1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/notifier.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 #include <linux/random.h> 38 39 #include <trace/events/kmem.h> 40 41 #include "internal.h" 42 43 /* 44 * Lock order: 45 * 1. slab_mutex (Global Mutex) 46 * 2. node->list_lock 47 * 3. slab_lock(page) (Only on some arches and for debugging) 48 * 49 * slab_mutex 50 * 51 * The role of the slab_mutex is to protect the list of all the slabs 52 * and to synchronize major metadata changes to slab cache structures. 53 * 54 * The slab_lock is only used for debugging and on arches that do not 55 * have the ability to do a cmpxchg_double. It only protects: 56 * A. page->freelist -> List of object free in a page 57 * B. page->inuse -> Number of objects in use 58 * C. page->objects -> Number of objects in page 59 * D. page->frozen -> frozen state 60 * 61 * If a slab is frozen then it is exempt from list management. It is not 62 * on any list. The processor that froze the slab is the one who can 63 * perform list operations on the page. Other processors may put objects 64 * onto the freelist but the processor that froze the slab is the only 65 * one that can retrieve the objects from the page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * Overloading of page flags that are otherwise used for LRU management. 97 * 98 * PageActive The slab is frozen and exempt from list processing. 99 * This means that the slab is dedicated to a purpose 100 * such as satisfying allocations for a specific 101 * processor. Objects may be freed in the slab while 102 * it is frozen but slab_free will then skip the usual 103 * list operations. It is up to the processor holding 104 * the slab to integrate the slab into the slab lists 105 * when the slab is no longer needed. 106 * 107 * One use of this flag is to mark slabs that are 108 * used for allocations. Then such a slab becomes a cpu 109 * slab. The cpu slab may be equipped with an additional 110 * freelist that allows lockless access to 111 * free objects in addition to the regular freelist 112 * that requires the slab lock. 113 * 114 * PageError Slab requires special handling due to debug 115 * options set. This moves slab handling out of 116 * the fast path and disables lockless freelists. 117 */ 118 119 static inline int kmem_cache_debug(struct kmem_cache *s) 120 { 121 #ifdef CONFIG_SLUB_DEBUG 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 123 #else 124 return 0; 125 #endif 126 } 127 128 void *fixup_red_left(struct kmem_cache *s, void *p) 129 { 130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 131 p += s->red_left_pad; 132 133 return p; 134 } 135 136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 137 { 138 #ifdef CONFIG_SLUB_CPU_PARTIAL 139 return !kmem_cache_debug(s); 140 #else 141 return false; 142 #endif 143 } 144 145 /* 146 * Issues still to be resolved: 147 * 148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 149 * 150 * - Variable sizing of the per node arrays 151 */ 152 153 /* Enable to test recovery from slab corruption on boot */ 154 #undef SLUB_RESILIENCY_TEST 155 156 /* Enable to log cmpxchg failures */ 157 #undef SLUB_DEBUG_CMPXCHG 158 159 /* 160 * Mininum number of partial slabs. These will be left on the partial 161 * lists even if they are empty. kmem_cache_shrink may reclaim them. 162 */ 163 #define MIN_PARTIAL 5 164 165 /* 166 * Maximum number of desirable partial slabs. 167 * The existence of more partial slabs makes kmem_cache_shrink 168 * sort the partial list by the number of objects in use. 169 */ 170 #define MAX_PARTIAL 10 171 172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 173 SLAB_POISON | SLAB_STORE_USER) 174 175 /* 176 * These debug flags cannot use CMPXCHG because there might be consistency 177 * issues when checking or reading debug information 178 */ 179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 180 SLAB_TRACE) 181 182 183 /* 184 * Debugging flags that require metadata to be stored in the slab. These get 185 * disabled when slub_debug=O is used and a cache's min order increases with 186 * metadata. 187 */ 188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 189 190 #define OO_SHIFT 16 191 #define OO_MASK ((1 << OO_SHIFT) - 1) 192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 193 194 /* Internal SLUB flags */ 195 /* Poison object */ 196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 197 /* Use cmpxchg_double */ 198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 199 200 /* 201 * Tracking user of a slab. 202 */ 203 #define TRACK_ADDRS_COUNT 16 204 struct track { 205 unsigned long addr; /* Called from address */ 206 #ifdef CONFIG_STACKTRACE 207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 208 #endif 209 int cpu; /* Was running on cpu */ 210 int pid; /* Pid context */ 211 unsigned long when; /* When did the operation occur */ 212 }; 213 214 enum track_item { TRACK_ALLOC, TRACK_FREE }; 215 216 #ifdef CONFIG_SYSFS 217 static int sysfs_slab_add(struct kmem_cache *); 218 static int sysfs_slab_alias(struct kmem_cache *, const char *); 219 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 220 static void sysfs_slab_remove(struct kmem_cache *s); 221 #else 222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 224 { return 0; } 225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 226 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 227 #endif 228 229 static inline void stat(const struct kmem_cache *s, enum stat_item si) 230 { 231 #ifdef CONFIG_SLUB_STATS 232 /* 233 * The rmw is racy on a preemptible kernel but this is acceptable, so 234 * avoid this_cpu_add()'s irq-disable overhead. 235 */ 236 raw_cpu_inc(s->cpu_slab->stat[si]); 237 #endif 238 } 239 240 /******************************************************************** 241 * Core slab cache functions 242 *******************************************************************/ 243 244 /* 245 * Returns freelist pointer (ptr). With hardening, this is obfuscated 246 * with an XOR of the address where the pointer is held and a per-cache 247 * random number. 248 */ 249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 250 unsigned long ptr_addr) 251 { 252 #ifdef CONFIG_SLAB_FREELIST_HARDENED 253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); 254 #else 255 return ptr; 256 #endif 257 } 258 259 /* Returns the freelist pointer recorded at location ptr_addr. */ 260 static inline void *freelist_dereference(const struct kmem_cache *s, 261 void *ptr_addr) 262 { 263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 264 (unsigned long)ptr_addr); 265 } 266 267 static inline void *get_freepointer(struct kmem_cache *s, void *object) 268 { 269 return freelist_dereference(s, object + s->offset); 270 } 271 272 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 273 { 274 prefetch(object + s->offset); 275 } 276 277 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 278 { 279 unsigned long freepointer_addr; 280 void *p; 281 282 if (!debug_pagealloc_enabled()) 283 return get_freepointer(s, object); 284 285 freepointer_addr = (unsigned long)object + s->offset; 286 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 287 return freelist_ptr(s, p, freepointer_addr); 288 } 289 290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 291 { 292 unsigned long freeptr_addr = (unsigned long)object + s->offset; 293 294 #ifdef CONFIG_SLAB_FREELIST_HARDENED 295 BUG_ON(object == fp); /* naive detection of double free or corruption */ 296 #endif 297 298 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 299 } 300 301 /* Loop over all objects in a slab */ 302 #define for_each_object(__p, __s, __addr, __objects) \ 303 for (__p = fixup_red_left(__s, __addr); \ 304 __p < (__addr) + (__objects) * (__s)->size; \ 305 __p += (__s)->size) 306 307 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 308 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 309 __idx <= __objects; \ 310 __p += (__s)->size, __idx++) 311 312 /* Determine object index from a given position */ 313 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 314 { 315 return (p - addr) / s->size; 316 } 317 318 static inline unsigned int order_objects(unsigned int order, unsigned int size) 319 { 320 return ((unsigned int)PAGE_SIZE << order) / size; 321 } 322 323 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 324 unsigned int size) 325 { 326 struct kmem_cache_order_objects x = { 327 (order << OO_SHIFT) + order_objects(order, size) 328 }; 329 330 return x; 331 } 332 333 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 334 { 335 return x.x >> OO_SHIFT; 336 } 337 338 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 339 { 340 return x.x & OO_MASK; 341 } 342 343 /* 344 * Per slab locking using the pagelock 345 */ 346 static __always_inline void slab_lock(struct page *page) 347 { 348 VM_BUG_ON_PAGE(PageTail(page), page); 349 bit_spin_lock(PG_locked, &page->flags); 350 } 351 352 static __always_inline void slab_unlock(struct page *page) 353 { 354 VM_BUG_ON_PAGE(PageTail(page), page); 355 __bit_spin_unlock(PG_locked, &page->flags); 356 } 357 358 /* Interrupts must be disabled (for the fallback code to work right) */ 359 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 360 void *freelist_old, unsigned long counters_old, 361 void *freelist_new, unsigned long counters_new, 362 const char *n) 363 { 364 VM_BUG_ON(!irqs_disabled()); 365 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 367 if (s->flags & __CMPXCHG_DOUBLE) { 368 if (cmpxchg_double(&page->freelist, &page->counters, 369 freelist_old, counters_old, 370 freelist_new, counters_new)) 371 return true; 372 } else 373 #endif 374 { 375 slab_lock(page); 376 if (page->freelist == freelist_old && 377 page->counters == counters_old) { 378 page->freelist = freelist_new; 379 page->counters = counters_new; 380 slab_unlock(page); 381 return true; 382 } 383 slab_unlock(page); 384 } 385 386 cpu_relax(); 387 stat(s, CMPXCHG_DOUBLE_FAIL); 388 389 #ifdef SLUB_DEBUG_CMPXCHG 390 pr_info("%s %s: cmpxchg double redo ", n, s->name); 391 #endif 392 393 return false; 394 } 395 396 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 397 void *freelist_old, unsigned long counters_old, 398 void *freelist_new, unsigned long counters_new, 399 const char *n) 400 { 401 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 402 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 403 if (s->flags & __CMPXCHG_DOUBLE) { 404 if (cmpxchg_double(&page->freelist, &page->counters, 405 freelist_old, counters_old, 406 freelist_new, counters_new)) 407 return true; 408 } else 409 #endif 410 { 411 unsigned long flags; 412 413 local_irq_save(flags); 414 slab_lock(page); 415 if (page->freelist == freelist_old && 416 page->counters == counters_old) { 417 page->freelist = freelist_new; 418 page->counters = counters_new; 419 slab_unlock(page); 420 local_irq_restore(flags); 421 return true; 422 } 423 slab_unlock(page); 424 local_irq_restore(flags); 425 } 426 427 cpu_relax(); 428 stat(s, CMPXCHG_DOUBLE_FAIL); 429 430 #ifdef SLUB_DEBUG_CMPXCHG 431 pr_info("%s %s: cmpxchg double redo ", n, s->name); 432 #endif 433 434 return false; 435 } 436 437 #ifdef CONFIG_SLUB_DEBUG 438 /* 439 * Determine a map of object in use on a page. 440 * 441 * Node listlock must be held to guarantee that the page does 442 * not vanish from under us. 443 */ 444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 445 { 446 void *p; 447 void *addr = page_address(page); 448 449 for (p = page->freelist; p; p = get_freepointer(s, p)) 450 set_bit(slab_index(p, s, addr), map); 451 } 452 453 static inline unsigned int size_from_object(struct kmem_cache *s) 454 { 455 if (s->flags & SLAB_RED_ZONE) 456 return s->size - s->red_left_pad; 457 458 return s->size; 459 } 460 461 static inline void *restore_red_left(struct kmem_cache *s, void *p) 462 { 463 if (s->flags & SLAB_RED_ZONE) 464 p -= s->red_left_pad; 465 466 return p; 467 } 468 469 /* 470 * Debug settings: 471 */ 472 #if defined(CONFIG_SLUB_DEBUG_ON) 473 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 474 #else 475 static slab_flags_t slub_debug; 476 #endif 477 478 static char *slub_debug_slabs; 479 static int disable_higher_order_debug; 480 481 /* 482 * slub is about to manipulate internal object metadata. This memory lies 483 * outside the range of the allocated object, so accessing it would normally 484 * be reported by kasan as a bounds error. metadata_access_enable() is used 485 * to tell kasan that these accesses are OK. 486 */ 487 static inline void metadata_access_enable(void) 488 { 489 kasan_disable_current(); 490 } 491 492 static inline void metadata_access_disable(void) 493 { 494 kasan_enable_current(); 495 } 496 497 /* 498 * Object debugging 499 */ 500 501 /* Verify that a pointer has an address that is valid within a slab page */ 502 static inline int check_valid_pointer(struct kmem_cache *s, 503 struct page *page, void *object) 504 { 505 void *base; 506 507 if (!object) 508 return 1; 509 510 base = page_address(page); 511 object = restore_red_left(s, object); 512 if (object < base || object >= base + page->objects * s->size || 513 (object - base) % s->size) { 514 return 0; 515 } 516 517 return 1; 518 } 519 520 static void print_section(char *level, char *text, u8 *addr, 521 unsigned int length) 522 { 523 metadata_access_enable(); 524 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 525 length, 1); 526 metadata_access_disable(); 527 } 528 529 static struct track *get_track(struct kmem_cache *s, void *object, 530 enum track_item alloc) 531 { 532 struct track *p; 533 534 if (s->offset) 535 p = object + s->offset + sizeof(void *); 536 else 537 p = object + s->inuse; 538 539 return p + alloc; 540 } 541 542 static void set_track(struct kmem_cache *s, void *object, 543 enum track_item alloc, unsigned long addr) 544 { 545 struct track *p = get_track(s, object, alloc); 546 547 if (addr) { 548 #ifdef CONFIG_STACKTRACE 549 struct stack_trace trace; 550 int i; 551 552 trace.nr_entries = 0; 553 trace.max_entries = TRACK_ADDRS_COUNT; 554 trace.entries = p->addrs; 555 trace.skip = 3; 556 metadata_access_enable(); 557 save_stack_trace(&trace); 558 metadata_access_disable(); 559 560 /* See rant in lockdep.c */ 561 if (trace.nr_entries != 0 && 562 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 563 trace.nr_entries--; 564 565 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 566 p->addrs[i] = 0; 567 #endif 568 p->addr = addr; 569 p->cpu = smp_processor_id(); 570 p->pid = current->pid; 571 p->when = jiffies; 572 } else 573 memset(p, 0, sizeof(struct track)); 574 } 575 576 static void init_tracking(struct kmem_cache *s, void *object) 577 { 578 if (!(s->flags & SLAB_STORE_USER)) 579 return; 580 581 set_track(s, object, TRACK_FREE, 0UL); 582 set_track(s, object, TRACK_ALLOC, 0UL); 583 } 584 585 static void print_track(const char *s, struct track *t, unsigned long pr_time) 586 { 587 if (!t->addr) 588 return; 589 590 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 591 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 592 #ifdef CONFIG_STACKTRACE 593 { 594 int i; 595 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 596 if (t->addrs[i]) 597 pr_err("\t%pS\n", (void *)t->addrs[i]); 598 else 599 break; 600 } 601 #endif 602 } 603 604 static void print_tracking(struct kmem_cache *s, void *object) 605 { 606 unsigned long pr_time = jiffies; 607 if (!(s->flags & SLAB_STORE_USER)) 608 return; 609 610 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 611 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 612 } 613 614 static void print_page_info(struct page *page) 615 { 616 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 617 page, page->objects, page->inuse, page->freelist, page->flags); 618 619 } 620 621 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 622 { 623 struct va_format vaf; 624 va_list args; 625 626 va_start(args, fmt); 627 vaf.fmt = fmt; 628 vaf.va = &args; 629 pr_err("=============================================================================\n"); 630 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 631 pr_err("-----------------------------------------------------------------------------\n\n"); 632 633 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 634 va_end(args); 635 } 636 637 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 638 { 639 struct va_format vaf; 640 va_list args; 641 642 va_start(args, fmt); 643 vaf.fmt = fmt; 644 vaf.va = &args; 645 pr_err("FIX %s: %pV\n", s->name, &vaf); 646 va_end(args); 647 } 648 649 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 650 { 651 unsigned int off; /* Offset of last byte */ 652 u8 *addr = page_address(page); 653 654 print_tracking(s, p); 655 656 print_page_info(page); 657 658 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 659 p, p - addr, get_freepointer(s, p)); 660 661 if (s->flags & SLAB_RED_ZONE) 662 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 663 s->red_left_pad); 664 else if (p > addr + 16) 665 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 666 667 print_section(KERN_ERR, "Object ", p, 668 min_t(unsigned int, s->object_size, PAGE_SIZE)); 669 if (s->flags & SLAB_RED_ZONE) 670 print_section(KERN_ERR, "Redzone ", p + s->object_size, 671 s->inuse - s->object_size); 672 673 if (s->offset) 674 off = s->offset + sizeof(void *); 675 else 676 off = s->inuse; 677 678 if (s->flags & SLAB_STORE_USER) 679 off += 2 * sizeof(struct track); 680 681 off += kasan_metadata_size(s); 682 683 if (off != size_from_object(s)) 684 /* Beginning of the filler is the free pointer */ 685 print_section(KERN_ERR, "Padding ", p + off, 686 size_from_object(s) - off); 687 688 dump_stack(); 689 } 690 691 void object_err(struct kmem_cache *s, struct page *page, 692 u8 *object, char *reason) 693 { 694 slab_bug(s, "%s", reason); 695 print_trailer(s, page, object); 696 } 697 698 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 699 const char *fmt, ...) 700 { 701 va_list args; 702 char buf[100]; 703 704 va_start(args, fmt); 705 vsnprintf(buf, sizeof(buf), fmt, args); 706 va_end(args); 707 slab_bug(s, "%s", buf); 708 print_page_info(page); 709 dump_stack(); 710 } 711 712 static void init_object(struct kmem_cache *s, void *object, u8 val) 713 { 714 u8 *p = object; 715 716 if (s->flags & SLAB_RED_ZONE) 717 memset(p - s->red_left_pad, val, s->red_left_pad); 718 719 if (s->flags & __OBJECT_POISON) { 720 memset(p, POISON_FREE, s->object_size - 1); 721 p[s->object_size - 1] = POISON_END; 722 } 723 724 if (s->flags & SLAB_RED_ZONE) 725 memset(p + s->object_size, val, s->inuse - s->object_size); 726 } 727 728 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 729 void *from, void *to) 730 { 731 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 732 memset(from, data, to - from); 733 } 734 735 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 736 u8 *object, char *what, 737 u8 *start, unsigned int value, unsigned int bytes) 738 { 739 u8 *fault; 740 u8 *end; 741 742 metadata_access_enable(); 743 fault = memchr_inv(start, value, bytes); 744 metadata_access_disable(); 745 if (!fault) 746 return 1; 747 748 end = start + bytes; 749 while (end > fault && end[-1] == value) 750 end--; 751 752 slab_bug(s, "%s overwritten", what); 753 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 754 fault, end - 1, fault[0], value); 755 print_trailer(s, page, object); 756 757 restore_bytes(s, what, value, fault, end); 758 return 0; 759 } 760 761 /* 762 * Object layout: 763 * 764 * object address 765 * Bytes of the object to be managed. 766 * If the freepointer may overlay the object then the free 767 * pointer is the first word of the object. 768 * 769 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 770 * 0xa5 (POISON_END) 771 * 772 * object + s->object_size 773 * Padding to reach word boundary. This is also used for Redzoning. 774 * Padding is extended by another word if Redzoning is enabled and 775 * object_size == inuse. 