xref: /linux/mm/slub.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 
24 /*
25  * Lock order:
26  *   1. slab_lock(page)
27  *   2. slab->list_lock
28  *
29  *   The slab_lock protects operations on the object of a particular
30  *   slab and its metadata in the page struct. If the slab lock
31  *   has been taken then no allocations nor frees can be performed
32  *   on the objects in the slab nor can the slab be added or removed
33  *   from the partial or full lists since this would mean modifying
34  *   the page_struct of the slab.
35  *
36  *   The list_lock protects the partial and full list on each node and
37  *   the partial slab counter. If taken then no new slabs may be added or
38  *   removed from the lists nor make the number of partial slabs be modified.
39  *   (Note that the total number of slabs is an atomic value that may be
40  *   modified without taking the list lock).
41  *
42  *   The list_lock is a centralized lock and thus we avoid taking it as
43  *   much as possible. As long as SLUB does not have to handle partial
44  *   slabs, operations can continue without any centralized lock. F.e.
45  *   allocating a long series of objects that fill up slabs does not require
46  *   the list lock.
47  *
48  *   The lock order is sometimes inverted when we are trying to get a slab
49  *   off a list. We take the list_lock and then look for a page on the list
50  *   to use. While we do that objects in the slabs may be freed. We can
51  *   only operate on the slab if we have also taken the slab_lock. So we use
52  *   a slab_trylock() on the slab. If trylock was successful then no frees
53  *   can occur anymore and we can use the slab for allocations etc. If the
54  *   slab_trylock() does not succeed then frees are in progress in the slab and
55  *   we must stay away from it for a while since we may cause a bouncing
56  *   cacheline if we try to acquire the lock. So go onto the next slab.
57  *   If all pages are busy then we may allocate a new slab instead of reusing
58  *   a partial slab. A new slab has noone operating on it and thus there is
59  *   no danger of cacheline contention.
60  *
61  *   Interrupts are disabled during allocation and deallocation in order to
62  *   make the slab allocator safe to use in the context of an irq. In addition
63  *   interrupts are disabled to ensure that the processor does not change
64  *   while handling per_cpu slabs, due to kernel preemption.
65  *
66  * SLUB assigns one slab for allocation to each processor.
67  * Allocations only occur from these slabs called cpu slabs.
68  *
69  * Slabs with free elements are kept on a partial list.
70  * There is no list for full slabs. If an object in a full slab is
71  * freed then the slab will show up again on the partial lists.
72  * Otherwise there is no need to track full slabs unless we have to
73  * track full slabs for debugging purposes.
74  *
75  * Slabs are freed when they become empty. Teardown and setup is
76  * minimal so we rely on the page allocators per cpu caches for
77  * fast frees and allocs.
78  *
79  * Overloading of page flags that are otherwise used for LRU management.
80  *
81  * PageActive 		The slab is used as a cpu cache. Allocations
82  * 			may be performed from the slab. The slab is not
83  * 			on any slab list and cannot be moved onto one.
84  *
85  * PageError		Slab requires special handling due to debug
86  * 			options set. This moves	slab handling out of
87  * 			the fast path.
88  */
89 
90 /*
91  * Issues still to be resolved:
92  *
93  * - The per cpu array is updated for each new slab and and is a remote
94  *   cacheline for most nodes. This could become a bouncing cacheline given
95  *   enough frequent updates. There are 16 pointers in a cacheline.so at
96  *   max 16 cpus could compete. Likely okay.
97  *
98  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
99  *
100  * - Variable sizing of the per node arrays
101  */
102 
103 /* Enable to test recovery from slab corruption on boot */
104 #undef SLUB_RESILIENCY_TEST
105 
106 #if PAGE_SHIFT <= 12
107 
108 /*
109  * Small page size. Make sure that we do not fragment memory
110  */
111 #define DEFAULT_MAX_ORDER 1
112 #define DEFAULT_MIN_OBJECTS 4
113 
114 #else
115 
116 /*
117  * Large page machines are customarily able to handle larger
118  * page orders.
119  */
120 #define DEFAULT_MAX_ORDER 2
121 #define DEFAULT_MIN_OBJECTS 8
122 
123 #endif
124 
125 /*
126  * Mininum number of partial slabs. These will be left on the partial
127  * lists even if they are empty. kmem_cache_shrink may reclaim them.
128  */
129 #define MIN_PARTIAL 2
130 
131 /*
132  * Maximum number of desirable partial slabs.
