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3336 	init_tracking(kmem_cache_node, n);
3337 #endif
3338 	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3339 		      GFP_KERNEL);
3340 	init_kmem_cache_node(n);
3341 	inc_slabs_node(kmem_cache_node, node, page->objects);
3342 
3343 	/*
3344 	 * No locks need to be taken here as it has just been
3345 	 * initialized and there is no concurrent access.
3346 	 */
3347 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3348 }
3349 
3350 static void free_kmem_cache_nodes(struct kmem_cache *s)
3351 {
3352 	int node;
3353 	struct kmem_cache_node *n;
3354 
3355 	for_each_kmem_cache_node(s, node, n) {
3356 		s->node[node] = NULL;
3357 		kmem_cache_free(kmem_cache_node, n);
3358 	}
3359 }
3360 
3361 void __kmem_cache_release(struct kmem_cache *s)
3362 {
3363 	cache_random_seq_destroy(s);
3364 	free_percpu(s->cpu_slab);
3365 	free_kmem_cache_nodes(s);
3366 }
3367 
3368 static int init_kmem_cache_nodes(struct kmem_cache *s)
3369 {
3370 	int node;
3371 
3372 	for_each_node_state(node, N_NORMAL_MEMORY) {
3373 		struct kmem_cache_node *n;
3374 
3375 		if (slab_state == DOWN) {
3376 			early_kmem_cache_node_alloc(node);
3377 			continue;
3378 		}
3379 		n = kmem_cache_alloc_node(kmem_cache_node,
3380 						GFP_KERNEL, node);
3381 
3382 		if (!n) {
3383 			free_kmem_cache_nodes(s);
3384 			return 0;
3385 		}
3386 
3387 		init_kmem_cache_node(n);
3388 		s->node[node] = n;
3389 	}
3390 	return 1;
3391 }
3392 
3393 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3394 {
3395 	if (min < MIN_PARTIAL)
3396 		min = MIN_PARTIAL;
3397 	else if (min > MAX_PARTIAL)
3398 		min = MAX_PARTIAL;
3399 	s->min_partial = min;
3400 }
3401 
3402 static void set_cpu_partial(struct kmem_cache *s)
3403 {
3404 #ifdef CONFIG_SLUB_CPU_PARTIAL
3405 	/*
3406 	 * cpu_partial determined the maximum number of objects kept in the
3407 	 * per cpu partial lists of a processor.
3408 	 *
3409 	 * Per cpu partial lists mainly contain slabs that just have one
3410 	 * object freed. If they are used for allocation then they can be
3411 	 * filled up again with minimal effort. The slab will never hit the
3412 	 * per node partial lists and therefore no locking will be required.
3413 	 *
3414 	 * This setting also determines
3415 	 *
3416 	 * A) The number of objects from per cpu partial slabs dumped to the
3417 	 *    per node list when we reach the limit.
3418 	 * B) The number of objects in cpu partial slabs to extract from the
3419 	 *    per node list when we run out of per cpu objects. We only fetch
3420 	 *    50% to keep some capacity around for frees.
3421 	 */
3422 	if (!kmem_cache_has_cpu_partial(s))
3423 		s->cpu_partial = 0;
3424 	else if (s->size >= PAGE_SIZE)
3425 		s->cpu_partial = 2;
3426 	else if (s->size >= 1024)
3427 		s->cpu_partial = 6;
3428 	else if (s->size >= 256)
3429 		s->cpu_partial = 13;
3430 	else
3431 		s->cpu_partial = 30;
3432 #endif
3433 }
3434 
3435 /*
3436  * calculate_sizes() determines the order and the distribution of data within
3437  * a slab object.
3438  */
3439 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3440 {
3441 	slab_flags_t flags = s->flags;
3442 	unsigned int size = s->object_size;
3443 	unsigned int order;
3444 
3445 	/*
3446 	 * Round up object size to the next word boundary. We can only
3447 	 * place the free pointer at word boundaries and this determines
3448 	 * the possible location of the free pointer.
3449 	 */
3450 	size = ALIGN(size, sizeof(void *));
3451 
3452 #ifdef CONFIG_SLUB_DEBUG
3453 	/*
3454 	 * Determine if we can poison the object itself. If the user of
3455 	 * the slab may touch the object after free or before allocation
3456 	 * then we should never poison the object itself.
3457 	 */
3458 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3459 			!s->ctor)
3460 		s->flags |= __OBJECT_POISON;
3461 	else
3462 		s->flags &= ~__OBJECT_POISON;
3463 
3464 
3465 	/*
3466 	 * If we are Redzoning then check if there is some space between the
3467 	 * end of the object and the free pointer. If not then add an
3468 	 * additional word to have some bytes to store Redzone information.
3469 	 */
3470 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3471 		size += sizeof(void *);
3472 #endif
3473 
3474 	/*
3475 	 * With that we have determined the number of bytes in actual use
3476 	 * by the object. This is the potential offset to the free pointer.
3477 	 */
3478 	s->inuse = size;
3479 
3480 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3481 		s->ctor)) {
3482 		/*
3483 		 * Relocate free pointer after the object if it is not
3484 		 * permitted to overwrite the first word of the object on
3485 		 * kmem_cache_free.
3486 		 *
3487 		 * This is the case if we do RCU, have a constructor or
3488 		 * destructor or are poisoning the objects.
3489 		 */
3490 		s->offset = size;
3491 		size += sizeof(void *);
3492 	}
3493 
3494 #ifdef CONFIG_SLUB_DEBUG
3495 	if (flags & SLAB_STORE_USER)
3496 		/*
3497 		 * Need to store information about allocs and frees after
3498 		 * the object.
3499 		 */
3500 		size += 2 * sizeof(struct track);
3501 #endif
3502 
3503 	kasan_cache_create(s, &size, &s->flags);
3504 #ifdef CONFIG_SLUB_DEBUG
3505 	if (flags & SLAB_RED_ZONE) {
3506 		/*
3507 		 * Add some empty padding so that we can catch
3508 		 * overwrites from earlier objects rather than let
3509 		 * tracking information or the free pointer be
3510 		 * corrupted if a user writes before the start
3511 		 * of the object.
3512 		 */
3513 		size += sizeof(void *);
3514 
3515 		s->red_left_pad = sizeof(void *);
3516 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3517 		size += s->red_left_pad;
3518 	}
3519 #endif
3520 
3521 	/*
3522 	 * SLUB stores one object immediately after another beginning from
3523 	 * offset 0. In order to align the objects we have to simply size
3524 	 * each object to conform to the alignment.
3525 	 */
3526 	size = ALIGN(size, s->align);
3527 	s->size = size;
3528 	if (forced_order >= 0)
3529 		order = forced_order;
3530 	else
3531 		order = calculate_order(size);
3532 
3533 	if ((int)order < 0)
3534 		return 0;
3535 
3536 	s->allocflags = 0;
3537 	if (order)
3538 		s->allocflags |= __GFP_COMP;
3539 
3540 	if (s->flags & SLAB_CACHE_DMA)
3541 		s->allocflags |= GFP_DMA;
3542 
3543 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3544 		s->allocflags |= __GFP_RECLAIMABLE;
3545 
3546 	/*
3547 	 * Determine the number of objects per slab
3548 	 */
3549 	s->oo = oo_make(order, size);
3550 	s->min = oo_make(get_order(size), size);
3551 	if (oo_objects(s->oo) > oo_objects(s->max))
3552 		s->max = s->oo;
3553 
3554 	return !!oo_objects(s->oo);
3555 }
3556 
3557 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3558 {
3559 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3560 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3561 	s->random = get_random_long();
3562 #endif
3563 
3564 	if (!calculate_sizes(s, -1))
3565 		goto error;
3566 	if (disable_higher_order_debug) {
3567 		/*
3568 		 * Disable debugging flags that store metadata if the min slab
3569 		 * order increased.
3570 		 */
3571 		if (get_order(s->size) > get_order(s->object_size)) {
3572 			s->flags &= ~DEBUG_METADATA_FLAGS;
3573 			s->offset = 0;
3574 			if (!calculate_sizes(s, -1))
3575 				goto error;
3576 		}
3577 	}
3578 
3579 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3580     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3581 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3582 		/* Enable fast mode */
3583 		s->flags |= __CMPXCHG_DOUBLE;
3584 #endif
3585 
3586 	/*
3587 	 * The larger the object size is, the more pages we want on the partial
3588 	 * list to avoid pounding the page allocator excessively.
3589 	 */
3590 	set_min_partial(s, ilog2(s->size) / 2);
3591 
3592 	set_cpu_partial(s);
3593 
3594 #ifdef CONFIG_NUMA
3595 	s->remote_node_defrag_ratio = 1000;
3596 #endif
3597 
3598 	/* Initialize the pre-computed randomized freelist if slab is up */
3599 	if (slab_state >= UP) {
3600 		if (init_cache_random_seq(s))
3601 			goto error;
3602 	}
3603 
3604 	if (!init_kmem_cache_nodes(s))
3605 		goto error;
3606 
3607 	if (alloc_kmem_cache_cpus(s))
3608 		return 0;
3609 
3610 	free_kmem_cache_nodes(s);
3611 error:
3612 	if (flags & SLAB_PANIC)
3613 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3614 		      s->name, s->size, s->size,
3615 		      oo_order(s->oo), s->offset, (unsigned long)flags);
3616 	return -EINVAL;
3617 }
3618 
3619 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3620 							const char *text)
3621 {
3622 #ifdef CONFIG_SLUB_DEBUG
3623 	void *addr = page_address(page);
3624 	void *p;
3625 	unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects),
3626 				     sizeof(long),
3627 				     GFP_ATOMIC);
3628 	if (!map)
3629 		return;
3630 	slab_err(s, page, text, s->name);
3631 	slab_lock(page);
3632 
3633 	get_map(s, page, map);
3634 	for_each_object(p, s, addr, page->objects) {
3635 
3636 		if (!test_bit(slab_index(p, s, addr), map)) {
3637 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3638 			print_tracking(s, p);
3639 		}
3640 	}
3641 	slab_unlock(page);
3642 	kfree(map);
3643 #endif
3644 }
3645 
3646 /*
3647  * Attempt to free all partial slabs on a node.