776 * 777 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 778 * 0xcc (RED_ACTIVE) for objects in use. 779 * 780 * object + s->inuse 781 * Meta data starts here. 782 * 783 * A. Free pointer (if we cannot overwrite object on free) 784 * B. Tracking data for SLAB_STORE_USER 785 * C. Padding to reach required alignment boundary or at mininum 786 * one word if debugging is on to be able to detect writes 787 * before the word boundary. 788 * 789 * Padding is done using 0x5a (POISON_INUSE) 790 * 791 * object + s->size 792 * Nothing is used beyond s->size. 793 * 794 * If slabcaches are merged then the object_size and inuse boundaries are mostly 795 * ignored. And therefore no slab options that rely on these boundaries 796 * may be used with merged slabcaches. 797 */ 798 799 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 800 { 801 unsigned long off = s->inuse; /* The end of info */ 802 803 if (s->offset) 804 /* Freepointer is placed after the object. */ 805 off += sizeof(void *); 806 807 if (s->flags & SLAB_STORE_USER) 808 /* We also have user information there */ 809 off += 2 * sizeof(struct track); 810 811 off += kasan_metadata_size(s); 812 813 if (size_from_object(s) == off) 814 return 1; 815 816 return check_bytes_and_report(s, page, p, "Object padding", 817 p + off, POISON_INUSE, size_from_object(s) - off); 818 } 819 820 /* Check the pad bytes at the end of a slab page */ 821 static int slab_pad_check(struct kmem_cache *s, struct page *page) 822 { 823 u8 *start; 824 u8 *fault; 825 u8 *end; 826 u8 *pad; 827 int length; 828 int remainder; 829 830 if (!(s->flags & SLAB_POISON)) 831 return 1; 832 833 start = page_address(page); 834 length = PAGE_SIZE << compound_order(page); 835 end = start + length; 836 remainder = length % s->size; 837 if (!remainder) 838 return 1; 839 840 pad = end - remainder; 841 metadata_access_enable(); 842 fault = memchr_inv(pad, POISON_INUSE, remainder); 843 metadata_access_disable(); 844 if (!fault) 845 return 1; 846 while (end > fault && end[-1] == POISON_INUSE) 847 end--; 848 849 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 850 print_section(KERN_ERR, "Padding ", pad, remainder); 851 852 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 853 return 0; 854 } 855 856 static int check_object(struct kmem_cache *s, struct page *page, 857 void *object, u8 val) 858 { 859 u8 *p = object; 860 u8 *endobject = object + s->object_size; 861 862 if (s->flags & SLAB_RED_ZONE) { 863 if (!check_bytes_and_report(s, page, object, "Redzone", 864 object - s->red_left_pad, val, s->red_left_pad)) 865 return 0; 866 867 if (!check_bytes_and_report(s, page, object, "Redzone", 868 endobject, val, s->inuse - s->object_size)) 869 return 0; 870 } else { 871 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 872 check_bytes_and_report(s, page, p, "Alignment padding", 873 endobject, POISON_INUSE, 874 s->inuse - s->object_size); 875 } 876 } 877 878 if (s->flags & SLAB_POISON) { 879 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 880 (!check_bytes_and_report(s, page, p, "Poison", p, 881 POISON_FREE, s->object_size - 1) || 882 !check_bytes_and_report(s, page, p, "Poison", 883 p + s->object_size - 1, POISON_END, 1))) 884 return 0; 885 /* 886 * check_pad_bytes cleans up on its own. 887 */ 888 check_pad_bytes(s, page, p); 889 } 890 891 if (!s->offset && val == SLUB_RED_ACTIVE) 892 /* 893 * Object and freepointer overlap. Cannot check 894 * freepointer while object is allocated. 895 */ 896 return 1; 897 898 /* Check free pointer validity */ 899 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 900 object_err(s, page, p, "Freepointer corrupt"); 901 /* 902 * No choice but to zap it and thus lose the remainder 903 * of the free objects in this slab. May cause 904 * another error because the object count is now wrong. 905 */ 906 set_freepointer(s, p, NULL); 907 return 0; 908 } 909 return 1; 910 } 911 912 static int check_slab(struct kmem_cache *s, struct page *page) 913 { 914 int maxobj; 915 916 VM_BUG_ON(!irqs_disabled()); 917 918 if (!PageSlab(page)) { 919 slab_err(s, page, "Not a valid slab page"); 920 return 0; 921 } 922 923 maxobj = order_objects(compound_order(page), s->size); 924 if (page->objects > maxobj) { 925 slab_err(s, page, "objects %u > max %u", 926 page->objects, maxobj); 927 return 0; 928 } 929 if (page->inuse > page->objects) { 930 slab_err(s, page, "inuse %u > max %u", 931 page->inuse, page->objects); 932 return 0; 933 } 934 /* Slab_pad_check fixes things up after itself */ 935 slab_pad_check(s, page); 936 return 1; 937 } 938 939 /* 940 * Determine if a certain object on a page is on the freelist. Must hold the 941 * slab lock to guarantee that the chains are in a consistent state. 942 */ 943 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 944 { 945 int nr = 0; 946 void *fp; 947 void *object = NULL; 948 int max_objects; 949 950 fp = page->freelist; 951 while (fp && nr <= page->objects) { 952 if (fp == search) 953 return 1; 954 if (!check_valid_pointer(s, page, fp)) { 955 if (object) { 956 object_err(s, page, object, 957 "Freechain corrupt"); 958 set_freepointer(s, object, NULL); 959 } else { 960 slab_err(s, page, "Freepointer corrupt"); 961 page->freelist = NULL; 962 page->inuse = page->objects; 963 slab_fix(s, "Freelist cleared"); 964 return 0; 965 } 966 break; 967 } 968 object = fp; 969 fp = get_freepointer(s, object); 970 nr++; 971 } 972 973 max_objects = order_objects(compound_order(page), s->size); 974 if (max_objects > MAX_OBJS_PER_PAGE) 975 max_objects = MAX_OBJS_PER_PAGE; 976 977 if (page->objects != max_objects) { 978 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 979 page->objects, max_objects); 980 page->objects = max_objects; 981 slab_fix(s, "Number of objects adjusted."); 982 } 983 if (page->inuse != page->objects - nr) { 984 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 985 page->inuse, page->objects - nr); 986 page->inuse = page->objects - nr; 987 slab_fix(s, "Object count adjusted."); 988 } 989 return search == NULL; 990 } 991 992 static void trace(struct kmem_cache *s, struct page *page, void *object, 993 int alloc) 994 { 995 if (s->flags & SLAB_TRACE) { 996 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 997 s->name, 998 alloc ? "alloc" : "free", 999 object, page->inuse, 1000 page->freelist); 1001 1002 if (!alloc) 1003 print_section(KERN_INFO, "Object ", (void *)object, 1004 s->object_size); 1005 1006 dump_stack(); 1007 } 1008 } 1009 1010 /* 1011 * Tracking of fully allocated slabs for debugging purposes. 1012 */ 1013 static void add_full(struct kmem_cache *s, 1014 struct kmem_cache_node *n, struct page *page) 1015 { 1016 if (!(s->flags & SLAB_STORE_USER)) 1017 return; 1018 1019 lockdep_assert_held(&n->list_lock); 1020 list_add(&page->lru, &n->full); 1021 } 1022 1023 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1024 { 1025 if (!(s->flags & SLAB_STORE_USER)) 1026 return; 1027 1028 lockdep_assert_held(&n->list_lock); 1029 list_del(&page->lru); 1030 } 1031 1032 /* Tracking of the number of slabs for debugging purposes */ 1033 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1034 { 1035 struct kmem_cache_node *n = get_node(s, node); 1036 1037 return atomic_long_read(&n->nr_slabs); 1038 } 1039 1040 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1041 { 1042 return atomic_long_read(&n->nr_slabs); 1043 } 1044 1045 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1046 { 1047 struct kmem_cache_node *n = get_node(s, node); 1048 1049 /* 1050 * May be called early in order to allocate a slab for the 1051 * kmem_cache_node structure. Solve the chicken-egg 1052 * dilemma by deferring the increment of the count during 1053 * bootstrap (see early_kmem_cache_node_alloc). 1054 */ 1055 if (likely(n)) { 1056 atomic_long_inc(&n->nr_slabs); 1057 atomic_long_add(objects, &n->total_objects); 1058 } 1059 } 1060 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1061 { 1062 struct kmem_cache_node *n = get_node(s, node); 1063 1064 atomic_long_dec(&n->nr_slabs); 1065 atomic_long_sub(objects, &n->total_objects); 1066 } 1067 1068 /* Object debug checks for alloc/free paths */ 1069 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1070 void *object) 1071 { 1072 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1073 return; 1074 1075 init_object(s, object, SLUB_RED_INACTIVE); 1076 init_tracking(s, object); 1077 } 1078 1079 static inline int alloc_consistency_checks(struct kmem_cache *s, 1080 struct page *page, 1081 void *object, unsigned long addr) 1082 { 1083 if (!check_slab(s, page)) 1084 return 0; 1085 1086 if (!check_valid_pointer(s, page, object)) { 1087 object_err(s, page, object, "Freelist Pointer check fails"); 1088 return 0; 1089 } 1090 1091 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1092 return 0; 1093 1094 return 1; 1095 } 1096 1097 static noinline int alloc_debug_processing(struct kmem_cache *s, 1098 struct page *page, 1099 void *object, unsigned long addr) 1100 { 1101 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1102 if (!alloc_consistency_checks(s, page, object, addr)) 1103 goto bad; 1104 } 1105 1106 /* Success perform special debug activities for allocs */ 1107 if (s->flags & SLAB_STORE_USER) 1108 set_track(s, object, TRACK_ALLOC, addr); 1109 trace(s, page, object, 1); 1110 init_object(s, object, SLUB_RED_ACTIVE); 1111 return 1; 1112 1113 bad: 1114 if (PageSlab(page)) { 1115 /* 1116 * If this is a slab page then lets do the best we can 1117 * to avoid issues in the future. Marking all objects 1118 * as used avoids touching the remaining objects. 1119 */ 1120 slab_fix(s, "Marking all objects used"); 1121 page->inuse = page->objects; 1122 page->freelist = NULL; 1123 } 1124 return 0; 1125 } 1126 1127 static inline int free_consistency_checks(struct kmem_cache *s, 1128 struct page *page, void *object, unsigned long addr) 1129 { 1130 if (!check_valid_pointer(s, page, object)) { 1131 slab_err(s, page, "Invalid object pointer 0x%p", object); 1132 return 0; 1133 } 1134 1135 if (on_freelist(s, page, object)) { 1136 object_err(s, page, object, "Object already free"); 1137 return 0; 1138 } 1139 1140 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1141 return 0; 1142 1143 if (unlikely(s != page->slab_cache)) { 1144 if (!PageSlab(page)) { 1145 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1146 object); 1147 } else if (!page->slab_cache) { 1148 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1149 object); 1150 dump_stack(); 1151 } else 1152 object_err(s, page, object, 1153 "page slab pointer corrupt."); 1154 return 0; 1155 } 1156 return 1; 1157 } 1158 1159 /* Supports checking bulk free of a constructed freelist */ 1160 static noinline int free_debug_processing( 1161 struct kmem_cache *s, struct page *page, 1162 void *head, void *tail, int bulk_cnt, 1163 unsigned long addr) 1164 { 1165 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1166 void *object = head; 1167 int cnt = 0; 1168 unsigned long uninitialized_var(flags); 1169 int ret = 0; 1170 1171 spin_lock_irqsave(&n->list_lock, flags); 1172 slab_lock(page); 1173 1174 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1175 if (!check_slab(s, page)) 1176 goto out; 1177 } 1178 1179 next_object: 1180 cnt++; 1181 1182 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1183 if (!free_consistency_checks(s, page, object, addr)) 1184 goto out; 1185 } 1186 1187 if (s->flags & SLAB_STORE_USER) 1188 set_track(s, object, TRACK_FREE, addr); 1189 trace(s, page, object, 0); 1190 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1191 init_object(s, object, SLUB_RED_INACTIVE); 1192 1193 /* Reached end of constructed freelist yet? */ 1194 if (object != tail) { 1195 object = get_freepointer(s, object); 1196 goto next_object; 1197 } 1198 ret = 1; 1199 1200 out: 1201 if (cnt != bulk_cnt) 1202 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1203 bulk_cnt, cnt); 1204 1205 slab_unlock(page); 1206 spin_unlock_irqrestore(&n->list_lock, flags); 1207 if (!ret) 1208 slab_fix(s, "Object at 0x%p not freed", object); 1209 return ret; 1210 } 1211 1212 static int __init setup_slub_debug(char *str) 1213 { 1214 slub_debug = DEBUG_DEFAULT_FLAGS; 1215 if (*str++ != '=' || !*str) 1216 /* 1217 * No options specified. Switch on full debugging. 1218 */ 1219 goto out; 1220 1221 if (*str == ',') 1222 /* 1223 * No options but restriction on slabs. This means full 1224 * debugging for slabs matching a pattern. 1225 */ 1226 goto check_slabs; 1227 1228 slub_debug = 0; 1229 if (*str == '-') 1230 /* 1231 * Switch off all debugging measures. 1232 */ 1233 goto out; 1234 1235 /* 1236 * Determine which debug features should be switched on 1237 */ 1238 for (; *str && *str != ','; str++) { 1239 switch (tolower(*str)) { 1240 case 'f': 1241 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1242 break; 1243 case 'z': 1244 slub_debug |= SLAB_RED_ZONE; 1245 break; 1246 case 'p': 1247 slub_debug |= SLAB_POISON; 1248 break; 1249 case 'u': 1250 slub_debug |= SLAB_STORE_USER; 1251 break; 1252 case 't': 1253 slub_debug |= SLAB_TRACE; 1254 break; 1255 case 'a': 1256 slub_debug |= SLAB_FAILSLAB; 1257 break; 1258 case 'o': 1259 /* 1260 * Avoid enabling debugging on caches if its minimum 1261 * order would increase as a result. 1262 */ 1263 disable_higher_order_debug = 1; 1264 break; 1265 default: 1266 pr_err("slub_debug option '%c' unknown. skipped\n", 1267 *str); 1268 } 1269 } 1270 1271 check_slabs: 1272 if (*str == ',') 1273 slub_debug_slabs = str + 1; 1274 out: 1275 return 1; 1276 } 1277 1278 __setup("slub_debug", setup_slub_debug); 1279 1280 slab_flags_t kmem_cache_flags(unsigned int object_size, 1281 slab_flags_t flags, const char *name, 1282 void (*ctor)(void *)) 1283 { 1284 /* 1285 * Enable debugging if selected on the kernel commandline. 1286 */ 1287 if (slub_debug && (!slub_debug_slabs || (name && 1288 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1289 flags |= slub_debug; 1290 1291 return flags; 1292 } 1293 #else /* !CONFIG_SLUB_DEBUG */ 1294 static inline void setup_object_debug(struct kmem_cache *s, 1295 struct page *page, void *object) {} 1296 1297 static inline int alloc_debug_processing(struct kmem_cache *s, 1298 struct page *page, void *object, unsigned long addr) { return 0; } 1299 1300 static inline int free_debug_processing( 1301 struct kmem_cache *s, struct page *page, 1302 void *head, void *tail, int bulk_cnt, 1303 unsigned long addr) { return 0; } 1304 1305 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1306 { return 1; } 1307 static inline int check_object(struct kmem_cache *s, struct page *page, 1308 void *object, u8 val) { return 1; } 1309 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1310 struct page *page) {} 1311 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1312 struct page *page) {} 1313 slab_flags_t kmem_cache_flags(unsigned int object_size, 1314 slab_flags_t flags, const char *name, 1315 void (*ctor)(void *)) 1316 { 1317 return flags; 1318 } 1319 #define slub_debug 0 1320 1321 #define disable_higher_order_debug 0 1322 1323 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1324 { return 0; } 1325 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1326 { return 0; } 1327 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1328 int objects) {} 1329 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1330 int objects) {} 1331 1332 #endif /* CONFIG_SLUB_DEBUG */ 1333 1334 /* 1335 * Hooks for other subsystems that check memory allocations. In a typical 1336 * production configuration these hooks all should produce no code at all. 1337 */ 1338 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1339 { 1340 kmemleak_alloc(ptr, size, 1, flags); 1341 kasan_kmalloc_large(ptr, size, flags); 1342 } 1343 1344 static __always_inline void kfree_hook(void *x) 1345 { 1346 kmemleak_free(x); 1347 kasan_kfree_large(x, _RET_IP_); 1348 } 1349 1350 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1351 { 1352 kmemleak_free_recursive(x, s->flags); 1353 1354 /* 1355 * Trouble is that we may no longer disable interrupts in the fast path 1356 * So in order to make the debug calls that expect irqs to be 1357 * disabled we need to disable interrupts temporarily. 1358 */ 1359 #ifdef CONFIG_LOCKDEP 1360 { 1361 unsigned long flags; 1362 1363 local_irq_save(flags); 1364 debug_check_no_locks_freed(x, s->object_size); 1365 local_irq_restore(flags); 1366 } 1367 #endif 1368 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1369 debug_check_no_obj_freed(x, s->object_size); 1370 1371 /* KASAN might put x into memory quarantine, delaying its reuse */ 1372 return kasan_slab_free(s, x, _RET_IP_); 1373 } 1374 1375 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1376 void **head, void **tail) 1377 { 1378 /* 1379 * Compiler cannot detect this function can be removed if slab_free_hook() 1380 * evaluates to nothing. Thus, catch all relevant config debug options here. 1381 */ 1382 #if defined(CONFIG_LOCKDEP) || \ 1383 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1384 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1385 defined(CONFIG_KASAN) 1386 1387 void *object; 1388 void *next = *head; 1389 void *old_tail = *tail ? *tail : *head; 1390 1391 /* Head and tail of the reconstructed freelist */ 1392 *head = NULL; 1393 *tail = NULL; 1394 1395 do { 1396 object = next; 1397 next = get_freepointer(s, object); 1398 /* If object's reuse doesn't have to be delayed */ 1399 if (!slab_free_hook(s, object)) { 1400 /* Move object to the new freelist */ 1401 set_freepointer(s, object, *head); 1402 *head = object; 1403 if (!*tail) 1404 *tail = object; 1405 } 1406 } while (object != old_tail); 1407 1408 if (*head == *tail) 1409 *tail = NULL; 1410 1411 return *head != NULL; 1412 #else 1413 return true; 1414 #endif 1415 } 1416 1417 static void setup_object(struct kmem_cache *s, struct page *page, 1418 void *object) 1419 { 1420 setup_object_debug(s, page, object); 1421 kasan_init_slab_obj(s, object); 1422 if (unlikely(s->ctor)) { 1423 kasan_unpoison_object_data(s, object); 1424 s->ctor(object); 1425 kasan_poison_object_data(s, object); 1426 } 1427 } 1428 1429 /* 1430 * Slab allocation and freeing 1431 */ 1432 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1433 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1434 { 1435 struct page *page; 1436 unsigned int order = oo_order(oo); 1437 1438 if (node == NUMA_NO_NODE) 1439 page = alloc_pages(flags, order); 1440 else 1441 page = __alloc_pages_node(node, flags, order); 1442 1443 if (page && memcg_charge_slab(page, flags, order, s)) { 1444 __free_pages(page, order); 1445 page = NULL; 1446 } 1447 1448 return page; 1449 } 1450 1451 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1452 /* Pre-initialize the random sequence cache */ 1453 static int init_cache_random_seq(struct kmem_cache *s) 1454 { 1455 unsigned int count = oo_objects(s->oo); 1456 int err; 1457 1458 /* Bailout if already initialised */ 1459 if (s->random_seq) 1460 return 0; 1461 1462 err = cache_random_seq_create(s, count, GFP_KERNEL); 1463 if (err) { 1464 pr_err("SLUB: Unable to initialize free list for %s\n", 1465 s->name); 1466 return err; 1467 } 1468 1469 /* Transform to an offset on the set of pages */ 1470 if (s->random_seq) { 1471 unsigned int i; 1472 1473 for (i = 0; i < count; i++) 1474 s->random_seq[i] *= s->size; 1475 } 1476 return 0; 1477 } 1478 1479 /* Initialize each random sequence freelist per cache */ 1480 static void __init init_freelist_randomization(void) 1481 { 1482 struct kmem_cache *s; 1483 1484 mutex_lock(&slab_mutex); 1485 1486 list_for_each_entry(s, &slab_caches, list) 1487 init_cache_random_seq(s); 1488 1489 mutex_unlock(&slab_mutex); 1490 } 1491 1492 /* Get the next entry on the pre-computed freelist randomized */ 1493 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1494 unsigned long *pos, void *start, 1495 unsigned long page_limit, 1496 unsigned long freelist_count) 1497 { 1498 unsigned int idx; 1499 1500 /* 1501 * If the target page allocation failed, the number of objects on the 1502 * page might be smaller than the usual size defined by the cache. 