xref: /linux/mm/slub.c (revision eb9b9a6f5ab35db7a431184456fe410b792be03f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * freeptr_t represents a SLUB freelist pointer, which might be encoded
470  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
471  */
472 typedef struct { unsigned long v; } freeptr_t;
473 
474 /*
475  * Returns freelist pointer (ptr). With hardening, this is obfuscated
476  * with an XOR of the address where the pointer is held and a per-cache
477  * random number.
478  */
479 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
480 					    void *ptr, unsigned long ptr_addr)
481 {
482 	unsigned long encoded;
483 
484 #ifdef CONFIG_SLAB_FREELIST_HARDENED
485 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
486 #else
487 	encoded = (unsigned long)ptr;
488 #endif
489 	return (freeptr_t){.v = encoded};
490 }
491 
492 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
493 					freeptr_t ptr, unsigned long ptr_addr)
494 {
495 	void *decoded;
496 
497 #ifdef CONFIG_SLAB_FREELIST_HARDENED
498 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
499 #else
500 	decoded = (void *)ptr.v;
501 #endif
502 	return decoded;
503 }
504 
505 static inline void *get_freepointer(struct kmem_cache *s, void *object)
506 {
507 	unsigned long ptr_addr;
508 	freeptr_t p;
509 
510 	object = kasan_reset_tag(object);
511 	ptr_addr = (unsigned long)object + s->offset;
512 	p = *(freeptr_t *)(ptr_addr);
513 	return freelist_ptr_decode(s, p, ptr_addr);
514 }
515 
516 #ifndef CONFIG_SLUB_TINY
517 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
518 {
519 	prefetchw(object + s->offset);
520 }
521 #endif
522 
523 /*
524  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
525  * pointer value in the case the current thread loses the race for the next
526  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
527  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
528  * KMSAN will still check all arguments of cmpxchg because of imperfect
529  * handling of inline assembly.
530  * To work around this problem, we apply __no_kmsan_checks to ensure that
531  * get_freepointer_safe() returns initialized memory.
532  */
533 __no_kmsan_checks
534 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
535 {
536 	unsigned long freepointer_addr;
537 	freeptr_t p;
538 
539 	if (!debug_pagealloc_enabled_static())
540 		return get_freepointer(s, object);
541 
542 	object = kasan_reset_tag(object);
543 	freepointer_addr = (unsigned long)object + s->offset;
544 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
545 	return freelist_ptr_decode(s, p, freepointer_addr);
546 }
547 
548 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
549 {
550 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
551 
552 #ifdef CONFIG_SLAB_FREELIST_HARDENED
553 	BUG_ON(object == fp); /* naive detection of double free or corruption */
554 #endif
555 
556 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
557 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
558 }
559 
560 /*
561  * See comment in calculate_sizes().
562  */
563 static inline bool freeptr_outside_object(struct kmem_cache *s)
564 {
565 	return s->offset >= s->inuse;
566 }
567 
568 /*
569  * Return offset of the end of info block which is inuse + free pointer if
570  * not overlapping with object.
571  */
572 static inline unsigned int get_info_end(struct kmem_cache *s)
573 {
574 	if (freeptr_outside_object(s))
575 		return s->inuse + sizeof(void *);
576 	else
577 		return s->inuse;
578 }
579 
580 /* Loop over all objects in a slab */
581 #define for_each_object(__p, __s, __addr, __objects) \
582 	for (__p = fixup_red_left(__s, __addr); \
583 		__p < (__addr) + (__objects) * (__s)->size; \
584 		__p += (__s)->size)
585 
586 static inline unsigned int order_objects(unsigned int order, unsigned int size)
587 {
588 	return ((unsigned int)PAGE_SIZE << order) / size;
589 }
590 
591 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
592 		unsigned int size)
593 {
594 	struct kmem_cache_order_objects x = {
595 		(order << OO_SHIFT) + order_objects(order, size)
596 	};
597 
598 	return x;
599 }
600 
601 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
602 {
603 	return x.x >> OO_SHIFT;
604 }
605 
606 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
607 {
608 	return x.x & OO_MASK;
609 }
610 
611 #ifdef CONFIG_SLUB_CPU_PARTIAL
612 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
613 {
614 	unsigned int nr_slabs;
615 
616 	s->cpu_partial = nr_objects;
617 
618 	/*
619 	 * We take the number of objects but actually limit the number of
620 	 * slabs on the per cpu partial list, in order to limit excessive
621 	 * growth of the list. For simplicity we assume that the slabs will
622 	 * be half-full.
623 	 */
624 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
625 	s->cpu_partial_slabs = nr_slabs;
626 }
627 
628 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
629 {
630 	return s->cpu_partial_slabs;
631 }
632 #else
633 static inline void
634 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
635 {
636 }
637 
638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639 {
640 	return 0;
641 }
642 #endif /* CONFIG_SLUB_CPU_PARTIAL */
643 
644 /*
645  * Per slab locking using the pagelock
646  */
647 static __always_inline void slab_lock(struct slab *slab)
648 {
649 	bit_spin_lock(PG_locked, &slab->__page_flags);
650 }
651 
652 static __always_inline void slab_unlock(struct slab *slab)
653 {
654 	bit_spin_unlock(PG_locked, &slab->__page_flags);
655 }
656 
657 static inline bool
658 __update_freelist_fast(struct slab *slab,
659 		      void *freelist_old, unsigned long counters_old,
660 		      void *freelist_new, unsigned long counters_new)
661 {
662 #ifdef system_has_freelist_aba
663 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
664 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
665 
666 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
667 #else
668 	return false;
669 #endif
670 }
671 
672 static inline bool
673 __update_freelist_slow(struct slab *slab,
674 		      void *freelist_old, unsigned long counters_old,
675 		      void *freelist_new, unsigned long counters_new)
676 {
677 	bool ret = false;
678 
679 	slab_lock(slab);
680 	if (slab->freelist == freelist_old &&
681 	    slab->counters == counters_old) {
682 		slab->freelist = freelist_new;
683 		slab->counters = counters_new;
684 		ret = true;
685 	}
686 	slab_unlock(slab);
687 
688 	return ret;
689 }
690 
691 /*
692  * Interrupts must be disabled (for the fallback code to work right), typically
693  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
694  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
695  * allocation/ free operation in hardirq context. Therefore nothing can
696  * interrupt the operation.
697  */
698 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
699 		void *freelist_old, unsigned long counters_old,
700 		void *freelist_new, unsigned long counters_new,
701 		const char *n)
702 {
703 	bool ret;
704 
705 	if (USE_LOCKLESS_FAST_PATH())
706 		lockdep_assert_irqs_disabled();
707 
708 	if (s->flags & __CMPXCHG_DOUBLE) {
709 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
710 				            freelist_new, counters_new);
711 	} else {
712 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
713 				            freelist_new, counters_new);
714 	}
715 	if (likely(ret))
716 		return true;
717 
718 	cpu_relax();
719 	stat(s, CMPXCHG_DOUBLE_FAIL);
720 
721 #ifdef SLUB_DEBUG_CMPXCHG
722 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
723 #endif
724 
725 	return false;
726 }
727 
728 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
729 		void *freelist_old, unsigned long counters_old,
730 		void *freelist_new, unsigned long counters_new,
731 		const char *n)
732 {
733 	bool ret;
734 
735 	if (s->flags & __CMPXCHG_DOUBLE) {
736 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
737 				            freelist_new, counters_new);
738 	} else {
739 		unsigned long flags;
740 
741 		local_irq_save(flags);
742 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
743 				            freelist_new, counters_new);
744 		local_irq_restore(flags);
745 	}
746 	if (likely(ret))
747 		return true;
748 
749 	cpu_relax();
750 	stat(s, CMPXCHG_DOUBLE_FAIL);
751 
752 #ifdef SLUB_DEBUG_CMPXCHG
753 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
754 #endif
755 
756 	return false;
757 }
758 
759 #ifdef CONFIG_SLUB_DEBUG
760 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
761 static DEFINE_SPINLOCK(object_map_lock);
762 
763 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
764 		       struct slab *slab)
765 {
766 	void *addr = slab_address(slab);
767 	void *p;
768 
769 	bitmap_zero(obj_map, slab->objects);
770 
771 	for (p = slab->freelist; p; p = get_freepointer(s, p))
772 		set_bit(__obj_to_index(s, addr, p), obj_map);
773 }
774 
775 #if IS_ENABLED(CONFIG_KUNIT)
776 static bool slab_add_kunit_errors(void)
777 {
778 	struct kunit_resource *resource;
779 
780 	if (!kunit_get_current_test())
781 		return false;
782 
783 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
784 	if (!resource)
785 		return false;
786 
787 	(*(int *)resource->data)++;
788 	kunit_put_resource(resource);
789 	return true;
790 }
791 
792 static bool slab_in_kunit_test(void)
793 {
794 	struct kunit_resource *resource;
795 
796 	if (!kunit_get_current_test())
797 		return false;
798 
799 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
800 	if (!resource)
801 		return false;
802 
803 	kunit_put_resource(resource);
804 	return true;
805 }
806 #else
807 static inline bool slab_add_kunit_errors(void) { return false; }
808 static inline bool slab_in_kunit_test(void) { return false; }
809 #endif
810 
811 static inline unsigned int size_from_object(struct kmem_cache *s)
812 {
813 	if (s->flags & SLAB_RED_ZONE)
814 		return s->size - s->red_left_pad;
815 
816 	return s->size;
817 }
818 
819 static inline void *restore_red_left(struct kmem_cache *s, void *p)
820 {
821 	if (s->flags & SLAB_RED_ZONE)
822 		p -= s->red_left_pad;
823 
824 	return p;
825 }
826 
827 /*
828  * Debug settings:
829  */
830 #if defined(CONFIG_SLUB_DEBUG_ON)
831 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
832 #else
833 static slab_flags_t slub_debug;
834 #endif
835 
836 static char *slub_debug_string;
837 static int disable_higher_order_debug;
838 
839 /*
840  * slub is about to manipulate internal object metadata.  This memory lies
841  * outside the range of the allocated object, so accessing it would normally
842  * be reported by kasan as a bounds error.  metadata_access_enable() is used
843  * to tell kasan that these accesses are OK.
844  */
845 static inline void metadata_access_enable(void)
846 {
847 	kasan_disable_current();
848 	kmsan_disable_current();
849 }
850 
851 static inline void metadata_access_disable(void)
852 {
853 	kmsan_enable_current();
854 	kasan_enable_current();
855 }
856 
857 /*
858  * Object debugging
859  */
860 
861 /* Verify that a pointer has an address that is valid within a slab page */
862 static inline int check_valid_pointer(struct kmem_cache *s,
863 				struct slab *slab, void *object)
864 {
865 	void *base;
866 
867 	if (!object)
868 		return 1;
869 
870 	base = slab_address(slab);
871 	object = kasan_reset_tag(object);
872 	object = restore_red_left(s, object);
873 	if (object < base || object >= base + slab->objects * s->size ||
874 		(object - base) % s->size) {
875 		return 0;
876 	}
877 
878 	return 1;
879 }
880 
881 static void print_section(char *level, char *text, u8 *addr,
882 			  unsigned int length)
883 {
884 	metadata_access_enable();
885 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
886 			16, 1, kasan_reset_tag((void *)addr), length, 1);
887 	metadata_access_disable();
888 }
889 
890 static struct track *get_track(struct kmem_cache *s, void *object,
891 	enum track_item alloc)
892 {
893 	struct track *p;
894 
895 	p = object + get_info_end(s);
896 
897 	return kasan_reset_tag(p + alloc);
898 }
899 
900 #ifdef CONFIG_STACKDEPOT
901 static noinline depot_stack_handle_t set_track_prepare(void)
902 {
903 	depot_stack_handle_t handle;
904 	unsigned long entries[TRACK_ADDRS_COUNT];
905 	unsigned int nr_entries;
906 
907 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
908 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
909 
910 	return handle;
911 }
912 #else
913 static inline depot_stack_handle_t set_track_prepare(void)
914 {
915 	return 0;
916 }
917 #endif
918 
919 static void set_track_update(struct kmem_cache *s, void *object,
920 			     enum track_item alloc, unsigned long addr,
921 			     depot_stack_handle_t handle)
922 {
923 	struct track *p = get_track(s, object, alloc);
924 
925 #ifdef CONFIG_STACKDEPOT
926 	p->handle = handle;
927 #endif
928 	p->addr = addr;
929 	p->cpu = smp_processor_id();
930 	p->pid = current->pid;
931 	p->when = jiffies;
932 }
933 
934 static __always_inline void set_track(struct kmem_cache *s, void *object,
935 				      enum track_item alloc, unsigned long addr)
936 {
937 	depot_stack_handle_t handle = set_track_prepare();
938 
939 	set_track_update(s, object, alloc, addr, handle);
940 }
941 
942 static void init_tracking(struct kmem_cache *s, void *object)
943 {
944 	struct track *p;
945 
946 	if (!(s->flags & SLAB_STORE_USER))
947 		return;
948 
949 	p = get_track(s, object, TRACK_ALLOC);
950 	memset(p, 0, 2*sizeof(struct track));
951 }
952 
953 static void print_track(const char *s, struct track *t, unsigned long pr_time)
954 {
955 	depot_stack_handle_t handle __maybe_unused;
956 
957 	if (!t->addr)
958 		return;
959 
960 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
961 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
962 #ifdef CONFIG_STACKDEPOT
963 	handle = READ_ONCE(t->handle);
964 	if (handle)
965 		stack_depot_print(handle);
966 	else
967 		pr_err("object allocation/free stack trace missing\n");
968 #endif
969 }
970 
971 void print_tracking(struct kmem_cache *s, void *object)
972 {
973 	unsigned long pr_time = jiffies;
974 	if (!(s->flags & SLAB_STORE_USER))
975 		return;
976 
977 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
978 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
979 }
980 
981 static void print_slab_info(const struct slab *slab)
982 {
983 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
984 	       slab, slab->objects, slab->inuse, slab->freelist,
985 	       &slab->__page_flags);
986 }
987 
988 /*
989  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
990  * family will round up the real request size to these fixed ones, so
991  * there could be an extra area than what is requested. Save the original
992  * request size in the meta data area, for better debug and sanity check.
993  */
994 static inline void set_orig_size(struct kmem_cache *s,
995 				void *object, unsigned int orig_size)
996 {
997 	void *p = kasan_reset_tag(object);
998 	unsigned int kasan_meta_size;
999 
1000 	if (!slub_debug_orig_size(s))
1001 		return;
1002 
1003 	/*
1004 	 * KASAN can save its free meta data inside of the object at offset 0.
1005 	 * If this meta data size is larger than 'orig_size', it will overlap
1006 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
1007 	 * 'orig_size' to be as at least as big as KASAN's meta data.
1008 	 */
1009 	kasan_meta_size = kasan_metadata_size(s, true);
1010 	if (kasan_meta_size > orig_size)
1011 		orig_size = kasan_meta_size;
1012 
1013 	p += get_info_end(s);
1014 	p += sizeof(struct track) * 2;
1015 
1016 	*(unsigned int *)p = orig_size;
1017 }
1018 
1019 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
1020 {
1021 	void *p = kasan_reset_tag(object);
1022 
1023 	if (!slub_debug_orig_size(s))
1024 		return s->object_size;
1025 
1026 	p += get_info_end(s);
1027 	p += sizeof(struct track) * 2;
1028 
1029 	return *(unsigned int *)p;
1030 }
1031 
1032 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1033 {
1034 	set_orig_size(s, (void *)object, s->object_size);
1035 }
1036 
1037 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1038 {
1039 	struct va_format vaf;
1040 	va_list args;
1041 
1042 	va_start(args, fmt);
1043 	vaf.fmt = fmt;
1044 	vaf.va = &args;
1045 	pr_err("=============================================================================\n");
1046 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1047 	pr_err("-----------------------------------------------------------------------------\n\n");
1048 	va_end(args);
1049 }
1050 
1051 __printf(2, 3)
1052 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1053 {
1054 	struct va_format vaf;
1055 	va_list args;
1056 
1057 	if (slab_add_kunit_errors())
1058 		return;
1059 
1060 	va_start(args, fmt);
1061 	vaf.fmt = fmt;
1062 	vaf.va = &args;
1063 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1064 	va_end(args);
1065 }
1066 
1067 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1068 {
1069 	unsigned int off;	/* Offset of last byte */
1070 	u8 *addr = slab_address(slab);
1071 
1072 	print_tracking(s, p);
1073 
1074 	print_slab_info(slab);
1075 
1076 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1077 	       p, p - addr, get_freepointer(s, p));
1078 
1079 	if (s->flags & SLAB_RED_ZONE)
1080 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1081 			      s->red_left_pad);
1082 	else if (p > addr + 16)
1083 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1084 
1085 	print_section(KERN_ERR,         "Object   ", p,
1086 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1087 	if (s->flags & SLAB_RED_ZONE)
1088 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1089 			s->inuse - s->object_size);
1090 
1091 	off = get_info_end(s);
1092 
1093 	if (s->flags & SLAB_STORE_USER)
1094 		off += 2 * sizeof(struct track);
1095 
1096 	if (slub_debug_orig_size(s))
1097 		off += sizeof(unsigned int);
1098 
1099 	off += kasan_metadata_size(s, false);
1100 
1101 	if (off != size_from_object(s))
1102 		/* Beginning of the filler is the free pointer */
1103 		print_section(KERN_ERR, "Padding  ", p + off,
1104 			      size_from_object(s) - off);
1105 
1106 	dump_stack();
1107 }
1108 
1109 static void object_err(struct kmem_cache *s, struct slab *slab,
1110 			u8 *object, char *reason)
1111 {
1112 	if (slab_add_kunit_errors())
1113 		return;
1114 
1115 	slab_bug(s, "%s", reason);
1116 	print_trailer(s, slab, object);
1117 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1118 }
1119 
1120 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1121 			       void **freelist, void *nextfree)
1122 {
1123 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1124 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1125 		object_err(s, slab, *freelist, "Freechain corrupt");
1126 		*freelist = NULL;
1127 		slab_fix(s, "Isolate corrupted freechain");
1128 		return true;
1129 	}
1130 
1131 	return false;
1132 }
1133 
1134 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1135 			const char *fmt, ...)
1136 {
1137 	va_list args;
1138 	char buf[100];
1139 
1140 	if (slab_add_kunit_errors())
1141 		return;
1142 
1143 	va_start(args, fmt);
1144 	vsnprintf(buf, sizeof(buf), fmt, args);
1145 	va_end(args);
1146 	slab_bug(s, "%s", buf);
1147 	print_slab_info(slab);
1148 	dump_stack();
1149 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1150 }
1151 
1152 static void init_object(struct kmem_cache *s, void *object, u8 val)
1153 {
1154 	u8 *p = kasan_reset_tag(object);
1155 	unsigned int poison_size = s->object_size;
1156 
1157 	if (s->flags & SLAB_RED_ZONE) {
1158 		/*
1159 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1160 		 * the shadow makes it possible to distinguish uninit-value
1161 		 * from use-after-free.
1162 		 */
1163 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1164 					  s->red_left_pad);
1165 
1166 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1167 			/*
1168 			 * Redzone the extra allocated space by kmalloc than
1169 			 * requested, and the poison size will be limited to
1170 			 * the original request size accordingly.
1171 			 */
1172 			poison_size = get_orig_size(s, object);
1173 		}
1174 	}
1175 
1176 	if (s->flags & __OBJECT_POISON) {
1177 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1178 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1179 	}
1180 
1181 	if (s->flags & SLAB_RED_ZONE)
1182 		memset_no_sanitize_memory(p + poison_size, val,
1183 					  s->inuse - poison_size);
1184 }
1185 
1186 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1187 						void *from, void *to)
1188 {
1189 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1190 	memset(from, data, to - from);
1191 }
1192 
1193 #ifdef CONFIG_KMSAN
1194 #define pad_check_attributes noinline __no_kmsan_checks
1195 #else
1196 #define pad_check_attributes
1197 #endif
1198 
1199 static pad_check_attributes int
1200 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1201 		       u8 *object, char *what,
1202 		       u8 *start, unsigned int value, unsigned int bytes)
1203 {
1204 	u8 *fault;
1205 	u8 *end;
1206 	u8 *addr = slab_address(slab);
1207 
1208 	metadata_access_enable();
1209 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1210 	metadata_access_disable();
1211 	if (!fault)
1212 		return 1;
1213 
1214 	end = start + bytes;
1215 	while (end > fault && end[-1] == value)
1216 		end--;
1217 
1218 	if (slab_add_kunit_errors())
1219 		goto skip_bug_print;
1220 
1221 	slab_bug(s, "%s overwritten", what);
1222 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 					fault, end - 1, fault - addr,
1224 					fault[0], value);
1225 
1226 skip_bug_print:
1227 	restore_bytes(s, what, value, fault, end);
1228 	return 0;
1229 }
1230 
1231 /*
1232  * Object layout:
1233  *
1234  * object address
1235  * 	Bytes of the object to be managed.
1236  * 	If the freepointer may overlay the object then the free
1237  *	pointer is at the middle of the object.
1238  *
1239  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1240  * 	0xa5 (POISON_END)
1241  *
1242  * object + s->object_size
1243  * 	Padding to reach word boundary. This is also used for Redzoning.
1244  * 	Padding is extended by another word if Redzoning is enabled and
1245  * 	object_size == inuse.
1246  *
1247  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1248  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1249  *
1250  * object + s->inuse
1251  * 	Meta data starts here.
1252  *
1253  * 	A. Free pointer (if we cannot overwrite object on free)
1254  * 	B. Tracking data for SLAB_STORE_USER
1255  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1256  *	D. Padding to reach required alignment boundary or at minimum
1257  * 		one word if debugging is on to be able to detect writes
1258  * 		before the word boundary.
1259  *
1260  *	Padding is done using 0x5a (POISON_INUSE)
1261  *
1262  * object + s->size
1263  * 	Nothing is used beyond s->size.
1264  *
1265  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1266  * ignored. And therefore no slab options that rely on these boundaries
1267  * may be used with merged slabcaches.
1268  */
1269 
1270 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1271 {
1272 	unsigned long off = get_info_end(s);	/* The end of info */
1273 
1274 	if (s->flags & SLAB_STORE_USER) {
1275 		/* We also have user information there */
1276 		off += 2 * sizeof(struct track);
1277 
1278 		if (s->flags & SLAB_KMALLOC)
1279 			off += sizeof(unsigned int);
1280 	}
1281 
1282 	off += kasan_metadata_size(s, false);
1283 
1284 	if (size_from_object(s) == off)
1285 		return 1;
1286 
1287 	return check_bytes_and_report(s, slab, p, "Object padding",
1288 			p + off, POISON_INUSE, size_from_object(s) - off);
1289 }
1290 
1291 /* Check the pad bytes at the end of a slab page */
1292 static pad_check_attributes void
1293 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1294 {
1295 	u8 *start;
1296 	u8 *fault;
1297 	u8 *end;
1298 	u8 *pad;
1299 	int length;
1300 	int remainder;
1301 
1302 	if (!(s->flags & SLAB_POISON))
1303 		return;
1304 
1305 	start = slab_address(slab);
1306 	length = slab_size(slab);
1307 	end = start + length;
1308 	remainder = length % s->size;
1309 	if (!remainder)
1310 		return;
1311 
1312 	pad = end - remainder;
1313 	metadata_access_enable();
1314 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1315 	metadata_access_disable();
1316 	if (!fault)
1317 		return;
1318 	while (end > fault && end[-1] == POISON_INUSE)
1319 		end--;
1320 
1321 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1322 			fault, end - 1, fault - start);
1323 	print_section(KERN_ERR, "Padding ", pad, remainder);
1324 
1325 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1326 }
1327 
1328 static int check_object(struct kmem_cache *s, struct slab *slab,
1329 					void *object, u8 val)
1330 {
1331 	u8 *p = object;
1332 	u8 *endobject = object + s->object_size;
1333 	unsigned int orig_size, kasan_meta_size;
1334 	int ret = 1;
1335 
1336 	if (s->flags & SLAB_RED_ZONE) {
1337 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1338 			object - s->red_left_pad, val, s->red_left_pad))
1339 			ret = 0;
1340 
1341 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1342 			endobject, val, s->inuse - s->object_size))
1343 			ret = 0;
1344 
1345 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1346 			orig_size = get_orig_size(s, object);
1347 
1348 			if (s->object_size > orig_size  &&
1349 				!check_bytes_and_report(s, slab, object,
1350 					"kmalloc Redzone", p + orig_size,
1351 					val, s->object_size - orig_size)) {
1352 				ret = 0;
1353 			}
1354 		}
1355 	} else {
1356 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1357 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1358 				endobject, POISON_INUSE,
1359 				s->inuse - s->object_size))
1360 				ret = 0;
1361 		}
1362 	}
1363 
1364 	if (s->flags & SLAB_POISON) {
1365 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1366 			/*
1367 			 * KASAN can save its free meta data inside of the
1368 			 * object at offset 0. Thus, skip checking the part of
1369 			 * the redzone that overlaps with the meta data.
1370 			 */
1371 			kasan_meta_size = kasan_metadata_size(s, true);
1372 			if (kasan_meta_size < s->object_size - 1 &&
1373 			    !check_bytes_and_report(s, slab, p, "Poison",
1374 					p + kasan_meta_size, POISON_FREE,
1375 					s->object_size - kasan_meta_size - 1))
1376 				ret = 0;
1377 			if (kasan_meta_size < s->object_size &&
1378 			    !check_bytes_and_report(s, slab, p, "End Poison",
1379 					p + s->object_size - 1, POISON_END, 1))
1380 				ret = 0;
1381 		}
1382 		/*
1383 		 * check_pad_bytes cleans up on its own.