133  * The existence of more partial slabs makes kmem_cache_shrink
134  * sort the partial list by the number of objects in the.
135  */
136 #define MAX_PARTIAL 10
137 
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 				SLAB_POISON | SLAB_STORE_USER)
140 /*
141  * Set of flags that will prevent slab merging
142  */
143 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145 
146 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 		SLAB_CACHE_DMA)
148 
149 #ifndef ARCH_KMALLOC_MINALIGN
150 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
151 #endif
152 
153 #ifndef ARCH_SLAB_MINALIGN
154 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
155 #endif
156 
157 /* Internal SLUB flags */
158 #define __OBJECT_POISON 0x80000000	/* Poison object */
159 
160 static int kmem_size = sizeof(struct kmem_cache);
161 
162 #ifdef CONFIG_SMP
163 static struct notifier_block slab_notifier;
164 #endif
165 
166 static enum {
167 	DOWN,		/* No slab functionality available */
168 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
169 	UP,		/* Everything works */
170 	SYSFS		/* Sysfs up */
171 } slab_state = DOWN;
172 
173 /* A list of all slab caches on the system */
174 static DECLARE_RWSEM(slub_lock);
175 LIST_HEAD(slab_caches);
176 
177 #ifdef CONFIG_SYSFS
178 static int sysfs_slab_add(struct kmem_cache *);
179 static int sysfs_slab_alias(struct kmem_cache *, const char *);
180 static void sysfs_slab_remove(struct kmem_cache *);
181 #else
182 static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
183 static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
184 static void sysfs_slab_remove(struct kmem_cache *s) {}
185 #endif
186 
187 /********************************************************************
188  * 			Core slab cache functions
189  *******************************************************************/
190 
191 int slab_is_available(void)
192 {
193 	return slab_state >= UP;
194 }
195 
196 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
197 {
198 #ifdef CONFIG_NUMA
199 	return s->node[node];
200 #else
201 	return &s->local_node;
202 #endif
203 }
204 
205 /*
206  * Object debugging
207  */
208 static void print_section(char *text, u8 *addr, unsigned int length)
209 {
210 	int i, offset;
211 	int newline = 1;
212 	char ascii[17];
213 
214 	ascii[16] = 0;
215 
216 	for (i = 0; i < length; i++) {
217 		if (newline) {
218 			printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
219 			newline = 0;
220 		}
221 		printk(" %02x", addr[i]);
222 		offset = i % 16;
223 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
224 		if (offset == 15) {
225 			printk(" %s\n",ascii);
226 			newline = 1;
227 		}
228 	}
229 	if (!newline) {
230 		i %= 16;
231 		while (i < 16) {
232 			printk("   ");
233 			ascii[i] = ' ';
234 			i++;
235 		}
236 		printk(" %s\n", ascii);
237 	}
238 }
239 
240 /*
241  * Slow version of get and set free pointer.
242  *
243  * This requires touching the cache lines of kmem_cache.
244  * The offset can also be obtained from the page. In that
245  * case it is in the cacheline that we already need to touch.
246  */
247 static void *get_freepointer(struct kmem_cache *s, void *object)
248 {
249 	return *(void **)(object + s->offset);
250 }
251 
252 static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
253 {
254 	*(void **)(object + s->offset) = fp;
255 }
256 
257 /*
258  * Tracking user of a slab.
