xref: /linux/mm/slub.c (revision ef9226cd56b718c79184a3466d32984a51cb449c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * freeptr_t represents a SLUB freelist pointer, which might be encoded
470  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471  */
472 typedef struct { unsigned long v; } freeptr_t;
473 
474 /*
475  * Returns freelist pointer (ptr). With hardening, this is obfuscated
476  * with an XOR of the address where the pointer is held and a per-cache
477  * random number.
478  */
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 					    void *ptr, unsigned long ptr_addr)
481 {
482 	unsigned long encoded;
483 
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486 #else
487 	encoded = (unsigned long)ptr;
488 #endif
489 	return (freeptr_t){.v = encoded};
490 }
491 
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 					freeptr_t ptr, unsigned long ptr_addr)
494 {
495 	void *decoded;
496 
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499 #else
500 	decoded = (void *)ptr.v;
501 #endif
502 	return decoded;
503 }
504 
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
506 {
507 	unsigned long ptr_addr;
508 	freeptr_t p;
509 
510 	object = kasan_reset_tag(object);
511 	ptr_addr = (unsigned long)object + s->offset;
512 	p = *(freeptr_t *)(ptr_addr);
513 	return freelist_ptr_decode(s, p, ptr_addr);
514 }
515 
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518 {
519 	prefetchw(object + s->offset);
520 }
521 #endif
522 
523 /*
524  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525  * pointer value in the case the current thread loses the race for the next
526  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528  * KMSAN will still check all arguments of cmpxchg because of imperfect
529  * handling of inline assembly.
530  * To work around this problem, we apply __no_kmsan_checks to ensure that
531  * get_freepointer_safe() returns initialized memory.
532  */
533 __no_kmsan_checks
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535 {
536 	unsigned long freepointer_addr;
537 	freeptr_t p;
538 
539 	if (!debug_pagealloc_enabled_static())
540 		return get_freepointer(s, object);
541 
542 	object = kasan_reset_tag(object);
543 	freepointer_addr = (unsigned long)object + s->offset;
544 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 	return freelist_ptr_decode(s, p, freepointer_addr);
546 }
547 
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549 {
550 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
551 
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 	BUG_ON(object == fp); /* naive detection of double free or corruption */
554 #endif
555 
556 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558 }
559 
560 /* Loop over all objects in a slab */
561 #define for_each_object(__p, __s, __addr, __objects) \
562 	for (__p = fixup_red_left(__s, __addr); \
563 		__p < (__addr) + (__objects) * (__s)->size; \
564 		__p += (__s)->size)
565 
566 static inline unsigned int order_objects(unsigned int order, unsigned int size)
567 {
568 	return ((unsigned int)PAGE_SIZE << order) / size;
569 }
570 
571 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
572 		unsigned int size)
573 {
574 	struct kmem_cache_order_objects x = {
575 		(order << OO_SHIFT) + order_objects(order, size)
576 	};
577 
578 	return x;
579 }
580 
581 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
582 {
583 	return x.x >> OO_SHIFT;
584 }
585 
586 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
587 {
588 	return x.x & OO_MASK;
589 }
590 
591 #ifdef CONFIG_SLUB_CPU_PARTIAL
592 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
593 {
594 	unsigned int nr_slabs;
595 
596 	s->cpu_partial = nr_objects;
597 
598 	/*
599 	 * We take the number of objects but actually limit the number of
600 	 * slabs on the per cpu partial list, in order to limit excessive
601 	 * growth of the list. For simplicity we assume that the slabs will
602 	 * be half-full.
603 	 */
604 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
605 	s->cpu_partial_slabs = nr_slabs;
606 }
607 #else
608 static inline void
609 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
610 {
611 }
612 #endif /* CONFIG_SLUB_CPU_PARTIAL */
613 
614 /*
615  * Per slab locking using the pagelock
616  */
617 static __always_inline void slab_lock(struct slab *slab)
618 {
619 	struct page *page = slab_page(slab);
620 
621 	VM_BUG_ON_PAGE(PageTail(page), page);
622 	bit_spin_lock(PG_locked, &page->flags);
623 }
624 
625 static __always_inline void slab_unlock(struct slab *slab)
626 {
627 	struct page *page = slab_page(slab);
628 
629 	VM_BUG_ON_PAGE(PageTail(page), page);
630 	bit_spin_unlock(PG_locked, &page->flags);
631 }
632 
633 static inline bool
634 __update_freelist_fast(struct slab *slab,
635 		      void *freelist_old, unsigned long counters_old,
636 		      void *freelist_new, unsigned long counters_new)
637 {
638 #ifdef system_has_freelist_aba
639 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
640 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
641 
642 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
643 #else
644 	return false;
645 #endif
646 }
647 
648 static inline bool
649 __update_freelist_slow(struct slab *slab,
650 		      void *freelist_old, unsigned long counters_old,
651 		      void *freelist_new, unsigned long counters_new)
652 {
653 	bool ret = false;
654 
655 	slab_lock(slab);
656 	if (slab->freelist == freelist_old &&
657 	    slab->counters == counters_old) {
658 		slab->freelist = freelist_new;
659 		slab->counters = counters_new;
660 		ret = true;
661 	}
662 	slab_unlock(slab);
663 
664 	return ret;
665 }
666 
667 /*
668  * Interrupts must be disabled (for the fallback code to work right), typically
669  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
670  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
671  * allocation/ free operation in hardirq context. Therefore nothing can
672  * interrupt the operation.
673  */
674 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
675 		void *freelist_old, unsigned long counters_old,
676 		void *freelist_new, unsigned long counters_new,
677 		const char *n)
678 {
679 	bool ret;
680 
681 	if (USE_LOCKLESS_FAST_PATH())
682 		lockdep_assert_irqs_disabled();
683 
684 	if (s->flags & __CMPXCHG_DOUBLE) {
685 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
686 				            freelist_new, counters_new);
687 	} else {
688 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
689 				            freelist_new, counters_new);
690 	}
691 	if (likely(ret))
692 		return true;
693 
694 	cpu_relax();
695 	stat(s, CMPXCHG_DOUBLE_FAIL);
696 
697 #ifdef SLUB_DEBUG_CMPXCHG
698 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
699 #endif
700 
701 	return false;
702 }
703 
704 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
705 		void *freelist_old, unsigned long counters_old,
706 		void *freelist_new, unsigned long counters_new,
707 		const char *n)
708 {
709 	bool ret;
710 
711 	if (s->flags & __CMPXCHG_DOUBLE) {
712 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
713 				            freelist_new, counters_new);
714 	} else {
715 		unsigned long flags;
716 
717 		local_irq_save(flags);
718 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
719 				            freelist_new, counters_new);
720 		local_irq_restore(flags);
721 	}
722 	if (likely(ret))
723 		return true;
724 
725 	cpu_relax();
726 	stat(s, CMPXCHG_DOUBLE_FAIL);
727 
728 #ifdef SLUB_DEBUG_CMPXCHG
729 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
730 #endif
731 
732 	return false;
733 }
734 
735 #ifdef CONFIG_SLUB_DEBUG
736 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
737 static DEFINE_SPINLOCK(object_map_lock);
738 
739 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
740 		       struct slab *slab)
741 {
742 	void *addr = slab_address(slab);
743 	void *p;
744 
745 	bitmap_zero(obj_map, slab->objects);
746 
747 	for (p = slab->freelist; p; p = get_freepointer(s, p))
748 		set_bit(__obj_to_index(s, addr, p), obj_map);
749 }
750 
751 #if IS_ENABLED(CONFIG_KUNIT)
752 static bool slab_add_kunit_errors(void)
753 {
754 	struct kunit_resource *resource;
755 
756 	if (!kunit_get_current_test())
757 		return false;
758 
759 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
760 	if (!resource)
761 		return false;
762 
763 	(*(int *)resource->data)++;
764 	kunit_put_resource(resource);
765 	return true;
766 }
767 #else
768 static inline bool slab_add_kunit_errors(void) { return false; }
769 #endif
770 
771 static inline unsigned int size_from_object(struct kmem_cache *s)
772 {
773 	if (s->flags & SLAB_RED_ZONE)
774 		return s->size - s->red_left_pad;
775 
776 	return s->size;
777 }
778 
779 static inline void *restore_red_left(struct kmem_cache *s, void *p)
780 {
781 	if (s->flags & SLAB_RED_ZONE)
782 		p -= s->red_left_pad;
783 
784 	return p;
785 }
786 
787 /*
788  * Debug settings:
789  */
790 #if defined(CONFIG_SLUB_DEBUG_ON)
791 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
792 #else
793 static slab_flags_t slub_debug;
794 #endif
795 
796 static char *slub_debug_string;
797 static int disable_higher_order_debug;
798 
799 /*
800  * slub is about to manipulate internal object metadata.  This memory lies
801  * outside the range of the allocated object, so accessing it would normally
802  * be reported by kasan as a bounds error.  metadata_access_enable() is used
803  * to tell kasan that these accesses are OK.
804  */
805 static inline void metadata_access_enable(void)
806 {
807 	kasan_disable_current();
808 }
809 
810 static inline void metadata_access_disable(void)
811 {
812 	kasan_enable_current();
813 }
814 
815 /*
816  * Object debugging
817  */
818 
819 /* Verify that a pointer has an address that is valid within a slab page */
820 static inline int check_valid_pointer(struct kmem_cache *s,
821 				struct slab *slab, void *object)
822 {
823 	void *base;
824 
825 	if (!object)
826 		return 1;
827 
828 	base = slab_address(slab);
829 	object = kasan_reset_tag(object);
830 	object = restore_red_left(s, object);
831 	if (object < base || object >= base + slab->objects * s->size ||
832 		(object - base) % s->size) {
833 		return 0;
834 	}
835 
836 	return 1;
837 }
838 
839 static void print_section(char *level, char *text, u8 *addr,
840 			  unsigned int length)
841 {
842 	metadata_access_enable();
843 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
844 			16, 1, kasan_reset_tag((void *)addr), length, 1);
845 	metadata_access_disable();
846 }
847 
848 /*
849  * See comment in calculate_sizes().
850  */
851 static inline bool freeptr_outside_object(struct kmem_cache *s)
852 {
853 	return s->offset >= s->inuse;
854 }
855 
856 /*
857  * Return offset of the end of info block which is inuse + free pointer if
858  * not overlapping with object.
859  */
860 static inline unsigned int get_info_end(struct kmem_cache *s)
861 {
862 	if (freeptr_outside_object(s))
863 		return s->inuse + sizeof(void *);
864 	else
865 		return s->inuse;
866 }
867 
868 static struct track *get_track(struct kmem_cache *s, void *object,
869 	enum track_item alloc)
870 {
871 	struct track *p;
872 
873 	p = object + get_info_end(s);
874 
875 	return kasan_reset_tag(p + alloc);
876 }
877 
878 #ifdef CONFIG_STACKDEPOT
879 static noinline depot_stack_handle_t set_track_prepare(void)
880 {
881 	depot_stack_handle_t handle;
882 	unsigned long entries[TRACK_ADDRS_COUNT];
883 	unsigned int nr_entries;
884 
885 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
886 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
887 
888 	return handle;
889 }
890 #else
891 static inline depot_stack_handle_t set_track_prepare(void)
892 {
893 	return 0;
894 }
895 #endif
896 
897 static void set_track_update(struct kmem_cache *s, void *object,
898 			     enum track_item alloc, unsigned long addr,
899 			     depot_stack_handle_t handle)
900 {
901 	struct track *p = get_track(s, object, alloc);
902 
903 #ifdef CONFIG_STACKDEPOT
904 	p->handle = handle;
905 #endif
906 	p->addr = addr;
907 	p->cpu = smp_processor_id();
908 	p->pid = current->pid;
909 	p->when = jiffies;
910 }
911 
912 static __always_inline void set_track(struct kmem_cache *s, void *object,
913 				      enum track_item alloc, unsigned long addr)
914 {
915 	depot_stack_handle_t handle = set_track_prepare();
916 
917 	set_track_update(s, object, alloc, addr, handle);
918 }
919 
920 static void init_tracking(struct kmem_cache *s, void *object)
921 {
922 	struct track *p;
923 
924 	if (!(s->flags & SLAB_STORE_USER))
925 		return;
926 
927 	p = get_track(s, object, TRACK_ALLOC);
928 	memset(p, 0, 2*sizeof(struct track));
929 }
930 
931 static void print_track(const char *s, struct track *t, unsigned long pr_time)
932 {
933 	depot_stack_handle_t handle __maybe_unused;
934 
935 	if (!t->addr)
936 		return;
937 
938 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
939 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
940 #ifdef CONFIG_STACKDEPOT
941 	handle = READ_ONCE(t->handle);
942 	if (handle)
943 		stack_depot_print(handle);
944 	else
945 		pr_err("object allocation/free stack trace missing\n");
946 #endif
947 }
948 
949 void print_tracking(struct kmem_cache *s, void *object)
950 {
951 	unsigned long pr_time = jiffies;
952 	if (!(s->flags & SLAB_STORE_USER))
953 		return;
954 
955 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
956 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
957 }
958 
959 static void print_slab_info(const struct slab *slab)
960 {
961 	struct folio *folio = (struct folio *)slab_folio(slab);
962 
963 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
964 	       slab, slab->objects, slab->inuse, slab->freelist,
965 	       folio_flags(folio, 0));
966 }
967 
968 /*
969  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
970  * family will round up the real request size to these fixed ones, so
971  * there could be an extra area than what is requested. Save the original
972  * request size in the meta data area, for better debug and sanity check.
973  */
974 static inline void set_orig_size(struct kmem_cache *s,
975 				void *object, unsigned int orig_size)
976 {
977 	void *p = kasan_reset_tag(object);
978 	unsigned int kasan_meta_size;
979 
980 	if (!slub_debug_orig_size(s))
981 		return;
982 
983 	/*
984 	 * KASAN can save its free meta data inside of the object at offset 0.
985 	 * If this meta data size is larger than 'orig_size', it will overlap
986 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
987 	 * 'orig_size' to be as at least as big as KASAN's meta data.
988 	 */
989 	kasan_meta_size = kasan_metadata_size(s, true);
990 	if (kasan_meta_size > orig_size)
991 		orig_size = kasan_meta_size;
992 
993 	p += get_info_end(s);
994 	p += sizeof(struct track) * 2;
995 
996 	*(unsigned int *)p = orig_size;
997 }
998 
999 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1000 {
1001 	void *p = kasan_reset_tag(object);
1002 
1003 	if (!slub_debug_orig_size(s))
1004 		return s->object_size;
1005 
1006 	p += get_info_end(s);
1007 	p += sizeof(struct track) * 2;
1008 
1009 	return *(unsigned int *)p;
1010 }
1011 
1012 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1013 {
1014 	set_orig_size(s, (void *)object, s->object_size);
1015 }
1016 
1017 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1018 {
1019 	struct va_format vaf;
1020 	va_list args;
1021 
1022 	va_start(args, fmt);
1023 	vaf.fmt = fmt;
1024 	vaf.va = &args;
1025 	pr_err("=============================================================================\n");
1026 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1027 	pr_err("-----------------------------------------------------------------------------\n\n");
1028 	va_end(args);
1029 }
1030 
1031 __printf(2, 3)
1032 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1033 {
1034 	struct va_format vaf;
1035 	va_list args;
1036 
1037 	if (slab_add_kunit_errors())
1038 		return;
1039 
1040 	va_start(args, fmt);
1041 	vaf.fmt = fmt;
1042 	vaf.va = &args;
1043 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1044 	va_end(args);
1045 }
1046 
1047 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1048 {
1049 	unsigned int off;	/* Offset of last byte */
1050 	u8 *addr = slab_address(slab);
1051 
1052 	print_tracking(s, p);
1053 
1054 	print_slab_info(slab);
1055 
1056 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1057 	       p, p - addr, get_freepointer(s, p));
1058 
1059 	if (s->flags & SLAB_RED_ZONE)
1060 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1061 			      s->red_left_pad);
1062 	else if (p > addr + 16)
1063 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1064 
1065 	print_section(KERN_ERR,         "Object   ", p,
1066 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1067 	if (s->flags & SLAB_RED_ZONE)
1068 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1069 			s->inuse - s->object_size);
1070 
1071 	off = get_info_end(s);
1072 
1073 	if (s->flags & SLAB_STORE_USER)
1074 		off += 2 * sizeof(struct track);
1075 
1076 	if (slub_debug_orig_size(s))
1077 		off += sizeof(unsigned int);
1078 
1079 	off += kasan_metadata_size(s, false);
1080 
1081 	if (off != size_from_object(s))
1082 		/* Beginning of the filler is the free pointer */
1083 		print_section(KERN_ERR, "Padding  ", p + off,
1084 			      size_from_object(s) - off);
1085 
1086 	dump_stack();
1087 }
1088 
1089 static void object_err(struct kmem_cache *s, struct slab *slab,
1090 			u8 *object, char *reason)
1091 {
1092 	if (slab_add_kunit_errors())
1093 		return;
1094 
1095 	slab_bug(s, "%s", reason);
1096 	print_trailer(s, slab, object);
1097 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1098 }
1099 
1100 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1101 			       void **freelist, void *nextfree)
1102 {
1103 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1104 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1105 		object_err(s, slab, *freelist, "Freechain corrupt");
1106 		*freelist = NULL;
1107 		slab_fix(s, "Isolate corrupted freechain");
1108 		return true;
1109 	}
1110 
1111 	return false;
1112 }
1113 
1114 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1115 			const char *fmt, ...)
1116 {
1117 	va_list args;
1118 	char buf[100];
1119 
1120 	if (slab_add_kunit_errors())
1121 		return;
1122 
1123 	va_start(args, fmt);
1124 	vsnprintf(buf, sizeof(buf), fmt, args);
1125 	va_end(args);
1126 	slab_bug(s, "%s", buf);
1127 	print_slab_info(slab);
1128 	dump_stack();
1129 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1130 }
1131 
1132 static void init_object(struct kmem_cache *s, void *object, u8 val)
1133 {
1134 	u8 *p = kasan_reset_tag(object);
1135 	unsigned int poison_size = s->object_size;
1136 
1137 	if (s->flags & SLAB_RED_ZONE) {
1138 		memset(p - s->red_left_pad, val, s->red_left_pad);
1139 
1140 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1141 			/*
1142 			 * Redzone the extra allocated space by kmalloc than
1143 			 * requested, and the poison size will be limited to
1144 			 * the original request size accordingly.
1145 			 */
1146 			poison_size = get_orig_size(s, object);
1147 		}
1148 	}
1149 
1150 	if (s->flags & __OBJECT_POISON) {
1151 		memset(p, POISON_FREE, poison_size - 1);
1152 		p[poison_size - 1] = POISON_END;
1153 	}
1154 
1155 	if (s->flags & SLAB_RED_ZONE)
1156 		memset(p + poison_size, val, s->inuse - poison_size);
1157 }
1158 
1159 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1160 						void *from, void *to)
1161 {
1162 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1163 	memset(from, data, to - from);
1164 }
1165 
1166 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1167 			u8 *object, char *what,
1168 			u8 *start, unsigned int value, unsigned int bytes)
1169 {
1170 	u8 *fault;
1171 	u8 *end;
1172 	u8 *addr = slab_address(slab);
1173 
1174 	metadata_access_enable();
1175 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1176 	metadata_access_disable();
1177 	if (!fault)
1178 		return 1;
1179 
1180 	end = start + bytes;
1181 	while (end > fault && end[-1] == value)
1182 		end--;
1183 
1184 	if (slab_add_kunit_errors())
1185 		goto skip_bug_print;
1186 
1187 	slab_bug(s, "%s overwritten", what);
1188 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1189 					fault, end - 1, fault - addr,
1190 					fault[0], value);
1191 	print_trailer(s, slab, object);
1192 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1193 
1194 skip_bug_print:
1195 	restore_bytes(s, what, value, fault, end);
1196 	return 0;
1197 }
1198 
1199 /*
1200  * Object layout:
1201  *
1202  * object address
1203  * 	Bytes of the object to be managed.
1204  * 	If the freepointer may overlay the object then the free
1205  *	pointer is at the middle of the object.
1206  *
1207  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1208  * 	0xa5 (POISON_END)
1209  *
1210  * object + s->object_size
1211  * 	Padding to reach word boundary. This is also used for Redzoning.
1212  * 	Padding is extended by another word if Redzoning is enabled and
1213  * 	object_size == inuse.
1214  *
1215  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1216  * 	0xcc (RED_ACTIVE) for objects in use.
1217  *
1218  * object + s->inuse
1219  * 	Meta data starts here.
1220  *
1221  * 	A. Free pointer (if we cannot overwrite object on free)
1222  * 	B. Tracking data for SLAB_STORE_USER
1223  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1224  *	D. Padding to reach required alignment boundary or at minimum
1225  * 		one word if debugging is on to be able to detect writes
1226  * 		before the word boundary.
1227  *
1228  *	Padding is done using 0x5a (POISON_INUSE)
1229  *
1230  * object + s->size
1231  * 	Nothing is used beyond s->size.
1232  *
1233  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1234  * ignored. And therefore no slab options that rely on these boundaries
1235  * may be used with merged slabcaches.
1236  */
1237 
1238 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1239 {
1240 	unsigned long off = get_info_end(s);	/* The end of info */
1241 
1242 	if (s->flags & SLAB_STORE_USER) {
1243 		/* We also have user information there */
1244 		off += 2 * sizeof(struct track);
1245 
1246 		if (s->flags & SLAB_KMALLOC)
1247 			off += sizeof(unsigned int);
1248 	}
1249 
1250 	off += kasan_metadata_size(s, false);
1251 
1252 	if (size_from_object(s) == off)
1253 		return 1;
1254 
1255 	return check_bytes_and_report(s, slab, p, "Object padding",
1256 			p + off, POISON_INUSE, size_from_object(s) - off);
1257 }
1258 
1259 /* Check the pad bytes at the end of a slab page */
1260 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1261 {
1262 	u8 *start;
1263 	u8 *fault;
1264 	u8 *end;
1265 	u8 *pad;
1266 	int length;
1267 	int remainder;
1268 
1269 	if (!(s->flags & SLAB_POISON))
1270 		return;
1271 
1272 	start = slab_address(slab);
1273 	length = slab_size(slab);
1274 	end = start + length;
1275 	remainder = length % s->size;
1276 	if (!remainder)
1277 		return;
1278 
1279 	pad = end - remainder;
1280 	metadata_access_enable();
1281 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1282 	metadata_access_disable();
1283 	if (!fault)
1284 		return;
1285 	while (end > fault && end[-1] == POISON_INUSE)
1286 		end--;
1287 
1288 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1289 			fault, end - 1, fault - start);
1290 	print_section(KERN_ERR, "Padding ", pad, remainder);
1291 
1292 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1293 }
1294 
1295 static int check_object(struct kmem_cache *s, struct slab *slab,
1296 					void *object, u8 val)
1297 {
1298 	u8 *p = object;
1299 	u8 *endobject = object + s->object_size;
1300 	unsigned int orig_size, kasan_meta_size;
1301 
1302 	if (s->flags & SLAB_RED_ZONE) {
1303 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1304 			object - s->red_left_pad, val, s->red_left_pad))
1305 			return 0;
1306 
1307 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1308 			endobject, val, s->inuse - s->object_size))
1309 			return 0;
1310 
1311 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1312 			orig_size = get_orig_size(s, object);
1313 
1314 			if (s->object_size > orig_size  &&
1315 				!check_bytes_and_report(s, slab, object,
1316 					"kmalloc Redzone", p + orig_size,
1317 					val, s->object_size - orig_size)) {
1318 				return 0;
1319 			}
1320 		}
1321 	} else {
1322 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1323 			check_bytes_and_report(s, slab, p, "Alignment padding",
1324 				endobject, POISON_INUSE,
1325 				s->inuse - s->object_size);
1326 		}
1327 	}
1328 
1329 	if (s->flags & SLAB_POISON) {
1330 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1331 			/*
1332 			 * KASAN can save its free meta data inside of the
1333 			 * object at offset 0. Thus, skip checking the part of
1334 			 * the redzone that overlaps with the meta data.
1335 			 */
1336 			kasan_meta_size = kasan_metadata_size(s, true);
1337 			if (kasan_meta_size < s->object_size - 1 &&
1338 			    !check_bytes_and_report(s, slab, p, "Poison",
1339 					p + kasan_meta_size, POISON_FREE,
1340 					s->object_size - kasan_meta_size - 1))
1341 				return 0;
1342 			if (kasan_meta_size < s->object_size &&
1343 			    !check_bytes_and_report(s, slab, p, "End Poison",
1344 					p + s->object_size - 1, POISON_END, 1))
1345 				return 0;
1346 		}
1347 		/*
1348 		 * check_pad_bytes cleans up on its own.
1349 		 */
1350 		check_pad_bytes(s, slab, p);
1351 	}
1352 
1353 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1354 		/*
1355 		 * Object and freepointer overlap. Cannot check
1356 		 * freepointer while object is allocated.