1503 */ 1504 do { 1505 idx = s->random_seq[*pos]; 1506 *pos += 1; 1507 if (*pos >= freelist_count) 1508 *pos = 0; 1509 } while (unlikely(idx >= page_limit)); 1510 1511 return (char *)start + idx; 1512 } 1513 1514 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1515 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1516 { 1517 void *start; 1518 void *cur; 1519 void *next; 1520 unsigned long idx, pos, page_limit, freelist_count; 1521 1522 if (page->objects < 2 || !s->random_seq) 1523 return false; 1524 1525 freelist_count = oo_objects(s->oo); 1526 pos = get_random_int() % freelist_count; 1527 1528 page_limit = page->objects * s->size; 1529 start = fixup_red_left(s, page_address(page)); 1530 1531 /* First entry is used as the base of the freelist */ 1532 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1533 freelist_count); 1534 page->freelist = cur; 1535 1536 for (idx = 1; idx < page->objects; idx++) { 1537 setup_object(s, page, cur); 1538 next = next_freelist_entry(s, page, &pos, start, page_limit, 1539 freelist_count); 1540 set_freepointer(s, cur, next); 1541 cur = next; 1542 } 1543 setup_object(s, page, cur); 1544 set_freepointer(s, cur, NULL); 1545 1546 return true; 1547 } 1548 #else 1549 static inline int init_cache_random_seq(struct kmem_cache *s) 1550 { 1551 return 0; 1552 } 1553 static inline void init_freelist_randomization(void) { } 1554 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1555 { 1556 return false; 1557 } 1558 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1559 1560 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1561 { 1562 struct page *page; 1563 struct kmem_cache_order_objects oo = s->oo; 1564 gfp_t alloc_gfp; 1565 void *start, *p; 1566 int idx, order; 1567 bool shuffle; 1568 1569 flags &= gfp_allowed_mask; 1570 1571 if (gfpflags_allow_blocking(flags)) 1572 local_irq_enable(); 1573 1574 flags |= s->allocflags; 1575 1576 /* 1577 * Let the initial higher-order allocation fail under memory pressure 1578 * so we fall-back to the minimum order allocation. 1579 */ 1580 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1581 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1582 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1583 1584 page = alloc_slab_page(s, alloc_gfp, node, oo); 1585 if (unlikely(!page)) { 1586 oo = s->min; 1587 alloc_gfp = flags; 1588 /* 1589 * Allocation may have failed due to fragmentation. 1590 * Try a lower order alloc if possible 1591 */ 1592 page = alloc_slab_page(s, alloc_gfp, node, oo); 1593 if (unlikely(!page)) 1594 goto out; 1595 stat(s, ORDER_FALLBACK); 1596 } 1597 1598 page->objects = oo_objects(oo); 1599 1600 order = compound_order(page); 1601 page->slab_cache = s; 1602 __SetPageSlab(page); 1603 if (page_is_pfmemalloc(page)) 1604 SetPageSlabPfmemalloc(page); 1605 1606 start = page_address(page); 1607 1608 if (unlikely(s->flags & SLAB_POISON)) 1609 memset(start, POISON_INUSE, PAGE_SIZE << order); 1610 1611 kasan_poison_slab(page); 1612 1613 shuffle = shuffle_freelist(s, page); 1614 1615 if (!shuffle) { 1616 for_each_object_idx(p, idx, s, start, page->objects) { 1617 setup_object(s, page, p); 1618 if (likely(idx < page->objects)) 1619 set_freepointer(s, p, p + s->size); 1620 else 1621 set_freepointer(s, p, NULL); 1622 } 1623 page->freelist = fixup_red_left(s, start); 1624 } 1625 1626 page->inuse = page->objects; 1627 page->frozen = 1; 1628 1629 out: 1630 if (gfpflags_allow_blocking(flags)) 1631 local_irq_disable(); 1632 if (!page) 1633 return NULL; 1634 1635 mod_lruvec_page_state(page, 1636 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1637 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1638 1 << oo_order(oo)); 1639 1640 inc_slabs_node(s, page_to_nid(page), page->objects); 1641 1642 return page; 1643 } 1644 1645 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1646 { 1647 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1648 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1649 flags &= ~GFP_SLAB_BUG_MASK; 1650 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1651 invalid_mask, &invalid_mask, flags, &flags); 1652 dump_stack(); 1653 } 1654 1655 return allocate_slab(s, 1656 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1657 } 1658 1659 static void __free_slab(struct kmem_cache *s, struct page *page) 1660 { 1661 int order = compound_order(page); 1662 int pages = 1 << order; 1663 1664 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1665 void *p; 1666 1667 slab_pad_check(s, page); 1668 for_each_object(p, s, page_address(page), 1669 page->objects) 1670 check_object(s, page, p, SLUB_RED_INACTIVE); 1671 } 1672 1673 mod_lruvec_page_state(page, 1674 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1675 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1676 -pages); 1677 1678 __ClearPageSlabPfmemalloc(page); 1679 __ClearPageSlab(page); 1680 1681 page->mapping = NULL; 1682 if (current->reclaim_state) 1683 current->reclaim_state->reclaimed_slab += pages; 1684 memcg_uncharge_slab(page, order, s); 1685 __free_pages(page, order); 1686 } 1687 1688 static void rcu_free_slab(struct rcu_head *h) 1689 { 1690 struct page *page = container_of(h, struct page, rcu_head); 1691 1692 __free_slab(page->slab_cache, page); 1693 } 1694 1695 static void free_slab(struct kmem_cache *s, struct page *page) 1696 { 1697 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1698 call_rcu(&page->rcu_head, rcu_free_slab); 1699 } else 1700 __free_slab(s, page); 1701 } 1702 1703 static void discard_slab(struct kmem_cache *s, struct page *page) 1704 { 1705 dec_slabs_node(s, page_to_nid(page), page->objects); 1706 free_slab(s, page); 1707 } 1708 1709 /* 1710 * Management of partially allocated slabs. 1711 */ 1712 static inline void 1713 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1714 { 1715 n->nr_partial++; 1716 if (tail == DEACTIVATE_TO_TAIL) 1717 list_add_tail(&page->lru, &n->partial); 1718 else 1719 list_add(&page->lru, &n->partial); 1720 } 1721 1722 static inline void add_partial(struct kmem_cache_node *n, 1723 struct page *page, int tail) 1724 { 1725 lockdep_assert_held(&n->list_lock); 1726 __add_partial(n, page, tail); 1727 } 1728 1729 static inline void remove_partial(struct kmem_cache_node *n, 1730 struct page *page) 1731 { 1732 lockdep_assert_held(&n->list_lock); 1733 list_del(&page->lru); 1734 n->nr_partial--; 1735 } 1736 1737 /* 1738 * Remove slab from the partial list, freeze it and 1739 * return the pointer to the freelist. 1740 * 1741 * Returns a list of objects or NULL if it fails. 1742 */ 1743 static inline void *acquire_slab(struct kmem_cache *s, 1744 struct kmem_cache_node *n, struct page *page, 1745 int mode, int *objects) 1746 { 1747 void *freelist; 1748 unsigned long counters; 1749 struct page new; 1750 1751 lockdep_assert_held(&n->list_lock); 1752 1753 /* 1754 * Zap the freelist and set the frozen bit. 1755 * The old freelist is the list of objects for the 1756 * per cpu allocation list. 1757 */ 1758 freelist = page->freelist; 1759 counters = page->counters; 1760 new.counters = counters; 1761 *objects = new.objects - new.inuse; 1762 if (mode) { 1763 new.inuse = page->objects; 1764 new.freelist = NULL; 1765 } else { 1766 new.freelist = freelist; 1767 } 1768 1769 VM_BUG_ON(new.frozen); 1770 new.frozen = 1; 1771 1772 if (!__cmpxchg_double_slab(s, page, 1773 freelist, counters, 1774 new.freelist, new.counters, 1775 "acquire_slab")) 1776 return NULL; 1777 1778 remove_partial(n, page); 1779 WARN_ON(!freelist); 1780 return freelist; 1781 } 1782 1783 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1784 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1785 1786 /* 1787 * Try to allocate a partial slab from a specific node. 1788 */ 1789 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1790 struct kmem_cache_cpu *c, gfp_t flags) 1791 { 1792 struct page *page, *page2; 1793 void *object = NULL; 1794 unsigned int available = 0; 1795 int objects; 1796 1797 /* 1798 * Racy check. If we mistakenly see no partial slabs then we 1799 * just allocate an empty slab. If we mistakenly try to get a 1800 * partial slab and there is none available then get_partials() 1801 * will return NULL. 1802 */ 1803 if (!n || !n->nr_partial) 1804 return NULL; 1805 1806 spin_lock(&n->list_lock); 1807 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1808 void *t; 1809 1810 if (!pfmemalloc_match(page, flags)) 1811 continue; 1812 1813 t = acquire_slab(s, n, page, object == NULL, &objects); 1814 if (!t) 1815 break; 1816 1817 available += objects; 1818 if (!object) { 1819 c->page = page; 1820 stat(s, ALLOC_FROM_PARTIAL); 1821 object = t; 1822 } else { 1823 put_cpu_partial(s, page, 0); 1824 stat(s, CPU_PARTIAL_NODE); 1825 } 1826 if (!kmem_cache_has_cpu_partial(s) 1827 || available > slub_cpu_partial(s) / 2) 1828 break; 1829 1830 } 1831 spin_unlock(&n->list_lock); 1832 return object; 1833 } 1834 1835 /* 1836 * Get a page from somewhere. Search in increasing NUMA distances. 1837 */ 1838 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1839 struct kmem_cache_cpu *c) 1840 { 1841 #ifdef CONFIG_NUMA 1842 struct zonelist *zonelist; 1843 struct zoneref *z; 1844 struct zone *zone; 1845 enum zone_type high_zoneidx = gfp_zone(flags); 1846 void *object; 1847 unsigned int cpuset_mems_cookie; 1848 1849 /* 1850 * The defrag ratio allows a configuration of the tradeoffs between 1851 * inter node defragmentation and node local allocations. A lower 1852 * defrag_ratio increases the tendency to do local allocations 1853 * instead of attempting to obtain partial slabs from other nodes. 1854 * 1855 * If the defrag_ratio is set to 0 then kmalloc() always 1856 * returns node local objects. If the ratio is higher then kmalloc() 1857 * may return off node objects because partial slabs are obtained 1858 * from other nodes and filled up. 1859 * 1860 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1861 * (which makes defrag_ratio = 1000) then every (well almost) 1862 * allocation will first attempt to defrag slab caches on other nodes. 1863 * This means scanning over all nodes to look for partial slabs which 1864 * may be expensive if we do it every time we are trying to find a slab 1865 * with available objects. 1866 */ 1867 if (!s->remote_node_defrag_ratio || 1868 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1869 return NULL; 1870 1871 do { 1872 cpuset_mems_cookie = read_mems_allowed_begin(); 1873 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1874 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1875 struct kmem_cache_node *n; 1876 1877 n = get_node(s, zone_to_nid(zone)); 1878 1879 if (n && cpuset_zone_allowed(zone, flags) && 1880 n->nr_partial > s->min_partial) { 1881 object = get_partial_node(s, n, c, flags); 1882 if (object) { 1883 /* 1884 * Don't check read_mems_allowed_retry() 1885 * here - if mems_allowed was updated in 1886 * parallel, that was a harmless race 1887 * between allocation and the cpuset 1888 * update 1889 */ 1890 return object; 1891 } 1892 } 1893 } 1894 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1895 #endif 1896 return NULL; 1897 } 1898 1899 /* 1900 * Get a partial page, lock it and return it. 1901 */ 1902 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1903 struct kmem_cache_cpu *c) 1904 { 1905 void *object; 1906 int searchnode = node; 1907 1908 if (node == NUMA_NO_NODE) 1909 searchnode = numa_mem_id(); 1910 else if (!node_present_pages(node)) 1911 searchnode = node_to_mem_node(node); 1912 1913 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1914 if (object || node != NUMA_NO_NODE) 1915 return object; 1916 1917 return get_any_partial(s, flags, c); 1918 } 1919 1920 #ifdef CONFIG_PREEMPT 1921 /* 1922 * Calculate the next globally unique transaction for disambiguiation 1923 * during cmpxchg. The transactions start with the cpu number and are then 1924 * incremented by CONFIG_NR_CPUS. 1925 */ 1926 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1927 #else 1928 /* 1929 * No preemption supported therefore also no need to check for 1930 * different cpus. 1931 */ 1932 #define TID_STEP 1 1933 #endif 1934 1935 static inline unsigned long next_tid(unsigned long tid) 1936 { 1937 return tid + TID_STEP; 1938 } 1939 1940 static inline unsigned int tid_to_cpu(unsigned long tid) 1941 { 1942 return tid % TID_STEP; 1943 } 1944 1945 static inline unsigned long tid_to_event(unsigned long tid) 1946 { 1947 return tid / TID_STEP; 1948 } 1949 1950 static inline unsigned int init_tid(int cpu) 1951 { 1952 return cpu; 1953 } 1954 1955 static inline void note_cmpxchg_failure(const char *n, 1956 const struct kmem_cache *s, unsigned long tid) 1957 { 1958 #ifdef SLUB_DEBUG_CMPXCHG 1959 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1960 1961 pr_info("%s %s: cmpxchg redo ", n, s->name); 1962 1963 #ifdef CONFIG_PREEMPT 1964 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1965 pr_warn("due to cpu change %d -> %d\n", 1966 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1967 else 1968 #endif 1969 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1970 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1971 tid_to_event(tid), tid_to_event(actual_tid)); 1972 else 1973 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1974 actual_tid, tid, next_tid(tid)); 1975 #endif 1976 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1977 } 1978 1979 static void init_kmem_cache_cpus(struct kmem_cache *s) 1980 { 1981 int cpu; 1982 1983 for_each_possible_cpu(cpu) 1984 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1985 } 1986 1987 /* 1988 * Remove the cpu slab 1989 */ 1990 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1991 void *freelist, struct kmem_cache_cpu *c) 1992 { 1993 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1994 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1995 int lock = 0; 1996 enum slab_modes l = M_NONE, m = M_NONE; 1997 void *nextfree; 1998 int tail = DEACTIVATE_TO_HEAD; 1999 struct page new; 2000 struct page old; 2001 2002 if (page->freelist) { 2003 stat(s, DEACTIVATE_REMOTE_FREES); 2004 tail = DEACTIVATE_TO_TAIL; 2005 } 2006 2007 /* 2008 * Stage one: Free all available per cpu objects back 2009 * to the page freelist while it is still frozen. Leave the 2010 * last one. 2011 * 2012 * There is no need to take the list->lock because the page 2013 * is still frozen. 2014 */ 2015 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2016 void *prior; 2017 unsigned long counters; 2018 2019 do { 2020 prior = page->freelist; 2021 counters = page->counters; 2022 set_freepointer(s, freelist, prior); 2023 new.counters = counters; 2024 new.inuse--; 2025 VM_BUG_ON(!new.frozen); 2026 2027 } while (!__cmpxchg_double_slab(s, page, 2028 prior, counters, 2029 freelist, new.counters, 2030 "drain percpu freelist")); 2031 2032 freelist = nextfree; 2033 } 2034 2035 /* 2036 * Stage two: Ensure that the page is unfrozen while the 2037 * list presence reflects the actual number of objects 2038 * during unfreeze. 2039 * 2040 * We setup the list membership and then perform a cmpxchg 2041 * with the count. If there is a mismatch then the page 2042 * is not unfrozen but the page is on the wrong list. 2043 * 2044 * Then we restart the process which may have to remove 2045 * the page from the list that we just put it on again 2046 * because the number of objects in the slab may have 2047 * changed. 2048 */ 2049 redo: 2050 2051 old.freelist = page->freelist; 2052 old.counters = page->counters; 2053 VM_BUG_ON(!old.frozen); 2054 2055 /* Determine target state of the slab */ 2056 new.counters = old.counters; 2057 if (freelist) { 2058 new.inuse--; 2059 set_freepointer(s, freelist, old.freelist); 2060 new.freelist = freelist; 2061 } else 2062 new.freelist = old.freelist; 2063 2064 new.frozen = 0; 2065 2066 if (!new.inuse && n->nr_partial >= s->min_partial) 2067 m = M_FREE; 2068 else if (new.freelist) { 2069 m = M_PARTIAL; 2070 if (!lock) { 2071 lock = 1; 2072 /* 2073 * Taking the spinlock removes the possiblity 2074 * that acquire_slab() will see a slab page that 2075 * is frozen 2076 */ 2077 spin_lock(&n->list_lock); 2078 } 2079 } else { 2080 m = M_FULL; 2081 if (kmem_cache_debug(s) && !lock) { 2082 lock = 1; 2083 /* 2084 * This also ensures that the scanning of full 2085 * slabs from diagnostic functions will not see 2086 * any frozen slabs. 2087 */ 2088 spin_lock(&n->list_lock); 2089 } 2090 } 2091 2092 if (l != m) { 2093 2094 if (l == M_PARTIAL) 2095 2096 remove_partial(n, page); 2097 2098 else if (l == M_FULL) 2099 2100 remove_full(s, n, page); 2101 2102 if (m == M_PARTIAL) { 2103 2104 add_partial(n, page, tail); 2105 stat(s, tail); 2106 2107 } else if (m == M_FULL) { 2108 2109 stat(s, DEACTIVATE_FULL); 2110 add_full(s, n, page); 2111 2112 } 2113 } 2114 2115 l = m; 2116 if (!__cmpxchg_double_slab(s, page, 2117 old.freelist, old.counters, 2118 new.freelist, new.counters, 2119 "unfreezing slab")) 2120 goto redo; 2121 2122 if (lock) 2123 spin_unlock(&n->list_lock); 2124 2125 if (m == M_FREE) { 2126 stat(s, DEACTIVATE_EMPTY); 2127 discard_slab(s, page); 2128 stat(s, FREE_SLAB); 2129 } 2130 2131 c->page = NULL; 2132 c->freelist = NULL; 2133 } 2134 2135 /* 2136 * Unfreeze all the cpu partial slabs. 2137 * 2138 * This function must be called with interrupts disabled 2139 * for the cpu using c (or some other guarantee must be there 2140 * to guarantee no concurrent accesses). 2141 */ 2142 static void unfreeze_partials(struct kmem_cache *s, 2143 struct kmem_cache_cpu *c) 2144 { 2145 #ifdef CONFIG_SLUB_CPU_PARTIAL 2146 struct kmem_cache_node *n = NULL, *n2 = NULL; 2147 struct page *page, *discard_page = NULL; 2148 2149 while ((page = c->partial)) { 2150 struct page new; 2151 struct page old; 2152 2153 c->partial = page->next; 2154 2155 n2 = get_node(s, page_to_nid(page)); 2156 if (n != n2) { 2157 if (n) 2158 spin_unlock(&n->list_lock); 2159 2160 n = n2; 2161 spin_lock(&n->list_lock); 2162 } 2163 2164 do { 2165 2166 old.freelist = page->freelist; 2167 old.counters = page->counters; 2168 VM_BUG_ON(!old.frozen); 2169 2170 new.counters = old.counters; 2171 new.freelist = old.freelist; 2172 2173 new.frozen = 0; 2174 2175 } while (!__cmpxchg_double_slab(s, page, 2176 old.freelist, old.counters, 2177 new.freelist, new.counters, 2178 "unfreezing slab")); 2179 2180 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2181 page->next = discard_page; 2182 discard_page = page; 2183 } else { 2184 add_partial(n, page, DEACTIVATE_TO_TAIL); 2185 stat(s, FREE_ADD_PARTIAL); 2186 } 2187 } 2188 2189 if (n) 2190 spin_unlock(&n->list_lock); 2191 2192 while (discard_page) { 2193 page = discard_page; 2194 discard_page = discard_page->next; 2195 2196 stat(s, DEACTIVATE_EMPTY); 2197 discard_slab(s, page); 2198 stat(s, FREE_SLAB); 2199 } 2200 #endif 2201 } 2202 2203 /* 2204 * Put a page that was just frozen (in __slab_free) into a partial page 2205 * slot if available. 2206 * 2207 * If we did not find a slot then simply move all the partials to the 2208 * per node partial list. 2209 */ 2210 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2211 { 2212 #ifdef CONFIG_SLUB_CPU_PARTIAL 2213 struct page *oldpage; 2214 int pages; 2215 int pobjects; 2216 2217 preempt_disable(); 2218 do { 2219 pages = 0; 2220 pobjects = 0; 2221 oldpage = this_cpu_read(s->cpu_slab->partial); 2222 2223 if (oldpage) { 2224 pobjects = oldpage->pobjects; 2225 pages = oldpage->pages; 2226 if (drain && pobjects > s->cpu_partial) { 2227 unsigned long flags; 2228 /* 2229 * partial array is full. Move the existing 2230 * set to the per node partial list. 2231 */ 2232 local_irq_save(flags); 2233 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2234 local_irq_restore(flags); 2235 oldpage = NULL; 2236 pobjects = 0; 2237 pages = 0; 2238 stat(s, CPU_PARTIAL_DRAIN); 2239 } 2240 } 2241 2242 pages++; 2243 pobjects += page->objects - page->inuse; 2244 2245 page->pages = pages; 2246 page->pobjects = pobjects; 2247 page->next = oldpage; 2248 2249 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2250 != oldpage); 2251 if (unlikely(!s->cpu_partial)) { 2252 unsigned long flags; 2253 2254 local_irq_save(flags); 2255 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2256 local_irq_restore(flags); 2257 } 2258 preempt_enable(); 2259 #endif 2260 } 2261 2262 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2263 { 2264 stat(s, CPUSLAB_FLUSH); 2265 deactivate_slab(s, c->page, c->freelist, c); 2266 2267 c->tid = next_tid(c->tid); 2268 } 2269 2270 /* 2271 * Flush cpu slab. 2272 * 2273 * Called from IPI handler with interrupts disabled. 