259  */
260 struct track {
261 	void *addr;		/* Called from address */
262 	int cpu;		/* Was running on cpu */
263 	int pid;		/* Pid context */
264 	unsigned long when;	/* When did the operation occur */
265 };
266 
267 enum track_item { TRACK_ALLOC, TRACK_FREE };
268 
269 static struct track *get_track(struct kmem_cache *s, void *object,
270 	enum track_item alloc)
271 {
272 	struct track *p;
273 
274 	if (s->offset)
275 		p = object + s->offset + sizeof(void *);
276 	else
277 		p = object + s->inuse;
278 
279 	return p + alloc;
280 }
281 
282 static void set_track(struct kmem_cache *s, void *object,
283 				enum track_item alloc, void *addr)
284 {
285 	struct track *p;
286 
287 	if (s->offset)
288 		p = object + s->offset + sizeof(void *);
289 	else
290 		p = object + s->inuse;
291 
292 	p += alloc;
293 	if (addr) {
294 		p->addr = addr;
295 		p->cpu = smp_processor_id();
296 		p->pid = current ? current->pid : -1;
297 		p->when = jiffies;
298 	} else
299 		memset(p, 0, sizeof(struct track));
300 }
301 
302 static void init_tracking(struct kmem_cache *s, void *object)
303 {
304 	if (s->flags & SLAB_STORE_USER) {
305 		set_track(s, object, TRACK_FREE, NULL);
306 		set_track(s, object, TRACK_ALLOC, NULL);
307 	}
308 }
309 
310 static void print_track(const char *s, struct track *t)
311 {
312 	if (!t->addr)
313 		return;
314 
315 	printk(KERN_ERR "%s: ", s);
316 	__print_symbol("%s", (unsigned long)t->addr);
317 	printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
318 }
319 
320 static void print_trailer(struct kmem_cache *s, u8 *p)
321 {
322 	unsigned int off;	/* Offset of last byte */
323 
324 	if (s->flags & SLAB_RED_ZONE)
325 		print_section("Redzone", p + s->objsize,
326 			s->inuse - s->objsize);
327 
328 	printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
329 			p + s->offset,
330 			get_freepointer(s, p));
331 
332 	if (s->offset)
333 		off = s->offset + sizeof(void *);
334 	else
335 		off = s->inuse;
336 
337 	if (s->flags & SLAB_STORE_USER) {
338 		print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
339 		print_track("Last free ", get_track(s, p, TRACK_FREE));
340 		off += 2 * sizeof(struct track);
341 	}
342 
343 	if (off != s->size)
344 		/* Beginning of the filler is the free pointer */
345 		print_section("Filler", p + off, s->size - off);
346 }
347 
348 static void object_err(struct kmem_cache *s, struct page *page,
349 			u8 *object, char *reason)
350 {
351 	u8 *addr = page_address(page);
352 
353 	printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
354 			s->name, reason, object, page);
355 	printk(KERN_ERR "    offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
356 		object - addr, page->flags, page->inuse, page->freelist);
357 	if (object > addr + 16)
358 		print_section("Bytes b4", object - 16, 16);
359 	print_section("Object", object, min(s->objsize, 128));
360 	print_trailer(s, object);
361 	dump_stack();
362 }
363 
364 static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
365 {
366 	va_list args;
367 	char buf[100];
368 
369 	va_start(args, reason);
370 	vsnprintf(buf, sizeof(buf), reason, args);
371 	va_end(args);
372 	printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
373 		page);
374 	dump_stack();
375 }
376 
377 static void init_object(struct kmem_cache *s, void *object, int active)
378 {
379 	u8 *p = object;
380 
381 	if (s->flags & __OBJECT_POISON) {
382 		memset(p, POISON_FREE, s->objsize - 1);
383 		p[s->objsize -1] = POISON_END;
384 	}
385 
386 	if (s->flags & SLAB_RED_ZONE)
387 		memset(p + s->objsize,
388 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
389 			s->inuse - s->objsize);
390 }
391 
392 static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
393 {
394 	while (bytes) {
395 		if (*start != (u8)value)
396 			return 0;
397 		start++;
398 		bytes--;
399 	}
400 	return 1;
401 }
402 
403 
404 static int check_valid_pointer(struct kmem_cache *s, struct page *page,
405 					 void *object)
406 {
407 	void *base;
408 
409 	if (!object)
410 		return 1;
411 
412 	base = page_address(page);
413 	if (object < base || object >= base + s->objects * s->size ||
414 		(object - base) % s->size) {
415 		return 0;
416 	}
417 
418 	return 1;
419 }
420 
421 /*
422  * Object layout:
423  *
424  * object address
425  * 	Bytes of the object to be managed.
426  * 	If the freepointer may overlay the object then the free
427  * 	pointer is the first word of the object.
428  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
429  * 	0xa5 (POISON_END)
430  *
431  * object + s->objsize
432  * 	Padding to reach word boundary. This is also used for Redzoning.
433  * 	Padding is extended to word size if Redzoning is enabled
434  * 	and objsize == inuse.
435  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
436  * 	0xcc (RED_ACTIVE) for objects in use.
437  *
438  * object + s->inuse
439  * 	A. Free pointer (if we cannot overwrite object on free)
440  * 	B. Tracking data for SLAB_STORE_USER
441  * 	C. Padding to reach required alignment boundary
442  * 		Padding is done using 0x5a (POISON_INUSE)
443  *
444  * object + s->size
445  *
446  * If slabcaches are merged then the objsize and inuse boundaries are to
447  * be ignored. And therefore no slab options that rely on these boundaries
448  * may be used with merged slabcaches.