3648  * This is called from __kmem_cache_shutdown(). We must take list_lock
3649  * because sysfs file might still access partial list after the shutdowning.
3650  */
3651 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3652 {
3653 	LIST_HEAD(discard);
3654 	struct page *page, *h;
3655 
3656 	BUG_ON(irqs_disabled());
3657 	spin_lock_irq(&n->list_lock);
3658 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3659 		if (!page->inuse) {
3660 			remove_partial(n, page);
3661 			list_add(&page->lru, &discard);
3662 		} else {
3663 			list_slab_objects(s, page,
3664 			"Objects remaining in %s on __kmem_cache_shutdown()");
3665 		}
3666 	}
3667 	spin_unlock_irq(&n->list_lock);
3668 
3669 	list_for_each_entry_safe(page, h, &discard, lru)
3670 		discard_slab(s, page);
3671 }
3672 
3673 bool __kmem_cache_empty(struct kmem_cache *s)
3674 {
3675 	int node;
3676 	struct kmem_cache_node *n;
3677 
3678 	for_each_kmem_cache_node(s, node, n)
3679 		if (n->nr_partial || slabs_node(s, node))
3680 			return false;
3681 	return true;
3682 }
3683 
3684 /*
3685  * Release all resources used by a slab cache.
3686  */
3687 int __kmem_cache_shutdown(struct kmem_cache *s)
3688 {
3689 	int node;
3690 	struct kmem_cache_node *n;
3691 
3692 	flush_all(s);
3693 	/* Attempt to free all objects */
3694 	for_each_kmem_cache_node(s, node, n) {
3695 		free_partial(s, n);
3696 		if (n->nr_partial || slabs_node(s, node))
3697 			return 1;
3698 	}
3699 	sysfs_slab_remove(s);
3700 	return 0;
3701 }
3702 
3703 /********************************************************************
3704  *		Kmalloc subsystem
3705  *******************************************************************/
3706 
3707 static int __init setup_slub_min_order(char *str)
3708 {
3709 	get_option(&str, (int *)&slub_min_order);
3710 
3711 	return 1;
3712 }
3713 
3714 __setup("slub_min_order=", setup_slub_min_order);
3715 
3716 static int __init setup_slub_max_order(char *str)
3717 {
3718 	get_option(&str, (int *)&slub_max_order);
3719 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3720 
3721 	return 1;
3722 }
3723 
3724 __setup("slub_max_order=", setup_slub_max_order);
3725 
3726 static int __init setup_slub_min_objects(char *str)
3727 {
3728 	get_option(&str, (int *)&slub_min_objects);
3729 
3730 	return 1;
3731 }
3732 
3733 __setup("slub_min_objects=", setup_slub_min_objects);
3734 
3735 void *__kmalloc(size_t size, gfp_t flags)
3736 {
3737 	struct kmem_cache *s;
3738 	void *ret;
3739 
3740 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3741 		return kmalloc_large(size, flags);
3742 
3743 	s = kmalloc_slab(size, flags);
3744 
3745 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3746 		return s;
3747 
3748 	ret = slab_alloc(s, flags, _RET_IP_);
3749 
3750 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3751 
3752 	kasan_kmalloc(s, ret, size, flags);
3753 
3754 	return ret;
3755 }
3756 EXPORT_SYMBOL(__kmalloc);
3757 
3758 #ifdef CONFIG_NUMA
3759 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3760 {
3761 	struct page *page;
3762 	void *ptr = NULL;
3763 
3764 	flags |= __GFP_COMP;
3765 	page = alloc_pages_node(node, flags, get_order(size));
3766 	if (page)
3767 		ptr = page_address(page);
3768 
3769 	kmalloc_large_node_hook(ptr, size, flags);
3770 	return ptr;
3771 }
3772 
3773 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3774 {
3775 	struct kmem_cache *s;
3776 	void *ret;
3777 
3778 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3779 		ret = kmalloc_large_node(size, flags, node);
3780 
3781 		trace_kmalloc_node(_RET_IP_, ret,
3782 				   size, PAGE_SIZE << get_order(size),
3783 				   flags, node);
3784 
3785 		return ret;
3786 	}
3787 
3788 	s = kmalloc_slab(size, flags);
3789 
3790 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3791 		return s;
3792 
3793 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3794 
3795 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3796 
3797 	kasan_kmalloc(s, ret, size, flags);
3798 
3799 	return ret;
3800 }
3801 EXPORT_SYMBOL(__kmalloc_node);
3802 #endif
3803 
3804 #ifdef CONFIG_HARDENED_USERCOPY
3805 /*
3806  * Rejects incorrectly sized objects and objects that are to be copied
3807  * to/from userspace but do not fall entirely within the containing slab
3808  * cache's usercopy region.
3809  *
3810  * Returns NULL if check passes, otherwise const char * to name of cache
3811  * to indicate an error.
3812  */
3813 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3814 			 bool to_user)
3815 {
3816 	struct kmem_cache *s;
3817 	unsigned int offset;
3818 	size_t object_size;
3819 
3820 	/* Find object and usable object size. */
3821 	s = page->slab_cache;
3822 
3823 	/* Reject impossible pointers. */
3824 	if (ptr < page_address(page))
3825 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
3826 			       to_user, 0, n);
3827 
3828 	/* Find offset within object. */
3829 	offset = (ptr - page_address(page)) % s->size;
3830 
3831 	/* Adjust for redzone and reject if within the redzone. */
3832 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3833 		if (offset < s->red_left_pad)
3834 			usercopy_abort("SLUB object in left red zone",
3835 				       s->name, to_user, offset, n);
3836 		offset -= s->red_left_pad;
3837 	}
3838 
3839 	/* Allow address range falling entirely within usercopy region. */
3840 	if (offset >= s->useroffset &&
3841 	    offset - s->useroffset <= s->usersize &&
3842 	    n <= s->useroffset - offset + s->usersize)
3843 		return;
3844 
3845 	/*
3846 	 * If the copy is still within the allocated object, produce
3847 	 * a warning instead of rejecting the copy. This is intended
3848 	 * to be a temporary method to find any missing usercopy
3849 	 * whitelists.
3850 	 */
3851 	object_size = slab_ksize(s);
3852 	if (usercopy_fallback &&
3853 	    offset <= object_size && n <= object_size - offset) {
3854 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
3855 		return;
3856 	}
3857 
3858 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
3859 }
3860 #endif /* CONFIG_HARDENED_USERCOPY */
3861 
3862 static size_t __ksize(const void *object)
3863 {
3864 	struct page *page;
3865 
3866 	if (unlikely(object == ZERO_SIZE_PTR))
3867 		return 0;
3868 
3869 	page = virt_to_head_page(object);
3870 
3871 	if (unlikely(!PageSlab(page))) {
3872 		WARN_ON(!PageCompound(page));
3873 		return PAGE_SIZE << compound_order(page);
3874 	}
3875 
3876 	return slab_ksize(page->slab_cache);
3877 }
3878 
3879 size_t ksize(const void *object)
3880 {
3881 	size_t size = __ksize(object);
3882 	/* We assume that ksize callers could use whole allocated area,
3883 	 * so we need to unpoison this area.
3884 	 */
3885 	kasan_unpoison_shadow(object, size);
3886 	return size;
3887 }
3888 EXPORT_SYMBOL(ksize);
3889 
3890 void kfree(const void *x)
3891 {
3892 	struct page *page;
3893 	void *object = (void *)x;
3894 
3895 	trace_kfree(_RET_IP_, x);
3896 
3897 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3898 		return;
3899 
3900 	page = virt_to_head_page(x);
3901 	if (unlikely(!PageSlab(page))) {
3902 		BUG_ON(!PageCompound(page));
3903 		kfree_hook(object);
3904 		__free_pages(page, compound_order(page));
3905 		return;
3906 	}
3907 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3908 }
3909 EXPORT_SYMBOL(kfree);
3910 
3911 #define SHRINK_PROMOTE_MAX 32
3912 
3913 /*
3914  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3915  * up most to the head of the partial lists. New allocations will then
3916  * fill those up and thus they can be removed from the partial lists.
3917  *
3918  * The slabs with the least items are placed last. This results in them
3919  * being allocated from last increasing the chance that the last objects
3920  * are freed in them.
3921  */
3922 int __kmem_cache_shrink(struct kmem_cache *s)
3923 {
3924 	int node;
3925 	int i;
3926 	struct kmem_cache_node *n;
3927 	struct page *page;
3928 	struct page *t;
3929 	struct list_head discard;
3930 	struct list_head promote[SHRINK_PROMOTE_MAX];
3931 	unsigned long flags;
3932 	int ret = 0;
3933 
3934 	flush_all(s);
3935 	for_each_kmem_cache_node(s, node, n) {
3936 		INIT_LIST_HEAD(&discard);
3937 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3938 			INIT_LIST_HEAD(promote + i);
3939 
3940 		spin_lock_irqsave(&n->list_lock, flags);
3941 
3942 		/*
3943 		 * Build lists of slabs to discard or promote.
3944 		 *
3945 		 * Note that concurrent frees may occur while we hold the
3946 		 * list_lock. page->inuse here is the upper limit.
