xref: /linux/mm/slub.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
24 
25 /*
26  * Lock order:
27  *   1. slab_lock(page)
28  *   2. slab->list_lock
29  *
30  *   The slab_lock protects operations on the object of a particular
31  *   slab and its metadata in the page struct. If the slab lock
32  *   has been taken then no allocations nor frees can be performed
33  *   on the objects in the slab nor can the slab be added or removed
34  *   from the partial or full lists since this would mean modifying
35  *   the page_struct of the slab.
36  *
37  *   The list_lock protects the partial and full list on each node and
38  *   the partial slab counter. If taken then no new slabs may be added or
39  *   removed from the lists nor make the number of partial slabs be modified.
40  *   (Note that the total number of slabs is an atomic value that may be
41  *   modified without taking the list lock).
42  *
43  *   The list_lock is a centralized lock and thus we avoid taking it as
44  *   much as possible. As long as SLUB does not have to handle partial
45  *   slabs, operations can continue without any centralized lock. F.e.
46  *   allocating a long series of objects that fill up slabs does not require
47  *   the list lock.
48  *
49  *   The lock order is sometimes inverted when we are trying to get a slab
50  *   off a list. We take the list_lock and then look for a page on the list
51  *   to use. While we do that objects in the slabs may be freed. We can
52  *   only operate on the slab if we have also taken the slab_lock. So we use
53  *   a slab_trylock() on the slab. If trylock was successful then no frees
54  *   can occur anymore and we can use the slab for allocations etc. If the
55  *   slab_trylock() does not succeed then frees are in progress in the slab and
56  *   we must stay away from it for a while since we may cause a bouncing
57  *   cacheline if we try to acquire the lock. So go onto the next slab.
58  *   If all pages are busy then we may allocate a new slab instead of reusing
59  *   a partial slab. A new slab has noone operating on it and thus there is
60  *   no danger of cacheline contention.
61  *
62  *   Interrupts are disabled during allocation and deallocation in order to
63  *   make the slab allocator safe to use in the context of an irq. In addition
64  *   interrupts are disabled to ensure that the processor does not change
65  *   while handling per_cpu slabs, due to kernel preemption.
66  *
67  * SLUB assigns one slab for allocation to each processor.
68  * Allocations only occur from these slabs called cpu slabs.
69  *
70  * Slabs with free elements are kept on a partial list and during regular
71  * operations no list for full slabs is used. If an object in a full slab is
72  * freed then the slab will show up again on the partial lists.
73  * We track full slabs for debugging purposes though because otherwise we
74  * cannot scan all objects.
75  *
76  * Slabs are freed when they become empty. Teardown and setup is
77  * minimal so we rely on the page allocators per cpu caches for
78  * fast frees and allocs.
79  *
80  * Overloading of page flags that are otherwise used for LRU management.
81  *
82  * PageActive 		The slab is frozen and exempt from list processing.
83  * 			This means that the slab is dedicated to a purpose
84  * 			such as satisfying allocations for a specific
85  * 			processor. Objects may be freed in the slab while
86  * 			it is frozen but slab_free will then skip the usual
87  * 			list operations. It is up to the processor holding
88  * 			the slab to integrate the slab into the slab lists
89  * 			when the slab is no longer needed.
90  *
91  * 			One use of this flag is to mark slabs that are
92  * 			used for allocations. Then such a slab becomes a cpu
93  * 			slab. The cpu slab may be equipped with an additional
94  * 			freelist that allows lockless access to
95  * 			free objects in addition to the regular freelist
96  * 			that requires the slab lock.
97  *
98  * PageError		Slab requires special handling due to debug
99  * 			options set. This moves	slab handling out of
100  * 			the fast path and disables lockless freelists.
101  */
102 
103 #define FROZEN (1 << PG_active)
104 
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
107 #else
108 #define SLABDEBUG 0
109 #endif
110 
111 static inline int SlabFrozen(struct page *page)
112 {
113 	return page->flags & FROZEN;
114 }
115 
116 static inline void SetSlabFrozen(struct page *page)
117 {
118 	page->flags |= FROZEN;
119 }
120 
121 static inline void ClearSlabFrozen(struct page *page)
122 {
123 	page->flags &= ~FROZEN;
124 }
125 
126 static inline int SlabDebug(struct page *page)
127 {
128 	return page->flags & SLABDEBUG;
129 }
130 
131 static inline void SetSlabDebug(struct page *page)
132 {
133 	page->flags |= SLABDEBUG;
134 }
135 
136 static inline void ClearSlabDebug(struct page *page)
137 {
138 	page->flags &= ~SLABDEBUG;
139 }
140 
141 /*
142  * Issues still to be resolved:
143  *
144  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145  *
146  * - Variable sizing of the per node arrays
147  */
148 
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
151 
152 /*
153  * Currently fastpath is not supported if preemption is enabled.
154  */
155 #if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
156 #define SLUB_FASTPATH
157 #endif
158 
159 #if PAGE_SHIFT <= 12
160 
161 /*
162  * Small page size. Make sure that we do not fragment memory
163  */
164 #define DEFAULT_MAX_ORDER 1
165 #define DEFAULT_MIN_OBJECTS 4
166 
167 #else
168 
169 /*
170  * Large page machines are customarily able to handle larger
171  * page orders.
172  */
173 #define DEFAULT_MAX_ORDER 2
174 #define DEFAULT_MIN_OBJECTS 8
175 
176 #endif
177 
178 /*
179  * Mininum number of partial slabs. These will be left on the partial
180  * lists even if they are empty. kmem_cache_shrink may reclaim them.
181  */
182 #define MIN_PARTIAL 5
183 
184 /*
185  * Maximum number of desirable partial slabs.
186  * The existence of more partial slabs makes kmem_cache_shrink
187  * sort the partial list by the number of objects in the.
188  */
189 #define MAX_PARTIAL 10
190 
191 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
192 				SLAB_POISON | SLAB_STORE_USER)
193 
194 /*
195  * Set of flags that will prevent slab merging
196  */
197 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
198 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
199 
200 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
201 		SLAB_CACHE_DMA)
202 
203 #ifndef ARCH_KMALLOC_MINALIGN
204 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
205 #endif
206 
207 #ifndef ARCH_SLAB_MINALIGN
208 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
209 #endif
210 
211 /* Internal SLUB flags */
212 #define __OBJECT_POISON		0x80000000 /* Poison object */
213 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
214 
215 /* Not all arches define cache_line_size */
216 #ifndef cache_line_size
217 #define cache_line_size()	L1_CACHE_BYTES
218 #endif
219 
220 static int kmem_size = sizeof(struct kmem_cache);
221 
222 #ifdef CONFIG_SMP
223 static struct notifier_block slab_notifier;
224 #endif
225 
226 static enum {
227 	DOWN,		/* No slab functionality available */
228 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
229 	UP,		/* Everything works but does not show up in sysfs */
230 	SYSFS		/* Sysfs up */
231 } slab_state = DOWN;
232 
233 /* A list of all slab caches on the system */
234 static DECLARE_RWSEM(slub_lock);
235 static LIST_HEAD(slab_caches);
236 
237 /*
238  * Tracking user of a slab.
239  */
240 struct track {
241 	void *addr;		/* Called from address */
242 	int cpu;		/* Was running on cpu */
243 	int pid;		/* Pid context */
244 	unsigned long when;	/* When did the operation occur */
245 };
246 
247 enum track_item { TRACK_ALLOC, TRACK_FREE };
248 
249 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
250 static int sysfs_slab_add(struct kmem_cache *);
251 static int sysfs_slab_alias(struct kmem_cache *, const char *);
252 static void sysfs_slab_remove(struct kmem_cache *);
253 
254 #else
255 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
256 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
257 							{ return 0; }
258 static inline void sysfs_slab_remove(struct kmem_cache *s)
259 {
260 	kfree(s);
261 }
262 
263 #endif
264 
265 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
266 {
267 #ifdef CONFIG_SLUB_STATS
268 	c->stat[si]++;
269 #endif
270 }
271 
272 /********************************************************************
273  * 			Core slab cache functions
274  *******************************************************************/
275 
276 int slab_is_available(void)
277 {
278 	return slab_state >= UP;
279 }
280 
281 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
282 {
283 #ifdef CONFIG_NUMA
284 	return s->node[node];
285 #else
286 	return &s->local_node;
287 #endif
288 }
289 
290 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
291 {
292 #ifdef CONFIG_SMP
293 	return s->cpu_slab[cpu];
294 #else
295 	return &s->cpu_slab;
296 #endif
297 }
298 
299 /*
300  * The end pointer in a slab is special. It points to the first object in the
301  * slab but has bit 0 set to mark it.
302  *
303  * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
304  * in the mapping set.
305  */
306 static inline int is_end(void *addr)
307 {
308 	return (unsigned long)addr & PAGE_MAPPING_ANON;
309 }
310 
311 void *slab_address(struct page *page)
312 {
313 	return page->end - PAGE_MAPPING_ANON;
314 }
315 
316 static inline int check_valid_pointer(struct kmem_cache *s,
317 				struct page *page, const void *object)
318 {
319 	void *base;
320 
321 	if (object == page->end)
322 		return 1;
323 
324 	base = slab_address(page);
325 	if (object < base || object >= base + s->objects * s->size ||
326 		(object - base) % s->size) {
327 		return 0;
328 	}
329 
330 	return 1;
331 }
332 
333 /*
334  * Slow version of get and set free pointer.
335  *
336  * This version requires touching the cache lines of kmem_cache which
337  * we avoid to do in the fast alloc free paths. There we obtain the offset
338  * from the page struct.
339  */
340 static inline void *get_freepointer(struct kmem_cache *s, void *object)
341 {
342 	return *(void **)(object + s->offset);
343 }
344 
345 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
346 {
347 	*(void **)(object + s->offset) = fp;
348 }
349 
350 /* Loop over all objects in a slab */
351 #define for_each_object(__p, __s, __addr) \
352 	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
353 			__p += (__s)->size)
354 
355 /* Scan freelist */
356 #define for_each_free_object(__p, __s, __free) \
357 	for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
358 		__p))
359 
360 /* Determine object index from a given position */
361 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
362 {
363 	return (p - addr) / s->size;
364 }
365 
366 #ifdef CONFIG_SLUB_DEBUG
367 /*
368  * Debug settings:
369  */
370 #ifdef CONFIG_SLUB_DEBUG_ON
371 static int slub_debug = DEBUG_DEFAULT_FLAGS;
372 #else
373 static int slub_debug;
374 #endif
375 
376 static char *slub_debug_slabs;
377 
378 /*
379  * Object debugging
380  */
381 static void print_section(char *text, u8 *addr, unsigned int length)
382 {
383 	int i, offset;
384 	int newline = 1;
385 	char ascii[17];
386 
387 	ascii[16] = 0;
388 
389 	for (i = 0; i < length; i++) {
390 		if (newline) {
391 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
392 			newline = 0;
393 		}
394 		printk(KERN_CONT " %02x", addr[i]);
395 		offset = i % 16;
396 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
397 		if (offset == 15) {
398 			printk(KERN_CONT " %s\n", ascii);
399 			newline = 1;
400 		}
401 	}
402 	if (!newline) {
403 		i %= 16;
404 		while (i < 16) {
405 			printk(KERN_CONT "   ");
406 			ascii[i] = ' ';
407 			i++;
408 		}
409 		printk(KERN_CONT " %s\n", ascii);
410 	}
411 }
412 
413 static struct track *get_track(struct kmem_cache *s, void *object,
414 	enum track_item alloc)
415 {
416 	struct track *p;
417 
418 	if (s->offset)
419 		p = object + s->offset + sizeof(void *);
420 	else
421 		p = object + s->inuse;
422 
423 	return p + alloc;
424 }
425 
426 static void set_track(struct kmem_cache *s, void *object,
427 				enum track_item alloc, void *addr)
428 {
429 	struct track *p;
430 
431 	if (s->offset)
432 		p = object + s->offset + sizeof(void *);
433 	else
434 		p = object + s->inuse;
435 
436 	p += alloc;
437 	if (addr) {
438 		p->addr = addr;
439 		p->cpu = smp_processor_id();
440 		p->pid = current ? current->pid : -1;
441 		p->when = jiffies;
442 	} else
443 		memset(p, 0, sizeof(struct track));
444 }
445 
446 static void init_tracking(struct kmem_cache *s, void *object)
447 {
448 	if (!(s->flags & SLAB_STORE_USER))
449 		return;
450 
451 	set_track(s, object, TRACK_FREE, NULL);
452 	set_track(s, object, TRACK_ALLOC, NULL);
453 }
454 
455 static void print_track(const char *s, struct track *t)
456 {
457 	if (!t->addr)
458 		return;
459 
460 	printk(KERN_ERR "INFO: %s in ", s);
461 	__print_symbol("%s", (unsigned long)t->addr);
462 	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
463 }
464 
465 static void print_tracking(struct kmem_cache *s, void *object)
466 {
467 	if (!(s->flags & SLAB_STORE_USER))
468 		return;
469 
470 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
471 	print_track("Freed", get_track(s, object, TRACK_FREE));
472 }
473 
474 static void print_page_info(struct page *page)
475 {
476 	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
477 		page, page->inuse, page->freelist, page->flags);
478 
479 }
480 
481 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
482 {
483 	va_list args;
484 	char buf[100];
485 
486 	va_start(args, fmt);
487 	vsnprintf(buf, sizeof(buf), fmt, args);
488 	va_end(args);
489 	printk(KERN_ERR "========================================"
490 			"=====================================\n");
491 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
492 	printk(KERN_ERR "----------------------------------------"
493 			"-------------------------------------\n\n");
494 }
495 
496 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
497 {
498 	va_list args;
499 	char buf[100];
500 
501 	va_start(args, fmt);
502 	vsnprintf(buf, sizeof(buf), fmt, args);
503 	va_end(args);
504 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
505 }
506 
507 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
508 {
509 	unsigned int off;	/* Offset of last byte */
510 	u8 *addr = slab_address(page);
511 
512 	print_tracking(s, p);
513 
514 	print_page_info(page);
515 
516 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
517 			p, p - addr, get_freepointer(s, p));
518 
519 	if (p > addr + 16)
520 		print_section("Bytes b4", p - 16, 16);
521 
522 	print_section("Object", p, min(s->objsize, 128));
523 
524 	if (s->flags & SLAB_RED_ZONE)
525 		print_section("Redzone", p + s->objsize,
526 			s->inuse - s->objsize);
527 
528 	if (s->offset)
529 		off = s->offset + sizeof(void *);
530 	else
531 		off = s->inuse;
532 
533 	if (s->flags & SLAB_STORE_USER)
534 		off += 2 * sizeof(struct track);
535 
536 	if (off != s->size)
537 		/* Beginning of the filler is the free pointer */
538 		print_section("Padding", p + off, s->size - off);
539 
540 	dump_stack();
541 }
542 
543 static void object_err(struct kmem_cache *s, struct page *page,
544 			u8 *object, char *reason)
545 {
546 	slab_bug(s, reason);
547 	print_trailer(s, page, object);
548 }
549 
550 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
551 {
552 	va_list args;
553 	char buf[100];
554 
555 	va_start(args, fmt);
556 	vsnprintf(buf, sizeof(buf), fmt, args);
557 	va_end(args);
558 	slab_bug(s, fmt);
559 	print_page_info(page);
560 	dump_stack();
561 }
562 
563 static void init_object(struct kmem_cache *s, void *object, int active)
564 {
565 	u8 *p = object;
566 
567 	if (s->flags & __OBJECT_POISON) {
568 		memset(p, POISON_FREE, s->objsize - 1);
569 		p[s->objsize - 1] = POISON_END;
570 	}
571 
572 	if (s->flags & SLAB_RED_ZONE)
573 		memset(p + s->objsize,
574 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
575 			s->inuse - s->objsize);
576 }
577 
578 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
579 {
580 	while (bytes) {
581 		if (*start != (u8)value)
582 			return start;
583 		start++;
584 		bytes--;
585 	}
586 	return NULL;
587 }
588 
589 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
590 						void *from, void *to)
591 {
592 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
593 	memset(from, data, to - from);
594 }
595 
596 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
597 			u8 *object, char *what,
598 			u8 *start, unsigned int value, unsigned int bytes)
599 {
600 	u8 *fault;
601 	u8 *end;
602 
603 	fault = check_bytes(start, value, bytes);
604 	if (!fault)
605 		return 1;
606 
607 	end = start + bytes;
608 	while (end > fault && end[-1] == value)
609 		end--;
610 
611 	slab_bug(s, "%s overwritten", what);
612 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
613 					fault, end - 1, fault[0], value);
614 	print_trailer(s, page, object);
615 
616 	restore_bytes(s, what, value, fault, end);
617 	return 0;
618 }
619 
620 /*
621  * Object layout:
622  *
623  * object address
624  * 	Bytes of the object to be managed.