1384 		 */
1385 		if (!check_pad_bytes(s, slab, p))
1386 			ret = 0;
1387 	}
1388 
1389 	/*
1390 	 * Cannot check freepointer while object is allocated if
1391 	 * object and freepointer overlap.
1392 	 */
1393 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1394 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1395 		object_err(s, slab, p, "Freepointer corrupt");
1396 		/*
1397 		 * No choice but to zap it and thus lose the remainder
1398 		 * of the free objects in this slab. May cause
1399 		 * another error because the object count is now wrong.
1400 		 */
1401 		set_freepointer(s, p, NULL);
1402 		ret = 0;
1403 	}
1404 
1405 	if (!ret && !slab_in_kunit_test()) {
1406 		print_trailer(s, slab, object);
1407 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1408 	}
1409 
1410 	return ret;
1411 }
1412 
1413 static int check_slab(struct kmem_cache *s, struct slab *slab)
1414 {
1415 	int maxobj;
1416 
1417 	if (!folio_test_slab(slab_folio(slab))) {
1418 		slab_err(s, slab, "Not a valid slab page");
1419 		return 0;
1420 	}
1421 
1422 	maxobj = order_objects(slab_order(slab), s->size);
1423 	if (slab->objects > maxobj) {
1424 		slab_err(s, slab, "objects %u > max %u",
1425 			slab->objects, maxobj);
1426 		return 0;
1427 	}
1428 	if (slab->inuse > slab->objects) {
1429 		slab_err(s, slab, "inuse %u > max %u",
1430 			slab->inuse, slab->objects);
1431 		return 0;
1432 	}
1433 	/* Slab_pad_check fixes things up after itself */
1434 	slab_pad_check(s, slab);
1435 	return 1;
1436 }
1437 
1438 /*
1439  * Determine if a certain object in a slab is on the freelist. Must hold the
1440  * slab lock to guarantee that the chains are in a consistent state.
1441  */
1442 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1443 {
1444 	int nr = 0;
1445 	void *fp;
1446 	void *object = NULL;
1447 	int max_objects;
1448 
1449 	fp = slab->freelist;
1450 	while (fp && nr <= slab->objects) {
1451 		if (fp == search)
1452 			return 1;
1453 		if (!check_valid_pointer(s, slab, fp)) {
1454 			if (object) {
1455 				object_err(s, slab, object,
1456 					"Freechain corrupt");
1457 				set_freepointer(s, object, NULL);
1458 			} else {
1459 				slab_err(s, slab, "Freepointer corrupt");
1460 				slab->freelist = NULL;
1461 				slab->inuse = slab->objects;
1462 				slab_fix(s, "Freelist cleared");
1463 				return 0;
1464 			}
1465 			break;
1466 		}
1467 		object = fp;
1468 		fp = get_freepointer(s, object);
1469 		nr++;
1470 	}
1471 
1472 	max_objects = order_objects(slab_order(slab), s->size);
1473 	if (max_objects > MAX_OBJS_PER_PAGE)
1474 		max_objects = MAX_OBJS_PER_PAGE;
1475 
1476 	if (slab->objects != max_objects) {
1477 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1478 			 slab->objects, max_objects);
1479 		slab->objects = max_objects;
1480 		slab_fix(s, "Number of objects adjusted");
1481 	}
1482 	if (slab->inuse != slab->objects - nr) {
1483 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1484 			 slab->inuse, slab->objects - nr);
1485 		slab->inuse = slab->objects - nr;
1486 		slab_fix(s, "Object count adjusted");
1487 	}
1488 	return search == NULL;
1489 }
1490 
1491 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1492 								int alloc)
1493 {
1494 	if (s->flags & SLAB_TRACE) {
1495 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1496 			s->name,
1497 			alloc ? "alloc" : "free",
1498 			object, slab->inuse,
1499 			slab->freelist);
1500 
1501 		if (!alloc)
1502 			print_section(KERN_INFO, "Object ", (void *)object,
1503 					s->object_size);
1504 
1505 		dump_stack();
1506 	}
1507 }
1508 
1509 /*
1510  * Tracking of fully allocated slabs for debugging purposes.
1511  */
1512 static void add_full(struct kmem_cache *s,
1513 	struct kmem_cache_node *n, struct slab *slab)
1514 {
1515 	if (!(s->flags & SLAB_STORE_USER))
1516 		return;
1517 
1518 	lockdep_assert_held(&n->list_lock);
1519 	list_add(&slab->slab_list, &n->full);
1520 }
1521 
1522 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1523 {
1524 	if (!(s->flags & SLAB_STORE_USER))
1525 		return;
1526 
1527 	lockdep_assert_held(&n->list_lock);
1528 	list_del(&slab->slab_list);
1529 }
1530 
1531 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1532 {
1533 	return atomic_long_read(&n->nr_slabs);
1534 }
1535 
1536 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1537 {
1538 	struct kmem_cache_node *n = get_node(s, node);
1539 
1540 	atomic_long_inc(&n->nr_slabs);
1541 	atomic_long_add(objects, &n->total_objects);
1542 }
1543 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1544 {
1545 	struct kmem_cache_node *n = get_node(s, node);
1546 
1547 	atomic_long_dec(&n->nr_slabs);
1548 	atomic_long_sub(objects, &n->total_objects);
1549 }
1550 
1551 /* Object debug checks for alloc/free paths */
1552 static void setup_object_debug(struct kmem_cache *s, void *object)
1553 {
1554 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1555 		return;
1556 
1557 	init_object(s, object, SLUB_RED_INACTIVE);
1558 	init_tracking(s, object);
1559 }
1560 
1561 static
1562 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1563 {
1564 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1565 		return;
1566 
1567 	metadata_access_enable();
1568 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1569 	metadata_access_disable();
1570 }
1571 
1572 static inline int alloc_consistency_checks(struct kmem_cache *s,
1573 					struct slab *slab, void *object)
1574 {
1575 	if (!check_slab(s, slab))
1576 		return 0;
1577 
1578 	if (!check_valid_pointer(s, slab, object)) {
1579 		object_err(s, slab, object, "Freelist Pointer check fails");
1580 		return 0;
1581 	}
1582 
1583 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1584 		return 0;
1585 
1586 	return 1;
1587 }
1588 
1589 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1590 			struct slab *slab, void *object, int orig_size)
1591 {
1592 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1593 		if (!alloc_consistency_checks(s, slab, object))
1594 			goto bad;
1595 	}
1596 
1597 	/* Success. Perform special debug activities for allocs */
1598 	trace(s, slab, object, 1);
1599 	set_orig_size(s, object, orig_size);
1600 	init_object(s, object, SLUB_RED_ACTIVE);
1601 	return true;
1602 
1603 bad:
1604 	if (folio_test_slab(slab_folio(slab))) {
1605 		/*
1606 		 * If this is a slab page then lets do the best we can
1607 		 * to avoid issues in the future. Marking all objects
1608 		 * as used avoids touching the remaining objects.
1609 		 */
1610 		slab_fix(s, "Marking all objects used");
1611 		slab->inuse = slab->objects;
1612 		slab->freelist = NULL;
1613 	}
1614 	return false;
1615 }
1616 
1617 static inline int free_consistency_checks(struct kmem_cache *s,
1618 		struct slab *slab, void *object, unsigned long addr)
1619 {
1620 	if (!check_valid_pointer(s, slab, object)) {
1621 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1622 		return 0;
1623 	}
1624 
1625 	if (on_freelist(s, slab, object)) {
1626 		object_err(s, slab, object, "Object already free");
1627 		return 0;
1628 	}
1629 
1630 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1631 		return 0;
1632 
1633 	if (unlikely(s != slab->slab_cache)) {
1634 		if (!folio_test_slab(slab_folio(slab))) {
1635 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1636 				 object);
1637 		} else if (!slab->slab_cache) {
1638 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1639 			       object);
1640 			dump_stack();
1641 		} else
1642 			object_err(s, slab, object,
1643 					"page slab pointer corrupt.");
1644 		return 0;
1645 	}
1646 	return 1;
1647 }
1648 
1649 /*
1650  * Parse a block of slab_debug options. Blocks are delimited by ';'
1651  *
1652  * @str:    start of block
1653  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1654  * @slabs:  return start of list of slabs, or NULL when there's no list
1655  * @init:   assume this is initial parsing and not per-kmem-create parsing
1656  *
1657  * returns the start of next block if there's any, or NULL
1658  */
1659 static char *
1660 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1661 {
1662 	bool higher_order_disable = false;
1663 
1664 	/* Skip any completely empty blocks */
1665 	while (*str && *str == ';')
1666 		str++;
1667 
1668 	if (*str == ',') {
1669 		/*
1670 		 * No options but restriction on slabs. This means full
1671 		 * debugging for slabs matching a pattern.
1672 		 */
1673 		*flags = DEBUG_DEFAULT_FLAGS;
1674 		goto check_slabs;
1675 	}
1676 	*flags = 0;
1677 
1678 	/* Determine which debug features should be switched on */
1679 	for (; *str && *str != ',' && *str != ';'; str++) {
1680 		switch (tolower(*str)) {
1681 		case '-':
1682 			*flags = 0;
1683 			break;
1684 		case 'f':
1685 			*flags |= SLAB_CONSISTENCY_CHECKS;
1686 			break;
1687 		case 'z':
1688 			*flags |= SLAB_RED_ZONE;
1689 			break;
1690 		case 'p':
1691 			*flags |= SLAB_POISON;
1692 			break;
1693 		case 'u':
1694 			*flags |= SLAB_STORE_USER;
1695 			break;
1696 		case 't':
1697 			*flags |= SLAB_TRACE;
1698 			break;
1699 		case 'a':
1700 			*flags |= SLAB_FAILSLAB;
1701 			break;
1702 		case 'o':
1703 			/*
1704 			 * Avoid enabling debugging on caches if its minimum
1705 			 * order would increase as a result.
1706 			 */
1707 			higher_order_disable = true;
1708 			break;
1709 		default:
1710 			if (init)
1711 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1712 		}
1713 	}
1714 check_slabs:
1715 	if (*str == ',')
1716 		*slabs = ++str;
1717 	else
1718 		*slabs = NULL;
1719 
1720 	/* Skip over the slab list */
1721 	while (*str && *str != ';')
1722 		str++;
1723 
1724 	/* Skip any completely empty blocks */
1725 	while (*str && *str == ';')
1726 		str++;
1727 
1728 	if (init && higher_order_disable)
1729 		disable_higher_order_debug = 1;
1730 
1731 	if (*str)
1732 		return str;
1733 	else
1734 		return NULL;
1735 }
1736 
1737 static int __init setup_slub_debug(char *str)
1738 {
1739 	slab_flags_t flags;
1740 	slab_flags_t global_flags;
1741 	char *saved_str;
1742 	char *slab_list;
1743 	bool global_slub_debug_changed = false;
1744 	bool slab_list_specified = false;
1745 
1746 	global_flags = DEBUG_DEFAULT_FLAGS;
1747 	if (*str++ != '=' || !*str)
1748 		/*
1749 		 * No options specified. Switch on full debugging.
1750 		 */
1751 		goto out;
1752 
1753 	saved_str = str;
1754 	while (str) {
1755 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1756 
1757 		if (!slab_list) {
1758 			global_flags = flags;
1759 			global_slub_debug_changed = true;
1760 		} else {
1761 			slab_list_specified = true;
1762 			if (flags & SLAB_STORE_USER)
1763 				stack_depot_request_early_init();
1764 		}
1765 	}
1766 
1767 	/*
1768 	 * For backwards compatibility, a single list of flags with list of
1769 	 * slabs means debugging is only changed for those slabs, so the global
1770 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1771 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1772 	 * long as there is no option specifying flags without a slab list.
1773 	 */
1774 	if (slab_list_specified) {
1775 		if (!global_slub_debug_changed)
1776 			global_flags = slub_debug;
1777 		slub_debug_string = saved_str;
1778 	}
1779 out:
1780 	slub_debug = global_flags;
1781 	if (slub_debug & SLAB_STORE_USER)
1782 		stack_depot_request_early_init();
1783 	if (slub_debug != 0 || slub_debug_string)
1784 		static_branch_enable(&slub_debug_enabled);
1785 	else
1786 		static_branch_disable(&slub_debug_enabled);
1787 	if ((static_branch_unlikely(&init_on_alloc) ||
1788 	     static_branch_unlikely(&init_on_free)) &&
1789 	    (slub_debug & SLAB_POISON))
1790 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1791 	return 1;
1792 }
1793 
1794 __setup("slab_debug", setup_slub_debug);
1795 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1796 
1797 /*
1798  * kmem_cache_flags - apply debugging options to the cache
1799  * @flags:		flags to set
1800  * @name:		name of the cache
1801  *
1802  * Debug option(s) are applied to @flags. In addition to the debug
1803  * option(s), if a slab name (or multiple) is specified i.e.
1804  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1805  * then only the select slabs will receive the debug option(s).
1806  */
1807 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1808 {
1809 	char *iter;
1810 	size_t len;
1811 	char *next_block;
1812 	slab_flags_t block_flags;
1813 	slab_flags_t slub_debug_local = slub_debug;
1814 
1815 	if (flags & SLAB_NO_USER_FLAGS)
1816 		return flags;
1817 
1818 	/*
1819 	 * If the slab cache is for debugging (e.g. kmemleak) then
1820 	 * don't store user (stack trace) information by default,
1821 	 * but let the user enable it via the command line below.
1822 	 */
1823 	if (flags & SLAB_NOLEAKTRACE)
1824 		slub_debug_local &= ~SLAB_STORE_USER;
1825 
1826 	len = strlen(name);
1827 	next_block = slub_debug_string;
1828 	/* Go through all blocks of debug options, see if any matches our slab's name */
1829 	while (next_block) {
1830 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1831 		if (!iter)
1832 			continue;
1833 		/* Found a block that has a slab list, search it */
1834 		while (*iter) {
1835 			char *end, *glob;
1836 			size_t cmplen;
1837 
1838 			end = strchrnul(iter, ',');
1839 			if (next_block && next_block < end)
1840 				end = next_block - 1;
1841 
1842 			glob = strnchr(iter, end - iter, '*');
1843 			if (glob)
1844 				cmplen = glob - iter;
1845 			else
1846 				cmplen = max_t(size_t, len, (end - iter));
1847 
1848 			if (!strncmp(name, iter, cmplen)) {
1849 				flags |= block_flags;
1850 				return flags;
1851 			}
1852 
1853 			if (!*end || *end == ';')
1854 				break;
1855 			iter = end + 1;
1856 		}
1857 	}
1858 
1859 	return flags | slub_debug_local;
1860 }
1861 #else /* !CONFIG_SLUB_DEBUG */
1862 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1863 static inline
1864 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1865 
1866 static inline bool alloc_debug_processing(struct kmem_cache *s,
1867 	struct slab *slab, void *object, int orig_size) { return true; }
1868 
1869 static inline bool free_debug_processing(struct kmem_cache *s,
1870 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1871 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1872 
1873 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1874 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1875 			void *object, u8 val) { return 1; }
1876 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1877 static inline void set_track(struct kmem_cache *s, void *object,
1878 			     enum track_item alloc, unsigned long addr) {}
1879 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1880 					struct slab *slab) {}
1881 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1882 					struct slab *slab) {}
1883 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1884 {
1885 	return flags;
1886 }
1887 #define slub_debug 0
1888 
1889 #define disable_higher_order_debug 0
1890 
1891 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1892 							{ return 0; }
1893 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1894 							int objects) {}
1895 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1896 							int objects) {}
1897 
1898 #ifndef CONFIG_SLUB_TINY
1899 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1900 			       void **freelist, void *nextfree)
1901 {
1902 	return false;
1903 }
1904 #endif
1905 #endif /* CONFIG_SLUB_DEBUG */
1906 
1907 #ifdef CONFIG_SLAB_OBJ_EXT
1908 
1909 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1910 
1911 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1912 {
1913 	struct slabobj_ext *slab_exts;
1914 	struct slab *obj_exts_slab;
1915 
1916 	obj_exts_slab = virt_to_slab(obj_exts);
1917 	slab_exts = slab_obj_exts(obj_exts_slab);
1918 	if (slab_exts) {
1919 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1920 						 obj_exts_slab, obj_exts);
1921 		/* codetag should be NULL */
1922 		WARN_ON(slab_exts[offs].ref.ct);
1923 		set_codetag_empty(&slab_exts[offs].ref);
1924 	}
1925 }
1926 
1927 static inline void mark_failed_objexts_alloc(struct slab *slab)
1928 {
1929 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1930 }
1931 
1932 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1933 			struct slabobj_ext *vec, unsigned int objects)
1934 {
1935 	/*
1936 	 * If vector previously failed to allocate then we have live
1937 	 * objects with no tag reference. Mark all references in this
1938 	 * vector as empty to avoid warnings later on.
1939 	 */
1940 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1941 		unsigned int i;
1942 
1943 		for (i = 0; i < objects; i++)
1944 			set_codetag_empty(&vec[i].ref);
1945 	}
1946 }
1947 
1948 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1949 
1950 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1951 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1952 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1953 			struct slabobj_ext *vec, unsigned int objects) {}
1954 
1955 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1956 
1957 /*
1958  * The allocated objcg pointers array is not accounted directly.
1959  * Moreover, it should not come from DMA buffer and is not readily
1960  * reclaimable. So those GFP bits should be masked off.
1961  */
1962 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1963 				__GFP_ACCOUNT | __GFP_NOFAIL)
1964 
1965 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1966 		        gfp_t gfp, bool new_slab)
1967 {
1968 	unsigned int objects = objs_per_slab(s, slab);
1969 	unsigned long new_exts;
1970 	unsigned long old_exts;
1971 	struct slabobj_ext *vec;
1972 
1973 	gfp &= ~OBJCGS_CLEAR_MASK;
1974 	/* Prevent recursive extension vector allocation */
1975 	gfp |= __GFP_NO_OBJ_EXT;
1976 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1977 			   slab_nid(slab));
1978 	if (!vec) {
1979 		/* Mark vectors which failed to allocate */
1980 		if (new_slab)
1981 			mark_failed_objexts_alloc(slab);
1982 
1983 		return -ENOMEM;
1984 	}
1985 
1986 	new_exts = (unsigned long)vec;
1987 #ifdef CONFIG_MEMCG
1988 	new_exts |= MEMCG_DATA_OBJEXTS;
1989 #endif
1990 	old_exts = READ_ONCE(slab->obj_exts);
1991 	handle_failed_objexts_alloc(old_exts, vec, objects);
1992 	if (new_slab) {
1993 		/*
1994 		 * If the slab is brand new and nobody can yet access its
1995 		 * obj_exts, no synchronization is required and obj_exts can
1996 		 * be simply assigned.
1997 		 */
1998 		slab->obj_exts = new_exts;
1999 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2000 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2001 		/*
2002 		 * If the slab is already in use, somebody can allocate and
2003 		 * assign slabobj_exts in parallel. In this case the existing
2004 		 * objcg vector should be reused.
2005 		 */
2006 		mark_objexts_empty(vec);
2007 		kfree(vec);
2008 		return 0;
2009 	}
2010 
2011 	kmemleak_not_leak(vec);
2012 	return 0;
2013 }
2014 
2015 static inline void free_slab_obj_exts(struct slab *slab)
2016 {
2017 	struct slabobj_ext *obj_exts;
2018 
2019 	obj_exts = slab_obj_exts(slab);
2020 	if (!obj_exts)
2021 		return;
2022 
2023 	/*
2024 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2025 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2026 	 * warning if slab has extensions but the extension of an object is
2027 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2028 	 * the extension for obj_exts is expected to be NULL.
2029 	 */
2030 	mark_objexts_empty(obj_exts);
2031 	kfree(obj_exts);
2032 	slab->obj_exts = 0;
2033 }
2034 
2035 static inline bool need_slab_obj_ext(void)
2036 {
2037 	if (mem_alloc_profiling_enabled())
2038 		return true;
2039 
2040 	/*
2041 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2042 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2043 	 */
2044 	return false;
2045 }
2046 
2047 #else /* CONFIG_SLAB_OBJ_EXT */
2048 
2049 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2050 			       gfp_t gfp, bool new_slab)
2051 {
2052 	return 0;
2053 }
2054 
2055 static inline void free_slab_obj_exts(struct slab *slab)
2056 {
2057 }
2058 
2059 static inline bool need_slab_obj_ext(void)
2060 {
2061 	return false;
2062 }
2063 
2064 #endif /* CONFIG_SLAB_OBJ_EXT */
2065 
2066 #ifdef CONFIG_MEM_ALLOC_PROFILING
2067 
2068 static inline struct slabobj_ext *
2069 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2070 {
2071 	struct slab *slab;
2072 
2073 	if (!p)
2074 		return NULL;
2075 
2076 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2077 		return NULL;
2078 
2079 	if (flags & __GFP_NO_OBJ_EXT)
2080 		return NULL;
2081 
2082 	slab = virt_to_slab(p);
2083 	if (!slab_obj_exts(slab) &&
2084 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2085 		 "%s, %s: Failed to create slab extension vector!\n",
2086 		 __func__, s->name))
2087 		return NULL;
2088 
2089 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2090 }
2091 
2092 static inline void
2093 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2094 {
2095 	if (need_slab_obj_ext()) {
2096 		struct slabobj_ext *obj_exts;
2097 
2098 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2099 		/*
2100 		 * Currently obj_exts is used only for allocation profiling.
2101 		 * If other users appear then mem_alloc_profiling_enabled()
2102 		 * check should be added before alloc_tag_add().
2103 		 */
2104 		if (likely(obj_exts))
2105 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2106 	}
2107 }
2108 
2109 static inline void
2110 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2111 			     int objects)
2112 {
2113 	struct slabobj_ext *obj_exts;
2114 	int i;
2115 
2116 	if (!mem_alloc_profiling_enabled())
2117 		return;
2118 
2119 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2120 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2121 		return;
2122 
2123 	obj_exts = slab_obj_exts(slab);
2124 	if (!obj_exts)
2125 		return;
2126 
2127 	for (i = 0; i < objects; i++) {
2128 		unsigned int off = obj_to_index(s, slab, p[i]);
2129 
2130 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2131 	}
2132 }
2133 
2134 #else /* CONFIG_MEM_ALLOC_PROFILING */
2135 
2136 static inline void
2137 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2138 {
2139 }
2140 
2141 static inline void
2142 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2143 			     int objects)
2144 {
2145 }
2146 
2147 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2148 
2149 
2150 #ifdef CONFIG_MEMCG
2151 
2152 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2153 
2154 static __fastpath_inline
2155 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2156 				gfp_t flags, size_t size, void **p)
2157 {
2158 	if (likely(!memcg_kmem_online()))
2159 		return true;
2160 
2161 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2162 		return true;
2163 
2164 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2165 		return true;
2166 
2167 	if (likely(size == 1)) {
2168 		memcg_alloc_abort_single(s, *p);
2169 		*p = NULL;
2170 	} else {
2171 		kmem_cache_free_bulk(s, size, p);
2172 	}
2173 
2174 	return false;
2175 }
2176 
2177 static __fastpath_inline
2178 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2179 			  int objects)
2180 {
2181 	struct slabobj_ext *obj_exts;
2182 
2183 	if (!memcg_kmem_online())
2184 		return;
2185 
2186 	obj_exts = slab_obj_exts(slab);
2187 	if (likely(!obj_exts))
2188 		return;
2189 
2190 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2191 }
2192 #else /* CONFIG_MEMCG */
2193 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2194 					      struct list_lru *lru,
2195 					      gfp_t flags, size_t size,
2196 					      void **p)
2197 {
2198 	return true;
2199 }
2200 
2201 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2202 					void **p, int objects)
2203 {
2204 }
2205 #endif /* CONFIG_MEMCG */
2206 
2207 /*
2208  * Hooks for other subsystems that check memory allocations. In a typical
2209  * production configuration these hooks all should produce no code at all.
2210  *
2211  * Returns true if freeing of the object can proceed, false if its reuse
2212  * was delayed by KASAN quarantine, or it was returned to KFENCE.
2213  */
2214 static __always_inline
2215 bool slab_free_hook(struct kmem_cache *s, void *x, bool init)
2216 {
2217 	kmemleak_free_recursive(x, s->flags);
2218 	kmsan_slab_free(s, x);
2219 
2220 	debug_check_no_locks_freed(x, s->object_size);
2221 
2222 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2223 		debug_check_no_obj_freed(x, s->object_size);
2224 
2225 	/* Use KCSAN to help debug racy use-after-free. */
2226 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
2227 		__kcsan_check_access(x, s->object_size,
2228 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2229 
2230 	if (kfence_free(x))
2231 		return false;
2232 
2233 	/*
2234 	 * As memory initialization might be integrated into KASAN,
2235 	 * kasan_slab_free and initialization memset's must be
2236 	 * kept together to avoid discrepancies in behavior.
2237 	 *
2238 	 * The initialization memset's clear the object and the metadata,
2239 	 * but don't touch the SLAB redzone.
2240 	 *
2241 	 * The object's freepointer is also avoided if stored outside the
2242 	 * object.