2274 */ 2275 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2276 { 2277 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2278 2279 if (likely(c)) { 2280 if (c->page) 2281 flush_slab(s, c); 2282 2283 unfreeze_partials(s, c); 2284 } 2285 } 2286 2287 static void flush_cpu_slab(void *d) 2288 { 2289 struct kmem_cache *s = d; 2290 2291 __flush_cpu_slab(s, smp_processor_id()); 2292 } 2293 2294 static bool has_cpu_slab(int cpu, void *info) 2295 { 2296 struct kmem_cache *s = info; 2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2298 2299 return c->page || slub_percpu_partial(c); 2300 } 2301 2302 static void flush_all(struct kmem_cache *s) 2303 { 2304 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2305 } 2306 2307 /* 2308 * Use the cpu notifier to insure that the cpu slabs are flushed when 2309 * necessary. 2310 */ 2311 static int slub_cpu_dead(unsigned int cpu) 2312 { 2313 struct kmem_cache *s; 2314 unsigned long flags; 2315 2316 mutex_lock(&slab_mutex); 2317 list_for_each_entry(s, &slab_caches, list) { 2318 local_irq_save(flags); 2319 __flush_cpu_slab(s, cpu); 2320 local_irq_restore(flags); 2321 } 2322 mutex_unlock(&slab_mutex); 2323 return 0; 2324 } 2325 2326 /* 2327 * Check if the objects in a per cpu structure fit numa 2328 * locality expectations. 2329 */ 2330 static inline int node_match(struct page *page, int node) 2331 { 2332 #ifdef CONFIG_NUMA 2333 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2334 return 0; 2335 #endif 2336 return 1; 2337 } 2338 2339 #ifdef CONFIG_SLUB_DEBUG 2340 static int count_free(struct page *page) 2341 { 2342 return page->objects - page->inuse; 2343 } 2344 2345 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2346 { 2347 return atomic_long_read(&n->total_objects); 2348 } 2349 #endif /* CONFIG_SLUB_DEBUG */ 2350 2351 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2352 static unsigned long count_partial(struct kmem_cache_node *n, 2353 int (*get_count)(struct page *)) 2354 { 2355 unsigned long flags; 2356 unsigned long x = 0; 2357 struct page *page; 2358 2359 spin_lock_irqsave(&n->list_lock, flags); 2360 list_for_each_entry(page, &n->partial, lru) 2361 x += get_count(page); 2362 spin_unlock_irqrestore(&n->list_lock, flags); 2363 return x; 2364 } 2365 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2366 2367 static noinline void 2368 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2369 { 2370 #ifdef CONFIG_SLUB_DEBUG 2371 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2372 DEFAULT_RATELIMIT_BURST); 2373 int node; 2374 struct kmem_cache_node *n; 2375 2376 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2377 return; 2378 2379 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2380 nid, gfpflags, &gfpflags); 2381 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2382 s->name, s->object_size, s->size, oo_order(s->oo), 2383 oo_order(s->min)); 2384 2385 if (oo_order(s->min) > get_order(s->object_size)) 2386 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2387 s->name); 2388 2389 for_each_kmem_cache_node(s, node, n) { 2390 unsigned long nr_slabs; 2391 unsigned long nr_objs; 2392 unsigned long nr_free; 2393 2394 nr_free = count_partial(n, count_free); 2395 nr_slabs = node_nr_slabs(n); 2396 nr_objs = node_nr_objs(n); 2397 2398 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2399 node, nr_slabs, nr_objs, nr_free); 2400 } 2401 #endif 2402 } 2403 2404 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2405 int node, struct kmem_cache_cpu **pc) 2406 { 2407 void *freelist; 2408 struct kmem_cache_cpu *c = *pc; 2409 struct page *page; 2410 2411 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2412 2413 freelist = get_partial(s, flags, node, c); 2414 2415 if (freelist) 2416 return freelist; 2417 2418 page = new_slab(s, flags, node); 2419 if (page) { 2420 c = raw_cpu_ptr(s->cpu_slab); 2421 if (c->page) 2422 flush_slab(s, c); 2423 2424 /* 2425 * No other reference to the page yet so we can 2426 * muck around with it freely without cmpxchg 2427 */ 2428 freelist = page->freelist; 2429 page->freelist = NULL; 2430 2431 stat(s, ALLOC_SLAB); 2432 c->page = page; 2433 *pc = c; 2434 } else 2435 freelist = NULL; 2436 2437 return freelist; 2438 } 2439 2440 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2441 { 2442 if (unlikely(PageSlabPfmemalloc(page))) 2443 return gfp_pfmemalloc_allowed(gfpflags); 2444 2445 return true; 2446 } 2447 2448 /* 2449 * Check the page->freelist of a page and either transfer the freelist to the 2450 * per cpu freelist or deactivate the page. 2451 * 2452 * The page is still frozen if the return value is not NULL. 2453 * 2454 * If this function returns NULL then the page has been unfrozen. 2455 * 2456 * This function must be called with interrupt disabled. 2457 */ 2458 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2459 { 2460 struct page new; 2461 unsigned long counters; 2462 void *freelist; 2463 2464 do { 2465 freelist = page->freelist; 2466 counters = page->counters; 2467 2468 new.counters = counters; 2469 VM_BUG_ON(!new.frozen); 2470 2471 new.inuse = page->objects; 2472 new.frozen = freelist != NULL; 2473 2474 } while (!__cmpxchg_double_slab(s, page, 2475 freelist, counters, 2476 NULL, new.counters, 2477 "get_freelist")); 2478 2479 return freelist; 2480 } 2481 2482 /* 2483 * Slow path. The lockless freelist is empty or we need to perform 2484 * debugging duties. 2485 * 2486 * Processing is still very fast if new objects have been freed to the 2487 * regular freelist. In that case we simply take over the regular freelist 2488 * as the lockless freelist and zap the regular freelist. 2489 * 2490 * If that is not working then we fall back to the partial lists. We take the 2491 * first element of the freelist as the object to allocate now and move the 2492 * rest of the freelist to the lockless freelist. 2493 * 2494 * And if we were unable to get a new slab from the partial slab lists then 2495 * we need to allocate a new slab. This is the slowest path since it involves 2496 * a call to the page allocator and the setup of a new slab. 2497 * 2498 * Version of __slab_alloc to use when we know that interrupts are 2499 * already disabled (which is the case for bulk allocation). 2500 */ 2501 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2502 unsigned long addr, struct kmem_cache_cpu *c) 2503 { 2504 void *freelist; 2505 struct page *page; 2506 2507 page = c->page; 2508 if (!page) 2509 goto new_slab; 2510 redo: 2511 2512 if (unlikely(!node_match(page, node))) { 2513 int searchnode = node; 2514 2515 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2516 searchnode = node_to_mem_node(node); 2517 2518 if (unlikely(!node_match(page, searchnode))) { 2519 stat(s, ALLOC_NODE_MISMATCH); 2520 deactivate_slab(s, page, c->freelist, c); 2521 goto new_slab; 2522 } 2523 } 2524 2525 /* 2526 * By rights, we should be searching for a slab page that was 2527 * PFMEMALLOC but right now, we are losing the pfmemalloc 2528 * information when the page leaves the per-cpu allocator 2529 */ 2530 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2531 deactivate_slab(s, page, c->freelist, c); 2532 goto new_slab; 2533 } 2534 2535 /* must check again c->freelist in case of cpu migration or IRQ */ 2536 freelist = c->freelist; 2537 if (freelist) 2538 goto load_freelist; 2539 2540 freelist = get_freelist(s, page); 2541 2542 if (!freelist) { 2543 c->page = NULL; 2544 stat(s, DEACTIVATE_BYPASS); 2545 goto new_slab; 2546 } 2547 2548 stat(s, ALLOC_REFILL); 2549 2550 load_freelist: 2551 /* 2552 * freelist is pointing to the list of objects to be used. 2553 * page is pointing to the page from which the objects are obtained. 2554 * That page must be frozen for per cpu allocations to work. 2555 */ 2556 VM_BUG_ON(!c->page->frozen); 2557 c->freelist = get_freepointer(s, freelist); 2558 c->tid = next_tid(c->tid); 2559 return freelist; 2560 2561 new_slab: 2562 2563 if (slub_percpu_partial(c)) { 2564 page = c->page = slub_percpu_partial(c); 2565 slub_set_percpu_partial(c, page); 2566 stat(s, CPU_PARTIAL_ALLOC); 2567 goto redo; 2568 } 2569 2570 freelist = new_slab_objects(s, gfpflags, node, &c); 2571 2572 if (unlikely(!freelist)) { 2573 slab_out_of_memory(s, gfpflags, node); 2574 return NULL; 2575 } 2576 2577 page = c->page; 2578 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2579 goto load_freelist; 2580 2581 /* Only entered in the debug case */ 2582 if (kmem_cache_debug(s) && 2583 !alloc_debug_processing(s, page, freelist, addr)) 2584 goto new_slab; /* Slab failed checks. Next slab needed */ 2585 2586 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2587 return freelist; 2588 } 2589 2590 /* 2591 * Another one that disabled interrupt and compensates for possible 2592 * cpu changes by refetching the per cpu area pointer. 2593 */ 2594 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2595 unsigned long addr, struct kmem_cache_cpu *c) 2596 { 2597 void *p; 2598 unsigned long flags; 2599 2600 local_irq_save(flags); 2601 #ifdef CONFIG_PREEMPT 2602 /* 2603 * We may have been preempted and rescheduled on a different 2604 * cpu before disabling interrupts. Need to reload cpu area 2605 * pointer. 2606 */ 2607 c = this_cpu_ptr(s->cpu_slab); 2608 #endif 2609 2610 p = ___slab_alloc(s, gfpflags, node, addr, c); 2611 local_irq_restore(flags); 2612 return p; 2613 } 2614 2615 /* 2616 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2617 * have the fastpath folded into their functions. So no function call 2618 * overhead for requests that can be satisfied on the fastpath. 2619 * 2620 * The fastpath works by first checking if the lockless freelist can be used. 2621 * If not then __slab_alloc is called for slow processing. 2622 * 2623 * Otherwise we can simply pick the next object from the lockless free list. 2624 */ 2625 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2626 gfp_t gfpflags, int node, unsigned long addr) 2627 { 2628 void *object; 2629 struct kmem_cache_cpu *c; 2630 struct page *page; 2631 unsigned long tid; 2632 2633 s = slab_pre_alloc_hook(s, gfpflags); 2634 if (!s) 2635 return NULL; 2636 redo: 2637 /* 2638 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2639 * enabled. We may switch back and forth between cpus while 2640 * reading from one cpu area. That does not matter as long 2641 * as we end up on the original cpu again when doing the cmpxchg. 2642 * 2643 * We should guarantee that tid and kmem_cache are retrieved on 2644 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2645 * to check if it is matched or not. 2646 */ 2647 do { 2648 tid = this_cpu_read(s->cpu_slab->tid); 2649 c = raw_cpu_ptr(s->cpu_slab); 2650 } while (IS_ENABLED(CONFIG_PREEMPT) && 2651 unlikely(tid != READ_ONCE(c->tid))); 2652 2653 /* 2654 * Irqless object alloc/free algorithm used here depends on sequence 2655 * of fetching cpu_slab's data. tid should be fetched before anything 2656 * on c to guarantee that object and page associated with previous tid 2657 * won't be used with current tid. If we fetch tid first, object and 2658 * page could be one associated with next tid and our alloc/free 2659 * request will be failed. In this case, we will retry. So, no problem. 2660 */ 2661 barrier(); 2662 2663 /* 2664 * The transaction ids are globally unique per cpu and per operation on 2665 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2666 * occurs on the right processor and that there was no operation on the 2667 * linked list in between. 2668 */ 2669 2670 object = c->freelist; 2671 page = c->page; 2672 if (unlikely(!object || !node_match(page, node))) { 2673 object = __slab_alloc(s, gfpflags, node, addr, c); 2674 stat(s, ALLOC_SLOWPATH); 2675 } else { 2676 void *next_object = get_freepointer_safe(s, object); 2677 2678 /* 2679 * The cmpxchg will only match if there was no additional 2680 * operation and if we are on the right processor. 2681 * 2682 * The cmpxchg does the following atomically (without lock 2683 * semantics!) 2684 * 1. Relocate first pointer to the current per cpu area. 2685 * 2. Verify that tid and freelist have not been changed 2686 * 3. If they were not changed replace tid and freelist 2687 * 2688 * Since this is without lock semantics the protection is only 2689 * against code executing on this cpu *not* from access by 2690 * other cpus. 2691 */ 2692 if (unlikely(!this_cpu_cmpxchg_double( 2693 s->cpu_slab->freelist, s->cpu_slab->tid, 2694 object, tid, 2695 next_object, next_tid(tid)))) { 2696 2697 note_cmpxchg_failure("slab_alloc", s, tid); 2698 goto redo; 2699 } 2700 prefetch_freepointer(s, next_object); 2701 stat(s, ALLOC_FASTPATH); 2702 } 2703 2704 if (unlikely(gfpflags & __GFP_ZERO) && object) 2705 memset(object, 0, s->object_size); 2706 2707 slab_post_alloc_hook(s, gfpflags, 1, &object); 2708 2709 return object; 2710 } 2711 2712 static __always_inline void *slab_alloc(struct kmem_cache *s, 2713 gfp_t gfpflags, unsigned long addr) 2714 { 2715 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2716 } 2717 2718 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2719 { 2720 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2721 2722 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2723 s->size, gfpflags); 2724 2725 return ret; 2726 } 2727 EXPORT_SYMBOL(kmem_cache_alloc); 2728 2729 #ifdef CONFIG_TRACING 2730 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2731 { 2732 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2733 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2734 kasan_kmalloc(s, ret, size, gfpflags); 2735 return ret; 2736 } 2737 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2738 #endif 2739 2740 #ifdef CONFIG_NUMA 2741 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2742 { 2743 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2744 2745 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2746 s->object_size, s->size, gfpflags, node); 2747 2748 return ret; 2749 } 2750 EXPORT_SYMBOL(kmem_cache_alloc_node); 2751 2752 #ifdef CONFIG_TRACING 2753 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2754 gfp_t gfpflags, 2755 int node, size_t size) 2756 { 2757 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2758 2759 trace_kmalloc_node(_RET_IP_, ret, 2760 size, s->size, gfpflags, node); 2761 2762 kasan_kmalloc(s, ret, size, gfpflags); 2763 return ret; 2764 } 2765 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2766 #endif 2767 #endif 2768 2769 /* 2770 * Slow path handling. This may still be called frequently since objects 2771 * have a longer lifetime than the cpu slabs in most processing loads. 2772 * 2773 * So we still attempt to reduce cache line usage. Just take the slab 2774 * lock and free the item. If there is no additional partial page 2775 * handling required then we can return immediately. 2776 */ 2777 static void __slab_free(struct kmem_cache *s, struct page *page, 2778 void *head, void *tail, int cnt, 2779 unsigned long addr) 2780 2781 { 2782 void *prior; 2783 int was_frozen; 2784 struct page new; 2785 unsigned long counters; 2786 struct kmem_cache_node *n = NULL; 2787 unsigned long uninitialized_var(flags); 2788 2789 stat(s, FREE_SLOWPATH); 2790 2791 if (kmem_cache_debug(s) && 2792 !free_debug_processing(s, page, head, tail, cnt, addr)) 2793 return; 2794 2795 do { 2796 if (unlikely(n)) { 2797 spin_unlock_irqrestore(&n->list_lock, flags); 2798 n = NULL; 2799 } 2800 prior = page->freelist; 2801 counters = page->counters; 2802 set_freepointer(s, tail, prior); 2803 new.counters = counters; 2804 was_frozen = new.frozen; 2805 new.inuse -= cnt; 2806 if ((!new.inuse || !prior) && !was_frozen) { 2807 2808 if (kmem_cache_has_cpu_partial(s) && !prior) { 2809 2810 /* 2811 * Slab was on no list before and will be 2812 * partially empty 2813 * We can defer the list move and instead 2814 * freeze it. 2815 */ 2816 new.frozen = 1; 2817 2818 } else { /* Needs to be taken off a list */ 2819 2820 n = get_node(s, page_to_nid(page)); 2821 /* 2822 * Speculatively acquire the list_lock. 2823 * If the cmpxchg does not succeed then we may 2824 * drop the list_lock without any processing. 2825 * 2826 * Otherwise the list_lock will synchronize with 2827 * other processors updating the list of slabs. 2828 */ 2829 spin_lock_irqsave(&n->list_lock, flags); 2830 2831 } 2832 } 2833 2834 } while (!cmpxchg_double_slab(s, page, 2835 prior, counters, 2836 head, new.counters, 2837 "__slab_free")); 2838 2839 if (likely(!n)) { 2840 2841 /* 2842 * If we just froze the page then put it onto the 2843 * per cpu partial list. 2844 */ 2845 if (new.frozen && !was_frozen) { 2846 put_cpu_partial(s, page, 1); 2847 stat(s, CPU_PARTIAL_FREE); 2848 } 2849 /* 2850 * The list lock was not taken therefore no list 2851 * activity can be necessary. 2852 */ 2853 if (was_frozen) 2854 stat(s, FREE_FROZEN); 2855 return; 2856 } 2857 2858 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2859 goto slab_empty; 2860 2861 /* 2862 * Objects left in the slab. If it was not on the partial list before 2863 * then add it. 2864 */ 2865 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2866 if (kmem_cache_debug(s)) 2867 remove_full(s, n, page); 2868 add_partial(n, page, DEACTIVATE_TO_TAIL); 2869 stat(s, FREE_ADD_PARTIAL); 2870 } 2871 spin_unlock_irqrestore(&n->list_lock, flags); 2872 return; 2873 2874 slab_empty: 2875 if (prior) { 2876 /* 2877 * Slab on the partial list. 2878 */ 2879 remove_partial(n, page); 2880 stat(s, FREE_REMOVE_PARTIAL); 2881 } else { 2882 /* Slab must be on the full list */ 2883 remove_full(s, n, page); 2884 } 2885 2886 spin_unlock_irqrestore(&n->list_lock, flags); 2887 stat(s, FREE_SLAB); 2888 discard_slab(s, page); 2889 } 2890 2891 /* 2892 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2893 * can perform fastpath freeing without additional function calls. 2894 * 2895 * The fastpath is only possible if we are freeing to the current cpu slab 2896 * of this processor. This typically the case if we have just allocated 2897 * the item before. 2898 * 2899 * If fastpath is not possible then fall back to __slab_free where we deal 2900 * with all sorts of special processing. 2901 * 2902 * Bulk free of a freelist with several objects (all pointing to the 2903 * same page) possible by specifying head and tail ptr, plus objects 2904 * count (cnt). Bulk free indicated by tail pointer being set. 2905 */ 2906 static __always_inline void do_slab_free(struct kmem_cache *s, 2907 struct page *page, void *head, void *tail, 2908 int cnt, unsigned long addr) 2909 { 2910 void *tail_obj = tail ? : head; 2911 struct kmem_cache_cpu *c; 2912 unsigned long tid; 2913 redo: 2914 /* 2915 * Determine the currently cpus per cpu slab. 2916 * The cpu may change afterward. However that does not matter since 2917 * data is retrieved via this pointer. If we are on the same cpu 2918 * during the cmpxchg then the free will succeed. 