3947 		 */
3948 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3949 			int free = page->objects - page->inuse;
3950 
3951 			/* Do not reread page->inuse */
3952 			barrier();
3953 
3954 			/* We do not keep full slabs on the list */
3955 			BUG_ON(free <= 0);
3956 
3957 			if (free == page->objects) {
3958 				list_move(&page->lru, &discard);
3959 				n->nr_partial--;
3960 			} else if (free <= SHRINK_PROMOTE_MAX)
3961 				list_move(&page->lru, promote + free - 1);
3962 		}
3963 
3964 		/*
3965 		 * Promote the slabs filled up most to the head of the
3966 		 * partial list.
3967 		 */
3968 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3969 			list_splice(promote + i, &n->partial);
3970 
3971 		spin_unlock_irqrestore(&n->list_lock, flags);
3972 
3973 		/* Release empty slabs */
3974 		list_for_each_entry_safe(page, t, &discard, lru)
3975 			discard_slab(s, page);
3976 
3977 		if (slabs_node(s, node))
3978 			ret = 1;
3979 	}
3980 
3981 	return ret;
3982 }
3983 
3984 #ifdef CONFIG_MEMCG
3985 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3986 {
3987 	/*
3988 	 * Called with all the locks held after a sched RCU grace period.
3989 	 * Even if @s becomes empty after shrinking, we can't know that @s
3990 	 * doesn't have allocations already in-flight and thus can't
3991 	 * destroy @s until the associated memcg is released.
3992 	 *
3993 	 * However, let's remove the sysfs files for empty caches here.
3994 	 * Each cache has a lot of interface files which aren't
3995 	 * particularly useful for empty draining caches; otherwise, we can
3996 	 * easily end up with millions of unnecessary sysfs files on
3997 	 * systems which have a lot of memory and transient cgroups.
3998 	 */
3999 	if (!__kmem_cache_shrink(s))
4000 		sysfs_slab_remove(s);
4001 }
4002 
4003 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4004 {
4005 	/*
4006 	 * Disable empty slabs caching. Used to avoid pinning offline
4007 	 * memory cgroups by kmem pages that can be freed.
4008 	 */
4009 	slub_set_cpu_partial(s, 0);
4010 	s->min_partial = 0;
4011 
4012 	/*
4013 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4014 	 * we have to make sure the change is visible before shrinking.
4015 	 */
4016 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4017 }
4018 #endif
4019 
4020 static int slab_mem_going_offline_callback(void *arg)
4021 {
4022 	struct kmem_cache *s;
4023 
4024 	mutex_lock(&slab_mutex);
4025 	list_for_each_entry(s, &slab_caches, list)
4026 		__kmem_cache_shrink(s);
4027 	mutex_unlock(&slab_mutex);
4028 
4029 	return 0;
4030 }
4031 
4032 static void slab_mem_offline_callback(void *arg)
4033 {
4034 	struct kmem_cache_node *n;
4035 	struct kmem_cache *s;
4036 	struct memory_notify *marg = arg;
4037 	int offline_node;
4038 
4039 	offline_node = marg->status_change_nid_normal;
4040 
4041 	/*
4042 	 * If the node still has available memory. we need kmem_cache_node
4043 	 * for it yet.
4044 	 */
4045 	if (offline_node < 0)
4046 		return;
4047 
4048 	mutex_lock(&slab_mutex);
4049 	list_for_each_entry(s, &slab_caches, list) {
4050 		n = get_node(s, offline_node);
4051 		if (n) {
4052 			/*
4053 			 * if n->nr_slabs > 0, slabs still exist on the node
4054 			 * that is going down. We were unable to free them,
4055 			 * and offline_pages() function shouldn't call this
4056 			 * callback. So, we must fail.
4057 			 */
4058 			BUG_ON(slabs_node(s, offline_node));
4059 
4060 			s->node[offline_node] = NULL;
4061 			kmem_cache_free(kmem_cache_node, n);
4062 		}
4063 	}
4064 	mutex_unlock(&slab_mutex);
4065 }
4066 
4067 static int slab_mem_going_online_callback(void *arg)
4068 {
4069 	struct kmem_cache_node *n;
4070 	struct kmem_cache *s;
4071 	struct memory_notify *marg = arg;
4072 	int nid = marg->status_change_nid_normal;
4073 	int ret = 0;
4074 
4075 	/*
4076 	 * If the node's memory is already available, then kmem_cache_node is
4077 	 * already created. Nothing to do.
4078 	 */
4079 	if (nid < 0)
4080 		return 0;
4081 
4082 	/*
4083 	 * We are bringing a node online. No memory is available yet. We must
4084 	 * allocate a kmem_cache_node structure in order to bring the node
4085 	 * online.
4086 	 */
4087 	mutex_lock(&slab_mutex);
4088 	list_for_each_entry(s, &slab_caches, list) {
4089 		/*
4090 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4091 		 *      since memory is not yet available from the node that
4092 		 *      is brought up.
4093 		 */
4094 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4095 		if (!n) {
4096 			ret = -ENOMEM;
4097 			goto out;
4098 		}
4099 		init_kmem_cache_node(n);
4100 		s->node[nid] = n;
4101 	}
4102 out:
4103 	mutex_unlock(&slab_mutex);
4104 	return ret;
4105 }
4106 
4107 static int slab_memory_callback(struct notifier_block *self,
4108 				unsigned long action, void *arg)
4109 {
4110 	int ret = 0;
4111 
4112 	switch (action) {
4113 	case MEM_GOING_ONLINE:
4114 		ret = slab_mem_going_online_callback(arg);
4115 		break;
4116 	case MEM_GOING_OFFLINE:
4117 		ret = slab_mem_going_offline_callback(arg);
4118 		break;
4119 	case MEM_OFFLINE:
4120 	case MEM_CANCEL_ONLINE:
4121 		slab_mem_offline_callback(arg);
4122 		break;
4123 	case MEM_ONLINE:
4124 	case MEM_CANCEL_OFFLINE:
4125 		break;
4126 	}
4127 	if (ret)
4128 		ret = notifier_from_errno(ret);
4129 	else
4130 		ret = NOTIFY_OK;
4131 	return ret;
4132 }
4133 
4134 static struct notifier_block slab_memory_callback_nb = {
4135 	.notifier_call = slab_memory_callback,
4136 	.priority = SLAB_CALLBACK_PRI,
4137 };
4138 
4139 /********************************************************************
4140  *			Basic setup of slabs
4141  *******************************************************************/
4142 
4143 /*
4144  * Used for early kmem_cache structures that were allocated using
4145  * the page allocator. Allocate them properly then fix up the pointers
4146  * that may be pointing to the wrong kmem_cache structure.
4147  */
4148 
4149 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4150 {
4151 	int node;
4152 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4153 	struct kmem_cache_node *n;
4154 
4155 	memcpy(s, static_cache, kmem_cache->object_size);
4156 
4157 	/*
4158 	 * This runs very early, and only the boot processor is supposed to be
4159 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4160 	 * IPIs around.
4161 	 */
4162 	__flush_cpu_slab(s, smp_processor_id());
4163 	for_each_kmem_cache_node(s, node, n) {
4164 		struct page *p;
4165 
4166 		list_for_each_entry(p, &n->partial, lru)
4167 			p->slab_cache = s;
4168 
4169 #ifdef CONFIG_SLUB_DEBUG
4170 		list_for_each_entry(p, &n->full, lru)
4171 			p->slab_cache = s;
4172 #endif
4173 	}
4174 	slab_init_memcg_params(s);
4175 	list_add(&s->list, &slab_caches);
4176 	memcg_link_cache(s);
4177 	return s;
4178 }
4179 
4180 void __init kmem_cache_init(void)
4181 {
4182 	static __initdata struct kmem_cache boot_kmem_cache,
4183 		boot_kmem_cache_node;
4184 
4185 	if (debug_guardpage_minorder())
4186 		slub_max_order = 0;
4187 
4188 	kmem_cache_node = &boot_kmem_cache_node;
4189 	kmem_cache = &boot_kmem_cache;
4190 
4191 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4192 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4193 
4194 	register_hotmemory_notifier(&slab_memory_callback_nb);
4195 
4196 	/* Able to allocate the per node structures */
4197 	slab_state = PARTIAL;
4198 
4199 	create_boot_cache(kmem_cache, "kmem_cache",
4200 			offsetof(struct kmem_cache, node) +
4201 				nr_node_ids * sizeof(struct kmem_cache_node *),
4202 		       SLAB_HWCACHE_ALIGN, 0, 0);
4203 
4204 	kmem_cache = bootstrap(&boot_kmem_cache);
4205 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4206 
4207 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4208 	setup_kmalloc_cache_index_table();
4209 	create_kmalloc_caches(0);
4210 
4211 	/* Setup random freelists for each cache */
4212 	init_freelist_randomization();
4213 
4214 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4215 				  slub_cpu_dead);
4216 
4217 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4218 		cache_line_size(),
4219 		slub_min_order, slub_max_order, slub_min_objects,
4220 		nr_cpu_ids, nr_node_ids);
4221 }
4222 
4223 void __init kmem_cache_init_late(void)
4224 {
4225 }
4226 
4227 struct kmem_cache *
4228 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4229 		   slab_flags_t flags, void (*ctor)(void *))
4230 {
4231 	struct kmem_cache *s, *c;
4232 
4233 	s = find_mergeable(size, align, flags, name, ctor);
4234 	if (s) {
4235 		s->refcount++;
4236 
4237 		/*
4238 		 * Adjust the object sizes so that we clear
4239 		 * the complete object on kzalloc.