2243 	 */
2244 	if (unlikely(init)) {
2245 		int rsize;
2246 		unsigned int inuse;
2247 
2248 		inuse = get_info_end(s);
2249 		if (!kasan_has_integrated_init())
2250 			memset(kasan_reset_tag(x), 0, s->object_size);
2251 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2252 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2253 		       s->size - inuse - rsize);
2254 	}
2255 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2256 	return !kasan_slab_free(s, x, init);
2257 }
2258 
2259 static __fastpath_inline
2260 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2261 			     int *cnt)
2262 {
2263 
2264 	void *object;
2265 	void *next = *head;
2266 	void *old_tail = *tail;
2267 	bool init;
2268 
2269 	if (is_kfence_address(next)) {
2270 		slab_free_hook(s, next, false);
2271 		return false;
2272 	}
2273 
2274 	/* Head and tail of the reconstructed freelist */
2275 	*head = NULL;
2276 	*tail = NULL;
2277 
2278 	init = slab_want_init_on_free(s);
2279 
2280 	do {
2281 		object = next;
2282 		next = get_freepointer(s, object);
2283 
2284 		/* If object's reuse doesn't have to be delayed */
2285 		if (likely(slab_free_hook(s, object, init))) {
2286 			/* Move object to the new freelist */
2287 			set_freepointer(s, object, *head);
2288 			*head = object;
2289 			if (!*tail)
2290 				*tail = object;
2291 		} else {
2292 			/*
2293 			 * Adjust the reconstructed freelist depth
2294 			 * accordingly if object's reuse is delayed.
2295 			 */
2296 			--(*cnt);
2297 		}
2298 	} while (object != old_tail);
2299 
2300 	return *head != NULL;
2301 }
2302 
2303 static void *setup_object(struct kmem_cache *s, void *object)
2304 {
2305 	setup_object_debug(s, object);
2306 	object = kasan_init_slab_obj(s, object);
2307 	if (unlikely(s->ctor)) {
2308 		kasan_unpoison_new_object(s, object);
2309 		s->ctor(object);
2310 		kasan_poison_new_object(s, object);
2311 	}
2312 	return object;
2313 }
2314 
2315 /*
2316  * Slab allocation and freeing
2317  */
2318 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2319 		struct kmem_cache_order_objects oo)
2320 {
2321 	struct folio *folio;
2322 	struct slab *slab;
2323 	unsigned int order = oo_order(oo);
2324 
2325 	folio = (struct folio *)alloc_pages_node(node, flags, order);
2326 	if (!folio)
2327 		return NULL;
2328 
2329 	slab = folio_slab(folio);
2330 	__folio_set_slab(folio);
2331 	/* Make the flag visible before any changes to folio->mapping */
2332 	smp_wmb();
2333 	if (folio_is_pfmemalloc(folio))
2334 		slab_set_pfmemalloc(slab);
2335 
2336 	return slab;
2337 }
2338 
2339 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2340 /* Pre-initialize the random sequence cache */
2341 static int init_cache_random_seq(struct kmem_cache *s)
2342 {
2343 	unsigned int count = oo_objects(s->oo);
2344 	int err;
2345 
2346 	/* Bailout if already initialised */
2347 	if (s->random_seq)
2348 		return 0;
2349 
2350 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2351 	if (err) {
2352 		pr_err("SLUB: Unable to initialize free list for %s\n",
2353 			s->name);
2354 		return err;
2355 	}
2356 
2357 	/* Transform to an offset on the set of pages */
2358 	if (s->random_seq) {
2359 		unsigned int i;
2360 
2361 		for (i = 0; i < count; i++)
2362 			s->random_seq[i] *= s->size;
2363 	}
2364 	return 0;
2365 }
2366 
2367 /* Initialize each random sequence freelist per cache */
2368 static void __init init_freelist_randomization(void)
2369 {
2370 	struct kmem_cache *s;
2371 
2372 	mutex_lock(&slab_mutex);
2373 
2374 	list_for_each_entry(s, &slab_caches, list)
2375 		init_cache_random_seq(s);
2376 
2377 	mutex_unlock(&slab_mutex);
2378 }
2379 
2380 /* Get the next entry on the pre-computed freelist randomized */
2381 static void *next_freelist_entry(struct kmem_cache *s,
2382 				unsigned long *pos, void *start,
2383 				unsigned long page_limit,
2384 				unsigned long freelist_count)
2385 {
2386 	unsigned int idx;
2387 
2388 	/*
2389 	 * If the target page allocation failed, the number of objects on the
2390 	 * page might be smaller than the usual size defined by the cache.
2391 	 */
2392 	do {
2393 		idx = s->random_seq[*pos];
2394 		*pos += 1;
2395 		if (*pos >= freelist_count)
2396 			*pos = 0;
2397 	} while (unlikely(idx >= page_limit));
2398 
2399 	return (char *)start + idx;
2400 }
2401 
2402 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2403 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2404 {
2405 	void *start;
2406 	void *cur;
2407 	void *next;
2408 	unsigned long idx, pos, page_limit, freelist_count;
2409 
2410 	if (slab->objects < 2 || !s->random_seq)
2411 		return false;
2412 
2413 	freelist_count = oo_objects(s->oo);
2414 	pos = get_random_u32_below(freelist_count);
2415 
2416 	page_limit = slab->objects * s->size;
2417 	start = fixup_red_left(s, slab_address(slab));
2418 
2419 	/* First entry is used as the base of the freelist */
2420 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2421 	cur = setup_object(s, cur);
2422 	slab->freelist = cur;
2423 
2424 	for (idx = 1; idx < slab->objects; idx++) {
2425 		next = next_freelist_entry(s, &pos, start, page_limit,
2426 			freelist_count);
2427 		next = setup_object(s, next);
2428 		set_freepointer(s, cur, next);
2429 		cur = next;
2430 	}
2431 	set_freepointer(s, cur, NULL);
2432 
2433 	return true;
2434 }
2435 #else
2436 static inline int init_cache_random_seq(struct kmem_cache *s)
2437 {
2438 	return 0;
2439 }
2440 static inline void init_freelist_randomization(void) { }
2441 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2442 {
2443 	return false;
2444 }
2445 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2446 
2447 static __always_inline void account_slab(struct slab *slab, int order,
2448 					 struct kmem_cache *s, gfp_t gfp)
2449 {
2450 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2451 		alloc_slab_obj_exts(slab, s, gfp, true);
2452 
2453 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2454 			    PAGE_SIZE << order);
2455 }
2456 
2457 static __always_inline void unaccount_slab(struct slab *slab, int order,
2458 					   struct kmem_cache *s)
2459 {
2460 	if (memcg_kmem_online() || need_slab_obj_ext())
2461 		free_slab_obj_exts(slab);
2462 
2463 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2464 			    -(PAGE_SIZE << order));
2465 }
2466 
2467 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2468 {
2469 	struct slab *slab;
2470 	struct kmem_cache_order_objects oo = s->oo;
2471 	gfp_t alloc_gfp;
2472 	void *start, *p, *next;
2473 	int idx;
2474 	bool shuffle;
2475 
2476 	flags &= gfp_allowed_mask;
2477 
2478 	flags |= s->allocflags;
2479 
2480 	/*
2481 	 * Let the initial higher-order allocation fail under memory pressure
2482 	 * so we fall-back to the minimum order allocation.
2483 	 */
2484 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2485 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2486 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2487 
2488 	slab = alloc_slab_page(alloc_gfp, node, oo);
2489 	if (unlikely(!slab)) {
2490 		oo = s->min;
2491 		alloc_gfp = flags;
2492 		/*
2493 		 * Allocation may have failed due to fragmentation.
2494 		 * Try a lower order alloc if possible
2495 		 */
2496 		slab = alloc_slab_page(alloc_gfp, node, oo);
2497 		if (unlikely(!slab))
2498 			return NULL;
2499 		stat(s, ORDER_FALLBACK);
2500 	}
2501 
2502 	slab->objects = oo_objects(oo);
2503 	slab->inuse = 0;
2504 	slab->frozen = 0;
2505 
2506 	account_slab(slab, oo_order(oo), s, flags);
2507 
2508 	slab->slab_cache = s;
2509 
2510 	kasan_poison_slab(slab);
2511 
2512 	start = slab_address(slab);
2513 
2514 	setup_slab_debug(s, slab, start);
2515 
2516 	shuffle = shuffle_freelist(s, slab);
2517 
2518 	if (!shuffle) {
2519 		start = fixup_red_left(s, start);
2520 		start = setup_object(s, start);
2521 		slab->freelist = start;
2522 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2523 			next = p + s->size;
2524 			next = setup_object(s, next);
2525 			set_freepointer(s, p, next);
2526 			p = next;
2527 		}
2528 		set_freepointer(s, p, NULL);
2529 	}
2530 
2531 	return slab;
2532 }
2533 
2534 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2535 {
2536 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2537 		flags = kmalloc_fix_flags(flags);
2538 
2539 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2540 
2541 	return allocate_slab(s,
2542 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2543 }
2544 
2545 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2546 {
2547 	struct folio *folio = slab_folio(slab);
2548 	int order = folio_order(folio);
2549 	int pages = 1 << order;
2550 
2551 	__slab_clear_pfmemalloc(slab);
2552 	folio->mapping = NULL;
2553 	/* Make the mapping reset visible before clearing the flag */
2554 	smp_wmb();
2555 	__folio_clear_slab(folio);
2556 	mm_account_reclaimed_pages(pages);
2557 	unaccount_slab(slab, order, s);
2558 	__free_pages(&folio->page, order);
2559 }
2560 
2561 static void rcu_free_slab(struct rcu_head *h)
2562 {
2563 	struct slab *slab = container_of(h, struct slab, rcu_head);
2564 
2565 	__free_slab(slab->slab_cache, slab);
2566 }
2567 
2568 static void free_slab(struct kmem_cache *s, struct slab *slab)
2569 {
2570 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2571 		void *p;
2572 
2573 		slab_pad_check(s, slab);
2574 		for_each_object(p, s, slab_address(slab), slab->objects)
2575 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2576 	}
2577 
2578 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2579 		call_rcu(&slab->rcu_head, rcu_free_slab);
2580 	else
2581 		__free_slab(s, slab);
2582 }
2583 
2584 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2585 {
2586 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2587 	free_slab(s, slab);
2588 }
2589 
2590 /*
2591  * SLUB reuses PG_workingset bit to keep track of whether it's on
2592  * the per-node partial list.
2593  */
2594 static inline bool slab_test_node_partial(const struct slab *slab)
2595 {
2596 	return folio_test_workingset(slab_folio(slab));
2597 }
2598 
2599 static inline void slab_set_node_partial(struct slab *slab)
2600 {
2601 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2602 }
2603 
2604 static inline void slab_clear_node_partial(struct slab *slab)
2605 {
2606 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2607 }
2608 
2609 /*
2610  * Management of partially allocated slabs.
2611  */
2612 static inline void
2613 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2614 {
2615 	n->nr_partial++;
2616 	if (tail == DEACTIVATE_TO_TAIL)
2617 		list_add_tail(&slab->slab_list, &n->partial);
2618 	else
2619 		list_add(&slab->slab_list, &n->partial);
2620 	slab_set_node_partial(slab);
2621 }
2622 
2623 static inline void add_partial(struct kmem_cache_node *n,
2624 				struct slab *slab, int tail)
2625 {
2626 	lockdep_assert_held(&n->list_lock);
2627 	__add_partial(n, slab, tail);
2628 }
2629 
2630 static inline void remove_partial(struct kmem_cache_node *n,
2631 					struct slab *slab)
2632 {
2633 	lockdep_assert_held(&n->list_lock);
2634 	list_del(&slab->slab_list);
2635 	slab_clear_node_partial(slab);
2636 	n->nr_partial--;
2637 }
2638 
2639 /*
2640  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2641  * slab from the n->partial list. Remove only a single object from the slab, do
2642  * the alloc_debug_processing() checks and leave the slab on the list, or move
2643  * it to full list if it was the last free object.
2644  */
2645 static void *alloc_single_from_partial(struct kmem_cache *s,
2646 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2647 {
2648 	void *object;
2649 
2650 	lockdep_assert_held(&n->list_lock);
2651 
2652 	object = slab->freelist;
2653 	slab->freelist = get_freepointer(s, object);
2654 	slab->inuse++;
2655 
2656 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2657 		remove_partial(n, slab);
2658 		return NULL;
2659 	}
2660 
2661 	if (slab->inuse == slab->objects) {
2662 		remove_partial(n, slab);
2663 		add_full(s, n, slab);
2664 	}
2665 
2666 	return object;
2667 }
2668 
2669 /*
2670  * Called only for kmem_cache_debug() caches to allocate from a freshly
2671  * allocated slab. Allocate a single object instead of whole freelist
2672  * and put the slab to the partial (or full) list.
2673  */
2674 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2675 					struct slab *slab, int orig_size)
2676 {
2677 	int nid = slab_nid(slab);
2678 	struct kmem_cache_node *n = get_node(s, nid);
2679 	unsigned long flags;
2680 	void *object;
2681 
2682 
2683 	object = slab->freelist;
2684 	slab->freelist = get_freepointer(s, object);
2685 	slab->inuse = 1;
2686 
2687 	if (!alloc_debug_processing(s, slab, object, orig_size))
2688 		/*
2689 		 * It's not really expected that this would fail on a
2690 		 * freshly allocated slab, but a concurrent memory
2691 		 * corruption in theory could cause that.
2692 		 */
2693 		return NULL;
2694 
2695 	spin_lock_irqsave(&n->list_lock, flags);
2696 
2697 	if (slab->inuse == slab->objects)
2698 		add_full(s, n, slab);
2699 	else
2700 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2701 
2702 	inc_slabs_node(s, nid, slab->objects);
2703 	spin_unlock_irqrestore(&n->list_lock, flags);
2704 
2705 	return object;
2706 }
2707 
2708 #ifdef CONFIG_SLUB_CPU_PARTIAL
2709 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2710 #else
2711 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2712 				   int drain) { }
2713 #endif
2714 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2715 
2716 /*
2717  * Try to allocate a partial slab from a specific node.
2718  */
2719 static struct slab *get_partial_node(struct kmem_cache *s,
2720 				     struct kmem_cache_node *n,
2721 				     struct partial_context *pc)
2722 {
2723 	struct slab *slab, *slab2, *partial = NULL;
2724 	unsigned long flags;
2725 	unsigned int partial_slabs = 0;
2726 
2727 	/*
2728 	 * Racy check. If we mistakenly see no partial slabs then we
2729 	 * just allocate an empty slab. If we mistakenly try to get a
2730 	 * partial slab and there is none available then get_partial()
2731 	 * will return NULL.
2732 	 */
2733 	if (!n || !n->nr_partial)
2734 		return NULL;
2735 
2736 	spin_lock_irqsave(&n->list_lock, flags);
2737 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2738 		if (!pfmemalloc_match(slab, pc->flags))
2739 			continue;
2740 
2741 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2742 			void *object = alloc_single_from_partial(s, n, slab,
2743 							pc->orig_size);
2744 			if (object) {
2745 				partial = slab;
2746 				pc->object = object;
2747 				break;
2748 			}
2749 			continue;
2750 		}
2751 
2752 		remove_partial(n, slab);
2753 
2754 		if (!partial) {
2755 			partial = slab;
2756 			stat(s, ALLOC_FROM_PARTIAL);
2757 
2758 			if ((slub_get_cpu_partial(s) == 0)) {
2759 				break;
2760 			}
2761 		} else {
2762 			put_cpu_partial(s, slab, 0);
2763 			stat(s, CPU_PARTIAL_NODE);
2764 
2765 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2766 				break;
2767 			}
2768 		}
2769 	}
2770 	spin_unlock_irqrestore(&n->list_lock, flags);
2771 	return partial;
2772 }
2773 
2774 /*
2775  * Get a slab from somewhere. Search in increasing NUMA distances.
2776  */
2777 static struct slab *get_any_partial(struct kmem_cache *s,
2778 				    struct partial_context *pc)
2779 {
2780 #ifdef CONFIG_NUMA
2781 	struct zonelist *zonelist;
2782 	struct zoneref *z;
2783 	struct zone *zone;
2784 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2785 	struct slab *slab;
2786 	unsigned int cpuset_mems_cookie;
2787 
2788 	/*
2789 	 * The defrag ratio allows a configuration of the tradeoffs between
2790 	 * inter node defragmentation and node local allocations. A lower
2791 	 * defrag_ratio increases the tendency to do local allocations
2792 	 * instead of attempting to obtain partial slabs from other nodes.
2793 	 *
2794 	 * If the defrag_ratio is set to 0 then kmalloc() always
2795 	 * returns node local objects. If the ratio is higher then kmalloc()
2796 	 * may return off node objects because partial slabs are obtained
2797 	 * from other nodes and filled up.
2798 	 *
2799 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2800 	 * (which makes defrag_ratio = 1000) then every (well almost)
2801 	 * allocation will first attempt to defrag slab caches on other nodes.
2802 	 * This means scanning over all nodes to look for partial slabs which
2803 	 * may be expensive if we do it every time we are trying to find a slab
2804 	 * with available objects.
2805 	 */
2806 	if (!s->remote_node_defrag_ratio ||
2807 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2808 		return NULL;
2809 
2810 	do {
2811 		cpuset_mems_cookie = read_mems_allowed_begin();
2812 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2813 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2814 			struct kmem_cache_node *n;
2815 
2816 			n = get_node(s, zone_to_nid(zone));
2817 
2818 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2819 					n->nr_partial > s->min_partial) {
2820 				slab = get_partial_node(s, n, pc);
2821 				if (slab) {
2822 					/*
2823 					 * Don't check read_mems_allowed_retry()
2824 					 * here - if mems_allowed was updated in
2825 					 * parallel, that was a harmless race
2826 					 * between allocation and the cpuset
2827 					 * update
2828 					 */
2829 					return slab;
2830 				}
2831 			}
2832 		}
2833 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2834 #endif	/* CONFIG_NUMA */
2835 	return NULL;
2836 }
2837 
2838 /*
2839  * Get a partial slab, lock it and return it.
2840  */
2841 static struct slab *get_partial(struct kmem_cache *s, int node,
2842 				struct partial_context *pc)
2843 {
2844 	struct slab *slab;
2845 	int searchnode = node;
2846 
2847 	if (node == NUMA_NO_NODE)
2848 		searchnode = numa_mem_id();
2849 
2850 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2851 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2852 		return slab;
2853 
2854 	return get_any_partial(s, pc);
2855 }
2856 
2857 #ifndef CONFIG_SLUB_TINY
2858 
2859 #ifdef CONFIG_PREEMPTION
2860 /*
2861  * Calculate the next globally unique transaction for disambiguation
2862  * during cmpxchg. The transactions start with the cpu number and are then
2863  * incremented by CONFIG_NR_CPUS.
2864  */
2865 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2866 #else
2867 /*
2868  * No preemption supported therefore also no need to check for
2869  * different cpus.
2870  */
2871 #define TID_STEP 1
2872 #endif /* CONFIG_PREEMPTION */
2873 
2874 static inline unsigned long next_tid(unsigned long tid)
2875 {
2876 	return tid + TID_STEP;
2877 }
2878 
2879 #ifdef SLUB_DEBUG_CMPXCHG
2880 static inline unsigned int tid_to_cpu(unsigned long tid)
2881 {
2882 	return tid % TID_STEP;
2883 }
2884 
2885 static inline unsigned long tid_to_event(unsigned long tid)
2886 {
2887 	return tid / TID_STEP;
2888 }
2889 #endif
2890 
2891 static inline unsigned int init_tid(int cpu)
2892 {
2893 	return cpu;
2894 }
2895 
2896 static inline void note_cmpxchg_failure(const char *n,
2897 		const struct kmem_cache *s, unsigned long tid)
2898 {
2899 #ifdef SLUB_DEBUG_CMPXCHG
2900 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2901 
2902 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2903 
2904 #ifdef CONFIG_PREEMPTION
2905 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2906 		pr_warn("due to cpu change %d -> %d\n",
2907 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2908 	else
2909 #endif
2910 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2911 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2912 			tid_to_event(tid), tid_to_event(actual_tid));
2913 	else
2914 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2915 			actual_tid, tid, next_tid(tid));
2916 #endif
2917 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2918 }
2919 
2920 static void init_kmem_cache_cpus(struct kmem_cache *s)
2921 {
2922 	int cpu;
2923 	struct kmem_cache_cpu *c;
2924 
2925 	for_each_possible_cpu(cpu) {
2926 		c = per_cpu_ptr(s->cpu_slab, cpu);
2927 		local_lock_init(&c->lock);
2928 		c->tid = init_tid(cpu);
2929 	}
2930 }
2931 
2932 /*
2933  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2934  * unfreezes the slabs and puts it on the proper list.
2935  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2936  * by the caller.
2937  */
2938 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2939 			    void *freelist)
2940 {
2941 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2942 	int free_delta = 0;
2943 	void *nextfree, *freelist_iter, *freelist_tail;
2944 	int tail = DEACTIVATE_TO_HEAD;
2945 	unsigned long flags = 0;
2946 	struct slab new;
2947 	struct slab old;
2948 
2949 	if (READ_ONCE(slab->freelist)) {
2950 		stat(s, DEACTIVATE_REMOTE_FREES);
2951 		tail = DEACTIVATE_TO_TAIL;
2952 	}
2953 
2954 	/*
2955 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2956 	 * remember the last object in freelist_tail for later splicing.
2957 	 */
2958 	freelist_tail = NULL;
2959 	freelist_iter = freelist;
2960 	while (freelist_iter) {
2961 		nextfree = get_freepointer(s, freelist_iter);
2962 
2963 		/*
2964 		 * If 'nextfree' is invalid, it is possible that the object at
2965 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2966 		 * starting at 'freelist_iter' by skipping them.
2967 		 */
2968 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2969 			break;
2970 
2971 		freelist_tail = freelist_iter;
2972 		free_delta++;
2973 
2974 		freelist_iter = nextfree;
2975 	}
2976 
2977 	/*
2978 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2979 	 * freelist to the head of slab's freelist.
2980 	 */
2981 	do {
2982 		old.freelist = READ_ONCE(slab->freelist);
2983 		old.counters = READ_ONCE(slab->counters);
2984 		VM_BUG_ON(!old.frozen);
2985 
2986 		/* Determine target state of the slab */
2987 		new.counters = old.counters;
2988 		new.frozen = 0;
2989 		if (freelist_tail) {
2990 			new.inuse -= free_delta;
2991 			set_freepointer(s, freelist_tail, old.freelist);
2992 			new.freelist = freelist;
2993 		} else {
2994 			new.freelist = old.freelist;
2995 		}
2996 	} while (!slab_update_freelist(s, slab,
2997 		old.freelist, old.counters,
2998 		new.freelist, new.counters,
2999 		"unfreezing slab"));
3000 
3001 	/*
3002 	 * Stage three: Manipulate the slab list based on the updated state.
3003 	 */
3004 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3005 		stat(s, DEACTIVATE_EMPTY);
3006 		discard_slab(s, slab);
3007 		stat(s, FREE_SLAB);
3008 	} else if (new.freelist) {
3009 		spin_lock_irqsave(&n->list_lock, flags);
3010 		add_partial(n, slab, tail);
3011 		spin_unlock_irqrestore(&n->list_lock, flags);
3012 		stat(s, tail);
3013 	} else {
3014 		stat(s, DEACTIVATE_FULL);
3015 	}
3016 }
3017 
3018 #ifdef CONFIG_SLUB_CPU_PARTIAL
3019 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3020 {
3021 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3022 	struct slab *slab, *slab_to_discard = NULL;
3023 	unsigned long flags = 0;
3024 
3025 	while (partial_slab) {
3026 		slab = partial_slab;
3027 		partial_slab = slab->next;
3028 
3029 		n2 = get_node(s, slab_nid(slab));
3030 		if (n != n2) {
3031 			if (n)
3032 				spin_unlock_irqrestore(&n->list_lock, flags);
3033 
3034 			n = n2;
3035 			spin_lock_irqsave(&n->list_lock, flags);
3036 		}
3037 
3038 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3039 			slab->next = slab_to_discard;
3040 			slab_to_discard = slab;
3041 		} else {
3042 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3043 			stat(s, FREE_ADD_PARTIAL);
3044 		}
3045 	}
3046 
3047 	if (n)
3048 		spin_unlock_irqrestore(&n->list_lock, flags);
3049 
3050 	while (slab_to_discard) {
3051 		slab = slab_to_discard;
3052 		slab_to_discard = slab_to_discard->next;
3053 
3054 		stat(s, DEACTIVATE_EMPTY);
3055 		discard_slab(s, slab);
3056 		stat(s, FREE_SLAB);
3057 	}
3058 }
3059 
3060 /*
3061  * Put all the cpu partial slabs to the node partial list.
3062  */
3063 static void put_partials(struct kmem_cache *s)
3064 {
3065 	struct slab *partial_slab;
3066 	unsigned long flags;
3067 
3068 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3069 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3070 	this_cpu_write(s->cpu_slab->partial, NULL);
3071 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3072 
3073 	if (partial_slab)
3074 		__put_partials(s, partial_slab);
3075 }
3076 
3077 static void put_partials_cpu(struct kmem_cache *s,
3078 			     struct kmem_cache_cpu *c)
3079 {
3080 	struct slab *partial_slab;
3081 
3082 	partial_slab = slub_percpu_partial(c);
3083 	c->partial = NULL;
3084 
3085 	if (partial_slab)
3086 		__put_partials(s, partial_slab);
3087 }
3088 
3089 /*
3090  * Put a slab into a partial slab slot if available.