2919 */ 2920 do { 2921 tid = this_cpu_read(s->cpu_slab->tid); 2922 c = raw_cpu_ptr(s->cpu_slab); 2923 } while (IS_ENABLED(CONFIG_PREEMPT) && 2924 unlikely(tid != READ_ONCE(c->tid))); 2925 2926 /* Same with comment on barrier() in slab_alloc_node() */ 2927 barrier(); 2928 2929 if (likely(page == c->page)) { 2930 set_freepointer(s, tail_obj, c->freelist); 2931 2932 if (unlikely(!this_cpu_cmpxchg_double( 2933 s->cpu_slab->freelist, s->cpu_slab->tid, 2934 c->freelist, tid, 2935 head, next_tid(tid)))) { 2936 2937 note_cmpxchg_failure("slab_free", s, tid); 2938 goto redo; 2939 } 2940 stat(s, FREE_FASTPATH); 2941 } else 2942 __slab_free(s, page, head, tail_obj, cnt, addr); 2943 2944 } 2945 2946 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2947 void *head, void *tail, int cnt, 2948 unsigned long addr) 2949 { 2950 /* 2951 * With KASAN enabled slab_free_freelist_hook modifies the freelist 2952 * to remove objects, whose reuse must be delayed. 2953 */ 2954 if (slab_free_freelist_hook(s, &head, &tail)) 2955 do_slab_free(s, page, head, tail, cnt, addr); 2956 } 2957 2958 #ifdef CONFIG_KASAN 2959 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2960 { 2961 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2962 } 2963 #endif 2964 2965 void kmem_cache_free(struct kmem_cache *s, void *x) 2966 { 2967 s = cache_from_obj(s, x); 2968 if (!s) 2969 return; 2970 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2971 trace_kmem_cache_free(_RET_IP_, x); 2972 } 2973 EXPORT_SYMBOL(kmem_cache_free); 2974 2975 struct detached_freelist { 2976 struct page *page; 2977 void *tail; 2978 void *freelist; 2979 int cnt; 2980 struct kmem_cache *s; 2981 }; 2982 2983 /* 2984 * This function progressively scans the array with free objects (with 2985 * a limited look ahead) and extract objects belonging to the same 2986 * page. It builds a detached freelist directly within the given 2987 * page/objects. This can happen without any need for 2988 * synchronization, because the objects are owned by running process. 2989 * The freelist is build up as a single linked list in the objects. 2990 * The idea is, that this detached freelist can then be bulk 2991 * transferred to the real freelist(s), but only requiring a single 2992 * synchronization primitive. Look ahead in the array is limited due 2993 * to performance reasons. 2994 */ 2995 static inline 2996 int build_detached_freelist(struct kmem_cache *s, size_t size, 2997 void **p, struct detached_freelist *df) 2998 { 2999 size_t first_skipped_index = 0; 3000 int lookahead = 3; 3001 void *object; 3002 struct page *page; 3003 3004 /* Always re-init detached_freelist */ 3005 df->page = NULL; 3006 3007 do { 3008 object = p[--size]; 3009 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3010 } while (!object && size); 3011 3012 if (!object) 3013 return 0; 3014 3015 page = virt_to_head_page(object); 3016 if (!s) { 3017 /* Handle kalloc'ed objects */ 3018 if (unlikely(!PageSlab(page))) { 3019 BUG_ON(!PageCompound(page)); 3020 kfree_hook(object); 3021 __free_pages(page, compound_order(page)); 3022 p[size] = NULL; /* mark object processed */ 3023 return size; 3024 } 3025 /* Derive kmem_cache from object */ 3026 df->s = page->slab_cache; 3027 } else { 3028 df->s = cache_from_obj(s, object); /* Support for memcg */ 3029 } 3030 3031 /* Start new detached freelist */ 3032 df->page = page; 3033 set_freepointer(df->s, object, NULL); 3034 df->tail = object; 3035 df->freelist = object; 3036 p[size] = NULL; /* mark object processed */ 3037 df->cnt = 1; 3038 3039 while (size) { 3040 object = p[--size]; 3041 if (!object) 3042 continue; /* Skip processed objects */ 3043 3044 /* df->page is always set at this point */ 3045 if (df->page == virt_to_head_page(object)) { 3046 /* Opportunity build freelist */ 3047 set_freepointer(df->s, object, df->freelist); 3048 df->freelist = object; 3049 df->cnt++; 3050 p[size] = NULL; /* mark object processed */ 3051 3052 continue; 3053 } 3054 3055 /* Limit look ahead search */ 3056 if (!--lookahead) 3057 break; 3058 3059 if (!first_skipped_index) 3060 first_skipped_index = size + 1; 3061 } 3062 3063 return first_skipped_index; 3064 } 3065 3066 /* Note that interrupts must be enabled when calling this function. */ 3067 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3068 { 3069 if (WARN_ON(!size)) 3070 return; 3071 3072 do { 3073 struct detached_freelist df; 3074 3075 size = build_detached_freelist(s, size, p, &df); 3076 if (!df.page) 3077 continue; 3078 3079 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3080 } while (likely(size)); 3081 } 3082 EXPORT_SYMBOL(kmem_cache_free_bulk); 3083 3084 /* Note that interrupts must be enabled when calling this function. */ 3085 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3086 void **p) 3087 { 3088 struct kmem_cache_cpu *c; 3089 int i; 3090 3091 /* memcg and kmem_cache debug support */ 3092 s = slab_pre_alloc_hook(s, flags); 3093 if (unlikely(!s)) 3094 return false; 3095 /* 3096 * Drain objects in the per cpu slab, while disabling local 3097 * IRQs, which protects against PREEMPT and interrupts 3098 * handlers invoking normal fastpath. 3099 */ 3100 local_irq_disable(); 3101 c = this_cpu_ptr(s->cpu_slab); 3102 3103 for (i = 0; i < size; i++) { 3104 void *object = c->freelist; 3105 3106 if (unlikely(!object)) { 3107 /* 3108 * Invoking slow path likely have side-effect 3109 * of re-populating per CPU c->freelist 3110 */ 3111 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3112 _RET_IP_, c); 3113 if (unlikely(!p[i])) 3114 goto error; 3115 3116 c = this_cpu_ptr(s->cpu_slab); 3117 continue; /* goto for-loop */ 3118 } 3119 c->freelist = get_freepointer(s, object); 3120 p[i] = object; 3121 } 3122 c->tid = next_tid(c->tid); 3123 local_irq_enable(); 3124 3125 /* Clear memory outside IRQ disabled fastpath loop */ 3126 if (unlikely(flags & __GFP_ZERO)) { 3127 int j; 3128 3129 for (j = 0; j < i; j++) 3130 memset(p[j], 0, s->object_size); 3131 } 3132 3133 /* memcg and kmem_cache debug support */ 3134 slab_post_alloc_hook(s, flags, size, p); 3135 return i; 3136 error: 3137 local_irq_enable(); 3138 slab_post_alloc_hook(s, flags, i, p); 3139 __kmem_cache_free_bulk(s, i, p); 3140 return 0; 3141 } 3142 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3143 3144 3145 /* 3146 * Object placement in a slab is made very easy because we always start at 3147 * offset 0. If we tune the size of the object to the alignment then we can 3148 * get the required alignment by putting one properly sized object after 3149 * another. 3150 * 3151 * Notice that the allocation order determines the sizes of the per cpu 3152 * caches. Each processor has always one slab available for allocations. 3153 * Increasing the allocation order reduces the number of times that slabs 3154 * must be moved on and off the partial lists and is therefore a factor in 3155 * locking overhead. 3156 */ 3157 3158 /* 3159 * Mininum / Maximum order of slab pages. This influences locking overhead 3160 * and slab fragmentation. A higher order reduces the number of partial slabs 3161 * and increases the number of allocations possible without having to 3162 * take the list_lock. 3163 */ 3164 static unsigned int slub_min_order; 3165 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3166 static unsigned int slub_min_objects; 3167 3168 /* 3169 * Calculate the order of allocation given an slab object size. 3170 * 3171 * The order of allocation has significant impact on performance and other 3172 * system components. Generally order 0 allocations should be preferred since 3173 * order 0 does not cause fragmentation in the page allocator. Larger objects 3174 * be problematic to put into order 0 slabs because there may be too much 3175 * unused space left. We go to a higher order if more than 1/16th of the slab 3176 * would be wasted. 3177 * 3178 * In order to reach satisfactory performance we must ensure that a minimum 3179 * number of objects is in one slab. Otherwise we may generate too much 3180 * activity on the partial lists which requires taking the list_lock. This is 3181 * less a concern for large slabs though which are rarely used. 3182 * 3183 * slub_max_order specifies the order where we begin to stop considering the 3184 * number of objects in a slab as critical. If we reach slub_max_order then 3185 * we try to keep the page order as low as possible. So we accept more waste 3186 * of space in favor of a small page order. 3187 * 3188 * Higher order allocations also allow the placement of more objects in a 3189 * slab and thereby reduce object handling overhead. If the user has 3190 * requested a higher mininum order then we start with that one instead of 3191 * the smallest order which will fit the object. 3192 */ 3193 static inline unsigned int slab_order(unsigned int size, 3194 unsigned int min_objects, unsigned int max_order, 3195 unsigned int fract_leftover) 3196 { 3197 unsigned int min_order = slub_min_order; 3198 unsigned int order; 3199 3200 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3201 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3202 3203 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3204 order <= max_order; order++) { 3205 3206 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3207 unsigned int rem; 3208 3209 rem = slab_size % size; 3210 3211 if (rem <= slab_size / fract_leftover) 3212 break; 3213 } 3214 3215 return order; 3216 } 3217 3218 static inline int calculate_order(unsigned int size) 3219 { 3220 unsigned int order; 3221 unsigned int min_objects; 3222 unsigned int max_objects; 3223 3224 /* 3225 * Attempt to find best configuration for a slab. This 3226 * works by first attempting to generate a layout with 3227 * the best configuration and backing off gradually. 3228 * 3229 * First we increase the acceptable waste in a slab. Then 3230 * we reduce the minimum objects required in a slab. 3231 */ 3232 min_objects = slub_min_objects; 3233 if (!min_objects) 3234 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3235 max_objects = order_objects(slub_max_order, size); 3236 min_objects = min(min_objects, max_objects); 3237 3238 while (min_objects > 1) { 3239 unsigned int fraction; 3240 3241 fraction = 16; 3242 while (fraction >= 4) { 3243 order = slab_order(size, min_objects, 3244 slub_max_order, fraction); 3245 if (order <= slub_max_order) 3246 return order; 3247 fraction /= 2; 3248 } 3249 min_objects--; 3250 } 3251 3252 /* 3253 * We were unable to place multiple objects in a slab. Now 3254 * lets see if we can place a single object there. 3255 */ 3256 order = slab_order(size, 1, slub_max_order, 1); 3257 if (order <= slub_max_order) 3258 return order; 3259 3260 /* 3261 * Doh this slab cannot be placed using slub_max_order. 3262 */ 3263 order = slab_order(size, 1, MAX_ORDER, 1); 3264 if (order < MAX_ORDER) 3265 return order; 3266 return -ENOSYS; 3267 } 3268 3269 static void 3270 init_kmem_cache_node(struct kmem_cache_node *n) 3271 { 3272 n->nr_partial = 0; 3273 spin_lock_init(&n->list_lock); 3274 INIT_LIST_HEAD(&n->partial); 3275 #ifdef CONFIG_SLUB_DEBUG 3276 atomic_long_set(&n->nr_slabs, 0); 3277 atomic_long_set(&n->total_objects, 0); 3278 INIT_LIST_HEAD(&n->full); 3279 #endif 3280 } 3281 3282 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3283 { 3284 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3285 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3286 3287 /* 3288 * Must align to double word boundary for the double cmpxchg 3289 * instructions to work; see __pcpu_double_call_return_bool(). 3290 */ 3291 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3292 2 * sizeof(void *)); 3293 3294 if (!s->cpu_slab) 3295 return 0; 3296 3297 init_kmem_cache_cpus(s); 3298 3299 return 1; 3300 } 3301 3302 static struct kmem_cache *kmem_cache_node; 3303 3304 /* 3305 * No kmalloc_node yet so do it by hand. We know that this is the first 3306 * slab on the node for this slabcache. There are no concurrent accesses 3307 * possible. 3308 * 3309 * Note that this function only works on the kmem_cache_node 3310 * when allocating for the kmem_cache_node. This is used for bootstrapping 3311 * memory on a fresh node that has no slab structures yet. 3312 */ 3313 static void early_kmem_cache_node_alloc(int node) 3314 { 3315 struct page *page; 3316 struct kmem_cache_node *n; 3317 3318 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3319 3320 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3321 3322 BUG_ON(!page); 3323 if (page_to_nid(page) != node) { 3324 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3325 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3326 } 3327 3328 n = page->freelist; 3329 BUG_ON(!n); 3330 page->freelist = get_freepointer(kmem_cache_node, n); 3331 page->inuse = 1; 3332 page->frozen = 0; 3333 kmem_cache_node->node[node] = n; 3334 #ifdef CONFIG_SLUB_DEBUG 3335 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3336 init_tracking(kmem_cache_node, n); 3337 #endif 3338 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3339 GFP_KERNEL); 3340 init_kmem_cache_node(n); 3341 inc_slabs_node(kmem_cache_node, node, page->objects); 3342 3343 /* 3344 * No locks need to be taken here as it has just been 3345 * initialized and there is no concurrent access. 3346 */ 3347 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3348 } 3349 3350 static void free_kmem_cache_nodes(struct kmem_cache *s) 3351 { 3352 int node; 3353 struct kmem_cache_node *n; 3354 3355 for_each_kmem_cache_node(s, node, n) { 3356 s->node[node] = NULL; 3357 kmem_cache_free(kmem_cache_node, n); 3358 } 3359 } 3360 3361 void __kmem_cache_release(struct kmem_cache *s) 3362 { 3363 cache_random_seq_destroy(s); 3364 free_percpu(s->cpu_slab); 3365 free_kmem_cache_nodes(s); 3366 } 3367 3368 static int init_kmem_cache_nodes(struct kmem_cache *s) 3369 { 3370 int node; 3371 3372 for_each_node_state(node, N_NORMAL_MEMORY) { 3373 struct kmem_cache_node *n; 3374 3375 if (slab_state == DOWN) { 3376 early_kmem_cache_node_alloc(node); 3377 continue; 3378 } 3379 n = kmem_cache_alloc_node(kmem_cache_node, 3380 GFP_KERNEL, node); 3381 3382 if (!n) { 3383 free_kmem_cache_nodes(s); 3384 return 0; 3385 } 3386 3387 init_kmem_cache_node(n); 3388 s->node[node] = n; 3389 } 3390 return 1; 3391 } 3392 3393 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3394 { 3395 if (min < MIN_PARTIAL) 3396 min = MIN_PARTIAL; 3397 else if (min > MAX_PARTIAL) 3398 min = MAX_PARTIAL; 3399 s->min_partial = min; 3400 } 3401 3402 static void set_cpu_partial(struct kmem_cache *s) 3403 { 3404 #ifdef CONFIG_SLUB_CPU_PARTIAL 3405 /* 3406 * cpu_partial determined the maximum number of objects kept in the 3407 * per cpu partial lists of a processor. 3408 * 3409 * Per cpu partial lists mainly contain slabs that just have one 3410 * object freed. If they are used for allocation then they can be 3411 * filled up again with minimal effort. The slab will never hit the 3412 * per node partial lists and therefore no locking will be required. 3413 * 3414 * This setting also determines 3415 * 3416 * A) The number of objects from per cpu partial slabs dumped to the 3417 * per node list when we reach the limit. 3418 * B) The number of objects in cpu partial slabs to extract from the 3419 * per node list when we run out of per cpu objects. We only fetch 3420 * 50% to keep some capacity around for frees. 3421 */ 3422 if (!kmem_cache_has_cpu_partial(s)) 3423 s->cpu_partial = 0; 3424 else if (s->size >= PAGE_SIZE) 3425 s->cpu_partial = 2; 3426 else if (s->size >= 1024) 3427 s->cpu_partial = 6; 3428 else if (s->size >= 256) 3429 s->cpu_partial = 13; 3430 else 3431 s->cpu_partial = 30; 3432 #endif 3433 } 3434 3435 /* 3436 * calculate_sizes() determines the order and the distribution of data within 3437 * a slab object. 3438 */ 3439 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3440 { 3441 slab_flags_t flags = s->flags; 3442 unsigned int size = s->object_size; 3443 unsigned int order; 3444 3445 /* 3446 * Round up object size to the next word boundary. We can only 3447 * place the free pointer at word boundaries and this determines 3448 * the possible location of the free pointer. 3449 */ 3450 size = ALIGN(size, sizeof(void *)); 3451 3452 #ifdef CONFIG_SLUB_DEBUG 3453 /* 3454 * Determine if we can poison the object itself. If the user of 3455 * the slab may touch the object after free or before allocation 3456 * then we should never poison the object itself. 3457 */ 3458 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3459 !s->ctor) 3460 s->flags |= __OBJECT_POISON; 3461 else 3462 s->flags &= ~__OBJECT_POISON; 3463 3464 3465 /* 3466 * If we are Redzoning then check if there is some space between the 3467 * end of the object and the free pointer. If not then add an 3468 * additional word to have some bytes to store Redzone information. 3469 */ 3470 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3471 size += sizeof(void *); 3472 #endif 3473 3474 /* 3475 * With that we have determined the number of bytes in actual use 3476 * by the object. This is the potential offset to the free pointer. 3477 */ 3478 s->inuse = size; 3479 3480 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3481 s->ctor)) { 3482 /* 3483 * Relocate free pointer after the object if it is not 3484 * permitted to overwrite the first word of the object on 3485 * kmem_cache_free. 3486 * 3487 * This is the case if we do RCU, have a constructor or 3488 * destructor or are poisoning the objects. 3489 */ 3490 s->offset = size; 3491 size += sizeof(void *); 3492 } 3493 3494 #ifdef CONFIG_SLUB_DEBUG 3495 if (flags & SLAB_STORE_USER) 3496 /* 3497 * Need to store information about allocs and frees after 3498 * the object. 3499 */ 3500 size += 2 * sizeof(struct track); 3501 #endif 3502 3503 kasan_cache_create(s, &size, &s->flags); 3504 #ifdef CONFIG_SLUB_DEBUG 3505 if (flags & SLAB_RED_ZONE) { 3506 /* 3507 * Add some empty padding so that we can catch 3508 * overwrites from earlier objects rather than let 3509 * tracking information or the free pointer be 3510 * corrupted if a user writes before the start 3511 * of the object. 3512 */ 3513 size += sizeof(void *); 3514 3515 s->red_left_pad = sizeof(void *); 3516 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3517 size += s->red_left_pad; 3518 } 3519 #endif 3520 3521 /* 3522 * SLUB stores one object immediately after another beginning from 3523 * offset 0. In order to align the objects we have to simply size 3524 * each object to conform to the alignment. 3525 */ 3526 size = ALIGN(size, s->align); 3527 s->size = size; 3528 if (forced_order >= 0) 3529 order = forced_order; 3530 else 3531 order = calculate_order(size); 3532 3533 if ((int)order < 0) 3534 return 0; 3535 3536 s->allocflags = 0; 3537 if (order) 3538 s->allocflags |= __GFP_COMP; 3539 3540 if (s->flags & SLAB_CACHE_DMA) 3541 s->allocflags |= GFP_DMA; 3542 3543 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3544 s->allocflags |= __GFP_RECLAIMABLE; 3545 3546 /* 3547 * Determine the number of objects per slab 3548 */ 3549 s->oo = oo_make(order, size); 3550 s->min = oo_make(get_order(size), size); 3551 if (oo_objects(s->oo) > oo_objects(s->max)) 3552 s->max = s->oo; 3553 3554 return !!oo_objects(s->oo); 3555 } 3556 3557 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3558 { 3559 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3560 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3561 s->random = get_random_long(); 3562 #endif 3563 3564 if (!calculate_sizes(s, -1)) 3565 goto error; 3566 if (disable_higher_order_debug) { 3567 /* 3568 * Disable debugging flags that store metadata if the min slab 3569 * order increased. 3570 */ 3571 if (get_order(s->size) > get_order(s->object_size)) { 3572 s->flags &= ~DEBUG_METADATA_FLAGS; 3573 s->offset = 0; 3574 if (!calculate_sizes(s, -1)) 3575 goto error; 3576 } 3577 } 3578 3579 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3580 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3581 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3582 /* Enable fast mode */ 3583 s->flags |= __CMPXCHG_DOUBLE; 3584 #endif 3585 3586 /* 3587 * The larger the object size is, the more pages we want on the partial 3588 * list to avoid pounding the page allocator excessively. 