625  * 	If the freepointer may overlay the object then the free
626  * 	pointer is the first word of the object.
627  *
628  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
629  * 	0xa5 (POISON_END)
630  *
631  * object + s->objsize
632  * 	Padding to reach word boundary. This is also used for Redzoning.
633  * 	Padding is extended by another word if Redzoning is enabled and
634  * 	objsize == inuse.
635  *
636  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
637  * 	0xcc (RED_ACTIVE) for objects in use.
638  *
639  * object + s->inuse
640  * 	Meta data starts here.
641  *
642  * 	A. Free pointer (if we cannot overwrite object on free)
643  * 	B. Tracking data for SLAB_STORE_USER
644  * 	C. Padding to reach required alignment boundary or at mininum
645  * 		one word if debuggin is on to be able to detect writes
646  * 		before the word boundary.
647  *
648  *	Padding is done using 0x5a (POISON_INUSE)
649  *
650  * object + s->size
651  * 	Nothing is used beyond s->size.
652  *
653  * If slabcaches are merged then the objsize and inuse boundaries are mostly
654  * ignored. And therefore no slab options that rely on these boundaries
655  * may be used with merged slabcaches.
656  */
657 
658 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
659 {
660 	unsigned long off = s->inuse;	/* The end of info */
661 
662 	if (s->offset)
663 		/* Freepointer is placed after the object. */
664 		off += sizeof(void *);
665 
666 	if (s->flags & SLAB_STORE_USER)
667 		/* We also have user information there */
668 		off += 2 * sizeof(struct track);
669 
670 	if (s->size == off)
671 		return 1;
672 
673 	return check_bytes_and_report(s, page, p, "Object padding",
674 				p + off, POISON_INUSE, s->size - off);
675 }
676 
677 static int slab_pad_check(struct kmem_cache *s, struct page *page)
678 {
679 	u8 *start;
680 	u8 *fault;
681 	u8 *end;
682 	int length;
683 	int remainder;
684 
685 	if (!(s->flags & SLAB_POISON))
686 		return 1;
687 
688 	start = slab_address(page);
689 	end = start + (PAGE_SIZE << s->order);
690 	length = s->objects * s->size;
691 	remainder = end - (start + length);
692 	if (!remainder)
693 		return 1;
694 
695 	fault = check_bytes(start + length, POISON_INUSE, remainder);
696 	if (!fault)
697 		return 1;
698 	while (end > fault && end[-1] == POISON_INUSE)
699 		end--;
700 
701 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
702 	print_section("Padding", start, length);
703 
704 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
705 	return 0;
706 }
707 
708 static int check_object(struct kmem_cache *s, struct page *page,
709 					void *object, int active)
710 {
711 	u8 *p = object;
712 	u8 *endobject = object + s->objsize;
713 
714 	if (s->flags & SLAB_RED_ZONE) {
715 		unsigned int red =
716 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
717 
718 		if (!check_bytes_and_report(s, page, object, "Redzone",
719 			endobject, red, s->inuse - s->objsize))
720 			return 0;
721 	} else {
722 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
723 			check_bytes_and_report(s, page, p, "Alignment padding",
724 				endobject, POISON_INUSE, s->inuse - s->objsize);
725 		}
726 	}
727 
728 	if (s->flags & SLAB_POISON) {
729 		if (!active && (s->flags & __OBJECT_POISON) &&
730 			(!check_bytes_and_report(s, page, p, "Poison", p,
731 					POISON_FREE, s->objsize - 1) ||
732 			 !check_bytes_and_report(s, page, p, "Poison",
733 				p + s->objsize - 1, POISON_END, 1)))
734 			return 0;
735 		/*
736 		 * check_pad_bytes cleans up on its own.
737 		 */
738 		check_pad_bytes(s, page, p);
739 	}
740 
741 	if (!s->offset && active)
742 		/*
743 		 * Object and freepointer overlap. Cannot check
744 		 * freepointer while object is allocated.
745 		 */
746 		return 1;
747 
748 	/* Check free pointer validity */
749 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
750 		object_err(s, page, p, "Freepointer corrupt");
751 		/*
752 		 * No choice but to zap it and thus loose the remainder
753 		 * of the free objects in this slab. May cause
754 		 * another error because the object count is now wrong.
755 		 */
756 		set_freepointer(s, p, page->end);
757 		return 0;
758 	}
759 	return 1;
760 }
761 
762 static int check_slab(struct kmem_cache *s, struct page *page)
763 {
764 	VM_BUG_ON(!irqs_disabled());
765 
766 	if (!PageSlab(page)) {
767 		slab_err(s, page, "Not a valid slab page");
768 		return 0;
769 	}
770 	if (page->inuse > s->objects) {
771 		slab_err(s, page, "inuse %u > max %u",
772 			s->name, page->inuse, s->objects);
773 		return 0;
774 	}
775 	/* Slab_pad_check fixes things up after itself */
776 	slab_pad_check(s, page);
777 	return 1;
778 }
779 
780 /*
781  * Determine if a certain object on a page is on the freelist. Must hold the
782  * slab lock to guarantee that the chains are in a consistent state.
783  */
784 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
785 {
786 	int nr = 0;
787 	void *fp = page->freelist;
788 	void *object = NULL;
789 
790 	while (fp != page->end && nr <= s->objects) {
791 		if (fp == search)
792 			return 1;
793 		if (!check_valid_pointer(s, page, fp)) {
794 			if (object) {
795 				object_err(s, page, object,
796 					"Freechain corrupt");
797 				set_freepointer(s, object, page->end);
798 				break;
799 			} else {
800 				slab_err(s, page, "Freepointer corrupt");
801 				page->freelist = page->end;
802 				page->inuse = s->objects;
803 				slab_fix(s, "Freelist cleared");
804 				return 0;
805 			}
806 			break;
807 		}
808 		object = fp;
809 		fp = get_freepointer(s, object);
810 		nr++;
811 	}
812 
813 	if (page->inuse != s->objects - nr) {
814 		slab_err(s, page, "Wrong object count. Counter is %d but "
815 			"counted were %d", page->inuse, s->objects - nr);
816 		page->inuse = s->objects - nr;
817 		slab_fix(s, "Object count adjusted.");
818 	}
819 	return search == NULL;
820 }
821 
822 static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
823 {
824 	if (s->flags & SLAB_TRACE) {
825 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
826 			s->name,
827 			alloc ? "alloc" : "free",
828 			object, page->inuse,
829 			page->freelist);
830 
831 		if (!alloc)
832 			print_section("Object", (void *)object, s->objsize);
833 
834 		dump_stack();
835 	}
836 }
837 
838 /*
839  * Tracking of fully allocated slabs for debugging purposes.
840  */
841 static void add_full(struct kmem_cache_node *n, struct page *page)
842 {
843 	spin_lock(&n->list_lock);
844 	list_add(&page->lru, &n->full);
845 	spin_unlock(&n->list_lock);
846 }
847 
848 static void remove_full(struct kmem_cache *s, struct page *page)
849 {
850 	struct kmem_cache_node *n;
851 
852 	if (!(s->flags & SLAB_STORE_USER))
853 		return;
854 
855 	n = get_node(s, page_to_nid(page));
856 
857 	spin_lock(&n->list_lock);
858 	list_del(&page->lru);
859 	spin_unlock(&n->list_lock);
860 }
861 
862 static void setup_object_debug(struct kmem_cache *s, struct page *page,
863 								void *object)
864 {
865 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
866 		return;
867 
868 	init_object(s, object, 0);
869 	init_tracking(s, object);
870 }
871 
872 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
873 						void *object, void *addr)
874 {
875 	if (!check_slab(s, page))
876 		goto bad;
877 
878 	if (object && !on_freelist(s, page, object)) {
879 		object_err(s, page, object, "Object already allocated");
880 		goto bad;
881 	}
882 
883 	if (!check_valid_pointer(s, page, object)) {
884 		object_err(s, page, object, "Freelist Pointer check fails");
885 		goto bad;
886 	}
887 
888 	if (object && !check_object(s, page, object, 0))
889 		goto bad;
890 
891 	/* Success perform special debug activities for allocs */
892 	if (s->flags & SLAB_STORE_USER)
893 		set_track(s, object, TRACK_ALLOC, addr);
894 	trace(s, page, object, 1);
895 	init_object(s, object, 1);
896 	return 1;
897 
898 bad:
899 	if (PageSlab(page)) {
900 		/*
901 		 * If this is a slab page then lets do the best we can
902 		 * to avoid issues in the future. Marking all objects
903 		 * as used avoids touching the remaining objects.
904 		 */
905 		slab_fix(s, "Marking all objects used");
906 		page->inuse = s->objects;
907 		page->freelist = page->end;
908 	}
909 	return 0;
910 }
911 
912 static int free_debug_processing(struct kmem_cache *s, struct page *page,
913 						void *object, void *addr)
914 {
915 	if (!check_slab(s, page))
916 		goto fail;
917 
918 	if (!check_valid_pointer(s, page, object)) {
919 		slab_err(s, page, "Invalid object pointer 0x%p", object);
920 		goto fail;
921 	}
922 
923 	if (on_freelist(s, page, object)) {
924 		object_err(s, page, object, "Object already free");
925 		goto fail;
926 	}
927 
928 	if (!check_object(s, page, object, 1))
929 		return 0;
930 
931 	if (unlikely(s != page->slab)) {
932 		if (!PageSlab(page)) {
933 			slab_err(s, page, "Attempt to free object(0x%p) "
934 				"outside of slab", object);
935 		} else if (!page->slab) {
936 			printk(KERN_ERR
937 				"SLUB <none>: no slab for object 0x%p.\n",
938 						object);
939 			dump_stack();
940 		} else
941 			object_err(s, page, object,
942 					"page slab pointer corrupt.");
943 		goto fail;
944 	}
945 
946 	/* Special debug activities for freeing objects */
947 	if (!SlabFrozen(page) && page->freelist == page->end)
948 		remove_full(s, page);
949 	if (s->flags & SLAB_STORE_USER)
950 		set_track(s, object, TRACK_FREE, addr);
951 	trace(s, page, object, 0);
952 	init_object(s, object, 0);
953 	return 1;
954 
955 fail:
956 	slab_fix(s, "Object at 0x%p not freed", object);
957 	return 0;
958 }
959 
960 static int __init setup_slub_debug(char *str)
961 {
962 	slub_debug = DEBUG_DEFAULT_FLAGS;
963 	if (*str++ != '=' || !*str)
964 		/*
965 		 * No options specified. Switch on full debugging.
966 		 */
967 		goto out;
968 
969 	if (*str == ',')
970 		/*
971 		 * No options but restriction on slabs. This means full
972 		 * debugging for slabs matching a pattern.
973 		 */
974 		goto check_slabs;
975 
976 	slub_debug = 0;
977 	if (*str == '-')
978 		/*
979 		 * Switch off all debugging measures.
980 		 */
981 		goto out;
982 
983 	/*
984 	 * Determine which debug features should be switched on
985 	 */
986 	for (; *str && *str != ','; str++) {
987 		switch (tolower(*str)) {
988 		case 'f':
989 			slub_debug |= SLAB_DEBUG_FREE;
990 			break;
991 		case 'z':
992 			slub_debug |= SLAB_RED_ZONE;
993 			break;
994 		case 'p':
995 			slub_debug |= SLAB_POISON;
996 			break;
997 		case 'u':
998 			slub_debug |= SLAB_STORE_USER;
999 			break;
1000 		case 't':
1001 			slub_debug |= SLAB_TRACE;
1002 			break;
1003 		default:
1004 			printk(KERN_ERR "slub_debug option '%c' "
1005 				"unknown. skipped\n", *str);
1006 		}
1007 	}
1008 
1009 check_slabs:
1010 	if (*str == ',')
1011 		slub_debug_slabs = str + 1;
1012 out:
1013 	return 1;
1014 }
1015 
1016 __setup("slub_debug", setup_slub_debug);
1017 
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 	unsigned long flags, const char *name,
1020 	void (*ctor)(struct kmem_cache *, void *))
1021 {
1022 	/*
1023 	 * The page->offset field is only 16 bit wide. This is an offset
1024 	 * in units of words from the beginning of an object. If the slab
1025 	 * size is bigger then we cannot move the free pointer behind the
1026 	 * object anymore.
1027 	 *
1028 	 * On 32 bit platforms the limit is 256k. On 64bit platforms
1029 	 * the limit is 512k.
1030 	 *
1031 	 * Debugging or ctor may create a need to move the free
1032 	 * pointer. Fail if this happens.
1033 	 */
1034 	if (objsize >= 65535 * sizeof(void *)) {
1035 		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1036 				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1037 		BUG_ON(ctor);
1038 	} else {
1039 		/*
1040 		 * Enable debugging if selected on the kernel commandline.
1041 		 */
1042 		if (slub_debug && (!slub_debug_slabs ||
1043 		    strncmp(slub_debug_slabs, name,
1044 			strlen(slub_debug_slabs)) == 0))
1045 				flags |= slub_debug;
1046 	}
1047 
1048 	return flags;
1049 }
1050 #else
1051 static inline void setup_object_debug(struct kmem_cache *s,
1052 			struct page *page, void *object) {}
1053 
1054 static inline int alloc_debug_processing(struct kmem_cache *s,
1055 	struct page *page, void *object, void *addr) { return 0; }
1056 
1057 static inline int free_debug_processing(struct kmem_cache *s,
1058 	struct page *page, void *object, void *addr) { return 0; }
1059 
1060 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1061 			{ return 1; }
1062 static inline int check_object(struct kmem_cache *s, struct page *page,
1063 			void *object, int active) { return 1; }
1064 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1065 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1066 	unsigned long flags, const char *name,
1067 	void (*ctor)(struct kmem_cache *, void *))
1068 {
1069 	return flags;
1070 }
1071 #define slub_debug 0
1072 #endif
1073 /*
1074  * Slab allocation and freeing
1075  */
1076 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1077 {
1078 	struct page *page;
1079 	int pages = 1 << s->order;
1080 
1081 	if (s->order)
1082 		flags |= __GFP_COMP;
1083 
1084 	if (s->flags & SLAB_CACHE_DMA)
1085 		flags |= SLUB_DMA;
1086 
1087 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
1088 		flags |= __GFP_RECLAIMABLE;
1089 
1090 	if (node == -1)
1091 		page = alloc_pages(flags, s->order);
1092 	else
1093 		page = alloc_pages_node(node, flags, s->order);
1094 
1095 	if (!page)
1096 		return NULL;
1097 
1098 	mod_zone_page_state(page_zone(page),
1099 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1100 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1101 		pages);
1102 
1103 	return page;
1104 }
1105 
1106 static void setup_object(struct kmem_cache *s, struct page *page,
1107 				void *object)
1108 {
1109 	setup_object_debug(s, page, object);
1110 	if (unlikely(s->ctor))
1111 		s->ctor(s, object);
1112 }
1113 
1114 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1115 {
1116 	struct page *page;
1117 	struct kmem_cache_node *n;
1118 	void *start;
1119 	void *last;
1120 	void *p;
1121 
1122 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1123 
1124 	page = allocate_slab(s,
1125 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1126 	if (!page)
1127 		goto out;
1128 
1129 	n = get_node(s, page_to_nid(page));
1130 	if (n)
1131 		atomic_long_inc(&n->nr_slabs);
1132 	page->slab = s;
1133 	page->flags |= 1 << PG_slab;
1134 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1135 			SLAB_STORE_USER | SLAB_TRACE))
1136 		SetSlabDebug(page);
1137 
1138 	start = page_address(page);
1139 	page->end = start + 1;
1140 
1141 	if (unlikely(s->flags & SLAB_POISON))
1142 		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1143 
1144 	last = start;
1145 	for_each_object(p, s, start) {
1146 		setup_object(s, page, last);
1147 		set_freepointer(s, last, p);
1148 		last = p;
1149 	}
1150 	setup_object(s, page, last);
1151 	set_freepointer(s, last, page->end);
1152 
1153 	page->freelist = start;
1154 	page->inuse = 0;
1155 out:
1156 	return page;
1157 }
1158 
1159 static void __free_slab(struct kmem_cache *s, struct page *page)
1160 {
1161 	int pages = 1 << s->order;
1162 
1163 	if (unlikely(SlabDebug(page))) {
1164 		void *p;
1165 
1166 		slab_pad_check(s, page);
1167 		for_each_object(p, s, slab_address(page))
1168 			check_object(s, page, p, 0);
1169 		ClearSlabDebug(page);
1170 	}
1171 
1172 	mod_zone_page_state(page_zone(page),
1173 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1174 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1175 		-pages);
1176 
1177 	page->mapping = NULL;
1178 	__free_pages(page, s->order);
1179 }
1180 
1181 static void rcu_free_slab(struct rcu_head *h)
1182 {
1183 	struct page *page;
1184 
1185 	page = container_of((struct list_head *)h, struct page, lru);
1186 	__free_slab(page->slab, page);
1187 }
1188 
1189 static void free_slab(struct kmem_cache *s, struct page *page)
1190 {
1191 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1192 		/*
1193 		 * RCU free overloads the RCU head over the LRU
1194 		 */
1195 		struct rcu_head *head = (void *)&page->lru;
1196 
1197 		call_rcu(head, rcu_free_slab);
1198 	} else
1199 		__free_slab(s, page);
1200 }
1201 
1202 static void discard_slab(struct kmem_cache *s, struct page *page)
1203 {
1204 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1205 
1206 	atomic_long_dec(&n->nr_slabs);
1207 	reset_page_mapcount(page);
1208 	__ClearPageSlab(page);
1209 	free_slab(s, page);
1210 }
1211 
1212 /*
1213  * Per slab locking using the pagelock
1214  */
1215 static __always_inline void slab_lock(struct page *page)
1216 {
1217 	bit_spin_lock(PG_locked, &page->flags);
1218 }
1219 
1220 static __always_inline void slab_unlock(struct page *page)
1221 {
1222 	__bit_spin_unlock(PG_locked, &page->flags);
1223 }
1224 
1225 static __always_inline int slab_trylock(struct page *page)
1226 {
1227 	int rc = 1;
1228 
1229 	rc = bit_spin_trylock(PG_locked, &page->flags);
1230 	return rc;
1231 }
1232 
1233 /*
1234  * Management of partially allocated slabs
1235  */
1236 static void add_partial(struct kmem_cache_node *n,
1237 				struct page *page, int tail)
1238 {
1239 	spin_lock(&n->list_lock);
1240 	n->nr_partial++;
1241 	if (tail)
1242 		list_add_tail(&page->lru, &n->partial);
1243 	else
1244 		list_add(&page->lru, &n->partial);
1245 	spin_unlock(&n->list_lock);
1246 }
1247 
1248 static void remove_partial(struct kmem_cache *s,
1249 						struct page *page)
1250 {
1251 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1252 
1253 	spin_lock(&n->list_lock);
1254 	list_del(&page->lru);
1255 	n->nr_partial--;
1256 	spin_unlock(&n->list_lock);
1257 }
1258 
1259 /*
1260  * Lock slab and remove from the partial list.