1357 		 */
1358 		return 1;
1359 
1360 	/* Check free pointer validity */
1361 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1362 		object_err(s, slab, p, "Freepointer corrupt");
1363 		/*
1364 		 * No choice but to zap it and thus lose the remainder
1365 		 * of the free objects in this slab. May cause
1366 		 * another error because the object count is now wrong.
1367 		 */
1368 		set_freepointer(s, p, NULL);
1369 		return 0;
1370 	}
1371 	return 1;
1372 }
1373 
1374 static int check_slab(struct kmem_cache *s, struct slab *slab)
1375 {
1376 	int maxobj;
1377 
1378 	if (!folio_test_slab(slab_folio(slab))) {
1379 		slab_err(s, slab, "Not a valid slab page");
1380 		return 0;
1381 	}
1382 
1383 	maxobj = order_objects(slab_order(slab), s->size);
1384 	if (slab->objects > maxobj) {
1385 		slab_err(s, slab, "objects %u > max %u",
1386 			slab->objects, maxobj);
1387 		return 0;
1388 	}
1389 	if (slab->inuse > slab->objects) {
1390 		slab_err(s, slab, "inuse %u > max %u",
1391 			slab->inuse, slab->objects);
1392 		return 0;
1393 	}
1394 	/* Slab_pad_check fixes things up after itself */
1395 	slab_pad_check(s, slab);
1396 	return 1;
1397 }
1398 
1399 /*
1400  * Determine if a certain object in a slab is on the freelist. Must hold the
1401  * slab lock to guarantee that the chains are in a consistent state.
1402  */
1403 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1404 {
1405 	int nr = 0;
1406 	void *fp;
1407 	void *object = NULL;
1408 	int max_objects;
1409 
1410 	fp = slab->freelist;
1411 	while (fp && nr <= slab->objects) {
1412 		if (fp == search)
1413 			return 1;
1414 		if (!check_valid_pointer(s, slab, fp)) {
1415 			if (object) {
1416 				object_err(s, slab, object,
1417 					"Freechain corrupt");
1418 				set_freepointer(s, object, NULL);
1419 			} else {
1420 				slab_err(s, slab, "Freepointer corrupt");
1421 				slab->freelist = NULL;
1422 				slab->inuse = slab->objects;
1423 				slab_fix(s, "Freelist cleared");
1424 				return 0;
1425 			}
1426 			break;
1427 		}
1428 		object = fp;
1429 		fp = get_freepointer(s, object);
1430 		nr++;
1431 	}
1432 
1433 	max_objects = order_objects(slab_order(slab), s->size);
1434 	if (max_objects > MAX_OBJS_PER_PAGE)
1435 		max_objects = MAX_OBJS_PER_PAGE;
1436 
1437 	if (slab->objects != max_objects) {
1438 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1439 			 slab->objects, max_objects);
1440 		slab->objects = max_objects;
1441 		slab_fix(s, "Number of objects adjusted");
1442 	}
1443 	if (slab->inuse != slab->objects - nr) {
1444 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1445 			 slab->inuse, slab->objects - nr);
1446 		slab->inuse = slab->objects - nr;
1447 		slab_fix(s, "Object count adjusted");
1448 	}
1449 	return search == NULL;
1450 }
1451 
1452 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1453 								int alloc)
1454 {
1455 	if (s->flags & SLAB_TRACE) {
1456 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1457 			s->name,
1458 			alloc ? "alloc" : "free",
1459 			object, slab->inuse,
1460 			slab->freelist);
1461 
1462 		if (!alloc)
1463 			print_section(KERN_INFO, "Object ", (void *)object,
1464 					s->object_size);
1465 
1466 		dump_stack();
1467 	}
1468 }
1469 
1470 /*
1471  * Tracking of fully allocated slabs for debugging purposes.
1472  */
1473 static void add_full(struct kmem_cache *s,
1474 	struct kmem_cache_node *n, struct slab *slab)
1475 {
1476 	if (!(s->flags & SLAB_STORE_USER))
1477 		return;
1478 
1479 	lockdep_assert_held(&n->list_lock);
1480 	list_add(&slab->slab_list, &n->full);
1481 }
1482 
1483 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1484 {
1485 	if (!(s->flags & SLAB_STORE_USER))
1486 		return;
1487 
1488 	lockdep_assert_held(&n->list_lock);
1489 	list_del(&slab->slab_list);
1490 }
1491 
1492 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1493 {
1494 	return atomic_long_read(&n->nr_slabs);
1495 }
1496 
1497 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1498 {
1499 	struct kmem_cache_node *n = get_node(s, node);
1500 
1501 	atomic_long_inc(&n->nr_slabs);
1502 	atomic_long_add(objects, &n->total_objects);
1503 }
1504 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1505 {
1506 	struct kmem_cache_node *n = get_node(s, node);
1507 
1508 	atomic_long_dec(&n->nr_slabs);
1509 	atomic_long_sub(objects, &n->total_objects);
1510 }
1511 
1512 /* Object debug checks for alloc/free paths */
1513 static void setup_object_debug(struct kmem_cache *s, void *object)
1514 {
1515 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1516 		return;
1517 
1518 	init_object(s, object, SLUB_RED_INACTIVE);
1519 	init_tracking(s, object);
1520 }
1521 
1522 static
1523 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1524 {
1525 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1526 		return;
1527 
1528 	metadata_access_enable();
1529 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1530 	metadata_access_disable();
1531 }
1532 
1533 static inline int alloc_consistency_checks(struct kmem_cache *s,
1534 					struct slab *slab, void *object)
1535 {
1536 	if (!check_slab(s, slab))
1537 		return 0;
1538 
1539 	if (!check_valid_pointer(s, slab, object)) {
1540 		object_err(s, slab, object, "Freelist Pointer check fails");
1541 		return 0;
1542 	}
1543 
1544 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1545 		return 0;
1546 
1547 	return 1;
1548 }
1549 
1550 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1551 			struct slab *slab, void *object, int orig_size)
1552 {
1553 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1554 		if (!alloc_consistency_checks(s, slab, object))
1555 			goto bad;
1556 	}
1557 
1558 	/* Success. Perform special debug activities for allocs */
1559 	trace(s, slab, object, 1);
1560 	set_orig_size(s, object, orig_size);
1561 	init_object(s, object, SLUB_RED_ACTIVE);
1562 	return true;
1563 
1564 bad:
1565 	if (folio_test_slab(slab_folio(slab))) {
1566 		/*
1567 		 * If this is a slab page then lets do the best we can
1568 		 * to avoid issues in the future. Marking all objects
1569 		 * as used avoids touching the remaining objects.
1570 		 */
1571 		slab_fix(s, "Marking all objects used");
1572 		slab->inuse = slab->objects;
1573 		slab->freelist = NULL;
1574 	}
1575 	return false;
1576 }
1577 
1578 static inline int free_consistency_checks(struct kmem_cache *s,
1579 		struct slab *slab, void *object, unsigned long addr)
1580 {
1581 	if (!check_valid_pointer(s, slab, object)) {
1582 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1583 		return 0;
1584 	}
1585 
1586 	if (on_freelist(s, slab, object)) {
1587 		object_err(s, slab, object, "Object already free");
1588 		return 0;
1589 	}
1590 
1591 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1592 		return 0;
1593 
1594 	if (unlikely(s != slab->slab_cache)) {
1595 		if (!folio_test_slab(slab_folio(slab))) {
1596 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1597 				 object);
1598 		} else if (!slab->slab_cache) {
1599 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1600 			       object);
1601 			dump_stack();
1602 		} else
1603 			object_err(s, slab, object,
1604 					"page slab pointer corrupt.");
1605 		return 0;
1606 	}
1607 	return 1;
1608 }
1609 
1610 /*
1611  * Parse a block of slab_debug options. Blocks are delimited by ';'
1612  *
1613  * @str:    start of block
1614  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1615  * @slabs:  return start of list of slabs, or NULL when there's no list
1616  * @init:   assume this is initial parsing and not per-kmem-create parsing
1617  *
1618  * returns the start of next block if there's any, or NULL
1619  */
1620 static char *
1621 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1622 {
1623 	bool higher_order_disable = false;
1624 
1625 	/* Skip any completely empty blocks */
1626 	while (*str && *str == ';')
1627 		str++;
1628 
1629 	if (*str == ',') {
1630 		/*
1631 		 * No options but restriction on slabs. This means full
1632 		 * debugging for slabs matching a pattern.
1633 		 */
1634 		*flags = DEBUG_DEFAULT_FLAGS;
1635 		goto check_slabs;
1636 	}
1637 	*flags = 0;
1638 
1639 	/* Determine which debug features should be switched on */
1640 	for (; *str && *str != ',' && *str != ';'; str++) {
1641 		switch (tolower(*str)) {
1642 		case '-':
1643 			*flags = 0;
1644 			break;
1645 		case 'f':
1646 			*flags |= SLAB_CONSISTENCY_CHECKS;
1647 			break;
1648 		case 'z':
1649 			*flags |= SLAB_RED_ZONE;
1650 			break;
1651 		case 'p':
1652 			*flags |= SLAB_POISON;
1653 			break;
1654 		case 'u':
1655 			*flags |= SLAB_STORE_USER;
1656 			break;
1657 		case 't':
1658 			*flags |= SLAB_TRACE;
1659 			break;
1660 		case 'a':
1661 			*flags |= SLAB_FAILSLAB;
1662 			break;
1663 		case 'o':
1664 			/*
1665 			 * Avoid enabling debugging on caches if its minimum
1666 			 * order would increase as a result.
1667 			 */
1668 			higher_order_disable = true;
1669 			break;
1670 		default:
1671 			if (init)
1672 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1673 		}
1674 	}
1675 check_slabs:
1676 	if (*str == ',')
1677 		*slabs = ++str;
1678 	else
1679 		*slabs = NULL;
1680 
1681 	/* Skip over the slab list */
1682 	while (*str && *str != ';')
1683 		str++;
1684 
1685 	/* Skip any completely empty blocks */
1686 	while (*str && *str == ';')
1687 		str++;
1688 
1689 	if (init && higher_order_disable)
1690 		disable_higher_order_debug = 1;
1691 
1692 	if (*str)
1693 		return str;
1694 	else
1695 		return NULL;
1696 }
1697 
1698 static int __init setup_slub_debug(char *str)
1699 {
1700 	slab_flags_t flags;
1701 	slab_flags_t global_flags;
1702 	char *saved_str;
1703 	char *slab_list;
1704 	bool global_slub_debug_changed = false;
1705 	bool slab_list_specified = false;
1706 
1707 	global_flags = DEBUG_DEFAULT_FLAGS;
1708 	if (*str++ != '=' || !*str)
1709 		/*
1710 		 * No options specified. Switch on full debugging.
1711 		 */
1712 		goto out;
1713 
1714 	saved_str = str;
1715 	while (str) {
1716 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1717 
1718 		if (!slab_list) {
1719 			global_flags = flags;
1720 			global_slub_debug_changed = true;
1721 		} else {
1722 			slab_list_specified = true;
1723 			if (flags & SLAB_STORE_USER)
1724 				stack_depot_request_early_init();
1725 		}
1726 	}
1727 
1728 	/*
1729 	 * For backwards compatibility, a single list of flags with list of
1730 	 * slabs means debugging is only changed for those slabs, so the global
1731 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1732 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1733 	 * long as there is no option specifying flags without a slab list.
1734 	 */
1735 	if (slab_list_specified) {
1736 		if (!global_slub_debug_changed)
1737 			global_flags = slub_debug;
1738 		slub_debug_string = saved_str;
1739 	}
1740 out:
1741 	slub_debug = global_flags;
1742 	if (slub_debug & SLAB_STORE_USER)
1743 		stack_depot_request_early_init();
1744 	if (slub_debug != 0 || slub_debug_string)
1745 		static_branch_enable(&slub_debug_enabled);
1746 	else
1747 		static_branch_disable(&slub_debug_enabled);
1748 	if ((static_branch_unlikely(&init_on_alloc) ||
1749 	     static_branch_unlikely(&init_on_free)) &&
1750 	    (slub_debug & SLAB_POISON))
1751 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1752 	return 1;
1753 }
1754 
1755 __setup("slab_debug", setup_slub_debug);
1756 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1757 
1758 /*
1759  * kmem_cache_flags - apply debugging options to the cache
1760  * @flags:		flags to set
1761  * @name:		name of the cache
1762  *
1763  * Debug option(s) are applied to @flags. In addition to the debug
1764  * option(s), if a slab name (or multiple) is specified i.e.
1765  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1766  * then only the select slabs will receive the debug option(s).
1767  */
1768 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1769 {
1770 	char *iter;
1771 	size_t len;
1772 	char *next_block;
1773 	slab_flags_t block_flags;
1774 	slab_flags_t slub_debug_local = slub_debug;
1775 
1776 	if (flags & SLAB_NO_USER_FLAGS)
1777 		return flags;
1778 
1779 	/*
1780 	 * If the slab cache is for debugging (e.g. kmemleak) then
1781 	 * don't store user (stack trace) information by default,
1782 	 * but let the user enable it via the command line below.
1783 	 */
1784 	if (flags & SLAB_NOLEAKTRACE)
1785 		slub_debug_local &= ~SLAB_STORE_USER;
1786 
1787 	len = strlen(name);
1788 	next_block = slub_debug_string;
1789 	/* Go through all blocks of debug options, see if any matches our slab's name */
1790 	while (next_block) {
1791 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1792 		if (!iter)
1793 			continue;
1794 		/* Found a block that has a slab list, search it */
1795 		while (*iter) {
1796 			char *end, *glob;
1797 			size_t cmplen;
1798 
1799 			end = strchrnul(iter, ',');
1800 			if (next_block && next_block < end)
1801 				end = next_block - 1;
1802 
1803 			glob = strnchr(iter, end - iter, '*');
1804 			if (glob)
1805 				cmplen = glob - iter;
1806 			else
1807 				cmplen = max_t(size_t, len, (end - iter));
1808 
1809 			if (!strncmp(name, iter, cmplen)) {
1810 				flags |= block_flags;
1811 				return flags;
1812 			}
1813 
1814 			if (!*end || *end == ';')
1815 				break;
1816 			iter = end + 1;
1817 		}
1818 	}
1819 
1820 	return flags | slub_debug_local;
1821 }
1822 #else /* !CONFIG_SLUB_DEBUG */
1823 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1824 static inline
1825 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1826 
1827 static inline bool alloc_debug_processing(struct kmem_cache *s,
1828 	struct slab *slab, void *object, int orig_size) { return true; }
1829 
1830 static inline bool free_debug_processing(struct kmem_cache *s,
1831 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1832 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1833 
1834 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1835 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1836 			void *object, u8 val) { return 1; }
1837 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1838 static inline void set_track(struct kmem_cache *s, void *object,
1839 			     enum track_item alloc, unsigned long addr) {}
1840 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1841 					struct slab *slab) {}
1842 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1843 					struct slab *slab) {}
1844 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1845 {
1846 	return flags;
1847 }
1848 #define slub_debug 0
1849 
1850 #define disable_higher_order_debug 0
1851 
1852 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1853 							{ return 0; }
1854 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1855 							int objects) {}
1856 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1857 							int objects) {}
1858 
1859 #ifndef CONFIG_SLUB_TINY
1860 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1861 			       void **freelist, void *nextfree)
1862 {
1863 	return false;
1864 }
1865 #endif
1866 #endif /* CONFIG_SLUB_DEBUG */
1867 
1868 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
1869 {
1870 	return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1871 		NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
1872 }
1873 
1874 #ifdef CONFIG_MEMCG_KMEM
1875 static inline void memcg_free_slab_cgroups(struct slab *slab)
1876 {
1877 	kfree(slab_objcgs(slab));
1878 	slab->memcg_data = 0;
1879 }
1880 
1881 static inline size_t obj_full_size(struct kmem_cache *s)
1882 {
1883 	/*
1884 	 * For each accounted object there is an extra space which is used
1885 	 * to store obj_cgroup membership. Charge it too.
1886 	 */
1887 	return s->size + sizeof(struct obj_cgroup *);
1888 }
1889 
1890 /*
1891  * Returns false if the allocation should fail.
1892  */
1893 static bool __memcg_slab_pre_alloc_hook(struct kmem_cache *s,
1894 					struct list_lru *lru,
1895 					struct obj_cgroup **objcgp,
1896 					size_t objects, gfp_t flags)
1897 {
1898 	/*
1899 	 * The obtained objcg pointer is safe to use within the current scope,
1900 	 * defined by current task or set_active_memcg() pair.
1901 	 * obj_cgroup_get() is used to get a permanent reference.
1902 	 */
1903 	struct obj_cgroup *objcg = current_obj_cgroup();
1904 	if (!objcg)
1905 		return true;
1906 
1907 	if (lru) {
1908 		int ret;
1909 		struct mem_cgroup *memcg;
1910 
1911 		memcg = get_mem_cgroup_from_objcg(objcg);
1912 		ret = memcg_list_lru_alloc(memcg, lru, flags);
1913 		css_put(&memcg->css);
1914 
1915 		if (ret)
1916 			return false;
1917 	}
1918 
1919 	if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
1920 		return false;
1921 
1922 	*objcgp = objcg;
1923 	return true;
1924 }
1925 
1926 /*
1927  * Returns false if the allocation should fail.
1928  */
1929 static __fastpath_inline
1930 bool memcg_slab_pre_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
1931 			       struct obj_cgroup **objcgp, size_t objects,
1932 			       gfp_t flags)
1933 {
1934 	if (!memcg_kmem_online())
1935 		return true;
1936 
1937 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
1938 		return true;
1939 
1940 	return likely(__memcg_slab_pre_alloc_hook(s, lru, objcgp, objects,
1941 						  flags));
1942 }
1943 
1944 static void __memcg_slab_post_alloc_hook(struct kmem_cache *s,
1945 					 struct obj_cgroup *objcg,
1946 					 gfp_t flags, size_t size,
1947 					 void **p)
1948 {
1949 	struct slab *slab;
1950 	unsigned long off;
1951 	size_t i;
1952 
1953 	flags &= gfp_allowed_mask;
1954 
1955 	for (i = 0; i < size; i++) {
1956 		if (likely(p[i])) {
1957 			slab = virt_to_slab(p[i]);
1958 
1959 			if (!slab_objcgs(slab) &&
1960 			    memcg_alloc_slab_cgroups(slab, s, flags, false)) {
1961 				obj_cgroup_uncharge(objcg, obj_full_size(s));
1962 				continue;
1963 			}
1964 
1965 			off = obj_to_index(s, slab, p[i]);
1966 			obj_cgroup_get(objcg);
1967 			slab_objcgs(slab)[off] = objcg;
1968 			mod_objcg_state(objcg, slab_pgdat(slab),
1969 					cache_vmstat_idx(s), obj_full_size(s));
1970 		} else {
1971 			obj_cgroup_uncharge(objcg, obj_full_size(s));
1972 		}
1973 	}
1974 }
1975 
1976 static __fastpath_inline
1977 void memcg_slab_post_alloc_hook(struct kmem_cache *s, struct obj_cgroup *objcg,
1978 				gfp_t flags, size_t size, void **p)
1979 {
1980 	if (likely(!memcg_kmem_online() || !objcg))
1981 		return;
1982 
1983 	return __memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
1984 }
1985 
1986 static void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
1987 				   void **p, int objects,
1988 				   struct obj_cgroup **objcgs)
1989 {
1990 	for (int i = 0; i < objects; i++) {
1991 		struct obj_cgroup *objcg;
1992 		unsigned int off;
1993 
1994 		off = obj_to_index(s, slab, p[i]);
1995 		objcg = objcgs[off];
1996 		if (!objcg)
1997 			continue;
1998 
1999 		objcgs[off] = NULL;
2000 		obj_cgroup_uncharge(objcg, obj_full_size(s));
2001 		mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
2002 				-obj_full_size(s));
2003 		obj_cgroup_put(objcg);
2004 	}
2005 }
2006 
2007 static __fastpath_inline
2008 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2009 			  int objects)
2010 {
2011 	struct obj_cgroup **objcgs;
2012 
2013 	if (!memcg_kmem_online())
2014 		return;
2015 
2016 	objcgs = slab_objcgs(slab);
2017 	if (likely(!objcgs))
2018 		return;
2019 
2020 	__memcg_slab_free_hook(s, slab, p, objects, objcgs);
2021 }
2022 
2023 static inline
2024 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2025 			   struct obj_cgroup *objcg)
2026 {
2027 	if (objcg)
2028 		obj_cgroup_uncharge(objcg, objects * obj_full_size(s));
2029 }
2030 #else /* CONFIG_MEMCG_KMEM */
2031 static inline void memcg_free_slab_cgroups(struct slab *slab)
2032 {
2033 }
2034 
2035 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
2036 					     struct list_lru *lru,
2037 					     struct obj_cgroup **objcgp,
2038 					     size_t objects, gfp_t flags)
2039 {
2040 	return true;
2041 }
2042 
2043 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
2044 					      struct obj_cgroup *objcg,
2045 					      gfp_t flags, size_t size,
2046 					      void **p)
2047 {
2048 }
2049 
2050 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2051 					void **p, int objects)
2052 {
2053 }
2054 
2055 static inline
2056 void memcg_slab_alloc_error_hook(struct kmem_cache *s, int objects,
2057 				 struct obj_cgroup *objcg)
2058 {
2059 }
2060 #endif /* CONFIG_MEMCG_KMEM */
2061 
2062 /*
2063  * Hooks for other subsystems that check memory allocations. In a typical
2064  * production configuration these hooks all should produce no code at all.
2065  *
2066  * Returns true if freeing of the object can proceed, false if its reuse
2067  * was delayed by KASAN quarantine, or it was returned to KFENCE.
2068  */
2069 static __always_inline
2070 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2071 {
2072 	kmemleak_free_recursive(x, s->flags);
2073 	kmsan_slab_free(s, x);
2074 
2075 	debug_check_no_locks_freed(x, s->object_size);
2076 
2077 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2078 		debug_check_no_obj_freed(x, s->object_size);
2079 
2080 	/* Use KCSAN to help debug racy use-after-free. */
2081 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2082 		__kcsan_check_access(x, s->object_size,
2083 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2084 
2085 	if (kfence_free(x))
2086 		return false;
2087 
2088 	/*
2089 	 * As memory initialization might be integrated into KASAN,
2090 	 * kasan_slab_free and initialization memset's must be
2091 	 * kept together to avoid discrepancies in behavior.
2092 	 *
2093 	 * The initialization memset's clear the object and the metadata,
2094 	 * but don't touch the SLAB redzone.
2095 	 */
2096 	if (unlikely(init)) {
2097 		int rsize;
2098 
2099 		if (!kasan_has_integrated_init())
2100 			memset(kasan_reset_tag(x), 0, s->object_size);
2101 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2102 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
2103 		       s->size - s->inuse - rsize);
2104 	}
2105 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2106 	return !kasan_slab_free(s, x, init);
2107 }
2108 
2109 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
2110 					   void **head, void **tail,
2111 					   int *cnt)
2112 {
2113 
2114 	void *object;
2115 	void *next = *head;
2116 	void *old_tail = *tail;
2117 	bool init;
2118 
2119 	if (is_kfence_address(next)) {
2120 		slab_free_hook(s, next, false);
2121 		return false;
2122 	}
2123 
2124 	/* Head and tail of the reconstructed freelist */
2125 	*head = NULL;
2126 	*tail = NULL;
2127 
2128 	init = slab_want_init_on_free(s);
2129 
2130 	do {
2131 		object = next;
2132 		next = get_freepointer(s, object);
2133 
2134 		/* If object's reuse doesn't have to be delayed */
2135 		if (likely(slab_free_hook(s, object, init))) {
2136 			/* Move object to the new freelist */
2137 			set_freepointer(s, object, *head);
2138 			*head = object;
2139 			if (!*tail)
2140 				*tail = object;
2141 		} else {
2142 			/*
2143 			 * Adjust the reconstructed freelist depth
2144 			 * accordingly if object's reuse is delayed.