3589 */ 3590 set_min_partial(s, ilog2(s->size) / 2); 3591 3592 set_cpu_partial(s); 3593 3594 #ifdef CONFIG_NUMA 3595 s->remote_node_defrag_ratio = 1000; 3596 #endif 3597 3598 /* Initialize the pre-computed randomized freelist if slab is up */ 3599 if (slab_state >= UP) { 3600 if (init_cache_random_seq(s)) 3601 goto error; 3602 } 3603 3604 if (!init_kmem_cache_nodes(s)) 3605 goto error; 3606 3607 if (alloc_kmem_cache_cpus(s)) 3608 return 0; 3609 3610 free_kmem_cache_nodes(s); 3611 error: 3612 if (flags & SLAB_PANIC) 3613 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", 3614 s->name, s->size, s->size, 3615 oo_order(s->oo), s->offset, (unsigned long)flags); 3616 return -EINVAL; 3617 } 3618 3619 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3620 const char *text) 3621 { 3622 #ifdef CONFIG_SLUB_DEBUG 3623 void *addr = page_address(page); 3624 void *p; 3625 unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects), 3626 sizeof(long), 3627 GFP_ATOMIC); 3628 if (!map) 3629 return; 3630 slab_err(s, page, text, s->name); 3631 slab_lock(page); 3632 3633 get_map(s, page, map); 3634 for_each_object(p, s, addr, page->objects) { 3635 3636 if (!test_bit(slab_index(p, s, addr), map)) { 3637 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3638 print_tracking(s, p); 3639 } 3640 } 3641 slab_unlock(page); 3642 kfree(map); 3643 #endif 3644 } 3645 3646 /* 3647 * Attempt to free all partial slabs on a node. 3648 * This is called from __kmem_cache_shutdown(). We must take list_lock 3649 * because sysfs file might still access partial list after the shutdowning. 3650 */ 3651 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3652 { 3653 LIST_HEAD(discard); 3654 struct page *page, *h; 3655 3656 BUG_ON(irqs_disabled()); 3657 spin_lock_irq(&n->list_lock); 3658 list_for_each_entry_safe(page, h, &n->partial, lru) { 3659 if (!page->inuse) { 3660 remove_partial(n, page); 3661 list_add(&page->lru, &discard); 3662 } else { 3663 list_slab_objects(s, page, 3664 "Objects remaining in %s on __kmem_cache_shutdown()"); 3665 } 3666 } 3667 spin_unlock_irq(&n->list_lock); 3668 3669 list_for_each_entry_safe(page, h, &discard, lru) 3670 discard_slab(s, page); 3671 } 3672 3673 bool __kmem_cache_empty(struct kmem_cache *s) 3674 { 3675 int node; 3676 struct kmem_cache_node *n; 3677 3678 for_each_kmem_cache_node(s, node, n) 3679 if (n->nr_partial || slabs_node(s, node)) 3680 return false; 3681 return true; 3682 } 3683 3684 /* 3685 * Release all resources used by a slab cache. 3686 */ 3687 int __kmem_cache_shutdown(struct kmem_cache *s) 3688 { 3689 int node; 3690 struct kmem_cache_node *n; 3691 3692 flush_all(s); 3693 /* Attempt to free all objects */ 3694 for_each_kmem_cache_node(s, node, n) { 3695 free_partial(s, n); 3696 if (n->nr_partial || slabs_node(s, node)) 3697 return 1; 3698 } 3699 sysfs_slab_remove(s); 3700 return 0; 3701 } 3702 3703 /******************************************************************** 3704 * Kmalloc subsystem 3705 *******************************************************************/ 3706 3707 static int __init setup_slub_min_order(char *str) 3708 { 3709 get_option(&str, (int *)&slub_min_order); 3710 3711 return 1; 3712 } 3713 3714 __setup("slub_min_order=", setup_slub_min_order); 3715 3716 static int __init setup_slub_max_order(char *str) 3717 { 3718 get_option(&str, (int *)&slub_max_order); 3719 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3720 3721 return 1; 3722 } 3723 3724 __setup("slub_max_order=", setup_slub_max_order); 3725 3726 static int __init setup_slub_min_objects(char *str) 3727 { 3728 get_option(&str, (int *)&slub_min_objects); 3729 3730 return 1; 3731 } 3732 3733 __setup("slub_min_objects=", setup_slub_min_objects); 3734 3735 void *__kmalloc(size_t size, gfp_t flags) 3736 { 3737 struct kmem_cache *s; 3738 void *ret; 3739 3740 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3741 return kmalloc_large(size, flags); 3742 3743 s = kmalloc_slab(size, flags); 3744 3745 if (unlikely(ZERO_OR_NULL_PTR(s))) 3746 return s; 3747 3748 ret = slab_alloc(s, flags, _RET_IP_); 3749 3750 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3751 3752 kasan_kmalloc(s, ret, size, flags); 3753 3754 return ret; 3755 } 3756 EXPORT_SYMBOL(__kmalloc); 3757 3758 #ifdef CONFIG_NUMA 3759 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3760 { 3761 struct page *page; 3762 void *ptr = NULL; 3763 3764 flags |= __GFP_COMP; 3765 page = alloc_pages_node(node, flags, get_order(size)); 3766 if (page) 3767 ptr = page_address(page); 3768 3769 kmalloc_large_node_hook(ptr, size, flags); 3770 return ptr; 3771 } 3772 3773 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3774 { 3775 struct kmem_cache *s; 3776 void *ret; 3777 3778 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3779 ret = kmalloc_large_node(size, flags, node); 3780 3781 trace_kmalloc_node(_RET_IP_, ret, 3782 size, PAGE_SIZE << get_order(size), 3783 flags, node); 3784 3785 return ret; 3786 } 3787 3788 s = kmalloc_slab(size, flags); 3789 3790 if (unlikely(ZERO_OR_NULL_PTR(s))) 3791 return s; 3792 3793 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3794 3795 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3796 3797 kasan_kmalloc(s, ret, size, flags); 3798 3799 return ret; 3800 } 3801 EXPORT_SYMBOL(__kmalloc_node); 3802 #endif 3803 3804 #ifdef CONFIG_HARDENED_USERCOPY 3805 /* 3806 * Rejects incorrectly sized objects and objects that are to be copied 3807 * to/from userspace but do not fall entirely within the containing slab 3808 * cache's usercopy region. 3809 * 3810 * Returns NULL if check passes, otherwise const char * to name of cache 3811 * to indicate an error. 3812 */ 3813 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3814 bool to_user) 3815 { 3816 struct kmem_cache *s; 3817 unsigned int offset; 3818 size_t object_size; 3819 3820 /* Find object and usable object size. */ 3821 s = page->slab_cache; 3822 3823 /* Reject impossible pointers. */ 3824 if (ptr < page_address(page)) 3825 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3826 to_user, 0, n); 3827 3828 /* Find offset within object. */ 3829 offset = (ptr - page_address(page)) % s->size; 3830 3831 /* Adjust for redzone and reject if within the redzone. */ 3832 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3833 if (offset < s->red_left_pad) 3834 usercopy_abort("SLUB object in left red zone", 3835 s->name, to_user, offset, n); 3836 offset -= s->red_left_pad; 3837 } 3838 3839 /* Allow address range falling entirely within usercopy region. */ 3840 if (offset >= s->useroffset && 3841 offset - s->useroffset <= s->usersize && 3842 n <= s->useroffset - offset + s->usersize) 3843 return; 3844 3845 /* 3846 * If the copy is still within the allocated object, produce 3847 * a warning instead of rejecting the copy. This is intended 3848 * to be a temporary method to find any missing usercopy 3849 * whitelists. 3850 */ 3851 object_size = slab_ksize(s); 3852 if (usercopy_fallback && 3853 offset <= object_size && n <= object_size - offset) { 3854 usercopy_warn("SLUB object", s->name, to_user, offset, n); 3855 return; 3856 } 3857 3858 usercopy_abort("SLUB object", s->name, to_user, offset, n); 3859 } 3860 #endif /* CONFIG_HARDENED_USERCOPY */ 3861 3862 static size_t __ksize(const void *object) 3863 { 3864 struct page *page; 3865 3866 if (unlikely(object == ZERO_SIZE_PTR)) 3867 return 0; 3868 3869 page = virt_to_head_page(object); 3870 3871 if (unlikely(!PageSlab(page))) { 3872 WARN_ON(!PageCompound(page)); 3873 return PAGE_SIZE << compound_order(page); 3874 } 3875 3876 return slab_ksize(page->slab_cache); 3877 } 3878 3879 size_t ksize(const void *object) 3880 { 3881 size_t size = __ksize(object); 3882 /* We assume that ksize callers could use whole allocated area, 3883 * so we need to unpoison this area. 3884 */ 3885 kasan_unpoison_shadow(object, size); 3886 return size; 3887 } 3888 EXPORT_SYMBOL(ksize); 3889 3890 void kfree(const void *x) 3891 { 3892 struct page *page; 3893 void *object = (void *)x; 3894 3895 trace_kfree(_RET_IP_, x); 3896 3897 if (unlikely(ZERO_OR_NULL_PTR(x))) 3898 return; 3899 3900 page = virt_to_head_page(x); 3901 if (unlikely(!PageSlab(page))) { 3902 BUG_ON(!PageCompound(page)); 3903 kfree_hook(object); 3904 __free_pages(page, compound_order(page)); 3905 return; 3906 } 3907 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3908 } 3909 EXPORT_SYMBOL(kfree); 3910 3911 #define SHRINK_PROMOTE_MAX 32 3912 3913 /* 3914 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3915 * up most to the head of the partial lists. New allocations will then 3916 * fill those up and thus they can be removed from the partial lists. 3917 * 3918 * The slabs with the least items are placed last. This results in them 3919 * being allocated from last increasing the chance that the last objects 3920 * are freed in them. 3921 */ 3922 int __kmem_cache_shrink(struct kmem_cache *s) 3923 { 3924 int node; 3925 int i; 3926 struct kmem_cache_node *n; 3927 struct page *page; 3928 struct page *t; 3929 struct list_head discard; 3930 struct list_head promote[SHRINK_PROMOTE_MAX]; 3931 unsigned long flags; 3932 int ret = 0; 3933 3934 flush_all(s); 3935 for_each_kmem_cache_node(s, node, n) { 3936 INIT_LIST_HEAD(&discard); 3937 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3938 INIT_LIST_HEAD(promote + i); 3939 3940 spin_lock_irqsave(&n->list_lock, flags); 3941 3942 /* 3943 * Build lists of slabs to discard or promote. 3944 * 3945 * Note that concurrent frees may occur while we hold the 3946 * list_lock. page->inuse here is the upper limit. 3947 */ 3948 list_for_each_entry_safe(page, t, &n->partial, lru) { 3949 int free = page->objects - page->inuse; 3950 3951 /* Do not reread page->inuse */ 3952 barrier(); 3953 3954 /* We do not keep full slabs on the list */ 3955 BUG_ON(free <= 0); 3956 3957 if (free == page->objects) { 3958 list_move(&page->lru, &discard); 3959 n->nr_partial--; 3960 } else if (free <= SHRINK_PROMOTE_MAX) 3961 list_move(&page->lru, promote + free - 1); 3962 } 3963 3964 /* 3965 * Promote the slabs filled up most to the head of the 3966 * partial list. 3967 */ 3968 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3969 list_splice(promote + i, &n->partial); 3970 3971 spin_unlock_irqrestore(&n->list_lock, flags); 3972 3973 /* Release empty slabs */ 3974 list_for_each_entry_safe(page, t, &discard, lru) 3975 discard_slab(s, page); 3976 3977 if (slabs_node(s, node)) 3978 ret = 1; 3979 } 3980 3981 return ret; 3982 } 3983 3984 #ifdef CONFIG_MEMCG 3985 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) 3986 { 3987 /* 3988 * Called with all the locks held after a sched RCU grace period. 3989 * Even if @s becomes empty after shrinking, we can't know that @s 3990 * doesn't have allocations already in-flight and thus can't 3991 * destroy @s until the associated memcg is released. 3992 * 3993 * However, let's remove the sysfs files for empty caches here. 3994 * Each cache has a lot of interface files which aren't 3995 * particularly useful for empty draining caches; otherwise, we can 3996 * easily end up with millions of unnecessary sysfs files on 3997 * systems which have a lot of memory and transient cgroups. 3998 */ 3999 if (!__kmem_cache_shrink(s)) 4000 sysfs_slab_remove(s); 4001 } 4002 4003 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4004 { 4005 /* 4006 * Disable empty slabs caching. Used to avoid pinning offline 4007 * memory cgroups by kmem pages that can be freed. 4008 */ 4009 slub_set_cpu_partial(s, 0); 4010 s->min_partial = 0; 4011 4012 /* 4013 * s->cpu_partial is checked locklessly (see put_cpu_partial), so 4014 * we have to make sure the change is visible before shrinking. 4015 */ 4016 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); 4017 } 4018 #endif 4019 4020 static int slab_mem_going_offline_callback(void *arg) 4021 { 4022 struct kmem_cache *s; 4023 4024 mutex_lock(&slab_mutex); 4025 list_for_each_entry(s, &slab_caches, list) 4026 __kmem_cache_shrink(s); 4027 mutex_unlock(&slab_mutex); 4028 4029 return 0; 4030 } 4031 4032 static void slab_mem_offline_callback(void *arg) 4033 { 4034 struct kmem_cache_node *n; 4035 struct kmem_cache *s; 4036 struct memory_notify *marg = arg; 4037 int offline_node; 4038 4039 offline_node = marg->status_change_nid_normal; 4040 4041 /* 4042 * If the node still has available memory. we need kmem_cache_node 4043 * for it yet. 4044 */ 4045 if (offline_node < 0) 4046 return; 4047 4048 mutex_lock(&slab_mutex); 4049 list_for_each_entry(s, &slab_caches, list) { 4050 n = get_node(s, offline_node); 4051 if (n) { 4052 /* 4053 * if n->nr_slabs > 0, slabs still exist on the node 4054 * that is going down. We were unable to free them, 4055 * and offline_pages() function shouldn't call this 4056 * callback. So, we must fail. 4057 */ 4058 BUG_ON(slabs_node(s, offline_node)); 4059 4060 s->node[offline_node] = NULL; 4061 kmem_cache_free(kmem_cache_node, n); 4062 } 4063 } 4064 mutex_unlock(&slab_mutex); 4065 } 4066 4067 static int slab_mem_going_online_callback(void *arg) 4068 { 4069 struct kmem_cache_node *n; 4070 struct kmem_cache *s; 4071 struct memory_notify *marg = arg; 4072 int nid = marg->status_change_nid_normal; 4073 int ret = 0; 4074 4075 /* 4076 * If the node's memory is already available, then kmem_cache_node is 4077 * already created. Nothing to do. 4078 */ 4079 if (nid < 0) 4080 return 0; 4081 4082 /* 4083 * We are bringing a node online. No memory is available yet. We must 4084 * allocate a kmem_cache_node structure in order to bring the node 4085 * online. 4086 */ 4087 mutex_lock(&slab_mutex); 4088 list_for_each_entry(s, &slab_caches, list) { 4089 /* 4090 * XXX: kmem_cache_alloc_node will fallback to other nodes 4091 * since memory is not yet available from the node that 4092 * is brought up. 4093 */ 4094 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4095 if (!n) { 4096 ret = -ENOMEM; 4097 goto out; 4098 } 4099 init_kmem_cache_node(n); 4100 s->node[nid] = n; 4101 } 4102 out: 4103 mutex_unlock(&slab_mutex); 4104 return ret; 4105 } 4106 4107 static int slab_memory_callback(struct notifier_block *self, 4108 unsigned long action, void *arg) 4109 { 4110 int ret = 0; 4111 4112 switch (action) { 4113 case MEM_GOING_ONLINE: 4114 ret = slab_mem_going_online_callback(arg); 4115 break; 4116 case MEM_GOING_OFFLINE: 4117 ret = slab_mem_going_offline_callback(arg); 4118 break; 4119 case MEM_OFFLINE: 4120 case MEM_CANCEL_ONLINE: 4121 slab_mem_offline_callback(arg); 4122 break; 4123 case MEM_ONLINE: 4124 case MEM_CANCEL_OFFLINE: 4125 break; 4126 } 4127 if (ret) 4128 ret = notifier_from_errno(ret); 4129 else 4130 ret = NOTIFY_OK; 4131 return ret; 4132 } 4133 4134 static struct notifier_block slab_memory_callback_nb = { 4135 .notifier_call = slab_memory_callback, 4136 .priority = SLAB_CALLBACK_PRI, 4137 }; 4138 4139 /******************************************************************** 4140 * Basic setup of slabs 4141 *******************************************************************/ 4142 4143 /* 4144 * Used for early kmem_cache structures that were allocated using 4145 * the page allocator. Allocate them properly then fix up the pointers 4146 * that may be pointing to the wrong kmem_cache structure. 4147 */ 4148 4149 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4150 { 4151 int node; 4152 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4153 struct kmem_cache_node *n; 4154 4155 memcpy(s, static_cache, kmem_cache->object_size); 4156 4157 /* 4158 * This runs very early, and only the boot processor is supposed to be 4159 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4160 * IPIs around. 4161 */ 4162 __flush_cpu_slab(s, smp_processor_id()); 4163 for_each_kmem_cache_node(s, node, n) { 4164 struct page *p; 4165 4166 list_for_each_entry(p, &n->partial, lru) 4167 p->slab_cache = s; 4168 4169 #ifdef CONFIG_SLUB_DEBUG 4170 list_for_each_entry(p, &n->full, lru) 4171 p->slab_cache = s; 4172 #endif 4173 } 4174 slab_init_memcg_params(s); 4175 list_add(&s->list, &slab_caches); 4176 memcg_link_cache(s); 4177 return s; 4178 } 4179 4180 void __init kmem_cache_init(void) 4181 { 4182 static __initdata struct kmem_cache boot_kmem_cache, 4183 boot_kmem_cache_node; 4184 4185 if (debug_guardpage_minorder()) 4186 slub_max_order = 0; 4187 4188 kmem_cache_node = &boot_kmem_cache_node; 4189 kmem_cache = &boot_kmem_cache; 4190 4191 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4192 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4193 4194 register_hotmemory_notifier(&slab_memory_callback_nb); 4195 4196 /* Able to allocate the per node structures */ 4197 slab_state = PARTIAL; 4198 4199 create_boot_cache(kmem_cache, "kmem_cache", 4200 offsetof(struct kmem_cache, node) + 4201 nr_node_ids * sizeof(struct kmem_cache_node *), 4202 SLAB_HWCACHE_ALIGN, 0, 0); 4203 4204 kmem_cache = bootstrap(&boot_kmem_cache); 4205 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4206 4207 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4208 setup_kmalloc_cache_index_table(); 4209 create_kmalloc_caches(0); 4210 4211 /* Setup random freelists for each cache */ 4212 init_freelist_randomization(); 4213 4214 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4215 slub_cpu_dead); 4216 4217 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", 4218 cache_line_size(), 4219 slub_min_order, slub_max_order, slub_min_objects, 4220 nr_cpu_ids, nr_node_ids); 4221 } 4222 4223 void __init kmem_cache_init_late(void) 4224 { 4225 } 4226 4227 struct kmem_cache * 4228 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4229 slab_flags_t flags, void (*ctor)(void *)) 4230 { 4231 struct kmem_cache *s, *c; 4232 4233 s = find_mergeable(size, align, flags, name, ctor); 4234 if (s) { 4235 s->refcount++; 4236 4237 /* 4238 * Adjust the object sizes so that we clear 4239 * the complete object on kzalloc. 4240 */ 4241 s->object_size = max(s->object_size, size); 4242 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4243 4244 for_each_memcg_cache(c, s) { 4245 c->object_size = s->object_size; 4246 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4247 } 4248 4249 if (sysfs_slab_alias(s, name)) { 4250 s->refcount--; 4251 s = NULL; 4252 } 4253 } 4254 4255 return s; 4256 } 4257 4258 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4259 { 4260 int err; 4261 4262 err = kmem_cache_open(s, flags); 4263 if (err) 4264 return err; 4265 4266 /* Mutex is not taken during early boot */ 4267 if (slab_state <= UP) 4268 return 0; 4269 4270 memcg_propagate_slab_attrs(s); 4271 err = sysfs_slab_add(s); 4272 if (err) 4273 __kmem_cache_release(s); 4274 4275 return err; 4276 } 4277 4278 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4279 { 4280 struct kmem_cache *s; 4281 void *ret; 4282 4283 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4284 return kmalloc_large(size, gfpflags); 4285 4286 s = kmalloc_slab(size, gfpflags); 4287 4288 if (unlikely(ZERO_OR_NULL_PTR(s))) 4289 return s; 4290 4291 ret = slab_alloc(s, gfpflags, caller); 4292 4293 /* Honor the call site pointer we received. */ 4294 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4295 4296 return ret; 4297 } 4298 4299 #ifdef CONFIG_NUMA 4300 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4301 int node, unsigned long caller) 4302 { 4303 struct kmem_cache *s; 4304 void *ret; 4305 4306 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4307 ret = kmalloc_large_node(size, gfpflags, node); 4308 4309 trace_kmalloc_node(caller, ret, 4310 size, PAGE_SIZE << get_order(size), 4311 gfpflags, node); 4312 4313 return ret; 4314 } 4315 4316 s = kmalloc_slab(size, gfpflags); 4317 4318 if (unlikely(ZERO_OR_NULL_PTR(s))) 4319 return s; 4320 4321 ret = slab_alloc_node(s, gfpflags, node, caller); 4322 4323 /* Honor the call site pointer we received. */ 4324 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4325 4326 return ret; 4327 } 4328 #endif 4329 4330 #ifdef CONFIG_SYSFS 4331 static int count_inuse(struct page *page) 4332 { 4333 return page->inuse; 4334 } 4335 4336 static int count_total(struct page *page) 4337 { 4338 return page->objects; 4339 } 4340 #endif 4341 4342 #ifdef CONFIG_SLUB_DEBUG 4343 static int validate_slab(struct kmem_cache *s, struct page *page, 4344 unsigned long *map) 4345 { 4346 void *p; 4347 void *addr = page_address(page); 4348 4349 if (!check_slab(s, page) || 4350 !on_freelist(s, page, NULL)) 4351 return 0; 4352 4353 /* Now we know that a valid freelist exists */ 4354 bitmap_zero(map, page->objects); 4355 4356 get_map(s, page, map); 4357 for_each_object(p, s, addr, page->objects) { 4358 if (test_bit(slab_index(p, s, addr), map)) 4359 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4360 return 0; 4361 } 4362 4363 for_each_object(p, s, addr, page->objects) 4364 if (!test_bit(slab_index(p, s, addr), map)) 4365 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4366 return 0; 4367 return 1; 4368 } 4369 4370 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4371 unsigned long *map) 4372 { 4373 slab_lock(page); 4374 validate_slab(s, page, map); 4375 slab_unlock(page); 4376 } 4377 4378 static int validate_slab_node(struct kmem_cache *s, 4379 struct kmem_cache_node *n, unsigned long *map) 4380 { 4381 unsigned long count = 0; 4382 struct page *page; 4383 unsigned long flags; 4384 4385 spin_lock_irqsave(&n->list_lock, flags); 4386 4387 list_for_each_entry(page, &n->partial, lru) { 4388 validate_slab_slab(s, page, map); 4389 count++; 4390 } 4391 if (count != n->nr_partial) 4392 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4393 s->name, count, n->nr_partial); 4394 4395 if (!