449  */
450 
451 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
452 						void *from, void *to)
453 {
454 	printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
455 		s->name, message, data, from, to - 1);
456 	memset(from, data, to - from);
457 }
458 
459 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
460 {
461 	unsigned long off = s->inuse;	/* The end of info */
462 
463 	if (s->offset)
464 		/* Freepointer is placed after the object. */
465 		off += sizeof(void *);
466 
467 	if (s->flags & SLAB_STORE_USER)
468 		/* We also have user information there */
469 		off += 2 * sizeof(struct track);
470 
471 	if (s->size == off)
472 		return 1;
473 
474 	if (check_bytes(p + off, POISON_INUSE, s->size - off))
475 		return 1;
476 
477 	object_err(s, page, p, "Object padding check fails");
478 
479 	/*
480 	 * Restore padding
481 	 */
482 	restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
483 	return 0;
484 }
485 
486 static int slab_pad_check(struct kmem_cache *s, struct page *page)
487 {
488 	u8 *p;
489 	int length, remainder;
490 
491 	if (!(s->flags & SLAB_POISON))
492 		return 1;
493 
494 	p = page_address(page);
495 	length = s->objects * s->size;
496 	remainder = (PAGE_SIZE << s->order) - length;
497 	if (!remainder)
498 		return 1;
499 
500 	if (!check_bytes(p + length, POISON_INUSE, remainder)) {
501 		slab_err(s, page, "Padding check failed");
502 		restore_bytes(s, "slab padding", POISON_INUSE, p + length,
503 			p + length + remainder);
504 		return 0;
505 	}
506 	return 1;
507 }
508 
509 static int check_object(struct kmem_cache *s, struct page *page,
510 					void *object, int active)
511 {
512 	u8 *p = object;
513 	u8 *endobject = object + s->objsize;
514 
515 	if (s->flags & SLAB_RED_ZONE) {
516 		unsigned int red =
517 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
518 
519 		if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
520 			object_err(s, page, object,
521 			active ? "Redzone Active" : "Redzone Inactive");
522 			restore_bytes(s, "redzone", red,
523 				endobject, object + s->inuse);
524 			return 0;
525 		}
526 	} else {
527 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
528 			!check_bytes(endobject, POISON_INUSE,
529 					s->inuse - s->objsize)) {
530 		object_err(s, page, p, "Alignment padding check fails");
531 		/*
532 		 * Fix it so that there will not be another report.
533 		 *
534 		 * Hmmm... We may be corrupting an object that now expects
535 		 * to be longer than allowed.
536 		 */
537 		restore_bytes(s, "alignment padding", POISON_INUSE,
538 			endobject, object + s->inuse);
539 		}
540 	}
541 
542 	if (s->flags & SLAB_POISON) {
543 		if (!active && (s->flags & __OBJECT_POISON) &&
544 			(!check_bytes(p, POISON_FREE, s->objsize - 1) ||
545 				p[s->objsize - 1] != POISON_END)) {
546 
547 			object_err(s, page, p, "Poison check failed");
548 			restore_bytes(s, "Poison", POISON_FREE,
549 						p, p + s->objsize -1);
550 			restore_bytes(s, "Poison", POISON_END,
551 					p + s->objsize - 1, p + s->objsize);
552 			return 0;
553 		}
554 		/*
555 		 * check_pad_bytes cleans up on its own.
556 		 */
557 		check_pad_bytes(s, page, p);
558 	}
559 
560 	if (!s->offset && active)
561 		/*
562 		 * Object and freepointer overlap. Cannot check
563 		 * freepointer while object is allocated.
564 		 */
565 		return 1;
566 
567 	/* Check free pointer validity */
568 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
569 		object_err(s, page, p, "Freepointer corrupt");
570 		/*
571 		 * No choice but to zap it and thus loose the remainder
572 		 * of the free objects in this slab. May cause
573 		 * another error because the object count maybe
574 		 * wrong now.