1261  *
1262  * Must hold list_lock.
1263  */
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1265 {
1266 	if (slab_trylock(page)) {
1267 		list_del(&page->lru);
1268 		n->nr_partial--;
1269 		SetSlabFrozen(page);
1270 		return 1;
1271 	}
1272 	return 0;
1273 }
1274 
1275 /*
1276  * Try to allocate a partial slab from a specific node.
1277  */
1278 static struct page *get_partial_node(struct kmem_cache_node *n)
1279 {
1280 	struct page *page;
1281 
1282 	/*
1283 	 * Racy check. If we mistakenly see no partial slabs then we
1284 	 * just allocate an empty slab. If we mistakenly try to get a
1285 	 * partial slab and there is none available then get_partials()
1286 	 * will return NULL.
1287 	 */
1288 	if (!n || !n->nr_partial)
1289 		return NULL;
1290 
1291 	spin_lock(&n->list_lock);
1292 	list_for_each_entry(page, &n->partial, lru)
1293 		if (lock_and_freeze_slab(n, page))
1294 			goto out;
1295 	page = NULL;
1296 out:
1297 	spin_unlock(&n->list_lock);
1298 	return page;
1299 }
1300 
1301 /*
1302  * Get a page from somewhere. Search in increasing NUMA distances.
1303  */
1304 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1305 {
1306 #ifdef CONFIG_NUMA
1307 	struct zonelist *zonelist;
1308 	struct zone **z;
1309 	struct page *page;
1310 
1311 	/*
1312 	 * The defrag ratio allows a configuration of the tradeoffs between
1313 	 * inter node defragmentation and node local allocations. A lower
1314 	 * defrag_ratio increases the tendency to do local allocations
1315 	 * instead of attempting to obtain partial slabs from other nodes.
1316 	 *
1317 	 * If the defrag_ratio is set to 0 then kmalloc() always
1318 	 * returns node local objects. If the ratio is higher then kmalloc()
1319 	 * may return off node objects because partial slabs are obtained
1320 	 * from other nodes and filled up.
1321 	 *
1322 	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1323 	 * defrag_ratio = 1000) then every (well almost) allocation will
1324 	 * first attempt to defrag slab caches on other nodes. This means
1325 	 * scanning over all nodes to look for partial slabs which may be
1326 	 * expensive if we do it every time we are trying to find a slab
1327 	 * with available objects.
1328 	 */
1329 	if (!s->remote_node_defrag_ratio ||
1330 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1331 		return NULL;
1332 
1333 	zonelist = &NODE_DATA(
1334 		slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
1335 	for (z = zonelist->zones; *z; z++) {
1336 		struct kmem_cache_node *n;
1337 
1338 		n = get_node(s, zone_to_nid(*z));
1339 
1340 		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1341 				n->nr_partial > MIN_PARTIAL) {
1342 			page = get_partial_node(n);
1343 			if (page)
1344 				return page;
1345 		}
1346 	}
1347 #endif
1348 	return NULL;
1349 }
1350 
1351 /*
1352  * Get a partial page, lock it and return it.
1353  */
1354 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1355 {
1356 	struct page *page;
1357 	int searchnode = (node == -1) ? numa_node_id() : node;
1358 
1359 	page = get_partial_node(get_node(s, searchnode));
1360 	if (page || (flags & __GFP_THISNODE))
1361 		return page;
1362 
1363 	return get_any_partial(s, flags);
1364 }
1365 
1366 /*
1367  * Move a page back to the lists.
1368  *
1369  * Must be called with the slab lock held.
1370  *
1371  * On exit the slab lock will have been dropped.
1372  */
1373 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1374 {
1375 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1376 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1377 
1378 	ClearSlabFrozen(page);
1379 	if (page->inuse) {
1380 
1381 		if (page->freelist != page->end) {
1382 			add_partial(n, page, tail);
1383 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1384 		} else {
1385 			stat(c, DEACTIVATE_FULL);
1386 			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1387 				add_full(n, page);
1388 		}
1389 		slab_unlock(page);
1390 	} else {
1391 		stat(c, DEACTIVATE_EMPTY);
1392 		if (n->nr_partial < MIN_PARTIAL) {
1393 			/*
1394 			 * Adding an empty slab to the partial slabs in order
1395 			 * to avoid page allocator overhead. This slab needs
1396 			 * to come after the other slabs with objects in
1397 			 * order to fill them up. That way the size of the
1398 			 * partial list stays small. kmem_cache_shrink can
1399 			 * reclaim empty slabs from the partial list.
1400 			 */
1401 			add_partial(n, page, 1);
1402 			slab_unlock(page);
1403 		} else {
1404 			slab_unlock(page);
1405 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1406 			discard_slab(s, page);
1407 		}
1408 	}
1409 }
1410 
1411 /*
1412  * Remove the cpu slab
1413  */
1414 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1415 {
1416 	struct page *page = c->page;
1417 	int tail = 1;
1418 
1419 	if (c->freelist)
1420 		stat(c, DEACTIVATE_REMOTE_FREES);
1421 	/*
1422 	 * Merge cpu freelist into freelist. Typically we get here
1423 	 * because both freelists are empty. So this is unlikely
1424 	 * to occur.
1425 	 *
1426 	 * We need to use _is_end here because deactivate slab may
1427 	 * be called for a debug slab. Then c->freelist may contain
1428 	 * a dummy pointer.
1429 	 */
1430 	while (unlikely(!is_end(c->freelist))) {
1431 		void **object;
1432 
1433 		tail = 0;	/* Hot objects. Put the slab first */
1434 
1435 		/* Retrieve object from cpu_freelist */
1436 		object = c->freelist;
1437 		c->freelist = c->freelist[c->offset];
1438 
1439 		/* And put onto the regular freelist */
1440 		object[c->offset] = page->freelist;
1441 		page->freelist = object;
1442 		page->inuse--;
1443 	}
1444 	c->page = NULL;
1445 	unfreeze_slab(s, page, tail);
1446 }
1447 
1448 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1449 {
1450 	stat(c, CPUSLAB_FLUSH);
1451 	slab_lock(c->page);
1452 	deactivate_slab(s, c);
1453 }
1454 
1455 /*
1456  * Flush cpu slab.
1457  * Called from IPI handler with interrupts disabled.
1458  */
1459 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1460 {
1461 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1462 
1463 	if (likely(c && c->page))
1464 		flush_slab(s, c);
1465 }
1466 
1467 static void flush_cpu_slab(void *d)
1468 {
1469 	struct kmem_cache *s = d;
1470 
1471 	__flush_cpu_slab(s, smp_processor_id());
1472 }
1473 
1474 static void flush_all(struct kmem_cache *s)
1475 {
1476 #ifdef CONFIG_SMP
1477 	on_each_cpu(flush_cpu_slab, s, 1, 1);
1478 #else
1479 	unsigned long flags;
1480 
1481 	local_irq_save(flags);
1482 	flush_cpu_slab(s);
1483 	local_irq_restore(flags);
1484 #endif
1485 }
1486 
1487 /*
1488  * Check if the objects in a per cpu structure fit numa
1489  * locality expectations.
1490  */
1491 static inline int node_match(struct kmem_cache_cpu *c, int node)
1492 {
1493 #ifdef CONFIG_NUMA
1494 	if (node != -1 && c->node != node)
1495 		return 0;
1496 #endif
1497 	return 1;
1498 }
1499 
1500 /*
1501  * Slow path. The lockless freelist is empty or we need to perform
1502  * debugging duties.
1503  *
1504  * Interrupts are disabled.
1505  *
1506  * Processing is still very fast if new objects have been freed to the
1507  * regular freelist. In that case we simply take over the regular freelist
1508  * as the lockless freelist and zap the regular freelist.
1509  *
1510  * If that is not working then we fall back to the partial lists. We take the
1511  * first element of the freelist as the object to allocate now and move the
1512  * rest of the freelist to the lockless freelist.
1513  *
1514  * And if we were unable to get a new slab from the partial slab lists then
1515  * we need to allocate a new slab. This is slowest path since we may sleep.
1516  */
1517 static void *__slab_alloc(struct kmem_cache *s,
1518 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1519 {
1520 	void **object;
1521 	struct page *new;
1522 #ifdef SLUB_FASTPATH
1523 	unsigned long flags;
1524 
1525 	local_irq_save(flags);
1526 #endif
1527 	if (!c->page)
1528 		goto new_slab;
1529 
1530 	slab_lock(c->page);
1531 	if (unlikely(!node_match(c, node)))
1532 		goto another_slab;
1533 	stat(c, ALLOC_REFILL);
1534 load_freelist:
1535 	object = c->page->freelist;
1536 	if (unlikely(object == c->page->end))
1537 		goto another_slab;
1538 	if (unlikely(SlabDebug(c->page)))
1539 		goto debug;
1540 
1541 	object = c->page->freelist;
1542 	c->freelist = object[c->offset];
1543 	c->page->inuse = s->objects;
1544 	c->page->freelist = c->page->end;
1545 	c->node = page_to_nid(c->page);
1546 unlock_out:
1547 	slab_unlock(c->page);
1548 	stat(c, ALLOC_SLOWPATH);
1549 out:
1550 #ifdef SLUB_FASTPATH
1551 	local_irq_restore(flags);
1552 #endif
1553 	return object;
1554 
1555 another_slab:
1556 	deactivate_slab(s, c);
1557 
1558 new_slab:
1559 	new = get_partial(s, gfpflags, node);
1560 	if (new) {
1561 		c->page = new;
1562 		stat(c, ALLOC_FROM_PARTIAL);
1563 		goto load_freelist;
1564 	}
1565 
1566 	if (gfpflags & __GFP_WAIT)
1567 		local_irq_enable();
1568 
1569 	new = new_slab(s, gfpflags, node);
1570 
1571 	if (gfpflags & __GFP_WAIT)
1572 		local_irq_disable();
1573 
1574 	if (new) {
1575 		c = get_cpu_slab(s, smp_processor_id());
1576 		stat(c, ALLOC_SLAB);
1577 		if (c->page)
1578 			flush_slab(s, c);
1579 		slab_lock(new);
1580 		SetSlabFrozen(new);
1581 		c->page = new;
1582 		goto load_freelist;
1583 	}
1584 	object = NULL;
1585 	goto out;
1586 debug:
1587 	object = c->page->freelist;
1588 	if (!alloc_debug_processing(s, c->page, object, addr))
1589 		goto another_slab;
1590 
1591 	c->page->inuse++;
1592 	c->page->freelist = object[c->offset];
1593 	c->node = -1;
1594 	goto unlock_out;
1595 }
1596 
1597 /*
1598  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1599  * have the fastpath folded into their functions. So no function call
1600  * overhead for requests that can be satisfied on the fastpath.
1601  *
1602  * The fastpath works by first checking if the lockless freelist can be used.
1603  * If not then __slab_alloc is called for slow processing.
1604  *
1605  * Otherwise we can simply pick the next object from the lockless free list.
1606  */
1607 static __always_inline void *slab_alloc(struct kmem_cache *s,
1608 		gfp_t gfpflags, int node, void *addr)
1609 {
1610 	void **object;
1611 	struct kmem_cache_cpu *c;
1612 
1613 /*
1614  * The SLUB_FASTPATH path is provisional and is currently disabled if the
1615  * kernel is compiled with preemption or if the arch does not support
1616  * fast cmpxchg operations. There are a couple of coming changes that will
1617  * simplify matters and allow preemption. Ultimately we may end up making
1618  * SLUB_FASTPATH the default.
1619  *
1620  * 1. The introduction of the per cpu allocator will avoid array lookups
1621  *    through get_cpu_slab(). A special register can be used instead.
1622  *
1623  * 2. The introduction of per cpu atomic operations (cpu_ops) means that
1624  *    we can realize the logic here entirely with per cpu atomics. The
1625  *    per cpu atomic ops will take care of the preemption issues.
1626  */
1627 
1628 #ifdef SLUB_FASTPATH
1629 	c = get_cpu_slab(s, raw_smp_processor_id());
1630 	do {
1631 		object = c->freelist;
1632 		if (unlikely(is_end(object) || !node_match(c, node))) {
1633 			object = __slab_alloc(s, gfpflags, node, addr, c);
1634 			break;
1635 		}
1636 		stat(c, ALLOC_FASTPATH);
1637 	} while (cmpxchg_local(&c->freelist, object, object[c->offset])
1638 								!= object);
1639 #else
1640 	unsigned long flags;
1641 
1642 	local_irq_save(flags);
1643 	c = get_cpu_slab(s, smp_processor_id());
1644 	if (unlikely(is_end(c->freelist) || !node_match(c, node)))
1645 
1646 		object = __slab_alloc(s, gfpflags, node, addr, c);
1647 
1648 	else {
1649 		object = c->freelist;
1650 		c->freelist = object[c->offset];
1651 		stat(c, ALLOC_FASTPATH);
1652 	}
1653 	local_irq_restore(flags);
1654 #endif
1655 
1656 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1657 		memset(object, 0, c->objsize);
1658 
1659 	return object;
1660 }
1661 
1662 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1663 {
1664 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1665 }
1666 EXPORT_SYMBOL(kmem_cache_alloc);
1667 
1668 #ifdef CONFIG_NUMA
1669 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1670 {
1671 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1672 }
1673 EXPORT_SYMBOL(kmem_cache_alloc_node);
1674 #endif
1675 
1676 /*
1677  * Slow patch handling. This may still be called frequently since objects
1678  * have a longer lifetime than the cpu slabs in most processing loads.
1679  *
1680  * So we still attempt to reduce cache line usage. Just take the slab
1681  * lock and free the item. If there is no additional partial page
1682  * handling required then we can return immediately.