4240 		 */
4241 		s->object_size = max(s->object_size, size);
4242 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4243 
4244 		for_each_memcg_cache(c, s) {
4245 			c->object_size = s->object_size;
4246 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4247 		}
4248 
4249 		if (sysfs_slab_alias(s, name)) {
4250 			s->refcount--;
4251 			s = NULL;
4252 		}
4253 	}
4254 
4255 	return s;
4256 }
4257 
4258 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4259 {
4260 	int err;
4261 
4262 	err = kmem_cache_open(s, flags);
4263 	if (err)
4264 		return err;
4265 
4266 	/* Mutex is not taken during early boot */
4267 	if (slab_state <= UP)
4268 		return 0;
4269 
4270 	memcg_propagate_slab_attrs(s);
4271 	err = sysfs_slab_add(s);
4272 	if (err)
4273 		__kmem_cache_release(s);
4274 
4275 	return err;
4276 }
4277 
4278 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4279 {
4280 	struct kmem_cache *s;
4281 	void *ret;
4282 
4283 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4284 		return kmalloc_large(size, gfpflags);
4285 
4286 	s = kmalloc_slab(size, gfpflags);
4287 
4288 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4289 		return s;
4290 
4291 	ret = slab_alloc(s, gfpflags, caller);
4292 
4293 	/* Honor the call site pointer we received. */
4294 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4295 
4296 	return ret;
4297 }
4298 
4299 #ifdef CONFIG_NUMA
4300 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4301 					int node, unsigned long caller)
4302 {
4303 	struct kmem_cache *s;
4304 	void *ret;
4305 
4306 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4307 		ret = kmalloc_large_node(size, gfpflags, node);
4308 
4309 		trace_kmalloc_node(caller, ret,
4310 				   size, PAGE_SIZE << get_order(size),
4311 				   gfpflags, node);
4312 
4313 		return ret;
4314 	}
4315 
4316 	s = kmalloc_slab(size, gfpflags);
4317 
4318 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4319 		return s;
4320 
4321 	ret = slab_alloc_node(s, gfpflags, node, caller);
4322 
4323 	/* Honor the call site pointer we received. */
4324 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4325 
4326 	return ret;
4327 }
4328 #endif
4329 
4330 #ifdef CONFIG_SYSFS
4331 static int count_inuse(struct page *page)
4332 {
4333 	return page->inuse;
4334 }
4335 
4336 static int count_total(struct page *page)
4337 {
4338 	return page->objects;
4339 }
4340 #endif
4341 
4342 #ifdef CONFIG_SLUB_DEBUG
4343 static int validate_slab(struct kmem_cache *s, struct page *page,
4344 						unsigned long *map)
4345 {
4346 	void *p;
4347 	void *addr = page_address(page);
4348 
4349 	if (!check_slab(s, page) ||
4350 			!on_freelist(s, page, NULL))
4351 		return 0;
4352 
4353 	/* Now we know that a valid freelist exists */
4354 	bitmap_zero(map, page->objects);
4355 
4356 	get_map(s, page, map);
4357 	for_each_object(p, s, addr, page->objects) {
4358 		if (test_bit(slab_index(p, s, addr), map))
4359 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4360 				return 0;
4361 	}
4362 
4363 	for_each_object(p, s, addr, page->objects)
4364 		if (!test_bit(slab_index(p, s, addr), map))
4365 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4366 				return 0;
4367 	return 1;
4368 }
4369 
4370 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4371 						unsigned long *map)
4372 {
4373 	slab_lock(page);
4374 	validate_slab(s, page, map);
4375 	slab_unlock(page);
4376 }
4377 
4378 static int validate_slab_node(struct kmem_cache *s,
4379 		struct kmem_cache_node *n, unsigned long *map)
4380 {
4381 	unsigned long count = 0;
4382 	struct page *page;
4383 	unsigned long flags;
4384 
4385 	spin_lock_irqsave(&n->list_lock, flags);
4386 
4387 	list_for_each_entry(page, &n->partial, lru) {
4388 		validate_slab_slab(s, page, map);
4389 		count++;
4390 	}
4391 	if (count != n->nr_partial)
4392 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4393 		       s->name, count, n->nr_partial);
4394 
4395 	if (!(s->flags & SLAB_STORE_USER))
4396 		goto out;
4397 
4398 	list_for_each_entry(page, &n->full, lru) {
4399 		validate_slab_slab(s, page, map);
4400 		count++;
4401 	}
4402 	if (count != atomic_long_read(&n->nr_slabs))
4403 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4404 		       s->name, count, atomic_long_read(&n->nr_slabs));
4405 
4406 out:
4407 	spin_unlock_irqrestore(&n->list_lock, flags);
4408 	return count;
4409 }
4410 
4411 static long validate_slab_cache(struct kmem_cache *s)
4412 {
4413 	int node;
4414 	unsigned long count = 0;
4415 	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4416 					   sizeof(unsigned long),
4417 					   GFP_KERNEL);
4418 	struct kmem_cache_node *n;
4419 
4420 	if (!map)
4421 		return -ENOMEM;
4422 
4423 	flush_all(s);
4424 	for_each_kmem_cache_node(s, node, n)
4425 		count += validate_slab_node(s, n, map);
4426 	kfree(map);
4427 	return count;
4428 }
4429 /*
4430  * Generate lists of code addresses where slabcache objects are allocated
4431  * and freed.
4432  */
4433 
4434 struct location {
4435 	unsigned long count;
4436 	unsigned long addr;
4437 	long long sum_time;
4438 	long min_time;
4439 	long max_time;
4440 	long min_pid;
4441 	long max_pid;
4442 	DECLARE_BITMAP(cpus, NR_CPUS);
4443 	nodemask_t nodes;
4444 };
4445 
4446 struct loc_track {
4447 	unsigned long max;
4448 	unsigned long count;
4449 	struct location *loc;
4450 };
4451 
4452 static void free_loc_track(struct loc_track *t)
4453 {
4454 	if (t->max)
4455 		free_pages((unsigned long)t->loc,
4456 			get_order(sizeof(struct location) * t->max));
4457 }
4458 
4459 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4460 {
4461 	struct location *l;
4462 	int order;
4463 
4464 	order = get_order(sizeof(struct location) * max);
4465 
4466 	l = (void *)__get_free_pages(flags, order);
4467 	if (!l)
4468 		return 0;
4469 
4470 	if (t->count) {
4471 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4472 		free_loc_track(t);
4473 	}
4474 	t->max = max;
4475 	t->loc = l;
4476 	return 1;
4477 }
4478 
4479 static int add_location(struct loc_track *t, struct kmem_cache *s,
4480 				const struct track *track)
4481 {
4482 	long start, end, pos;
4483 	struct location *l;
4484 	unsigned long caddr;
4485 	unsigned long age = jiffies - track->when;
4486 
4487 	start = -1;
4488 	end = t->count;
4489 
4490 	for ( ; ; ) {
4491 		pos = start + (end - start + 1) / 2;
4492 
4493 		/*
4494 		 * There is nothing at "end". If we end up there
4495 		 * we need to add something to before end.
4496 		 */
4497 		if (pos == end)
4498 			break;
4499 
4500 		caddr = t->loc[pos].addr;
4501 		if (track->addr == caddr) {
4502 
4503 			l = &t->loc[pos];
4504 			l->count++;
4505 			if (track->when) {
4506 				l->sum_time += age;
4507 				if (age < l->min_time)
4508 					l->min_time = age;
4509 				if (age > l->max_time)
4510 					l->max_time = age;
4511 
4512 				if (track->pid < l->min_pid)
4513 					l->min_pid = track->pid;
4514 				if (track->pid > l->max_pid)
4515 					l->max_pid = track->pid;
4516 
4517 				cpumask_set_cpu(track->cpu,
4518 						to_cpumask(l->cpus));
4519 			}
4520 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4521 			return 1;
4522 		}
4523 
4524 		if (track->addr < caddr)
4525 			end = pos;
4526 		else
4527 			start = pos;
4528 	}
4529 
4530 	/*
4531 	 * Not found. Insert new tracking element.