575 		 */
576 		set_freepointer(s, p, NULL);
577 		return 0;
578 	}
579 	return 1;
580 }
581 
582 static int check_slab(struct kmem_cache *s, struct page *page)
583 {
584 	VM_BUG_ON(!irqs_disabled());
585 
586 	if (!PageSlab(page)) {
587 		slab_err(s, page, "Not a valid slab page flags=%lx "
588 			"mapping=0x%p count=%d", page->flags, page->mapping,
589 			page_count(page));
590 		return 0;
591 	}
592 	if (page->offset * sizeof(void *) != s->offset) {
593 		slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
594 			"mapping=0x%p count=%d",
595 			(unsigned long)(page->offset * sizeof(void *)),
596 			page->flags,
597 			page->mapping,
598 			page_count(page));
599 		return 0;
600 	}
601 	if (page->inuse > s->objects) {
602 		slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
603 			"mapping=0x%p count=%d",
604 			s->name, page->inuse, s->objects, page->flags,
605 			page->mapping, page_count(page));
606 		return 0;
607 	}
608 	/* Slab_pad_check fixes things up after itself */
609 	slab_pad_check(s, page);
610 	return 1;
611 }
612 
613 /*
614  * Determine if a certain object on a page is on the freelist and
615  * therefore free. Must hold the slab lock for cpu slabs to
616  * guarantee that the chains are consistent.
617  */
618 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
619 {
620 	int nr = 0;
621 	void *fp = page->freelist;
622 	void *object = NULL;
623 
624 	while (fp && nr <= s->objects) {
625 		if (fp == search)
626 			return 1;
627 		if (!check_valid_pointer(s, page, fp)) {
628 			if (object) {
629 				object_err(s, page, object,
630 					"Freechain corrupt");
631 				set_freepointer(s, object, NULL);
632 				break;
633 			} else {
634 				slab_err(s, page, "Freepointer 0x%p corrupt",
635 									fp);
636 				page->freelist = NULL;
637 				page->inuse = s->objects;
638 				printk(KERN_ERR "@@@ SLUB %s: Freelist "
639 					"cleared. Slab 0x%p\n",
640 					s->name, page);
641 				return 0;
642 			}
643 			break;
644 		}
645 		object = fp;
646 		fp = get_freepointer(s, object);
647 		nr++;
648 	}
649 
650 	if (page->inuse != s->objects - nr) {
651 		slab_err(s, page, "Wrong object count. Counter is %d but "
652 			"counted were %d", s, page, page->inuse,
653 							s->objects - nr);
654 		page->inuse = s->objects - nr;
655 		printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
656 			"Slab @0x%p\n", s->name, page);
657 	}
658 	return search == NULL;
659 }
660 
661 /*
662  * Tracking of fully allocated slabs for debugging
663  */
664 static void add_full(struct kmem_cache_node *n, struct page *page)
665 {
666 	spin_lock(&n->list_lock);
667 	list_add(&page->lru, &n->full);
668 	spin_unlock(&n->list_lock);
669 }
670 
671 static void remove_full(struct kmem_cache *s, struct page *page)
672 {
673 	struct kmem_cache_node *n;
674 
675 	if (!(s->flags & SLAB_STORE_USER))
676 		return;
677 
678 	n = get_node(s, page_to_nid(page));
679 
680 	spin_lock(&n->list_lock);
681 	list_del(&page->lru);
682 	spin_unlock(&n->list_lock);
683 }
684 
685 static int alloc_object_checks(struct kmem_cache *s, struct page *page,
686 							void *object)
687 {
688 	if (!check_slab(s, page))
689 		goto bad;
690 
691 	if (object && !on_freelist(s, page, object)) {
692 		slab_err(s, page, "Object 0x%p already allocated", object);
693 		goto bad;
694 	}
695 
696 	if (!check_valid_pointer(s, page, object)) {
697 		object_err(s, page, object, "Freelist Pointer check fails");
698 		goto bad;
699 	}
700 
701 	if (!object)
702 		return 1;
703 
704 	if (!check_object(s, page, object, 0))
705 		goto bad;
706 
707 	return 1;
708 bad:
709 	if (PageSlab(page)) {
710 		/*
711 		 * If this is a slab page then lets do the best we can
712 		 * to avoid issues in the future. Marking all objects
713 		 * as used avoids touching the remainder.