1683  */
1684 static void __slab_free(struct kmem_cache *s, struct page *page,
1685 				void *x, void *addr, unsigned int offset)
1686 {
1687 	void *prior;
1688 	void **object = (void *)x;
1689 	struct kmem_cache_cpu *c;
1690 
1691 #ifdef SLUB_FASTPATH
1692 	unsigned long flags;
1693 
1694 	local_irq_save(flags);
1695 #endif
1696 	c = get_cpu_slab(s, raw_smp_processor_id());
1697 	stat(c, FREE_SLOWPATH);
1698 	slab_lock(page);
1699 
1700 	if (unlikely(SlabDebug(page)))
1701 		goto debug;
1702 checks_ok:
1703 	prior = object[offset] = page->freelist;
1704 	page->freelist = object;
1705 	page->inuse--;
1706 
1707 	if (unlikely(SlabFrozen(page))) {
1708 		stat(c, FREE_FROZEN);
1709 		goto out_unlock;
1710 	}
1711 
1712 	if (unlikely(!page->inuse))
1713 		goto slab_empty;
1714 
1715 	/*
1716 	 * Objects left in the slab. If it
1717 	 * was not on the partial list before
1718 	 * then add it.
1719 	 */
1720 	if (unlikely(prior == page->end)) {
1721 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1722 		stat(c, FREE_ADD_PARTIAL);
1723 	}
1724 
1725 out_unlock:
1726 	slab_unlock(page);
1727 #ifdef SLUB_FASTPATH
1728 	local_irq_restore(flags);
1729 #endif
1730 	return;
1731 
1732 slab_empty:
1733 	if (prior != page->end) {
1734 		/*
1735 		 * Slab still on the partial list.
1736 		 */
1737 		remove_partial(s, page);
1738 		stat(c, FREE_REMOVE_PARTIAL);
1739 	}
1740 	slab_unlock(page);
1741 	stat(c, FREE_SLAB);
1742 #ifdef SLUB_FASTPATH
1743 	local_irq_restore(flags);
1744 #endif
1745 	discard_slab(s, page);
1746 	return;
1747 
1748 debug:
1749 	if (!free_debug_processing(s, page, x, addr))
1750 		goto out_unlock;
1751 	goto checks_ok;
1752 }
1753 
1754 /*
1755  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1756  * can perform fastpath freeing without additional function calls.
1757  *
1758  * The fastpath is only possible if we are freeing to the current cpu slab
1759  * of this processor. This typically the case if we have just allocated
1760  * the item before.
1761  *
1762  * If fastpath is not possible then fall back to __slab_free where we deal
1763  * with all sorts of special processing.
1764  */
1765 static __always_inline void slab_free(struct kmem_cache *s,
1766 			struct page *page, void *x, void *addr)
1767 {
1768 	void **object = (void *)x;
1769 	struct kmem_cache_cpu *c;
1770 
1771 #ifdef SLUB_FASTPATH
1772 	void **freelist;
1773 
1774 	c = get_cpu_slab(s, raw_smp_processor_id());
1775 	debug_check_no_locks_freed(object, s->objsize);
1776 	do {
1777 		freelist = c->freelist;
1778 		barrier();
1779 		/*
1780 		 * If the compiler would reorder the retrieval of c->page to
1781 		 * come before c->freelist then an interrupt could
1782 		 * change the cpu slab before we retrieve c->freelist. We
1783 		 * could be matching on a page no longer active and put the
1784 		 * object onto the freelist of the wrong slab.
1785 		 *
1786 		 * On the other hand: If we already have the freelist pointer
1787 		 * then any change of cpu_slab will cause the cmpxchg to fail
1788 		 * since the freelist pointers are unique per slab.
1789 		 */
1790 		if (unlikely(page != c->page || c->node < 0)) {
1791 			__slab_free(s, page, x, addr, c->offset);
1792 			break;
1793 		}
1794 		object[c->offset] = freelist;
1795 		stat(c, FREE_FASTPATH);
1796 	} while (cmpxchg_local(&c->freelist, freelist, object) != freelist);
1797 #else
1798 	unsigned long flags;
1799 
1800 	local_irq_save(flags);
1801 	debug_check_no_locks_freed(object, s->objsize);
1802 	c = get_cpu_slab(s, smp_processor_id());
1803 	if (likely(page == c->page && c->node >= 0)) {
1804 		object[c->offset] = c->freelist;
1805 		c->freelist = object;
1806 		stat(c, FREE_FASTPATH);
1807 	} else
1808 		__slab_free(s, page, x, addr, c->offset);
1809 
1810 	local_irq_restore(flags);
1811 #endif
1812 }
1813 
1814 void kmem_cache_free(struct kmem_cache *s, void *x)
1815 {
1816 	struct page *page;
1817 
1818 	page = virt_to_head_page(x);
1819 
1820 	slab_free(s, page, x, __builtin_return_address(0));
1821 }
1822 EXPORT_SYMBOL(kmem_cache_free);
1823 
1824 /* Figure out on which slab object the object resides */
1825 static struct page *get_object_page(const void *x)
1826 {
1827 	struct page *page = virt_to_head_page(x);
1828 
1829 	if (!PageSlab(page))
1830 		return NULL;
1831 
1832 	return page;
1833 }
1834 
1835 /*
1836  * Object placement in a slab is made very easy because we always start at
1837  * offset 0. If we tune the size of the object to the alignment then we can
1838  * get the required alignment by putting one properly sized object after
1839  * another.
1840  *
1841  * Notice that the allocation order determines the sizes of the per cpu
1842  * caches. Each processor has always one slab available for allocations.
1843  * Increasing the allocation order reduces the number of times that slabs
1844  * must be moved on and off the partial lists and is therefore a factor in
1845  * locking overhead.
1846  */
1847 
1848 /*
1849  * Mininum / Maximum order of slab pages. This influences locking overhead
1850  * and slab fragmentation. A higher order reduces the number of partial slabs
1851  * and increases the number of allocations possible without having to
1852  * take the list_lock.
1853  */
1854 static int slub_min_order;
1855 static int slub_max_order = DEFAULT_MAX_ORDER;
1856 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1857 
1858 /*
1859  * Merge control. If this is set then no merging of slab caches will occur.
1860  * (Could be removed. This was introduced to pacify the merge skeptics.)
1861  */
1862 static int slub_nomerge;
1863 
1864 /*
1865  * Calculate the order of allocation given an slab object size.
1866  *
1867  * The order of allocation has significant impact on performance and other
1868  * system components. Generally order 0 allocations should be preferred since
1869  * order 0 does not cause fragmentation in the page allocator. Larger objects
1870  * be problematic to put into order 0 slabs because there may be too much
1871  * unused space left. We go to a higher order if more than 1/8th of the slab
1872  * would be wasted.
1873  *
1874  * In order to reach satisfactory performance we must ensure that a minimum
1875  * number of objects is in one slab. Otherwise we may generate too much
1876  * activity on the partial lists which requires taking the list_lock. This is
1877  * less a concern for large slabs though which are rarely used.
1878  *
1879  * slub_max_order specifies the order where we begin to stop considering the
1880  * number of objects in a slab as critical. If we reach slub_max_order then
1881  * we try to keep the page order as low as possible. So we accept more waste
1882  * of space in favor of a small page order.
1883  *
1884  * Higher order allocations also allow the placement of more objects in a
1885  * slab and thereby reduce object handling overhead. If the user has
1886  * requested a higher mininum order then we start with that one instead of
1887  * the smallest order which will fit the object.
1888  */
1889 static inline int slab_order(int size, int min_objects,
1890 				int max_order, int fract_leftover)
1891 {
1892 	int order;
1893 	int rem;
1894 	int min_order = slub_min_order;
1895 
1896 	for (order = max(min_order,
1897 				fls(min_objects * size - 1) - PAGE_SHIFT);
1898 			order <= max_order; order++) {
1899 
1900 		unsigned long slab_size = PAGE_SIZE << order;
1901 
1902 		if (slab_size < min_objects * size)
1903 			continue;
1904 
1905 		rem = slab_size % size;
1906 
1907 		if (rem <= slab_size / fract_leftover)
1908 			break;
1909 
1910 	}
1911 
1912 	return order;
1913 }
1914 
1915 static inline int calculate_order(int size)
1916 {
1917 	int order;
1918 	int min_objects;
1919 	int fraction;
1920 
1921 	/*
1922 	 * Attempt to find best configuration for a slab. This
1923 	 * works by first attempting to generate a layout with
1924 	 * the best configuration and backing off gradually.
1925 	 *
1926 	 * First we reduce the acceptable waste in a slab. Then
1927 	 * we reduce the minimum objects required in a slab.
1928 	 */
1929 	min_objects = slub_min_objects;
1930 	while (min_objects > 1) {
1931 		fraction = 8;
1932 		while (fraction >= 4) {
1933 			order = slab_order(size, min_objects,
1934 						slub_max_order, fraction);
1935 			if (order <= slub_max_order)
1936 				return order;
1937 			fraction /= 2;
1938 		}
1939 		min_objects /= 2;
1940 	}
1941 
1942 	/*
1943 	 * We were unable to place multiple objects in a slab. Now
1944 	 * lets see if we can place a single object there.
1945 	 */
1946 	order = slab_order(size, 1, slub_max_order, 1);
1947 	if (order <= slub_max_order)
1948 		return order;
1949 
1950 	/*
1951 	 * Doh this slab cannot be placed using slub_max_order.
1952 	 */
1953 	order = slab_order(size, 1, MAX_ORDER, 1);
1954 	if (order <= MAX_ORDER)
1955 		return order;
1956 	return -ENOSYS;
1957 }
1958 
1959 /*
1960  * Figure out what the alignment of the objects will be.
1961  */
1962 static unsigned long calculate_alignment(unsigned long flags,
1963 		unsigned long align, unsigned long size)
1964 {
1965 	/*
1966 	 * If the user wants hardware cache aligned objects then
1967 	 * follow that suggestion if the object is sufficiently
1968 	 * large.
1969 	 *
1970 	 * The hardware cache alignment cannot override the
1971 	 * specified alignment though. If that is greater
1972 	 * then use it.
1973 	 */
1974 	if ((flags & SLAB_HWCACHE_ALIGN) &&
1975 			size > cache_line_size() / 2)
1976 		return max_t(unsigned long, align, cache_line_size());
1977 
1978 	if (align < ARCH_SLAB_MINALIGN)
1979 		return ARCH_SLAB_MINALIGN;
1980 
1981 	return ALIGN(align, sizeof(void *));
1982 }
1983 
1984 static void init_kmem_cache_cpu(struct kmem_cache *s,
1985 			struct kmem_cache_cpu *c)
1986 {
1987 	c->page = NULL;
1988 	c->freelist = (void *)PAGE_MAPPING_ANON;
1989 	c->node = 0;
1990 	c->offset = s->offset / sizeof(void *);
1991 	c->objsize = s->objsize;
1992 }
1993 
1994 static void init_kmem_cache_node(struct kmem_cache_node *n)
1995 {
1996 	n->nr_partial = 0;
1997 	atomic_long_set(&n->nr_slabs, 0);
1998 	spin_lock_init(&n->list_lock);
1999 	INIT_LIST_HEAD(&n->partial);
2000 #ifdef CONFIG_SLUB_DEBUG
2001 	INIT_LIST_HEAD(&n->full);
2002 #endif
2003 }
2004 
2005 #ifdef CONFIG_SMP
2006 /*
2007  * Per cpu array for per cpu structures.
2008  *
2009  * The per cpu array places all kmem_cache_cpu structures from one processor
2010  * close together meaning that it becomes possible that multiple per cpu
2011  * structures are contained in one cacheline. This may be particularly
2012  * beneficial for the kmalloc caches.
2013  *
2014  * A desktop system typically has around 60-80 slabs. With 100 here we are
2015  * likely able to get per cpu structures for all caches from the array defined
2016  * here. We must be able to cover all kmalloc caches during bootstrap.
2017  *
2018  * If the per cpu array is exhausted then fall back to kmalloc
2019  * of individual cachelines. No sharing is possible then.
2020  */
2021 #define NR_KMEM_CACHE_CPU 100
2022 
2023 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2024 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2025 
2026 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2027 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
2028 
2029 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2030 							int cpu, gfp_t flags)
2031 {
2032 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2033 
2034 	if (c)
2035 		per_cpu(kmem_cache_cpu_free, cpu) =
2036 				(void *)c->freelist;
2037 	else {
2038 		/* Table overflow: So allocate ourselves */
2039 		c = kmalloc_node(
2040 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2041 			flags, cpu_to_node(cpu));
2042 		if (!c)
2043 			return NULL;
2044 	}
2045 
2046 	init_kmem_cache_cpu(s, c);
2047 	return c;
2048 }
2049 
2050 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2051 {
2052 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2053 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2054 		kfree(c);
2055 		return;
2056 	}
2057 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2058 	per_cpu(kmem_cache_cpu_free, cpu) = c;
2059 }
2060 
2061 static void free_kmem_cache_cpus(struct kmem_cache *s)
2062 {
2063 	int cpu;
2064 
2065 	for_each_online_cpu(cpu) {
2066 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2067 
2068 		if (c) {
2069 			s->cpu_slab[cpu] = NULL;
2070 			free_kmem_cache_cpu(c, cpu);
2071 		}
2072 	}
2073 }
2074 
2075 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2076 {
2077 	int cpu;
2078 
2079 	for_each_online_cpu(cpu) {
2080 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2081 
2082 		if (c)
2083 			continue;
2084 
2085 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2086 		if (!c) {
2087 			free_kmem_cache_cpus(s);
2088 			return 0;
2089 		}
2090 		s->cpu_slab[cpu] = c;
2091 	}
2092 	return 1;
2093 }
2094 
2095 /*
2096  * Initialize the per cpu array.
2097  */
2098 static void init_alloc_cpu_cpu(int cpu)
2099 {
2100 	int i;
2101 
2102 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2103 		return;
2104 
2105 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2106 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2107 
2108 	cpu_set(cpu, kmem_cach_cpu_free_init_once);
2109 }
2110 
2111 static void __init init_alloc_cpu(void)
2112 {
2113 	int cpu;
2114 
2115 	for_each_online_cpu(cpu)
2116 		init_alloc_cpu_cpu(cpu);
2117   }
2118 
2119 #else
2120 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2121 static inline void init_alloc_cpu(void) {}
2122 
2123 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2124 {
2125 	init_kmem_cache_cpu(s, &s->cpu_slab);
2126 	return 1;
2127 }
2128 #endif
2129 
2130 #ifdef CONFIG_NUMA
2131 /*
2132  * No kmalloc_node yet so do it by hand. We know that this is the first
2133  * slab on the node for this slabcache. There are no concurrent accesses
2134  * possible.
2135  *
2136  * Note that this function only works on the kmalloc_node_cache
2137  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2138  * memory on a fresh node that has no slab structures yet.
2139  */
2140 static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2141 							   int node)
2142 {
2143 	struct page *page;
2144 	struct kmem_cache_node *n;
2145 	unsigned long flags;
2146 
2147 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2148 
2149 	page = new_slab(kmalloc_caches, gfpflags, node);
2150 
2151 	BUG_ON(!page);
2152 	if (page_to_nid(page) != node) {
2153 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2154 				"node %d\n", node);
2155 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2156 				"in order to be able to continue\n");
2157 	}
2158 
2159 	n = page->freelist;
2160 	BUG_ON(!n);
2161 	page->freelist = get_freepointer(kmalloc_caches, n);
2162 	page->inuse++;
2163 	kmalloc_caches->node[node] = n;
2164 #ifdef CONFIG_SLUB_DEBUG
2165 	init_object(kmalloc_caches, n, 1);
2166 	init_tracking(kmalloc_caches, n);
2167 #endif
2168 	init_kmem_cache_node(n);
2169 	atomic_long_inc(&n->nr_slabs);
2170 	/*
2171 	 * lockdep requires consistent irq usage for each lock
2172 	 * so even though there cannot be a race this early in
2173 	 * the boot sequence, we still disable irqs.
2174 	 */
2175 	local_irq_save(flags);
2176 	add_partial(n, page, 0);
2177 	local_irq_restore(flags);
2178 	return n;
2179 }
2180 
2181 static void free_kmem_cache_nodes(struct kmem_cache *s)
2182 {
2183 	int node;
2184 
2185 	for_each_node_state(node, N_NORMAL_MEMORY) {
2186 		struct kmem_cache_node *n = s->node[node];
2187 		if (n && n != &s->local_node)
2188 			kmem_cache_free(kmalloc_caches, n);
2189 		s->node[node] = NULL;
2190 	}
2191 }
2192 
2193 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2194 {
2195 	int node;
2196 	int local_node;
2197 
2198 	if (slab_state >= UP)
2199 		local_node = page_to_nid(virt_to_page(s));
2200 	else
2201 		local_node = 0;
2202 
2203 	for_each_node_state(node, N_NORMAL_MEMORY) {
2204 		struct kmem_cache_node *n;
2205 
2206 		if (local_node == node)
2207 			n = &s->local_node;
2208 		else {
2209 			if (slab_state == DOWN) {
2210 				n = early_kmem_cache_node_alloc(gfpflags,
2211 								node);
2212 				continue;
2213 			}
2214 			n = kmem_cache_alloc_node(kmalloc_caches,
2215 							gfpflags, node);
2216 
2217 			if (!n) {
2218 				free_kmem_cache_nodes(s);
2219 				return 0;
2220 			}
2221 
2222 		}
2223 		s->node[node] = n;
2224 		init_kmem_cache_node(n);
2225 	}
2226 	return 1;
2227 }
2228 #else
2229 static void free_kmem_cache_nodes(struct kmem_cache *s)
2230 {
2231 }
2232 
2233 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2234 {
2235 	init_kmem_cache_node(&s->local_node);
2236 	return 1;
2237 }
2238 #endif
2239 
2240 /*
2241  * calculate_sizes() determines the order and the distribution of data within
2242  * a slab object.