3091  *
3092  * If we did not find a slot then simply move all the partials to the
3093  * per node partial list.
3094  */
3095 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3096 {
3097 	struct slab *oldslab;
3098 	struct slab *slab_to_put = NULL;
3099 	unsigned long flags;
3100 	int slabs = 0;
3101 
3102 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3103 
3104 	oldslab = this_cpu_read(s->cpu_slab->partial);
3105 
3106 	if (oldslab) {
3107 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3108 			/*
3109 			 * Partial array is full. Move the existing set to the
3110 			 * per node partial list. Postpone the actual unfreezing
3111 			 * outside of the critical section.
3112 			 */
3113 			slab_to_put = oldslab;
3114 			oldslab = NULL;
3115 		} else {
3116 			slabs = oldslab->slabs;
3117 		}
3118 	}
3119 
3120 	slabs++;
3121 
3122 	slab->slabs = slabs;
3123 	slab->next = oldslab;
3124 
3125 	this_cpu_write(s->cpu_slab->partial, slab);
3126 
3127 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3128 
3129 	if (slab_to_put) {
3130 		__put_partials(s, slab_to_put);
3131 		stat(s, CPU_PARTIAL_DRAIN);
3132 	}
3133 }
3134 
3135 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3136 
3137 static inline void put_partials(struct kmem_cache *s) { }
3138 static inline void put_partials_cpu(struct kmem_cache *s,
3139 				    struct kmem_cache_cpu *c) { }
3140 
3141 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3142 
3143 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3144 {
3145 	unsigned long flags;
3146 	struct slab *slab;
3147 	void *freelist;
3148 
3149 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3150 
3151 	slab = c->slab;
3152 	freelist = c->freelist;
3153 
3154 	c->slab = NULL;
3155 	c->freelist = NULL;
3156 	c->tid = next_tid(c->tid);
3157 
3158 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3159 
3160 	if (slab) {
3161 		deactivate_slab(s, slab, freelist);
3162 		stat(s, CPUSLAB_FLUSH);
3163 	}
3164 }
3165 
3166 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3167 {
3168 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3169 	void *freelist = c->freelist;
3170 	struct slab *slab = c->slab;
3171 
3172 	c->slab = NULL;
3173 	c->freelist = NULL;
3174 	c->tid = next_tid(c->tid);
3175 
3176 	if (slab) {
3177 		deactivate_slab(s, slab, freelist);
3178 		stat(s, CPUSLAB_FLUSH);
3179 	}
3180 
3181 	put_partials_cpu(s, c);
3182 }
3183 
3184 struct slub_flush_work {
3185 	struct work_struct work;
3186 	struct kmem_cache *s;
3187 	bool skip;
3188 };
3189 
3190 /*
3191  * Flush cpu slab.
3192  *
3193  * Called from CPU work handler with migration disabled.
3194  */
3195 static void flush_cpu_slab(struct work_struct *w)
3196 {
3197 	struct kmem_cache *s;
3198 	struct kmem_cache_cpu *c;
3199 	struct slub_flush_work *sfw;
3200 
3201 	sfw = container_of(w, struct slub_flush_work, work);
3202 
3203 	s = sfw->s;
3204 	c = this_cpu_ptr(s->cpu_slab);
3205 
3206 	if (c->slab)
3207 		flush_slab(s, c);
3208 
3209 	put_partials(s);
3210 }
3211 
3212 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3213 {
3214 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3215 
3216 	return c->slab || slub_percpu_partial(c);
3217 }
3218 
3219 static DEFINE_MUTEX(flush_lock);
3220 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3221 
3222 static void flush_all_cpus_locked(struct kmem_cache *s)
3223 {
3224 	struct slub_flush_work *sfw;
3225 	unsigned int cpu;
3226 
3227 	lockdep_assert_cpus_held();
3228 	mutex_lock(&flush_lock);
3229 
3230 	for_each_online_cpu(cpu) {
3231 		sfw = &per_cpu(slub_flush, cpu);
3232 		if (!has_cpu_slab(cpu, s)) {
3233 			sfw->skip = true;
3234 			continue;
3235 		}
3236 		INIT_WORK(&sfw->work, flush_cpu_slab);
3237 		sfw->skip = false;
3238 		sfw->s = s;
3239 		queue_work_on(cpu, flushwq, &sfw->work);
3240 	}
3241 
3242 	for_each_online_cpu(cpu) {
3243 		sfw = &per_cpu(slub_flush, cpu);
3244 		if (sfw->skip)
3245 			continue;
3246 		flush_work(&sfw->work);
3247 	}
3248 
3249 	mutex_unlock(&flush_lock);
3250 }
3251 
3252 static void flush_all(struct kmem_cache *s)
3253 {
3254 	cpus_read_lock();
3255 	flush_all_cpus_locked(s);
3256 	cpus_read_unlock();
3257 }
3258 
3259 /*
3260  * Use the cpu notifier to insure that the cpu slabs are flushed when
3261  * necessary.
3262  */
3263 static int slub_cpu_dead(unsigned int cpu)
3264 {
3265 	struct kmem_cache *s;
3266 
3267 	mutex_lock(&slab_mutex);
3268 	list_for_each_entry(s, &slab_caches, list)
3269 		__flush_cpu_slab(s, cpu);
3270 	mutex_unlock(&slab_mutex);
3271 	return 0;
3272 }
3273 
3274 #else /* CONFIG_SLUB_TINY */
3275 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3276 static inline void flush_all(struct kmem_cache *s) { }
3277 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3278 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3279 #endif /* CONFIG_SLUB_TINY */
3280 
3281 /*
3282  * Check if the objects in a per cpu structure fit numa
3283  * locality expectations.
3284  */
3285 static inline int node_match(struct slab *slab, int node)
3286 {
3287 #ifdef CONFIG_NUMA
3288 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3289 		return 0;
3290 #endif
3291 	return 1;
3292 }
3293 
3294 #ifdef CONFIG_SLUB_DEBUG
3295 static int count_free(struct slab *slab)
3296 {
3297 	return slab->objects - slab->inuse;
3298 }
3299 
3300 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3301 {
3302 	return atomic_long_read(&n->total_objects);
3303 }
3304 
3305 /* Supports checking bulk free of a constructed freelist */
3306 static inline bool free_debug_processing(struct kmem_cache *s,
3307 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3308 	unsigned long addr, depot_stack_handle_t handle)
3309 {
3310 	bool checks_ok = false;
3311 	void *object = head;
3312 	int cnt = 0;
3313 
3314 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3315 		if (!check_slab(s, slab))
3316 			goto out;
3317 	}
3318 
3319 	if (slab->inuse < *bulk_cnt) {
3320 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3321 			 slab->inuse, *bulk_cnt);
3322 		goto out;
3323 	}
3324 
3325 next_object:
3326 
3327 	if (++cnt > *bulk_cnt)
3328 		goto out_cnt;
3329 
3330 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3331 		if (!free_consistency_checks(s, slab, object, addr))
3332 			goto out;
3333 	}
3334 
3335 	if (s->flags & SLAB_STORE_USER)
3336 		set_track_update(s, object, TRACK_FREE, addr, handle);
3337 	trace(s, slab, object, 0);
3338 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3339 	init_object(s, object, SLUB_RED_INACTIVE);
3340 
3341 	/* Reached end of constructed freelist yet? */
3342 	if (object != tail) {
3343 		object = get_freepointer(s, object);
3344 		goto next_object;
3345 	}
3346 	checks_ok = true;
3347 
3348 out_cnt:
3349 	if (cnt != *bulk_cnt) {
3350 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3351 			 *bulk_cnt, cnt);
3352 		*bulk_cnt = cnt;
3353 	}
3354 
3355 out:
3356 
3357 	if (!checks_ok)
3358 		slab_fix(s, "Object at 0x%p not freed", object);
3359 
3360 	return checks_ok;
3361 }
3362 #endif /* CONFIG_SLUB_DEBUG */
3363 
3364 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3365 static unsigned long count_partial(struct kmem_cache_node *n,
3366 					int (*get_count)(struct slab *))
3367 {
3368 	unsigned long flags;
3369 	unsigned long x = 0;
3370 	struct slab *slab;
3371 
3372 	spin_lock_irqsave(&n->list_lock, flags);
3373 	list_for_each_entry(slab, &n->partial, slab_list)
3374 		x += get_count(slab);
3375 	spin_unlock_irqrestore(&n->list_lock, flags);
3376 	return x;
3377 }
3378 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3379 
3380 #ifdef CONFIG_SLUB_DEBUG
3381 #define MAX_PARTIAL_TO_SCAN 10000
3382 
3383 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3384 {
3385 	unsigned long flags;
3386 	unsigned long x = 0;
3387 	struct slab *slab;
3388 
3389 	spin_lock_irqsave(&n->list_lock, flags);
3390 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3391 		list_for_each_entry(slab, &n->partial, slab_list)
3392 			x += slab->objects - slab->inuse;
3393 	} else {
3394 		/*
3395 		 * For a long list, approximate the total count of objects in
3396 		 * it to meet the limit on the number of slabs to scan.
3397 		 * Scan from both the list's head and tail for better accuracy.
3398 		 */
3399 		unsigned long scanned = 0;
3400 
3401 		list_for_each_entry(slab, &n->partial, slab_list) {
3402 			x += slab->objects - slab->inuse;
3403 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3404 				break;
3405 		}
3406 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3407 			x += slab->objects - slab->inuse;
3408 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3409 				break;
3410 		}
3411 		x = mult_frac(x, n->nr_partial, scanned);
3412 		x = min(x, node_nr_objs(n));
3413 	}
3414 	spin_unlock_irqrestore(&n->list_lock, flags);
3415 	return x;
3416 }
3417 
3418 static noinline void
3419 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3420 {
3421 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3422 				      DEFAULT_RATELIMIT_BURST);
3423 	int node;
3424 	struct kmem_cache_node *n;
3425 
3426 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3427 		return;
3428 
3429 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
3430 		nid, gfpflags, &gfpflags);
3431 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3432 		s->name, s->object_size, s->size, oo_order(s->oo),
3433 		oo_order(s->min));
3434 
3435 	if (oo_order(s->min) > get_order(s->object_size))
3436 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3437 			s->name);
3438 
3439 	for_each_kmem_cache_node(s, node, n) {
3440 		unsigned long nr_slabs;
3441 		unsigned long nr_objs;
3442 		unsigned long nr_free;
3443 
3444 		nr_free  = count_partial_free_approx(n);
3445 		nr_slabs = node_nr_slabs(n);
3446 		nr_objs  = node_nr_objs(n);
3447 
3448 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3449 			node, nr_slabs, nr_objs, nr_free);
3450 	}
3451 }
3452 #else /* CONFIG_SLUB_DEBUG */
3453 static inline void
3454 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3455 #endif
3456 
3457 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3458 {
3459 	if (unlikely(slab_test_pfmemalloc(slab)))
3460 		return gfp_pfmemalloc_allowed(gfpflags);
3461 
3462 	return true;
3463 }
3464 
3465 #ifndef CONFIG_SLUB_TINY
3466 static inline bool
3467 __update_cpu_freelist_fast(struct kmem_cache *s,
3468 			   void *freelist_old, void *freelist_new,
3469 			   unsigned long tid)
3470 {
3471 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3472 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3473 
3474 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3475 					     &old.full, new.full);
3476 }
3477 
3478 /*
3479  * Check the slab->freelist and either transfer the freelist to the
3480  * per cpu freelist or deactivate the slab.
3481  *
3482  * The slab is still frozen if the return value is not NULL.
3483  *
3484  * If this function returns NULL then the slab has been unfrozen.
3485  */
3486 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3487 {
3488 	struct slab new;
3489 	unsigned long counters;
3490 	void *freelist;
3491 
3492 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3493 
3494 	do {
3495 		freelist = slab->freelist;
3496 		counters = slab->counters;
3497 
3498 		new.counters = counters;
3499 
3500 		new.inuse = slab->objects;
3501 		new.frozen = freelist != NULL;
3502 
3503 	} while (!__slab_update_freelist(s, slab,
3504 		freelist, counters,
3505 		NULL, new.counters,
3506 		"get_freelist"));
3507 
3508 	return freelist;
3509 }
3510 
3511 /*
3512  * Freeze the partial slab and return the pointer to the freelist.
3513  */
3514 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3515 {
3516 	struct slab new;
3517 	unsigned long counters;
3518 	void *freelist;
3519 
3520 	do {
3521 		freelist = slab->freelist;
3522 		counters = slab->counters;
3523 
3524 		new.counters = counters;
3525 		VM_BUG_ON(new.frozen);
3526 
3527 		new.inuse = slab->objects;
3528 		new.frozen = 1;
3529 
3530 	} while (!slab_update_freelist(s, slab,
3531 		freelist, counters,
3532 		NULL, new.counters,
3533 		"freeze_slab"));
3534 
3535 	return freelist;
3536 }
3537 
3538 /*
3539  * Slow path. The lockless freelist is empty or we need to perform
3540  * debugging duties.
3541  *
3542  * Processing is still very fast if new objects have been freed to the
3543  * regular freelist. In that case we simply take over the regular freelist
3544  * as the lockless freelist and zap the regular freelist.
3545  *
3546  * If that is not working then we fall back to the partial lists. We take the
3547  * first element of the freelist as the object to allocate now and move the
3548  * rest of the freelist to the lockless freelist.
3549  *
3550  * And if we were unable to get a new slab from the partial slab lists then
3551  * we need to allocate a new slab. This is the slowest path since it involves
3552  * a call to the page allocator and the setup of a new slab.
3553  *
3554  * Version of __slab_alloc to use when we know that preemption is
3555  * already disabled (which is the case for bulk allocation).
3556  */
3557 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3558 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3559 {
3560 	void *freelist;
3561 	struct slab *slab;
3562 	unsigned long flags;
3563 	struct partial_context pc;
3564 	bool try_thisnode = true;
3565 
3566 	stat(s, ALLOC_SLOWPATH);
3567 
3568 reread_slab:
3569 
3570 	slab = READ_ONCE(c->slab);
3571 	if (!slab) {
3572 		/*
3573 		 * if the node is not online or has no normal memory, just
3574 		 * ignore the node constraint
3575 		 */
3576 		if (unlikely(node != NUMA_NO_NODE &&
3577 			     !node_isset(node, slab_nodes)))
3578 			node = NUMA_NO_NODE;
3579 		goto new_slab;
3580 	}
3581 
3582 	if (unlikely(!node_match(slab, node))) {
3583 		/*
3584 		 * same as above but node_match() being false already
3585 		 * implies node != NUMA_NO_NODE
3586 		 */
3587 		if (!node_isset(node, slab_nodes)) {
3588 			node = NUMA_NO_NODE;
3589 		} else {
3590 			stat(s, ALLOC_NODE_MISMATCH);
3591 			goto deactivate_slab;
3592 		}
3593 	}
3594 
3595 	/*
3596 	 * By rights, we should be searching for a slab page that was
3597 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3598 	 * information when the page leaves the per-cpu allocator
3599 	 */
3600 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3601 		goto deactivate_slab;
3602 
3603 	/* must check again c->slab in case we got preempted and it changed */
3604 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3605 	if (unlikely(slab != c->slab)) {
3606 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3607 		goto reread_slab;
3608 	}
3609 	freelist = c->freelist;
3610 	if (freelist)
3611 		goto load_freelist;
3612 
3613 	freelist = get_freelist(s, slab);
3614 
3615 	if (!freelist) {
3616 		c->slab = NULL;
3617 		c->tid = next_tid(c->tid);
3618 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3619 		stat(s, DEACTIVATE_BYPASS);
3620 		goto new_slab;
3621 	}
3622 
3623 	stat(s, ALLOC_REFILL);
3624 
3625 load_freelist:
3626 
3627 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3628 
3629 	/*
3630 	 * freelist is pointing to the list of objects to be used.
3631 	 * slab is pointing to the slab from which the objects are obtained.
3632 	 * That slab must be frozen for per cpu allocations to work.
3633 	 */
3634 	VM_BUG_ON(!c->slab->frozen);
3635 	c->freelist = get_freepointer(s, freelist);
3636 	c->tid = next_tid(c->tid);
3637 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3638 	return freelist;
3639 
3640 deactivate_slab:
3641 
3642 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3643 	if (slab != c->slab) {
3644 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3645 		goto reread_slab;
3646 	}
3647 	freelist = c->freelist;
3648 	c->slab = NULL;
3649 	c->freelist = NULL;
3650 	c->tid = next_tid(c->tid);
3651 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3652 	deactivate_slab(s, slab, freelist);
3653 
3654 new_slab:
3655 
3656 #ifdef CONFIG_SLUB_CPU_PARTIAL
3657 	while (slub_percpu_partial(c)) {
3658 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3659 		if (unlikely(c->slab)) {
3660 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3661 			goto reread_slab;
3662 		}
3663 		if (unlikely(!slub_percpu_partial(c))) {
3664 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3665 			/* we were preempted and partial list got empty */
3666 			goto new_objects;
3667 		}
3668 
3669 		slab = slub_percpu_partial(c);
3670 		slub_set_percpu_partial(c, slab);
3671 
3672 		if (likely(node_match(slab, node) &&
3673 			   pfmemalloc_match(slab, gfpflags))) {
3674 			c->slab = slab;
3675 			freelist = get_freelist(s, slab);
3676 			VM_BUG_ON(!freelist);
3677 			stat(s, CPU_PARTIAL_ALLOC);
3678 			goto load_freelist;
3679 		}
3680 
3681 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3682 
3683 		slab->next = NULL;
3684 		__put_partials(s, slab);
3685 	}
3686 #endif
3687 
3688 new_objects:
3689 
3690 	pc.flags = gfpflags;
3691 	/*
3692 	 * When a preferred node is indicated but no __GFP_THISNODE
3693 	 *
3694 	 * 1) try to get a partial slab from target node only by having
3695 	 *    __GFP_THISNODE in pc.flags for get_partial()
3696 	 * 2) if 1) failed, try to allocate a new slab from target node with
3697 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3698 	 * 3) if 2) failed, retry with original gfpflags which will allow
3699 	 *    get_partial() try partial lists of other nodes before potentially
3700 	 *    allocating new page from other nodes
3701 	 */
3702 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3703 		     && try_thisnode))
3704 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3705 
3706 	pc.orig_size = orig_size;
3707 	slab = get_partial(s, node, &pc);
3708 	if (slab) {
3709 		if (kmem_cache_debug(s)) {
3710 			freelist = pc.object;
3711 			/*
3712 			 * For debug caches here we had to go through
3713 			 * alloc_single_from_partial() so just store the
3714 			 * tracking info and return the object.
3715 			 */
3716 			if (s->flags & SLAB_STORE_USER)
3717 				set_track(s, freelist, TRACK_ALLOC, addr);
3718 
3719 			return freelist;
3720 		}
3721 
3722 		freelist = freeze_slab(s, slab);
3723 		goto retry_load_slab;
3724 	}
3725 
3726 	slub_put_cpu_ptr(s->cpu_slab);
3727 	slab = new_slab(s, pc.flags, node);
3728 	c = slub_get_cpu_ptr(s->cpu_slab);
3729 
3730 	if (unlikely(!slab)) {
3731 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3732 		    && try_thisnode) {
3733 			try_thisnode = false;
3734 			goto new_objects;
3735 		}
3736 		slab_out_of_memory(s, gfpflags, node);
3737 		return NULL;
3738 	}
3739 
3740 	stat(s, ALLOC_SLAB);
3741 
3742 	if (kmem_cache_debug(s)) {
3743 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3744 
3745 		if (unlikely(!freelist))
3746 			goto new_objects;
3747 
3748 		if (s->flags & SLAB_STORE_USER)
3749 			set_track(s, freelist, TRACK_ALLOC, addr);
3750 
3751 		return freelist;
3752 	}
3753 
3754 	/*
3755 	 * No other reference to the slab yet so we can
3756 	 * muck around with it freely without cmpxchg
3757 	 */
3758 	freelist = slab->freelist;
3759 	slab->freelist = NULL;
3760 	slab->inuse = slab->objects;
3761 	slab->frozen = 1;
3762 
3763 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3764 
3765 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3766 		/*
3767 		 * For !pfmemalloc_match() case we don't load freelist so that
3768 		 * we don't make further mismatched allocations easier.
3769 		 */
3770 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3771 		return freelist;
3772 	}
3773 
3774 retry_load_slab:
3775 
3776 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3777 	if (unlikely(c->slab)) {
3778 		void *flush_freelist = c->freelist;
3779 		struct slab *flush_slab = c->slab;
3780 
3781 		c->slab = NULL;
3782 		c->freelist = NULL;
3783 		c->tid = next_tid(c->tid);
3784 
3785 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3786 
3787 		deactivate_slab(s, flush_slab, flush_freelist);
3788 
3789 		stat(s, CPUSLAB_FLUSH);
3790 
3791 		goto retry_load_slab;
3792 	}
3793 	c->slab = slab;
3794 
3795 	goto load_freelist;
3796 }
3797 
3798 /*
3799  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3800  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3801  * pointer.
3802  */
3803 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3804 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3805 {
3806 	void *p;
3807 
3808 #ifdef CONFIG_PREEMPT_COUNT
3809 	/*
3810 	 * We may have been preempted and rescheduled on a different
3811 	 * cpu before disabling preemption. Need to reload cpu area
3812 	 * pointer.
3813 	 */
3814 	c = slub_get_cpu_ptr(s->cpu_slab);
3815 #endif
3816 
3817 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3818 #ifdef CONFIG_PREEMPT_COUNT
3819 	slub_put_cpu_ptr(s->cpu_slab);
3820 #endif
3821 	return p;
3822 }
3823 
3824 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3825 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3826 {
3827 	struct kmem_cache_cpu *c;
3828 	struct slab *slab;
3829 	unsigned long tid;
3830 	void *object;
3831 
3832 redo:
3833 	/*
3834 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3835 	 * enabled. We may switch back and forth between cpus while
3836 	 * reading from one cpu area. That does not matter as long
3837 	 * as we end up on the original cpu again when doing the cmpxchg.
3838 	 *
3839 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3840 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3841 	 * the tid. If we are preempted and switched to another cpu between the
3842 	 * two reads, it's OK as the two are still associated with the same cpu
3843 	 * and cmpxchg later will validate the cpu.
3844 	 */
3845 	c = raw_cpu_ptr(s->cpu_slab);
3846 	tid = READ_ONCE(c->tid);
3847 
3848 	/*
3849 	 * Irqless object alloc/free algorithm used here depends on sequence
3850 	 * of fetching cpu_slab's data. tid should be fetched before anything
3851 	 * on c to guarantee that object and slab associated with previous tid
3852 	 * won't be used with current tid. If we fetch tid first, object and
3853 	 * slab could be one associated with next tid and our alloc/free
3854 	 * request will be failed. In this case, we will retry. So, no problem.
3855 	 */
3856 	barrier();
3857 
3858 	/*
3859 	 * The transaction ids are globally unique per cpu and per operation on
3860 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3861 	 * occurs on the right processor and that there was no operation on the
3862 	 * linked list in between.
3863 	 */
3864 
3865 	object = c->freelist;
3866 	slab = c->slab;
3867 
3868 	if (!USE_LOCKLESS_FAST_PATH() ||
3869 	    unlikely(!object || !slab || !node_match(slab, node))) {
3870 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3871 	} else {
3872 		void *next_object = get_freepointer_safe(s, object);
3873 
3874 		/*
3875 		 * The cmpxchg will only match if there was no additional
3876 		 * operation and if we are on the right processor.
3877 		 *
3878 		 * The cmpxchg does the following atomically (without lock
3879 		 * semantics!)
3880 		 * 1. Relocate first pointer to the current per cpu area.
3881 		 * 2. Verify that tid and freelist have not been changed
3882 		 * 3. If they were not changed replace tid and freelist
3883 		 *
3884 		 * Since this is without lock semantics the protection is only
3885 		 * against code executing on this cpu *not* from access by
3886 		 * other cpus.
3887 		 */
3888 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3889 			note_cmpxchg_failure("slab_alloc", s, tid);
3890 			goto redo;
3891 		}
3892 		prefetch_freepointer(s, next_object);
3893 		stat(s, ALLOC_FASTPATH);
3894 	}
3895 
3896 	return object;
3897 }
3898 #else /* CONFIG_SLUB_TINY */
3899 static void *__slab_alloc_node(struct kmem_cache *s,
3900 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3901 {
3902 	struct partial_context pc;
3903 	struct slab *slab;
3904 	void *object;
3905 
3906 	pc.flags = gfpflags;
3907 	pc.orig_size = orig_size;
3908 	slab = get_partial(s, node, &pc);
3909 
3910 	if (slab)
3911 		return pc.object;
3912 
3913 	slab = new_slab(s, gfpflags, node);
3914 	if (unlikely(!slab)) {
3915 		slab_out_of_memory(s, gfpflags, node);
3916 		return NULL;
3917 	}
3918 
3919 	object = alloc_single_from_new_slab(s, slab, orig_size);
3920 
3921 	return object;
3922 }
3923 #endif /* CONFIG_SLUB_TINY */
3924 
3925 /*
3926  * If the object has been wiped upon free, make sure it's fully initialized by
3927  * zeroing out freelist pointer.