4532 	 */
4533 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4534 		return 0;
4535 
4536 	l = t->loc + pos;
4537 	if (pos < t->count)
4538 		memmove(l + 1, l,
4539 			(t->count - pos) * sizeof(struct location));
4540 	t->count++;
4541 	l->count = 1;
4542 	l->addr = track->addr;
4543 	l->sum_time = age;
4544 	l->min_time = age;
4545 	l->max_time = age;
4546 	l->min_pid = track->pid;
4547 	l->max_pid = track->pid;
4548 	cpumask_clear(to_cpumask(l->cpus));
4549 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4550 	nodes_clear(l->nodes);
4551 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4552 	return 1;
4553 }
4554 
4555 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4556 		struct page *page, enum track_item alloc,
4557 		unsigned long *map)
4558 {
4559 	void *addr = page_address(page);
4560 	void *p;
4561 
4562 	bitmap_zero(map, page->objects);
4563 	get_map(s, page, map);
4564 
4565 	for_each_object(p, s, addr, page->objects)
4566 		if (!test_bit(slab_index(p, s, addr), map))
4567 			add_location(t, s, get_track(s, p, alloc));
4568 }
4569 
4570 static int list_locations(struct kmem_cache *s, char *buf,
4571 					enum track_item alloc)
4572 {
4573 	int len = 0;
4574 	unsigned long i;
4575 	struct loc_track t = { 0, 0, NULL };
4576 	int node;
4577 	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)),
4578 					   sizeof(unsigned long),
4579 					   GFP_KERNEL);
4580 	struct kmem_cache_node *n;
4581 
4582 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4583 				     GFP_KERNEL)) {
4584 		kfree(map);
4585 		return sprintf(buf, "Out of memory\n");
4586 	}
4587 	/* Push back cpu slabs */
4588 	flush_all(s);
4589 
4590 	for_each_kmem_cache_node(s, node, n) {
4591 		unsigned long flags;
4592 		struct page *page;
4593 
4594 		if (!atomic_long_read(&n->nr_slabs))
4595 			continue;
4596 
4597 		spin_lock_irqsave(&n->list_lock, flags);
4598 		list_for_each_entry(page, &n->partial, lru)
4599 			process_slab(&t, s, page, alloc, map);
4600 		list_for_each_entry(page, &n->full, lru)
4601 			process_slab(&t, s, page, alloc, map);
4602 		spin_unlock_irqrestore(&n->list_lock, flags);
4603 	}
4604 
4605 	for (i = 0; i < t.count; i++) {
4606 		struct location *l = &t.loc[i];
4607 
4608 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4609 			break;
4610 		len += sprintf(buf + len, "%7ld ", l->count);
4611 
4612 		if (l->addr)
4613 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4614 		else
4615 			len += sprintf(buf + len, "<not-available>");
4616 
4617 		if (l->sum_time != l->min_time) {
4618 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4619 				l->min_time,
4620 				(long)div_u64(l->sum_time, l->count),
4621 				l->max_time);
4622 		} else
4623 			len += sprintf(buf + len, " age=%ld",
4624 				l->min_time);
4625 
4626 		if (l->min_pid != l->max_pid)
4627 			len += sprintf(buf + len, " pid=%ld-%ld",
4628 				l->min_pid, l->max_pid);
4629 		else
4630 			len += sprintf(buf + len, " pid=%ld",
4631 				l->min_pid);
4632 
4633 		if (num_online_cpus() > 1 &&
4634 				!cpumask_empty(to_cpumask(l->cpus)) &&
4635 				len < PAGE_SIZE - 60)
4636 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4637 					 " cpus=%*pbl",
4638 					 cpumask_pr_args(to_cpumask(l->cpus)));
4639 
4640 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4641 				len < PAGE_SIZE - 60)
4642 			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4643 					 " nodes=%*pbl",
4644 					 nodemask_pr_args(&l->nodes));
4645 
4646 		len += sprintf(buf + len, "\n");
4647 	}
4648 
4649 	free_loc_track(&t);
4650 	kfree(map);
4651 	if (!t.count)
4652 		len += sprintf(buf, "No data\n");
4653 	return len;
4654 }
4655 #endif
4656 
4657 #ifdef SLUB_RESILIENCY_TEST
4658 static void __init resiliency_test(void)
4659 {
4660 	u8 *p;
4661 
4662 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4663 
4664 	pr_err("SLUB resiliency testing\n");
4665 	pr_err("-----------------------\n");
4666 	pr_err("A. Corruption after allocation\n");
4667 
4668 	p = kzalloc(16, GFP_KERNEL);
4669 	p[16] = 0x12;
4670 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4671 	       p + 16);
4672 
4673 	validate_slab_cache(kmalloc_caches[4]);
4674 
4675 	/* Hmmm... The next two are dangerous */
4676 	p = kzalloc(32, GFP_KERNEL);
4677 	p[32 + sizeof(void *)] = 0x34;
4678 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4679 	       p);
4680 	pr_err("If allocated object is overwritten then not detectable\n\n");
4681 
4682 	validate_slab_cache(kmalloc_caches[5]);
4683 	p = kzalloc(64, GFP_KERNEL);
4684 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4685 	*p = 0x56;
4686 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4687 	       p);
4688 	pr_err("If allocated object is overwritten then not detectable\n\n");
4689 	validate_slab_cache(kmalloc_caches[6]);
4690 
4691 	pr_err("\nB. Corruption after free\n");
4692 	p = kzalloc(128, GFP_KERNEL);
4693 	kfree(p);
4694 	*p = 0x78;
4695 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4696 	validate_slab_cache(kmalloc_caches[7]);
4697 
4698 	p = kzalloc(256, GFP_KERNEL);
4699 	kfree(p);
4700 	p[50] = 0x9a;
4701 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4702 	validate_slab_cache(kmalloc_caches[8]);
4703 
4704 	p = kzalloc(512, GFP_KERNEL);
4705 	kfree(p);
4706 	p[512] = 0xab;
4707 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4708 	validate_slab_cache(kmalloc_caches[9]);
4709 }
4710 #else
4711 #ifdef CONFIG_SYSFS
4712 static void resiliency_test(void) {};
4713 #endif
4714 #endif
4715 
4716 #ifdef CONFIG_SYSFS
4717 enum slab_stat_type {
4718 	SL_ALL,			/* All slabs */
4719 	SL_PARTIAL,		/* Only partially allocated slabs */
4720 	SL_CPU,			/* Only slabs used for cpu caches */
4721 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4722 	SL_TOTAL		/* Determine object capacity not slabs */
4723 };
4724 
4725 #define SO_ALL		(1 << SL_ALL)
4726 #define SO_PARTIAL	(1 << SL_PARTIAL)
4727 #define SO_CPU		(1 << SL_CPU)
4728 #define SO_OBJECTS	(1 << SL_OBJECTS)
4729 #define SO_TOTAL	(1 << SL_TOTAL)
4730 
4731 #ifdef CONFIG_MEMCG
4732 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4733 
4734 static int __init setup_slub_memcg_sysfs(char *str)
4735 {
4736 	int v;
4737 
4738 	if (get_option(&str, &v) > 0)
4739 		memcg_sysfs_enabled = v;
4740 
4741 	return 1;
4742 }
4743 
4744 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4745 #endif
4746 
4747 static ssize_t show_slab_objects(struct kmem_cache *s,
4748 			    char *buf, unsigned long flags)
4749 {
4750 	unsigned long total = 0;
4751 	int node;
4752 	int x;
4753 	unsigned long *nodes;
4754 
4755 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4756 	if (!nodes)
4757 		return -ENOMEM;
4758 
4759 	if (flags & SO_CPU) {
4760 		int cpu;
4761 
4762 		for_each_possible_cpu(cpu) {
4763 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4764 							       cpu);
4765 			int node;
4766 			struct page *page;
4767 
4768 			page = READ_ONCE(c->page);
4769 			if (!page)
4770 				continue;
4771 
4772 			node = page_to_nid(page);
4773 			if (flags & SO_TOTAL)
4774 				x = page->objects;
4775 			else if (flags & SO_OBJECTS)
4776 				x = page->inuse;
4777 			else
4778 				x = 1;
4779 
4780 			total += x;
4781 			nodes[node] += x;
4782 
4783 			page = slub_percpu_partial_read_once(c);
4784 			if (page) {
4785 				node = page_to_nid(page);
4786 				if (flags & SO_TOTAL)
4787 					WARN_ON_ONCE(1);
4788 				else if (flags & SO_OBJECTS)
4789 					WARN_ON_ONCE(1);
4790 				else
4791 					x = page->pages;
4792 				total += x;
4793 				nodes[node] += x;
4794 			}
4795 		}
4796 	}
4797 
4798 	get_online_mems();
4799 #ifdef CONFIG_SLUB_DEBUG
4800 	if (flags & SO_ALL) {
4801 		struct kmem_cache_node *n;
4802 
4803 		for_each_kmem_cache_node(s, node, n) {
4804 
4805 			if (flags & SO_TOTAL)
4806 				x = atomic_long_read(&n->total_objects);
4807 			else if (flags & SO_OBJECTS)
4808 				x = atomic_long_read(&n->total_objects) -
4809 					count_partial(n, count_free);
4810 			else
4811 				x = atomic_long_read(&n->nr_slabs);
4812 			total += x;
4813 			nodes[node] += x;
4814 		}
4815 
4816 	} else
4817 #endif
4818 	if (flags & SO_PARTIAL) {
4819 		struct kmem_cache_node *n;
4820 
4821 		for_each_kmem_cache_node(s, node, n) {
4822 			if (flags & SO_TOTAL)
4823 				x = count_partial(n, count_total);
4824 			else if (flags & SO_OBJECTS)
4825 				x = count_partial(n, count_inuse);
4826 			else
4827 				x = n->nr_partial;
4828 			total += x;
4829 			nodes[node] += x;
4830 		}
4831 	}
4832 	x = sprintf(buf, "%lu", total);
4833 #ifdef CONFIG_NUMA
4834 	for (node = 0; node < nr_node_ids; node++)
4835 		if (nodes[node])
4836 			x += sprintf(buf + x, " N%d=%lu",
4837 					node, nodes[node]);
4838 #endif
4839 	put_online_mems();
4840 	kfree(nodes);
4841 	return x + sprintf(buf + x, "\n");
4842 }
4843 
4844 #ifdef CONFIG_SLUB_DEBUG
4845 static int any_slab_objects(struct kmem_cache *s)
4846 {
4847 	int node;
4848 	struct kmem_cache_node *n;
4849 
4850 	for_each_kmem_cache_node(s, node, n)
4851 		if (atomic_long_read(&n->total_objects))
4852 			return 1;
4853 
4854 	return 0;
4855 }
4856 #endif
4857 
4858 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4859 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4860 
4861 struct slab_attribute {
4862 	struct attribute attr;
4863 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4864 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4865 };
4866 
4867 #define SLAB_ATTR_RO(_name) \