2243  */
2244 static int calculate_sizes(struct kmem_cache *s)
2245 {
2246 	unsigned long flags = s->flags;
2247 	unsigned long size = s->objsize;
2248 	unsigned long align = s->align;
2249 
2250 	/*
2251 	 * Determine if we can poison the object itself. If the user of
2252 	 * the slab may touch the object after free or before allocation
2253 	 * then we should never poison the object itself.
2254 	 */
2255 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2256 			!s->ctor)
2257 		s->flags |= __OBJECT_POISON;
2258 	else
2259 		s->flags &= ~__OBJECT_POISON;
2260 
2261 	/*
2262 	 * Round up object size to the next word boundary. We can only
2263 	 * place the free pointer at word boundaries and this determines
2264 	 * the possible location of the free pointer.
2265 	 */
2266 	size = ALIGN(size, sizeof(void *));
2267 
2268 #ifdef CONFIG_SLUB_DEBUG
2269 	/*
2270 	 * If we are Redzoning then check if there is some space between the
2271 	 * end of the object and the free pointer. If not then add an
2272 	 * additional word to have some bytes to store Redzone information.
2273 	 */
2274 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2275 		size += sizeof(void *);
2276 #endif
2277 
2278 	/*
2279 	 * With that we have determined the number of bytes in actual use
2280 	 * by the object. This is the potential offset to the free pointer.
2281 	 */
2282 	s->inuse = size;
2283 
2284 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2285 		s->ctor)) {
2286 		/*
2287 		 * Relocate free pointer after the object if it is not
2288 		 * permitted to overwrite the first word of the object on
2289 		 * kmem_cache_free.
2290 		 *
2291 		 * This is the case if we do RCU, have a constructor or
2292 		 * destructor or are poisoning the objects.
2293 		 */
2294 		s->offset = size;
2295 		size += sizeof(void *);
2296 	}
2297 
2298 #ifdef CONFIG_SLUB_DEBUG
2299 	if (flags & SLAB_STORE_USER)
2300 		/*
2301 		 * Need to store information about allocs and frees after
2302 		 * the object.
2303 		 */
2304 		size += 2 * sizeof(struct track);
2305 
2306 	if (flags & SLAB_RED_ZONE)
2307 		/*
2308 		 * Add some empty padding so that we can catch
2309 		 * overwrites from earlier objects rather than let
2310 		 * tracking information or the free pointer be
2311 		 * corrupted if an user writes before the start
2312 		 * of the object.
2313 		 */
2314 		size += sizeof(void *);
2315 #endif
2316 
2317 	/*
2318 	 * Determine the alignment based on various parameters that the
2319 	 * user specified and the dynamic determination of cache line size
2320 	 * on bootup.
2321 	 */
2322 	align = calculate_alignment(flags, align, s->objsize);
2323 
2324 	/*
2325 	 * SLUB stores one object immediately after another beginning from
2326 	 * offset 0. In order to align the objects we have to simply size
2327 	 * each object to conform to the alignment.
2328 	 */
2329 	size = ALIGN(size, align);
2330 	s->size = size;
2331 
2332 	s->order = calculate_order(size);
2333 	if (s->order < 0)
2334 		return 0;
2335 
2336 	/*
2337 	 * Determine the number of objects per slab
2338 	 */
2339 	s->objects = (PAGE_SIZE << s->order) / size;
2340 
2341 	return !!s->objects;
2342 
2343 }
2344 
2345 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2346 		const char *name, size_t size,
2347 		size_t align, unsigned long flags,
2348 		void (*ctor)(struct kmem_cache *, void *))
2349 {
2350 	memset(s, 0, kmem_size);
2351 	s->name = name;
2352 	s->ctor = ctor;
2353 	s->objsize = size;
2354 	s->align = align;
2355 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2356 
2357 	if (!calculate_sizes(s))
2358 		goto error;
2359 
2360 	s->refcount = 1;
2361 #ifdef CONFIG_NUMA
2362 	s->remote_node_defrag_ratio = 100;
2363 #endif
2364 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2365 		goto error;
2366 
2367 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2368 		return 1;
2369 	free_kmem_cache_nodes(s);
2370 error:
2371 	if (flags & SLAB_PANIC)
2372 		panic("Cannot create slab %s size=%lu realsize=%u "
2373 			"order=%u offset=%u flags=%lx\n",
2374 			s->name, (unsigned long)size, s->size, s->order,
2375 			s->offset, flags);
2376 	return 0;
2377 }
2378 
2379 /*
2380  * Check if a given pointer is valid
2381  */
2382 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2383 {
2384 	struct page *page;
2385 
2386 	page = get_object_page(object);
2387 
2388 	if (!page || s != page->slab)
2389 		/* No slab or wrong slab */
2390 		return 0;
2391 
2392 	if (!check_valid_pointer(s, page, object))
2393 		return 0;
2394 
2395 	/*
2396 	 * We could also check if the object is on the slabs freelist.
2397 	 * But this would be too expensive and it seems that the main
2398 	 * purpose of kmem_ptr_valid is to check if the object belongs
2399 	 * to a certain slab.
2400 	 */
2401 	return 1;
2402 }
2403 EXPORT_SYMBOL(kmem_ptr_validate);
2404 
2405 /*
2406  * Determine the size of a slab object
2407  */
2408 unsigned int kmem_cache_size(struct kmem_cache *s)
2409 {
2410 	return s->objsize;
2411 }
2412 EXPORT_SYMBOL(kmem_cache_size);
2413 
2414 const char *kmem_cache_name(struct kmem_cache *s)
2415 {
2416 	return s->name;
2417 }
2418 EXPORT_SYMBOL(kmem_cache_name);
2419 
2420 /*
2421  * Attempt to free all slabs on a node. Return the number of slabs we
2422  * were unable to free.
2423  */
2424 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2425 			struct list_head *list)
2426 {
2427 	int slabs_inuse = 0;
2428 	unsigned long flags;
2429 	struct page *page, *h;
2430 
2431 	spin_lock_irqsave(&n->list_lock, flags);
2432 	list_for_each_entry_safe(page, h, list, lru)
2433 		if (!page->inuse) {
2434 			list_del(&page->lru);
2435 			discard_slab(s, page);
2436 		} else
2437 			slabs_inuse++;
2438 	spin_unlock_irqrestore(&n->list_lock, flags);
2439 	return slabs_inuse;
2440 }
2441 
2442 /*
2443  * Release all resources used by a slab cache.
2444  */
2445 static inline int kmem_cache_close(struct kmem_cache *s)
2446 {
2447 	int node;
2448 
2449 	flush_all(s);
2450 
2451 	/* Attempt to free all objects */
2452 	free_kmem_cache_cpus(s);
2453 	for_each_node_state(node, N_NORMAL_MEMORY) {
2454 		struct kmem_cache_node *n = get_node(s, node);
2455 
2456 		n->nr_partial -= free_list(s, n, &n->partial);
2457 		if (atomic_long_read(&n->nr_slabs))
2458 			return 1;
2459 	}
2460 	free_kmem_cache_nodes(s);
2461 	return 0;
2462 }
2463 
2464 /*
2465  * Close a cache and release the kmem_cache structure
2466  * (must be used for caches created using kmem_cache_create)
2467  */
2468 void kmem_cache_destroy(struct kmem_cache *s)
2469 {
2470 	down_write(&slub_lock);
2471 	s->refcount--;
2472 	if (!s->refcount) {
2473 		list_del(&s->list);
2474 		up_write(&slub_lock);
2475 		if (kmem_cache_close(s))
2476 			WARN_ON(1);
2477 		sysfs_slab_remove(s);
2478 	} else
2479 		up_write(&slub_lock);
2480 }
2481 EXPORT_SYMBOL(kmem_cache_destroy);
2482 
2483 /********************************************************************
2484  *		Kmalloc subsystem
2485  *******************************************************************/
2486 
2487 struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2488 EXPORT_SYMBOL(kmalloc_caches);
2489 
2490 #ifdef CONFIG_ZONE_DMA
2491 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2492 #endif
2493 
2494 static int __init setup_slub_min_order(char *str)
2495 {
2496 	get_option(&str, &slub_min_order);
2497 
2498 	return 1;
2499 }
2500 
2501 __setup("slub_min_order=", setup_slub_min_order);
2502 
2503 static int __init setup_slub_max_order(char *str)
2504 {
2505 	get_option(&str, &slub_max_order);
2506 
2507 	return 1;
2508 }
2509 
2510 __setup("slub_max_order=", setup_slub_max_order);
2511 
2512 static int __init setup_slub_min_objects(char *str)
2513 {
2514 	get_option(&str, &slub_min_objects);
2515 
2516 	return 1;
2517 }
2518 
2519 __setup("slub_min_objects=", setup_slub_min_objects);
2520 
2521 static int __init setup_slub_nomerge(char *str)
2522 {
2523 	slub_nomerge = 1;
2524 	return 1;
2525 }
2526 
2527 __setup("slub_nomerge", setup_slub_nomerge);
2528 
2529 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2530 		const char *name, int size, gfp_t gfp_flags)
2531 {
2532 	unsigned int flags = 0;
2533 
2534 	if (gfp_flags & SLUB_DMA)
2535 		flags = SLAB_CACHE_DMA;
2536 
2537 	down_write(&slub_lock);
2538 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2539 			flags, NULL))
2540 		goto panic;
2541 
2542 	list_add(&s->list, &slab_caches);
2543 	up_write(&slub_lock);
2544 	if (sysfs_slab_add(s))
2545 		goto panic;
2546 	return s;
2547 
2548 panic:
2549 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2550 }
2551 
2552 #ifdef CONFIG_ZONE_DMA
2553 
2554 static void sysfs_add_func(struct work_struct *w)
2555 {
2556 	struct kmem_cache *s;
2557 
2558 	down_write(&slub_lock);
2559 	list_for_each_entry(s, &slab_caches, list) {
2560 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2561 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2562 			sysfs_slab_add(s);
2563 		}
2564 	}
2565 	up_write(&slub_lock);
2566 }
2567 
2568 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2569 
2570 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2571 {
2572 	struct kmem_cache *s;
2573 	char *text;
2574 	size_t realsize;
2575 
2576 	s = kmalloc_caches_dma[index];
2577 	if (s)
2578 		return s;
2579 
2580 	/* Dynamically create dma cache */
2581 	if (flags & __GFP_WAIT)
2582 		down_write(&slub_lock);
2583 	else {
2584 		if (!down_write_trylock(&slub_lock))
2585 			goto out;
2586 	}
2587 
2588 	if (kmalloc_caches_dma[index])
2589 		goto unlock_out;
2590 
2591 	realsize = kmalloc_caches[index].objsize;
2592 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2593 			 (unsigned int)realsize);
2594 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2595 
2596 	if (!s || !text || !kmem_cache_open(s, flags, text,
2597 			realsize, ARCH_KMALLOC_MINALIGN,
2598 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2599 		kfree(s);
2600 		kfree(text);
2601 		goto unlock_out;
2602 	}
2603 
2604 	list_add(&s->list, &slab_caches);
2605 	kmalloc_caches_dma[index] = s;
2606 
2607 	schedule_work(&sysfs_add_work);
2608 
2609 unlock_out:
2610 	up_write(&slub_lock);
2611 out:
2612 	return kmalloc_caches_dma[index];
2613 }
2614 #endif
2615 
2616 /*
2617  * Conversion table for small slabs sizes / 8 to the index in the
2618  * kmalloc array. This is necessary for slabs < 192 since we have non power
2619  * of two cache sizes there. The size of larger slabs can be determined using
2620  * fls.
2621  */
2622 static s8 size_index[24] = {
2623 	3,	/* 8 */
2624 	4,	/* 16 */
2625 	5,	/* 24 */
2626 	5,	/* 32 */
2627 	6,	/* 40 */
2628 	6,	/* 48 */
2629 	6,	/* 56 */
2630 	6,	/* 64 */
2631 	1,	/* 72 */
2632 	1,	/* 80 */
2633 	1,	/* 88 */
2634 	1,	/* 96 */
2635 	7,	/* 104 */
2636 	7,	/* 112 */
2637 	7,	/* 120 */
2638 	7,	/* 128 */
2639 	2,	/* 136 */
2640 	2,	/* 144 */
2641 	2,	/* 152 */
2642 	2,	/* 160 */
2643 	2,	/* 168 */
2644 	2,	/* 176 */
2645 	2,	/* 184 */
2646 	2	/* 192 */
2647 };
2648 
2649 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2650 {
2651 	int index;
2652 
2653 	if (size <= 192) {
2654 		if (!size)
2655 			return ZERO_SIZE_PTR;
2656 
2657 		index = size_index[(size - 1) / 8];
2658 	} else
2659 		index = fls(size - 1);
2660 
2661 #ifdef CONFIG_ZONE_DMA
2662 	if (unlikely((flags & SLUB_DMA)))
2663 		return dma_kmalloc_cache(index, flags);
2664 
2665 #endif
2666 	return &kmalloc_caches[index];
2667 }
2668 
2669 void *__kmalloc(size_t size, gfp_t flags)
2670 {
2671 	struct kmem_cache *s;
2672 
2673 	if (unlikely(size > PAGE_SIZE / 2))
2674 		return (void *)__get_free_pages(flags | __GFP_COMP,
2675 							get_order(size));
2676 
2677 	s = get_slab(size, flags);
2678 
2679 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2680 		return s;
2681 
2682 	return slab_alloc(s, flags, -1, __builtin_return_address(0));
2683 }
2684 EXPORT_SYMBOL(__kmalloc);
2685 
2686 #ifdef CONFIG_NUMA
2687 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2688 {
2689 	struct kmem_cache *s;
2690 
2691 	if (unlikely(size > PAGE_SIZE / 2))
2692 		return (void *)__get_free_pages(flags | __GFP_COMP,
2693 							get_order(size));
2694 
2695 	s = get_slab(size, flags);
2696 
2697 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2698 		return s;
2699 
2700 	return slab_alloc(s, flags, node, __builtin_return_address(0));
2701 }
2702 EXPORT_SYMBOL(__kmalloc_node);
2703 #endif
2704 
2705 size_t ksize(const void *object)
2706 {
2707 	struct page *page;
2708 	struct kmem_cache *s;
2709 
2710 	BUG_ON(!object);
2711 	if (unlikely(object == ZERO_SIZE_PTR))
2712 		return 0;
2713 
2714 	page = virt_to_head_page(object);
2715 	BUG_ON(!page);
2716 
2717 	if (unlikely(!PageSlab(page)))
2718 		return PAGE_SIZE << compound_order(page);
2719 
2720 	s = page->slab;
2721 	BUG_ON(!s);
2722 
2723 	/*
2724 	 * Debugging requires use of the padding between object
2725 	 * and whatever may come after it.
2726 	 */
2727 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2728 		return s->objsize;
2729 
2730 	/*
2731 	 * If we have the need to store the freelist pointer
2732 	 * back there or track user information then we can
2733 	 * only use the space before that information.
2734 	 */
2735 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2736 		return s->inuse;
2737 
2738 	/*
2739 	 * Else we can use all the padding etc for the allocation
2740 	 */
2741 	return s->size;
2742 }
2743 EXPORT_SYMBOL(ksize);
2744 
2745 void kfree(const void *x)
2746 {
2747 	struct page *page;
2748 	void *object = (void *)x;
2749 
2750 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2751 		return;
2752 
2753 	page = virt_to_head_page(x);
2754 	if (unlikely(!PageSlab(page))) {
2755 		put_page(page);
2756 		return;
2757 	}
2758 	slab_free(page->slab, page, object, __builtin_return_address(0));
2759 }
2760 EXPORT_SYMBOL(kfree);
2761 
2762 static unsigned long count_partial(struct kmem_cache_node *n)
2763 {
2764 	unsigned long flags;
2765 	unsigned long x = 0;
2766 	struct page *page;
2767 
2768 	spin_lock_irqsave(&n->list_lock, flags);
2769 	list_for_each_entry(page, &n->partial, lru)
2770 		x += page->inuse;
2771 	spin_unlock_irqrestore(&n->list_lock, flags);
2772 	return x;
2773 }
2774 
2775 /*
2776  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2777  * the remaining slabs by the number of items in use. The slabs with the
2778  * most items in use come first. New allocations will then fill those up
2779  * and thus they can be removed from the partial lists.