3928  */
3929 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3930 						   void *obj)
3931 {
3932 	if (unlikely(slab_want_init_on_free(s)) && obj &&
3933 	    !freeptr_outside_object(s))
3934 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3935 			0, sizeof(void *));
3936 }
3937 
3938 static __fastpath_inline
3939 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
3940 {
3941 	flags &= gfp_allowed_mask;
3942 
3943 	might_alloc(flags);
3944 
3945 	if (unlikely(should_failslab(s, flags)))
3946 		return NULL;
3947 
3948 	return s;
3949 }
3950 
3951 static __fastpath_inline
3952 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3953 			  gfp_t flags, size_t size, void **p, bool init,
3954 			  unsigned int orig_size)
3955 {
3956 	unsigned int zero_size = s->object_size;
3957 	bool kasan_init = init;
3958 	size_t i;
3959 	gfp_t init_flags = flags & gfp_allowed_mask;
3960 
3961 	/*
3962 	 * For kmalloc object, the allocated memory size(object_size) is likely
3963 	 * larger than the requested size(orig_size). If redzone check is
3964 	 * enabled for the extra space, don't zero it, as it will be redzoned
3965 	 * soon. The redzone operation for this extra space could be seen as a
3966 	 * replacement of current poisoning under certain debug option, and
3967 	 * won't break other sanity checks.
3968 	 */
3969 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
3970 	    (s->flags & SLAB_KMALLOC))
3971 		zero_size = orig_size;
3972 
3973 	/*
3974 	 * When slab_debug is enabled, avoid memory initialization integrated
3975 	 * into KASAN and instead zero out the memory via the memset below with
3976 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
3977 	 * cause false-positive reports. This does not lead to a performance
3978 	 * penalty on production builds, as slab_debug is not intended to be
3979 	 * enabled there.
3980 	 */
3981 	if (__slub_debug_enabled())
3982 		kasan_init = false;
3983 
3984 	/*
3985 	 * As memory initialization might be integrated into KASAN,
3986 	 * kasan_slab_alloc and initialization memset must be
3987 	 * kept together to avoid discrepancies in behavior.
3988 	 *
3989 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
3990 	 */
3991 	for (i = 0; i < size; i++) {
3992 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
3993 		if (p[i] && init && (!kasan_init ||
3994 				     !kasan_has_integrated_init()))
3995 			memset(p[i], 0, zero_size);
3996 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
3997 					 s->flags, init_flags);
3998 		kmsan_slab_alloc(s, p[i], init_flags);
3999 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4000 	}
4001 
4002 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4003 }
4004 
4005 /*
4006  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4007  * have the fastpath folded into their functions. So no function call
4008  * overhead for requests that can be satisfied on the fastpath.
4009  *
4010  * The fastpath works by first checking if the lockless freelist can be used.
4011  * If not then __slab_alloc is called for slow processing.
4012  *
4013  * Otherwise we can simply pick the next object from the lockless free list.
4014  */
4015 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4016 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4017 {
4018 	void *object;
4019 	bool init = false;
4020 
4021 	s = slab_pre_alloc_hook(s, gfpflags);
4022 	if (unlikely(!s))
4023 		return NULL;
4024 
4025 	object = kfence_alloc(s, orig_size, gfpflags);
4026 	if (unlikely(object))
4027 		goto out;
4028 
4029 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4030 
4031 	maybe_wipe_obj_freeptr(s, object);
4032 	init = slab_want_init_on_alloc(gfpflags, s);
4033 
4034 out:
4035 	/*
4036 	 * When init equals 'true', like for kzalloc() family, only
4037 	 * @orig_size bytes might be zeroed instead of s->object_size
4038 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4039 	 * object is set to NULL
4040 	 */
4041 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4042 
4043 	return object;
4044 }
4045 
4046 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4047 {
4048 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4049 				    s->object_size);
4050 
4051 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4052 
4053 	return ret;
4054 }
4055 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4056 
4057 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4058 			   gfp_t gfpflags)
4059 {
4060 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4061 				    s->object_size);
4062 
4063 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4064 
4065 	return ret;
4066 }
4067 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4068 
4069 /**
4070  * kmem_cache_alloc_node - Allocate an object on the specified node
4071  * @s: The cache to allocate from.
4072  * @gfpflags: See kmalloc().
4073  * @node: node number of the target node.
4074  *
4075  * Identical to kmem_cache_alloc but it will allocate memory on the given
4076  * node, which can improve the performance for cpu bound structures.
4077  *
4078  * Fallback to other node is possible if __GFP_THISNODE is not set.
4079  *
4080  * Return: pointer to the new object or %NULL in case of error
4081  */
4082 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4083 {
4084 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4085 
4086 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4087 
4088 	return ret;
4089 }
4090 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4091 
4092 /*
4093  * To avoid unnecessary overhead, we pass through large allocation requests
4094  * directly to the page allocator. We use __GFP_COMP, because we will need to
4095  * know the allocation order to free the pages properly in kfree.
4096  */
4097 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4098 {
4099 	struct folio *folio;
4100 	void *ptr = NULL;
4101 	unsigned int order = get_order(size);
4102 
4103 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4104 		flags = kmalloc_fix_flags(flags);
4105 
4106 	flags |= __GFP_COMP;
4107 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4108 	if (folio) {
4109 		ptr = folio_address(folio);
4110 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4111 				      PAGE_SIZE << order);
4112 	}
4113 
4114 	ptr = kasan_kmalloc_large(ptr, size, flags);
4115 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4116 	kmemleak_alloc(ptr, size, 1, flags);
4117 	kmsan_kmalloc_large(ptr, size, flags);
4118 
4119 	return ptr;
4120 }
4121 
4122 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4123 {
4124 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4125 
4126 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4127 		      flags, NUMA_NO_NODE);
4128 	return ret;
4129 }
4130 EXPORT_SYMBOL(__kmalloc_large_noprof);
4131 
4132 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4133 {
4134 	void *ret = ___kmalloc_large_node(size, flags, node);
4135 
4136 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4137 		      flags, node);
4138 	return ret;
4139 }
4140 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4141 
4142 static __always_inline
4143 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4144 			unsigned long caller)
4145 {
4146 	struct kmem_cache *s;
4147 	void *ret;
4148 
4149 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4150 		ret = __kmalloc_large_node_noprof(size, flags, node);
4151 		trace_kmalloc(caller, ret, size,
4152 			      PAGE_SIZE << get_order(size), flags, node);
4153 		return ret;
4154 	}
4155 
4156 	if (unlikely(!size))
4157 		return ZERO_SIZE_PTR;
4158 
4159 	s = kmalloc_slab(size, b, flags, caller);
4160 
4161 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4162 	ret = kasan_kmalloc(s, ret, size, flags);
4163 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4164 	return ret;
4165 }
4166 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4167 {
4168 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4169 }
4170 EXPORT_SYMBOL(__kmalloc_node_noprof);
4171 
4172 void *__kmalloc_noprof(size_t size, gfp_t flags)
4173 {
4174 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4175 }
4176 EXPORT_SYMBOL(__kmalloc_noprof);
4177 
4178 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4179 					 int node, unsigned long caller)
4180 {
4181 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4182 
4183 }
4184 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4185 
4186 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4187 {
4188 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4189 					    _RET_IP_, size);
4190 
4191 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4192 
4193 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4194 	return ret;
4195 }
4196 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4197 
4198 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4199 				  int node, size_t size)
4200 {
4201 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4202 
4203 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4204 
4205 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4206 	return ret;
4207 }
4208 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4209 
4210 static noinline void free_to_partial_list(
4211 	struct kmem_cache *s, struct slab *slab,
4212 	void *head, void *tail, int bulk_cnt,
4213 	unsigned long addr)
4214 {
4215 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4216 	struct slab *slab_free = NULL;
4217 	int cnt = bulk_cnt;
4218 	unsigned long flags;
4219 	depot_stack_handle_t handle = 0;
4220 
4221 	if (s->flags & SLAB_STORE_USER)
4222 		handle = set_track_prepare();
4223 
4224 	spin_lock_irqsave(&n->list_lock, flags);
4225 
4226 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4227 		void *prior = slab->freelist;
4228 
4229 		/* Perform the actual freeing while we still hold the locks */
4230 		slab->inuse -= cnt;
4231 		set_freepointer(s, tail, prior);
4232 		slab->freelist = head;
4233 
4234 		/*
4235 		 * If the slab is empty, and node's partial list is full,
4236 		 * it should be discarded anyway no matter it's on full or
4237 		 * partial list.
4238 		 */
4239 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4240 			slab_free = slab;
4241 
4242 		if (!prior) {
4243 			/* was on full list */
4244 			remove_full(s, n, slab);
4245 			if (!slab_free) {
4246 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4247 				stat(s, FREE_ADD_PARTIAL);
4248 			}
4249 		} else if (slab_free) {
4250 			remove_partial(n, slab);
4251 			stat(s, FREE_REMOVE_PARTIAL);
4252 		}
4253 	}
4254 
4255 	if (slab_free) {
4256 		/*
4257 		 * Update the counters while still holding n->list_lock to
4258 		 * prevent spurious validation warnings
4259 		 */
4260 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4261 	}
4262 
4263 	spin_unlock_irqrestore(&n->list_lock, flags);
4264 
4265 	if (slab_free) {
4266 		stat(s, FREE_SLAB);
4267 		free_slab(s, slab_free);
4268 	}
4269 }
4270 
4271 /*
4272  * Slow path handling. This may still be called frequently since objects
4273  * have a longer lifetime than the cpu slabs in most processing loads.
4274  *
4275  * So we still attempt to reduce cache line usage. Just take the slab
4276  * lock and free the item. If there is no additional partial slab
4277  * handling required then we can return immediately.
4278  */
4279 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4280 			void *head, void *tail, int cnt,
4281 			unsigned long addr)
4282 
4283 {
4284 	void *prior;
4285 	int was_frozen;
4286 	struct slab new;
4287 	unsigned long counters;
4288 	struct kmem_cache_node *n = NULL;
4289 	unsigned long flags;
4290 	bool on_node_partial;
4291 
4292 	stat(s, FREE_SLOWPATH);
4293 
4294 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4295 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4296 		return;
4297 	}
4298 
4299 	do {
4300 		if (unlikely(n)) {
4301 			spin_unlock_irqrestore(&n->list_lock, flags);
4302 			n = NULL;
4303 		}
4304 		prior = slab->freelist;
4305 		counters = slab->counters;
4306 		set_freepointer(s, tail, prior);
4307 		new.counters = counters;
4308 		was_frozen = new.frozen;
4309 		new.inuse -= cnt;
4310 		if ((!new.inuse || !prior) && !was_frozen) {
4311 			/* Needs to be taken off a list */
4312 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4313 
4314 				n = get_node(s, slab_nid(slab));
4315 				/*
4316 				 * Speculatively acquire the list_lock.
4317 				 * If the cmpxchg does not succeed then we may
4318 				 * drop the list_lock without any processing.
4319 				 *
4320 				 * Otherwise the list_lock will synchronize with
4321 				 * other processors updating the list of slabs.
4322 				 */
4323 				spin_lock_irqsave(&n->list_lock, flags);
4324 
4325 				on_node_partial = slab_test_node_partial(slab);
4326 			}
4327 		}
4328 
4329 	} while (!slab_update_freelist(s, slab,
4330 		prior, counters,
4331 		head, new.counters,
4332 		"__slab_free"));
4333 
4334 	if (likely(!n)) {
4335 
4336 		if (likely(was_frozen)) {
4337 			/*
4338 			 * The list lock was not taken therefore no list
4339 			 * activity can be necessary.
4340 			 */
4341 			stat(s, FREE_FROZEN);
4342 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4343 			/*
4344 			 * If we started with a full slab then put it onto the
4345 			 * per cpu partial list.
4346 			 */
4347 			put_cpu_partial(s, slab, 1);
4348 			stat(s, CPU_PARTIAL_FREE);
4349 		}
4350 
4351 		return;
4352 	}
4353 
4354 	/*
4355 	 * This slab was partially empty but not on the per-node partial list,
4356 	 * in which case we shouldn't manipulate its list, just return.
4357 	 */
4358 	if (prior && !on_node_partial) {
4359 		spin_unlock_irqrestore(&n->list_lock, flags);
4360 		return;
4361 	}
4362 
4363 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4364 		goto slab_empty;
4365 
4366 	/*
4367 	 * Objects left in the slab. If it was not on the partial list before
4368 	 * then add it.
4369 	 */
4370 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4371 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4372 		stat(s, FREE_ADD_PARTIAL);
4373 	}
4374 	spin_unlock_irqrestore(&n->list_lock, flags);
4375 	return;
4376 
4377 slab_empty:
4378 	if (prior) {
4379 		/*
4380 		 * Slab on the partial list.
4381 		 */
4382 		remove_partial(n, slab);
4383 		stat(s, FREE_REMOVE_PARTIAL);
4384 	}
4385 
4386 	spin_unlock_irqrestore(&n->list_lock, flags);
4387 	stat(s, FREE_SLAB);
4388 	discard_slab(s, slab);
4389 }
4390 
4391 #ifndef CONFIG_SLUB_TINY
4392 /*
4393  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4394  * can perform fastpath freeing without additional function calls.
4395  *
4396  * The fastpath is only possible if we are freeing to the current cpu slab
4397  * of this processor. This typically the case if we have just allocated
4398  * the item before.
4399  *
4400  * If fastpath is not possible then fall back to __slab_free where we deal
4401  * with all sorts of special processing.
4402  *
4403  * Bulk free of a freelist with several objects (all pointing to the
4404  * same slab) possible by specifying head and tail ptr, plus objects
4405  * count (cnt). Bulk free indicated by tail pointer being set.
4406  */
4407 static __always_inline void do_slab_free(struct kmem_cache *s,
4408 				struct slab *slab, void *head, void *tail,
4409 				int cnt, unsigned long addr)
4410 {
4411 	struct kmem_cache_cpu *c;
4412 	unsigned long tid;
4413 	void **freelist;
4414 
4415 redo:
4416 	/*
4417 	 * Determine the currently cpus per cpu slab.
4418 	 * The cpu may change afterward. However that does not matter since
4419 	 * data is retrieved via this pointer. If we are on the same cpu
4420 	 * during the cmpxchg then the free will succeed.
4421 	 */
4422 	c = raw_cpu_ptr(s->cpu_slab);
4423 	tid = READ_ONCE(c->tid);
4424 
4425 	/* Same with comment on barrier() in __slab_alloc_node() */
4426 	barrier();
4427 
4428 	if (unlikely(slab != c->slab)) {
4429 		__slab_free(s, slab, head, tail, cnt, addr);
4430 		return;
4431 	}
4432 
4433 	if (USE_LOCKLESS_FAST_PATH()) {
4434 		freelist = READ_ONCE(c->freelist);
4435 
4436 		set_freepointer(s, tail, freelist);
4437 
4438 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4439 			note_cmpxchg_failure("slab_free", s, tid);
4440 			goto redo;
4441 		}
4442 	} else {
4443 		/* Update the free list under the local lock */
4444 		local_lock(&s->cpu_slab->lock);
4445 		c = this_cpu_ptr(s->cpu_slab);
4446 		if (unlikely(slab != c->slab)) {
4447 			local_unlock(&s->cpu_slab->lock);
4448 			goto redo;
4449 		}
4450 		tid = c->tid;
4451 		freelist = c->freelist;
4452 
4453 		set_freepointer(s, tail, freelist);
4454 		c->freelist = head;
4455 		c->tid = next_tid(tid);
4456 
4457 		local_unlock(&s->cpu_slab->lock);
4458 	}
4459 	stat_add(s, FREE_FASTPATH, cnt);
4460 }
4461 #else /* CONFIG_SLUB_TINY */
4462 static void do_slab_free(struct kmem_cache *s,
4463 				struct slab *slab, void *head, void *tail,
4464 				int cnt, unsigned long addr)
4465 {
4466 	__slab_free(s, slab, head, tail, cnt, addr);
4467 }
4468 #endif /* CONFIG_SLUB_TINY */
4469 
4470 static __fastpath_inline
4471 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4472 	       unsigned long addr)
4473 {
4474 	memcg_slab_free_hook(s, slab, &object, 1);
4475 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4476 
4477 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4478 		do_slab_free(s, slab, object, object, 1, addr);
4479 }
4480 
4481 #ifdef CONFIG_MEMCG
4482 /* Do not inline the rare memcg charging failed path into the allocation path */
4483 static noinline
4484 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4485 {
4486 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s))))
4487 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4488 }
4489 #endif
4490 
4491 static __fastpath_inline
4492 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4493 		    void *tail, void **p, int cnt, unsigned long addr)
4494 {
4495 	memcg_slab_free_hook(s, slab, p, cnt);
4496 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4497 	/*
4498 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4499 	 * to remove objects, whose reuse must be delayed.
4500 	 */
4501 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4502 		do_slab_free(s, slab, head, tail, cnt, addr);
4503 }
4504 
4505 #ifdef CONFIG_KASAN_GENERIC
4506 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4507 {
4508 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4509 }
4510 #endif
4511 
4512 static inline struct kmem_cache *virt_to_cache(const void *obj)
4513 {
4514 	struct slab *slab;
4515 
4516 	slab = virt_to_slab(obj);
4517 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4518 		return NULL;
4519 	return slab->slab_cache;
4520 }
4521 
4522 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4523 {
4524 	struct kmem_cache *cachep;
4525 
4526 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4527 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4528 		return s;
4529 
4530 	cachep = virt_to_cache(x);
4531 	if (WARN(cachep && cachep != s,
4532 		 "%s: Wrong slab cache. %s but object is from %s\n",
4533 		 __func__, s->name, cachep->name))
4534 		print_tracking(cachep, x);
4535 	return cachep;
4536 }
4537 
4538 /**
4539  * kmem_cache_free - Deallocate an object
4540  * @s: The cache the allocation was from.
4541  * @x: The previously allocated object.
4542  *
4543  * Free an object which was previously allocated from this
4544  * cache.
4545  */
4546 void kmem_cache_free(struct kmem_cache *s, void *x)
4547 {
4548 	s = cache_from_obj(s, x);
4549 	if (!s)
4550 		return;
4551 	trace_kmem_cache_free(_RET_IP_, x, s);
4552 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4553 }
4554 EXPORT_SYMBOL(kmem_cache_free);
4555 
4556 static void free_large_kmalloc(struct folio *folio, void *object)
4557 {
4558 	unsigned int order = folio_order(folio);
4559 
4560 	if (WARN_ON_ONCE(order == 0))
4561 		pr_warn_once("object pointer: 0x%p\n", object);
4562 
4563 	kmemleak_free(object);
4564 	kasan_kfree_large(object);
4565 	kmsan_kfree_large(object);
4566 
4567 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4568 			      -(PAGE_SIZE << order));
4569 	folio_put(folio);
4570 }
4571 
4572 /**
4573  * kfree - free previously allocated memory
4574  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4575  *
4576  * If @object is NULL, no operation is performed.
4577  */
4578 void kfree(const void *object)
4579 {
4580 	struct folio *folio;
4581 	struct slab *slab;
4582 	struct kmem_cache *s;
4583 	void *x = (void *)object;
4584 
4585 	trace_kfree(_RET_IP_, object);
4586 
4587 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4588 		return;
4589 
4590 	folio = virt_to_folio(object);
4591 	if (unlikely(!folio_test_slab(folio))) {
4592 		free_large_kmalloc(folio, (void *)object);
4593 		return;
4594 	}
4595 
4596 	slab = folio_slab(folio);
4597 	s = slab->slab_cache;
4598 	slab_free(s, slab, x, _RET_IP_);
4599 }
4600 EXPORT_SYMBOL(kfree);
4601 
4602 struct detached_freelist {
4603 	struct slab *slab;
4604 	void *tail;
4605 	void *freelist;
4606 	int cnt;
4607 	struct kmem_cache *s;
4608 };
4609 
4610 /*
4611  * This function progressively scans the array with free objects (with
4612  * a limited look ahead) and extract objects belonging to the same
4613  * slab.  It builds a detached freelist directly within the given
4614  * slab/objects.  This can happen without any need for
4615  * synchronization, because the objects are owned by running process.
4616  * The freelist is build up as a single linked list in the objects.
4617  * The idea is, that this detached freelist can then be bulk
4618  * transferred to the real freelist(s), but only requiring a single
4619  * synchronization primitive.  Look ahead in the array is limited due
4620  * to performance reasons.
4621  */
4622 static inline
4623 int build_detached_freelist(struct kmem_cache *s, size_t size,
4624 			    void **p, struct detached_freelist *df)
4625 {
4626 	int lookahead = 3;
4627 	void *object;
4628 	struct folio *folio;
4629 	size_t same;
4630 
4631 	object = p[--size];
4632 	folio = virt_to_folio(object);
4633 	if (!s) {
4634 		/* Handle kalloc'ed objects */
4635 		if (unlikely(!folio_test_slab(folio))) {
4636 			free_large_kmalloc(folio, object);
4637 			df->slab = NULL;
4638 			return size;
4639 		}
4640 		/* Derive kmem_cache from object */
4641 		df->slab = folio_slab(folio);
4642 		df->s = df->slab->slab_cache;
4643 	} else {
4644 		df->slab = folio_slab(folio);
4645 		df->s = cache_from_obj(s, object); /* Support for memcg */
4646 	}
4647 
4648 	/* Start new detached freelist */
4649 	df->tail = object;
4650 	df->freelist = object;
4651 	df->cnt = 1;
4652 
4653 	if (is_kfence_address(object))
4654 		return size;
4655 
4656 	set_freepointer(df->s, object, NULL);
4657 
4658 	same = size;
4659 	while (size) {
4660 		object = p[--size];
4661 		/* df->slab is always set at this point */
4662 		if (df->slab == virt_to_slab(object)) {
4663 			/* Opportunity build freelist */
4664 			set_freepointer(df->s, object, df->freelist);
4665 			df->freelist = object;
4666 			df->cnt++;
4667 			same--;
4668 			if (size != same)
4669 				swap(p[size], p[same]);
4670 			continue;
4671 		}
4672 
4673 		/* Limit look ahead search */
4674 		if (!--lookahead)
4675 			break;
4676 	}
4677 
4678 	return same;
4679 }
4680 
4681 /*
4682  * Internal bulk free of objects that were not initialised by the post alloc
4683  * hooks and thus should not be processed by the free hooks
4684  */
4685 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4686 {
4687 	if (!size)
4688 		return;
4689 
4690 	do {
4691 		struct detached_freelist df;
4692 
4693 		size = build_detached_freelist(s, size, p, &df);
4694 		if (!df.slab)
4695 			continue;
4696 
4697 		if (kfence_free(df.freelist))
4698 			continue;
4699 
4700 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4701 			     _RET_IP_);
4702 	} while (likely(size));
4703 }
4704 
4705 /* Note that interrupts must be enabled when calling this function. */
4706 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4707 {
4708 	if (!size)
4709 		return;
4710 
4711 	do {
4712 		struct detached_freelist df;
4713 
4714 		size = build_detached_freelist(s, size, p, &df);
4715 		if (!df.slab)
4716 			continue;
4717 
4718 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4719 			       df.cnt, _RET_IP_);
4720 	} while (likely(size));
4721 }
4722 EXPORT_SYMBOL(kmem_cache_free_bulk);
4723 
4724 #ifndef CONFIG_SLUB_TINY
4725 static inline
4726 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4727 			    void **p)
4728 {
4729 	struct kmem_cache_cpu *c;
4730 	unsigned long irqflags;
4731 	int i;
4732 
4733 	/*
4734 	 * Drain objects in the per cpu slab, while disabling local
4735 	 * IRQs, which protects against PREEMPT and interrupts
4736 	 * handlers invoking normal fastpath.
4737 	 */
4738 	c = slub_get_cpu_ptr(s->cpu_slab);
4739 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4740 
4741 	for (i = 0; i < size; i++) {
4742 		void *object = kfence_alloc(s, s->object_size, flags);
4743 
4744 		if (unlikely(object)) {
4745 			p[i] = object;
4746 			continue;
4747 		}
4748 
4749 		object = c->freelist;
4750 		if (unlikely(!object)) {
4751 			/*
4752 			 * We may have removed an object from c->freelist using
4753 			 * the fastpath in the previous iteration; in that case,
4754 			 * c->tid has not been bumped yet.
4755 			 * Since ___slab_alloc() may reenable interrupts while
4756 			 * allocating memory, we should bump c->tid now.
4757 			 */
4758 			c->tid = next_tid(c->tid);
4759 
4760 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4761 
4762 			/*
4763 			 * Invoking slow path likely have side-effect
4764 			 * of re-populating per CPU c->freelist
4765 			 */
4766 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4767 					    _RET_IP_, c, s->object_size);
4768 			if (unlikely(!p[i]))
4769 				goto error;
4770 
4771 			c = this_cpu_ptr(s->cpu_slab);
4772 			maybe_wipe_obj_freeptr(s, p[i]);
4773 
4774 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4775 
4776 			continue; /* goto for-loop */
4777 		}
4778 		c->freelist = get_freepointer(s, object);
4779 		p[i] = object;
4780 		maybe_wipe_obj_freeptr(s, p[i]);
4781 		stat(s, ALLOC_FASTPATH);
4782 	}
4783 	c->tid = next_tid(c->tid);
4784 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4785 	slub_put_cpu_ptr(s->cpu_slab);
4786 
4787 	return i;
4788 
4789 error:
4790 	slub_put_cpu_ptr(s->cpu_slab);
4791 	__kmem_cache_free_bulk(s, i, p);
4792 	return 0;
4793 
4794 }
4795 #else /* CONFIG_SLUB_TINY */
4796 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4797 				   size_t size, void **p)
4798 {
4799 	int i;
4800 
4801 	for (i = 0; i < size; i++) {
4802 		void *object = kfence_alloc(s, s->object_size, flags);
4803 
4804 		if (unlikely(object)) {
4805 			p[i] = object;
4806 			continue;
4807 		}
4808 
4809 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4810 					 _RET_IP_, s->object_size);
4811 		if (unlikely(!p[i]))
4812 			goto error;
4813 
4814 		maybe_wipe_obj_freeptr(s, p[i]);
4815 	}
4816 
4817 	return i;
4818 
4819 error:
4820 	__kmem_cache_free_bulk(s, i, p);
4821 	return 0;
4822 }
4823 #endif /* CONFIG_SLUB_TINY */
4824 
4825 /* Note that interrupts must be enabled when calling this function. */
4826 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4827 				 void **p)
4828 {
4829 	int i;
4830 
4831 	if (!size)
4832 		return 0;
4833 
4834 	s = slab_pre_alloc_hook(s, flags);
4835 	if (unlikely(!s))
4836 		return 0;
4837 
4838 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4839 	if (unlikely(i == 0))
4840 		return 0;
4841 
4842 	/*
4843 	 * memcg and kmem_cache debug support and memory initialization.