714 		 */
715 		printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
716 			s->name, page);
717 		page->inuse = s->objects;
718 		page->freelist = NULL;
719 		/* Fix up fields that may be corrupted */
720 		page->offset = s->offset / sizeof(void *);
721 	}
722 	return 0;
723 }
724 
725 static int free_object_checks(struct kmem_cache *s, struct page *page,
726 							void *object)
727 {
728 	if (!check_slab(s, page))
729 		goto fail;
730 
731 	if (!check_valid_pointer(s, page, object)) {
732 		slab_err(s, page, "Invalid object pointer 0x%p", object);
733 		goto fail;
734 	}
735 
736 	if (on_freelist(s, page, object)) {
737 		slab_err(s, page, "Object 0x%p already free", object);
738 		goto fail;
739 	}
740 
741 	if (!check_object(s, page, object, 1))
742 		return 0;
743 
744 	if (unlikely(s != page->slab)) {
745 		if (!PageSlab(page))
746 			slab_err(s, page, "Attempt to free object(0x%p) "
747 				"outside of slab", object);
748 		else
749 		if (!page->slab) {
750 			printk(KERN_ERR
751 				"SLUB <none>: no slab for object 0x%p.\n",
752 						object);
753 			dump_stack();
754 		}
755 		else
756 			slab_err(s, page, "object at 0x%p belongs "
757 				"to slab %s", object, page->slab->name);
758 		goto fail;
759 	}
760 	return 1;
761 fail:
762 	printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
763 		s->name, page, object);
764 	return 0;
765 }
766 
767 /*
768  * Slab allocation and freeing
769  */
770 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
771 {
772 	struct page * page;
773 	int pages = 1 << s->order;
774 
775 	if (s->order)
776 		flags |= __GFP_COMP;
777 
778 	if (s->flags & SLAB_CACHE_DMA)
779 		flags |= SLUB_DMA;
780 
781 	if (node == -1)
782 		page = alloc_pages(flags, s->order);
783 	else
784 		page = alloc_pages_node(node, flags, s->order);
785 
786 	if (!page)
787 		return NULL;
788 
789 	mod_zone_page_state(page_zone(page),
790 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
791 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
792 		pages);
793 
794 	return page;
795 }
796 
797 static void setup_object(struct kmem_cache *s, struct page *page,
798 				void *object)
799 {
800 	if (PageError(page)) {
801 		init_object(s, object, 0);
802 		init_tracking(s, object);
803 	}
804 
805 	if (unlikely(s->ctor))
806 		s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
807 }
808 
809 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
810 {
811 	struct page *page;
812 	struct kmem_cache_node *n;
813 	void *start;
814 	void *end;
815 	void *last;
816 	void *p;
817 
818 	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
819 
820 	if (flags & __GFP_WAIT)
821 		local_irq_enable();
822 
823 	page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
824 	if (!page)
825 		goto out;
826 
827 	n = get_node(s, page_to_nid(page));
828 	if (n)
829 		atomic_long_inc(&n->nr_slabs);
830 	page->offset = s->offset / sizeof(void *);
831 	page->slab = s;
832 	page->flags |= 1 << PG_slab;
833 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
834 			SLAB_STORE_USER | SLAB_TRACE))
835 		page->flags |= 1 << PG_error;
836 
837 	start = page_address(page);
838 	end = start + s->objects * s->size;
839 
840 	if (unlikely(s->flags & SLAB_POISON))
841 		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
842 
843 	last = start;
844 	for (p = start + s->size; p < end; p += s->size) {
845 		setup_object(s, page, last);
846 		set_freepointer(s, last, p);
847 		last = p;
848 	}
849 	setup_object(s, page, last);
850 	set_freepointer(s, last, NULL);
851 
852 	page->freelist = start;
853 	page->inuse = 0;
854 out:
855 	if (flags & __GFP_WAIT)
856 		local_irq_disable();
857 	return page;
858 }
859 
860 static void __free_slab(struct kmem_cache *s, struct page *page)
861 {
862 	int pages = 1 << s->order;
863 
864 	if (unlikely(PageError(page) || s->dtor)) {
865 		void *start = page_address(page);
866 		void *end = start + (pages << PAGE_SHIFT);
867 		void *p;
868 
869 		slab_pad_check(s, page);
870 		for (p = start; p <= end - s->size; p += s->size) {
871 			if (s->dtor)
872 				s->dtor(p, s, 0);
873 			check_object(s, page, p, 0);
874 		}
875 	}
876 
877 	mod_zone_page_state(page_zone(page),
878 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
879 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
880 		- pages);
881 
882 	page->mapping = NULL;