2780  *
2781  * The slabs with the least items are placed last. This results in them
2782  * being allocated from last increasing the chance that the last objects
2783  * are freed in them.
2784  */
2785 int kmem_cache_shrink(struct kmem_cache *s)
2786 {
2787 	int node;
2788 	int i;
2789 	struct kmem_cache_node *n;
2790 	struct page *page;
2791 	struct page *t;
2792 	struct list_head *slabs_by_inuse =
2793 		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2794 	unsigned long flags;
2795 
2796 	if (!slabs_by_inuse)
2797 		return -ENOMEM;
2798 
2799 	flush_all(s);
2800 	for_each_node_state(node, N_NORMAL_MEMORY) {
2801 		n = get_node(s, node);
2802 
2803 		if (!n->nr_partial)
2804 			continue;
2805 
2806 		for (i = 0; i < s->objects; i++)
2807 			INIT_LIST_HEAD(slabs_by_inuse + i);
2808 
2809 		spin_lock_irqsave(&n->list_lock, flags);
2810 
2811 		/*
2812 		 * Build lists indexed by the items in use in each slab.
2813 		 *
2814 		 * Note that concurrent frees may occur while we hold the
2815 		 * list_lock. page->inuse here is the upper limit.
2816 		 */
2817 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2818 			if (!page->inuse && slab_trylock(page)) {
2819 				/*
2820 				 * Must hold slab lock here because slab_free
2821 				 * may have freed the last object and be
2822 				 * waiting to release the slab.
2823 				 */
2824 				list_del(&page->lru);
2825 				n->nr_partial--;
2826 				slab_unlock(page);
2827 				discard_slab(s, page);
2828 			} else {
2829 				list_move(&page->lru,
2830 				slabs_by_inuse + page->inuse);
2831 			}
2832 		}
2833 
2834 		/*
2835 		 * Rebuild the partial list with the slabs filled up most
2836 		 * first and the least used slabs at the end.
2837 		 */
2838 		for (i = s->objects - 1; i >= 0; i--)
2839 			list_splice(slabs_by_inuse + i, n->partial.prev);
2840 
2841 		spin_unlock_irqrestore(&n->list_lock, flags);
2842 	}
2843 
2844 	kfree(slabs_by_inuse);
2845 	return 0;
2846 }
2847 EXPORT_SYMBOL(kmem_cache_shrink);
2848 
2849 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2850 static int slab_mem_going_offline_callback(void *arg)
2851 {
2852 	struct kmem_cache *s;
2853 
2854 	down_read(&slub_lock);
2855 	list_for_each_entry(s, &slab_caches, list)
2856 		kmem_cache_shrink(s);
2857 	up_read(&slub_lock);
2858 
2859 	return 0;
2860 }
2861 
2862 static void slab_mem_offline_callback(void *arg)
2863 {
2864 	struct kmem_cache_node *n;
2865 	struct kmem_cache *s;
2866 	struct memory_notify *marg = arg;
2867 	int offline_node;
2868 
2869 	offline_node = marg->status_change_nid;
2870 
2871 	/*
2872 	 * If the node still has available memory. we need kmem_cache_node
2873 	 * for it yet.
2874 	 */
2875 	if (offline_node < 0)
2876 		return;
2877 
2878 	down_read(&slub_lock);
2879 	list_for_each_entry(s, &slab_caches, list) {
2880 		n = get_node(s, offline_node);
2881 		if (n) {
2882 			/*
2883 			 * if n->nr_slabs > 0, slabs still exist on the node
2884 			 * that is going down. We were unable to free them,
2885 			 * and offline_pages() function shoudn't call this
2886 			 * callback. So, we must fail.
2887 			 */
2888 			BUG_ON(atomic_long_read(&n->nr_slabs));
2889 
2890 			s->node[offline_node] = NULL;
2891 			kmem_cache_free(kmalloc_caches, n);
2892 		}
2893 	}
2894 	up_read(&slub_lock);
2895 }
2896 
2897 static int slab_mem_going_online_callback(void *arg)
2898 {
2899 	struct kmem_cache_node *n;
2900 	struct kmem_cache *s;
2901 	struct memory_notify *marg = arg;
2902 	int nid = marg->status_change_nid;
2903 	int ret = 0;
2904 
2905 	/*
2906 	 * If the node's memory is already available, then kmem_cache_node is
2907 	 * already created. Nothing to do.
2908 	 */
2909 	if (nid < 0)
2910 		return 0;
2911 
2912 	/*
2913 	 * We are bringing a node online. No memory is availabe yet. We must
2914 	 * allocate a kmem_cache_node structure in order to bring the node
2915 	 * online.
2916 	 */
2917 	down_read(&slub_lock);
2918 	list_for_each_entry(s, &slab_caches, list) {
2919 		/*
2920 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2921 		 *      since memory is not yet available from the node that
2922 		 *      is brought up.
2923 		 */
2924 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2925 		if (!n) {
2926 			ret = -ENOMEM;
2927 			goto out;
2928 		}
2929 		init_kmem_cache_node(n);
2930 		s->node[nid] = n;
2931 	}
2932 out:
2933 	up_read(&slub_lock);
2934 	return ret;
2935 }
2936 
2937 static int slab_memory_callback(struct notifier_block *self,
2938 				unsigned long action, void *arg)
2939 {
2940 	int ret = 0;
2941 
2942 	switch (action) {
2943 	case MEM_GOING_ONLINE:
2944 		ret = slab_mem_going_online_callback(arg);
2945 		break;
2946 	case MEM_GOING_OFFLINE:
2947 		ret = slab_mem_going_offline_callback(arg);
2948 		break;
2949 	case MEM_OFFLINE:
2950 	case MEM_CANCEL_ONLINE:
2951 		slab_mem_offline_callback(arg);
2952 		break;
2953 	case MEM_ONLINE:
2954 	case MEM_CANCEL_OFFLINE:
2955 		break;
2956 	}
2957 
2958 	ret = notifier_from_errno(ret);
2959 	return ret;
2960 }
2961 
2962 #endif /* CONFIG_MEMORY_HOTPLUG */
2963 
2964 /********************************************************************
2965  *			Basic setup of slabs
2966  *******************************************************************/
2967 
2968 void __init kmem_cache_init(void)
2969 {
2970 	int i;
2971 	int caches = 0;
2972 
2973 	init_alloc_cpu();
2974 
2975 #ifdef CONFIG_NUMA
2976 	/*
2977 	 * Must first have the slab cache available for the allocations of the
2978 	 * struct kmem_cache_node's. There is special bootstrap code in
2979 	 * kmem_cache_open for slab_state == DOWN.
2980 	 */
2981 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2982 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2983 	kmalloc_caches[0].refcount = -1;
2984 	caches++;
2985 
2986 	hotplug_memory_notifier(slab_memory_callback, 1);
2987 #endif
2988 
2989 	/* Able to allocate the per node structures */
2990 	slab_state = PARTIAL;
2991 
2992 	/* Caches that are not of the two-to-the-power-of size */
2993 	if (KMALLOC_MIN_SIZE <= 64) {
2994 		create_kmalloc_cache(&kmalloc_caches[1],
2995 				"kmalloc-96", 96, GFP_KERNEL);
2996 		caches++;
2997 	}
2998 	if (KMALLOC_MIN_SIZE <= 128) {
2999 		create_kmalloc_cache(&kmalloc_caches[2],
3000 				"kmalloc-192", 192, GFP_KERNEL);
3001 		caches++;
3002 	}
3003 
3004 	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
3005 		create_kmalloc_cache(&kmalloc_caches[i],
3006 			"kmalloc", 1 << i, GFP_KERNEL);
3007 		caches++;
3008 	}
3009 
3010 
3011 	/*
3012 	 * Patch up the size_index table if we have strange large alignment
3013 	 * requirements for the kmalloc array. This is only the case for
3014 	 * mips it seems. The standard arches will not generate any code here.
3015 	 *
3016 	 * Largest permitted alignment is 256 bytes due to the way we
3017 	 * handle the index determination for the smaller caches.
3018 	 *
3019 	 * Make sure that nothing crazy happens if someone starts tinkering
3020 	 * around with ARCH_KMALLOC_MINALIGN
3021 	 */
3022 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3023 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3024 
3025 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3026 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3027 
3028 	slab_state = UP;
3029 
3030 	/* Provide the correct kmalloc names now that the caches are up */
3031 	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
3032 		kmalloc_caches[i]. name =
3033 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3034 
3035 #ifdef CONFIG_SMP
3036 	register_cpu_notifier(&slab_notifier);
3037 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3038 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3039 #else
3040 	kmem_size = sizeof(struct kmem_cache);
3041 #endif
3042 
3043 
3044 	printk(KERN_INFO
3045 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3046 		" CPUs=%d, Nodes=%d\n",
3047 		caches, cache_line_size(),
3048 		slub_min_order, slub_max_order, slub_min_objects,
3049 		nr_cpu_ids, nr_node_ids);
3050 }
3051 
3052 /*
3053  * Find a mergeable slab cache
3054  */
3055 static int slab_unmergeable(struct kmem_cache *s)
3056 {
3057 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3058 		return 1;
3059 
3060 	if (s->ctor)
3061 		return 1;
3062 
3063 	/*
3064 	 * We may have set a slab to be unmergeable during bootstrap.
3065 	 */
3066 	if (s->refcount < 0)
3067 		return 1;
3068 
3069 	return 0;
3070 }
3071 
3072 static struct kmem_cache *find_mergeable(size_t size,
3073 		size_t align, unsigned long flags, const char *name,
3074 		void (*ctor)(struct kmem_cache *, void *))
3075 {
3076 	struct kmem_cache *s;
3077 
3078 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3079 		return NULL;
3080 
3081 	if (ctor)
3082 		return NULL;
3083 
3084 	size = ALIGN(size, sizeof(void *));
3085 	align = calculate_alignment(flags, align, size);
3086 	size = ALIGN(size, align);
3087 	flags = kmem_cache_flags(size, flags, name, NULL);
3088 
3089 	list_for_each_entry(s, &slab_caches, list) {
3090 		if (slab_unmergeable(s))
3091 			continue;
3092 
3093 		if (size > s->size)
3094 			continue;
3095 
3096 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3097 				continue;
3098 		/*
3099 		 * Check if alignment is compatible.
3100 		 * Courtesy of Adrian Drzewiecki
3101 		 */
3102 		if ((s->size & ~(align - 1)) != s->size)
3103 			continue;
3104 
3105 		if (s->size - size >= sizeof(void *))
3106 			continue;
3107 
3108 		return s;
3109 	}
3110 	return NULL;
3111 }
3112 
3113 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3114 		size_t align, unsigned long flags,
3115 		void (*ctor)(struct kmem_cache *, void *))
3116 {
3117 	struct kmem_cache *s;
3118 
3119 	down_write(&slub_lock);
3120 	s = find_mergeable(size, align, flags, name, ctor);
3121 	if (s) {
3122 		int cpu;
3123 
3124 		s->refcount++;
3125 		/*
3126 		 * Adjust the object sizes so that we clear
3127 		 * the complete object on kzalloc.
3128 		 */
3129 		s->objsize = max(s->objsize, (int)size);
3130 
3131 		/*
3132 		 * And then we need to update the object size in the
3133 		 * per cpu structures
3134 		 */
3135 		for_each_online_cpu(cpu)
3136 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3137 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3138 		up_write(&slub_lock);
3139 		if (sysfs_slab_alias(s, name))
3140 			goto err;
3141 		return s;
3142 	}
3143 	s = kmalloc(kmem_size, GFP_KERNEL);
3144 	if (s) {
3145 		if (kmem_cache_open(s, GFP_KERNEL, name,
3146 				size, align, flags, ctor)) {
3147 			list_add(&s->list, &slab_caches);
3148 			up_write(&slub_lock);
3149 			if (sysfs_slab_add(s))
3150 				goto err;
3151 			return s;
3152 		}
3153 		kfree(s);
3154 	}
3155 	up_write(&slub_lock);
3156 
3157 err:
3158 	if (flags & SLAB_PANIC)
3159 		panic("Cannot create slabcache %s\n", name);
3160 	else
3161 		s = NULL;
3162 	return s;
3163 }
3164 EXPORT_SYMBOL(kmem_cache_create);
3165 
3166 #ifdef CONFIG_SMP
3167 /*
3168  * Use the cpu notifier to insure that the cpu slabs are flushed when
3169  * necessary.
3170  */
3171 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3172 		unsigned long action, void *hcpu)
3173 {
3174 	long cpu = (long)hcpu;
3175 	struct kmem_cache *s;
3176 	unsigned long flags;
3177 
3178 	switch (action) {
3179 	case CPU_UP_PREPARE:
3180 	case CPU_UP_PREPARE_FROZEN:
3181 		init_alloc_cpu_cpu(cpu);
3182 		down_read(&slub_lock);
3183 		list_for_each_entry(s, &slab_caches, list)
3184 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3185 							GFP_KERNEL);
3186 		up_read(&slub_lock);
3187 		break;
3188 
3189 	case CPU_UP_CANCELED:
3190 	case CPU_UP_CANCELED_FROZEN:
3191 	case CPU_DEAD:
3192 	case CPU_DEAD_FROZEN:
3193 		down_read(&slub_lock);
3194 		list_for_each_entry(s, &slab_caches, list) {
3195 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3196 
3197 			local_irq_save(flags);
3198 			__flush_cpu_slab(s, cpu);
3199 			local_irq_restore(flags);
3200 			free_kmem_cache_cpu(c, cpu);
3201 			s->cpu_slab[cpu] = NULL;
3202 		}
3203 		up_read(&slub_lock);
3204 		break;
3205 	default:
3206 		break;
3207 	}
3208 	return NOTIFY_OK;
3209 }
3210 
3211 static struct notifier_block __cpuinitdata slab_notifier = {
3212 	.notifier_call = slab_cpuup_callback
3213 };
3214 
3215 #endif
3216 
3217 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3218 {
3219 	struct kmem_cache *s;
3220 
3221 	if (unlikely(size > PAGE_SIZE / 2))
3222 		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3223 							get_order(size));
3224 	s = get_slab(size, gfpflags);
3225 
3226 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3227 		return s;
3228 
3229 	return slab_alloc(s, gfpflags, -1, caller);
3230 }
3231 
3232 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3233 					int node, void *caller)
3234 {
3235 	struct kmem_cache *s;
3236 
3237 	if (unlikely(size > PAGE_SIZE / 2))
3238 		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3239 							get_order(size));
3240 	s = get_slab(size, gfpflags);
3241 
3242 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3243 		return s;
3244 
3245 	return slab_alloc(s, gfpflags, node, caller);
3246 }
3247 
3248 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3249 static int validate_slab(struct kmem_cache *s, struct page *page,
3250 						unsigned long *map)
3251 {
3252 	void *p;
3253 	void *addr = slab_address(page);
3254 
3255 	if (!check_slab(s, page) ||
3256 			!on_freelist(s, page, NULL))
3257 		return 0;
3258 
3259 	/* Now we know that a valid freelist exists */
3260 	bitmap_zero(map, s->objects);
3261 
3262 	for_each_free_object(p, s, page->freelist) {
3263 		set_bit(slab_index(p, s, addr), map);
3264 		if (!check_object(s, page, p, 0))
3265 			return 0;
3266 	}
3267 
3268 	for_each_object(p, s, addr)
3269 		if (!test_bit(slab_index(p, s, addr), map))
3270 			if (!check_object(s, page, p, 1))
3271 				return 0;
3272 	return 1;
3273 }
3274 
3275 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3276 						unsigned long *map)
3277 {
3278 	if (slab_trylock(page)) {
3279 		validate_slab(s, page, map);
3280 		slab_unlock(page);
3281 	} else
3282 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3283 			s->name, page);
3284 
3285 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3286 		if (!SlabDebug(page))
3287 			printk(KERN_ERR "SLUB %s: SlabDebug not set "
3288 				"on slab 0x%p\n", s->name, page);
3289 	} else {
3290 		if (SlabDebug(page))
3291 			printk(KERN_ERR "SLUB %s: SlabDebug set on "
3292 				"slab 0x%p\n", s->name, page);
3293 	}
3294 }
3295 
3296 static int validate_slab_node(struct kmem_cache *s,
3297 		struct kmem_cache_node *n, unsigned long *map)
3298 {
3299 	unsigned long count = 0;
3300 	struct page *page;
3301 	unsigned long flags;
3302 
3303 	spin_lock_irqsave(&n->list_lock, flags);
3304 
3305 	list_for_each_entry(page, &n->partial, lru) {
3306 		validate_slab_slab(s, page, map);
3307 		count++;
3308 	}
3309 	if (count != n->nr_partial)
3310 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3311 			"counter=%ld\n", s->name, count, n->nr_partial);
3312 
3313 	if (!(s->flags & SLAB_STORE_USER))
3314 		goto out;
3315 
3316 	list_for_each_entry(page, &n->full, lru) {
3317 		validate_slab_slab(s, page, map);
3318 		count++;
3319 	}
3320 	if (count != atomic_long_read(&n->nr_slabs))
3321 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3322 			"counter=%ld\n", s->name, count,
3323 			atomic_long_read(&n->nr_slabs));
3324 
3325 out:
3326 	spin_unlock_irqrestore(&n->list_lock, flags);
3327 	return count;
3328 }
3329 
3330 static long validate_slab_cache(struct kmem_cache *s)
3331 {
3332 	int node;
3333 	unsigned long count = 0;
3334 	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3335 				sizeof(unsigned long), GFP_KERNEL);
3336 
3337 	if (!map)
3338 		return -ENOMEM;
3339 
3340 	flush_all(s);
3341 	for_each_node_state(node, N_NORMAL_MEMORY) {
3342 		struct kmem_cache_node *n = get_node(s, node);
3343 
3344 		count += validate_slab_node(s, n, map);
3345 	}
3346 	kfree(map);
3347 	return count;
3348 }
3349 
3350 #ifdef SLUB_RESILIENCY_TEST
3351 static void resiliency_test(void)
3352 {
3353 	u8 *p;
3354 
3355 	printk(KERN_ERR "SLUB resiliency testing\n");
3356 	printk(KERN_ERR "-----------------------\n");
3357 	printk(KERN_ERR "A. Corruption after allocation\n");
3358 
3359 	p = kzalloc(16, GFP_KERNEL);
3360 	p[16] = 0x12;
3361 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3362 			" 0x12->0x%p\n\n", p + 16);
3363 
3364 	validate_slab_cache(kmalloc_caches + 4);
3365 
3366 	/* Hmmm... The next two are dangerous */
3367 	p = kzalloc(32, GFP_KERNEL);
3368 	p[32 + sizeof(void *)] = 0x34;
3369 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3370 			" 0x34 -> -0x%p\n", p);
3371 	printk(KERN_ERR
3372 		"If allocated object is overwritten then not detectable\n\n");
3373 
3374 	validate_slab_cache(kmalloc_caches + 5);
3375 	p = kzalloc(64, GFP_KERNEL);
3376 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3377 	*p = 0x56;
3378 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3379 									p);
3380 	printk(KERN_ERR
3381 		"If allocated object is overwritten then not detectable\n\n");
3382 	validate_slab_cache(kmalloc_caches + 6);
3383 
3384 	printk(KERN_ERR "\nB. Corruption after free\n");
3385 	p = kzalloc(128, GFP_KERNEL);
3386 	kfree(p);
3387 	*p = 0x78;
3388 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3389 	validate_slab_cache(kmalloc_caches + 7);
3390 
3391 	p = kzalloc(256, GFP_KERNEL);
3392 	kfree(p);
3393 	p[50] = 0x9a;
3394 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3395 			p);
3396 	validate_slab_cache(kmalloc_caches + 8);
3397 
3398 	p = kzalloc(512, GFP_KERNEL);
3399 	kfree(p);
3400 	p[512] = 0xab;
3401 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3402 	validate_slab_cache(kmalloc_caches + 9);
3403 }
3404 #else
3405 static void resiliency_test(void) {};
3406 #endif
3407 
3408 /*
3409  * Generate lists of code addresses where slabcache objects are allocated
3410  * and freed.