2145 			 */
2146 			--(*cnt);
2147 		}
2148 	} while (object != old_tail);
2149 
2150 	return *head != NULL;
2151 }
2152 
2153 static void *setup_object(struct kmem_cache *s, void *object)
2154 {
2155 	setup_object_debug(s, object);
2156 	object = kasan_init_slab_obj(s, object);
2157 	if (unlikely(s->ctor)) {
2158 		kasan_unpoison_new_object(s, object);
2159 		s->ctor(object);
2160 		kasan_poison_new_object(s, object);
2161 	}
2162 	return object;
2163 }
2164 
2165 /*
2166  * Slab allocation and freeing
2167  */
2168 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2169 		struct kmem_cache_order_objects oo)
2170 {
2171 	struct folio *folio;
2172 	struct slab *slab;
2173 	unsigned int order = oo_order(oo);
2174 
2175 	folio = (struct folio *)alloc_pages_node(node, flags, order);
2176 	if (!folio)
2177 		return NULL;
2178 
2179 	slab = folio_slab(folio);
2180 	__folio_set_slab(folio);
2181 	/* Make the flag visible before any changes to folio->mapping */
2182 	smp_wmb();
2183 	if (folio_is_pfmemalloc(folio))
2184 		slab_set_pfmemalloc(slab);
2185 
2186 	return slab;
2187 }
2188 
2189 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2190 /* Pre-initialize the random sequence cache */
2191 static int init_cache_random_seq(struct kmem_cache *s)
2192 {
2193 	unsigned int count = oo_objects(s->oo);
2194 	int err;
2195 
2196 	/* Bailout if already initialised */
2197 	if (s->random_seq)
2198 		return 0;
2199 
2200 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2201 	if (err) {
2202 		pr_err("SLUB: Unable to initialize free list for %s\n",
2203 			s->name);
2204 		return err;
2205 	}
2206 
2207 	/* Transform to an offset on the set of pages */
2208 	if (s->random_seq) {
2209 		unsigned int i;
2210 
2211 		for (i = 0; i < count; i++)
2212 			s->random_seq[i] *= s->size;
2213 	}
2214 	return 0;
2215 }
2216 
2217 /* Initialize each random sequence freelist per cache */
2218 static void __init init_freelist_randomization(void)
2219 {
2220 	struct kmem_cache *s;
2221 
2222 	mutex_lock(&slab_mutex);
2223 
2224 	list_for_each_entry(s, &slab_caches, list)
2225 		init_cache_random_seq(s);
2226 
2227 	mutex_unlock(&slab_mutex);
2228 }
2229 
2230 /* Get the next entry on the pre-computed freelist randomized */
2231 static void *next_freelist_entry(struct kmem_cache *s,
2232 				unsigned long *pos, void *start,
2233 				unsigned long page_limit,
2234 				unsigned long freelist_count)
2235 {
2236 	unsigned int idx;
2237 
2238 	/*
2239 	 * If the target page allocation failed, the number of objects on the
2240 	 * page might be smaller than the usual size defined by the cache.
2241 	 */
2242 	do {
2243 		idx = s->random_seq[*pos];
2244 		*pos += 1;
2245 		if (*pos >= freelist_count)
2246 			*pos = 0;
2247 	} while (unlikely(idx >= page_limit));
2248 
2249 	return (char *)start + idx;
2250 }
2251 
2252 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2253 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2254 {
2255 	void *start;
2256 	void *cur;
2257 	void *next;
2258 	unsigned long idx, pos, page_limit, freelist_count;
2259 
2260 	if (slab->objects < 2 || !s->random_seq)
2261 		return false;
2262 
2263 	freelist_count = oo_objects(s->oo);
2264 	pos = get_random_u32_below(freelist_count);
2265 
2266 	page_limit = slab->objects * s->size;
2267 	start = fixup_red_left(s, slab_address(slab));
2268 
2269 	/* First entry is used as the base of the freelist */
2270 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2271 	cur = setup_object(s, cur);
2272 	slab->freelist = cur;
2273 
2274 	for (idx = 1; idx < slab->objects; idx++) {
2275 		next = next_freelist_entry(s, &pos, start, page_limit,
2276 			freelist_count);
2277 		next = setup_object(s, next);
2278 		set_freepointer(s, cur, next);
2279 		cur = next;
2280 	}
2281 	set_freepointer(s, cur, NULL);
2282 
2283 	return true;
2284 }
2285 #else
2286 static inline int init_cache_random_seq(struct kmem_cache *s)
2287 {
2288 	return 0;
2289 }
2290 static inline void init_freelist_randomization(void) { }
2291 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2292 {
2293 	return false;
2294 }
2295 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2296 
2297 static __always_inline void account_slab(struct slab *slab, int order,
2298 					 struct kmem_cache *s, gfp_t gfp)
2299 {
2300 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2301 		memcg_alloc_slab_cgroups(slab, s, gfp, true);
2302 
2303 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2304 			    PAGE_SIZE << order);
2305 }
2306 
2307 static __always_inline void unaccount_slab(struct slab *slab, int order,
2308 					   struct kmem_cache *s)
2309 {
2310 	if (memcg_kmem_online())
2311 		memcg_free_slab_cgroups(slab);
2312 
2313 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2314 			    -(PAGE_SIZE << order));
2315 }
2316 
2317 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2318 {
2319 	struct slab *slab;
2320 	struct kmem_cache_order_objects oo = s->oo;
2321 	gfp_t alloc_gfp;
2322 	void *start, *p, *next;
2323 	int idx;
2324 	bool shuffle;
2325 
2326 	flags &= gfp_allowed_mask;
2327 
2328 	flags |= s->allocflags;
2329 
2330 	/*
2331 	 * Let the initial higher-order allocation fail under memory pressure
2332 	 * so we fall-back to the minimum order allocation.
2333 	 */
2334 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2335 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2336 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2337 
2338 	slab = alloc_slab_page(alloc_gfp, node, oo);
2339 	if (unlikely(!slab)) {
2340 		oo = s->min;
2341 		alloc_gfp = flags;
2342 		/*
2343 		 * Allocation may have failed due to fragmentation.
2344 		 * Try a lower order alloc if possible
2345 		 */
2346 		slab = alloc_slab_page(alloc_gfp, node, oo);
2347 		if (unlikely(!slab))
2348 			return NULL;
2349 		stat(s, ORDER_FALLBACK);
2350 	}
2351 
2352 	slab->objects = oo_objects(oo);
2353 	slab->inuse = 0;
2354 	slab->frozen = 0;
2355 
2356 	account_slab(slab, oo_order(oo), s, flags);
2357 
2358 	slab->slab_cache = s;
2359 
2360 	kasan_poison_slab(slab);
2361 
2362 	start = slab_address(slab);
2363 
2364 	setup_slab_debug(s, slab, start);
2365 
2366 	shuffle = shuffle_freelist(s, slab);
2367 
2368 	if (!shuffle) {
2369 		start = fixup_red_left(s, start);
2370 		start = setup_object(s, start);
2371 		slab->freelist = start;
2372 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2373 			next = p + s->size;
2374 			next = setup_object(s, next);
2375 			set_freepointer(s, p, next);
2376 			p = next;
2377 		}
2378 		set_freepointer(s, p, NULL);
2379 	}
2380 
2381 	return slab;
2382 }
2383 
2384 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2385 {
2386 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2387 		flags = kmalloc_fix_flags(flags);
2388 
2389 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2390 
2391 	return allocate_slab(s,
2392 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2393 }
2394 
2395 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2396 {
2397 	struct folio *folio = slab_folio(slab);
2398 	int order = folio_order(folio);
2399 	int pages = 1 << order;
2400 
2401 	__slab_clear_pfmemalloc(slab);
2402 	folio->mapping = NULL;
2403 	/* Make the mapping reset visible before clearing the flag */
2404 	smp_wmb();
2405 	__folio_clear_slab(folio);
2406 	mm_account_reclaimed_pages(pages);
2407 	unaccount_slab(slab, order, s);
2408 	__free_pages(&folio->page, order);
2409 }
2410 
2411 static void rcu_free_slab(struct rcu_head *h)
2412 {
2413 	struct slab *slab = container_of(h, struct slab, rcu_head);
2414 
2415 	__free_slab(slab->slab_cache, slab);
2416 }
2417 
2418 static void free_slab(struct kmem_cache *s, struct slab *slab)
2419 {
2420 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2421 		void *p;
2422 
2423 		slab_pad_check(s, slab);
2424 		for_each_object(p, s, slab_address(slab), slab->objects)
2425 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2426 	}
2427 
2428 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2429 		call_rcu(&slab->rcu_head, rcu_free_slab);
2430 	else
2431 		__free_slab(s, slab);
2432 }
2433 
2434 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2435 {
2436 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2437 	free_slab(s, slab);
2438 }
2439 
2440 /*
2441  * SLUB reuses PG_workingset bit to keep track of whether it's on
2442  * the per-node partial list.
2443  */
2444 static inline bool slab_test_node_partial(const struct slab *slab)
2445 {
2446 	return folio_test_workingset((struct folio *)slab_folio(slab));
2447 }
2448 
2449 static inline void slab_set_node_partial(struct slab *slab)
2450 {
2451 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2452 }
2453 
2454 static inline void slab_clear_node_partial(struct slab *slab)
2455 {
2456 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2457 }
2458 
2459 /*
2460  * Management of partially allocated slabs.
2461  */
2462 static inline void
2463 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2464 {
2465 	n->nr_partial++;
2466 	if (tail == DEACTIVATE_TO_TAIL)
2467 		list_add_tail(&slab->slab_list, &n->partial);
2468 	else
2469 		list_add(&slab->slab_list, &n->partial);
2470 	slab_set_node_partial(slab);
2471 }
2472 
2473 static inline void add_partial(struct kmem_cache_node *n,
2474 				struct slab *slab, int tail)
2475 {
2476 	lockdep_assert_held(&n->list_lock);
2477 	__add_partial(n, slab, tail);
2478 }
2479 
2480 static inline void remove_partial(struct kmem_cache_node *n,
2481 					struct slab *slab)
2482 {
2483 	lockdep_assert_held(&n->list_lock);
2484 	list_del(&slab->slab_list);
2485 	slab_clear_node_partial(slab);
2486 	n->nr_partial--;
2487 }
2488 
2489 /*
2490  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2491  * slab from the n->partial list. Remove only a single object from the slab, do
2492  * the alloc_debug_processing() checks and leave the slab on the list, or move
2493  * it to full list if it was the last free object.
2494  */
2495 static void *alloc_single_from_partial(struct kmem_cache *s,
2496 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2497 {
2498 	void *object;
2499 
2500 	lockdep_assert_held(&n->list_lock);
2501 
2502 	object = slab->freelist;
2503 	slab->freelist = get_freepointer(s, object);
2504 	slab->inuse++;
2505 
2506 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2507 		remove_partial(n, slab);
2508 		return NULL;
2509 	}
2510 
2511 	if (slab->inuse == slab->objects) {
2512 		remove_partial(n, slab);
2513 		add_full(s, n, slab);
2514 	}
2515 
2516 	return object;
2517 }
2518 
2519 /*
2520  * Called only for kmem_cache_debug() caches to allocate from a freshly
2521  * allocated slab. Allocate a single object instead of whole freelist
2522  * and put the slab to the partial (or full) list.
2523  */
2524 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2525 					struct slab *slab, int orig_size)
2526 {
2527 	int nid = slab_nid(slab);
2528 	struct kmem_cache_node *n = get_node(s, nid);
2529 	unsigned long flags;
2530 	void *object;
2531 
2532 
2533 	object = slab->freelist;
2534 	slab->freelist = get_freepointer(s, object);
2535 	slab->inuse = 1;
2536 
2537 	if (!alloc_debug_processing(s, slab, object, orig_size))
2538 		/*
2539 		 * It's not really expected that this would fail on a
2540 		 * freshly allocated slab, but a concurrent memory
2541 		 * corruption in theory could cause that.
2542 		 */
2543 		return NULL;
2544 
2545 	spin_lock_irqsave(&n->list_lock, flags);
2546 
2547 	if (slab->inuse == slab->objects)
2548 		add_full(s, n, slab);
2549 	else
2550 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2551 
2552 	inc_slabs_node(s, nid, slab->objects);
2553 	spin_unlock_irqrestore(&n->list_lock, flags);
2554 
2555 	return object;
2556 }
2557 
2558 #ifdef CONFIG_SLUB_CPU_PARTIAL
2559 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2560 #else
2561 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2562 				   int drain) { }
2563 #endif
2564 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2565 
2566 /*
2567  * Try to allocate a partial slab from a specific node.
2568  */
2569 static struct slab *get_partial_node(struct kmem_cache *s,
2570 				     struct kmem_cache_node *n,
2571 				     struct partial_context *pc)
2572 {
2573 	struct slab *slab, *slab2, *partial = NULL;
2574 	unsigned long flags;
2575 	unsigned int partial_slabs = 0;
2576 
2577 	/*
2578 	 * Racy check. If we mistakenly see no partial slabs then we
2579 	 * just allocate an empty slab. If we mistakenly try to get a
2580 	 * partial slab and there is none available then get_partial()
2581 	 * will return NULL.
2582 	 */
2583 	if (!n || !n->nr_partial)
2584 		return NULL;
2585 
2586 	spin_lock_irqsave(&n->list_lock, flags);
2587 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2588 		if (!pfmemalloc_match(slab, pc->flags))
2589 			continue;
2590 
2591 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2592 			void *object = alloc_single_from_partial(s, n, slab,
2593 							pc->orig_size);
2594 			if (object) {
2595 				partial = slab;
2596 				pc->object = object;
2597 				break;
2598 			}
2599 			continue;
2600 		}
2601 
2602 		remove_partial(n, slab);
2603 
2604 		if (!partial) {
2605 			partial = slab;
2606 			stat(s, ALLOC_FROM_PARTIAL);
2607 		} else {
2608 			put_cpu_partial(s, slab, 0);
2609 			stat(s, CPU_PARTIAL_NODE);
2610 			partial_slabs++;
2611 		}
2612 #ifdef CONFIG_SLUB_CPU_PARTIAL
2613 		if (!kmem_cache_has_cpu_partial(s)
2614 			|| partial_slabs > s->cpu_partial_slabs / 2)
2615 			break;
2616 #else
2617 		break;
2618 #endif
2619 
2620 	}
2621 	spin_unlock_irqrestore(&n->list_lock, flags);
2622 	return partial;
2623 }
2624 
2625 /*
2626  * Get a slab from somewhere. Search in increasing NUMA distances.
2627  */
2628 static struct slab *get_any_partial(struct kmem_cache *s,
2629 				    struct partial_context *pc)
2630 {
2631 #ifdef CONFIG_NUMA
2632 	struct zonelist *zonelist;
2633 	struct zoneref *z;
2634 	struct zone *zone;
2635 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2636 	struct slab *slab;
2637 	unsigned int cpuset_mems_cookie;
2638 
2639 	/*
2640 	 * The defrag ratio allows a configuration of the tradeoffs between
2641 	 * inter node defragmentation and node local allocations. A lower
2642 	 * defrag_ratio increases the tendency to do local allocations
2643 	 * instead of attempting to obtain partial slabs from other nodes.
2644 	 *
2645 	 * If the defrag_ratio is set to 0 then kmalloc() always
2646 	 * returns node local objects. If the ratio is higher then kmalloc()
2647 	 * may return off node objects because partial slabs are obtained
2648 	 * from other nodes and filled up.
2649 	 *
2650 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2651 	 * (which makes defrag_ratio = 1000) then every (well almost)
2652 	 * allocation will first attempt to defrag slab caches on other nodes.
2653 	 * This means scanning over all nodes to look for partial slabs which
2654 	 * may be expensive if we do it every time we are trying to find a slab
2655 	 * with available objects.
2656 	 */
2657 	if (!s->remote_node_defrag_ratio ||
2658 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2659 		return NULL;
2660 
2661 	do {
2662 		cpuset_mems_cookie = read_mems_allowed_begin();
2663 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2664 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2665 			struct kmem_cache_node *n;
2666 
2667 			n = get_node(s, zone_to_nid(zone));
2668 
2669 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2670 					n->nr_partial > s->min_partial) {
2671 				slab = get_partial_node(s, n, pc);
2672 				if (slab) {
2673 					/*
2674 					 * Don't check read_mems_allowed_retry()
2675 					 * here - if mems_allowed was updated in
2676 					 * parallel, that was a harmless race
2677 					 * between allocation and the cpuset
2678 					 * update
2679 					 */
2680 					return slab;
2681 				}
2682 			}
2683 		}
2684 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2685 #endif	/* CONFIG_NUMA */
2686 	return NULL;
2687 }
2688 
2689 /*
2690  * Get a partial slab, lock it and return it.
2691  */
2692 static struct slab *get_partial(struct kmem_cache *s, int node,
2693 				struct partial_context *pc)
2694 {
2695 	struct slab *slab;
2696 	int searchnode = node;
2697 
2698 	if (node == NUMA_NO_NODE)
2699 		searchnode = numa_mem_id();
2700 
2701 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2702 	if (slab || node != NUMA_NO_NODE)
2703 		return slab;
2704 
2705 	return get_any_partial(s, pc);
2706 }
2707 
2708 #ifndef CONFIG_SLUB_TINY
2709 
2710 #ifdef CONFIG_PREEMPTION
2711 /*
2712  * Calculate the next globally unique transaction for disambiguation
2713  * during cmpxchg. The transactions start with the cpu number and are then
2714  * incremented by CONFIG_NR_CPUS.
2715  */
2716 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2717 #else
2718 /*
2719  * No preemption supported therefore also no need to check for
2720  * different cpus.
2721  */
2722 #define TID_STEP 1
2723 #endif /* CONFIG_PREEMPTION */
2724 
2725 static inline unsigned long next_tid(unsigned long tid)
2726 {
2727 	return tid + TID_STEP;
2728 }
2729 
2730 #ifdef SLUB_DEBUG_CMPXCHG
2731 static inline unsigned int tid_to_cpu(unsigned long tid)
2732 {
2733 	return tid % TID_STEP;
2734 }
2735 
2736 static inline unsigned long tid_to_event(unsigned long tid)
2737 {
2738 	return tid / TID_STEP;
2739 }
2740 #endif
2741 
2742 static inline unsigned int init_tid(int cpu)
2743 {
2744 	return cpu;
2745 }
2746 
2747 static inline void note_cmpxchg_failure(const char *n,
2748 		const struct kmem_cache *s, unsigned long tid)
2749 {
2750 #ifdef SLUB_DEBUG_CMPXCHG
2751 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2752 
2753 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2754 
2755 #ifdef CONFIG_PREEMPTION
2756 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2757 		pr_warn("due to cpu change %d -> %d\n",
2758 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2759 	else
2760 #endif
2761 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2762 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2763 			tid_to_event(tid), tid_to_event(actual_tid));
2764 	else
2765 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2766 			actual_tid, tid, next_tid(tid));
2767 #endif
2768 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2769 }
2770 
2771 static void init_kmem_cache_cpus(struct kmem_cache *s)
2772 {
2773 	int cpu;
2774 	struct kmem_cache_cpu *c;
2775 
2776 	for_each_possible_cpu(cpu) {
2777 		c = per_cpu_ptr(s->cpu_slab, cpu);
2778 		local_lock_init(&c->lock);
2779 		c->tid = init_tid(cpu);
2780 	}
2781 }
2782 
2783 /*
2784  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2785  * unfreezes the slabs and puts it on the proper list.
2786  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2787  * by the caller.
2788  */
2789 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2790 			    void *freelist)
2791 {
2792 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2793 	int free_delta = 0;
2794 	void *nextfree, *freelist_iter, *freelist_tail;
2795 	int tail = DEACTIVATE_TO_HEAD;
2796 	unsigned long flags = 0;
2797 	struct slab new;
2798 	struct slab old;
2799 
2800 	if (slab->freelist) {
2801 		stat(s, DEACTIVATE_REMOTE_FREES);
2802 		tail = DEACTIVATE_TO_TAIL;
2803 	}
2804 
2805 	/*
2806 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2807 	 * remember the last object in freelist_tail for later splicing.
2808 	 */
2809 	freelist_tail = NULL;
2810 	freelist_iter = freelist;
2811 	while (freelist_iter) {
2812 		nextfree = get_freepointer(s, freelist_iter);
2813 
2814 		/*
2815 		 * If 'nextfree' is invalid, it is possible that the object at
2816 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2817 		 * starting at 'freelist_iter' by skipping them.
2818 		 */
2819 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2820 			break;
2821 
2822 		freelist_tail = freelist_iter;
2823 		free_delta++;
2824 
2825 		freelist_iter = nextfree;
2826 	}
2827 
2828 	/*
2829 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2830 	 * freelist to the head of slab's freelist.
2831 	 */
2832 	do {
2833 		old.freelist = READ_ONCE(slab->freelist);
2834 		old.counters = READ_ONCE(slab->counters);
2835 		VM_BUG_ON(!old.frozen);
2836 
2837 		/* Determine target state of the slab */
2838 		new.counters = old.counters;
2839 		new.frozen = 0;
2840 		if (freelist_tail) {
2841 			new.inuse -= free_delta;
2842 			set_freepointer(s, freelist_tail, old.freelist);
2843 			new.freelist = freelist;
2844 		} else {
2845 			new.freelist = old.freelist;
2846 		}
2847 	} while (!slab_update_freelist(s, slab,
2848 		old.freelist, old.counters,
2849 		new.freelist, new.counters,
2850 		"unfreezing slab"));
2851 
2852 	/*
2853 	 * Stage three: Manipulate the slab list based on the updated state.
2854 	 */
2855 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2856 		stat(s, DEACTIVATE_EMPTY);
2857 		discard_slab(s, slab);
2858 		stat(s, FREE_SLAB);
2859 	} else if (new.freelist) {
2860 		spin_lock_irqsave(&n->list_lock, flags);
2861 		add_partial(n, slab, tail);
2862 		spin_unlock_irqrestore(&n->list_lock, flags);
2863 		stat(s, tail);
2864 	} else {
2865 		stat(s, DEACTIVATE_FULL);
2866 	}
2867 }
2868 
2869 #ifdef CONFIG_SLUB_CPU_PARTIAL
2870 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
2871 {
2872 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2873 	struct slab *slab, *slab_to_discard = NULL;
2874 	unsigned long flags = 0;
2875 
2876 	while (partial_slab) {
2877 		slab = partial_slab;
2878 		partial_slab = slab->next;
2879 
2880 		n2 = get_node(s, slab_nid(slab));
2881 		if (n != n2) {
2882 			if (n)
2883 				spin_unlock_irqrestore(&n->list_lock, flags);
2884 
2885 			n = n2;
2886 			spin_lock_irqsave(&n->list_lock, flags);
2887 		}
2888 
2889 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
2890 			slab->next = slab_to_discard;
2891 			slab_to_discard = slab;
2892 		} else {
2893 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2894 			stat(s, FREE_ADD_PARTIAL);
2895 		}
2896 	}
2897 
2898 	if (n)
2899 		spin_unlock_irqrestore(&n->list_lock, flags);
2900 
2901 	while (slab_to_discard) {
2902 		slab = slab_to_discard;
2903 		slab_to_discard = slab_to_discard->next;
2904 
2905 		stat(s, DEACTIVATE_EMPTY);
2906 		discard_slab(s, slab);
2907 		stat(s, FREE_SLAB);
2908 	}
2909 }
2910 
2911 /*
2912  * Put all the cpu partial slabs to the node partial list.
2913  */
2914 static void put_partials(struct kmem_cache *s)
2915 {
2916 	struct slab *partial_slab;
2917 	unsigned long flags;
2918 
2919 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2920 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2921 	this_cpu_write(s->cpu_slab->partial, NULL);
2922 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2923 
2924 	if (partial_slab)
2925 		__put_partials(s, partial_slab);
2926 }
2927 
2928 static void put_partials_cpu(struct kmem_cache *s,
2929 			     struct kmem_cache_cpu *c)
2930 {
2931 	struct slab *partial_slab;
2932 
2933 	partial_slab = slub_percpu_partial(c);
2934 	c->partial = NULL;
2935 
2936 	if (partial_slab)
2937 		__put_partials(s, partial_slab);
2938 }
2939 
2940 /*
2941  * Put a slab into a partial slab slot if available.
2942  *
2943  * If we did not find a slot then simply move all the partials to the
2944  * per node partial list.
2945  */
2946 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2947 {
2948 	struct slab *oldslab;
2949 	struct slab *slab_to_put = NULL;
2950 	unsigned long flags;
2951 	int slabs = 0;
2952 
2953 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2954 
2955 	oldslab = this_cpu_read(s->cpu_slab->partial);
2956 
2957 	if (oldslab) {
2958 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2959 			/*
2960 			 * Partial array is full. Move the existing set to the
2961 			 * per node partial list. Postpone the actual unfreezing
2962 			 * outside of the critical section.