4868 	static struct slab_attribute _name##_attr = \
4869 	__ATTR(_name, 0400, _name##_show, NULL)
4870 
4871 #define SLAB_ATTR(_name) \
4872 	static struct slab_attribute _name##_attr =  \
4873 	__ATTR(_name, 0600, _name##_show, _name##_store)
4874 
4875 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4876 {
4877 	return sprintf(buf, "%u\n", s->size);
4878 }
4879 SLAB_ATTR_RO(slab_size);
4880 
4881 static ssize_t align_show(struct kmem_cache *s, char *buf)
4882 {
4883 	return sprintf(buf, "%u\n", s->align);
4884 }
4885 SLAB_ATTR_RO(align);
4886 
4887 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4888 {
4889 	return sprintf(buf, "%u\n", s->object_size);
4890 }
4891 SLAB_ATTR_RO(object_size);
4892 
4893 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4894 {
4895 	return sprintf(buf, "%u\n", oo_objects(s->oo));
4896 }
4897 SLAB_ATTR_RO(objs_per_slab);
4898 
4899 static ssize_t order_store(struct kmem_cache *s,
4900 				const char *buf, size_t length)
4901 {
4902 	unsigned int order;
4903 	int err;
4904 
4905 	err = kstrtouint(buf, 10, &order);
4906 	if (err)
4907 		return err;
4908 
4909 	if (order > slub_max_order || order < slub_min_order)
4910 		return -EINVAL;
4911 
4912 	calculate_sizes(s, order);
4913 	return length;
4914 }
4915 
4916 static ssize_t order_show(struct kmem_cache *s, char *buf)
4917 {
4918 	return sprintf(buf, "%u\n", oo_order(s->oo));
4919 }
4920 SLAB_ATTR(order);
4921 
4922 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4923 {
4924 	return sprintf(buf, "%lu\n", s->min_partial);
4925 }
4926 
4927 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4928 				 size_t length)
4929 {
4930 	unsigned long min;
4931 	int err;
4932 
4933 	err = kstrtoul(buf, 10, &min);
4934 	if (err)
4935 		return err;
4936 
4937 	set_min_partial(s, min);
4938 	return length;
4939 }
4940 SLAB_ATTR(min_partial);
4941 
4942 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4943 {
4944 	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4945 }
4946 
4947 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4948 				 size_t length)
4949 {
4950 	unsigned int objects;
4951 	int err;
4952 
4953 	err = kstrtouint(buf, 10, &objects);
4954 	if (err)
4955 		return err;
4956 	if (objects && !kmem_cache_has_cpu_partial(s))
4957 		return -EINVAL;
4958 
4959 	slub_set_cpu_partial(s, objects);
4960 	flush_all(s);
4961 	return length;
4962 }
4963 SLAB_ATTR(cpu_partial);
4964 
4965 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4966 {
4967 	if (!s->ctor)
4968 		return 0;
4969 	return sprintf(buf, "%pS\n", s->ctor);
4970 }
4971 SLAB_ATTR_RO(ctor);
4972 
4973 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4974 {
4975 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4976 }
4977 SLAB_ATTR_RO(aliases);
4978 
4979 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4980 {
4981 	return show_slab_objects(s, buf, SO_PARTIAL);
4982 }
4983 SLAB_ATTR_RO(partial);
4984 
4985 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4986 {
4987 	return show_slab_objects(s, buf, SO_CPU);
4988 }
4989 SLAB_ATTR_RO(cpu_slabs);
4990 
4991 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4992 {
4993 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4994 }
4995 SLAB_ATTR_RO(objects);
4996 
4997 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4998 {
4999 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5000 }
5001 SLAB_ATTR_RO(objects_partial);
5002 
5003 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5004 {
5005 	int objects = 0;
5006 	int pages = 0;
5007 	int cpu;
5008 	int len;
5009 
5010 	for_each_online_cpu(cpu) {
5011 		struct page *page;
5012 
5013 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5014 
5015 		if (page) {
5016 			pages += page->pages;
5017 			objects += page->pobjects;
5018 		}
5019 	}
5020 
5021 	len = sprintf(buf, "%d(%d)", objects, pages);
5022 
5023 #ifdef CONFIG_SMP
5024 	for_each_online_cpu(cpu) {
5025 		struct page *page;
5026 
5027 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5028 
5029 		if (page && len < PAGE_SIZE - 20)
5030 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5031 				page->pobjects, page->pages);
5032 	}
5033 #endif
5034 	return len + sprintf(buf + len, "\n");
5035 }
5036 SLAB_ATTR_RO(slabs_cpu_partial);
5037 
5038 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5039 {
5040 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5041 }
5042 
5043 static ssize_t reclaim_account_store(struct kmem_cache *s,
5044 				const char *buf, size_t length)
5045 {
5046 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5047 	if (buf[0] == '1')
5048 		s->flags |= SLAB_RECLAIM_ACCOUNT;
5049 	return length;
5050 }
5051 SLAB_ATTR(reclaim_account);
5052 
5053 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5054 {
5055 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5056 }
5057 SLAB_ATTR_RO(hwcache_align);
5058 
5059 #ifdef CONFIG_ZONE_DMA
5060 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5061 {
5062 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5063 }
5064 SLAB_ATTR_RO(cache_dma);
5065 #endif
5066 
5067 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5068 {
5069 	return sprintf(buf, "%u\n", s->usersize);
5070 }
5071 SLAB_ATTR_RO(usersize);
5072 
5073 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5074 {
5075 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5076 }
5077 SLAB_ATTR_RO(destroy_by_rcu);
5078 
5079 #ifdef CONFIG_SLUB_DEBUG
5080 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5081 {
5082 	return show_slab_objects(s, buf, SO_ALL);
5083 }
5084 SLAB_ATTR_RO(slabs);
5085 
5086 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5087 {
5088 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5089 }
5090 SLAB_ATTR_RO(total_objects);
5091 
5092 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5093 {
5094 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5095 }
5096 
5097 static ssize_t sanity_checks_store(struct kmem_cache *s,
5098 				const char *buf, size_t length)
5099 {
5100 	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5101 	if (buf[0] == '1') {
5102 		s->flags &= ~__CMPXCHG_DOUBLE;
5103 		s->flags |= SLAB_CONSISTENCY_CHECKS;
5104 	}
5105 	return length;
5106 }
5107 SLAB_ATTR(sanity_checks);
5108 
5109 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5110 {
5111 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5112 }
5113 
5114 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5115 							size_t length)
5116 {
5117 	/*
5118 	 * Tracing a merged cache is going to give confusing results
5119 	 * as well as cause other issues like converting a mergeable
5120 	 * cache into an umergeable one.
5121 	 */
5122 	if (s->refcount > 1)
5123 		return -EINVAL;
5124 
5125 	s->flags &= ~SLAB_TRACE;
5126 	if (buf[0] == '1') {
5127 		s->flags &= ~__CMPXCHG_DOUBLE;
5128 		s->flags |= SLAB_TRACE;
5129 	}
5130 	return length;
5131 }
5132 SLAB_ATTR(trace);
5133 
5134 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5135 {
5136 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5137 }
5138 
5139 static ssize_t red_zone_store(struct kmem_cache *s,
5140 				const char *buf, size_t length)
5141 {
5142 	if (any_slab_objects(s))
5143 		return -EBUSY;
5144 
5145 	s->flags &= ~SLAB_RED_ZONE;
5146 	if (buf[0] == '1') {
5147 		s->flags |= SLAB_RED_ZONE;
5148 	}
5149 	calculate_sizes(s, -1);
5150 	return length;
5151 }
5152 SLAB_ATTR(red_zone);
5153 
5154 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5155 {
5156 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5157 }
5158 
5159 static ssize_t poison_store(struct kmem_cache *s,
5160 				const char *buf, size_t length)
5161 {
5162 	if (any_slab_objects(s))
5163 		return -EBUSY;
5164 
5165 	s->flags &= ~SLAB_POISON;
5166 	if (buf[0] == '1') {
5167 		s->flags |= SLAB_POISON;
5168 	}
5169 	calculate_sizes(s, -1);
5170 	return length;
5171 }
5172 SLAB_ATTR(poison);
5173 
5174 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5175 {
5176 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5177 }
5178 
5179 static ssize_t store_user_store(struct kmem_cache *s,
5180 				const char *buf, size_t length)
5181 {
5182 	if (any_slab_objects(s))
5183 		return -EBUSY;
5184 
5185 	s->flags &= ~SLAB_STORE_USER;
5186 	if (buf[0] == '1') {
5187 		s->flags &= ~__CMPXCHG_DOUBLE;
5188 		s->flags |= SLAB_STORE_USER;
5189 	}
5190 	calculate_sizes(s, -1);
5191 	return length;
5192 }
5193 SLAB_ATTR(store_user);
5194 
5195 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5196 {
5197 	return 0;
5198 }
5199 
5200 static ssize_t validate_store(struct kmem_cache *s,
5201 			const char *buf, size_t length)
5202 {
5203 	int ret = -EINVAL;
5204 
5205 	if (buf[0] == '1') {
5206 		ret = validate_slab_cache(s);
5207 		if (ret >= 0)
5208 			ret = length;
5209 	}
5210 	return ret;
5211 }
5212 SLAB_ATTR(validate);
5213 
5214 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5215 {
5216 	if (!(s->flags & SLAB_STORE_USER))
5217 		return -ENOSYS;
5218 	return list_locations(s, buf, TRACK_ALLOC);
5219 }
5220 SLAB_ATTR_RO(alloc_calls);
5221 
5222 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5223 {
5224 	if (!(s->flags & SLAB_STORE_USER))
5225 		return -ENOSYS;
5226 	return list_locations(s, buf, TRACK_FREE);
5227 }
5228 SLAB_ATTR_RO(free_calls);
5229 #endif /* CONFIG_SLUB_DEBUG */
5230 
5231 #ifdef CONFIG_FAILSLAB
5232 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5233 {
5234 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5235 }