3411  */
3412 
3413 struct location {
3414 	unsigned long count;
3415 	void *addr;
3416 	long long sum_time;
3417 	long min_time;
3418 	long max_time;
3419 	long min_pid;
3420 	long max_pid;
3421 	cpumask_t cpus;
3422 	nodemask_t nodes;
3423 };
3424 
3425 struct loc_track {
3426 	unsigned long max;
3427 	unsigned long count;
3428 	struct location *loc;
3429 };
3430 
3431 static void free_loc_track(struct loc_track *t)
3432 {
3433 	if (t->max)
3434 		free_pages((unsigned long)t->loc,
3435 			get_order(sizeof(struct location) * t->max));
3436 }
3437 
3438 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3439 {
3440 	struct location *l;
3441 	int order;
3442 
3443 	order = get_order(sizeof(struct location) * max);
3444 
3445 	l = (void *)__get_free_pages(flags, order);
3446 	if (!l)
3447 		return 0;
3448 
3449 	if (t->count) {
3450 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3451 		free_loc_track(t);
3452 	}
3453 	t->max = max;
3454 	t->loc = l;
3455 	return 1;
3456 }
3457 
3458 static int add_location(struct loc_track *t, struct kmem_cache *s,
3459 				const struct track *track)
3460 {
3461 	long start, end, pos;
3462 	struct location *l;
3463 	void *caddr;
3464 	unsigned long age = jiffies - track->when;
3465 
3466 	start = -1;
3467 	end = t->count;
3468 
3469 	for ( ; ; ) {
3470 		pos = start + (end - start + 1) / 2;
3471 
3472 		/*
3473 		 * There is nothing at "end". If we end up there
3474 		 * we need to add something to before end.
3475 		 */
3476 		if (pos == end)
3477 			break;
3478 
3479 		caddr = t->loc[pos].addr;
3480 		if (track->addr == caddr) {
3481 
3482 			l = &t->loc[pos];
3483 			l->count++;
3484 			if (track->when) {
3485 				l->sum_time += age;
3486 				if (age < l->min_time)
3487 					l->min_time = age;
3488 				if (age > l->max_time)
3489 					l->max_time = age;
3490 
3491 				if (track->pid < l->min_pid)
3492 					l->min_pid = track->pid;
3493 				if (track->pid > l->max_pid)
3494 					l->max_pid = track->pid;
3495 
3496 				cpu_set(track->cpu, l->cpus);
3497 			}
3498 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3499 			return 1;
3500 		}
3501 
3502 		if (track->addr < caddr)
3503 			end = pos;
3504 		else
3505 			start = pos;
3506 	}
3507 
3508 	/*
3509 	 * Not found. Insert new tracking element.
3510 	 */
3511 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3512 		return 0;
3513 
3514 	l = t->loc + pos;
3515 	if (pos < t->count)
3516 		memmove(l + 1, l,
3517 			(t->count - pos) * sizeof(struct location));
3518 	t->count++;
3519 	l->count = 1;
3520 	l->addr = track->addr;
3521 	l->sum_time = age;
3522 	l->min_time = age;
3523 	l->max_time = age;
3524 	l->min_pid = track->pid;
3525 	l->max_pid = track->pid;
3526 	cpus_clear(l->cpus);
3527 	cpu_set(track->cpu, l->cpus);
3528 	nodes_clear(l->nodes);
3529 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3530 	return 1;
3531 }
3532 
3533 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3534 		struct page *page, enum track_item alloc)
3535 {
3536 	void *addr = slab_address(page);
3537 	DECLARE_BITMAP(map, s->objects);
3538 	void *p;
3539 
3540 	bitmap_zero(map, s->objects);
3541 	for_each_free_object(p, s, page->freelist)
3542 		set_bit(slab_index(p, s, addr), map);
3543 
3544 	for_each_object(p, s, addr)
3545 		if (!test_bit(slab_index(p, s, addr), map))
3546 			add_location(t, s, get_track(s, p, alloc));
3547 }
3548 
3549 static int list_locations(struct kmem_cache *s, char *buf,
3550 					enum track_item alloc)
3551 {
3552 	int len = 0;
3553 	unsigned long i;
3554 	struct loc_track t = { 0, 0, NULL };
3555 	int node;
3556 
3557 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3558 			GFP_TEMPORARY))
3559 		return sprintf(buf, "Out of memory\n");
3560 
3561 	/* Push back cpu slabs */
3562 	flush_all(s);
3563 
3564 	for_each_node_state(node, N_NORMAL_MEMORY) {
3565 		struct kmem_cache_node *n = get_node(s, node);
3566 		unsigned long flags;
3567 		struct page *page;
3568 
3569 		if (!atomic_long_read(&n->nr_slabs))
3570 			continue;
3571 
3572 		spin_lock_irqsave(&n->list_lock, flags);
3573 		list_for_each_entry(page, &n->partial, lru)
3574 			process_slab(&t, s, page, alloc);
3575 		list_for_each_entry(page, &n->full, lru)
3576 			process_slab(&t, s, page, alloc);
3577 		spin_unlock_irqrestore(&n->list_lock, flags);
3578 	}
3579 
3580 	for (i = 0; i < t.count; i++) {
3581 		struct location *l = &t.loc[i];
3582 
3583 		if (len > PAGE_SIZE - 100)
3584 			break;
3585 		len += sprintf(buf + len, "%7ld ", l->count);
3586 
3587 		if (l->addr)
3588 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3589 		else
3590 			len += sprintf(buf + len, "<not-available>");
3591 
3592 		if (l->sum_time != l->min_time) {
3593 			unsigned long remainder;
3594 
3595 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3596 			l->min_time,
3597 			div_long_long_rem(l->sum_time, l->count, &remainder),
3598 			l->max_time);
3599 		} else
3600 			len += sprintf(buf + len, " age=%ld",
3601 				l->min_time);
3602 
3603 		if (l->min_pid != l->max_pid)
3604 			len += sprintf(buf + len, " pid=%ld-%ld",
3605 				l->min_pid, l->max_pid);
3606 		else
3607 			len += sprintf(buf + len, " pid=%ld",
3608 				l->min_pid);
3609 
3610 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3611 				len < PAGE_SIZE - 60) {
3612 			len += sprintf(buf + len, " cpus=");
3613 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3614 					l->cpus);
3615 		}
3616 
3617 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3618 				len < PAGE_SIZE - 60) {
3619 			len += sprintf(buf + len, " nodes=");
3620 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3621 					l->nodes);
3622 		}
3623 
3624 		len += sprintf(buf + len, "\n");
3625 	}
3626 
3627 	free_loc_track(&t);
3628 	if (!t.count)
3629 		len += sprintf(buf, "No data\n");
3630 	return len;
3631 }
3632 
3633 enum slab_stat_type {
3634 	SL_FULL,
3635 	SL_PARTIAL,
3636 	SL_CPU,
3637 	SL_OBJECTS
3638 };
3639 
3640 #define SO_FULL		(1 << SL_FULL)
3641 #define SO_PARTIAL	(1 << SL_PARTIAL)
3642 #define SO_CPU		(1 << SL_CPU)
3643 #define SO_OBJECTS	(1 << SL_OBJECTS)
3644 
3645 static unsigned long slab_objects(struct kmem_cache *s,
3646 			char *buf, unsigned long flags)
3647 {
3648 	unsigned long total = 0;
3649 	int cpu;
3650 	int node;
3651 	int x;
3652 	unsigned long *nodes;
3653 	unsigned long *per_cpu;
3654 
3655 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3656 	per_cpu = nodes + nr_node_ids;
3657 
3658 	for_each_possible_cpu(cpu) {
3659 		struct page *page;
3660 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3661 
3662 		if (!c)
3663 			continue;
3664 
3665 		page = c->page;
3666 		node = c->node;
3667 		if (node < 0)
3668 			continue;
3669 		if (page) {
3670 			if (flags & SO_CPU) {
3671 				if (flags & SO_OBJECTS)
3672 					x = page->inuse;
3673 				else
3674 					x = 1;
3675 				total += x;
3676 				nodes[node] += x;
3677 			}
3678 			per_cpu[node]++;
3679 		}
3680 	}
3681 
3682 	for_each_node_state(node, N_NORMAL_MEMORY) {
3683 		struct kmem_cache_node *n = get_node(s, node);
3684 
3685 		if (flags & SO_PARTIAL) {
3686 			if (flags & SO_OBJECTS)
3687 				x = count_partial(n);
3688 			else
3689 				x = n->nr_partial;
3690 			total += x;
3691 			nodes[node] += x;
3692 		}
3693 
3694 		if (flags & SO_FULL) {
3695 			int full_slabs = atomic_long_read(&n->nr_slabs)
3696 					- per_cpu[node]
3697 					- n->nr_partial;
3698 
3699 			if (flags & SO_OBJECTS)
3700 				x = full_slabs * s->objects;
3701 			else
3702 				x = full_slabs;
3703 			total += x;
3704 			nodes[node] += x;
3705 		}
3706 	}
3707 
3708 	x = sprintf(buf, "%lu", total);
3709 #ifdef CONFIG_NUMA
3710 	for_each_node_state(node, N_NORMAL_MEMORY)
3711 		if (nodes[node])
3712 			x += sprintf(buf + x, " N%d=%lu",
3713 					node, nodes[node]);
3714 #endif
3715 	kfree(nodes);
3716 	return x + sprintf(buf + x, "\n");
3717 }
3718 
3719 static int any_slab_objects(struct kmem_cache *s)
3720 {
3721 	int node;
3722 	int cpu;
3723 
3724 	for_each_possible_cpu(cpu) {
3725 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3726 
3727 		if (c && c->page)
3728 			return 1;
3729 	}
3730 
3731 	for_each_online_node(node) {
3732 		struct kmem_cache_node *n = get_node(s, node);
3733 
3734 		if (!n)
3735 			continue;
3736 
3737 		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3738 			return 1;
3739 	}
3740 	return 0;
3741 }
3742 
3743 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3744 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3745 
3746 struct slab_attribute {
3747 	struct attribute attr;
3748 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3749 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3750 };
3751 
3752 #define SLAB_ATTR_RO(_name) \
3753 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3754 
3755 #define SLAB_ATTR(_name) \
3756 	static struct slab_attribute _name##_attr =  \
3757 	__ATTR(_name, 0644, _name##_show, _name##_store)
3758 
3759 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3760 {
3761 	return sprintf(buf, "%d\n", s->size);
3762 }
3763 SLAB_ATTR_RO(slab_size);
3764 
3765 static ssize_t align_show(struct kmem_cache *s, char *buf)
3766 {
3767 	return sprintf(buf, "%d\n", s->align);
3768 }
3769 SLAB_ATTR_RO(align);
3770 
3771 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3772 {
3773 	return sprintf(buf, "%d\n", s->objsize);
3774 }
3775 SLAB_ATTR_RO(object_size);
3776 
3777 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3778 {
3779 	return sprintf(buf, "%d\n", s->objects);
3780 }
3781 SLAB_ATTR_RO(objs_per_slab);
3782 
3783 static ssize_t order_show(struct kmem_cache *s, char *buf)
3784 {
3785 	return sprintf(buf, "%d\n", s->order);
3786 }
3787 SLAB_ATTR_RO(order);
3788 
3789 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3790 {
3791 	if (s->ctor) {
3792 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3793 
3794 		return n + sprintf(buf + n, "\n");
3795 	}
3796 	return 0;
3797 }
3798 SLAB_ATTR_RO(ctor);
3799 
3800 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3801 {
3802 	return sprintf(buf, "%d\n", s->refcount - 1);
3803 }
3804 SLAB_ATTR_RO(aliases);
3805 
3806 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3807 {
3808 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3809 }
3810 SLAB_ATTR_RO(slabs);
3811 
3812 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3813 {
3814 	return slab_objects(s, buf, SO_PARTIAL);
3815 }
3816 SLAB_ATTR_RO(partial);
3817 
3818 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3819 {
3820 	return slab_objects(s, buf, SO_CPU);
3821 }
3822 SLAB_ATTR_RO(cpu_slabs);
3823 
3824 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3825 {
3826 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3827 }
3828 SLAB_ATTR_RO(objects);
3829 
3830 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3831 {
3832 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3833 }
3834 
3835 static ssize_t sanity_checks_store(struct kmem_cache *s,
3836 				const char *buf, size_t length)
3837 {
3838 	s->flags &= ~SLAB_DEBUG_FREE;
3839 	if (buf[0] == '1')
3840 		s->flags |= SLAB_DEBUG_FREE;
3841 	return length;
3842 }
3843 SLAB_ATTR(sanity_checks);
3844 
3845 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3846 {
3847 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3848 }
3849 
3850 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3851 							size_t length)
3852 {
3853 	s->flags &= ~SLAB_TRACE;
3854 	if (buf[0] == '1')
3855 		s->flags |= SLAB_TRACE;
3856 	return length;
3857 }
3858 SLAB_ATTR(trace);
3859 
3860 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3861 {
3862 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3863 }
3864 
3865 static ssize_t reclaim_account_store(struct kmem_cache *s,
3866 				const char *buf, size_t length)
3867 {
3868 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3869 	if (buf[0] == '1')
3870 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3871 	return length;
3872 }
3873 SLAB_ATTR(reclaim_account);
3874 
3875 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3876 {
3877 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3878 }
3879 SLAB_ATTR_RO(hwcache_align);
3880 
3881 #ifdef CONFIG_ZONE_DMA
3882 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3883 {
3884 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3885 }
3886 SLAB_ATTR_RO(cache_dma);
3887 #endif
3888 
3889 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3890 {
3891 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3892 }
3893 SLAB_ATTR_RO(destroy_by_rcu);
3894 
3895 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3896 {
3897 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3898 }
3899 
3900 static ssize_t red_zone_store(struct kmem_cache *s,
3901 				const char *buf, size_t length)
3902 {
3903 	if (any_slab_objects(s))
3904 		return -EBUSY;
3905 
3906 	s->flags &= ~SLAB_RED_ZONE;
3907 	if (buf[0] == '1')
3908 		s->flags |= SLAB_RED_ZONE;
3909 	calculate_sizes(s);
3910 	return length;
3911 }
3912 SLAB_ATTR(red_zone);
3913 
3914 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3915 {
3916 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3917 }
3918 
3919 static ssize_t poison_store(struct kmem_cache *s,
3920 				const char *buf, size_t length)
3921 {
3922 	if (any_slab_objects(s))
3923 		return -EBUSY;
3924 
3925 	s->flags &= ~SLAB_POISON;
3926 	if (buf[0] == '1')
3927 		s->flags |= SLAB_POISON;
3928 	calculate_sizes(s);
3929 	return length;
3930 }
3931 SLAB_ATTR(poison);
3932 
3933 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3934 {