883 	__free_pages(page, s->order);
884 }
885 
886 static void rcu_free_slab(struct rcu_head *h)
887 {
888 	struct page *page;
889 
890 	page = container_of((struct list_head *)h, struct page, lru);
891 	__free_slab(page->slab, page);
892 }
893 
894 static void free_slab(struct kmem_cache *s, struct page *page)
895 {
896 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
897 		/*
898 		 * RCU free overloads the RCU head over the LRU
899 		 */
900 		struct rcu_head *head = (void *)&page->lru;
901 
902 		call_rcu(head, rcu_free_slab);
903 	} else
904 		__free_slab(s, page);
905 }
906 
907 static void discard_slab(struct kmem_cache *s, struct page *page)
908 {
909 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
910 
911 	atomic_long_dec(&n->nr_slabs);
912 	reset_page_mapcount(page);
913 	page->flags &= ~(1 << PG_slab | 1 << PG_error);
914 	free_slab(s, page);
915 }
916 
917 /*
918  * Per slab locking using the pagelock
919  */
920 static __always_inline void slab_lock(struct page *page)
921 {
922 	bit_spin_lock(PG_locked, &page->flags);
923 }
924 
925 static __always_inline void slab_unlock(struct page *page)
926 {
927 	bit_spin_unlock(PG_locked, &page->flags);
928 }
929 
930 static __always_inline int slab_trylock(struct page *page)
931 {
932 	int rc = 1;
933 
934 	rc = bit_spin_trylock(PG_locked, &page->flags);
935 	return rc;
936 }
937 
938 /*
939  * Management of partially allocated slabs
940  */
941 static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
942 {
943 	spin_lock(&n->list_lock);
944 	n->nr_partial++;
945 	list_add_tail(&page->lru, &n->partial);
946 	spin_unlock(&n->list_lock);
947 }
948 
949 static void add_partial(struct kmem_cache_node *n, struct page *page)
950 {
951 	spin_lock(&n->list_lock);
952 	n->nr_partial++;
953 	list_add(&page->lru, &n->partial);
954 	spin_unlock(&n->list_lock);
955 }
956 
957 static void remove_partial(struct kmem_cache *s,
958 						struct page *page)
959 {
960 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
961 
962 	spin_lock(&n->list_lock);
963 	list_del(&page->lru);
964 	n->nr_partial--;
965 	spin_unlock(&n->list_lock);
966 }
967 
968 /*
969  * Lock page and remove it from the partial list
970  *
971  * Must hold list_lock
972  */
973 static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
974 {
975 	if (slab_trylock(page)) {
976 		list_del(&page->lru);
977 		n->nr_partial--;
978 		return 1;
979 	}
980 	return 0;
981 }
982 
983 /*
984  * Try to get a partial slab from a specific node
985  */
986 static struct page *get_partial_node(struct kmem_cache_node *n)
987 {
988 	struct page *page;
989 
990 	/*
991 	 * Racy check. If we mistakenly see no partial slabs then we
992 	 * just allocate an empty slab. If we mistakenly try to get a
993 	 * partial slab then get_partials() will return NULL.
994 	 */
995 	if (!n || !n->nr_partial)
996 		return NULL;
997 
998 	spin_lock(&n->list_lock);
999 	list_for_each_entry(page, &n->partial, lru)
1000 		if (lock_and_del_slab(n, page))
1001 			goto out;
1002 	page = NULL;
1003 out:
1004 	spin_unlock(&n->list_lock);
1005 	return page;
1006 }
1007 
1008 /*
1009  * Get a page from somewhere. Search in increasing NUMA
1010  * distances.
1011  */
1012 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1013 {
1014 #ifdef CONFIG_NUMA
1015 	struct zonelist *zonelist;
1016 	struct zone **z;
1017 	struct page *page;
1018 
1019 	/*
1020 	 * The defrag ratio allows to configure the tradeoffs between
1021 	 * inter node defragmentation and node local allocations.
1022 	 * A lower defrag_ratio increases the tendency to do local
1023 	 * allocations instead of scanning throught the partial
1024 	 * lists on other nodes.
1025 	 *
1026 	 * If defrag_ratio is set to 0 then kmalloc() always
1027 	 * returns node local objects. If its higher then kmalloc()
1028 	 * may return off node objects in order to avoid fragmentation.
1029 	 *
1030 	 * A higher ratio means slabs may be taken from other nodes
1031 	 * thus reducing the number of partial slabs on those nodes.
1032 	 *
1033 	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1034 	 * defrag_ratio = 1000) then every (well almost) allocation
1035 	 * will first attempt to defrag slab caches on other nodes. This
1036 	 * means scanning over all nodes to look for partial slabs which
1037 	 * may be a bit expensive to do on every slab allocation.