4844 	 * Done outside of the IRQ disabled fastpath loop.
4845 	 */
4846 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4847 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
4848 		return 0;
4849 	}
4850 	return i;
4851 }
4852 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4853 
4854 
4855 /*
4856  * Object placement in a slab is made very easy because we always start at
4857  * offset 0. If we tune the size of the object to the alignment then we can
4858  * get the required alignment by putting one properly sized object after
4859  * another.
4860  *
4861  * Notice that the allocation order determines the sizes of the per cpu
4862  * caches. Each processor has always one slab available for allocations.
4863  * Increasing the allocation order reduces the number of times that slabs
4864  * must be moved on and off the partial lists and is therefore a factor in
4865  * locking overhead.
4866  */
4867 
4868 /*
4869  * Minimum / Maximum order of slab pages. This influences locking overhead
4870  * and slab fragmentation. A higher order reduces the number of partial slabs
4871  * and increases the number of allocations possible without having to
4872  * take the list_lock.
4873  */
4874 static unsigned int slub_min_order;
4875 static unsigned int slub_max_order =
4876 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4877 static unsigned int slub_min_objects;
4878 
4879 /*
4880  * Calculate the order of allocation given an slab object size.
4881  *
4882  * The order of allocation has significant impact on performance and other
4883  * system components. Generally order 0 allocations should be preferred since
4884  * order 0 does not cause fragmentation in the page allocator. Larger objects
4885  * be problematic to put into order 0 slabs because there may be too much
4886  * unused space left. We go to a higher order if more than 1/16th of the slab
4887  * would be wasted.
4888  *
4889  * In order to reach satisfactory performance we must ensure that a minimum
4890  * number of objects is in one slab. Otherwise we may generate too much
4891  * activity on the partial lists which requires taking the list_lock. This is
4892  * less a concern for large slabs though which are rarely used.
4893  *
4894  * slab_max_order specifies the order where we begin to stop considering the
4895  * number of objects in a slab as critical. If we reach slab_max_order then
4896  * we try to keep the page order as low as possible. So we accept more waste
4897  * of space in favor of a small page order.
4898  *
4899  * Higher order allocations also allow the placement of more objects in a
4900  * slab and thereby reduce object handling overhead. If the user has
4901  * requested a higher minimum order then we start with that one instead of
4902  * the smallest order which will fit the object.
4903  */
4904 static inline unsigned int calc_slab_order(unsigned int size,
4905 		unsigned int min_order, unsigned int max_order,
4906 		unsigned int fract_leftover)
4907 {
4908 	unsigned int order;
4909 
4910 	for (order = min_order; order <= max_order; order++) {
4911 
4912 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4913 		unsigned int rem;
4914 
4915 		rem = slab_size % size;
4916 
4917 		if (rem <= slab_size / fract_leftover)
4918 			break;
4919 	}
4920 
4921 	return order;
4922 }
4923 
4924 static inline int calculate_order(unsigned int size)
4925 {
4926 	unsigned int order;
4927 	unsigned int min_objects;
4928 	unsigned int max_objects;
4929 	unsigned int min_order;
4930 
4931 	min_objects = slub_min_objects;
4932 	if (!min_objects) {
4933 		/*
4934 		 * Some architectures will only update present cpus when
4935 		 * onlining them, so don't trust the number if it's just 1. But
4936 		 * we also don't want to use nr_cpu_ids always, as on some other
4937 		 * architectures, there can be many possible cpus, but never
4938 		 * onlined. Here we compromise between trying to avoid too high
4939 		 * order on systems that appear larger than they are, and too
4940 		 * low order on systems that appear smaller than they are.
4941 		 */
4942 		unsigned int nr_cpus = num_present_cpus();
4943 		if (nr_cpus <= 1)
4944 			nr_cpus = nr_cpu_ids;
4945 		min_objects = 4 * (fls(nr_cpus) + 1);
4946 	}
4947 	/* min_objects can't be 0 because get_order(0) is undefined */
4948 	max_objects = max(order_objects(slub_max_order, size), 1U);
4949 	min_objects = min(min_objects, max_objects);
4950 
4951 	min_order = max_t(unsigned int, slub_min_order,
4952 			  get_order(min_objects * size));
4953 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4954 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4955 
4956 	/*
4957 	 * Attempt to find best configuration for a slab. This works by first
4958 	 * attempting to generate a layout with the best possible configuration
4959 	 * and backing off gradually.
4960 	 *
4961 	 * We start with accepting at most 1/16 waste and try to find the
4962 	 * smallest order from min_objects-derived/slab_min_order up to
4963 	 * slab_max_order that will satisfy the constraint. Note that increasing
4964 	 * the order can only result in same or less fractional waste, not more.
4965 	 *
4966 	 * If that fails, we increase the acceptable fraction of waste and try
4967 	 * again. The last iteration with fraction of 1/2 would effectively
4968 	 * accept any waste and give us the order determined by min_objects, as
4969 	 * long as at least single object fits within slab_max_order.
4970 	 */
4971 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
4972 		order = calc_slab_order(size, min_order, slub_max_order,
4973 					fraction);
4974 		if (order <= slub_max_order)
4975 			return order;
4976 	}
4977 
4978 	/*
4979 	 * Doh this slab cannot be placed using slab_max_order.
4980 	 */
4981 	order = get_order(size);
4982 	if (order <= MAX_PAGE_ORDER)
4983 		return order;
4984 	return -ENOSYS;
4985 }
4986 
4987 static void
4988 init_kmem_cache_node(struct kmem_cache_node *n)
4989 {
4990 	n->nr_partial = 0;
4991 	spin_lock_init(&n->list_lock);
4992 	INIT_LIST_HEAD(&n->partial);
4993 #ifdef CONFIG_SLUB_DEBUG
4994 	atomic_long_set(&n->nr_slabs, 0);
4995 	atomic_long_set(&n->total_objects, 0);
4996 	INIT_LIST_HEAD(&n->full);
4997 #endif
4998 }
4999 
5000 #ifndef CONFIG_SLUB_TINY
5001 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5002 {
5003 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5004 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5005 			sizeof(struct kmem_cache_cpu));
5006 
5007 	/*
5008 	 * Must align to double word boundary for the double cmpxchg
5009 	 * instructions to work; see __pcpu_double_call_return_bool().
5010 	 */
5011 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5012 				     2 * sizeof(void *));
5013 
5014 	if (!s->cpu_slab)
5015 		return 0;
5016 
5017 	init_kmem_cache_cpus(s);
5018 
5019 	return 1;
5020 }
5021 #else
5022 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5023 {
5024 	return 1;
5025 }
5026 #endif /* CONFIG_SLUB_TINY */
5027 
5028 static struct kmem_cache *kmem_cache_node;
5029 
5030 /*
5031  * No kmalloc_node yet so do it by hand. We know that this is the first
5032  * slab on the node for this slabcache. There are no concurrent accesses
5033  * possible.
5034  *
5035  * Note that this function only works on the kmem_cache_node
5036  * when allocating for the kmem_cache_node. This is used for bootstrapping
5037  * memory on a fresh node that has no slab structures yet.
5038  */
5039 static void early_kmem_cache_node_alloc(int node)
5040 {
5041 	struct slab *slab;
5042 	struct kmem_cache_node *n;
5043 
5044 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5045 
5046 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5047 
5048 	BUG_ON(!slab);
5049 	if (slab_nid(slab) != node) {
5050 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5051 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5052 	}
5053 
5054 	n = slab->freelist;
5055 	BUG_ON(!n);
5056 #ifdef CONFIG_SLUB_DEBUG
5057 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5058 #endif
5059 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5060 	slab->freelist = get_freepointer(kmem_cache_node, n);
5061 	slab->inuse = 1;
5062 	kmem_cache_node->node[node] = n;
5063 	init_kmem_cache_node(n);
5064 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5065 
5066 	/*
5067 	 * No locks need to be taken here as it has just been
5068 	 * initialized and there is no concurrent access.
5069 	 */
5070 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5071 }
5072 
5073 static void free_kmem_cache_nodes(struct kmem_cache *s)
5074 {
5075 	int node;
5076 	struct kmem_cache_node *n;
5077 
5078 	for_each_kmem_cache_node(s, node, n) {
5079 		s->node[node] = NULL;
5080 		kmem_cache_free(kmem_cache_node, n);
5081 	}
5082 }
5083 
5084 void __kmem_cache_release(struct kmem_cache *s)
5085 {
5086 	cache_random_seq_destroy(s);
5087 #ifndef CONFIG_SLUB_TINY
5088 	free_percpu(s->cpu_slab);
5089 #endif
5090 	free_kmem_cache_nodes(s);
5091 }
5092 
5093 static int init_kmem_cache_nodes(struct kmem_cache *s)
5094 {
5095 	int node;
5096 
5097 	for_each_node_mask(node, slab_nodes) {
5098 		struct kmem_cache_node *n;
5099 
5100 		if (slab_state == DOWN) {
5101 			early_kmem_cache_node_alloc(node);
5102 			continue;
5103 		}
5104 		n = kmem_cache_alloc_node(kmem_cache_node,
5105 						GFP_KERNEL, node);
5106 
5107 		if (!n) {
5108 			free_kmem_cache_nodes(s);
5109 			return 0;
5110 		}
5111 
5112 		init_kmem_cache_node(n);
5113 		s->node[node] = n;
5114 	}
5115 	return 1;
5116 }
5117 
5118 static void set_cpu_partial(struct kmem_cache *s)
5119 {
5120 #ifdef CONFIG_SLUB_CPU_PARTIAL
5121 	unsigned int nr_objects;
5122 
5123 	/*
5124 	 * cpu_partial determined the maximum number of objects kept in the
5125 	 * per cpu partial lists of a processor.
5126 	 *
5127 	 * Per cpu partial lists mainly contain slabs that just have one
5128 	 * object freed. If they are used for allocation then they can be
5129 	 * filled up again with minimal effort. The slab will never hit the
5130 	 * per node partial lists and therefore no locking will be required.
5131 	 *
5132 	 * For backwards compatibility reasons, this is determined as number
5133 	 * of objects, even though we now limit maximum number of pages, see
5134 	 * slub_set_cpu_partial()
5135 	 */
5136 	if (!kmem_cache_has_cpu_partial(s))
5137 		nr_objects = 0;
5138 	else if (s->size >= PAGE_SIZE)
5139 		nr_objects = 6;
5140 	else if (s->size >= 1024)
5141 		nr_objects = 24;
5142 	else if (s->size >= 256)
5143 		nr_objects = 52;
5144 	else
5145 		nr_objects = 120;
5146 
5147 	slub_set_cpu_partial(s, nr_objects);
5148 #endif
5149 }
5150 
5151 /*
5152  * calculate_sizes() determines the order and the distribution of data within
5153  * a slab object.
5154  */
5155 static int calculate_sizes(struct kmem_cache *s)
5156 {
5157 	slab_flags_t flags = s->flags;
5158 	unsigned int size = s->object_size;
5159 	unsigned int order;
5160 
5161 	/*
5162 	 * Round up object size to the next word boundary. We can only
5163 	 * place the free pointer at word boundaries and this determines
5164 	 * the possible location of the free pointer.
5165 	 */
5166 	size = ALIGN(size, sizeof(void *));
5167 
5168 #ifdef CONFIG_SLUB_DEBUG
5169 	/*
5170 	 * Determine if we can poison the object itself. If the user of
5171 	 * the slab may touch the object after free or before allocation
5172 	 * then we should never poison the object itself.
5173 	 */
5174 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5175 			!s->ctor)
5176 		s->flags |= __OBJECT_POISON;
5177 	else
5178 		s->flags &= ~__OBJECT_POISON;
5179 
5180 
5181 	/*
5182 	 * If we are Redzoning then check if there is some space between the
5183 	 * end of the object and the free pointer. If not then add an
5184 	 * additional word to have some bytes to store Redzone information.
5185 	 */
5186 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5187 		size += sizeof(void *);
5188 #endif
5189 
5190 	/*
5191 	 * With that we have determined the number of bytes in actual use
5192 	 * by the object and redzoning.
5193 	 */
5194 	s->inuse = size;
5195 
5196 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || s->ctor ||
5197 	    ((flags & SLAB_RED_ZONE) &&
5198 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5199 		/*
5200 		 * Relocate free pointer after the object if it is not
5201 		 * permitted to overwrite the first word of the object on
5202 		 * kmem_cache_free.
5203 		 *
5204 		 * This is the case if we do RCU, have a constructor or
5205 		 * destructor, are poisoning the objects, or are
5206 		 * redzoning an object smaller than sizeof(void *) or are
5207 		 * redzoning an object with slub_debug_orig_size() enabled,
5208 		 * in which case the right redzone may be extended.
5209 		 *
5210 		 * The assumption that s->offset >= s->inuse means free
5211 		 * pointer is outside of the object is used in the
5212 		 * freeptr_outside_object() function. If that is no
5213 		 * longer true, the function needs to be modified.
5214 		 */
5215 		s->offset = size;
5216 		size += sizeof(void *);
5217 	} else {
5218 		/*
5219 		 * Store freelist pointer near middle of object to keep
5220 		 * it away from the edges of the object to avoid small
5221 		 * sized over/underflows from neighboring allocations.
5222 		 */
5223 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5224 	}
5225 
5226 #ifdef CONFIG_SLUB_DEBUG
5227 	if (flags & SLAB_STORE_USER) {
5228 		/*
5229 		 * Need to store information about allocs and frees after
5230 		 * the object.
5231 		 */
5232 		size += 2 * sizeof(struct track);
5233 
5234 		/* Save the original kmalloc request size */
5235 		if (flags & SLAB_KMALLOC)
5236 			size += sizeof(unsigned int);
5237 	}
5238 #endif
5239 
5240 	kasan_cache_create(s, &size, &s->flags);
5241 #ifdef CONFIG_SLUB_DEBUG
5242 	if (flags & SLAB_RED_ZONE) {
5243 		/*
5244 		 * Add some empty padding so that we can catch
5245 		 * overwrites from earlier objects rather than let
5246 		 * tracking information or the free pointer be
5247 		 * corrupted if a user writes before the start
5248 		 * of the object.
5249 		 */
5250 		size += sizeof(void *);
5251 
5252 		s->red_left_pad = sizeof(void *);
5253 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5254 		size += s->red_left_pad;
5255 	}
5256 #endif
5257 
5258 	/*
5259 	 * SLUB stores one object immediately after another beginning from
5260 	 * offset 0. In order to align the objects we have to simply size
5261 	 * each object to conform to the alignment.
5262 	 */
5263 	size = ALIGN(size, s->align);
5264 	s->size = size;
5265 	s->reciprocal_size = reciprocal_value(size);
5266 	order = calculate_order(size);
5267 
5268 	if ((int)order < 0)
5269 		return 0;
5270 
5271 	s->allocflags = __GFP_COMP;
5272 
5273 	if (s->flags & SLAB_CACHE_DMA)
5274 		s->allocflags |= GFP_DMA;
5275 
5276 	if (s->flags & SLAB_CACHE_DMA32)
5277 		s->allocflags |= GFP_DMA32;
5278 
5279 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5280 		s->allocflags |= __GFP_RECLAIMABLE;
5281 
5282 	/*
5283 	 * Determine the number of objects per slab
5284 	 */
5285 	s->oo = oo_make(order, size);
5286 	s->min = oo_make(get_order(size), size);
5287 
5288 	return !!oo_objects(s->oo);
5289 }
5290 
5291 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
5292 {
5293 	s->flags = kmem_cache_flags(flags, s->name);
5294 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5295 	s->random = get_random_long();
5296 #endif
5297 
5298 	if (!calculate_sizes(s))
5299 		goto error;
5300 	if (disable_higher_order_debug) {
5301 		/*
5302 		 * Disable debugging flags that store metadata if the min slab
5303 		 * order increased.
5304 		 */
5305 		if (get_order(s->size) > get_order(s->object_size)) {
5306 			s->flags &= ~DEBUG_METADATA_FLAGS;
5307 			s->offset = 0;
5308 			if (!calculate_sizes(s))
5309 				goto error;
5310 		}
5311 	}
5312 
5313 #ifdef system_has_freelist_aba
5314 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
5315 		/* Enable fast mode */
5316 		s->flags |= __CMPXCHG_DOUBLE;
5317 	}
5318 #endif
5319 
5320 	/*
5321 	 * The larger the object size is, the more slabs we want on the partial
5322 	 * list to avoid pounding the page allocator excessively.
5323 	 */
5324 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
5325 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
5326 
5327 	set_cpu_partial(s);
5328 
5329 #ifdef CONFIG_NUMA
5330 	s->remote_node_defrag_ratio = 1000;
5331 #endif
5332 
5333 	/* Initialize the pre-computed randomized freelist if slab is up */
5334 	if (slab_state >= UP) {
5335 		if (init_cache_random_seq(s))
5336 			goto error;
5337 	}
5338 
5339 	if (!init_kmem_cache_nodes(s))
5340 		goto error;
5341 
5342 	if (alloc_kmem_cache_cpus(s))
5343 		return 0;
5344 
5345 error:
5346 	__kmem_cache_release(s);
5347 	return -EINVAL;
5348 }
5349 
5350 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5351 			      const char *text)
5352 {
5353 #ifdef CONFIG_SLUB_DEBUG
5354 	void *addr = slab_address(slab);
5355 	void *p;
5356 
5357 	slab_err(s, slab, text, s->name);
5358 
5359 	spin_lock(&object_map_lock);
5360 	__fill_map(object_map, s, slab);
5361 
5362 	for_each_object(p, s, addr, slab->objects) {
5363 
5364 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5365 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5366 			print_tracking(s, p);
5367 		}
5368 	}
5369 	spin_unlock(&object_map_lock);
5370 #endif
5371 }
5372 
5373 /*
5374  * Attempt to free all partial slabs on a node.
5375  * This is called from __kmem_cache_shutdown(). We must take list_lock
5376  * because sysfs file might still access partial list after the shutdowning.
5377  */
5378 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5379 {
5380 	LIST_HEAD(discard);
5381 	struct slab *slab, *h;
5382 
5383 	BUG_ON(irqs_disabled());
5384 	spin_lock_irq(&n->list_lock);
5385 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5386 		if (!slab->inuse) {
5387 			remove_partial(n, slab);
5388 			list_add(&slab->slab_list, &discard);
5389 		} else {
5390 			list_slab_objects(s, slab,
5391 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5392 		}
5393 	}
5394 	spin_unlock_irq(&n->list_lock);
5395 
5396 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5397 		discard_slab(s, slab);
5398 }
5399 
5400 bool __kmem_cache_empty(struct kmem_cache *s)
5401 {
5402 	int node;
5403 	struct kmem_cache_node *n;
5404 
5405 	for_each_kmem_cache_node(s, node, n)
5406 		if (n->nr_partial || node_nr_slabs(n))
5407 			return false;
5408 	return true;
5409 }
5410 
5411 /*
5412  * Release all resources used by a slab cache.
5413  */
5414 int __kmem_cache_shutdown(struct kmem_cache *s)
5415 {
5416 	int node;
5417 	struct kmem_cache_node *n;
5418 
5419 	flush_all_cpus_locked(s);
5420 	/* Attempt to free all objects */
5421 	for_each_kmem_cache_node(s, node, n) {
5422 		free_partial(s, n);
5423 		if (n->nr_partial || node_nr_slabs(n))
5424 			return 1;
5425 	}
5426 	return 0;
5427 }
5428 
5429 #ifdef CONFIG_PRINTK
5430 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5431 {
5432 	void *base;
5433 	int __maybe_unused i;
5434 	unsigned int objnr;
5435 	void *objp;
5436 	void *objp0;
5437 	struct kmem_cache *s = slab->slab_cache;
5438 	struct track __maybe_unused *trackp;
5439 
5440 	kpp->kp_ptr = object;
5441 	kpp->kp_slab = slab;
5442 	kpp->kp_slab_cache = s;
5443 	base = slab_address(slab);
5444 	objp0 = kasan_reset_tag(object);
5445 #ifdef CONFIG_SLUB_DEBUG
5446 	objp = restore_red_left(s, objp0);
5447 #else
5448 	objp = objp0;
5449 #endif
5450 	objnr = obj_to_index(s, slab, objp);
5451 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5452 	objp = base + s->size * objnr;
5453 	kpp->kp_objp = objp;
5454 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5455 			 || (objp - base) % s->size) ||
5456 	    !(s->flags & SLAB_STORE_USER))
5457 		return;
5458 #ifdef CONFIG_SLUB_DEBUG
5459 	objp = fixup_red_left(s, objp);
5460 	trackp = get_track(s, objp, TRACK_ALLOC);
5461 	kpp->kp_ret = (void *)trackp->addr;
5462 #ifdef CONFIG_STACKDEPOT
5463 	{
5464 		depot_stack_handle_t handle;
5465 		unsigned long *entries;
5466 		unsigned int nr_entries;
5467 
5468 		handle = READ_ONCE(trackp->handle);
5469 		if (handle) {
5470 			nr_entries = stack_depot_fetch(handle, &entries);
5471 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5472 				kpp->kp_stack[i] = (void *)entries[i];
5473 		}
5474 
5475 		trackp = get_track(s, objp, TRACK_FREE);
5476 		handle = READ_ONCE(trackp->handle);
5477 		if (handle) {
5478 			nr_entries = stack_depot_fetch(handle, &entries);
5479 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5480 				kpp->kp_free_stack[i] = (void *)entries[i];
5481 		}
5482 	}
5483 #endif
5484 #endif
5485 }
5486 #endif
5487 
5488 /********************************************************************
5489  *		Kmalloc subsystem
5490  *******************************************************************/
5491 
5492 static int __init setup_slub_min_order(char *str)
5493 {
5494 	get_option(&str, (int *)&slub_min_order);
5495 
5496 	if (slub_min_order > slub_max_order)
5497 		slub_max_order = slub_min_order;
5498 
5499 	return 1;
5500 }
5501 
5502 __setup("slab_min_order=", setup_slub_min_order);
5503 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5504 
5505 
5506 static int __init setup_slub_max_order(char *str)
5507 {
5508 	get_option(&str, (int *)&slub_max_order);
5509 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5510 
5511 	if (slub_min_order > slub_max_order)
5512 		slub_min_order = slub_max_order;
5513 
5514 	return 1;
5515 }
5516 
5517 __setup("slab_max_order=", setup_slub_max_order);
5518 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5519 
5520 static int __init setup_slub_min_objects(char *str)
5521 {
5522 	get_option(&str, (int *)&slub_min_objects);
5523 
5524 	return 1;
5525 }
5526 
5527 __setup("slab_min_objects=", setup_slub_min_objects);
5528 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5529 
5530 #ifdef CONFIG_HARDENED_USERCOPY
5531 /*
5532  * Rejects incorrectly sized objects and objects that are to be copied
5533  * to/from userspace but do not fall entirely within the containing slab
5534  * cache's usercopy region.
5535  *
5536  * Returns NULL if check passes, otherwise const char * to name of cache
5537  * to indicate an error.
5538  */
5539 void __check_heap_object(const void *ptr, unsigned long n,
5540 			 const struct slab *slab, bool to_user)
5541 {
5542 	struct kmem_cache *s;
5543 	unsigned int offset;
5544 	bool is_kfence = is_kfence_address(ptr);
5545 
5546 	ptr = kasan_reset_tag(ptr);
5547 
5548 	/* Find object and usable object size. */
5549 	s = slab->slab_cache;
5550 
5551 	/* Reject impossible pointers. */
5552 	if (ptr < slab_address(slab))
5553 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5554 			       to_user, 0, n);
5555 
5556 	/* Find offset within object. */
5557 	if (is_kfence)
5558 		offset = ptr - kfence_object_start(ptr);
5559 	else
5560 		offset = (ptr - slab_address(slab)) % s->size;
5561 
5562 	/* Adjust for redzone and reject if within the redzone. */
5563 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5564 		if (offset < s->red_left_pad)
5565 			usercopy_abort("SLUB object in left red zone",
5566 				       s->name, to_user, offset, n);
5567 		offset -= s->red_left_pad;
5568 	}
5569 
5570 	/* Allow address range falling entirely within usercopy region. */
5571 	if (offset >= s->useroffset &&
5572 	    offset - s->useroffset <= s->usersize &&
5573 	    n <= s->useroffset - offset + s->usersize)
5574 		return;
5575 
5576 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5577 }
5578 #endif /* CONFIG_HARDENED_USERCOPY */
5579 
5580 #define SHRINK_PROMOTE_MAX 32
5581 
5582 /*
5583  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5584  * up most to the head of the partial lists. New allocations will then
5585  * fill those up and thus they can be removed from the partial lists.