3935 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3936 }
3937 
3938 static ssize_t store_user_store(struct kmem_cache *s,
3939 				const char *buf, size_t length)
3940 {
3941 	if (any_slab_objects(s))
3942 		return -EBUSY;
3943 
3944 	s->flags &= ~SLAB_STORE_USER;
3945 	if (buf[0] == '1')
3946 		s->flags |= SLAB_STORE_USER;
3947 	calculate_sizes(s);
3948 	return length;
3949 }
3950 SLAB_ATTR(store_user);
3951 
3952 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3953 {
3954 	return 0;
3955 }
3956 
3957 static ssize_t validate_store(struct kmem_cache *s,
3958 			const char *buf, size_t length)
3959 {
3960 	int ret = -EINVAL;
3961 
3962 	if (buf[0] == '1') {
3963 		ret = validate_slab_cache(s);
3964 		if (ret >= 0)
3965 			ret = length;
3966 	}
3967 	return ret;
3968 }
3969 SLAB_ATTR(validate);
3970 
3971 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3972 {
3973 	return 0;
3974 }
3975 
3976 static ssize_t shrink_store(struct kmem_cache *s,
3977 			const char *buf, size_t length)
3978 {
3979 	if (buf[0] == '1') {
3980 		int rc = kmem_cache_shrink(s);
3981 
3982 		if (rc)
3983 			return rc;
3984 	} else
3985 		return -EINVAL;
3986 	return length;
3987 }
3988 SLAB_ATTR(shrink);
3989 
3990 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3991 {
3992 	if (!(s->flags & SLAB_STORE_USER))
3993 		return -ENOSYS;
3994 	return list_locations(s, buf, TRACK_ALLOC);
3995 }
3996 SLAB_ATTR_RO(alloc_calls);
3997 
3998 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3999 {
4000 	if (!(s->flags & SLAB_STORE_USER))
4001 		return -ENOSYS;
4002 	return list_locations(s, buf, TRACK_FREE);
4003 }
4004 SLAB_ATTR_RO(free_calls);
4005 
4006 #ifdef CONFIG_NUMA
4007 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4008 {
4009 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4010 }
4011 
4012 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4013 				const char *buf, size_t length)
4014 {
4015 	int n = simple_strtoul(buf, NULL, 10);
4016 
4017 	if (n < 100)
4018 		s->remote_node_defrag_ratio = n * 10;
4019 	return length;
4020 }
4021 SLAB_ATTR(remote_node_defrag_ratio);
4022 #endif
4023 
4024 #ifdef CONFIG_SLUB_STATS
4025 
4026 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4027 {
4028 	unsigned long sum  = 0;
4029 	int cpu;
4030 	int len;
4031 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4032 
4033 	if (!data)
4034 		return -ENOMEM;
4035 
4036 	for_each_online_cpu(cpu) {
4037 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4038 
4039 		data[cpu] = x;
4040 		sum += x;
4041 	}
4042 
4043 	len = sprintf(buf, "%lu", sum);
4044 
4045 	for_each_online_cpu(cpu) {
4046 		if (data[cpu] && len < PAGE_SIZE - 20)
4047 			len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
4048 	}
4049 	kfree(data);
4050 	return len + sprintf(buf + len, "\n");
4051 }
4052 
4053 #define STAT_ATTR(si, text) 					\
4054 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4055 {								\
4056 	return show_stat(s, buf, si);				\
4057 }								\
4058 SLAB_ATTR_RO(text);						\
4059 
4060 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4061 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4062 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4063 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4064 STAT_ATTR(FREE_FROZEN, free_frozen);
4065 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4066 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4067 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4068 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4069 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4070 STAT_ATTR(FREE_SLAB, free_slab);
4071 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4072 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4073 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4074 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4075 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4076 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4077 
4078 #endif
4079 
4080 static struct attribute *slab_attrs[] = {
4081 	&slab_size_attr.attr,
4082 	&object_size_attr.attr,
4083 	&objs_per_slab_attr.attr,
4084 	&order_attr.attr,
4085 	&objects_attr.attr,
4086 	&slabs_attr.attr,
4087 	&partial_attr.attr,
4088 	&cpu_slabs_attr.attr,
4089 	&ctor_attr.attr,
4090 	&aliases_attr.attr,
4091 	&align_attr.attr,
4092 	&sanity_checks_attr.attr,
4093 	&trace_attr.attr,
4094 	&hwcache_align_attr.attr,
4095 	&reclaim_account_attr.attr,
4096 	&destroy_by_rcu_attr.attr,
4097 	&red_zone_attr.attr,
4098 	&poison_attr.attr,
4099 	&store_user_attr.attr,
4100 	&validate_attr.attr,
4101 	&shrink_attr.attr,
4102 	&alloc_calls_attr.attr,
4103 	&free_calls_attr.attr,
4104 #ifdef CONFIG_ZONE_DMA
4105 	&cache_dma_attr.attr,
4106 #endif
4107 #ifdef CONFIG_NUMA
4108 	&remote_node_defrag_ratio_attr.attr,
4109 #endif
4110 #ifdef CONFIG_SLUB_STATS
4111 	&alloc_fastpath_attr.attr,
4112 	&alloc_slowpath_attr.attr,
4113 	&free_fastpath_attr.attr,
4114 	&free_slowpath_attr.attr,
4115 	&free_frozen_attr.attr,
4116 	&free_add_partial_attr.attr,
4117 	&free_remove_partial_attr.attr,
4118 	&alloc_from_partial_attr.attr,
4119 	&alloc_slab_attr.attr,
4120 	&alloc_refill_attr.attr,
4121 	&free_slab_attr.attr,
4122 	&cpuslab_flush_attr.attr,
4123 	&deactivate_full_attr.attr,
4124 	&deactivate_empty_attr.attr,
4125 	&deactivate_to_head_attr.attr,
4126 	&deactivate_to_tail_attr.attr,
4127 	&deactivate_remote_frees_attr.attr,
4128 #endif
4129 	NULL
4130 };
4131 
4132 static struct attribute_group slab_attr_group = {
4133 	.attrs = slab_attrs,
4134 };
4135 
4136 static ssize_t slab_attr_show(struct kobject *kobj,
4137 				struct attribute *attr,
4138 				char *buf)
4139 {
4140 	struct slab_attribute *attribute;
4141 	struct kmem_cache *s;
4142 	int err;
4143 
4144 	attribute = to_slab_attr(attr);
4145 	s = to_slab(kobj);
4146 
4147 	if (!attribute->show)
4148 		return -EIO;
4149 
4150 	err = attribute->show(s, buf);
4151 
4152 	return err;
4153 }
4154 
4155 static ssize_t slab_attr_store(struct kobject *kobj,
4156 				struct attribute *attr,
4157 				const char *buf, size_t len)
4158 {
4159 	struct slab_attribute *attribute;
4160 	struct kmem_cache *s;
4161 	int err;
4162 
4163 	attribute = to_slab_attr(attr);
4164 	s = to_slab(kobj);
4165 
4166 	if (!attribute->store)
4167 		return -EIO;
4168 
4169 	err = attribute->store(s, buf, len);
4170 
4171 	return err;
4172 }
4173 
4174 static void kmem_cache_release(struct kobject *kobj)
4175 {
4176 	struct kmem_cache *s = to_slab(kobj);
4177 
4178 	kfree(s);
4179 }
4180 
4181 static struct sysfs_ops slab_sysfs_ops = {
4182 	.show = slab_attr_show,
4183 	.store = slab_attr_store,
4184 };
4185 
4186 static struct kobj_type slab_ktype = {
4187 	.sysfs_ops = &slab_sysfs_ops,
4188 	.release = kmem_cache_release
4189 };
4190 
4191 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4192 {
4193 	struct kobj_type *ktype = get_ktype(kobj);
4194 
4195 	if (ktype == &slab_ktype)
4196 		return 1;
4197 	return 0;
4198 }
4199 
4200 static struct kset_uevent_ops slab_uevent_ops = {
4201 	.filter = uevent_filter,
4202 };
4203 
4204 static struct kset *slab_kset;
4205 
4206 #define ID_STR_LENGTH 64
4207 
4208 /* Create a unique string id for a slab cache:
4209  * format
4210  * :[flags-]size:[memory address of kmemcache]
4211  */
4212 static char *create_unique_id(struct kmem_cache *s)
4213 {
4214 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4215 	char *p = name;
4216 
4217 	BUG_ON(!name);
4218 
4219 	*p++ = ':';
4220 	/*
4221 	 * First flags affecting slabcache operations. We will only
4222 	 * get here for aliasable slabs so we do not need to support
4223 	 * too many flags. The flags here must cover all flags that
4224 	 * are matched during merging to guarantee that the id is
4225 	 * unique.
4226 	 */
4227 	if (s->flags & SLAB_CACHE_DMA)
4228 		*p++ = 'd';
4229 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4230 		*p++ = 'a';
4231 	if (s->flags & SLAB_DEBUG_FREE)
4232 		*p++ = 'F';
4233 	if (p != name + 1)
4234 		*p++ = '-';
4235 	p += sprintf(p, "%07d", s->size);
4236 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4237 	return name;
4238 }
4239 
4240 static int sysfs_slab_add(struct kmem_cache *s)
4241 {
4242 	int err;
4243 	const char *name;
4244 	int unmergeable;
4245 
4246 	if (slab_state < SYSFS)
4247 		/* Defer until later */
4248 		return 0;
4249 
4250 	unmergeable = slab_unmergeable(s);
4251 	if (unmergeable) {
4252 		/*
4253 		 * Slabcache can never be merged so we can use the name proper.
4254 		 * This is typically the case for debug situations. In that
4255 		 * case we can catch duplicate names easily.
4256 		 */
4257 		sysfs_remove_link(&slab_kset->kobj, s->name);
4258 		name = s->name;
4259 	} else {
4260 		/*
4261 		 * Create a unique name for the slab as a target
4262 		 * for the symlinks.
4263 		 */
4264 		name = create_unique_id(s);
4265 	}
4266 
4267 	s->kobj.kset = slab_kset;
4268 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4269 	if (err) {
4270 		kobject_put(&s->kobj);
4271 		return err;
4272 	}
4273 
4274 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4275 	if (err)
4276 		return err;
4277 	kobject_uevent(&s->kobj, KOBJ_ADD);
4278 	if (!unmergeable) {
4279 		/* Setup first alias */
4280 		sysfs_slab_alias(s, s->name);
4281 		kfree(name);
4282 	}
4283 	return 0;
4284 }
4285 
4286 static void sysfs_slab_remove(struct kmem_cache *s)
4287 {
4288 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4289 	kobject_del(&s->kobj);
4290 	kobject_put(&s->kobj);
4291 }
4292 
4293 /*
4294  * Need to buffer aliases during bootup until sysfs becomes
4295  * available lest we loose that information.
4296  */
4297 struct saved_alias {
4298 	struct kmem_cache *s;
4299 	const char *name;
4300 	struct saved_alias *next;
4301 };
4302 
4303 static struct saved_alias *alias_list;
4304 
4305 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4306 {
4307 	struct saved_alias *al;
4308 
4309 	if (slab_state == SYSFS) {
4310 		/*
4311 		 * If we have a leftover link then remove it.
4312 		 */
4313 		sysfs_remove_link(&slab_kset->kobj, name);
4314 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4315 	}
4316 
4317 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4318 	if (!al)
4319 		return -ENOMEM;
4320 
4321 	al->s = s;
4322 	al->name = name;
4323 	al->next = alias_list;
4324 	alias_list = al;
4325 	return 0;
4326 }
4327 
4328 static int __init slab_sysfs_init(void)
4329 {
4330 	struct kmem_cache *s;
4331 	int err;
4332 
4333 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4334 	if (!slab_kset) {
4335 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4336 		return -ENOSYS;
4337 	}
4338 
4339 	slab_state = SYSFS;
4340 
4341 	list_for_each_entry(s, &slab_caches, list) {
4342 		err = sysfs_slab_add(s);
4343 		if (err)
4344 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4345 						" to sysfs\n", s->name);
4346 	}
4347 
4348 	while (alias_list) {
4349 		struct saved_alias *al = alias_list;
4350 
4351 		alias_list = alias_list->next;
4352 		err = sysfs_slab_alias(al->s, al->name);
4353 		if (err)
4354 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4355 					" %s to sysfs\n", s->name);
4356 		kfree(al);
4357 	}
4358 
4359 	resiliency_test();
4360 	return 0;
4361 }
4362 
4363 __initcall(slab_sysfs_init);
4364 #endif
4365 
4366 /*
4367  * The /proc/slabinfo ABI
4368  */
4369 #ifdef CONFIG_SLABINFO
4370 
4371 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4372                        size_t count, loff_t *ppos)
4373 {
4374 	return -EINVAL;
4375 }
4376 
4377 
4378 static void print_slabinfo_header(struct seq_file *m)
4379 {
4380 	seq_puts(m, "slabinfo - version: 2.1\n");
4381 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4382 		 "<objperslab> <pagesperslab>");
4383 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4384 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4385 	seq_putc(m, '\n');
4386 }
4387 
4388 static void *s_start(struct seq_file *m, loff_t *pos)
4389 {
4390 	loff_t n = *pos;
4391 
4392 	down_read(&slub_lock);
4393 	if (!n)
4394 		print_slabinfo_header(m);
4395 
4396 	return seq_list_start(&slab_caches, *pos);
4397 }
4398 
4399 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4400 {
4401 	return seq_list_next(p, &slab_caches, pos);
4402 }
4403 
4404 static void s_stop(struct seq_file *m, void *p)
4405 {
4406 	up_read(&slub_lock);
4407 }
4408 
4409 static int s_show(struct seq_file *m, void *p)
4410 {
4411 	unsigned long nr_partials = 0;
4412 	unsigned long nr_slabs = 0;
4413 	unsigned long nr_inuse = 0;
4414 	unsigned long nr_objs;
4415 	struct kmem_cache *s;
4416 	int node;
4417 
4418 	s = list_entry(p, struct kmem_cache, list);
4419 
4420 	for_each_online_node(node) {
4421 		struct kmem_cache_node *n = get_node(s, node);
4422 
4423 		if (!n)
4424 			continue;
4425 
4426 		nr_partials += n->nr_partial;
4427 		nr_slabs += atomic_long_read(&n->nr_slabs);
4428 		nr_inuse += count_partial(n);
4429 	}
4430 
4431 	nr_objs = nr_slabs * s->objects;
4432 	nr_inuse += (nr_slabs - nr_partials) * s->objects;
4433 
4434 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4435 		   nr_objs, s->size, s->objects, (1 << s->order));
4436 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4437 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4438 		   0UL);
4439 	seq_putc(m, '\n');
4440 	return 0;
4441 }
4442 
4443 const struct seq_operations slabinfo_op = {
4444 	.start = s_start,
4445 	.next = s_next,
4446 	.stop = s_stop,
4447 	.show = s_show,
4448 };
4449 
4450 #endif /* CONFIG_SLABINFO */
4451