5236 
5237 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5238 							size_t length)
5239 {
5240 	if (s->refcount > 1)
5241 		return -EINVAL;
5242 
5243 	s->flags &= ~SLAB_FAILSLAB;
5244 	if (buf[0] == '1')
5245 		s->flags |= SLAB_FAILSLAB;
5246 	return length;
5247 }
5248 SLAB_ATTR(failslab);
5249 #endif
5250 
5251 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5252 {
5253 	return 0;
5254 }
5255 
5256 static ssize_t shrink_store(struct kmem_cache *s,
5257 			const char *buf, size_t length)
5258 {
5259 	if (buf[0] == '1')
5260 		kmem_cache_shrink(s);
5261 	else
5262 		return -EINVAL;
5263 	return length;
5264 }
5265 SLAB_ATTR(shrink);
5266 
5267 #ifdef CONFIG_NUMA
5268 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5269 {
5270 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5271 }
5272 
5273 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5274 				const char *buf, size_t length)
5275 {
5276 	unsigned int ratio;
5277 	int err;
5278 
5279 	err = kstrtouint(buf, 10, &ratio);
5280 	if (err)
5281 		return err;
5282 	if (ratio > 100)
5283 		return -ERANGE;
5284 
5285 	s->remote_node_defrag_ratio = ratio * 10;
5286 
5287 	return length;
5288 }
5289 SLAB_ATTR(remote_node_defrag_ratio);
5290 #endif
5291 
5292 #ifdef CONFIG_SLUB_STATS
5293 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5294 {
5295 	unsigned long sum  = 0;
5296 	int cpu;
5297 	int len;
5298 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5299 
5300 	if (!data)
5301 		return -ENOMEM;
5302 
5303 	for_each_online_cpu(cpu) {
5304 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5305 
5306 		data[cpu] = x;
5307 		sum += x;
5308 	}
5309 
5310 	len = sprintf(buf, "%lu", sum);
5311 
5312 #ifdef CONFIG_SMP
5313 	for_each_online_cpu(cpu) {
5314 		if (data[cpu] && len < PAGE_SIZE - 20)
5315 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5316 	}
5317 #endif
5318 	kfree(data);
5319 	return len + sprintf(buf + len, "\n");
5320 }
5321 
5322 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5323 {
5324 	int cpu;
5325 
5326 	for_each_online_cpu(cpu)
5327 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5328 }
5329 
5330 #define STAT_ATTR(si, text) 					\
5331 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5332 {								\
5333 	return show_stat(s, buf, si);				\
5334 }								\
5335 static ssize_t text##_store(struct kmem_cache *s,		\
5336 				const char *buf, size_t length)	\
5337 {								\
5338 	if (buf[0] != '0')					\
5339 		return -EINVAL;					\
5340 	clear_stat(s, si);					\
5341 	return length;						\
5342 }								\
5343 SLAB_ATTR(text);						\
5344 
5345 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5346 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5347 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5348 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5349 STAT_ATTR(FREE_FROZEN, free_frozen);
5350 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5351 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5352 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5353 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5354 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5355 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5356 STAT_ATTR(FREE_SLAB, free_slab);
5357 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5358 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5359 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5360 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5361 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5362 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5363 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5364 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5365 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5366 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5367 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5368 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5369 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5370 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5371 #endif
5372 
5373 static struct attribute *slab_attrs[] = {
5374 	&slab_size_attr.attr,
5375 	&object_size_attr.attr,
5376 	&objs_per_slab_attr.attr,
5377 	&order_attr.attr,
5378 	&min_partial_attr.attr,
5379 	&cpu_partial_attr.attr,
5380 	&objects_attr.attr,
5381 	&objects_partial_attr.attr,
5382 	&partial_attr.attr,
5383 	&cpu_slabs_attr.attr,
5384 	&ctor_attr.attr,
5385 	&aliases_attr.attr,
5386 	&align_attr.attr,
5387 	&hwcache_align_attr.attr,
5388 	&reclaim_account_attr.attr,
5389 	&destroy_by_rcu_attr.attr,
5390 	&shrink_attr.attr,
5391 	&slabs_cpu_partial_attr.attr,
5392 #ifdef CONFIG_SLUB_DEBUG
5393 	&total_objects_attr.attr,
5394 	&slabs_attr.attr,
5395 	&sanity_checks_attr.attr,
5396 	&trace_attr.attr,
5397 	&red_zone_attr.attr,
5398 	&poison_attr.attr,
5399 	&store_user_attr.attr,
5400 	&validate_attr.attr,
5401 	&alloc_calls_attr.attr,
5402 	&free_calls_attr.attr,
5403 #endif
5404 #ifdef CONFIG_ZONE_DMA
5405 	&cache_dma_attr.attr,
5406 #endif
5407 #ifdef CONFIG_NUMA
5408 	&remote_node_defrag_ratio_attr.attr,
5409 #endif
5410 #ifdef CONFIG_SLUB_STATS
5411 	&alloc_fastpath_attr.attr,
5412 	&alloc_slowpath_attr.attr,
5413 	&free_fastpath_attr.attr,
5414 	&free_slowpath_attr.attr,
5415 	&free_frozen_attr.attr,
5416 	&free_add_partial_attr.attr,
5417 	&free_remove_partial_attr.attr,
5418 	&alloc_from_partial_attr.attr,
5419 	&alloc_slab_attr.attr,
5420 	&alloc_refill_attr.attr,
5421 	&alloc_node_mismatch_attr.attr,
5422 	&free_slab_attr.attr,
5423 	&cpuslab_flush_attr.attr,
5424 	&deactivate_full_attr.attr,
5425 	&deactivate_empty_attr.attr,
5426 	&deactivate_to_head_attr.attr,
5427 	&deactivate_to_tail_attr.attr,
5428 	&deactivate_remote_frees_attr.attr,
5429 	&deactivate_bypass_attr.attr,
5430 	&order_fallback_attr.attr,
5431 	&cmpxchg_double_fail_attr.attr,
5432 	&cmpxchg_double_cpu_fail_attr.attr,
5433 	&cpu_partial_alloc_attr.attr,
5434 	&cpu_partial_free_attr.attr,
5435 	&cpu_partial_node_attr.attr,
5436 	&cpu_partial_drain_attr.attr,
5437 #endif
5438 #ifdef CONFIG_FAILSLAB
5439 	&failslab_attr.attr,
5440 #endif
5441 	&usersize_attr.attr,
5442 
5443 	NULL
5444 };
5445 
5446 static const struct attribute_group slab_attr_group = {
5447 	.attrs = slab_attrs,
5448 };
5449 
5450 static ssize_t slab_attr_show(struct kobject *kobj,
5451 				struct attribute *attr,
5452 				char *buf)
5453 {
5454 	struct slab_attribute *attribute;
5455 	struct kmem_cache *s;
5456 	int err;
5457 
5458 	attribute = to_slab_attr(attr);
5459 	s = to_slab(kobj);
5460 
5461 	if (!attribute->show)
5462 		return -EIO;
5463 
5464 	err = attribute->show(s, buf);
5465 
5466 	return err;
5467 }
5468 
5469 static ssize_t slab_attr_store(struct kobject *kobj,
5470 				struct attribute *attr,
5471 				const char *buf, size_t len)
5472 {
5473 	struct slab_attribute *attribute;
5474 	struct kmem_cache *s;
5475 	int err;
5476 
5477 	attribute = to_slab_attr(attr);
5478 	s = to_slab(kobj);
5479 
5480 	if (!attribute->store)
5481 		return -EIO;
5482 
5483 	err = attribute->store(s, buf, len);
5484 #ifdef CONFIG_MEMCG
5485 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5486 		struct kmem_cache *c;
5487 
5488 		mutex_lock(&slab_mutex);
5489 		if (s->max_attr_size < len)
5490 			s->max_attr_size = len;
5491 
5492 		/*
5493 		 * This is a best effort propagation, so this function's return
5494 		 * value will be determined by the parent cache only. This is
5495 		 * basically because not all attributes will have a well
5496 		 * defined semantics for rollbacks - most of the actions will
5497 		 * have permanent effects.
5498 		 *
5499 		 * Returning the error value of any of the children that fail
5500 		 * is not 100 % defined, in the sense that users seeing the
5501 		 * error code won't be able to know anything about the state of
5502 		 * the cache.
5503 		 *
5504 		 * Only returning the error code for the parent cache at least
5505 		 * has well defined semantics. The cache being written to
5506 		 * directly either failed or succeeded, in which case we loop
5507 		 * through the descendants with best-effort propagation.
5508 		 */
5509 		for_each_memcg_cache(c, s)
5510 			attribute->store(c, buf, len);
5511 		mutex_unlock(&slab_mutex);
5512 	}
5513 #endif
5514 	return err;
5515 }
5516 
5517 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5518 {
5519 #ifdef CONFIG_MEMCG
5520 	int i;
5521 	char *buffer = NULL;
5522 	struct kmem_cache *root_cache;
5523 
5524 	if (is_root_cache(s))
5525 		return;
5526 
5527 	root_cache = s->memcg_params.root_cache;
5528 
5529 	/*
5530 	 * This mean this cache had no attribute written. Therefore, no point
5531 	 * in copying default values around
5532 	 */
5533 	if (!root_cache->max_attr_size)
5534 		return;
5535 
5536 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5537 		char mbuf[64];
5538 		char *buf;
5539 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5540 		ssize_t len;
5541 
5542 		if (!attr || !attr->store || !attr->show)
5543 			continue;
5544 
5545 		/*
5546 		 * It is really bad that we have to allocate here, so we will
5547 		 * do it only as a fallback. If we actually allocate, though,
5548 		 * we can just use the allocated buffer until the end.
5549 		 *
5550 		 * Most of the slub attributes will tend to be very small in
5551 		 * size, but sysfs allows buffers up to a page, so they can
5552 		 * theoretically happen.