5586  *
5587  * The slabs with the least items are placed last. This results in them
5588  * being allocated from last increasing the chance that the last objects
5589  * are freed in them.
5590  */
5591 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5592 {
5593 	int node;
5594 	int i;
5595 	struct kmem_cache_node *n;
5596 	struct slab *slab;
5597 	struct slab *t;
5598 	struct list_head discard;
5599 	struct list_head promote[SHRINK_PROMOTE_MAX];
5600 	unsigned long flags;
5601 	int ret = 0;
5602 
5603 	for_each_kmem_cache_node(s, node, n) {
5604 		INIT_LIST_HEAD(&discard);
5605 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5606 			INIT_LIST_HEAD(promote + i);
5607 
5608 		spin_lock_irqsave(&n->list_lock, flags);
5609 
5610 		/*
5611 		 * Build lists of slabs to discard or promote.
5612 		 *
5613 		 * Note that concurrent frees may occur while we hold the
5614 		 * list_lock. slab->inuse here is the upper limit.
5615 		 */
5616 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5617 			int free = slab->objects - slab->inuse;
5618 
5619 			/* Do not reread slab->inuse */
5620 			barrier();
5621 
5622 			/* We do not keep full slabs on the list */
5623 			BUG_ON(free <= 0);
5624 
5625 			if (free == slab->objects) {
5626 				list_move(&slab->slab_list, &discard);
5627 				slab_clear_node_partial(slab);
5628 				n->nr_partial--;
5629 				dec_slabs_node(s, node, slab->objects);
5630 			} else if (free <= SHRINK_PROMOTE_MAX)
5631 				list_move(&slab->slab_list, promote + free - 1);
5632 		}
5633 
5634 		/*
5635 		 * Promote the slabs filled up most to the head of the
5636 		 * partial list.
5637 		 */
5638 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5639 			list_splice(promote + i, &n->partial);
5640 
5641 		spin_unlock_irqrestore(&n->list_lock, flags);
5642 
5643 		/* Release empty slabs */
5644 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5645 			free_slab(s, slab);
5646 
5647 		if (node_nr_slabs(n))
5648 			ret = 1;
5649 	}
5650 
5651 	return ret;
5652 }
5653 
5654 int __kmem_cache_shrink(struct kmem_cache *s)
5655 {
5656 	flush_all(s);
5657 	return __kmem_cache_do_shrink(s);
5658 }
5659 
5660 static int slab_mem_going_offline_callback(void *arg)
5661 {
5662 	struct kmem_cache *s;
5663 
5664 	mutex_lock(&slab_mutex);
5665 	list_for_each_entry(s, &slab_caches, list) {
5666 		flush_all_cpus_locked(s);
5667 		__kmem_cache_do_shrink(s);
5668 	}
5669 	mutex_unlock(&slab_mutex);
5670 
5671 	return 0;
5672 }
5673 
5674 static void slab_mem_offline_callback(void *arg)
5675 {
5676 	struct memory_notify *marg = arg;
5677 	int offline_node;
5678 
5679 	offline_node = marg->status_change_nid_normal;
5680 
5681 	/*
5682 	 * If the node still has available memory. we need kmem_cache_node
5683 	 * for it yet.
5684 	 */
5685 	if (offline_node < 0)
5686 		return;
5687 
5688 	mutex_lock(&slab_mutex);
5689 	node_clear(offline_node, slab_nodes);
5690 	/*
5691 	 * We no longer free kmem_cache_node structures here, as it would be
5692 	 * racy with all get_node() users, and infeasible to protect them with
5693 	 * slab_mutex.
5694 	 */
5695 	mutex_unlock(&slab_mutex);
5696 }
5697 
5698 static int slab_mem_going_online_callback(void *arg)
5699 {
5700 	struct kmem_cache_node *n;
5701 	struct kmem_cache *s;
5702 	struct memory_notify *marg = arg;
5703 	int nid = marg->status_change_nid_normal;
5704 	int ret = 0;
5705 
5706 	/*
5707 	 * If the node's memory is already available, then kmem_cache_node is
5708 	 * already created. Nothing to do.
5709 	 */
5710 	if (nid < 0)
5711 		return 0;
5712 
5713 	/*
5714 	 * We are bringing a node online. No memory is available yet. We must
5715 	 * allocate a kmem_cache_node structure in order to bring the node
5716 	 * online.
5717 	 */
5718 	mutex_lock(&slab_mutex);
5719 	list_for_each_entry(s, &slab_caches, list) {
5720 		/*
5721 		 * The structure may already exist if the node was previously
5722 		 * onlined and offlined.
5723 		 */
5724 		if (get_node(s, nid))
5725 			continue;
5726 		/*
5727 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5728 		 *      since memory is not yet available from the node that
5729 		 *      is brought up.
5730 		 */
5731 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5732 		if (!n) {
5733 			ret = -ENOMEM;
5734 			goto out;
5735 		}
5736 		init_kmem_cache_node(n);
5737 		s->node[nid] = n;
5738 	}
5739 	/*
5740 	 * Any cache created after this point will also have kmem_cache_node
5741 	 * initialized for the new node.
5742 	 */
5743 	node_set(nid, slab_nodes);
5744 out:
5745 	mutex_unlock(&slab_mutex);
5746 	return ret;
5747 }
5748 
5749 static int slab_memory_callback(struct notifier_block *self,
5750 				unsigned long action, void *arg)
5751 {
5752 	int ret = 0;
5753 
5754 	switch (action) {
5755 	case MEM_GOING_ONLINE:
5756 		ret = slab_mem_going_online_callback(arg);
5757 		break;
5758 	case MEM_GOING_OFFLINE:
5759 		ret = slab_mem_going_offline_callback(arg);
5760 		break;
5761 	case MEM_OFFLINE:
5762 	case MEM_CANCEL_ONLINE:
5763 		slab_mem_offline_callback(arg);
5764 		break;
5765 	case MEM_ONLINE:
5766 	case MEM_CANCEL_OFFLINE:
5767 		break;
5768 	}
5769 	if (ret)
5770 		ret = notifier_from_errno(ret);
5771 	else
5772 		ret = NOTIFY_OK;
5773 	return ret;
5774 }
5775 
5776 /********************************************************************
5777  *			Basic setup of slabs
5778  *******************************************************************/
5779 
5780 /*
5781  * Used for early kmem_cache structures that were allocated using
5782  * the page allocator. Allocate them properly then fix up the pointers
5783  * that may be pointing to the wrong kmem_cache structure.
5784  */
5785 
5786 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5787 {
5788 	int node;
5789 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5790 	struct kmem_cache_node *n;
5791 
5792 	memcpy(s, static_cache, kmem_cache->object_size);
5793 
5794 	/*
5795 	 * This runs very early, and only the boot processor is supposed to be
5796 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5797 	 * IPIs around.
5798 	 */
5799 	__flush_cpu_slab(s, smp_processor_id());
5800 	for_each_kmem_cache_node(s, node, n) {
5801 		struct slab *p;
5802 
5803 		list_for_each_entry(p, &n->partial, slab_list)
5804 			p->slab_cache = s;
5805 
5806 #ifdef CONFIG_SLUB_DEBUG
5807 		list_for_each_entry(p, &n->full, slab_list)
5808 			p->slab_cache = s;
5809 #endif
5810 	}
5811 	list_add(&s->list, &slab_caches);
5812 	return s;
5813 }
5814 
5815 void __init kmem_cache_init(void)
5816 {
5817 	static __initdata struct kmem_cache boot_kmem_cache,
5818 		boot_kmem_cache_node;
5819 	int node;
5820 
5821 	if (debug_guardpage_minorder())
5822 		slub_max_order = 0;
5823 
5824 	/* Print slub debugging pointers without hashing */
5825 	if (__slub_debug_enabled())
5826 		no_hash_pointers_enable(NULL);
5827 
5828 	kmem_cache_node = &boot_kmem_cache_node;
5829 	kmem_cache = &boot_kmem_cache;
5830 
5831 	/*
5832 	 * Initialize the nodemask for which we will allocate per node
5833 	 * structures. Here we don't need taking slab_mutex yet.
5834 	 */
5835 	for_each_node_state(node, N_NORMAL_MEMORY)
5836 		node_set(node, slab_nodes);
5837 
5838 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5839 			sizeof(struct kmem_cache_node),
5840 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5841 
5842 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5843 
5844 	/* Able to allocate the per node structures */
5845 	slab_state = PARTIAL;
5846 
5847 	create_boot_cache(kmem_cache, "kmem_cache",
5848 			offsetof(struct kmem_cache, node) +
5849 				nr_node_ids * sizeof(struct kmem_cache_node *),
5850 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5851 
5852 	kmem_cache = bootstrap(&boot_kmem_cache);
5853 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5854 
5855 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5856 	setup_kmalloc_cache_index_table();
5857 	create_kmalloc_caches();
5858 
5859 	/* Setup random freelists for each cache */
5860 	init_freelist_randomization();
5861 
5862 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5863 				  slub_cpu_dead);
5864 
5865 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5866 		cache_line_size(),
5867 		slub_min_order, slub_max_order, slub_min_objects,
5868 		nr_cpu_ids, nr_node_ids);
5869 }
5870 
5871 void __init kmem_cache_init_late(void)
5872 {
5873 #ifndef CONFIG_SLUB_TINY
5874 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5875 	WARN_ON(!flushwq);
5876 #endif
5877 }
5878 
5879 struct kmem_cache *
5880 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5881 		   slab_flags_t flags, void (*ctor)(void *))
5882 {
5883 	struct kmem_cache *s;
5884 
5885 	s = find_mergeable(size, align, flags, name, ctor);
5886 	if (s) {
5887 		if (sysfs_slab_alias(s, name))
5888 			return NULL;
5889 
5890 		s->refcount++;
5891 
5892 		/*
5893 		 * Adjust the object sizes so that we clear
5894 		 * the complete object on kzalloc.
5895 		 */
5896 		s->object_size = max(s->object_size, size);
5897 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5898 	}
5899 
5900 	return s;
5901 }
5902 
5903 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5904 {
5905 	int err;
5906 
5907 	err = kmem_cache_open(s, flags);
5908 	if (err)
5909 		return err;
5910 
5911 	/* Mutex is not taken during early boot */
5912 	if (slab_state <= UP)
5913 		return 0;
5914 
5915 	err = sysfs_slab_add(s);
5916 	if (err) {
5917 		__kmem_cache_release(s);
5918 		return err;
5919 	}
5920 
5921 	if (s->flags & SLAB_STORE_USER)
5922 		debugfs_slab_add(s);
5923 
5924 	return 0;
5925 }
5926 
5927 #ifdef SLAB_SUPPORTS_SYSFS
5928 static int count_inuse(struct slab *slab)
5929 {
5930 	return slab->inuse;
5931 }
5932 
5933 static int count_total(struct slab *slab)
5934 {
5935 	return slab->objects;
5936 }
5937 #endif
5938 
5939 #ifdef CONFIG_SLUB_DEBUG
5940 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5941 			  unsigned long *obj_map)
5942 {
5943 	void *p;
5944 	void *addr = slab_address(slab);
5945 
5946 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5947 		return;
5948 
5949 	/* Now we know that a valid freelist exists */
5950 	__fill_map(obj_map, s, slab);
5951 	for_each_object(p, s, addr, slab->objects) {
5952 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5953 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5954 
5955 		if (!check_object(s, slab, p, val))
5956 			break;
5957 	}
5958 }
5959 
5960 static int validate_slab_node(struct kmem_cache *s,
5961 		struct kmem_cache_node *n, unsigned long *obj_map)
5962 {
5963 	unsigned long count = 0;
5964 	struct slab *slab;
5965 	unsigned long flags;
5966 
5967 	spin_lock_irqsave(&n->list_lock, flags);
5968 
5969 	list_for_each_entry(slab, &n->partial, slab_list) {
5970 		validate_slab(s, slab, obj_map);
5971 		count++;
5972 	}
5973 	if (count != n->nr_partial) {
5974 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5975 		       s->name, count, n->nr_partial);
5976 		slab_add_kunit_errors();
5977 	}
5978 
5979 	if (!(s->flags & SLAB_STORE_USER))
5980 		goto out;
5981 
5982 	list_for_each_entry(slab, &n->full, slab_list) {
5983 		validate_slab(s, slab, obj_map);
5984 		count++;
5985 	}
5986 	if (count != node_nr_slabs(n)) {
5987 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5988 		       s->name, count, node_nr_slabs(n));
5989 		slab_add_kunit_errors();
5990 	}
5991 
5992 out:
5993 	spin_unlock_irqrestore(&n->list_lock, flags);
5994 	return count;
5995 }
5996 
5997 long validate_slab_cache(struct kmem_cache *s)
5998 {
5999 	int node;
6000 	unsigned long count = 0;
6001 	struct kmem_cache_node *n;
6002 	unsigned long *obj_map;
6003 
6004 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6005 	if (!obj_map)
6006 		return -ENOMEM;
6007 
6008 	flush_all(s);
6009 	for_each_kmem_cache_node(s, node, n)
6010 		count += validate_slab_node(s, n, obj_map);
6011 
6012 	bitmap_free(obj_map);
6013 
6014 	return count;
6015 }
6016 EXPORT_SYMBOL(validate_slab_cache);
6017 
6018 #ifdef CONFIG_DEBUG_FS
6019 /*
6020  * Generate lists of code addresses where slabcache objects are allocated
6021  * and freed.
6022  */
6023 
6024 struct location {
6025 	depot_stack_handle_t handle;
6026 	unsigned long count;
6027 	unsigned long addr;
6028 	unsigned long waste;
6029 	long long sum_time;
6030 	long min_time;
6031 	long max_time;
6032 	long min_pid;
6033 	long max_pid;
6034 	DECLARE_BITMAP(cpus, NR_CPUS);
6035 	nodemask_t nodes;
6036 };
6037 
6038 struct loc_track {
6039 	unsigned long max;
6040 	unsigned long count;
6041 	struct location *loc;
6042 	loff_t idx;
6043 };
6044 
6045 static struct dentry *slab_debugfs_root;
6046 
6047 static void free_loc_track(struct loc_track *t)
6048 {
6049 	if (t->max)
6050 		free_pages((unsigned long)t->loc,
6051 			get_order(sizeof(struct location) * t->max));
6052 }
6053 
6054 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6055 {
6056 	struct location *l;
6057 	int order;
6058 
6059 	order = get_order(sizeof(struct location) * max);
6060 
6061 	l = (void *)__get_free_pages(flags, order);
6062 	if (!l)
6063 		return 0;
6064 
6065 	if (t->count) {
6066 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6067 		free_loc_track(t);
6068 	}
6069 	t->max = max;
6070 	t->loc = l;
6071 	return 1;
6072 }
6073 
6074 static int add_location(struct loc_track *t, struct kmem_cache *s,
6075 				const struct track *track,
6076 				unsigned int orig_size)
6077 {
6078 	long start, end, pos;
6079 	struct location *l;
6080 	unsigned long caddr, chandle, cwaste;
6081 	unsigned long age = jiffies - track->when;
6082 	depot_stack_handle_t handle = 0;
6083 	unsigned int waste = s->object_size - orig_size;
6084 
6085 #ifdef CONFIG_STACKDEPOT
6086 	handle = READ_ONCE(track->handle);
6087 #endif
6088 	start = -1;
6089 	end = t->count;
6090 
6091 	for ( ; ; ) {
6092 		pos = start + (end - start + 1) / 2;
6093 
6094 		/*
6095 		 * There is nothing at "end". If we end up there
6096 		 * we need to add something to before end.
6097 		 */
6098 		if (pos == end)
6099 			break;
6100 
6101 		l = &t->loc[pos];
6102 		caddr = l->addr;
6103 		chandle = l->handle;
6104 		cwaste = l->waste;
6105 		if ((track->addr == caddr) && (handle == chandle) &&
6106 			(waste == cwaste)) {
6107 
6108 			l->count++;
6109 			if (track->when) {
6110 				l->sum_time += age;
6111 				if (age < l->min_time)
6112 					l->min_time = age;
6113 				if (age > l->max_time)
6114 					l->max_time = age;
6115 
6116 				if (track->pid < l->min_pid)
6117 					l->min_pid = track->pid;
6118 				if (track->pid > l->max_pid)
6119 					l->max_pid = track->pid;
6120 
6121 				cpumask_set_cpu(track->cpu,
6122 						to_cpumask(l->cpus));
6123 			}
6124 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6125 			return 1;
6126 		}
6127 
6128 		if (track->addr < caddr)
6129 			end = pos;
6130 		else if (track->addr == caddr && handle < chandle)
6131 			end = pos;
6132 		else if (track->addr == caddr && handle == chandle &&
6133 				waste < cwaste)
6134 			end = pos;
6135 		else
6136 			start = pos;
6137 	}
6138 
6139 	/*
6140 	 * Not found. Insert new tracking element.
6141 	 */
6142 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6143 		return 0;
6144 
6145 	l = t->loc + pos;
6146 	if (pos < t->count)
6147 		memmove(l + 1, l,
6148 			(t->count - pos) * sizeof(struct location));
6149 	t->count++;
6150 	l->count = 1;
6151 	l->addr = track->addr;
6152 	l->sum_time = age;
6153 	l->min_time = age;
6154 	l->max_time = age;
6155 	l->min_pid = track->pid;
6156 	l->max_pid = track->pid;
6157 	l->handle = handle;
6158 	l->waste = waste;
6159 	cpumask_clear(to_cpumask(l->cpus));
6160 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6161 	nodes_clear(l->nodes);
6162 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6163 	return 1;
6164 }
6165 
6166 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6167 		struct slab *slab, enum track_item alloc,
6168 		unsigned long *obj_map)
6169 {
6170 	void *addr = slab_address(slab);
6171 	bool is_alloc = (alloc == TRACK_ALLOC);
6172 	void *p;
6173 
6174 	__fill_map(obj_map, s, slab);
6175 
6176 	for_each_object(p, s, addr, slab->objects)
6177 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6178 			add_location(t, s, get_track(s, p, alloc),
6179 				     is_alloc ? get_orig_size(s, p) :
6180 						s->object_size);
6181 }
6182 #endif  /* CONFIG_DEBUG_FS   */
6183 #endif	/* CONFIG_SLUB_DEBUG */
6184 
6185 #ifdef SLAB_SUPPORTS_SYSFS
6186 enum slab_stat_type {
6187 	SL_ALL,			/* All slabs */
6188 	SL_PARTIAL,		/* Only partially allocated slabs */
6189 	SL_CPU,			/* Only slabs used for cpu caches */
6190 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6191 	SL_TOTAL		/* Determine object capacity not slabs */
6192 };
6193 
6194 #define SO_ALL		(1 << SL_ALL)
6195 #define SO_PARTIAL	(1 << SL_PARTIAL)
6196 #define SO_CPU		(1 << SL_CPU)
6197 #define SO_OBJECTS	(1 << SL_OBJECTS)
6198 #define SO_TOTAL	(1 << SL_TOTAL)
6199 
6200 static ssize_t show_slab_objects(struct kmem_cache *s,
6201 				 char *buf, unsigned long flags)
6202 {
6203 	unsigned long total = 0;
6204 	int node;
6205 	int x;
6206 	unsigned long *nodes;
6207 	int len = 0;
6208 
6209 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6210 	if (!nodes)
6211 		return -ENOMEM;
6212 
6213 	if (flags & SO_CPU) {
6214 		int cpu;
6215 
6216 		for_each_possible_cpu(cpu) {
6217 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6218 							       cpu);
6219 			int node;
6220 			struct slab *slab;
6221 
6222 			slab = READ_ONCE(c->slab);
6223 			if (!slab)
6224 				continue;
6225 
6226 			node = slab_nid(slab);
6227 			if (flags & SO_TOTAL)
6228 				x = slab->objects;
6229 			else if (flags & SO_OBJECTS)
6230 				x = slab->inuse;
6231 			else
6232 				x = 1;
6233 
6234 			total += x;
6235 			nodes[node] += x;
6236 
6237 #ifdef CONFIG_SLUB_CPU_PARTIAL
6238 			slab = slub_percpu_partial_read_once(c);
6239 			if (slab) {
6240 				node = slab_nid(slab);
6241 				if (flags & SO_TOTAL)
6242 					WARN_ON_ONCE(1);
6243 				else if (flags & SO_OBJECTS)
6244 					WARN_ON_ONCE(1);
6245 				else
6246 					x = data_race(slab->slabs);
6247 				total += x;
6248 				nodes[node] += x;
6249 			}
6250 #endif
6251 		}
6252 	}
6253 
6254 	/*
6255 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6256 	 * already held which will conflict with an existing lock order:
6257 	 *
6258 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6259 	 *
6260 	 * We don't really need mem_hotplug_lock (to hold off
6261 	 * slab_mem_going_offline_callback) here because slab's memory hot
6262 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6263 	 */
6264 
6265 #ifdef CONFIG_SLUB_DEBUG
6266 	if (flags & SO_ALL) {
6267 		struct kmem_cache_node *n;
6268 
6269 		for_each_kmem_cache_node(s, node, n) {
6270 
6271 			if (flags & SO_TOTAL)
6272 				x = node_nr_objs(n);
6273 			else if (flags & SO_OBJECTS)
6274 				x = node_nr_objs(n) - count_partial(n, count_free);
6275 			else
6276 				x = node_nr_slabs(n);
6277 			total += x;
6278 			nodes[node] += x;
6279 		}
6280 
6281 	} else
6282 #endif
6283 	if (flags & SO_PARTIAL) {
6284 		struct kmem_cache_node *n;
6285 
6286 		for_each_kmem_cache_node(s, node, n) {
6287 			if (flags & SO_TOTAL)
6288 				x = count_partial(n, count_total);
6289 			else if (flags & SO_OBJECTS)
6290 				x = count_partial(n, count_inuse);
6291 			else
6292 				x = n->nr_partial;
6293 			total += x;
6294 			nodes[node] += x;
6295 		}
6296 	}
6297 
6298 	len += sysfs_emit_at(buf, len, "%lu", total);
6299 #ifdef CONFIG_NUMA
6300 	for (node = 0; node < nr_node_ids; node++) {
6301 		if (nodes[node])
6302 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6303 					     node, nodes[node]);
6304 	}
6305 #endif
6306 	len += sysfs_emit_at(buf, len, "\n");
6307 	kfree(nodes);
6308 
6309 	return len;
6310 }
6311 
6312 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6313 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6314 
6315 struct slab_attribute {
6316 	struct attribute attr;
6317 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6318 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6319 };
6320 
6321 #define SLAB_ATTR_RO(_name) \
6322 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6323 
6324 #define SLAB_ATTR(_name) \
6325 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6326 
6327 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6328 {
6329 	return sysfs_emit(buf, "%u\n", s->size);
6330 }
6331 SLAB_ATTR_RO(slab_size);
6332 
6333 static ssize_t align_show(struct kmem_cache *s, char *buf)
6334 {
6335 	return sysfs_emit(buf, "%u\n", s->align);
6336 }
6337 SLAB_ATTR_RO(align);
6338 
6339 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6340 {
6341 	return sysfs_emit(buf, "%u\n", s->object_size);
6342 }
6343 SLAB_ATTR_RO(object_size);
6344 
6345 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6346 {
6347 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6348 }
6349 SLAB_ATTR_RO(objs_per_slab);
6350 
6351 static ssize_t order_show(struct kmem_cache *s, char *buf)
6352 {
6353 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6354 }
6355 SLAB_ATTR_RO(order);
6356 
6357 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6358 {
6359 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6360 }
6361 
6362 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6363 				 size_t length)
6364 {
6365 	unsigned long min;
6366 	int err;
6367 
6368 	err = kstrtoul(buf, 10, &min);
6369 	if (err)
6370 		return err;
6371 
6372 	s->min_partial = min;
6373 	return length;
6374 }
6375 SLAB_ATTR(min_partial);
6376 
6377 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6378 {
6379 	unsigned int nr_partial = 0;
6380 #ifdef CONFIG_SLUB_CPU_PARTIAL
6381 	nr_partial = s->cpu_partial;
6382 #endif
6383 
6384 	return sysfs_emit(buf, "%u\n", nr_partial);
6385 }
6386 
6387 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6388 				 size_t length)
6389 {
6390 	unsigned int objects;
6391 	int err;
6392 
6393 	err = kstrtouint(buf, 10, &objects);
6394 	if (err)
6395 		return err;
6396 	if (objects && !kmem_cache_has_cpu_partial(s))
6397 		return -EINVAL;
6398 
6399 	slub_set_cpu_partial(s, objects);
6400 	flush_all(s);
6401 	return length;
6402 }
6403 SLAB_ATTR(cpu_partial);
6404 
6405 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6406 {
6407 	if (!s->ctor)
6408 		return 0;
6409 	return sysfs_emit(buf, "%pS\n", s->ctor);
6410 }
6411 SLAB_ATTR_RO(ctor);
6412 
6413 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6414 {
6415 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6416 }
6417 SLAB_ATTR_RO(aliases);
6418 
6419 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6420 {
6421 	return show_slab_objects(s, buf, SO_PARTIAL);
6422 }
6423 SLAB_ATTR_RO(partial);
6424 
6425 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6426 {
6427 	return show_slab_objects(s, buf, SO_CPU);
6428 }
6429 SLAB_ATTR_RO(cpu_slabs);
6430 
6431 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6432 {
6433 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6434 }
6435 SLAB_ATTR_RO(objects_partial);
6436 
6437 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6438 {
6439 	int objects = 0;
6440 	int slabs = 0;
6441 	int cpu __maybe_unused;
6442 	int len = 0;
6443 
6444 #ifdef CONFIG_SLUB_CPU_PARTIAL
6445 	for_each_online_cpu(cpu) {