2963 			 */
2964 			slab_to_put = oldslab;
2965 			oldslab = NULL;
2966 		} else {
2967 			slabs = oldslab->slabs;
2968 		}
2969 	}
2970 
2971 	slabs++;
2972 
2973 	slab->slabs = slabs;
2974 	slab->next = oldslab;
2975 
2976 	this_cpu_write(s->cpu_slab->partial, slab);
2977 
2978 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2979 
2980 	if (slab_to_put) {
2981 		__put_partials(s, slab_to_put);
2982 		stat(s, CPU_PARTIAL_DRAIN);
2983 	}
2984 }
2985 
2986 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2987 
2988 static inline void put_partials(struct kmem_cache *s) { }
2989 static inline void put_partials_cpu(struct kmem_cache *s,
2990 				    struct kmem_cache_cpu *c) { }
2991 
2992 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2993 
2994 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2995 {
2996 	unsigned long flags;
2997 	struct slab *slab;
2998 	void *freelist;
2999 
3000 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3001 
3002 	slab = c->slab;
3003 	freelist = c->freelist;
3004 
3005 	c->slab = NULL;
3006 	c->freelist = NULL;
3007 	c->tid = next_tid(c->tid);
3008 
3009 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3010 
3011 	if (slab) {
3012 		deactivate_slab(s, slab, freelist);
3013 		stat(s, CPUSLAB_FLUSH);
3014 	}
3015 }
3016 
3017 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3018 {
3019 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3020 	void *freelist = c->freelist;
3021 	struct slab *slab = c->slab;
3022 
3023 	c->slab = NULL;
3024 	c->freelist = NULL;
3025 	c->tid = next_tid(c->tid);
3026 
3027 	if (slab) {
3028 		deactivate_slab(s, slab, freelist);
3029 		stat(s, CPUSLAB_FLUSH);
3030 	}
3031 
3032 	put_partials_cpu(s, c);
3033 }
3034 
3035 struct slub_flush_work {
3036 	struct work_struct work;
3037 	struct kmem_cache *s;
3038 	bool skip;
3039 };
3040 
3041 /*
3042  * Flush cpu slab.
3043  *
3044  * Called from CPU work handler with migration disabled.
3045  */
3046 static void flush_cpu_slab(struct work_struct *w)
3047 {
3048 	struct kmem_cache *s;
3049 	struct kmem_cache_cpu *c;
3050 	struct slub_flush_work *sfw;
3051 
3052 	sfw = container_of(w, struct slub_flush_work, work);
3053 
3054 	s = sfw->s;
3055 	c = this_cpu_ptr(s->cpu_slab);
3056 
3057 	if (c->slab)
3058 		flush_slab(s, c);
3059 
3060 	put_partials(s);
3061 }
3062 
3063 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3064 {
3065 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3066 
3067 	return c->slab || slub_percpu_partial(c);
3068 }
3069 
3070 static DEFINE_MUTEX(flush_lock);
3071 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3072 
3073 static void flush_all_cpus_locked(struct kmem_cache *s)
3074 {
3075 	struct slub_flush_work *sfw;
3076 	unsigned int cpu;
3077 
3078 	lockdep_assert_cpus_held();
3079 	mutex_lock(&flush_lock);
3080 
3081 	for_each_online_cpu(cpu) {
3082 		sfw = &per_cpu(slub_flush, cpu);
3083 		if (!has_cpu_slab(cpu, s)) {
3084 			sfw->skip = true;
3085 			continue;
3086 		}
3087 		INIT_WORK(&sfw->work, flush_cpu_slab);
3088 		sfw->skip = false;
3089 		sfw->s = s;
3090 		queue_work_on(cpu, flushwq, &sfw->work);
3091 	}
3092 
3093 	for_each_online_cpu(cpu) {
3094 		sfw = &per_cpu(slub_flush, cpu);
3095 		if (sfw->skip)
3096 			continue;
3097 		flush_work(&sfw->work);
3098 	}
3099 
3100 	mutex_unlock(&flush_lock);
3101 }
3102 
3103 static void flush_all(struct kmem_cache *s)
3104 {
3105 	cpus_read_lock();
3106 	flush_all_cpus_locked(s);
3107 	cpus_read_unlock();
3108 }
3109 
3110 /*
3111  * Use the cpu notifier to insure that the cpu slabs are flushed when
3112  * necessary.
3113  */
3114 static int slub_cpu_dead(unsigned int cpu)
3115 {
3116 	struct kmem_cache *s;
3117 
3118 	mutex_lock(&slab_mutex);
3119 	list_for_each_entry(s, &slab_caches, list)
3120 		__flush_cpu_slab(s, cpu);
3121 	mutex_unlock(&slab_mutex);
3122 	return 0;
3123 }
3124 
3125 #else /* CONFIG_SLUB_TINY */
3126 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3127 static inline void flush_all(struct kmem_cache *s) { }
3128 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3129 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3130 #endif /* CONFIG_SLUB_TINY */
3131 
3132 /*
3133  * Check if the objects in a per cpu structure fit numa
3134  * locality expectations.
3135  */
3136 static inline int node_match(struct slab *slab, int node)
3137 {
3138 #ifdef CONFIG_NUMA
3139 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3140 		return 0;
3141 #endif
3142 	return 1;
3143 }
3144 
3145 #ifdef CONFIG_SLUB_DEBUG
3146 static int count_free(struct slab *slab)
3147 {
3148 	return slab->objects - slab->inuse;
3149 }
3150 
3151 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3152 {
3153 	return atomic_long_read(&n->total_objects);
3154 }
3155 
3156 /* Supports checking bulk free of a constructed freelist */
3157 static inline bool free_debug_processing(struct kmem_cache *s,
3158 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3159 	unsigned long addr, depot_stack_handle_t handle)
3160 {
3161 	bool checks_ok = false;
3162 	void *object = head;
3163 	int cnt = 0;
3164 
3165 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3166 		if (!check_slab(s, slab))
3167 			goto out;
3168 	}
3169 
3170 	if (slab->inuse < *bulk_cnt) {
3171 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3172 			 slab->inuse, *bulk_cnt);
3173 		goto out;
3174 	}
3175 
3176 next_object:
3177 
3178 	if (++cnt > *bulk_cnt)
3179 		goto out_cnt;
3180 
3181 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3182 		if (!free_consistency_checks(s, slab, object, addr))
3183 			goto out;
3184 	}
3185 
3186 	if (s->flags & SLAB_STORE_USER)
3187 		set_track_update(s, object, TRACK_FREE, addr, handle);
3188 	trace(s, slab, object, 0);
3189 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3190 	init_object(s, object, SLUB_RED_INACTIVE);
3191 
3192 	/* Reached end of constructed freelist yet? */
3193 	if (object != tail) {
3194 		object = get_freepointer(s, object);
3195 		goto next_object;
3196 	}
3197 	checks_ok = true;
3198 
3199 out_cnt:
3200 	if (cnt != *bulk_cnt) {
3201 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3202 			 *bulk_cnt, cnt);
3203 		*bulk_cnt = cnt;
3204 	}
3205 
3206 out:
3207 
3208 	if (!checks_ok)
3209 		slab_fix(s, "Object at 0x%p not freed", object);
3210 
3211 	return checks_ok;
3212 }
3213 #endif /* CONFIG_SLUB_DEBUG */
3214 
3215 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3216 static unsigned long count_partial(struct kmem_cache_node *n,
3217 					int (*get_count)(struct slab *))
3218 {
3219 	unsigned long flags;
3220 	unsigned long x = 0;
3221 	struct slab *slab;
3222 
3223 	spin_lock_irqsave(&n->list_lock, flags);
3224 	list_for_each_entry(slab, &n->partial, slab_list)
3225 		x += get_count(slab);
3226 	spin_unlock_irqrestore(&n->list_lock, flags);
3227 	return x;
3228 }
3229 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3230 
3231 #ifdef CONFIG_SLUB_DEBUG
3232 static noinline void
3233 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3234 {
3235 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3236 				      DEFAULT_RATELIMIT_BURST);
3237 	int node;
3238 	struct kmem_cache_node *n;
3239 
3240 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3241 		return;
3242 
3243 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3244 		nid, gfpflags, &gfpflags);
3245 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3246 		s->name, s->object_size, s->size, oo_order(s->oo),
3247 		oo_order(s->min));
3248 
3249 	if (oo_order(s->min) > get_order(s->object_size))
3250 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3251 			s->name);
3252 
3253 	for_each_kmem_cache_node(s, node, n) {
3254 		unsigned long nr_slabs;
3255 		unsigned long nr_objs;
3256 		unsigned long nr_free;
3257 
3258 		nr_free  = count_partial(n, count_free);
3259 		nr_slabs = node_nr_slabs(n);
3260 		nr_objs  = node_nr_objs(n);
3261 
3262 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3263 			node, nr_slabs, nr_objs, nr_free);
3264 	}
3265 }
3266 #else /* CONFIG_SLUB_DEBUG */
3267 static inline void
3268 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3269 #endif
3270 
3271 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3272 {
3273 	if (unlikely(slab_test_pfmemalloc(slab)))
3274 		return gfp_pfmemalloc_allowed(gfpflags);
3275 
3276 	return true;
3277 }
3278 
3279 #ifndef CONFIG_SLUB_TINY
3280 static inline bool
3281 __update_cpu_freelist_fast(struct kmem_cache *s,
3282 			   void *freelist_old, void *freelist_new,
3283 			   unsigned long tid)
3284 {
3285 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3286 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3287 
3288 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3289 					     &old.full, new.full);
3290 }
3291 
3292 /*
3293  * Check the slab->freelist and either transfer the freelist to the
3294  * per cpu freelist or deactivate the slab.
3295  *
3296  * The slab is still frozen if the return value is not NULL.
3297  *
3298  * If this function returns NULL then the slab has been unfrozen.
3299  */
3300 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3301 {
3302 	struct slab new;
3303 	unsigned long counters;
3304 	void *freelist;
3305 
3306 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3307 
3308 	do {
3309 		freelist = slab->freelist;
3310 		counters = slab->counters;
3311 
3312 		new.counters = counters;
3313 
3314 		new.inuse = slab->objects;
3315 		new.frozen = freelist != NULL;
3316 
3317 	} while (!__slab_update_freelist(s, slab,
3318 		freelist, counters,
3319 		NULL, new.counters,
3320 		"get_freelist"));
3321 
3322 	return freelist;
3323 }
3324 
3325 /*
3326  * Freeze the partial slab and return the pointer to the freelist.
3327  */
3328 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3329 {
3330 	struct slab new;
3331 	unsigned long counters;
3332 	void *freelist;
3333 
3334 	do {
3335 		freelist = slab->freelist;
3336 		counters = slab->counters;
3337 
3338 		new.counters = counters;
3339 		VM_BUG_ON(new.frozen);
3340 
3341 		new.inuse = slab->objects;
3342 		new.frozen = 1;
3343 
3344 	} while (!slab_update_freelist(s, slab,
3345 		freelist, counters,
3346 		NULL, new.counters,
3347 		"freeze_slab"));
3348 
3349 	return freelist;
3350 }
3351 
3352 /*
3353  * Slow path. The lockless freelist is empty or we need to perform
3354  * debugging duties.
3355  *
3356  * Processing is still very fast if new objects have been freed to the
3357  * regular freelist. In that case we simply take over the regular freelist
3358  * as the lockless freelist and zap the regular freelist.
3359  *
3360  * If that is not working then we fall back to the partial lists. We take the
3361  * first element of the freelist as the object to allocate now and move the
3362  * rest of the freelist to the lockless freelist.
3363  *
3364  * And if we were unable to get a new slab from the partial slab lists then
3365  * we need to allocate a new slab. This is the slowest path since it involves
3366  * a call to the page allocator and the setup of a new slab.
3367  *
3368  * Version of __slab_alloc to use when we know that preemption is
3369  * already disabled (which is the case for bulk allocation).
3370  */
3371 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3372 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3373 {
3374 	void *freelist;
3375 	struct slab *slab;
3376 	unsigned long flags;
3377 	struct partial_context pc;
3378 
3379 	stat(s, ALLOC_SLOWPATH);
3380 
3381 reread_slab:
3382 
3383 	slab = READ_ONCE(c->slab);
3384 	if (!slab) {
3385 		/*
3386 		 * if the node is not online or has no normal memory, just
3387 		 * ignore the node constraint
3388 		 */
3389 		if (unlikely(node != NUMA_NO_NODE &&
3390 			     !node_isset(node, slab_nodes)))
3391 			node = NUMA_NO_NODE;
3392 		goto new_slab;
3393 	}
3394 
3395 	if (unlikely(!node_match(slab, node))) {
3396 		/*
3397 		 * same as above but node_match() being false already
3398 		 * implies node != NUMA_NO_NODE
3399 		 */
3400 		if (!node_isset(node, slab_nodes)) {
3401 			node = NUMA_NO_NODE;
3402 		} else {
3403 			stat(s, ALLOC_NODE_MISMATCH);
3404 			goto deactivate_slab;
3405 		}
3406 	}
3407 
3408 	/*
3409 	 * By rights, we should be searching for a slab page that was
3410 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3411 	 * information when the page leaves the per-cpu allocator
3412 	 */
3413 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3414 		goto deactivate_slab;
3415 
3416 	/* must check again c->slab in case we got preempted and it changed */
3417 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3418 	if (unlikely(slab != c->slab)) {
3419 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3420 		goto reread_slab;
3421 	}
3422 	freelist = c->freelist;
3423 	if (freelist)
3424 		goto load_freelist;
3425 
3426 	freelist = get_freelist(s, slab);
3427 
3428 	if (!freelist) {
3429 		c->slab = NULL;
3430 		c->tid = next_tid(c->tid);
3431 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3432 		stat(s, DEACTIVATE_BYPASS);
3433 		goto new_slab;
3434 	}
3435 
3436 	stat(s, ALLOC_REFILL);
3437 
3438 load_freelist:
3439 
3440 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3441 
3442 	/*
3443 	 * freelist is pointing to the list of objects to be used.
3444 	 * slab is pointing to the slab from which the objects are obtained.
3445 	 * That slab must be frozen for per cpu allocations to work.
3446 	 */
3447 	VM_BUG_ON(!c->slab->frozen);
3448 	c->freelist = get_freepointer(s, freelist);
3449 	c->tid = next_tid(c->tid);
3450 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3451 	return freelist;
3452 
3453 deactivate_slab:
3454 
3455 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3456 	if (slab != c->slab) {
3457 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3458 		goto reread_slab;
3459 	}
3460 	freelist = c->freelist;
3461 	c->slab = NULL;
3462 	c->freelist = NULL;
3463 	c->tid = next_tid(c->tid);
3464 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3465 	deactivate_slab(s, slab, freelist);
3466 
3467 new_slab:
3468 
3469 #ifdef CONFIG_SLUB_CPU_PARTIAL
3470 	while (slub_percpu_partial(c)) {
3471 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3472 		if (unlikely(c->slab)) {
3473 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3474 			goto reread_slab;
3475 		}
3476 		if (unlikely(!slub_percpu_partial(c))) {
3477 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3478 			/* we were preempted and partial list got empty */
3479 			goto new_objects;
3480 		}
3481 
3482 		slab = slub_percpu_partial(c);
3483 		slub_set_percpu_partial(c, slab);
3484 
3485 		if (likely(node_match(slab, node) &&
3486 			   pfmemalloc_match(slab, gfpflags))) {
3487 			c->slab = slab;
3488 			freelist = get_freelist(s, slab);
3489 			VM_BUG_ON(!freelist);
3490 			stat(s, CPU_PARTIAL_ALLOC);
3491 			goto load_freelist;
3492 		}
3493 
3494 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3495 
3496 		slab->next = NULL;
3497 		__put_partials(s, slab);
3498 	}
3499 #endif
3500 
3501 new_objects:
3502 
3503 	pc.flags = gfpflags;
3504 	pc.orig_size = orig_size;
3505 	slab = get_partial(s, node, &pc);
3506 	if (slab) {
3507 		if (kmem_cache_debug(s)) {
3508 			freelist = pc.object;
3509 			/*
3510 			 * For debug caches here we had to go through
3511 			 * alloc_single_from_partial() so just store the
3512 			 * tracking info and return the object.
3513 			 */
3514 			if (s->flags & SLAB_STORE_USER)
3515 				set_track(s, freelist, TRACK_ALLOC, addr);
3516 
3517 			return freelist;
3518 		}
3519 
3520 		freelist = freeze_slab(s, slab);
3521 		goto retry_load_slab;
3522 	}
3523 
3524 	slub_put_cpu_ptr(s->cpu_slab);
3525 	slab = new_slab(s, gfpflags, node);
3526 	c = slub_get_cpu_ptr(s->cpu_slab);
3527 
3528 	if (unlikely(!slab)) {
3529 		slab_out_of_memory(s, gfpflags, node);
3530 		return NULL;
3531 	}
3532 
3533 	stat(s, ALLOC_SLAB);
3534 
3535 	if (kmem_cache_debug(s)) {
3536 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3537 
3538 		if (unlikely(!freelist))
3539 			goto new_objects;
3540 
3541 		if (s->flags & SLAB_STORE_USER)
3542 			set_track(s, freelist, TRACK_ALLOC, addr);
3543 
3544 		return freelist;
3545 	}
3546 
3547 	/*
3548 	 * No other reference to the slab yet so we can
3549 	 * muck around with it freely without cmpxchg
3550 	 */
3551 	freelist = slab->freelist;
3552 	slab->freelist = NULL;
3553 	slab->inuse = slab->objects;
3554 	slab->frozen = 1;
3555 
3556 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3557 
3558 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3559 		/*
3560 		 * For !pfmemalloc_match() case we don't load freelist so that
3561 		 * we don't make further mismatched allocations easier.
3562 		 */
3563 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3564 		return freelist;
3565 	}
3566 
3567 retry_load_slab:
3568 
3569 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3570 	if (unlikely(c->slab)) {
3571 		void *flush_freelist = c->freelist;
3572 		struct slab *flush_slab = c->slab;
3573 
3574 		c->slab = NULL;
3575 		c->freelist = NULL;
3576 		c->tid = next_tid(c->tid);
3577 
3578 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3579 
3580 		deactivate_slab(s, flush_slab, flush_freelist);
3581 
3582 		stat(s, CPUSLAB_FLUSH);
3583 
3584 		goto retry_load_slab;
3585 	}
3586 	c->slab = slab;
3587 
3588 	goto load_freelist;
3589 }
3590 
3591 /*
3592  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3593  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3594  * pointer.
3595  */
3596 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3597 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3598 {
3599 	void *p;
3600 
3601 #ifdef CONFIG_PREEMPT_COUNT
3602 	/*
3603 	 * We may have been preempted and rescheduled on a different
3604 	 * cpu before disabling preemption. Need to reload cpu area
3605 	 * pointer.
3606 	 */
3607 	c = slub_get_cpu_ptr(s->cpu_slab);
3608 #endif
3609 
3610 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3611 #ifdef CONFIG_PREEMPT_COUNT
3612 	slub_put_cpu_ptr(s->cpu_slab);
3613 #endif
3614 	return p;
3615 }
3616 
3617 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3618 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3619 {
3620 	struct kmem_cache_cpu *c;
3621 	struct slab *slab;
3622 	unsigned long tid;
3623 	void *object;
3624 
3625 redo:
3626 	/*
3627 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3628 	 * enabled. We may switch back and forth between cpus while
3629 	 * reading from one cpu area. That does not matter as long
3630 	 * as we end up on the original cpu again when doing the cmpxchg.
3631 	 *
3632 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3633 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3634 	 * the tid. If we are preempted and switched to another cpu between the
3635 	 * two reads, it's OK as the two are still associated with the same cpu
3636 	 * and cmpxchg later will validate the cpu.
3637 	 */
3638 	c = raw_cpu_ptr(s->cpu_slab);
3639 	tid = READ_ONCE(c->tid);
3640 
3641 	/*
3642 	 * Irqless object alloc/free algorithm used here depends on sequence
3643 	 * of fetching cpu_slab's data. tid should be fetched before anything
3644 	 * on c to guarantee that object and slab associated with previous tid
3645 	 * won't be used with current tid. If we fetch tid first, object and
3646 	 * slab could be one associated with next tid and our alloc/free
3647 	 * request will be failed. In this case, we will retry. So, no problem.
3648 	 */
3649 	barrier();
3650 
3651 	/*
3652 	 * The transaction ids are globally unique per cpu and per operation on
3653 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3654 	 * occurs on the right processor and that there was no operation on the
3655 	 * linked list in between.
3656 	 */
3657 
3658 	object = c->freelist;
3659 	slab = c->slab;
3660 
3661 	if (!USE_LOCKLESS_FAST_PATH() ||
3662 	    unlikely(!object || !slab || !node_match(slab, node))) {
3663 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3664 	} else {
3665 		void *next_object = get_freepointer_safe(s, object);
3666 
3667 		/*
3668 		 * The cmpxchg will only match if there was no additional
3669 		 * operation and if we are on the right processor.
3670 		 *
3671 		 * The cmpxchg does the following atomically (without lock
3672 		 * semantics!)
3673 		 * 1. Relocate first pointer to the current per cpu area.
3674 		 * 2. Verify that tid and freelist have not been changed
3675 		 * 3. If they were not changed replace tid and freelist
3676 		 *
3677 		 * Since this is without lock semantics the protection is only
3678 		 * against code executing on this cpu *not* from access by
3679 		 * other cpus.
3680 		 */
3681 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3682 			note_cmpxchg_failure("slab_alloc", s, tid);
3683 			goto redo;
3684 		}
3685 		prefetch_freepointer(s, next_object);
3686 		stat(s, ALLOC_FASTPATH);
3687 	}
3688 
3689 	return object;
3690 }
3691 #else /* CONFIG_SLUB_TINY */
3692 static void *__slab_alloc_node(struct kmem_cache *s,
3693 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3694 {
3695 	struct partial_context pc;
3696 	struct slab *slab;
3697 	void *object;
3698 
3699 	pc.flags = gfpflags;
3700 	pc.orig_size = orig_size;
3701 	slab = get_partial(s, node, &pc);
3702 
3703 	if (slab)
3704 		return pc.object;
3705 
3706 	slab = new_slab(s, gfpflags, node);
3707 	if (unlikely(!slab)) {
3708 		slab_out_of_memory(s, gfpflags, node);
3709 		return NULL;
3710 	}
3711 
3712 	object = alloc_single_from_new_slab(s, slab, orig_size);
3713 
3714 	return object;
3715 }
3716 #endif /* CONFIG_SLUB_TINY */
3717 
3718 /*
3719  * If the object has been wiped upon free, make sure it's fully initialized by
3720  * zeroing out freelist pointer.
3721  */
3722 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3723 						   void *obj)
3724 {
3725 	if (unlikely(slab_want_init_on_free(s)) && obj)
3726 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3727 			0, sizeof(void *));
3728 }
3729 
3730 noinline int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
3731 {
3732 	if (__should_failslab(s, gfpflags))
3733 		return -ENOMEM;
3734 	return 0;
3735 }
3736 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
3737 
3738 static __fastpath_inline
3739 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
3740 				       struct list_lru *lru,
3741 				       struct obj_cgroup **objcgp,
3742 				       size_t size, gfp_t flags)
3743 {
3744 	flags &= gfp_allowed_mask;
3745 
3746 	might_alloc(flags);
3747 
3748 	if (unlikely(should_failslab(s, flags)))
3749 		return NULL;
3750 
3751 	if (unlikely(!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags)))
3752 		return NULL;
3753 
3754 	return s;
3755 }
3756 
3757 static __fastpath_inline
3758 void slab_post_alloc_hook(struct kmem_cache *s,	struct obj_cgroup *objcg,
3759 			  gfp_t flags, size_t size, void **p, bool init,
3760 			  unsigned int orig_size)
3761 {
3762 	unsigned int zero_size = s->object_size;
3763 	bool kasan_init = init;
3764 	size_t i;
3765 	gfp_t init_flags = flags & gfp_allowed_mask;
3766 
3767 	/*
3768 	 * For kmalloc object, the allocated memory size(object_size) is likely
3769 	 * larger than the requested size(orig_size). If redzone check is
3770 	 * enabled for the extra space, don't zero it, as it will be redzoned
3771 	 * soon. The redzone operation for this extra space could be seen as a
3772 	 * replacement of current poisoning under certain debug option, and
3773 	 * won't break other sanity checks.
3774 	 */
3775 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3776 	    (s->flags & SLAB_KMALLOC))
3777 		zero_size = orig_size;
3778 
3779 	/*
3780 	 * When slab_debug is enabled, avoid memory initialization integrated
3781 	 * into KASAN and instead zero out the memory via the memset below with
3782 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3783 	 * cause false-positive reports. This does not lead to a performance
3784 	 * penalty on production builds, as slab_debug is not intended to be
3785 	 * enabled there.
3786 	 */
3787 	if (__slub_debug_enabled())
3788 		kasan_init = false;
3789 
3790 	/*
3791 	 * As memory initialization might be integrated into KASAN,
3792 	 * kasan_slab_alloc and initialization memset must be
3793 	 * kept together to avoid discrepancies in behavior.
3794 	 *
3795 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3796 	 */
3797 	for (i = 0; i < size; i++) {
3798 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3799 		if (p[i] && init && (!kasan_init ||
3800 				     !kasan_has_integrated_init()))
3801 			memset(p[i], 0, zero_size);
3802 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3803 					 s->flags, init_flags);
3804 		kmsan_slab_alloc(s, p[i], init_flags);
3805 	}
3806 
3807 	memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
3808 }
3809 
3810 /*
3811  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3812  * have the fastpath folded into their functions. So no function call
3813  * overhead for requests that can be satisfied on the fastpath.
3814  *
3815  * The fastpath works by first checking if the lockless freelist can be used.
3816  * If not then __slab_alloc is called for slow processing.
3817  *
3818  * Otherwise we can simply pick the next object from the lockless free list.