(s->flags & SLAB_STORE_USER)) 4396 goto out; 4397 4398 list_for_each_entry(page, &n->full, lru) { 4399 validate_slab_slab(s, page, map); 4400 count++; 4401 } 4402 if (count != atomic_long_read(&n->nr_slabs)) 4403 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4404 s->name, count, atomic_long_read(&n->nr_slabs)); 4405 4406 out: 4407 spin_unlock_irqrestore(&n->list_lock, flags); 4408 return count; 4409 } 4410 4411 static long validate_slab_cache(struct kmem_cache *s) 4412 { 4413 int node; 4414 unsigned long count = 0; 4415 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), 4416 sizeof(unsigned long), 4417 GFP_KERNEL); 4418 struct kmem_cache_node *n; 4419 4420 if (!map) 4421 return -ENOMEM; 4422 4423 flush_all(s); 4424 for_each_kmem_cache_node(s, node, n) 4425 count += validate_slab_node(s, n, map); 4426 kfree(map); 4427 return count; 4428 } 4429 /* 4430 * Generate lists of code addresses where slabcache objects are allocated 4431 * and freed. 4432 */ 4433 4434 struct location { 4435 unsigned long count; 4436 unsigned long addr; 4437 long long sum_time; 4438 long min_time; 4439 long max_time; 4440 long min_pid; 4441 long max_pid; 4442 DECLARE_BITMAP(cpus, NR_CPUS); 4443 nodemask_t nodes; 4444 }; 4445 4446 struct loc_track { 4447 unsigned long max; 4448 unsigned long count; 4449 struct location *loc; 4450 }; 4451 4452 static void free_loc_track(struct loc_track *t) 4453 { 4454 if (t->max) 4455 free_pages((unsigned long)t->loc, 4456 get_order(sizeof(struct location) * t->max)); 4457 } 4458 4459 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4460 { 4461 struct location *l; 4462 int order; 4463 4464 order = get_order(sizeof(struct location) * max); 4465 4466 l = (void *)__get_free_pages(flags, order); 4467 if (!l) 4468 return 0; 4469 4470 if (t->count) { 4471 memcpy(l, t->loc, sizeof(struct location) * t->count); 4472 free_loc_track(t); 4473 } 4474 t->max = max; 4475 t->loc = l; 4476 return 1; 4477 } 4478 4479 static int add_location(struct loc_track *t, struct kmem_cache *s, 4480 const struct track *track) 4481 { 4482 long start, end, pos; 4483 struct location *l; 4484 unsigned long caddr; 4485 unsigned long age = jiffies - track->when; 4486 4487 start = -1; 4488 end = t->count; 4489 4490 for ( ; ; ) { 4491 pos = start + (end - start + 1) / 2; 4492 4493 /* 4494 * There is nothing at "end". If we end up there 4495 * we need to add something to before end. 4496 */ 4497 if (pos == end) 4498 break; 4499 4500 caddr = t->loc[pos].addr; 4501 if (track->addr == caddr) { 4502 4503 l = &t->loc[pos]; 4504 l->count++; 4505 if (track->when) { 4506 l->sum_time += age; 4507 if (age < l->min_time) 4508 l->min_time = age; 4509 if (age > l->max_time) 4510 l->max_time = age; 4511 4512 if (track->pid < l->min_pid) 4513 l->min_pid = track->pid; 4514 if (track->pid > l->max_pid) 4515 l->max_pid = track->pid; 4516 4517 cpumask_set_cpu(track->cpu, 4518 to_cpumask(l->cpus)); 4519 } 4520 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4521 return 1; 4522 } 4523 4524 if (track->addr < caddr) 4525 end = pos; 4526 else 4527 start = pos; 4528 } 4529 4530 /* 4531 * Not found. Insert new tracking element. 4532 */ 4533 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4534 return 0; 4535 4536 l = t->loc + pos; 4537 if (pos < t->count) 4538 memmove(l + 1, l, 4539 (t->count - pos) * sizeof(struct location)); 4540 t->count++; 4541 l->count = 1; 4542 l->addr = track->addr; 4543 l->sum_time = age; 4544 l->min_time = age; 4545 l->max_time = age; 4546 l->min_pid = track->pid; 4547 l->max_pid = track->pid; 4548 cpumask_clear(to_cpumask(l->cpus)); 4549 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4550 nodes_clear(l->nodes); 4551 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4552 return 1; 4553 } 4554 4555 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4556 struct page *page, enum track_item alloc, 4557 unsigned long *map) 4558 { 4559 void *addr = page_address(page); 4560 void *p; 4561 4562 bitmap_zero(map, page->objects); 4563 get_map(s, page, map); 4564 4565 for_each_object(p, s, addr, page->objects) 4566 if (!test_bit(slab_index(p, s, addr), map)) 4567 add_location(t, s, get_track(s, p, alloc)); 4568 } 4569 4570 static int list_locations(struct kmem_cache *s, char *buf, 4571 enum track_item alloc) 4572 { 4573 int len = 0; 4574 unsigned long i; 4575 struct loc_track t = { 0, 0, NULL }; 4576 int node; 4577 unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), 4578 sizeof(unsigned long), 4579 GFP_KERNEL); 4580 struct kmem_cache_node *n; 4581 4582 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4583 GFP_KERNEL)) { 4584 kfree(map); 4585 return sprintf(buf, "Out of memory\n"); 4586 } 4587 /* Push back cpu slabs */ 4588 flush_all(s); 4589 4590 for_each_kmem_cache_node(s, node, n) { 4591 unsigned long flags; 4592 struct page *page; 4593 4594 if (!atomic_long_read(&n->nr_slabs)) 4595 continue; 4596 4597 spin_lock_irqsave(&n->list_lock, flags); 4598 list_for_each_entry(page, &n->partial, lru) 4599 process_slab(&t, s, page, alloc, map); 4600 list_for_each_entry(page, &n->full, lru) 4601 process_slab(&t, s, page, alloc, map); 4602 spin_unlock_irqrestore(&n->list_lock, flags); 4603 } 4604 4605 for (i = 0; i < t.count; i++) { 4606 struct location *l = &t.loc[i]; 4607 4608 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4609 break; 4610 len += sprintf(buf + len, "%7ld ", l->count); 4611 4612 if (l->addr) 4613 len += sprintf(buf + len, "%pS", (void *)l->addr); 4614 else 4615 len += sprintf(buf + len, "<not-available>"); 4616 4617 if (l->sum_time != l->min_time) { 4618 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4619 l->min_time, 4620 (long)div_u64(l->sum_time, l->count), 4621 l->max_time); 4622 } else 4623 len += sprintf(buf + len, " age=%ld", 4624 l->min_time); 4625 4626 if (l->min_pid != l->max_pid) 4627 len += sprintf(buf + len, " pid=%ld-%ld", 4628 l->min_pid, l->max_pid); 4629 else 4630 len += sprintf(buf + len, " pid=%ld", 4631 l->min_pid); 4632 4633 if (num_online_cpus() > 1 && 4634 !cpumask_empty(to_cpumask(l->cpus)) && 4635 len < PAGE_SIZE - 60) 4636 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4637 " cpus=%*pbl", 4638 cpumask_pr_args(to_cpumask(l->cpus))); 4639 4640 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4641 len < PAGE_SIZE - 60) 4642 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4643 " nodes=%*pbl", 4644 nodemask_pr_args(&l->nodes)); 4645 4646 len += sprintf(buf + len, "\n"); 4647 } 4648 4649 free_loc_track(&t); 4650 kfree(map); 4651 if (!t.count) 4652 len += sprintf(buf, "No data\n"); 4653 return len; 4654 } 4655 #endif 4656 4657 #ifdef SLUB_RESILIENCY_TEST 4658 static void __init resiliency_test(void) 4659 { 4660 u8 *p; 4661 4662 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4663 4664 pr_err("SLUB resiliency testing\n"); 4665 pr_err("-----------------------\n"); 4666 pr_err("A. Corruption after allocation\n"); 4667 4668 p = kzalloc(16, GFP_KERNEL); 4669 p[16] = 0x12; 4670 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4671 p + 16); 4672 4673 validate_slab_cache(kmalloc_caches[4]); 4674 4675 /* Hmmm... The next two are dangerous */ 4676 p = kzalloc(32, GFP_KERNEL); 4677 p[32 + sizeof(void *)] = 0x34; 4678 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4679 p); 4680 pr_err("If allocated object is overwritten then not detectable\n\n"); 4681 4682 validate_slab_cache(kmalloc_caches[5]); 4683 p = kzalloc(64, GFP_KERNEL); 4684 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4685 *p = 0x56; 4686 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4687 p); 4688 pr_err("If allocated object is overwritten then not detectable\n\n"); 4689 validate_slab_cache(kmalloc_caches[6]); 4690 4691 pr_err("\nB. Corruption after free\n"); 4692 p = kzalloc(128, GFP_KERNEL); 4693 kfree(p); 4694 *p = 0x78; 4695 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4696 validate_slab_cache(kmalloc_caches[7]); 4697 4698 p = kzalloc(256, GFP_KERNEL); 4699 kfree(p); 4700 p[50] = 0x9a; 4701 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4702 validate_slab_cache(kmalloc_caches[8]); 4703 4704 p = kzalloc(512, GFP_KERNEL); 4705 kfree(p); 4706 p[512] = 0xab; 4707 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4708 validate_slab_cache(kmalloc_caches[9]); 4709 } 4710 #else 4711 #ifdef CONFIG_SYSFS 4712 static void resiliency_test(void) {}; 4713 #endif 4714 #endif 4715 4716 #ifdef CONFIG_SYSFS 4717 enum slab_stat_type { 4718 SL_ALL, /* All slabs */ 4719 SL_PARTIAL, /* Only partially allocated slabs */ 4720 SL_CPU, /* Only slabs used for cpu caches */ 4721 SL_OBJECTS, /* Determine allocated objects not slabs */ 4722 SL_TOTAL /* Determine object capacity not slabs */ 4723 }; 4724 4725 #define SO_ALL (1 << SL_ALL) 4726 #define SO_PARTIAL (1 << SL_PARTIAL) 4727 #define SO_CPU (1 << SL_CPU) 4728 #define SO_OBJECTS (1 << SL_OBJECTS) 4729 #define SO_TOTAL (1 << SL_TOTAL) 4730 4731 #ifdef CONFIG_MEMCG 4732 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4733 4734 static int __init setup_slub_memcg_sysfs(char *str) 4735 { 4736 int v; 4737 4738 if (get_option(&str, &v) > 0) 4739 memcg_sysfs_enabled = v; 4740 4741 return 1; 4742 } 4743 4744 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4745 #endif 4746 4747 static ssize_t show_slab_objects(struct kmem_cache *s, 4748 char *buf, unsigned long flags) 4749 { 4750 unsigned long total = 0; 4751 int node; 4752 int x; 4753 unsigned long *nodes; 4754 4755 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4756 if (!nodes) 4757 return -ENOMEM; 4758 4759 if (flags & SO_CPU) { 4760 int cpu; 4761 4762 for_each_possible_cpu(cpu) { 4763 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4764 cpu); 4765 int node; 4766 struct page *page; 4767 4768 page = READ_ONCE(c->page); 4769 if (!page) 4770 continue; 4771 4772 node = page_to_nid(page); 4773 if (flags & SO_TOTAL) 4774 x = page->objects; 4775 else if (flags & SO_OBJECTS) 4776 x = page->inuse; 4777 else 4778 x = 1; 4779 4780 total += x; 4781 nodes[node] += x; 4782 4783 page = slub_percpu_partial_read_once(c); 4784 if (page) { 4785 node = page_to_nid(page); 4786 if (flags & SO_TOTAL) 4787 WARN_ON_ONCE(1); 4788 else if (flags & SO_OBJECTS) 4789 WARN_ON_ONCE(1); 4790 else 4791 x = page->pages; 4792 total += x; 4793 nodes[node] += x; 4794 } 4795 } 4796 } 4797 4798 get_online_mems(); 4799 #ifdef CONFIG_SLUB_DEBUG 4800 if (flags & SO_ALL) { 4801 struct kmem_cache_node *n; 4802 4803 for_each_kmem_cache_node(s, node, n) { 4804 4805 if (flags & SO_TOTAL) 4806 x = atomic_long_read(&n->total_objects); 4807 else if (flags & SO_OBJECTS) 4808 x = atomic_long_read(&n->total_objects) - 4809 count_partial(n, count_free); 4810 else 4811 x = atomic_long_read(&n->nr_slabs); 4812 total += x; 4813 nodes[node] += x; 4814 } 4815 4816 } else 4817 #endif 4818 if (flags & SO_PARTIAL) { 4819 struct kmem_cache_node *n; 4820 4821 for_each_kmem_cache_node(s, node, n) { 4822 if (flags & SO_TOTAL) 4823 x = count_partial(n, count_total); 4824 else if (flags & SO_OBJECTS) 4825 x = count_partial(n, count_inuse); 4826 else 4827 x = n->nr_partial; 4828 total += x; 4829 nodes[node] += x; 4830 } 4831 } 4832 x = sprintf(buf, "%lu", total); 4833 #ifdef CONFIG_NUMA 4834 for (node = 0; node < nr_node_ids; node++) 4835 if (nodes[node]) 4836 x += sprintf(buf + x, " N%d=%lu", 4837 node, nodes[node]); 4838 #endif 4839 put_online_mems(); 4840 kfree(nodes); 4841 return x + sprintf(buf + x, "\n"); 4842 } 4843 4844 #ifdef CONFIG_SLUB_DEBUG 4845 static int any_slab_objects(struct kmem_cache *s) 4846 { 4847 int node; 4848 struct kmem_cache_node *n; 4849 4850 for_each_kmem_cache_node(s, node, n) 4851 if (atomic_long_read(&n->total_objects)) 4852 return 1; 4853 4854 return 0; 4855 } 4856 #endif 4857 4858 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4859 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4860 4861 struct slab_attribute { 4862 struct attribute attr; 4863 ssize_t (*show)(struct kmem_cache *s, char *buf); 4864 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4865 }; 4866 4867 #define SLAB_ATTR_RO(_name) \ 4868 static struct slab_attribute _name##_attr = \ 4869 __ATTR(_name, 0400, _name##_show, NULL) 4870 4871 #define SLAB_ATTR(_name) \ 4872 static struct slab_attribute _name##_attr = \ 4873 __ATTR(_name, 0600, _name##_show, _name##_store) 4874 4875 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4876 { 4877 return sprintf(buf, "%u\n", s->size); 4878 } 4879 SLAB_ATTR_RO(slab_size); 4880 4881 static ssize_t align_show(struct kmem_cache *s, char *buf) 4882 { 4883 return sprintf(buf, "%u\n", s->align); 4884 } 4885 SLAB_ATTR_RO(align); 4886 4887 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4888 { 4889 return sprintf(buf, "%u\n", s->object_size); 4890 } 4891 SLAB_ATTR_RO(object_size); 4892 4893 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4894 { 4895 return sprintf(buf, "%u\n", oo_objects(s->oo)); 4896 } 4897 SLAB_ATTR_RO(objs_per_slab); 4898 4899 static ssize_t order_store(struct kmem_cache *s, 4900 const char *buf, size_t length) 4901 { 4902 unsigned int order; 4903 int err; 4904 4905 err = kstrtouint(buf, 10, &order); 4906 if (err) 4907 return err; 4908 4909 if (order > slub_max_order || order < slub_min_order) 4910 return -EINVAL; 4911 4912 calculate_sizes(s, order); 4913 return length; 4914 } 4915 4916 static ssize_t order_show(struct kmem_cache *s, char *buf) 4917 { 4918 return sprintf(buf, "%u\n", oo_order(s->oo)); 4919 } 4920 SLAB_ATTR(order); 4921 4922 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4923 { 4924 return sprintf(buf, "%lu\n", s->min_partial); 4925 } 4926 4927 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4928 size_t length) 4929 { 4930 unsigned long min; 4931 int err; 4932 4933 err = kstrtoul(buf, 10, &min); 4934 if (err) 4935 return err; 4936 4937 set_min_partial(s, min); 4938 return length; 4939 } 4940 SLAB_ATTR(min_partial); 4941 4942 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4943 { 4944 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 4945 } 4946 4947 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4948 size_t length) 4949 { 4950 unsigned int objects; 4951 int err; 4952 4953 err = kstrtouint(buf, 10, &objects); 4954 if (err) 4955 return err; 4956 if (objects && !kmem_cache_has_cpu_partial(s)) 4957 return -EINVAL; 4958 4959 slub_set_cpu_partial(s, objects); 4960 flush_all(s); 4961 return length; 4962 } 4963 SLAB_ATTR(cpu_partial); 4964 4965 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4966 { 4967 if (!s->ctor) 4968 return 0; 4969 return sprintf(buf, "%pS\n", s->ctor); 4970 } 4971 SLAB_ATTR_RO(ctor); 4972 4973 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4974 { 4975 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4976 } 4977 SLAB_ATTR_RO(aliases); 4978 4979 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4980 { 4981 return show_slab_objects(s, buf, SO_PARTIAL); 4982 } 4983 SLAB_ATTR_RO(partial); 4984 4985 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4986 { 4987 return show_slab_objects(s, buf, SO_CPU); 4988 } 4989 SLAB_ATTR_RO(cpu_slabs); 4990 4991 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4992 { 4993 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4994 } 4995 SLAB_ATTR_RO(objects); 4996 4997 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4998 { 4999 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5000 } 5001 SLAB_ATTR_RO(objects_partial); 5002 5003 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5004 { 5005 int objects = 0; 5006 int pages = 0; 5007 int cpu; 5008 int len; 5009 5010 for_each_online_cpu(cpu) { 5011 struct page *page; 5012 5013 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5014 5015 if (page) { 5016 pages += page->pages; 5017 objects += page->pobjects; 5018 } 5019 } 5020 5021 len = sprintf(buf, "%d(%d)", objects, pages); 5022 5023 #ifdef CONFIG_SMP 5024 for_each_online_cpu(cpu) { 5025 struct page *page; 5026 5027 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5028 5029 if (page && len < PAGE_SIZE - 20) 5030 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5031 page->pobjects, page->pages); 5032 } 5033 #endif 5034 return len + sprintf(buf + len, "\n"); 5035 } 5036 SLAB_ATTR_RO(slabs_cpu_partial); 5037 5038 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5039 { 5040 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5041 } 5042 5043 static ssize_t reclaim_account_store(struct kmem_cache *s, 5044 const char *buf, size_t length) 5045 { 5046 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5047 if (buf[0] == '1') 5048 s->flags |= SLAB_RECLAIM_ACCOUNT; 5049 return length; 5050 } 5051 SLAB_ATTR(reclaim_account); 5052 5053 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5054 { 5055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5056 } 5057 SLAB_ATTR_RO(hwcache_align); 5058 5059 #ifdef CONFIG_ZONE_DMA 5060 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5061 { 5062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5063 } 5064 SLAB_ATTR_RO(cache_dma); 5065 #endif 5066 5067 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5068 { 5069 return sprintf(buf, "%u\n", s->usersize); 5070 } 5071 SLAB_ATTR_RO(usersize); 5072 5073 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5074 { 5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5076 } 5077 SLAB_ATTR_RO(destroy_by_rcu); 5078 5079 #ifdef CONFIG_SLUB_DEBUG 5080 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5081 { 5082 return show_slab_objects(s, buf, SO_ALL); 5083 } 5084 SLAB_ATTR_RO(slabs); 5085 5086 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5087 { 5088 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5089 } 5090 SLAB_ATTR_RO(total_objects); 5091 5092 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5093 { 5094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5095 } 5096 5097 static ssize_t sanity_checks_store(struct kmem_cache *s, 5098 const char *buf, size_t length) 5099 { 5100 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5101 if (buf[0] == '1') { 5102 s->flags &= ~__CMPXCHG_DOUBLE; 5103 s->flags |= SLAB_CONSISTENCY_CHECKS; 5104 } 5105 return length; 5106 } 5107 SLAB_ATTR(sanity_checks); 5108 5109 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5110 { 5111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5112 } 5113 5114 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5115 size_t length) 5116 { 5117 /* 5118 * Tracing a merged cache is going to give confusing results 5119 * as well as cause other issues like converting a mergeable 5120 * cache into an umergeable one. 5121 */ 5122 if (s->refcount > 1) 5123 return -EINVAL; 5124 5125 s->flags &= ~SLAB_TRACE; 5126 if (buf[0] == '1') { 5127 s->flags &= ~__CMPXCHG_DOUBLE; 5128 s->flags |= SLAB_TRACE; 5129 } 5130 return length; 5131 } 5132 SLAB_ATTR(trace); 5133 5134 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5135 { 5136 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5137 } 5138 5139 static ssize_t red_zone_store(struct kmem_cache *s, 5140 const char *buf, size_t length) 5141 { 5142 if (any_slab_objects(s)) 5143 return -EBUSY; 5144 5145 s->flags &= ~SLAB_RED_ZONE; 5146 if (buf[0] == '1') { 5147 s->flags |= SLAB_RED_ZONE; 5148 } 5149 calculate_sizes(s, -1); 5150 return length; 5151 } 5152 SLAB_ATTR(red_zone); 5153 5154 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5155 { 5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5157 } 5158 5159 static ssize_t poison_store(struct kmem_cache *s, 5160 const char *buf, size_t length) 5161 { 5162 if (any_slab_objects(s)) 5163 return -EBUSY; 5164 5165 s->flags &= ~SLAB_POISON; 5166 if (buf[0] == '1') { 5167 s->flags |= SLAB_POISON; 5168 } 5169 calculate_sizes(s, -1); 5170 return length; 5171 } 5172 SLAB_ATTR(poison); 5173 5174 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5175 { 5176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5177 } 5178 5179 static ssize_t store_user_store(struct kmem_cache *s, 5180 const char *buf, size_t length) 5181 { 5182 if (any_slab_objects(s)) 5183 return -EBUSY; 5184 5185 s->flags &= ~SLAB_STORE_USER; 5186 if (buf[0] == '1') { 5187 s->flags &= ~__CMPXCHG_DOUBLE; 5188 s->flags |= SLAB_STORE_USER; 5189 } 5190 calculate_sizes(s, -1); 5191 return length; 5192 } 5193 SLAB_ATTR(store_user); 5194 5195 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5196 { 5197 return 0; 5198 } 5199 5200 static ssize_t validate_store(struct kmem_cache *s, 5201 const char *buf, size_t length) 5202 { 5203 int ret = -EINVAL; 5204 5205 if (buf[0] == '1') { 5206 ret = validate_slab_cache(s); 5207 if (ret >= 0) 5208 ret = length; 5209 } 5210 return ret; 5211 } 5212 SLAB_ATTR(validate); 5213 5214 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5215 { 5216 if (!