6446 		struct slab *slab;
6447 
6448 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6449 
6450 		if (slab)
6451 			slabs += data_race(slab->slabs);
6452 	}
6453 #endif
6454 
6455 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6456 	objects = (slabs * oo_objects(s->oo)) / 2;
6457 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6458 
6459 #ifdef CONFIG_SLUB_CPU_PARTIAL
6460 	for_each_online_cpu(cpu) {
6461 		struct slab *slab;
6462 
6463 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6464 		if (slab) {
6465 			slabs = data_race(slab->slabs);
6466 			objects = (slabs * oo_objects(s->oo)) / 2;
6467 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6468 					     cpu, objects, slabs);
6469 		}
6470 	}
6471 #endif
6472 	len += sysfs_emit_at(buf, len, "\n");
6473 
6474 	return len;
6475 }
6476 SLAB_ATTR_RO(slabs_cpu_partial);
6477 
6478 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6479 {
6480 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6481 }
6482 SLAB_ATTR_RO(reclaim_account);
6483 
6484 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6485 {
6486 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6487 }
6488 SLAB_ATTR_RO(hwcache_align);
6489 
6490 #ifdef CONFIG_ZONE_DMA
6491 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6492 {
6493 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6494 }
6495 SLAB_ATTR_RO(cache_dma);
6496 #endif
6497 
6498 #ifdef CONFIG_HARDENED_USERCOPY
6499 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6500 {
6501 	return sysfs_emit(buf, "%u\n", s->usersize);
6502 }
6503 SLAB_ATTR_RO(usersize);
6504 #endif
6505 
6506 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6507 {
6508 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6509 }
6510 SLAB_ATTR_RO(destroy_by_rcu);
6511 
6512 #ifdef CONFIG_SLUB_DEBUG
6513 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6514 {
6515 	return show_slab_objects(s, buf, SO_ALL);
6516 }
6517 SLAB_ATTR_RO(slabs);
6518 
6519 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6520 {
6521 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6522 }
6523 SLAB_ATTR_RO(total_objects);
6524 
6525 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6526 {
6527 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6528 }
6529 SLAB_ATTR_RO(objects);
6530 
6531 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6532 {
6533 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6534 }
6535 SLAB_ATTR_RO(sanity_checks);
6536 
6537 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6538 {
6539 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6540 }
6541 SLAB_ATTR_RO(trace);
6542 
6543 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6544 {
6545 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6546 }
6547 
6548 SLAB_ATTR_RO(red_zone);
6549 
6550 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6551 {
6552 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6553 }
6554 
6555 SLAB_ATTR_RO(poison);
6556 
6557 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6558 {
6559 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6560 }
6561 
6562 SLAB_ATTR_RO(store_user);
6563 
6564 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6565 {
6566 	return 0;
6567 }
6568 
6569 static ssize_t validate_store(struct kmem_cache *s,
6570 			const char *buf, size_t length)
6571 {
6572 	int ret = -EINVAL;
6573 
6574 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6575 		ret = validate_slab_cache(s);
6576 		if (ret >= 0)
6577 			ret = length;
6578 	}
6579 	return ret;
6580 }
6581 SLAB_ATTR(validate);
6582 
6583 #endif /* CONFIG_SLUB_DEBUG */
6584 
6585 #ifdef CONFIG_FAILSLAB
6586 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6587 {
6588 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6589 }
6590 
6591 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6592 				size_t length)
6593 {
6594 	if (s->refcount > 1)
6595 		return -EINVAL;
6596 
6597 	if (buf[0] == '1')
6598 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6599 	else
6600 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6601 
6602 	return length;
6603 }
6604 SLAB_ATTR(failslab);
6605 #endif
6606 
6607 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6608 {
6609 	return 0;
6610 }
6611 
6612 static ssize_t shrink_store(struct kmem_cache *s,
6613 			const char *buf, size_t length)
6614 {
6615 	if (buf[0] == '1')
6616 		kmem_cache_shrink(s);
6617 	else
6618 		return -EINVAL;
6619 	return length;
6620 }
6621 SLAB_ATTR(shrink);
6622 
6623 #ifdef CONFIG_NUMA
6624 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6625 {
6626 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6627 }
6628 
6629 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6630 				const char *buf, size_t length)
6631 {
6632 	unsigned int ratio;
6633 	int err;
6634 
6635 	err = kstrtouint(buf, 10, &ratio);
6636 	if (err)
6637 		return err;
6638 	if (ratio > 100)
6639 		return -ERANGE;
6640 
6641 	s->remote_node_defrag_ratio = ratio * 10;
6642 
6643 	return length;
6644 }
6645 SLAB_ATTR(remote_node_defrag_ratio);
6646 #endif
6647 
6648 #ifdef CONFIG_SLUB_STATS
6649 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6650 {
6651 	unsigned long sum  = 0;
6652 	int cpu;
6653 	int len = 0;
6654 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6655 
6656 	if (!data)
6657 		return -ENOMEM;
6658 
6659 	for_each_online_cpu(cpu) {
6660 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6661 
6662 		data[cpu] = x;
6663 		sum += x;
6664 	}
6665 
6666 	len += sysfs_emit_at(buf, len, "%lu", sum);
6667 
6668 #ifdef CONFIG_SMP
6669 	for_each_online_cpu(cpu) {
6670 		if (data[cpu])
6671 			len += sysfs_emit_at(buf, len, " C%d=%u",
6672 					     cpu, data[cpu]);
6673 	}
6674 #endif
6675 	kfree(data);
6676 	len += sysfs_emit_at(buf, len, "\n");
6677 
6678 	return len;
6679 }
6680 
6681 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6682 {
6683 	int cpu;
6684 
6685 	for_each_online_cpu(cpu)
6686 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6687 }
6688 
6689 #define STAT_ATTR(si, text) 					\
6690 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6691 {								\
6692 	return show_stat(s, buf, si);				\
6693 }								\
6694 static ssize_t text##_store(struct kmem_cache *s,		\
6695 				const char *buf, size_t length)	\
6696 {								\
6697 	if (buf[0] != '0')					\
6698 		return -EINVAL;					\
6699 	clear_stat(s, si);					\
6700 	return length;						\
6701 }								\
6702 SLAB_ATTR(text);						\
6703 
6704 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6705 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6706 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6707 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6708 STAT_ATTR(FREE_FROZEN, free_frozen);
6709 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6710 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6711 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6712 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6713 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6714 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6715 STAT_ATTR(FREE_SLAB, free_slab);
6716 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6717 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6718 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6719 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6720 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6721 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6722 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6723 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6724 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6725 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6726 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6727 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6728 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6729 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6730 #endif	/* CONFIG_SLUB_STATS */
6731 
6732 #ifdef CONFIG_KFENCE
6733 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6734 {
6735 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6736 }
6737 
6738 static ssize_t skip_kfence_store(struct kmem_cache *s,
6739 			const char *buf, size_t length)
6740 {
6741 	int ret = length;
6742 
6743 	if (buf[0] == '0')
6744 		s->flags &= ~SLAB_SKIP_KFENCE;
6745 	else if (buf[0] == '1')
6746 		s->flags |= SLAB_SKIP_KFENCE;
6747 	else
6748 		ret = -EINVAL;
6749 
6750 	return ret;
6751 }
6752 SLAB_ATTR(skip_kfence);
6753 #endif
6754 
6755 static struct attribute *slab_attrs[] = {
6756 	&slab_size_attr.attr,
6757 	&object_size_attr.attr,
6758 	&objs_per_slab_attr.attr,
6759 	&order_attr.attr,
6760 	&min_partial_attr.attr,
6761 	&cpu_partial_attr.attr,
6762 	&objects_partial_attr.attr,
6763 	&partial_attr.attr,
6764 	&cpu_slabs_attr.attr,
6765 	&ctor_attr.attr,
6766 	&aliases_attr.attr,
6767 	&align_attr.attr,
6768 	&hwcache_align_attr.attr,
6769 	&reclaim_account_attr.attr,
6770 	&destroy_by_rcu_attr.attr,
6771 	&shrink_attr.attr,
6772 	&slabs_cpu_partial_attr.attr,
6773 #ifdef CONFIG_SLUB_DEBUG
6774 	&total_objects_attr.attr,
6775 	&objects_attr.attr,
6776 	&slabs_attr.attr,
6777 	&sanity_checks_attr.attr,
6778 	&trace_attr.attr,
6779 	&red_zone_attr.attr,
6780 	&poison_attr.attr,
6781 	&store_user_attr.attr,
6782 	&validate_attr.attr,
6783 #endif
6784 #ifdef CONFIG_ZONE_DMA
6785 	&cache_dma_attr.attr,
6786 #endif
6787 #ifdef CONFIG_NUMA
6788 	&remote_node_defrag_ratio_attr.attr,
6789 #endif
6790 #ifdef CONFIG_SLUB_STATS
6791 	&alloc_fastpath_attr.attr,
6792 	&alloc_slowpath_attr.attr,
6793 	&free_fastpath_attr.attr,
6794 	&free_slowpath_attr.attr,
6795 	&free_frozen_attr.attr,
6796 	&free_add_partial_attr.attr,
6797 	&free_remove_partial_attr.attr,
6798 	&alloc_from_partial_attr.attr,
6799 	&alloc_slab_attr.attr,
6800 	&alloc_refill_attr.attr,
6801 	&alloc_node_mismatch_attr.attr,
6802 	&free_slab_attr.attr,
6803 	&cpuslab_flush_attr.attr,
6804 	&deactivate_full_attr.attr,
6805 	&deactivate_empty_attr.attr,
6806 	&deactivate_to_head_attr.attr,
6807 	&deactivate_to_tail_attr.attr,
6808 	&deactivate_remote_frees_attr.attr,
6809 	&deactivate_bypass_attr.attr,
6810 	&order_fallback_attr.attr,
6811 	&cmpxchg_double_fail_attr.attr,
6812 	&cmpxchg_double_cpu_fail_attr.attr,
6813 	&cpu_partial_alloc_attr.attr,
6814 	&cpu_partial_free_attr.attr,
6815 	&cpu_partial_node_attr.attr,
6816 	&cpu_partial_drain_attr.attr,
6817 #endif
6818 #ifdef CONFIG_FAILSLAB
6819 	&failslab_attr.attr,
6820 #endif
6821 #ifdef CONFIG_HARDENED_USERCOPY
6822 	&usersize_attr.attr,
6823 #endif
6824 #ifdef CONFIG_KFENCE
6825 	&skip_kfence_attr.attr,
6826 #endif
6827 
6828 	NULL
6829 };
6830 
6831 static const struct attribute_group slab_attr_group = {
6832 	.attrs = slab_attrs,
6833 };
6834 
6835 static ssize_t slab_attr_show(struct kobject *kobj,
6836 				struct attribute *attr,
6837 				char *buf)
6838 {
6839 	struct slab_attribute *attribute;
6840 	struct kmem_cache *s;
6841 
6842 	attribute = to_slab_attr(attr);
6843 	s = to_slab(kobj);
6844 
6845 	if (!attribute->show)
6846 		return -EIO;
6847 
6848 	return attribute->show(s, buf);
6849 }
6850 
6851 static ssize_t slab_attr_store(struct kobject *kobj,
6852 				struct attribute *attr,
6853 				const char *buf, size_t len)
6854 {
6855 	struct slab_attribute *attribute;
6856 	struct kmem_cache *s;
6857 
6858 	attribute = to_slab_attr(attr);
6859 	s = to_slab(kobj);
6860 
6861 	if (!attribute->store)
6862 		return -EIO;
6863 
6864 	return attribute->store(s, buf, len);
6865 }
6866 
6867 static void kmem_cache_release(struct kobject *k)
6868 {
6869 	slab_kmem_cache_release(to_slab(k));
6870 }
6871 
6872 static const struct sysfs_ops slab_sysfs_ops = {
6873 	.show = slab_attr_show,
6874 	.store = slab_attr_store,
6875 };
6876 
6877 static const struct kobj_type slab_ktype = {
6878 	.sysfs_ops = &slab_sysfs_ops,
6879 	.release = kmem_cache_release,
6880 };
6881 
6882 static struct kset *slab_kset;
6883 
6884 static inline struct kset *cache_kset(struct kmem_cache *s)
6885 {
6886 	return slab_kset;
6887 }
6888 
6889 #define ID_STR_LENGTH 32
6890 
6891 /* Create a unique string id for a slab cache:
6892  *
6893  * Format	:[flags-]size
6894  */
6895 static char *create_unique_id(struct kmem_cache *s)
6896 {
6897 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6898 	char *p = name;
6899 
6900 	if (!name)
6901 		return ERR_PTR(-ENOMEM);
6902 
6903 	*p++ = ':';
6904 	/*
6905 	 * First flags affecting slabcache operations. We will only
6906 	 * get here for aliasable slabs so we do not need to support
6907 	 * too many flags. The flags here must cover all flags that
6908 	 * are matched during merging to guarantee that the id is
6909 	 * unique.
6910 	 */
6911 	if (s->flags & SLAB_CACHE_DMA)
6912 		*p++ = 'd';
6913 	if (s->flags & SLAB_CACHE_DMA32)
6914 		*p++ = 'D';
6915 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6916 		*p++ = 'a';
6917 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6918 		*p++ = 'F';
6919 	if (s->flags & SLAB_ACCOUNT)
6920 		*p++ = 'A';
6921 	if (p != name + 1)
6922 		*p++ = '-';
6923 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6924 
6925 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6926 		kfree(name);
6927 		return ERR_PTR(-EINVAL);
6928 	}
6929 	kmsan_unpoison_memory(name, p - name);
6930 	return name;
6931 }
6932 
6933 static int sysfs_slab_add(struct kmem_cache *s)
6934 {
6935 	int err;
6936 	const char *name;
6937 	struct kset *kset = cache_kset(s);
6938 	int unmergeable = slab_unmergeable(s);
6939 
6940 	if (!unmergeable && disable_higher_order_debug &&
6941 			(slub_debug & DEBUG_METADATA_FLAGS))
6942 		unmergeable = 1;
6943 
6944 	if (unmergeable) {
6945 		/*
6946 		 * Slabcache can never be merged so we can use the name proper.
6947 		 * This is typically the case for debug situations. In that
6948 		 * case we can catch duplicate names easily.
6949 		 */
6950 		sysfs_remove_link(&slab_kset->kobj, s->name);
6951 		name = s->name;
6952 	} else {
6953 		/*
6954 		 * Create a unique name for the slab as a target
6955 		 * for the symlinks.
6956 		 */
6957 		name = create_unique_id(s);
6958 		if (IS_ERR(name))
6959 			return PTR_ERR(name);
6960 	}
6961 
6962 	s->kobj.kset = kset;
6963 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6964 	if (err)
6965 		goto out;
6966 
6967 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6968 	if (err)
6969 		goto out_del_kobj;
6970 
6971 	if (!unmergeable) {
6972 		/* Setup first alias */
6973 		sysfs_slab_alias(s, s->name);
6974 	}
6975 out:
6976 	if (!unmergeable)
6977 		kfree(name);
6978 	return err;
6979 out_del_kobj:
6980 	kobject_del(&s->kobj);
6981 	goto out;
6982 }
6983 
6984 void sysfs_slab_unlink(struct kmem_cache *s)
6985 {
6986 	kobject_del(&s->kobj);
6987 }
6988 
6989 void sysfs_slab_release(struct kmem_cache *s)
6990 {
6991 	kobject_put(&s->kobj);
6992 }
6993 
6994 /*
6995  * Need to buffer aliases during bootup until sysfs becomes
6996  * available lest we lose that information.
6997  */
6998 struct saved_alias {
6999 	struct kmem_cache *s;
7000 	const char *name;
7001 	struct saved_alias *next;
7002 };
7003 
7004 static struct saved_alias *alias_list;
7005 
7006 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7007 {
7008 	struct saved_alias *al;
7009 
7010 	if (slab_state == FULL) {
7011 		/*
7012 		 * If we have a leftover link then remove it.
7013 		 */
7014 		sysfs_remove_link(&slab_kset->kobj, name);
7015 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7016 	}
7017 
7018 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7019 	if (!al)
7020 		return -ENOMEM;
7021 
7022 	al->s = s;
7023 	al->name = name;
7024 	al->next = alias_list;
7025 	alias_list = al;
7026 	kmsan_unpoison_memory(al, sizeof(*al));
7027 	return 0;
7028 }
7029 
7030 static int __init slab_sysfs_init(void)
7031 {
7032 	struct kmem_cache *s;
7033 	int err;
7034 
7035 	mutex_lock(&slab_mutex);
7036 
7037 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7038 	if (!slab_kset) {
7039 		mutex_unlock(&slab_mutex);
7040 		pr_err("Cannot register slab subsystem.\n");
7041 		return -ENOMEM;
7042 	}
7043 
7044 	slab_state = FULL;
7045 
7046 	list_for_each_entry(s, &slab_caches, list) {
7047 		err = sysfs_slab_add(s);
7048 		if (err)
7049 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7050 			       s->name);
7051 	}
7052 
7053 	while (alias_list) {
7054 		struct saved_alias *al = alias_list;
7055 
7056 		alias_list = alias_list->next;
7057 		err = sysfs_slab_alias(al->s, al->name);
7058 		if (err)
7059 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7060 			       al->name);
7061 		kfree(al);
7062 	}
7063 
7064 	mutex_unlock(&slab_mutex);
7065 	return 0;
7066 }
7067 late_initcall(slab_sysfs_init);
7068 #endif /* SLAB_SUPPORTS_SYSFS */
7069 
7070 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7071 static int slab_debugfs_show(struct seq_file *seq, void *v)
7072 {
7073 	struct loc_track *t = seq->private;
7074 	struct location *l;
7075 	unsigned long idx;
7076 
7077 	idx = (unsigned long) t->idx;
7078 	if (idx < t->count) {
7079 		l = &t->loc[idx];
7080 
7081 		seq_printf(seq, "%7ld ", l->count);
7082 
7083 		if (l->addr)
7084 			seq_printf(seq, "%pS", (void *)l->addr);
7085 		else
7086 			seq_puts(seq, "<not-available>");
7087 
7088 		if (l->waste)
7089 			seq_printf(seq, " waste=%lu/%lu",
7090 				l->count * l->waste, l->waste);
7091 
7092 		if (l->sum_time != l->min_time) {
7093 			seq_printf(seq, " age=%ld/%llu/%ld",
7094 				l->min_time, div_u64(l->sum_time, l->count),
7095 				l->max_time);
7096 		} else
7097 			seq_printf(seq, " age=%ld", l->min_time);
7098 
7099 		if (l->min_pid != l->max_pid)
7100 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7101 		else
7102 			seq_printf(seq, " pid=%ld",
7103 				l->min_pid);
7104 
7105 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7106 			seq_printf(seq, " cpus=%*pbl",
7107 				 cpumask_pr_args(to_cpumask(l->cpus)));
7108 
7109 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7110 			seq_printf(seq, " nodes=%*pbl",
7111 				 nodemask_pr_args(&l->nodes));
7112 
7113 #ifdef CONFIG_STACKDEPOT
7114 		{
7115 			depot_stack_handle_t handle;
7116 			unsigned long *entries;
7117 			unsigned int nr_entries, j;
7118 
7119 			handle = READ_ONCE(l->handle);
7120 			if (handle) {
7121 				nr_entries = stack_depot_fetch(handle, &entries);
7122 				seq_puts(seq, "\n");
7123 				for (j = 0; j < nr_entries; j++)
7124 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7125 			}
7126 		}
7127 #endif
7128 		seq_puts(seq, "\n");
7129 	}
7130 
7131 	if (!idx && !t->count)
7132 		seq_puts(seq, "No data\n");
7133 
7134 	return 0;
7135 }
7136 
7137 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7138 {
7139 }
7140 
7141 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7142 {
7143 	struct loc_track *t = seq->private;
7144 
7145 	t->idx = ++(*ppos);
7146 	if (*ppos <= t->count)
7147 		return ppos;
7148 
7149 	return NULL;
7150 }
7151 
7152 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7153 {
7154 	struct location *loc1 = (struct location *)a;
7155 	struct location *loc2 = (struct location *)b;
7156 
7157 	if (loc1->count > loc2->count)
7158 		return -1;
7159 	else
7160 		return 1;
7161 }
7162 
7163 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7164 {
7165 	struct loc_track *t = seq->private;
7166 
7167 	t->idx = *ppos;
7168 	return ppos;
7169 }
7170 
7171 static const struct seq_operations slab_debugfs_sops = {
7172 	.start  = slab_debugfs_start,
7173 	.next   = slab_debugfs_next,
7174 	.stop   = slab_debugfs_stop,
7175 	.show   = slab_debugfs_show,
7176 };
7177 
7178 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7179 {
7180 
7181 	struct kmem_cache_node *n;
7182 	enum track_item alloc;
7183 	int node;
7184 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7185 						sizeof(struct loc_track));
7186 	struct kmem_cache *s = file_inode(filep)->i_private;
7187 	unsigned long *obj_map;
7188 
7189 	if (!t)
7190 		return -ENOMEM;
7191 
7192 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7193 	if (!obj_map) {
7194 		seq_release_private(inode, filep);
7195 		return -ENOMEM;
7196 	}
7197 
7198 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7199 		alloc = TRACK_ALLOC;
7200 	else
7201 		alloc = TRACK_FREE;
7202 
7203 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7204 		bitmap_free(obj_map);
7205 		seq_release_private(inode, filep);
7206 		return -ENOMEM;
7207 	}
7208 
7209 	for_each_kmem_cache_node(s, node, n) {
7210 		unsigned long flags;
7211 		struct slab *slab;
7212 
7213 		if (!node_nr_slabs(n))
7214 			continue;
7215 
7216 		spin_lock_irqsave(&n->list_lock, flags);
7217 		list_for_each_entry(slab, &n->partial, slab_list)
7218 			process_slab(t, s, slab, alloc, obj_map);
7219 		list_for_each_entry(slab, &n->full, slab_list)
7220 			process_slab(t, s, slab, alloc, obj_map);
7221 		spin_unlock_irqrestore(&n->list_lock, flags);
7222 	}
7223 
7224 	/* Sort locations by count */
7225 	sort_r(t->loc, t->count, sizeof(struct location),
7226 		cmp_loc_by_count, NULL, NULL);
7227 
7228 	bitmap_free(obj_map);
7229 	return 0;
7230 }
7231 
7232 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7233 {
7234 	struct seq_file *seq = file->private_data;
7235 	struct loc_track *t = seq->private;
7236 
7237 	free_loc_track(t);
7238 	return seq_release_private(inode, file);
7239 }
7240 
7241 static const struct file_operations slab_debugfs_fops = {
7242 	.open    = slab_debug_trace_open,
7243 	.read    = seq_read,
7244 	.llseek  = seq_lseek,
7245 	.release = slab_debug_trace_release,
7246 };
7247 
7248 static void debugfs_slab_add(struct kmem_cache *s)
7249 {
7250 	struct dentry *slab_cache_dir;
7251 
7252 	if (unlikely(!slab_debugfs_root))
7253 		return;
7254 
7255 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7256 
7257 	debugfs_create_file("alloc_traces", 0400,
7258 		slab_cache_dir, s, &slab_debugfs_fops);
7259 
7260 	debugfs_create_file("free_traces", 0400,
7261 		slab_cache_dir, s, &slab_debugfs_fops);
7262 }
7263 
7264 void debugfs_slab_release(struct kmem_cache *s)
7265 {
7266 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7267 }
7268 
7269 static int __init slab_debugfs_init(void)
7270 {
7271 	struct kmem_cache *s;
7272 
7273 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7274 
7275 	list_for_each_entry(s, &slab_caches, list)
7276 		if (s->flags & SLAB_STORE_USER)
7277 			debugfs_slab_add(s);
7278 
7279 	return 0;
7280 
7281 }
7282 __initcall(slab_debugfs_init);
7283 #endif
7284 /*
7285  * The /proc/slabinfo ABI
7286  */
7287 #ifdef CONFIG_SLUB_DEBUG
7288 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7289 {
7290 	unsigned long nr_slabs = 0;
7291 	unsigned long nr_objs = 0;
7292 	unsigned long nr_free = 0;
7293 	int node;
7294 	struct kmem_cache_node *n;
7295 
7296 	for_each_kmem_cache_node(s, node, n) {
7297 		nr_slabs += node_nr_slabs(n);
7298 		nr_objs += node_nr_objs(n);
7299 		nr_free += count_partial_free_approx(n);
7300 	}
7301 
7302 	sinfo->active_objs = nr_objs - nr_free;
7303 	sinfo->num_objs = nr_objs;
7304 	sinfo->active_slabs = nr_slabs;
7305 	sinfo->num_slabs = nr_slabs;
7306 	sinfo->objects_per_slab = oo_objects(s->oo);
7307 	sinfo->cache_order = oo_order(s->oo);
7308 }
7309 #endif /* CONFIG_SLUB_DEBUG */
7310