3819  */
3820 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3821 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3822 {
3823 	void *object;
3824 	struct obj_cgroup *objcg = NULL;
3825 	bool init = false;
3826 
3827 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3828 	if (unlikely(!s))
3829 		return NULL;
3830 
3831 	object = kfence_alloc(s, orig_size, gfpflags);
3832 	if (unlikely(object))
3833 		goto out;
3834 
3835 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3836 
3837 	maybe_wipe_obj_freeptr(s, object);
3838 	init = slab_want_init_on_alloc(gfpflags, s);
3839 
3840 out:
3841 	/*
3842 	 * When init equals 'true', like for kzalloc() family, only
3843 	 * @orig_size bytes might be zeroed instead of s->object_size
3844 	 */
3845 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3846 
3847 	return object;
3848 }
3849 
3850 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3851 {
3852 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
3853 				    s->object_size);
3854 
3855 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3856 
3857 	return ret;
3858 }
3859 EXPORT_SYMBOL(kmem_cache_alloc);
3860 
3861 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3862 			   gfp_t gfpflags)
3863 {
3864 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
3865 				    s->object_size);
3866 
3867 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3868 
3869 	return ret;
3870 }
3871 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3872 
3873 /**
3874  * kmem_cache_alloc_node - Allocate an object on the specified node
3875  * @s: The cache to allocate from.
3876  * @gfpflags: See kmalloc().
3877  * @node: node number of the target node.
3878  *
3879  * Identical to kmem_cache_alloc but it will allocate memory on the given
3880  * node, which can improve the performance for cpu bound structures.
3881  *
3882  * Fallback to other node is possible if __GFP_THISNODE is not set.
3883  *
3884  * Return: pointer to the new object or %NULL in case of error
3885  */
3886 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3887 {
3888 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3889 
3890 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3891 
3892 	return ret;
3893 }
3894 EXPORT_SYMBOL(kmem_cache_alloc_node);
3895 
3896 /*
3897  * To avoid unnecessary overhead, we pass through large allocation requests
3898  * directly to the page allocator. We use __GFP_COMP, because we will need to
3899  * know the allocation order to free the pages properly in kfree.
3900  */
3901 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
3902 {
3903 	struct folio *folio;
3904 	void *ptr = NULL;
3905 	unsigned int order = get_order(size);
3906 
3907 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
3908 		flags = kmalloc_fix_flags(flags);
3909 
3910 	flags |= __GFP_COMP;
3911 	folio = (struct folio *)alloc_pages_node(node, flags, order);
3912 	if (folio) {
3913 		ptr = folio_address(folio);
3914 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
3915 				      PAGE_SIZE << order);
3916 	}
3917 
3918 	ptr = kasan_kmalloc_large(ptr, size, flags);
3919 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
3920 	kmemleak_alloc(ptr, size, 1, flags);
3921 	kmsan_kmalloc_large(ptr, size, flags);
3922 
3923 	return ptr;
3924 }
3925 
3926 void *kmalloc_large(size_t size, gfp_t flags)
3927 {
3928 	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
3929 
3930 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3931 		      flags, NUMA_NO_NODE);
3932 	return ret;
3933 }
3934 EXPORT_SYMBOL(kmalloc_large);
3935 
3936 void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3937 {
3938 	void *ret = __kmalloc_large_node(size, flags, node);
3939 
3940 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
3941 		      flags, node);
3942 	return ret;
3943 }
3944 EXPORT_SYMBOL(kmalloc_large_node);
3945 
3946 static __always_inline
3947 void *__do_kmalloc_node(size_t size, gfp_t flags, int node,
3948 			unsigned long caller)
3949 {
3950 	struct kmem_cache *s;
3951 	void *ret;
3952 
3953 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3954 		ret = __kmalloc_large_node(size, flags, node);
3955 		trace_kmalloc(caller, ret, size,
3956 			      PAGE_SIZE << get_order(size), flags, node);
3957 		return ret;
3958 	}
3959 
3960 	if (unlikely(!size))
3961 		return ZERO_SIZE_PTR;
3962 
3963 	s = kmalloc_slab(size, flags, caller);
3964 
3965 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
3966 	ret = kasan_kmalloc(s, ret, size, flags);
3967 	trace_kmalloc(caller, ret, size, s->size, flags, node);
3968 	return ret;
3969 }
3970 
3971 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3972 {
3973 	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3974 }
3975 EXPORT_SYMBOL(__kmalloc_node);
3976 
3977 void *__kmalloc(size_t size, gfp_t flags)
3978 {
3979 	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
3980 }
3981 EXPORT_SYMBOL(__kmalloc);
3982 
3983 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3984 				  int node, unsigned long caller)
3985 {
3986 	return __do_kmalloc_node(size, flags, node, caller);
3987 }
3988 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3989 
3990 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3991 {
3992 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
3993 					    _RET_IP_, size);
3994 
3995 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
3996 
3997 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3998 	return ret;
3999 }
4000 EXPORT_SYMBOL(kmalloc_trace);
4001 
4002 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
4003 			 int node, size_t size)
4004 {
4005 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4006 
4007 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4008 
4009 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4010 	return ret;
4011 }
4012 EXPORT_SYMBOL(kmalloc_node_trace);
4013 
4014 static noinline void free_to_partial_list(
4015 	struct kmem_cache *s, struct slab *slab,
4016 	void *head, void *tail, int bulk_cnt,
4017 	unsigned long addr)
4018 {
4019 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4020 	struct slab *slab_free = NULL;
4021 	int cnt = bulk_cnt;
4022 	unsigned long flags;
4023 	depot_stack_handle_t handle = 0;
4024 
4025 	if (s->flags & SLAB_STORE_USER)
4026 		handle = set_track_prepare();
4027 
4028 	spin_lock_irqsave(&n->list_lock, flags);
4029 
4030 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4031 		void *prior = slab->freelist;
4032 
4033 		/* Perform the actual freeing while we still hold the locks */
4034 		slab->inuse -= cnt;
4035 		set_freepointer(s, tail, prior);
4036 		slab->freelist = head;
4037 
4038 		/*
4039 		 * If the slab is empty, and node's partial list is full,
4040 		 * it should be discarded anyway no matter it's on full or
4041 		 * partial list.
4042 		 */
4043 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4044 			slab_free = slab;
4045 
4046 		if (!prior) {
4047 			/* was on full list */
4048 			remove_full(s, n, slab);
4049 			if (!slab_free) {
4050 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4051 				stat(s, FREE_ADD_PARTIAL);
4052 			}
4053 		} else if (slab_free) {
4054 			remove_partial(n, slab);
4055 			stat(s, FREE_REMOVE_PARTIAL);
4056 		}
4057 	}
4058 
4059 	if (slab_free) {
4060 		/*
4061 		 * Update the counters while still holding n->list_lock to
4062 		 * prevent spurious validation warnings
4063 		 */
4064 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4065 	}
4066 
4067 	spin_unlock_irqrestore(&n->list_lock, flags);
4068 
4069 	if (slab_free) {
4070 		stat(s, FREE_SLAB);
4071 		free_slab(s, slab_free);
4072 	}
4073 }
4074 
4075 /*
4076  * Slow path handling. This may still be called frequently since objects
4077  * have a longer lifetime than the cpu slabs in most processing loads.
4078  *
4079  * So we still attempt to reduce cache line usage. Just take the slab
4080  * lock and free the item. If there is no additional partial slab
4081  * handling required then we can return immediately.
4082  */
4083 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4084 			void *head, void *tail, int cnt,
4085 			unsigned long addr)
4086 
4087 {
4088 	void *prior;
4089 	int was_frozen;
4090 	struct slab new;
4091 	unsigned long counters;
4092 	struct kmem_cache_node *n = NULL;
4093 	unsigned long flags;
4094 	bool on_node_partial;
4095 
4096 	stat(s, FREE_SLOWPATH);
4097 
4098 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4099 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4100 		return;
4101 	}
4102 
4103 	do {
4104 		if (unlikely(n)) {
4105 			spin_unlock_irqrestore(&n->list_lock, flags);
4106 			n = NULL;
4107 		}
4108 		prior = slab->freelist;
4109 		counters = slab->counters;
4110 		set_freepointer(s, tail, prior);
4111 		new.counters = counters;
4112 		was_frozen = new.frozen;
4113 		new.inuse -= cnt;
4114 		if ((!new.inuse || !prior) && !was_frozen) {
4115 			/* Needs to be taken off a list */
4116 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4117 
4118 				n = get_node(s, slab_nid(slab));
4119 				/*
4120 				 * Speculatively acquire the list_lock.
4121 				 * If the cmpxchg does not succeed then we may
4122 				 * drop the list_lock without any processing.
4123 				 *
4124 				 * Otherwise the list_lock will synchronize with
4125 				 * other processors updating the list of slabs.
4126 				 */
4127 				spin_lock_irqsave(&n->list_lock, flags);
4128 
4129 				on_node_partial = slab_test_node_partial(slab);
4130 			}
4131 		}
4132 
4133 	} while (!slab_update_freelist(s, slab,
4134 		prior, counters,
4135 		head, new.counters,
4136 		"__slab_free"));
4137 
4138 	if (likely(!n)) {
4139 
4140 		if (likely(was_frozen)) {
4141 			/*
4142 			 * The list lock was not taken therefore no list
4143 			 * activity can be necessary.
4144 			 */
4145 			stat(s, FREE_FROZEN);
4146 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4147 			/*
4148 			 * If we started with a full slab then put it onto the
4149 			 * per cpu partial list.
4150 			 */
4151 			put_cpu_partial(s, slab, 1);
4152 			stat(s, CPU_PARTIAL_FREE);
4153 		}
4154 
4155 		return;
4156 	}
4157 
4158 	/*
4159 	 * This slab was partially empty but not on the per-node partial list,
4160 	 * in which case we shouldn't manipulate its list, just return.
4161 	 */
4162 	if (prior && !on_node_partial) {
4163 		spin_unlock_irqrestore(&n->list_lock, flags);
4164 		return;
4165 	}
4166 
4167 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4168 		goto slab_empty;
4169 
4170 	/*
4171 	 * Objects left in the slab. If it was not on the partial list before
4172 	 * then add it.
4173 	 */
4174 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4175 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4176 		stat(s, FREE_ADD_PARTIAL);
4177 	}
4178 	spin_unlock_irqrestore(&n->list_lock, flags);
4179 	return;
4180 
4181 slab_empty:
4182 	if (prior) {
4183 		/*
4184 		 * Slab on the partial list.
4185 		 */
4186 		remove_partial(n, slab);
4187 		stat(s, FREE_REMOVE_PARTIAL);
4188 	}
4189 
4190 	spin_unlock_irqrestore(&n->list_lock, flags);
4191 	stat(s, FREE_SLAB);
4192 	discard_slab(s, slab);
4193 }
4194 
4195 #ifndef CONFIG_SLUB_TINY
4196 /*
4197  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4198  * can perform fastpath freeing without additional function calls.
4199  *
4200  * The fastpath is only possible if we are freeing to the current cpu slab
4201  * of this processor. This typically the case if we have just allocated
4202  * the item before.
4203  *
4204  * If fastpath is not possible then fall back to __slab_free where we deal
4205  * with all sorts of special processing.
4206  *
4207  * Bulk free of a freelist with several objects (all pointing to the
4208  * same slab) possible by specifying head and tail ptr, plus objects
4209  * count (cnt). Bulk free indicated by tail pointer being set.
4210  */
4211 static __always_inline void do_slab_free(struct kmem_cache *s,
4212 				struct slab *slab, void *head, void *tail,
4213 				int cnt, unsigned long addr)
4214 {
4215 	struct kmem_cache_cpu *c;
4216 	unsigned long tid;
4217 	void **freelist;
4218 
4219 redo:
4220 	/*
4221 	 * Determine the currently cpus per cpu slab.
4222 	 * The cpu may change afterward. However that does not matter since
4223 	 * data is retrieved via this pointer. If we are on the same cpu
4224 	 * during the cmpxchg then the free will succeed.
4225 	 */
4226 	c = raw_cpu_ptr(s->cpu_slab);
4227 	tid = READ_ONCE(c->tid);
4228 
4229 	/* Same with comment on barrier() in slab_alloc_node() */
4230 	barrier();
4231 
4232 	if (unlikely(slab != c->slab)) {
4233 		__slab_free(s, slab, head, tail, cnt, addr);
4234 		return;
4235 	}
4236 
4237 	if (USE_LOCKLESS_FAST_PATH()) {
4238 		freelist = READ_ONCE(c->freelist);
4239 
4240 		set_freepointer(s, tail, freelist);
4241 
4242 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4243 			note_cmpxchg_failure("slab_free", s, tid);
4244 			goto redo;
4245 		}
4246 	} else {
4247 		/* Update the free list under the local lock */
4248 		local_lock(&s->cpu_slab->lock);
4249 		c = this_cpu_ptr(s->cpu_slab);
4250 		if (unlikely(slab != c->slab)) {
4251 			local_unlock(&s->cpu_slab->lock);
4252 			goto redo;
4253 		}
4254 		tid = c->tid;
4255 		freelist = c->freelist;
4256 
4257 		set_freepointer(s, tail, freelist);
4258 		c->freelist = head;
4259 		c->tid = next_tid(tid);
4260 
4261 		local_unlock(&s->cpu_slab->lock);
4262 	}
4263 	stat_add(s, FREE_FASTPATH, cnt);
4264 }
4265 #else /* CONFIG_SLUB_TINY */
4266 static void do_slab_free(struct kmem_cache *s,
4267 				struct slab *slab, void *head, void *tail,
4268 				int cnt, unsigned long addr)
4269 {
4270 	__slab_free(s, slab, head, tail, cnt, addr);
4271 }
4272 #endif /* CONFIG_SLUB_TINY */
4273 
4274 static __fastpath_inline
4275 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4276 	       unsigned long addr)
4277 {
4278 	memcg_slab_free_hook(s, slab, &object, 1);
4279 
4280 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4281 		do_slab_free(s, slab, object, object, 1, addr);
4282 }
4283 
4284 static __fastpath_inline
4285 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4286 		    void *tail, void **p, int cnt, unsigned long addr)
4287 {
4288 	memcg_slab_free_hook(s, slab, p, cnt);
4289 	/*
4290 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4291 	 * to remove objects, whose reuse must be delayed.
4292 	 */
4293 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4294 		do_slab_free(s, slab, head, tail, cnt, addr);
4295 }
4296 
4297 #ifdef CONFIG_KASAN_GENERIC
4298 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4299 {
4300 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4301 }
4302 #endif
4303 
4304 static inline struct kmem_cache *virt_to_cache(const void *obj)
4305 {
4306 	struct slab *slab;
4307 
4308 	slab = virt_to_slab(obj);
4309 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4310 		return NULL;
4311 	return slab->slab_cache;
4312 }
4313 
4314 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4315 {
4316 	struct kmem_cache *cachep;
4317 
4318 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4319 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4320 		return s;
4321 
4322 	cachep = virt_to_cache(x);
4323 	if (WARN(cachep && cachep != s,
4324 		 "%s: Wrong slab cache. %s but object is from %s\n",
4325 		 __func__, s->name, cachep->name))
4326 		print_tracking(cachep, x);
4327 	return cachep;
4328 }
4329 
4330 /**
4331  * kmem_cache_free - Deallocate an object
4332  * @s: The cache the allocation was from.
4333  * @x: The previously allocated object.
4334  *
4335  * Free an object which was previously allocated from this
4336  * cache.
4337  */
4338 void kmem_cache_free(struct kmem_cache *s, void *x)
4339 {
4340 	s = cache_from_obj(s, x);
4341 	if (!s)
4342 		return;
4343 	trace_kmem_cache_free(_RET_IP_, x, s);
4344 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4345 }
4346 EXPORT_SYMBOL(kmem_cache_free);
4347 
4348 static void free_large_kmalloc(struct folio *folio, void *object)
4349 {
4350 	unsigned int order = folio_order(folio);
4351 
4352 	if (WARN_ON_ONCE(order == 0))
4353 		pr_warn_once("object pointer: 0x%p\n", object);
4354 
4355 	kmemleak_free(object);
4356 	kasan_kfree_large(object);
4357 	kmsan_kfree_large(object);
4358 
4359 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4360 			      -(PAGE_SIZE << order));
4361 	folio_put(folio);
4362 }
4363 
4364 /**
4365  * kfree - free previously allocated memory
4366  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4367  *
4368  * If @object is NULL, no operation is performed.
4369  */
4370 void kfree(const void *object)
4371 {
4372 	struct folio *folio;
4373 	struct slab *slab;
4374 	struct kmem_cache *s;
4375 	void *x = (void *)object;
4376 
4377 	trace_kfree(_RET_IP_, object);
4378 
4379 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4380 		return;
4381 
4382 	folio = virt_to_folio(object);
4383 	if (unlikely(!folio_test_slab(folio))) {
4384 		free_large_kmalloc(folio, (void *)object);
4385 		return;
4386 	}
4387 
4388 	slab = folio_slab(folio);
4389 	s = slab->slab_cache;
4390 	slab_free(s, slab, x, _RET_IP_);
4391 }
4392 EXPORT_SYMBOL(kfree);
4393 
4394 struct detached_freelist {
4395 	struct slab *slab;
4396 	void *tail;
4397 	void *freelist;
4398 	int cnt;
4399 	struct kmem_cache *s;
4400 };
4401 
4402 /*
4403  * This function progressively scans the array with free objects (with
4404  * a limited look ahead) and extract objects belonging to the same
4405  * slab.  It builds a detached freelist directly within the given
4406  * slab/objects.  This can happen without any need for
4407  * synchronization, because the objects are owned by running process.
4408  * The freelist is build up as a single linked list in the objects.
4409  * The idea is, that this detached freelist can then be bulk
4410  * transferred to the real freelist(s), but only requiring a single
4411  * synchronization primitive.  Look ahead in the array is limited due
4412  * to performance reasons.
4413  */
4414 static inline
4415 int build_detached_freelist(struct kmem_cache *s, size_t size,
4416 			    void **p, struct detached_freelist *df)
4417 {
4418 	int lookahead = 3;
4419 	void *object;
4420 	struct folio *folio;
4421 	size_t same;
4422 
4423 	object = p[--size];
4424 	folio = virt_to_folio(object);
4425 	if (!s) {
4426 		/* Handle kalloc'ed objects */
4427 		if (unlikely(!folio_test_slab(folio))) {
4428 			free_large_kmalloc(folio, object);
4429 			df->slab = NULL;
4430 			return size;
4431 		}
4432 		/* Derive kmem_cache from object */
4433 		df->slab = folio_slab(folio);
4434 		df->s = df->slab->slab_cache;
4435 	} else {
4436 		df->slab = folio_slab(folio);
4437 		df->s = cache_from_obj(s, object); /* Support for memcg */
4438 	}
4439 
4440 	/* Start new detached freelist */
4441 	df->tail = object;
4442 	df->freelist = object;
4443 	df->cnt = 1;
4444 
4445 	if (is_kfence_address(object))
4446 		return size;
4447 
4448 	set_freepointer(df->s, object, NULL);
4449 
4450 	same = size;
4451 	while (size) {
4452 		object = p[--size];
4453 		/* df->slab is always set at this point */
4454 		if (df->slab == virt_to_slab(object)) {
4455 			/* Opportunity build freelist */
4456 			set_freepointer(df->s, object, df->freelist);
4457 			df->freelist = object;
4458 			df->cnt++;
4459 			same--;
4460 			if (size != same)
4461 				swap(p[size], p[same]);
4462 			continue;
4463 		}
4464 
4465 		/* Limit look ahead search */
4466 		if (!--lookahead)
4467 			break;
4468 	}
4469 
4470 	return same;
4471 }
4472 
4473 /*
4474  * Internal bulk free of objects that were not initialised by the post alloc
4475  * hooks and thus should not be processed by the free hooks
4476  */
4477 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4478 {
4479 	if (!size)
4480 		return;
4481 
4482 	do {
4483 		struct detached_freelist df;
4484 
4485 		size = build_detached_freelist(s, size, p, &df);
4486 		if (!df.slab)
4487 			continue;
4488 
4489 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4490 			     _RET_IP_);
4491 	} while (likely(size));
4492 }
4493 
4494 /* Note that interrupts must be enabled when calling this function. */
4495 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4496 {
4497 	if (!size)
4498 		return;
4499 
4500 	do {
4501 		struct detached_freelist df;
4502 
4503 		size = build_detached_freelist(s, size, p, &df);
4504 		if (!df.slab)
4505 			continue;
4506 
4507 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4508 			       df.cnt, _RET_IP_);
4509 	} while (likely(size));
4510 }
4511 EXPORT_SYMBOL(kmem_cache_free_bulk);
4512 
4513 #ifndef CONFIG_SLUB_TINY
4514 static inline
4515 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4516 			    void **p)
4517 {
4518 	struct kmem_cache_cpu *c;
4519 	unsigned long irqflags;
4520 	int i;
4521 
4522 	/*
4523 	 * Drain objects in the per cpu slab, while disabling local
4524 	 * IRQs, which protects against PREEMPT and interrupts
4525 	 * handlers invoking normal fastpath.
4526 	 */
4527 	c = slub_get_cpu_ptr(s->cpu_slab);
4528 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4529 
4530 	for (i = 0; i < size; i++) {
4531 		void *object = kfence_alloc(s, s->object_size, flags);
4532 
4533 		if (unlikely(object)) {
4534 			p[i] = object;
4535 			continue;
4536 		}
4537 
4538 		object = c->freelist;
4539 		if (unlikely(!object)) {
4540 			/*
4541 			 * We may have removed an object from c->freelist using
4542 			 * the fastpath in the previous iteration; in that case,
4543 			 * c->tid has not been bumped yet.
4544 			 * Since ___slab_alloc() may reenable interrupts while
4545 			 * allocating memory, we should bump c->tid now.
4546 			 */
4547 			c->tid = next_tid(c->tid);
4548 
4549 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4550 
4551 			/*
4552 			 * Invoking slow path likely have side-effect
4553 			 * of re-populating per CPU c->freelist
4554 			 */
4555 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4556 					    _RET_IP_, c, s->object_size);
4557 			if (unlikely(!p[i]))
4558 				goto error;
4559 
4560 			c = this_cpu_ptr(s->cpu_slab);
4561 			maybe_wipe_obj_freeptr(s, p[i]);
4562 
4563 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4564 
4565 			continue; /* goto for-loop */
4566 		}
4567 		c->freelist = get_freepointer(s, object);
4568 		p[i] = object;
4569 		maybe_wipe_obj_freeptr(s, p[i]);
4570 		stat(s, ALLOC_FASTPATH);
4571 	}
4572 	c->tid = next_tid(c->tid);
4573 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4574 	slub_put_cpu_ptr(s->cpu_slab);
4575 
4576 	return i;
4577 
4578 error:
4579 	slub_put_cpu_ptr(s->cpu_slab);
4580 	__kmem_cache_free_bulk(s, i, p);
4581 	return 0;
4582 
4583 }
4584 #else /* CONFIG_SLUB_TINY */
4585 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4586 				   size_t size, void **p)
4587 {
4588 	int i;
4589 
4590 	for (i = 0; i < size; i++) {
4591 		void *object = kfence_alloc(s, s->object_size, flags);
4592 
4593 		if (unlikely(object)) {
4594 			p[i] = object;
4595 			continue;
4596 		}
4597 
4598 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4599 					 _RET_IP_, s->object_size);
4600 		if (unlikely(!p[i]))
4601 			goto error;
4602 
4603 		maybe_wipe_obj_freeptr(s, p[i]);
4604 	}
4605 
4606 	return i;
4607 
4608 error:
4609 	__kmem_cache_free_bulk(s, i, p);
4610 	return 0;
4611 }
4612 #endif /* CONFIG_SLUB_TINY */
4613 
4614 /* Note that interrupts must be enabled when calling this function. */
4615 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4616 			  void **p)
4617 {
4618 	int i;
4619 	struct obj_cgroup *objcg = NULL;
4620 
4621 	if (!size)
4622 		return 0;
4623 
4624 	/* memcg and kmem_cache debug support */
4625 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4626 	if (unlikely(!s))
4627 		return 0;
4628 
4629 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4630 
4631 	/*
4632 	 * memcg and kmem_cache debug support and memory initialization.
4633 	 * Done outside of the IRQ disabled fastpath loop.
4634 	 */
4635 	if (likely(i != 0)) {
4636 		slab_post_alloc_hook(s, objcg, flags, size, p,
4637 			slab_want_init_on_alloc(flags, s), s->object_size);
4638 	} else {
4639 		memcg_slab_alloc_error_hook(s, size, objcg);
4640 	}
4641 
4642 	return i;
4643 }
4644 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4645 
4646 
4647 /*
4648  * Object placement in a slab is made very easy because we always start at
4649  * offset 0. If we tune the size of the object to the alignment then we can
4650  * get the required alignment by putting one properly sized object after
4651  * another.
4652  *
4653  * Notice that the allocation order determines the sizes of the per cpu
4654  * caches. Each processor has always one slab available for allocations.