(s->flags & SLAB_STORE_USER)) 5217 return -ENOSYS; 5218 return list_locations(s, buf, TRACK_ALLOC); 5219 } 5220 SLAB_ATTR_RO(alloc_calls); 5221 5222 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5223 { 5224 if (!(s->flags & SLAB_STORE_USER)) 5225 return -ENOSYS; 5226 return list_locations(s, buf, TRACK_FREE); 5227 } 5228 SLAB_ATTR_RO(free_calls); 5229 #endif /* CONFIG_SLUB_DEBUG */ 5230 5231 #ifdef CONFIG_FAILSLAB 5232 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5233 { 5234 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5235 } 5236 5237 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5238 size_t length) 5239 { 5240 if (s->refcount > 1) 5241 return -EINVAL; 5242 5243 s->flags &= ~SLAB_FAILSLAB; 5244 if (buf[0] == '1') 5245 s->flags |= SLAB_FAILSLAB; 5246 return length; 5247 } 5248 SLAB_ATTR(failslab); 5249 #endif 5250 5251 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5252 { 5253 return 0; 5254 } 5255 5256 static ssize_t shrink_store(struct kmem_cache *s, 5257 const char *buf, size_t length) 5258 { 5259 if (buf[0] == '1') 5260 kmem_cache_shrink(s); 5261 else 5262 return -EINVAL; 5263 return length; 5264 } 5265 SLAB_ATTR(shrink); 5266 5267 #ifdef CONFIG_NUMA 5268 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5269 { 5270 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5271 } 5272 5273 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5274 const char *buf, size_t length) 5275 { 5276 unsigned int ratio; 5277 int err; 5278 5279 err = kstrtouint(buf, 10, &ratio); 5280 if (err) 5281 return err; 5282 if (ratio > 100) 5283 return -ERANGE; 5284 5285 s->remote_node_defrag_ratio = ratio * 10; 5286 5287 return length; 5288 } 5289 SLAB_ATTR(remote_node_defrag_ratio); 5290 #endif 5291 5292 #ifdef CONFIG_SLUB_STATS 5293 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5294 { 5295 unsigned long sum = 0; 5296 int cpu; 5297 int len; 5298 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5299 5300 if (!data) 5301 return -ENOMEM; 5302 5303 for_each_online_cpu(cpu) { 5304 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5305 5306 data[cpu] = x; 5307 sum += x; 5308 } 5309 5310 len = sprintf(buf, "%lu", sum); 5311 5312 #ifdef CONFIG_SMP 5313 for_each_online_cpu(cpu) { 5314 if (data[cpu] && len < PAGE_SIZE - 20) 5315 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5316 } 5317 #endif 5318 kfree(data); 5319 return len + sprintf(buf + len, "\n"); 5320 } 5321 5322 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5323 { 5324 int cpu; 5325 5326 for_each_online_cpu(cpu) 5327 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5328 } 5329 5330 #define STAT_ATTR(si, text) \ 5331 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5332 { \ 5333 return show_stat(s, buf, si); \ 5334 } \ 5335 static ssize_t text##_store(struct kmem_cache *s, \ 5336 const char *buf, size_t length) \ 5337 { \ 5338 if (buf[0] != '0') \ 5339 return -EINVAL; \ 5340 clear_stat(s, si); \ 5341 return length; \ 5342 } \ 5343 SLAB_ATTR(text); \ 5344 5345 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5346 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5347 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5348 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5349 STAT_ATTR(FREE_FROZEN, free_frozen); 5350 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5351 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5352 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5353 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5354 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5355 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5356 STAT_ATTR(FREE_SLAB, free_slab); 5357 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5358 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5359 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5360 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5361 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5362 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5363 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5364 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5365 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5366 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5367 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5368 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5369 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5370 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5371 #endif 5372 5373 static struct attribute *slab_attrs[] = { 5374 &slab_size_attr.attr, 5375 &object_size_attr.attr, 5376 &objs_per_slab_attr.attr, 5377 &order_attr.attr, 5378 &min_partial_attr.attr, 5379 &cpu_partial_attr.attr, 5380 &objects_attr.attr, 5381 &objects_partial_attr.attr, 5382 &partial_attr.attr, 5383 &cpu_slabs_attr.attr, 5384 &ctor_attr.attr, 5385 &aliases_attr.attr, 5386 &align_attr.attr, 5387 &hwcache_align_attr.attr, 5388 &reclaim_account_attr.attr, 5389 &destroy_by_rcu_attr.attr, 5390 &shrink_attr.attr, 5391 &slabs_cpu_partial_attr.attr, 5392 #ifdef CONFIG_SLUB_DEBUG 5393 &total_objects_attr.attr, 5394 &slabs_attr.attr, 5395 &sanity_checks_attr.attr, 5396 &trace_attr.attr, 5397 &red_zone_attr.attr, 5398 &poison_attr.attr, 5399 &store_user_attr.attr, 5400 &validate_attr.attr, 5401 &alloc_calls_attr.attr, 5402 &free_calls_attr.attr, 5403 #endif 5404 #ifdef CONFIG_ZONE_DMA 5405 &cache_dma_attr.attr, 5406 #endif 5407 #ifdef CONFIG_NUMA 5408 &remote_node_defrag_ratio_attr.attr, 5409 #endif 5410 #ifdef CONFIG_SLUB_STATS 5411 &alloc_fastpath_attr.attr, 5412 &alloc_slowpath_attr.attr, 5413 &free_fastpath_attr.attr, 5414 &free_slowpath_attr.attr, 5415 &free_frozen_attr.attr, 5416 &free_add_partial_attr.attr, 5417 &free_remove_partial_attr.attr, 5418 &alloc_from_partial_attr.attr, 5419 &alloc_slab_attr.attr, 5420 &alloc_refill_attr.attr, 5421 &alloc_node_mismatch_attr.attr, 5422 &free_slab_attr.attr, 5423 &cpuslab_flush_attr.attr, 5424 &deactivate_full_attr.attr, 5425 &deactivate_empty_attr.attr, 5426 &deactivate_to_head_attr.attr, 5427 &deactivate_to_tail_attr.attr, 5428 &deactivate_remote_frees_attr.attr, 5429 &deactivate_bypass_attr.attr, 5430 &order_fallback_attr.attr, 5431 &cmpxchg_double_fail_attr.attr, 5432 &cmpxchg_double_cpu_fail_attr.attr, 5433 &cpu_partial_alloc_attr.attr, 5434 &cpu_partial_free_attr.attr, 5435 &cpu_partial_node_attr.attr, 5436 &cpu_partial_drain_attr.attr, 5437 #endif 5438 #ifdef CONFIG_FAILSLAB 5439 &failslab_attr.attr, 5440 #endif 5441 &usersize_attr.attr, 5442 5443 NULL 5444 }; 5445 5446 static const struct attribute_group slab_attr_group = { 5447 .attrs = slab_attrs, 5448 }; 5449 5450 static ssize_t slab_attr_show(struct kobject *kobj, 5451 struct attribute *attr, 5452 char *buf) 5453 { 5454 struct slab_attribute *attribute; 5455 struct kmem_cache *s; 5456 int err; 5457 5458 attribute = to_slab_attr(attr); 5459 s = to_slab(kobj); 5460 5461 if (!attribute->show) 5462 return -EIO; 5463 5464 err = attribute->show(s, buf); 5465 5466 return err; 5467 } 5468 5469 static ssize_t slab_attr_store(struct kobject *kobj, 5470 struct attribute *attr, 5471 const char *buf, size_t len) 5472 { 5473 struct slab_attribute *attribute; 5474 struct kmem_cache *s; 5475 int err; 5476 5477 attribute = to_slab_attr(attr); 5478 s = to_slab(kobj); 5479 5480 if (!attribute->store) 5481 return -EIO; 5482 5483 err = attribute->store(s, buf, len); 5484 #ifdef CONFIG_MEMCG 5485 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5486 struct kmem_cache *c; 5487 5488 mutex_lock(&slab_mutex); 5489 if (s->max_attr_size < len) 5490 s->max_attr_size = len; 5491 5492 /* 5493 * This is a best effort propagation, so this function's return 5494 * value will be determined by the parent cache only. This is 5495 * basically because not all attributes will have a well 5496 * defined semantics for rollbacks - most of the actions will 5497 * have permanent effects. 5498 * 5499 * Returning the error value of any of the children that fail 5500 * is not 100 % defined, in the sense that users seeing the 5501 * error code won't be able to know anything about the state of 5502 * the cache. 5503 * 5504 * Only returning the error code for the parent cache at least 5505 * has well defined semantics. The cache being written to 5506 * directly either failed or succeeded, in which case we loop 5507 * through the descendants with best-effort propagation. 5508 */ 5509 for_each_memcg_cache(c, s) 5510 attribute->store(c, buf, len); 5511 mutex_unlock(&slab_mutex); 5512 } 5513 #endif 5514 return err; 5515 } 5516 5517 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5518 { 5519 #ifdef CONFIG_MEMCG 5520 int i; 5521 char *buffer = NULL; 5522 struct kmem_cache *root_cache; 5523 5524 if (is_root_cache(s)) 5525 return; 5526 5527 root_cache = s->memcg_params.root_cache; 5528 5529 /* 5530 * This mean this cache had no attribute written. Therefore, no point 5531 * in copying default values around 5532 */ 5533 if (!root_cache->max_attr_size) 5534 return; 5535 5536 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5537 char mbuf[64]; 5538 char *buf; 5539 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5540 ssize_t len; 5541 5542 if (!attr || !attr->store || !attr->show) 5543 continue; 5544 5545 /* 5546 * It is really bad that we have to allocate here, so we will 5547 * do it only as a fallback. If we actually allocate, though, 5548 * we can just use the allocated buffer until the end. 5549 * 5550 * Most of the slub attributes will tend to be very small in 5551 * size, but sysfs allows buffers up to a page, so they can 5552 * theoretically happen. 5553 */ 5554 if (buffer) 5555 buf = buffer; 5556 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5557 buf = mbuf; 5558 else { 5559 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5560 if (WARN_ON(!buffer)) 5561 continue; 5562 buf = buffer; 5563 } 5564 5565 len = attr->show(root_cache, buf); 5566 if (len > 0) 5567 attr->store(s, buf, len); 5568 } 5569 5570 if (buffer) 5571 free_page((unsigned long)buffer); 5572 #endif 5573 } 5574 5575 static void kmem_cache_release(struct kobject *k) 5576 { 5577 slab_kmem_cache_release(to_slab(k)); 5578 } 5579 5580 static const struct sysfs_ops slab_sysfs_ops = { 5581 .show = slab_attr_show, 5582 .store = slab_attr_store, 5583 }; 5584 5585 static struct kobj_type slab_ktype = { 5586 .sysfs_ops = &slab_sysfs_ops, 5587 .release = kmem_cache_release, 5588 }; 5589 5590 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5591 { 5592 struct kobj_type *ktype = get_ktype(kobj); 5593 5594 if (ktype == &slab_ktype) 5595 return 1; 5596 return 0; 5597 } 5598 5599 static const struct kset_uevent_ops slab_uevent_ops = { 5600 .filter = uevent_filter, 5601 }; 5602 5603 static struct kset *slab_kset; 5604 5605 static inline struct kset *cache_kset(struct kmem_cache *s) 5606 { 5607 #ifdef CONFIG_MEMCG 5608 if (!is_root_cache(s)) 5609 return s->memcg_params.root_cache->memcg_kset; 5610 #endif 5611 return slab_kset; 5612 } 5613 5614 #define ID_STR_LENGTH 64 5615 5616 /* Create a unique string id for a slab cache: 5617 * 5618 * Format :[flags-]size 5619 */ 5620 static char *create_unique_id(struct kmem_cache *s) 5621 { 5622 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5623 char *p = name; 5624 5625 BUG_ON(!name); 5626 5627 *p++ = ':'; 5628 /* 5629 * First flags affecting slabcache operations. We will only 5630 * get here for aliasable slabs so we do not need to support 5631 * too many flags. The flags here must cover all flags that 5632 * are matched during merging to guarantee that the id is 5633 * unique. 5634 */ 5635 if (s->flags & SLAB_CACHE_DMA) 5636 *p++ = 'd'; 5637 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5638 *p++ = 'a'; 5639 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5640 *p++ = 'F'; 5641 if (s->flags & SLAB_ACCOUNT) 5642 *p++ = 'A'; 5643 if (p != name + 1) 5644 *p++ = '-'; 5645 p += sprintf(p, "%07u", s->size); 5646 5647 BUG_ON(p > name + ID_STR_LENGTH - 1); 5648 return name; 5649 } 5650 5651 static void sysfs_slab_remove_workfn(struct work_struct *work) 5652 { 5653 struct kmem_cache *s = 5654 container_of(work, struct kmem_cache, kobj_remove_work); 5655 5656 if (!s->kobj.state_in_sysfs) 5657 /* 5658 * For a memcg cache, this may be called during 5659 * deactivation and again on shutdown. Remove only once. 5660 * A cache is never shut down before deactivation is 5661 * complete, so no need to worry about synchronization. 5662 */ 5663 goto out; 5664 5665 #ifdef CONFIG_MEMCG 5666 kset_unregister(s->memcg_kset); 5667 #endif 5668 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5669 out: 5670 kobject_put(&s->kobj); 5671 } 5672 5673 static int sysfs_slab_add(struct kmem_cache *s) 5674 { 5675 int err; 5676 const char *name; 5677 struct kset *kset = cache_kset(s); 5678 int unmergeable = slab_unmergeable(s); 5679 5680 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5681 5682 if (!kset) { 5683 kobject_init(&s->kobj, &slab_ktype); 5684 return 0; 5685 } 5686 5687 if (!unmergeable && disable_higher_order_debug && 5688 (slub_debug & DEBUG_METADATA_FLAGS)) 5689 unmergeable = 1; 5690 5691 if (unmergeable) { 5692 /* 5693 * Slabcache can never be merged so we can use the name proper. 5694 * This is typically the case for debug situations. In that 5695 * case we can catch duplicate names easily. 5696 */ 5697 sysfs_remove_link(&slab_kset->kobj, s->name); 5698 name = s->name; 5699 } else { 5700 /* 5701 * Create a unique name for the slab as a target 5702 * for the symlinks. 5703 */ 5704 name = create_unique_id(s); 5705 } 5706 5707 s->kobj.kset = kset; 5708 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5709 if (err) 5710 goto out; 5711 5712 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5713 if (err) 5714 goto out_del_kobj; 5715 5716 #ifdef CONFIG_MEMCG 5717 if (is_root_cache(s) && memcg_sysfs_enabled) { 5718 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5719 if (!s->memcg_kset) { 5720 err = -ENOMEM; 5721 goto out_del_kobj; 5722 } 5723 } 5724 #endif 5725 5726 kobject_uevent(&s->kobj, KOBJ_ADD); 5727 if (!unmergeable) { 5728 /* Setup first alias */ 5729 sysfs_slab_alias(s, s->name); 5730 } 5731 out: 5732 if (!unmergeable) 5733 kfree(name); 5734 return err; 5735 out_del_kobj: 5736 kobject_del(&s->kobj); 5737 goto out; 5738 } 5739 5740 static void sysfs_slab_remove(struct kmem_cache *s) 5741 { 5742 if (slab_state < FULL) 5743 /* 5744 * Sysfs has not been setup yet so no need to remove the 5745 * cache from sysfs. 5746 */ 5747 return; 5748 5749 kobject_get(&s->kobj); 5750 schedule_work(&s->kobj_remove_work); 5751 } 5752 5753 void sysfs_slab_unlink(struct kmem_cache *s) 5754 { 5755 if (slab_state >= FULL) 5756 kobject_del(&s->kobj); 5757 } 5758 5759 void sysfs_slab_release(struct kmem_cache *s) 5760 { 5761 if (slab_state >= FULL) 5762 kobject_put(&s->kobj); 5763 } 5764 5765 /* 5766 * Need to buffer aliases during bootup until sysfs becomes 5767 * available lest we lose that information. 5768 */ 5769 struct saved_alias { 5770 struct kmem_cache *s; 5771 const char *name; 5772 struct saved_alias *next; 5773 }; 5774 5775 static struct saved_alias *alias_list; 5776 5777 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5778 { 5779 struct saved_alias *al; 5780 5781 if (slab_state == FULL) { 5782 /* 5783 * If we have a leftover link then remove it. 5784 */ 5785 sysfs_remove_link(&slab_kset->kobj, name); 5786 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5787 } 5788 5789 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5790 if (!al) 5791 return -ENOMEM; 5792 5793 al->s = s; 5794 al->name = name; 5795 al->next = alias_list; 5796 alias_list = al; 5797 return 0; 5798 } 5799 5800 static int __init slab_sysfs_init(void) 5801 { 5802 struct kmem_cache *s; 5803 int err; 5804 5805 mutex_lock(&slab_mutex); 5806 5807 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5808 if (!slab_kset) { 5809 mutex_unlock(&slab_mutex); 5810 pr_err("Cannot register slab subsystem.\n"); 5811 return -ENOSYS; 5812 } 5813 5814 slab_state = FULL; 5815 5816 list_for_each_entry(s, &slab_caches, list) { 5817 err = sysfs_slab_add(s); 5818 if (err) 5819 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5820 s->name); 5821 } 5822 5823 while (alias_list) { 5824 struct saved_alias *al = alias_list; 5825 5826 alias_list = alias_list->next; 5827 err = sysfs_slab_alias(al->s, al->name); 5828 if (err) 5829 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5830 al->name); 5831 kfree(al); 5832 } 5833 5834 mutex_unlock(&slab_mutex); 5835 resiliency_test(); 5836 return 0; 5837 } 5838 5839 __initcall(slab_sysfs_init); 5840 #endif /* CONFIG_SYSFS */ 5841 5842 /* 5843 * The /proc/slabinfo ABI 5844 */ 5845 #ifdef CONFIG_SLUB_DEBUG 5846 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5847 { 5848 unsigned long nr_slabs = 0; 5849 unsigned long nr_objs = 0; 5850 unsigned long nr_free = 0; 5851 int node; 5852 struct kmem_cache_node *n; 5853 5854 for_each_kmem_cache_node(s, node, n) { 5855 nr_slabs += node_nr_slabs(n); 5856 nr_objs += node_nr_objs(n); 5857 nr_free += count_partial(n, count_free); 5858 } 5859 5860 sinfo->active_objs = nr_objs - nr_free; 5861 sinfo->num_objs = nr_objs; 5862 sinfo->active_slabs = nr_slabs; 5863 sinfo->num_slabs = nr_slabs; 5864 sinfo->objects_per_slab = oo_objects(s->oo); 5865 sinfo->cache_order = oo_order(s->oo); 5866 } 5867 5868 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5869 { 5870 } 5871 5872 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5873 size_t count, loff_t *ppos) 5874 { 5875 return -EIO; 5876 } 5877 #endif /* CONFIG_SLUB_DEBUG */ 5878