5553 		 */
5554 		if (buffer)
5555 			buf = buffer;
5556 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5557 			buf = mbuf;
5558 		else {
5559 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5560 			if (WARN_ON(!buffer))
5561 				continue;
5562 			buf = buffer;
5563 		}
5564 
5565 		len = attr->show(root_cache, buf);
5566 		if (len > 0)
5567 			attr->store(s, buf, len);
5568 	}
5569 
5570 	if (buffer)
5571 		free_page((unsigned long)buffer);
5572 #endif
5573 }
5574 
5575 static void kmem_cache_release(struct kobject *k)
5576 {
5577 	slab_kmem_cache_release(to_slab(k));
5578 }
5579 
5580 static const struct sysfs_ops slab_sysfs_ops = {
5581 	.show = slab_attr_show,
5582 	.store = slab_attr_store,
5583 };
5584 
5585 static struct kobj_type slab_ktype = {
5586 	.sysfs_ops = &slab_sysfs_ops,
5587 	.release = kmem_cache_release,
5588 };
5589 
5590 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5591 {
5592 	struct kobj_type *ktype = get_ktype(kobj);
5593 
5594 	if (ktype == &slab_ktype)
5595 		return 1;
5596 	return 0;
5597 }
5598 
5599 static const struct kset_uevent_ops slab_uevent_ops = {
5600 	.filter = uevent_filter,
5601 };
5602 
5603 static struct kset *slab_kset;
5604 
5605 static inline struct kset *cache_kset(struct kmem_cache *s)
5606 {
5607 #ifdef CONFIG_MEMCG
5608 	if (!is_root_cache(s))
5609 		return s->memcg_params.root_cache->memcg_kset;
5610 #endif
5611 	return slab_kset;
5612 }
5613 
5614 #define ID_STR_LENGTH 64
5615 
5616 /* Create a unique string id for a slab cache:
5617  *
5618  * Format	:[flags-]size
5619  */
5620 static char *create_unique_id(struct kmem_cache *s)
5621 {
5622 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5623 	char *p = name;
5624 
5625 	BUG_ON(!name);
5626 
5627 	*p++ = ':';
5628 	/*
5629 	 * First flags affecting slabcache operations. We will only
5630 	 * get here for aliasable slabs so we do not need to support
5631 	 * too many flags. The flags here must cover all flags that
5632 	 * are matched during merging to guarantee that the id is
5633 	 * unique.
5634 	 */
5635 	if (s->flags & SLAB_CACHE_DMA)
5636 		*p++ = 'd';
5637 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5638 		*p++ = 'a';
5639 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5640 		*p++ = 'F';
5641 	if (s->flags & SLAB_ACCOUNT)
5642 		*p++ = 'A';
5643 	if (p != name + 1)
5644 		*p++ = '-';
5645 	p += sprintf(p, "%07u", s->size);
5646 
5647 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5648 	return name;
5649 }
5650 
5651 static void sysfs_slab_remove_workfn(struct work_struct *work)
5652 {
5653 	struct kmem_cache *s =
5654 		container_of(work, struct kmem_cache, kobj_remove_work);
5655 
5656 	if (!s->kobj.state_in_sysfs)
5657 		/*
5658 		 * For a memcg cache, this may be called during
5659 		 * deactivation and again on shutdown.  Remove only once.
5660 		 * A cache is never shut down before deactivation is
5661 		 * complete, so no need to worry about synchronization.
5662 		 */
5663 		goto out;
5664 
5665 #ifdef CONFIG_MEMCG
5666 	kset_unregister(s->memcg_kset);
5667 #endif
5668 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5669 out:
5670 	kobject_put(&s->kobj);
5671 }
5672 
5673 static int sysfs_slab_add(struct kmem_cache *s)
5674 {
5675 	int err;
5676 	const char *name;
5677 	struct kset *kset = cache_kset(s);
5678 	int unmergeable = slab_unmergeable(s);
5679 
5680 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5681 
5682 	if (!kset) {
5683 		kobject_init(&s->kobj, &slab_ktype);
5684 		return 0;
5685 	}
5686 
5687 	if (!unmergeable && disable_higher_order_debug &&
5688 			(slub_debug & DEBUG_METADATA_FLAGS))
5689 		unmergeable = 1;
5690 
5691 	if (unmergeable) {
5692 		/*
5693 		 * Slabcache can never be merged so we can use the name proper.
5694 		 * This is typically the case for debug situations. In that
5695 		 * case we can catch duplicate names easily.
5696 		 */
5697 		sysfs_remove_link(&slab_kset->kobj, s->name);
5698 		name = s->name;
5699 	} else {
5700 		/*
5701 		 * Create a unique name for the slab as a target
5702 		 * for the symlinks.
5703 		 */
5704 		name = create_unique_id(s);
5705 	}
5706 
5707 	s->kobj.kset = kset;
5708 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5709 	if (err)
5710 		goto out;
5711 
5712 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5713 	if (err)
5714 		goto out_del_kobj;
5715 
5716 #ifdef CONFIG_MEMCG
5717 	if (is_root_cache(s) && memcg_sysfs_enabled) {
5718 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5719 		if (!s->memcg_kset) {
5720 			err = -ENOMEM;
5721 			goto out_del_kobj;
5722 		}
5723 	}
5724 #endif
5725 
5726 	kobject_uevent(&s->kobj, KOBJ_ADD);
5727 	if (!unmergeable) {
5728 		/* Setup first alias */
5729 		sysfs_slab_alias(s, s->name);
5730 	}
5731 out:
5732 	if (!unmergeable)
5733 		kfree(name);
5734 	return err;
5735 out_del_kobj:
5736 	kobject_del(&s->kobj);
5737 	goto out;
5738 }
5739 
5740 static void sysfs_slab_remove(struct kmem_cache *s)
5741 {
5742 	if (slab_state < FULL)
5743 		/*
5744 		 * Sysfs has not been setup yet so no need to remove the
5745 		 * cache from sysfs.
5746 		 */
5747 		return;
5748 
5749 	kobject_get(&s->kobj);
5750 	schedule_work(&s->kobj_remove_work);
5751 }
5752 
5753 void sysfs_slab_unlink(struct kmem_cache *s)
5754 {
5755 	if (slab_state >= FULL)
5756 		kobject_del(&s->kobj);
5757 }
5758 
5759 void sysfs_slab_release(struct kmem_cache *s)
5760 {
5761 	if (slab_state >= FULL)
5762 		kobject_put(&s->kobj);
5763 }
5764 
5765 /*
5766  * Need to buffer aliases during bootup until sysfs becomes
5767  * available lest we lose that information.
5768  */
5769 struct saved_alias {
5770 	struct kmem_cache *s;
5771 	const char *name;
5772 	struct saved_alias *next;
5773 };
5774 
5775 static struct saved_alias *alias_list;
5776 
5777 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5778 {
5779 	struct saved_alias *al;
5780 
5781 	if (slab_state == FULL) {
5782 		/*
5783 		 * If we have a leftover link then remove it.
5784 		 */
5785 		sysfs_remove_link(&slab_kset->kobj, name);
5786 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5787 	}
5788 
5789 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5790 	if (!al)
5791 		return -ENOMEM;
5792 
5793 	al->s = s;
5794 	al->name = name;
5795 	al->next = alias_list;
5796 	alias_list = al;
5797 	return 0;
5798 }
5799 
5800 static int __init slab_sysfs_init(void)
5801 {
5802 	struct kmem_cache *s;
5803 	int err;
5804 
5805 	mutex_lock(&slab_mutex);
5806 
5807 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5808 	if (!slab_kset) {
5809 		mutex_unlock(&slab_mutex);
5810 		pr_err("Cannot register slab subsystem.\n");
5811 		return -ENOSYS;
5812 	}
5813 
5814 	slab_state = FULL;
5815 
5816 	list_for_each_entry(s, &slab_caches, list) {
5817 		err = sysfs_slab_add(s);
5818 		if (err)
5819 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5820 			       s->name);
5821 	}
5822 
5823 	while (alias_list) {
5824 		struct saved_alias *al = alias_list;
5825 
5826 		alias_list = alias_list->next;
5827 		err = sysfs_slab_alias(al->s, al->name);
5828 		if (err)
5829 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5830 			       al->name);
5831 		kfree(al);
5832 	}
5833 
5834 	mutex_unlock(&slab_mutex);
5835 	resiliency_test();
5836 	return 0;
5837 }
5838 
5839 __initcall(slab_sysfs_init);
5840 #endif /* CONFIG_SYSFS */
5841 
5842 /*
5843  * The /proc/slabinfo ABI
5844  */
5845 #ifdef CONFIG_SLUB_DEBUG
5846 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5847 {
5848 	unsigned long nr_slabs = 0;
5849 	unsigned long nr_objs = 0;
5850 	unsigned long nr_free = 0;
5851 	int node;
5852 	struct kmem_cache_node *n;
5853 
5854 	for_each_kmem_cache_node(s, node, n) {
5855 		nr_slabs += node_nr_slabs(n);
5856 		nr_objs += node_nr_objs(n);
5857 		nr_free += count_partial(n, count_free);
5858 	}
5859 
5860 	sinfo->active_objs = nr_objs - nr_free;
5861 	sinfo->num_objs = nr_objs;
5862 	sinfo->active_slabs = nr_slabs;
5863 	sinfo->num_slabs = nr_slabs;
5864 	sinfo->objects_per_slab = oo_objects(s->oo);
5865 	sinfo->cache_order = oo_order(s->oo);
5866 }
5867 
5868 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5869 {
5870 }
5871 
5872 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5873 		       size_t count, loff_t *ppos)
5874 {
5875 	return -EIO;
5876 }
5877 #endif /* CONFIG_SLUB_DEBUG */
5878