4655  * Increasing the allocation order reduces the number of times that slabs
4656  * must be moved on and off the partial lists and is therefore a factor in
4657  * locking overhead.
4658  */
4659 
4660 /*
4661  * Minimum / Maximum order of slab pages. This influences locking overhead
4662  * and slab fragmentation. A higher order reduces the number of partial slabs
4663  * and increases the number of allocations possible without having to
4664  * take the list_lock.
4665  */
4666 static unsigned int slub_min_order;
4667 static unsigned int slub_max_order =
4668 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4669 static unsigned int slub_min_objects;
4670 
4671 /*
4672  * Calculate the order of allocation given an slab object size.
4673  *
4674  * The order of allocation has significant impact on performance and other
4675  * system components. Generally order 0 allocations should be preferred since
4676  * order 0 does not cause fragmentation in the page allocator. Larger objects
4677  * be problematic to put into order 0 slabs because there may be too much
4678  * unused space left. We go to a higher order if more than 1/16th of the slab
4679  * would be wasted.
4680  *
4681  * In order to reach satisfactory performance we must ensure that a minimum
4682  * number of objects is in one slab. Otherwise we may generate too much
4683  * activity on the partial lists which requires taking the list_lock. This is
4684  * less a concern for large slabs though which are rarely used.
4685  *
4686  * slab_max_order specifies the order where we begin to stop considering the
4687  * number of objects in a slab as critical. If we reach slab_max_order then
4688  * we try to keep the page order as low as possible. So we accept more waste
4689  * of space in favor of a small page order.
4690  *
4691  * Higher order allocations also allow the placement of more objects in a
4692  * slab and thereby reduce object handling overhead. If the user has
4693  * requested a higher minimum order then we start with that one instead of
4694  * the smallest order which will fit the object.
4695  */
4696 static inline unsigned int calc_slab_order(unsigned int size,
4697 		unsigned int min_order, unsigned int max_order,
4698 		unsigned int fract_leftover)
4699 {
4700 	unsigned int order;
4701 
4702 	for (order = min_order; order <= max_order; order++) {
4703 
4704 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4705 		unsigned int rem;
4706 
4707 		rem = slab_size % size;
4708 
4709 		if (rem <= slab_size / fract_leftover)
4710 			break;
4711 	}
4712 
4713 	return order;
4714 }
4715 
4716 static inline int calculate_order(unsigned int size)
4717 {
4718 	unsigned int order;
4719 	unsigned int min_objects;
4720 	unsigned int max_objects;
4721 	unsigned int min_order;
4722 
4723 	min_objects = slub_min_objects;
4724 	if (!min_objects) {
4725 		/*
4726 		 * Some architectures will only update present cpus when
4727 		 * onlining them, so don't trust the number if it's just 1. But
4728 		 * we also don't want to use nr_cpu_ids always, as on some other
4729 		 * architectures, there can be many possible cpus, but never
4730 		 * onlined. Here we compromise between trying to avoid too high
4731 		 * order on systems that appear larger than they are, and too
4732 		 * low order on systems that appear smaller than they are.
4733 		 */
4734 		unsigned int nr_cpus = num_present_cpus();
4735 		if (nr_cpus <= 1)
4736 			nr_cpus = nr_cpu_ids;
4737 		min_objects = 4 * (fls(nr_cpus) + 1);
4738 	}
4739 	/* min_objects can't be 0 because get_order(0) is undefined */
4740 	max_objects = max(order_objects(slub_max_order, size), 1U);
4741 	min_objects = min(min_objects, max_objects);
4742 
4743 	min_order = max_t(unsigned int, slub_min_order,
4744 			  get_order(min_objects * size));
4745 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4746 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4747 
4748 	/*
4749 	 * Attempt to find best configuration for a slab. This works by first
4750 	 * attempting to generate a layout with the best possible configuration
4751 	 * and backing off gradually.
4752 	 *
4753 	 * We start with accepting at most 1/16 waste and try to find the
4754 	 * smallest order from min_objects-derived/slab_min_order up to
4755 	 * slab_max_order that will satisfy the constraint. Note that increasing
4756 	 * the order can only result in same or less fractional waste, not more.
4757 	 *
4758 	 * If that fails, we increase the acceptable fraction of waste and try
4759 	 * again. The last iteration with fraction of 1/2 would effectively
4760 	 * accept any waste and give us the order determined by min_objects, as
4761 	 * long as at least single object fits within slab_max_order.
4762 	 */
4763 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4764 		order = calc_slab_order(size, min_order, slub_max_order,
4765 					fraction);
4766 		if (order <= slub_max_order)
4767 			return order;
4768 	}
4769 
4770 	/*
4771 	 * Doh this slab cannot be placed using slab_max_order.
4772 	 */
4773 	order = get_order(size);
4774 	if (order <= MAX_PAGE_ORDER)
4775 		return order;
4776 	return -ENOSYS;
4777 }
4778 
4779 static void
4780 init_kmem_cache_node(struct kmem_cache_node *n)
4781 {
4782 	n->nr_partial = 0;
4783 	spin_lock_init(&n->list_lock);
4784 	INIT_LIST_HEAD(&n->partial);
4785 #ifdef CONFIG_SLUB_DEBUG
4786 	atomic_long_set(&n->nr_slabs, 0);
4787 	atomic_long_set(&n->total_objects, 0);
4788 	INIT_LIST_HEAD(&n->full);
4789 #endif
4790 }
4791 
4792 #ifndef CONFIG_SLUB_TINY
4793 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4794 {
4795 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4796 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4797 			sizeof(struct kmem_cache_cpu));
4798 
4799 	/*
4800 	 * Must align to double word boundary for the double cmpxchg
4801 	 * instructions to work; see __pcpu_double_call_return_bool().
4802 	 */
4803 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4804 				     2 * sizeof(void *));
4805 
4806 	if (!s->cpu_slab)
4807 		return 0;
4808 
4809 	init_kmem_cache_cpus(s);
4810 
4811 	return 1;
4812 }
4813 #else
4814 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4815 {
4816 	return 1;
4817 }
4818 #endif /* CONFIG_SLUB_TINY */
4819 
4820 static struct kmem_cache *kmem_cache_node;
4821 
4822 /*
4823  * No kmalloc_node yet so do it by hand. We know that this is the first
4824  * slab on the node for this slabcache. There are no concurrent accesses
4825  * possible.
4826  *
4827  * Note that this function only works on the kmem_cache_node
4828  * when allocating for the kmem_cache_node. This is used for bootstrapping
4829  * memory on a fresh node that has no slab structures yet.
4830  */
4831 static void early_kmem_cache_node_alloc(int node)
4832 {
4833 	struct slab *slab;
4834 	struct kmem_cache_node *n;
4835 
4836 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4837 
4838 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4839 
4840 	BUG_ON(!slab);
4841 	if (slab_nid(slab) != node) {
4842 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4843 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4844 	}
4845 
4846 	n = slab->freelist;
4847 	BUG_ON(!n);
4848 #ifdef CONFIG_SLUB_DEBUG
4849 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4850 	init_tracking(kmem_cache_node, n);
4851 #endif
4852 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4853 	slab->freelist = get_freepointer(kmem_cache_node, n);
4854 	slab->inuse = 1;
4855 	kmem_cache_node->node[node] = n;
4856 	init_kmem_cache_node(n);
4857 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4858 
4859 	/*
4860 	 * No locks need to be taken here as it has just been
4861 	 * initialized and there is no concurrent access.
4862 	 */
4863 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4864 }
4865 
4866 static void free_kmem_cache_nodes(struct kmem_cache *s)
4867 {
4868 	int node;
4869 	struct kmem_cache_node *n;
4870 
4871 	for_each_kmem_cache_node(s, node, n) {
4872 		s->node[node] = NULL;
4873 		kmem_cache_free(kmem_cache_node, n);
4874 	}
4875 }
4876 
4877 void __kmem_cache_release(struct kmem_cache *s)
4878 {
4879 	cache_random_seq_destroy(s);
4880 #ifndef CONFIG_SLUB_TINY
4881 	free_percpu(s->cpu_slab);
4882 #endif
4883 	free_kmem_cache_nodes(s);
4884 }
4885 
4886 static int init_kmem_cache_nodes(struct kmem_cache *s)
4887 {
4888 	int node;
4889 
4890 	for_each_node_mask(node, slab_nodes) {
4891 		struct kmem_cache_node *n;
4892 
4893 		if (slab_state == DOWN) {
4894 			early_kmem_cache_node_alloc(node);
4895 			continue;
4896 		}
4897 		n = kmem_cache_alloc_node(kmem_cache_node,
4898 						GFP_KERNEL, node);
4899 
4900 		if (!n) {
4901 			free_kmem_cache_nodes(s);
4902 			return 0;
4903 		}
4904 
4905 		init_kmem_cache_node(n);
4906 		s->node[node] = n;
4907 	}
4908 	return 1;
4909 }
4910 
4911 static void set_cpu_partial(struct kmem_cache *s)
4912 {
4913 #ifdef CONFIG_SLUB_CPU_PARTIAL
4914 	unsigned int nr_objects;
4915 
4916 	/*
4917 	 * cpu_partial determined the maximum number of objects kept in the
4918 	 * per cpu partial lists of a processor.
4919 	 *
4920 	 * Per cpu partial lists mainly contain slabs that just have one
4921 	 * object freed. If they are used for allocation then they can be
4922 	 * filled up again with minimal effort. The slab will never hit the
4923 	 * per node partial lists and therefore no locking will be required.
4924 	 *
4925 	 * For backwards compatibility reasons, this is determined as number
4926 	 * of objects, even though we now limit maximum number of pages, see
4927 	 * slub_set_cpu_partial()
4928 	 */
4929 	if (!kmem_cache_has_cpu_partial(s))
4930 		nr_objects = 0;
4931 	else if (s->size >= PAGE_SIZE)
4932 		nr_objects = 6;
4933 	else if (s->size >= 1024)
4934 		nr_objects = 24;
4935 	else if (s->size >= 256)
4936 		nr_objects = 52;
4937 	else
4938 		nr_objects = 120;
4939 
4940 	slub_set_cpu_partial(s, nr_objects);
4941 #endif
4942 }
4943 
4944 /*
4945  * calculate_sizes() determines the order and the distribution of data within
4946  * a slab object.
4947  */
4948 static int calculate_sizes(struct kmem_cache *s)
4949 {
4950 	slab_flags_t flags = s->flags;
4951 	unsigned int size = s->object_size;
4952 	unsigned int order;
4953 
4954 	/*
4955 	 * Round up object size to the next word boundary. We can only
4956 	 * place the free pointer at word boundaries and this determines
4957 	 * the possible location of the free pointer.
4958 	 */
4959 	size = ALIGN(size, sizeof(void *));
4960 
4961 #ifdef CONFIG_SLUB_DEBUG
4962 	/*
4963 	 * Determine if we can poison the object itself. If the user of
4964 	 * the slab may touch the object after free or before allocation
4965 	 * then we should never poison the object itself.
4966 	 */
4967 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4968 			!s->ctor)
4969 		s->flags |= __OBJECT_POISON;
4970 	else
4971 		s->flags &= ~__OBJECT_POISON;
4972 
4973 
4974 	/*
4975 	 * If we are Redzoning then check if there is some space between the
4976 	 * end of the object and the free pointer. If not then add an
4977 	 * additional word to have some bytes to store Redzone information.
4978 	 */
4979 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4980 		size += sizeof(void *);
4981 #endif
4982 
4983 	/*
4984 	 * With that we have determined the number of bytes in actual use
4985 	 * by the object and redzoning.
4986 	 */
4987 	s->inuse = size;
4988 
4989 	if (slub_debug_orig_size(s) ||
4990 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4991 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4992 	    s->ctor) {
4993 		/*
4994 		 * Relocate free pointer after the object if it is not
4995 		 * permitted to overwrite the first word of the object on
4996 		 * kmem_cache_free.
4997 		 *
4998 		 * This is the case if we do RCU, have a constructor or
4999 		 * destructor, are poisoning the objects, or are
5000 		 * redzoning an object smaller than sizeof(void *).
5001 		 *
5002 		 * The assumption that s->offset >= s->inuse means free
5003 		 * pointer is outside of the object is used in the
5004 		 * freeptr_outside_object() function. If that is no
5005 		 * longer true, the function needs to be modified.
5006 		 */
5007 		s->offset = size;
5008 		size += sizeof(void *);
5009 	} else {
5010 		/*
5011 		 * Store freelist pointer near middle of object to keep
5012 		 * it away from the edges of the object to avoid small
5013 		 * sized over/underflows from neighboring allocations.
5014 		 */
5015 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5016 	}
5017 
5018 #ifdef CONFIG_SLUB_DEBUG
5019 	if (flags & SLAB_STORE_USER) {
5020 		/*
5021 		 * Need to store information about allocs and frees after
5022 		 * the object.
5023 		 */
5024 		size += 2 * sizeof(struct track);
5025 
5026 		/* Save the original kmalloc request size */
5027 		if (flags & SLAB_KMALLOC)
5028 			size += sizeof(unsigned int);
5029 	}
5030 #endif
5031 
5032 	kasan_cache_create(s, &size, &s->flags);
5033 #ifdef CONFIG_SLUB_DEBUG
5034 	if (flags & SLAB_RED_ZONE) {
5035 		/*
5036 		 * Add some empty padding so that we can catch
5037 		 * overwrites from earlier objects rather than let
5038 		 * tracking information or the free pointer be
5039 		 * corrupted if a user writes before the start
5040 		 * of the object.
5041 		 */
5042 		size += sizeof(void *);
5043 
5044 		s->red_left_pad = sizeof(void *);
5045 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5046 		size += s->red_left_pad;
5047 	}
5048 #endif
5049 
5050 	/*
5051 	 * SLUB stores one object immediately after another beginning from
5052 	 * offset 0. In order to align the objects we have to simply size
5053 	 * each object to conform to the alignment.
5054 	 */
5055 	size = ALIGN(size, s->align);
5056 	s->size = size;
5057 	s->reciprocal_size = reciprocal_value(size);
5058 	order = calculate_order(size);
5059 
5060 	if ((int)order < 0)
5061 		return 0;
5062 
5063 	s->allocflags = 0;
5064 	if (order)
5065 		s->allocflags |= __GFP_COMP;
5066 
5067 	if (s->flags & SLAB_CACHE_DMA)
5068 		s->allocflags |= GFP_DMA;
5069 
5070 	if (s->flags & SLAB_CACHE_DMA32)
5071 		s->allocflags |= GFP_DMA32;
5072 
5073 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5074 		s->allocflags |= __GFP_RECLAIMABLE;
5075 
5076 	/*
5077 	 * Determine the number of objects per slab
5078 	 */
5079 	s->oo = oo_make(order, size);
5080 	s->min = oo_make(get_order(size), size);
5081 
5082 	return !!oo_objects(s->oo);
5083 }
5084 
5085 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5086 {
5087 	s->flags = kmem_cache_flags(flags, s->name);
5088 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5089 	s->random = get_random_long();
5090 #endif
5091 
5092 	if (!calculate_sizes(s))
5093 		goto error;
5094 	if (disable_higher_order_debug) {
5095 		/*
5096 		 * Disable debugging flags that store metadata if the min slab
5097 		 * order increased.
5098 		 */
5099 		if (get_order(s->size) > get_order(s->object_size)) {
5100 			s->flags &= ~DEBUG_METADATA_FLAGS;
5101 			s->offset = 0;
5102 			if (!calculate_sizes(s))
5103 				goto error;
5104 		}
5105 	}
5106 
5107 #ifdef system_has_freelist_aba
5108 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5109 		/* Enable fast mode */
5110 		s->flags |= __CMPXCHG_DOUBLE;
5111 	}
5112 #endif
5113 
5114 	/*
5115 	 * The larger the object size is, the more slabs we want on the partial
5116 	 * list to avoid pounding the page allocator excessively.
5117 	 */
5118 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5119 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5120 
5121 	set_cpu_partial(s);
5122 
5123 #ifdef CONFIG_NUMA
5124 	s->remote_node_defrag_ratio = 1000;
5125 #endif
5126 
5127 	/* Initialize the pre-computed randomized freelist if slab is up */
5128 	if (slab_state >= UP) {
5129 		if (init_cache_random_seq(s))
5130 			goto error;
5131 	}
5132 
5133 	if (!init_kmem_cache_nodes(s))
5134 		goto error;
5135 
5136 	if (alloc_kmem_cache_cpus(s))
5137 		return 0;
5138 
5139 error:
5140 	__kmem_cache_release(s);
5141 	return -EINVAL;
5142 }
5143 
5144 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5145 			      const char *text)
5146 {
5147 #ifdef CONFIG_SLUB_DEBUG
5148 	void *addr = slab_address(slab);
5149 	void *p;
5150 
5151 	slab_err(s, slab, text, s->name);
5152 
5153 	spin_lock(&object_map_lock);
5154 	__fill_map(object_map, s, slab);
5155 
5156 	for_each_object(p, s, addr, slab->objects) {
5157 
5158 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5159 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5160 			print_tracking(s, p);
5161 		}
5162 	}
5163 	spin_unlock(&object_map_lock);
5164 #endif
5165 }
5166 
5167 /*
5168  * Attempt to free all partial slabs on a node.
5169  * This is called from __kmem_cache_shutdown(). We must take list_lock
5170  * because sysfs file might still access partial list after the shutdowning.
5171  */
5172 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5173 {
5174 	LIST_HEAD(discard);
5175 	struct slab *slab, *h;
5176 
5177 	BUG_ON(irqs_disabled());
5178 	spin_lock_irq(&n->list_lock);
5179 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5180 		if (!slab->inuse) {
5181 			remove_partial(n, slab);
5182 			list_add(&slab->slab_list, &discard);
5183 		} else {
5184 			list_slab_objects(s, slab,
5185 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5186 		}
5187 	}
5188 	spin_unlock_irq(&n->list_lock);
5189 
5190 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5191 		discard_slab(s, slab);
5192 }
5193 
5194 bool __kmem_cache_empty(struct kmem_cache *s)
5195 {
5196 	int node;
5197 	struct kmem_cache_node *n;
5198 
5199 	for_each_kmem_cache_node(s, node, n)
5200 		if (n->nr_partial || node_nr_slabs(n))
5201 			return false;
5202 	return true;
5203 }
5204 
5205 /*
5206  * Release all resources used by a slab cache.
5207  */
5208 int __kmem_cache_shutdown(struct kmem_cache *s)
5209 {
5210 	int node;
5211 	struct kmem_cache_node *n;
5212 
5213 	flush_all_cpus_locked(s);
5214 	/* Attempt to free all objects */
5215 	for_each_kmem_cache_node(s, node, n) {
5216 		free_partial(s, n);
5217 		if (n->nr_partial || node_nr_slabs(n))
5218 			return 1;
5219 	}
5220 	return 0;
5221 }
5222 
5223 #ifdef CONFIG_PRINTK
5224 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5225 {
5226 	void *base;
5227 	int __maybe_unused i;
5228 	unsigned int objnr;
5229 	void *objp;
5230 	void *objp0;
5231 	struct kmem_cache *s = slab->slab_cache;
5232 	struct track __maybe_unused *trackp;
5233 
5234 	kpp->kp_ptr = object;
5235 	kpp->kp_slab = slab;
5236 	kpp->kp_slab_cache = s;
5237 	base = slab_address(slab);
5238 	objp0 = kasan_reset_tag(object);
5239 #ifdef CONFIG_SLUB_DEBUG
5240 	objp = restore_red_left(s, objp0);
5241 #else
5242 	objp = objp0;
5243 #endif
5244 	objnr = obj_to_index(s, slab, objp);
5245 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5246 	objp = base + s->size * objnr;
5247 	kpp->kp_objp = objp;
5248 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5249 			 || (objp - base) % s->size) ||
5250 	    !(s->flags & SLAB_STORE_USER))
5251 		return;
5252 #ifdef CONFIG_SLUB_DEBUG
5253 	objp = fixup_red_left(s, objp);
5254 	trackp = get_track(s, objp, TRACK_ALLOC);
5255 	kpp->kp_ret = (void *)trackp->addr;
5256 #ifdef CONFIG_STACKDEPOT
5257 	{
5258 		depot_stack_handle_t handle;
5259 		unsigned long *entries;
5260 		unsigned int nr_entries;
5261 
5262 		handle = READ_ONCE(trackp->handle);
5263 		if (handle) {
5264 			nr_entries = stack_depot_fetch(handle, &entries);
5265 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5266 				kpp->kp_stack[i] = (void *)entries[i];
5267 		}
5268 
5269 		trackp = get_track(s, objp, TRACK_FREE);
5270 		handle = READ_ONCE(trackp->handle);
5271 		if (handle) {
5272 			nr_entries = stack_depot_fetch(handle, &entries);
5273 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5274 				kpp->kp_free_stack[i] = (void *)entries[i];
5275 		}
5276 	}
5277 #endif
5278 #endif
5279 }
5280 #endif
5281 
5282 /********************************************************************
5283  *		Kmalloc subsystem
5284  *******************************************************************/
5285 
5286 static int __init setup_slub_min_order(char *str)
5287 {
5288 	get_option(&str, (int *)&slub_min_order);
5289 
5290 	if (slub_min_order > slub_max_order)
5291 		slub_max_order = slub_min_order;
5292 
5293 	return 1;
5294 }
5295 
5296 __setup("slab_min_order=", setup_slub_min_order);
5297 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5298 
5299 
5300 static int __init setup_slub_max_order(char *str)
5301 {
5302 	get_option(&str, (int *)&slub_max_order);
5303 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5304 
5305 	if (slub_min_order > slub_max_order)
5306 		slub_min_order = slub_max_order;
5307 
5308 	return 1;
5309 }
5310 
5311 __setup("slab_max_order=", setup_slub_max_order);
5312 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5313 
5314 static int __init setup_slub_min_objects(char *str)
5315 {
5316 	get_option(&str, (int *)&slub_min_objects);
5317 
5318 	return 1;
5319 }
5320 
5321 __setup("slab_min_objects=", setup_slub_min_objects);
5322 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5323 
5324 #ifdef CONFIG_HARDENED_USERCOPY
5325 /*
5326  * Rejects incorrectly sized objects and objects that are to be copied
5327  * to/from userspace but do not fall entirely within the containing slab
5328  * cache's usercopy region.
5329  *
5330  * Returns NULL if check passes, otherwise const char * to name of cache
5331  * to indicate an error.
5332  */
5333 void __check_heap_object(const void *ptr, unsigned long n,
5334 			 const struct slab *slab, bool to_user)
5335 {
5336 	struct kmem_cache *s;
5337 	unsigned int offset;
5338 	bool is_kfence = is_kfence_address(ptr);
5339 
5340 	ptr = kasan_reset_tag(ptr);
5341 
5342 	/* Find object and usable object size. */
5343 	s = slab->slab_cache;
5344 
5345 	/* Reject impossible pointers. */
5346 	if (ptr < slab_address(slab))
5347 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5348 			       to_user, 0, n);
5349 
5350 	/* Find offset within object. */
5351 	if (is_kfence)
5352 		offset = ptr - kfence_object_start(ptr);
5353 	else
5354 		offset = (ptr - slab_address(slab)) % s->size;
5355 
5356 	/* Adjust for redzone and reject if within the redzone. */
5357 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5358 		if (offset < s->red_left_pad)
5359 			usercopy_abort("SLUB object in left red zone",
5360 				       s->name, to_user, offset, n);
5361 		offset -= s->red_left_pad;
5362 	}
5363 
5364 	/* Allow address range falling entirely within usercopy region. */
5365 	if (offset >= s->useroffset &&
5366 	    offset - s->useroffset <= s->usersize &&
5367 	    n <= s->useroffset - offset + s->usersize)
5368 		return;
5369 
5370 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5371 }
5372 #endif /* CONFIG_HARDENED_USERCOPY */
5373 
5374 #define SHRINK_PROMOTE_MAX 32
5375 
5376 /*
5377  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5378  * up most to the head of the partial lists. New allocations will then
5379  * fill those up and thus they can be removed from the partial lists.
5380  *
5381  * The slabs with the least items are placed last. This results in them
5382  * being allocated from last increasing the chance that the last objects
5383  * are freed in them.
5384  */
5385 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5386 {
5387 	int node;
5388 	int i;
5389 	struct kmem_cache_node *n;
5390 	struct slab *slab;
5391 	struct slab *t;
5392 	struct list_head discard;
5393 	struct list_head promote[SHRINK_PROMOTE_MAX];
5394 	unsigned long flags;
5395 	int ret = 0;
5396 
5397 	for_each_kmem_cache_node(s, node, n) {
5398 		INIT_LIST_HEAD(&discard);
5399 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5400 			INIT_LIST_HEAD(promote + i);
5401 
5402 		spin_lock_irqsave(&n->list_lock, flags);
5403 
5404 		/*
5405 		 * Build lists of slabs to discard or promote.
5406 		 *
5407 		 * Note that concurrent frees may occur while we hold the
5408 		 * list_lock. slab->inuse here is the upper limit.
5409 		 */
5410 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5411 			int free = slab->objects - slab->inuse;
5412 
5413 			/* Do not reread slab->inuse */
5414 			barrier();
5415 
5416 			/* We do not keep full slabs on the list */
5417 			BUG_ON(free <= 0);
5418 
5419 			if (free == slab->objects) {
5420 				list_move(&slab->slab_list, &discard);
5421 				slab_clear_node_partial(slab);
5422 				n->nr_partial--;
5423 				dec_slabs_node(s, node, slab->objects);
5424 			} else if (free <= SHRINK_PROMOTE_MAX)
5425 				list_move(&slab->slab_list, promote + free - 1);
5426 		}
5427 
5428 		/*
5429 		 * Promote the slabs filled up most to the head of the
5430 		 * partial list.
5431 		 */
5432 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5433 			list_splice(promote + i, &n->partial);
5434 
5435 		spin_unlock_irqrestore(&n->list_lock, flags);
5436 
5437 		/* Release empty slabs */
5438 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5439 			free_slab(s, slab);
5440 
5441 		if (node_nr_slabs(n))
5442 			ret = 1;
5443 	}
5444 
5445 	return ret;
5446 }
5447 
5448 int __kmem_cache_shrink(struct kmem_cache *s)
5449 {
5450 	flush_all(s);
5451 	return __kmem_cache_do_shrink(s);
5452 }
5453 
5454 static int slab_mem_going_offline_callback(void *arg)
5455 {
5456 	struct kmem_cache *s;
5457 
5458 	mutex_lock(&slab_mutex);
5459 	list_for_each_entry(s, &slab_caches, list) {
5460 		flush_all_cpus_locked(s);
5461 		__kmem_cache_do_shrink(s);
5462 	}
5463 	mutex_unlock(&slab_mutex);
5464 
5465 	return 0;
5466 }
5467 
5468 static void slab_mem_offline_callback(void *arg)
5469 {
5470 	struct memory_notify *marg = arg;
5471 	int offline_node;
5472 
5473 	offline_node = marg->status_change_nid_normal;
5474 
5475 	/*
5476 	 * If the node still has available memory. we need kmem_cache_node
5477 	 * for it yet.
5478 	 */
5479 	if (offline_node < 0)
5480 		return;
5481 
5482 	mutex_lock(&slab_mutex);
5483 	node_clear(offline_node, slab_nodes);
5484 	/*
5485 	 * We no longer free kmem_cache_node structures here, as it would be
5486 	 * racy with all get_node() users, and infeasible to protect them with
5487 	 * slab_mutex.
5488 	 */
5489 	mutex_unlock(&slab_mutex);
5490 }
5491 
5492 static int slab_mem_going_online_callback(void *arg)
5493 {
5494 	struct kmem_cache_node *n;
5495 	struct kmem_cache *s;
5496 	struct memory_notify *marg = arg;
5497 	int nid = marg->status_change_nid_normal;
5498 	int ret = 0;
5499 
5500 	/*
5501 	 * If the node's memory is already available, then kmem_cache_node is
5502 	 * already created. Nothing to do.
5503 	 */
5504 	if (nid < 0)
5505 		return 0;
5506 
5507 	/*
5508 	 * We are bringing a node online. No memory is available yet. We must
5509 	 * allocate a kmem_cache_node structure in order to bring the node
5510 	 * online.
5511 	 */
5512 	mutex_lock(&slab_mutex);
5513 	list_for_each_entry(s, &slab_caches, list) {
5514 		/*
5515 		 * The structure may already exist if the node was previously
5516 		 * onlined and offlined.
5517 		 */
5518 		if (get_node(s, nid))
5519 			continue;
5520 		/*
5521 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5522 		 *      since memory is not yet available from the node that
5523 		 *      is brought up.
5524 		 */
5525 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5526 		if (!n) {
5527 			ret = -ENOMEM;
5528 			goto out;
5529 		}
5530 		init_kmem_cache_node(n);
5531 		s->node[nid] = n;
5532 	}
5533 	/*
5534 	 * Any cache created after this point will also have kmem_cache_node
5535 	 * initialized for the new node.
5536 	 */
5537 	node_set(nid, slab_nodes);
5538 out:
5539 	mutex_unlock(&slab_mutex);
5540 	return ret;
5541 }
5542 
5543 static int slab_memory_callback(struct notifier_block *self,
5544 				unsigned long action, void *arg)
5545 {
5546 	int ret = 0;
5547 
5548 	switch (action) {
5549 	case MEM_GOING_ONLINE:
5550 		ret = slab_mem_going_online_callback(arg);
5551 		break;
5552 	case MEM_GOING_OFFLINE:
5553 		ret = slab_mem_going_offline_callback(arg);
5554 		break;
5555 	case MEM_OFFLINE:
5556 	case MEM_CANCEL_ONLINE:
5557 		slab_mem_offline_callback(arg);
5558 		break;
5559 	case MEM_ONLINE:
5560 	case MEM_CANCEL_OFFLINE:
5561 		break;
5562 	}
5563 	if (ret)
5564 		ret = notifier_from_errno(ret);
5565 	else
5566 		ret = NOTIFY_OK;
5567 	return ret;
5568 }
5569 
5570 /********************************************************************
5571  *			Basic setup of slabs
5572  *******************************************************************/
5573 
5574 /*
5575  * Used for early kmem_cache structures that were allocated using
5576  * the page allocator. Allocate them properly then fix up the pointers
5577  * that may be pointing to the wrong kmem_cache structure.
5578  */
5579 
5580 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5581 {
5582 	int node;
5583 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5584 	struct kmem_cache_node *n;
5585 
5586 	memcpy(s, static_cache, kmem_cache->object_size);
5587 
5588 	/*
5589 	 * This runs very early, and only the boot processor is supposed to be
5590 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5591 	 * IPIs around.
5592 	 */
5593 	__flush_cpu_slab(s, smp_processor_id());
5594 	for_each_kmem_cache_node(s, node, n) {
5595 		struct slab *p;
5596 
5597 		list_for_each_entry(p, &n->partial, slab_list)
5598 			p->slab_cache = s;
5599 
5600 #ifdef CONFIG_SLUB_DEBUG
5601 		list_for_each_entry(p, &n->full, slab_list)
5602 			p->slab_cache = s;
5603 #endif
5604 	}
5605 	list_add(&s->list, &slab_caches);
5606 	return s;
5607 }
5608 
5609 void __init kmem_cache_init(void)
5610 {
5611 	static __initdata struct kmem_cache boot_kmem_cache,
5612 		boot_kmem_cache_node;
5613 	int node;
5614 
5615 	if (debug_guardpage_minorder())
5616 		slub_max_order = 0;
5617 
5618 	/* Print slub debugging pointers without hashing */
5619 	if (__slub_debug_enabled())
5620 		no_hash_pointers_enable(NULL);
5621 
5622 	kmem_cache_node = &boot_kmem_cache_node;
5623 	kmem_cache = &boot_kmem_cache;
5624 
5625 	/*
5626 	 * Initialize the nodemask for which we will allocate per node
5627 	 * structures. Here we don't need taking slab_mutex yet.
5628 	 */
5629 	for_each_node_state(node, N_NORMAL_MEMORY)
5630 		node_set(node, slab_nodes);
5631 
5632 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5633 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5634 
5635 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5636 
5637 	/* Able to allocate the per node structures */
5638 	slab_state = PARTIAL;
5639 
5640 	create_boot_cache(kmem_cache, "kmem_cache",
5641 			offsetof(struct kmem_cache, node) +
5642 				nr_node_ids * sizeof(struct kmem_cache_node *),
5643 		       SLAB_HWCACHE_ALIGN, 0, 0);
5644 
5645 	kmem_cache = bootstrap(&boot_kmem_cache);
5646 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5647 
5648 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5649 	setup_kmalloc_cache_index_table();
5650 	create_kmalloc_caches();
5651 
5652 	/* Setup random freelists for each cache */
5653 	init_freelist_randomization();
5654 
5655 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5656 				  slub_cpu_dead);
5657 
5658 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5659 		cache_line_size(),
5660 		slub_min_order, slub_max_order, slub_min_objects,
5661 		nr_cpu_ids, nr_node_ids);
5662 }
5663 
5664 void __init kmem_cache_init_late(void)
5665 {
5666 #ifndef CONFIG_SLUB_TINY
5667 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5668 	WARN_ON(!flushwq);
5669 #endif
5670 }
5671 
5672 struct kmem_cache *
5673 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5674 		   slab_flags_t flags, void (*ctor)(void *))
5675 {
5676 	struct kmem_cache *s;
5677 
5678 	s = find_mergeable(size, align, flags, name, ctor);
5679 	if (s) {
5680 		if (sysfs_slab_alias(s, name))
5681 			return NULL;
5682 
5683 		s->refcount++;
5684 
5685 		/*
5686 		 * Adjust the object sizes so that we clear
5687 		 * the complete object on kzalloc.
5688 		 */
5689 		s->object_size = max(s->object_size, size);
5690 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5691 	}
5692 
5693 	return s;
5694 }
5695 
5696 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5697 {
5698 	int err;
5699 
5700 	err = kmem_cache_open(s, flags);
5701 	if (err)
5702 		return err;
5703 
5704 	/* Mutex is not taken during early boot */
5705 	if (slab_state <= UP)
5706 		return 0;
5707 
5708 	err = sysfs_slab_add(s);
5709 	if (err) {
5710 		__kmem_cache_release(s);
5711 		return err;
5712 	}
5713 
5714 	if (s->flags & SLAB_STORE_USER)
5715 		debugfs_slab_add(s);
5716 
5717 	return 0;
5718 }
5719 
5720 #ifdef SLAB_SUPPORTS_SYSFS
5721 static int count_inuse(struct slab *slab)
5722 {
5723 	return slab->inuse;
5724 }
5725 
5726 static int count_total(struct slab *slab)
5727 {
5728 	return slab->objects;
5729 }
5730 #endif
5731 
5732 #ifdef CONFIG_SLUB_DEBUG
5733 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5734 			  unsigned long *obj_map)
5735 {
5736 	void *p;
5737 	void *addr = slab_address(slab);
5738 
5739 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5740 		return;
5741 
5742 	/* Now we know that a valid freelist exists */
5743 	__fill_map(obj_map, s, slab);
5744 	for_each_object(p, s, addr, slab->objects) {
5745 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5746 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5747 
5748 		if (!check_object(s, slab, p, val))
5749 			break;
5750 	}
5751 }
5752 
5753 static int validate_slab_node(struct kmem_cache *s,
5754 		struct kmem_cache_node *n, unsigned long *obj_map)
5755 {
5756 	unsigned long count = 0;
5757 	struct slab *slab;
5758 	unsigned long flags;
5759 
5760 	spin_lock_irqsave(&n->list_lock, flags);
5761 
5762 	list_for_each_entry(slab, &n->partial, slab_list) {
5763 		validate_slab(s, slab, obj_map);
5764 		count++;
5765 	}
5766 	if (count != n->nr_partial) {
5767 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5768 		       s->name, count, n->nr_partial);
5769 		slab_add_kunit_errors();
5770 	}
5771 
5772 	if (!(s->flags & SLAB_STORE_USER))
5773 		goto out;
5774 
5775 	list_for_each_entry(slab, &n->full, slab_list) {
5776 		validate_slab(s, slab, obj_map);
5777 		count++;
5778 	}
5779 	if (count != node_nr_slabs(n)) {
5780 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5781 		       s->name, count, node_nr_slabs(n));
5782 		slab_add_kunit_errors();
5783 	}
5784 
5785 out:
5786 	spin_unlock_irqrestore(&n->list_lock, flags);
5787 	return count;
5788 }
5789 
5790 long validate_slab_cache(struct kmem_cache *s)
5791 {
5792 	int node;
5793 	unsigned long count = 0;
5794 	struct kmem_cache_node *n;
5795 	unsigned long *obj_map;
5796 
5797 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5798 	if (!obj_map)
5799 		return -ENOMEM;
5800 
5801 	flush_all(s);
5802 	for_each_kmem_cache_node(s, node, n)
5803 		count += validate_slab_node(s, n, obj_map);
5804 
5805 	bitmap_free(obj_map);
5806 
5807 	return count;
5808 }
5809 EXPORT_SYMBOL(validate_slab_cache);
5810 
5811 #ifdef CONFIG_DEBUG_FS
5812 /*
5813  * Generate lists of code addresses where slabcache objects are allocated
5814  * and freed.
5815  */
5816 
5817 struct location {
5818 	depot_stack_handle_t handle;
5819 	unsigned long count;
5820 	unsigned long addr;
5821 	unsigned long waste;
5822 	long long sum_time;
5823 	long min_time;
5824 	long max_time;
5825 	long min_pid;
5826 	long max_pid;
5827 	DECLARE_BITMAP(cpus, NR_CPUS);
5828 	nodemask_t nodes;
5829 };
5830 
5831 struct loc_track {
5832 	unsigned long max;
5833 	unsigned long count;
5834 	struct location *loc;
5835 	loff_t idx;
5836 };
5837 
5838 static struct dentry *slab_debugfs_root;
5839 
5840 static void free_loc_track(struct loc_track *t)
5841 {
5842 	if (t->max)
5843 		free_pages((unsigned long)t->loc,
5844 			get_order(sizeof(struct location) * t->max));
5845 }
5846 
5847 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5848 {
5849 	struct location *l;
5850 	int order;
5851 
5852 	order = get_order(sizeof(struct location) * max);
5853 
5854 	l = (void *)__get_free_pages(flags, order);
5855 	if (!l)
5856 		return 0;
5857 
5858 	if (t->count) {
5859 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5860 		free_loc_track(t);
5861 	}
5862 	t->max = max;
5863 	t->loc = l;
5864 	return 1;
5865 }
5866 
5867 static int add_location(struct loc_track *t, struct kmem_cache *s,
5868 				const struct track *track,
5869 				unsigned int orig_size)
5870 {
5871 	long start, end, pos;
5872 	struct location *l;
5873 	unsigned long caddr, chandle, cwaste;
5874 	unsigned long age = jiffies - track->when;
5875 	depot_stack_handle_t handle = 0;
5876 	unsigned int waste = s->object_size - orig_size;
5877 
5878 #ifdef CONFIG_STACKDEPOT
5879 	handle = READ_ONCE(track->handle);
5880 #endif
5881 	start = -1;
5882 	end = t->count;
5883 
5884 	for ( ; ; ) {
5885 		pos = start + (end - start + 1) / 2;
5886 
5887 		/*
5888 		 * There is nothing at "end". If we end up there
5889 		 * we need to add something to before end.
5890 		 */
5891 		if (pos == end)
5892 			break;
5893 
5894 		l = &t->loc[pos];
5895 		caddr = l->addr;
5896 		chandle = l->handle;
5897 		cwaste = l->waste;
5898 		if ((track->addr == caddr) && (handle == chandle) &&
5899 			(waste == cwaste)) {
5900 
5901 			l->count++;
5902 			if (track->when) {
5903 				l->sum_time += age;
5904 				if (age < l->min_time)
5905 					l->min_time = age;
5906 				if (age > l->max_time)
5907 					l->max_time = age;
5908 
5909 				if (track->pid < l->min_pid)
5910 					l->min_pid = track->pid;
5911 				if (track->pid > l->max_pid)
5912 					l->max_pid = track->pid;
5913 
5914 				cpumask_set_cpu(track->cpu,
5915 						to_cpumask(l->cpus));
5916 			}
5917 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5918 			return 1;
5919 		}
5920 
5921 		if (track->addr < caddr)
5922 			end = pos;
5923 		else if (track->addr == caddr && handle < chandle)
5924 			end = pos;
5925 		else if (track->addr == caddr && handle == chandle &&
5926 				waste < cwaste)
5927 			end = pos;
5928 		else
5929 			start = pos;
5930 	}
5931 
5932 	/*
5933 	 * Not found. Insert new tracking element.
5934 	 */
5935 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5936 		return 0;
5937 
5938 	l = t->loc + pos;
5939 	if (pos < t->count)
5940 		memmove(l + 1, l,
5941 			(t->count - pos) * sizeof(struct location));
5942 	t->count++;
5943 	l->count = 1;
5944 	l->addr = track->addr;
5945 	l->sum_time = age;
5946 	l->min_time = age;
5947 	l->max_time = age;
5948 	l->min_pid = track->pid;
5949 	l->max_pid = track->pid;
5950 	l->handle = handle;
5951 	l->waste = waste;
5952 	cpumask_clear(to_cpumask(l->cpus));
5953 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5954 	nodes_clear(l->nodes);
5955 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5956 	return 1;
5957 }
5958 
5959 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5960 		struct slab *slab, enum track_item alloc,
5961 		unsigned long *obj_map)
5962 {
5963 	void *addr = slab_address(slab);
5964 	bool is_alloc = (alloc == TRACK_ALLOC);
5965 	void *p;
5966 
5967 	__fill_map(obj_map, s, slab);
5968 
5969 	for_each_object(p, s, addr, slab->objects)
5970 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5971 			add_location(t, s, get_track(s, p, alloc),
5972 				     is_alloc ? get_orig_size(s, p) :
5973 						s->object_size);
5974 }
5975 #endif  /* CONFIG_DEBUG_FS   */
5976 #endif	/* CONFIG_SLUB_DEBUG */
5977 
5978 #ifdef SLAB_SUPPORTS_SYSFS
5979 enum slab_stat_type {
5980 	SL_ALL,			/* All slabs */
5981 	SL_PARTIAL,		/* Only partially allocated slabs */
5982 	SL_CPU,			/* Only slabs used for cpu caches */
5983 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5984 	SL_TOTAL		/* Determine object capacity not slabs */
5985 };
5986 
5987 #define SO_ALL		(1 << SL_ALL)
5988 #define SO_PARTIAL	(1 << SL_PARTIAL)
5989 #define SO_CPU		(1 << SL_CPU)
5990 #define SO_OBJECTS	(1 << SL_OBJECTS)
5991 #define SO_TOTAL	(1 << SL_TOTAL)
5992 
5993 static ssize_t show_slab_objects(struct kmem_cache *s,
5994 				 char *buf, unsigned long flags)
5995 {
5996 	unsigned long total = 0;
5997 	int node;
5998 	int x;
5999 	unsigned long *nodes;
6000 	int len = 0;
6001 
6002 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6003 	if (!nodes)
6004 		return -ENOMEM;
6005 
6006 	if (flags & SO_CPU) {
6007 		int cpu;
6008 
6009 		for_each_possible_cpu(cpu) {
6010 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6011 							       cpu);
6012 			int node;
6013 			struct slab *slab;
6014 
6015 			slab = READ_ONCE(c->slab);
6016 			if (!slab)
6017 				continue;
6018 
6019 			node = slab_nid(slab);
6020 			if (flags & SO_TOTAL)
6021 				x = slab->objects;
6022 			else if (flags & SO_OBJECTS)
6023 				x = slab->inuse;
6024 			else
6025 				x = 1;
6026 
6027 			total += x;
6028 			nodes[node] += x;
6029 
6030 #ifdef CONFIG_SLUB_CPU_PARTIAL
6031 			slab = slub_percpu_partial_read_once(c);
6032 			if (slab) {
6033 				node = slab_nid(slab);
6034 				if (flags & SO_TOTAL)
6035 					WARN_ON_ONCE(1);
6036 				else if (flags & SO_OBJECTS)
6037 					WARN_ON_ONCE(1);
6038 				else
6039 					x = slab->slabs;
6040 				total += x;
6041 				nodes[node] += x;
6042 			}
6043 #endif
6044 		}
6045 	}
6046 
6047 	/*
6048 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6049 	 * already held which will conflict with an existing lock order:
6050 	 *
6051 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6052 	 *
6053 	 * We don't really need mem_hotplug_lock (to hold off
6054 	 * slab_mem_going_offline_callback) here because slab's memory hot
6055 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6056 	 */
6057 
6058 #ifdef CONFIG_SLUB_DEBUG
6059 	if (flags & SO_ALL) {
6060 		struct kmem_cache_node *n;
6061 
6062 		for_each_kmem_cache_node(s, node, n) {
6063 
6064 			if (flags & SO_TOTAL)
6065 				x = node_nr_objs(n);
6066 			else if (flags & SO_OBJECTS)
6067 				x = node_nr_objs(n) - count_partial(n, count_free);
6068 			else
6069 				x = node_nr_slabs(n);
6070 			total += x;
6071 			nodes[node] += x;
6072 		}
6073 
6074 	} else
6075 #endif
6076 	if (flags & SO_PARTIAL) {
6077 		struct kmem_cache_node *n;
6078 
6079 		for_each_kmem_cache_node(s, node, n) {
6080 			if (flags & SO_TOTAL)
6081 				x = count_partial(n, count_total);
6082 			else if (flags & SO_OBJECTS)
6083 				x = count_partial(n, count_inuse);
6084 			else
6085 				x = n->nr_partial;
6086 			total += x;
6087 			nodes[node] += x;
6088 		}
6089 	}
6090 
6091 	len += sysfs_emit_at(buf, len, "%lu", total);
6092 #ifdef CONFIG_NUMA
6093 	for (node = 0; node < nr_node_ids; node++) {
6094 		if (nodes[node])
6095 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6096 					     node, nodes[node]);
6097 	}
6098 #endif
6099 	len += sysfs_emit_at(buf, len, "\n");
6100 	kfree(nodes);
6101 
6102 	return len;
6103 }
6104 
6105 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6106 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6107 
6108 struct slab_attribute {
6109 	struct attribute attr;
6110 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6111 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6112 };
6113 
6114 #define SLAB_ATTR_RO(_name) \
6115 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6116 
6117 #define SLAB_ATTR(_name) \
6118 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6119 
6120 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6121 {
6122 	return sysfs_emit(buf, "%u\n", s->size);
6123 }
6124 SLAB_ATTR_RO(slab_size);
6125 
6126 static ssize_t align_show(struct kmem_cache *s, char *buf)
6127 {
6128 	return sysfs_emit(buf, "%u\n", s->align);
6129 }
6130 SLAB_ATTR_RO(align);
6131 
6132 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6133 {
6134 	return sysfs_emit(buf, "%u\n", s->object_size);
6135 }
6136 SLAB_ATTR_RO(object_size);
6137 
6138 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6139 {
6140 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6141 }
6142 SLAB_ATTR_RO(objs_per_slab);
6143 
6144 static ssize_t order_show(struct kmem_cache *s, char *buf)
6145 {
6146 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6147 }
6148 SLAB_ATTR_RO(order);
6149 
6150 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6151 {
6152 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6153 }
6154 
6155 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6156 				 size_t length)
6157 {
6158 	unsigned long min;
6159 	int err;
6160 
6161 	err = kstrtoul(buf, 10, &min);
6162 	if (err)
6163 		return err;
6164 
6165 	s->min_partial = min;
6166 	return length;
6167 }
6168 SLAB_ATTR(min_partial);
6169 
6170 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6171 {
6172 	unsigned int nr_partial = 0;
6173 #ifdef CONFIG_SLUB_CPU_PARTIAL
6174 	nr_partial = s->cpu_partial;
6175 #endif
6176 
6177 	return sysfs_emit(buf, "%u\n", nr_partial);
6178 }
6179 
6180 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6181 				 size_t length)
6182 {
6183 	unsigned int objects;
6184 	int err;
6185 
6186 	err = kstrtouint(buf, 10, &objects);
6187 	if (err)
6188 		return err;
6189 	if (objects && !kmem_cache_has_cpu_partial(s))
6190 		return -EINVAL;
6191 
6192 	slub_set_cpu_partial(s, objects);
6193 	flush_all(s);
6194 	return length;
6195 }
6196 SLAB_ATTR(cpu_partial);
6197 
6198 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6199 {
6200 	if (!s->ctor)
6201 		return 0;
6202 	return sysfs_emit(buf, "%pS\n", s->ctor);
6203 }
6204 SLAB_ATTR_RO(ctor);
6205 
6206 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6207 {
6208 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6209 }
6210 SLAB_ATTR_RO(aliases);
6211 
6212 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6213 {
6214 	return show_slab_objects(s, buf, SO_PARTIAL);
6215 }
6216 SLAB_ATTR_RO(partial);
6217 
6218 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6219 {
6220 	return show_slab_objects(s, buf, SO_CPU);
6221 }
6222 SLAB_ATTR_RO(cpu_slabs);
6223 
6224 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6225 {
6226 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6227 }
6228 SLAB_ATTR_RO(objects_partial);
6229 
6230 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6231 {
6232 	int objects = 0;
6233 	int slabs = 0;
6234 	int cpu __maybe_unused;
6235 	int len = 0;
6236 
6237 #ifdef CONFIG_SLUB_CPU_PARTIAL
6238 	for_each_online_cpu(cpu) {
6239 		struct slab *slab;
6240 
6241 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6242 
6243 		if (slab)
6244 			slabs += slab->slabs;
6245 	}
6246 #endif
6247 
6248 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6249 	objects = (slabs * oo_objects(s->oo)) / 2;
6250 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6251 
6252 #ifdef CONFIG_SLUB_CPU_PARTIAL
6253 	for_each_online_cpu(cpu) {
6254 		struct slab *slab;
6255 
6256 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6257 		if (slab) {
6258 			slabs = READ_ONCE(slab->slabs);
6259 			objects = (slabs * oo_objects(s->oo)) / 2;
6260 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6261 					     cpu, objects, slabs);
6262 		}
6263 	}
6264 #endif
6265 	len += sysfs_emit_at(buf, len, "\n");
6266 
6267 	return len;
6268 }
6269 SLAB_ATTR_RO(slabs_cpu_partial);
6270 
6271 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6272 {
6273 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6274 }
6275 SLAB_ATTR_RO(reclaim_account);
6276 
6277 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6278 {
6279 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6280 }
6281 SLAB_ATTR_RO(hwcache_align);
6282 
6283 #ifdef CONFIG_ZONE_DMA
6284 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6285 {
6286 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6287 }
6288 SLAB_ATTR_RO(cache_dma);
6289 #endif
6290 
6291 #ifdef CONFIG_HARDENED_USERCOPY
6292 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6293 {
6294 	return sysfs_emit(buf, "%u\n", s->usersize);
6295 }
6296 SLAB_ATTR_RO(usersize);
6297 #endif
6298 
6299 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6300 {
6301 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6302 }
6303 SLAB_ATTR_RO(destroy_by_rcu);
6304 
6305 #ifdef CONFIG_SLUB_DEBUG
6306 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6307 {
6308 	return show_slab_objects(s, buf, SO_ALL);
6309 }
6310 SLAB_ATTR_RO(slabs);
6311 
6312 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6313 {
6314 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6315 }
6316 SLAB_ATTR_RO(total_objects);
6317 
6318 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6319 {
6320 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6321 }
6322 SLAB_ATTR_RO(objects);
6323 
6324 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6325 {
6326 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6327 }
6328 SLAB_ATTR_RO(sanity_checks);
6329 
6330 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6331 {
6332 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6333 }
6334 SLAB_ATTR_RO(trace);
6335 
6336 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6337 {
6338 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6339 }
6340 
6341 SLAB_ATTR_RO(red_zone);
6342 
6343 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6344 {
6345 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6346 }
6347 
6348 SLAB_ATTR_RO(poison);
6349 
6350 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6351 {
6352 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6353 }
6354 
6355 SLAB_ATTR_RO(store_user);
6356 
6357 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6358 {
6359 	return 0;
6360 }
6361 
6362 static ssize_t validate_store(struct kmem_cache *s,
6363 			const char *buf, size_t length)
6364 {
6365 	int ret = -EINVAL;
6366 
6367 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6368 		ret = validate_slab_cache(s);
6369 		if (ret >= 0)
6370 			ret = length;
6371 	}
6372 	return ret;
6373 }
6374 SLAB_ATTR(validate);
6375 
6376 #endif /* CONFIG_SLUB_DEBUG */
6377 
6378 #ifdef CONFIG_FAILSLAB
6379 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6380 {
6381 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6382 }
6383 
6384 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6385 				size_t length)
6386 {
6387 	if (s->refcount > 1)
6388 		return -EINVAL;
6389 
6390 	if (buf[0] == '1')
6391 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6392 	else
6393 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6394 
6395 	return length;
6396 }
6397 SLAB_ATTR(failslab);
6398 #endif
6399 
6400 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6401 {
6402 	return 0;
6403 }
6404 
6405 static ssize_t shrink_store(struct kmem_cache *s,
6406 			const char *buf, size_t length)
6407 {
6408 	if (buf[0] == '1')
6409 		kmem_cache_shrink(s);
6410 	else
6411 		return -EINVAL;
6412 	return length;
6413 }
6414 SLAB_ATTR(shrink);
6415 
6416 #ifdef CONFIG_NUMA
6417 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6418 {
6419 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6420 }
6421 
6422 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6423 				const char *buf, size_t length)
6424 {
6425 	unsigned int ratio;
6426 	int err;
6427 
6428 	err = kstrtouint(buf, 10, &ratio);
6429 	if (err)
6430 		return err;
6431 	if (ratio > 100)
6432 		return -ERANGE;
6433 
6434 	s->remote_node_defrag_ratio = ratio * 10;
6435 
6436 	return length;
6437 }
6438 SLAB_ATTR(remote_node_defrag_ratio);
6439 #endif
6440 
6441 #ifdef CONFIG_SLUB_STATS
6442 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6443 {
6444 	unsigned long sum  = 0;
6445 	int cpu;
6446 	int len = 0;
6447 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6448 
6449 	if (!data)
6450 		return -ENOMEM;
6451 
6452 	for_each_online_cpu(cpu) {
6453 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6454 
6455 		data[cpu] = x;
6456 		sum += x;
6457 	}
6458 
6459 	len += sysfs_emit_at(buf, len, "%lu", sum);
6460 
6461 #ifdef CONFIG_SMP
6462 	for_each_online_cpu(cpu) {
6463 		if (data[cpu])
6464 			len += sysfs_emit_at(buf, len, " C%d=%u",
6465 					     cpu, data[cpu]);
6466 	}
6467 #endif
6468 	kfree(data);
6469 	len += sysfs_emit_at(buf, len, "\n");
6470 
6471 	return len;
6472 }
6473 
6474 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6475 {
6476 	int cpu;
6477 
6478 	for_each_online_cpu(cpu)
6479 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6480 }
6481 
6482 #define STAT_ATTR(si, text) 					\
6483 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6484 {								\
6485 	return show_stat(s, buf, si);				\
6486 }								\
6487 static ssize_t text##_store(struct kmem_cache *s,		\
6488 				const char *buf, size_t length)	\
6489 {								\
6490 	if (buf[0] != '0')					\
6491 		return -EINVAL;					\
6492 	clear_stat(s, si);					\
6493 	return length;						\
6494 }								\
6495 SLAB_ATTR(text);						\
6496 
6497 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6498 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6499 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6500 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6501 STAT_ATTR(FREE_FROZEN, free_frozen);
6502 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6503 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6504 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6505 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6506 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6507 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6508 STAT_ATTR(FREE_SLAB, free_slab);
6509 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6510 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6511 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6512 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6513 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6514 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6515 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6516 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6517 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6518 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6519 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6520 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6521 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6522 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6523 #endif	/* CONFIG_SLUB_STATS */
6524 
6525 #ifdef CONFIG_KFENCE
6526 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6527 {
6528 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6529 }
6530 
6531 static ssize_t skip_kfence_store(struct kmem_cache *s,
6532 			const char *buf, size_t length)
6533 {
6534 	int ret = length;
6535 
6536 	if (buf[0] == '0')
6537 		s->flags &= ~SLAB_SKIP_KFENCE;
6538 	else if (buf[0] == '1')
6539 		s->flags |= SLAB_SKIP_KFENCE;
6540 	else
6541 		ret = -EINVAL;
6542 
6543 	return ret;
6544 }
6545 SLAB_ATTR(skip_kfence);
6546 #endif
6547 
6548 static struct attribute *slab_attrs[] = {
6549 	&slab_size_attr.attr,
6550 	&object_size_attr.attr,
6551 	&objs_per_slab_attr.attr,
6552 	&order_attr.attr,
6553 	&min_partial_attr.attr,
6554 	&cpu_partial_attr.attr,
6555 	&objects_partial_attr.attr,
6556 	&partial_attr.attr,
6557 	&cpu_slabs_attr.attr,
6558 	&ctor_attr.attr,
6559 	&aliases_attr.attr,
6560 	&align_attr.attr,
6561 	&hwcache_align_attr.attr,
6562 	&reclaim_account_attr.attr,
6563 	&destroy_by_rcu_attr.attr,
6564 	&shrink_attr.attr,
6565 	&slabs_cpu_partial_attr.attr,
6566 #ifdef CONFIG_SLUB_DEBUG
6567 	&total_objects_attr.attr,
6568 	&objects_attr.attr,
6569 	&slabs_attr.attr,
6570 	&sanity_checks_attr.attr,
6571 	&trace_attr.attr,
6572 	&red_zone_attr.attr,
6573 	&poison_attr.attr,
6574 	&store_user_attr.attr,
6575 	&validate_attr.attr,
6576 #endif
6577 #ifdef CONFIG_ZONE_DMA
6578 	&cache_dma_attr.attr,
6579 #endif
6580 #ifdef CONFIG_NUMA
6581 	&remote_node_defrag_ratio_attr.attr,
6582 #endif
6583 #ifdef CONFIG_SLUB_STATS
6584 	&alloc_fastpath_attr.attr,
6585 	&alloc_slowpath_attr.attr,
6586 	&free_fastpath_attr.attr,
6587 	&free_slowpath_attr.attr,
6588 	&free_frozen_attr.attr,
6589 	&free_add_partial_attr.attr,
6590 	&free_remove_partial_attr.attr,
6591 	&alloc_from_partial_attr.attr,
6592 	&alloc_slab_attr.attr,
6593 	&alloc_refill_attr.attr,
6594 	&alloc_node_mismatch_attr.attr,
6595 	&free_slab_attr.attr,
6596 	&cpuslab_flush_attr.attr,
6597 	&deactivate_full_attr.attr,
6598 	&deactivate_empty_attr.attr,
6599 	&deactivate_to_head_attr.attr,
6600 	&deactivate_to_tail_attr.attr,
6601 	&deactivate_remote_frees_attr.attr,
6602 	&deactivate_bypass_attr.attr,
6603 	&order_fallback_attr.attr,
6604 	&cmpxchg_double_fail_attr.attr,
6605 	&cmpxchg_double_cpu_fail_attr.attr,
6606 	&cpu_partial_alloc_attr.attr,
6607 	&cpu_partial_free_attr.attr,
6608 	&cpu_partial_node_attr.attr,
6609 	&cpu_partial_drain_attr.attr,
6610 #endif
6611 #ifdef CONFIG_FAILSLAB
6612 	&failslab_attr.attr,
6613 #endif
6614 #ifdef CONFIG_HARDENED_USERCOPY
6615 	&usersize_attr.attr,
6616 #endif
6617 #ifdef CONFIG_KFENCE
6618 	&skip_kfence_attr.attr,
6619 #endif
6620 
6621 	NULL
6622 };
6623 
6624 static const struct attribute_group slab_attr_group = {
6625 	.attrs = slab_attrs,
6626 };
6627 
6628 static ssize_t slab_attr_show(struct kobject *kobj,
6629 				struct attribute *attr,
6630 				char *buf)
6631 {
6632 	struct slab_attribute *attribute;
6633 	struct kmem_cache *s;
6634 
6635 	attribute = to_slab_attr(attr);
6636 	s = to_slab(kobj);
6637 
6638 	if (!attribute->show)
6639 		return -EIO;
6640 
6641 	return attribute->show(s, buf);
6642 }
6643 
6644 static ssize_t slab_attr_store(struct kobject *kobj,
6645 				struct attribute *attr,
6646 				const char *buf, size_t len)
6647 {
6648 	struct slab_attribute *attribute;
6649 	struct kmem_cache *s;
6650 
6651 	attribute = to_slab_attr(attr);
6652 	s = to_slab(kobj);
6653 
6654 	if (!attribute->store)
6655 		return -EIO;
6656 
6657 	return attribute->store(s, buf, len);
6658 }
6659 
6660 static void kmem_cache_release(struct kobject *k)
6661 {
6662 	slab_kmem_cache_release(to_slab(k));
6663 }
6664 
6665 static const struct sysfs_ops slab_sysfs_ops = {
6666 	.show = slab_attr_show,
6667 	.store = slab_attr_store,
6668 };
6669 
6670 static const struct kobj_type slab_ktype = {
6671 	.sysfs_ops = &slab_sysfs_ops,
6672 	.release = kmem_cache_release,
6673 };
6674 
6675 static struct kset *slab_kset;
6676 
6677 static inline struct kset *cache_kset(struct kmem_cache *s)
6678 {
6679 	return slab_kset;
6680 }
6681 
6682 #define ID_STR_LENGTH 32
6683 
6684 /* Create a unique string id for a slab cache:
6685  *
6686  * Format	:[flags-]size
6687  */
6688 static char *create_unique_id(struct kmem_cache *s)
6689 {
6690 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6691 	char *p = name;
6692 
6693 	if (!name)
6694 		return ERR_PTR(-ENOMEM);
6695 
6696 	*p++ = ':';
6697 	/*
6698 	 * First flags affecting slabcache operations. We will only
6699 	 * get here for aliasable slabs so we do not need to support
6700 	 * too many flags. The flags here must cover all flags that
6701 	 * are matched during merging to guarantee that the id is
6702 	 * unique.
6703 	 */
6704 	if (s->flags & SLAB_CACHE_DMA)
6705 		*p++ = 'd';
6706 	if (s->flags & SLAB_CACHE_DMA32)
6707 		*p++ = 'D';
6708 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6709 		*p++ = 'a';
6710 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6711 		*p++ = 'F';
6712 	if (s->flags & SLAB_ACCOUNT)
6713 		*p++ = 'A';
6714 	if (p != name + 1)
6715 		*p++ = '-';
6716 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6717 
6718 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6719 		kfree(name);
6720 		return ERR_PTR(-EINVAL);
6721 	}
6722 	kmsan_unpoison_memory(name, p - name);
6723 	return name;
6724 }
6725 
6726 static int sysfs_slab_add(struct kmem_cache *s)
6727 {
6728 	int err;
6729 	const char *name;
6730 	struct kset *kset = cache_kset(s);
6731 	int unmergeable = slab_unmergeable(s);
6732 
6733 	if (!unmergeable && disable_higher_order_debug &&
6734 			(slub_debug & DEBUG_METADATA_FLAGS))
6735 		unmergeable = 1;
6736 
6737 	if (unmergeable) {
6738 		/*
6739 		 * Slabcache can never be merged so we can use the name proper.
6740 		 * This is typically the case for debug situations. In that
6741 		 * case we can catch duplicate names easily.
6742 		 */
6743 		sysfs_remove_link(&slab_kset->kobj, s->name);
6744 		name = s->name;
6745 	} else {
6746 		/*
6747 		 * Create a unique name for the slab as a target
6748 		 * for the symlinks.
6749 		 */
6750 		name = create_unique_id(s);
6751 		if (IS_ERR(name))
6752 			return PTR_ERR(name);
6753 	}
6754 
6755 	s->kobj.kset = kset;
6756 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6757 	if (err)
6758 		goto out;
6759 
6760 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6761 	if (err)
6762 		goto out_del_kobj;
6763 
6764 	if (!unmergeable) {
6765 		/* Setup first alias */
6766 		sysfs_slab_alias(s, s->name);
6767 	}
6768 out:
6769 	if (!unmergeable)
6770 		kfree(name);
6771 	return err;
6772 out_del_kobj:
6773 	kobject_del(&s->kobj);
6774 	goto out;
6775 }
6776 
6777 void sysfs_slab_unlink(struct kmem_cache *s)
6778 {
6779 	kobject_del(&s->kobj);
6780 }
6781 
6782 void sysfs_slab_release(struct kmem_cache *s)
6783 {
6784 	kobject_put(&s->kobj);
6785 }
6786 
6787 /*
6788  * Need to buffer aliases during bootup until sysfs becomes
6789  * available lest we lose that information.
6790  */
6791 struct saved_alias {
6792 	struct kmem_cache *s;
6793 	const char *name;
6794 	struct saved_alias *next;
6795 };
6796 
6797 static struct saved_alias *alias_list;
6798 
6799 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6800 {
6801 	struct saved_alias *al;
6802 
6803 	if (slab_state == FULL) {
6804 		/*
6805 		 * If we have a leftover link then remove it.
6806 		 */
6807 		sysfs_remove_link(&slab_kset->kobj, name);
6808 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6809 	}
6810 
6811 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6812 	if (!al)
6813 		return -ENOMEM;
6814 
6815 	al->s = s;
6816 	al->name = name;
6817 	al->next = alias_list;
6818 	alias_list = al;
6819 	kmsan_unpoison_memory(al, sizeof(*al));
6820 	return 0;
6821 }
6822 
6823 static int __init slab_sysfs_init(void)
6824 {
6825 	struct kmem_cache *s;
6826 	int err;
6827 
6828 	mutex_lock(&slab_mutex);
6829 
6830 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6831 	if (!slab_kset) {
6832 		mutex_unlock(&slab_mutex);
6833 		pr_err("Cannot register slab subsystem.\n");
6834 		return -ENOMEM;
6835 	}
6836 
6837 	slab_state = FULL;
6838 
6839 	list_for_each_entry(s, &slab_caches, list) {
6840 		err = sysfs_slab_add(s);
6841 		if (err)
6842 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6843 			       s->name);
6844 	}
6845 
6846 	while (alias_list) {
6847 		struct saved_alias *al = alias_list;
6848 
6849 		alias_list = alias_list->next;
6850 		err = sysfs_slab_alias(al->s, al->name);
6851 		if (err)
6852 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6853 			       al->name);
6854 		kfree(al);
6855 	}
6856 
6857 	mutex_unlock(&slab_mutex);
6858 	return 0;
6859 }
6860 late_initcall(slab_sysfs_init);
6861 #endif /* SLAB_SUPPORTS_SYSFS */
6862 
6863 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6864 static int slab_debugfs_show(struct seq_file *seq, void *v)
6865 {
6866 	struct loc_track *t = seq->private;
6867 	struct location *l;
6868 	unsigned long idx;
6869 
6870 	idx = (unsigned long) t->idx;
6871 	if (idx < t->count) {
6872 		l = &t->loc[idx];
6873 
6874 		seq_printf(seq, "%7ld ", l->count);
6875 
6876 		if (l->addr)
6877 			seq_printf(seq, "%pS", (void *)l->addr);
6878 		else
6879 			seq_puts(seq, "<not-available>");
6880 
6881 		if (l->waste)
6882 			seq_printf(seq, " waste=%lu/%lu",
6883 				l->count * l->waste, l->waste);
6884 
6885 		if (l->sum_time != l->min_time) {
6886 			seq_printf(seq, " age=%ld/%llu/%ld",
6887 				l->min_time, div_u64(l->sum_time, l->count),
6888 				l->max_time);
6889 		} else
6890 			seq_printf(seq, " age=%ld", l->min_time);
6891 
6892 		if (l->min_pid != l->max_pid)
6893 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6894 		else
6895 			seq_printf(seq, " pid=%ld",
6896 				l->min_pid);
6897 
6898 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6899 			seq_printf(seq, " cpus=%*pbl",
6900 				 cpumask_pr_args(to_cpumask(l->cpus)));
6901 
6902 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6903 			seq_printf(seq, " nodes=%*pbl",
6904 				 nodemask_pr_args(&l->nodes));
6905 
6906 #ifdef CONFIG_STACKDEPOT
6907 		{
6908 			depot_stack_handle_t handle;
6909 			unsigned long *entries;
6910 			unsigned int nr_entries, j;
6911 
6912 			handle = READ_ONCE(l->handle);
6913 			if (handle) {
6914 				nr_entries = stack_depot_fetch(handle, &entries);
6915 				seq_puts(seq, "\n");
6916 				for (j = 0; j < nr_entries; j++)
6917 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6918 			}
6919 		}
6920 #endif
6921 		seq_puts(seq, "\n");
6922 	}
6923 
6924 	if (!idx && !t->count)
6925 		seq_puts(seq, "No data\n");
6926 
6927 	return 0;
6928 }
6929 
6930 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6931 {
6932 }
6933 
6934 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6935 {
6936 	struct loc_track *t = seq->private;
6937 
6938 	t->idx = ++(*ppos);
6939 	if (*ppos <= t->count)
6940 		return ppos;
6941 
6942 	return NULL;
6943 }
6944 
6945 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6946 {
6947 	struct location *loc1 = (struct location *)a;
6948 	struct location *loc2 = (struct location *)b;
6949 
6950 	if (loc1->count > loc2->count)
6951 		return -1;
6952 	else
6953 		return 1;
6954 }
6955 
6956 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6957 {
6958 	struct loc_track *t = seq->private;
6959 
6960 	t->idx = *ppos;
6961 	return ppos;
6962 }
6963 
6964 static const struct seq_operations slab_debugfs_sops = {
6965 	.start  = slab_debugfs_start,
6966 	.next   = slab_debugfs_next,
6967 	.stop   = slab_debugfs_stop,
6968 	.show   = slab_debugfs_show,
6969 };
6970 
6971 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6972 {
6973 
6974 	struct kmem_cache_node *n;
6975 	enum track_item alloc;
6976 	int node;
6977 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6978 						sizeof(struct loc_track));
6979 	struct kmem_cache *s = file_inode(filep)->i_private;
6980 	unsigned long *obj_map;
6981 
6982 	if (!t)
6983 		return -ENOMEM;
6984 
6985 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6986 	if (!obj_map) {
6987 		seq_release_private(inode, filep);
6988 		return -ENOMEM;
6989 	}
6990 
6991 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6992 		alloc = TRACK_ALLOC;
6993 	else
6994 		alloc = TRACK_FREE;
6995 
6996 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6997 		bitmap_free(obj_map);
6998 		seq_release_private(inode, filep);
6999 		return -ENOMEM;
7000 	}
7001 
7002 	for_each_kmem_cache_node(s, node, n) {
7003 		unsigned long flags;
7004 		struct slab *slab;
7005 
7006 		if (!node_nr_slabs(n))
7007 			continue;
7008 
7009 		spin_lock_irqsave(&n->list_lock, flags);
7010 		list_for_each_entry(slab, &n->partial, slab_list)
7011 			process_slab(t, s, slab, alloc, obj_map);
7012 		list_for_each_entry(slab, &n->full, slab_list)
7013 			process_slab(t, s, slab, alloc, obj_map);
7014 		spin_unlock_irqrestore(&n->list_lock, flags);
7015 	}
7016 
7017 	/* Sort locations by count */
7018 	sort_r(t->loc, t->count, sizeof(struct location),
7019 		cmp_loc_by_count, NULL, NULL);
7020 
7021 	bitmap_free(obj_map);
7022 	return 0;
7023 }
7024 
7025 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7026 {
7027 	struct seq_file *seq = file->private_data;
7028 	struct loc_track *t = seq->private;
7029 
7030 	free_loc_track(t);
7031 	return seq_release_private(inode, file);
7032 }
7033 
7034 static const struct file_operations slab_debugfs_fops = {
7035 	.open    = slab_debug_trace_open,
7036 	.read    = seq_read,
7037 	.llseek  = seq_lseek,
7038 	.release = slab_debug_trace_release,
7039 };
7040 
7041 static void debugfs_slab_add(struct kmem_cache *s)
7042 {
7043 	struct dentry *slab_cache_dir;
7044 
7045 	if (unlikely(!slab_debugfs_root))
7046 		return;
7047 
7048 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7049 
7050 	debugfs_create_file("alloc_traces", 0400,
7051 		slab_cache_dir, s, &slab_debugfs_fops);
7052 
7053 	debugfs_create_file("free_traces", 0400,
7054 		slab_cache_dir, s, &slab_debugfs_fops);
7055 }
7056 
7057 void debugfs_slab_release(struct kmem_cache *s)
7058 {
7059 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7060 }
7061 
7062 static int __init slab_debugfs_init(void)
7063 {
7064 	struct kmem_cache *s;
7065 
7066 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7067 
7068 	list_for_each_entry(s, &slab_caches, list)
7069 		if (s->flags & SLAB_STORE_USER)
7070 			debugfs_slab_add(s);
7071 
7072 	return 0;
7073 
7074 }
7075 __initcall(slab_debugfs_init);
7076 #endif
7077 /*
7078  * The /proc/slabinfo ABI
7079  */
7080 #ifdef CONFIG_SLUB_DEBUG
7081 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7082 {
7083 	unsigned long nr_slabs = 0;
7084 	unsigned long nr_objs = 0;
7085 	unsigned long nr_free = 0;
7086 	int node;
7087 	struct kmem_cache_node *n;
7088 
7089 	for_each_kmem_cache_node(s, node, n) {
7090 		nr_slabs += node_nr_slabs(n);
7091 		nr_objs += node_nr_objs(n);
7092 		nr_free += count_partial(n, count_free);
7093 	}
7094 
7095 	sinfo->active_objs = nr_objs - nr_free;
7096 	sinfo->num_objs = nr_objs;
7097 	sinfo->active_slabs = nr_slabs;
7098 	sinfo->num_slabs = nr_slabs;
7099 	sinfo->objects_per_slab = oo_objects(s->oo);
7100 	sinfo->cache_order = oo_order(s->oo);
7101 }
7102 
7103 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7104 {
7105 }
7106 
7107 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
7108 		       size_t count, loff_t *ppos)
7109 {
7110 	return -EIO;
7111 }
7112 #endif /* CONFIG_SLUB_DEBUG */
7113