1038 	 */
1039 	if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1040 		return NULL;
1041 
1042 	zonelist = &NODE_DATA(slab_node(current->mempolicy))
1043 					->node_zonelists[gfp_zone(flags)];
1044 	for (z = zonelist->zones; *z; z++) {
1045 		struct kmem_cache_node *n;
1046 
1047 		n = get_node(s, zone_to_nid(*z));
1048 
1049 		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1050 				n->nr_partial > MIN_PARTIAL) {
1051 			page = get_partial_node(n);
1052 			if (page)
1053 				return page;
1054 		}
1055 	}
1056 #endif
1057 	return NULL;
1058 }
1059 
1060 /*
1061  * Get a partial page, lock it and return it.
1062  */
1063 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1064 {
1065 	struct page *page;
1066 	int searchnode = (node == -1) ? numa_node_id() : node;
1067 
1068 	page = get_partial_node(get_node(s, searchnode));
1069 	if (page || (flags & __GFP_THISNODE))
1070 		return page;
1071 
1072 	return get_any_partial(s, flags);
1073 }
1074 
1075 /*
1076  * Move a page back to the lists.
1077  *
1078  * Must be called with the slab lock held.
1079  *
1080  * On exit the slab lock will have been dropped.
1081  */
1082 static void putback_slab(struct kmem_cache *s, struct page *page)
1083 {
1084 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1085 
1086 	if (page->inuse) {
1087 
1088 		if (page->freelist)
1089 			add_partial(n, page);
1090 		else if (PageError(page) && (s->flags & SLAB_STORE_USER))
1091 			add_full(n, page);
1092 		slab_unlock(page);
1093 
1094 	} else {
1095 		if (n->nr_partial < MIN_PARTIAL) {
1096 			/*
1097 			 * Adding an empty page to the partial slabs in order
1098 			 * to avoid page allocator overhead. This page needs to
1099 			 * come after all the others that are not fully empty
1100 			 * in order to make sure that we do maximum
1101 			 * defragmentation.
1102 			 */
1103 			add_partial_tail(n, page);
1104 			slab_unlock(page);
1105 		} else {
1106 			slab_unlock(page);
1107 			discard_slab(s, page);
1108 		}
1109 	}
1110 }
1111 
1112 /*
1113  * Remove the cpu slab
1114  */
1115 static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1116 {
1117 	s->cpu_slab[cpu] = NULL;
1118 	ClearPageActive(page);
1119 
1120 	putback_slab(s, page);
1121 }
1122 
1123 static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1124 {
1125 	slab_lock(page);
1126 	deactivate_slab(s, page, cpu);
1127 }
1128 
1129 /*
1130  * Flush cpu slab.
1131  * Called from IPI handler with interrupts disabled.
1132  */
1133 static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1134 {
1135 	struct page *page = s->cpu_slab[cpu];
1136 
1137 	if (likely(page))
1138 		flush_slab(s, page, cpu);
1139 }
1140 
1141 static void flush_cpu_slab(void *d)
1142 {
1143 	struct kmem_cache *s = d;
1144 	int cpu = smp_processor_id();
1145 
1146 	__flush_cpu_slab(s, cpu);
1147 }
1148 
1149 static void flush_all(struct kmem_cache *s)
1150 {
1151 #ifdef CONFIG_SMP
1152 	on_each_cpu(flush_cpu_slab, s, 1, 1);
1153 #else
1154 	unsigned long flags;
1155 
1156 	local_irq_save(flags);
1157 	flush_cpu_slab(s);
1158 	local_irq_restore(flags);
1159 #endif
1160 }
1161 
1162 /*
1163  * slab_alloc is optimized to only modify two cachelines on the fast path
1164  * (aside from the stack):
1165  *
1166  * 1. The page struct
1167  * 2. The first cacheline of the object to be allocated.
1168  *
1169  * The only cache lines that are read (apart from code) is the
1170  * per cpu array in the kmem_cache struct.
1171  *
1172  * Fastpath is not possible if we need to get a new slab or have
1173  * debugging enabled (which means all slabs are marked with PageError)
1174  */
1175 static void *slab_alloc(struct kmem_cache *s,
1176 				gfp_t gfpflags, int node, void *addr)
1177 {
1178 	struct page *page;
1179 	void **object;
1180 	unsigned long flags;
1181 	int cpu;
1182 
1183 	local_irq_save(flags);
1184 	cpu = smp_processor_id();
1185 	page = s->cpu_slab[cpu];
1186 	if (!page)
1187 		goto new_slab;
1188 
1189 	slab_lock(page);
1190 	if (unlikely(node != -1 && page_to_nid(page) != node))
1191 		goto another_slab;
1192 redo:
1193 	object = page->freelist;
1194 	if (unlikely(!object))
1195 		goto another_slab;
1196 	if (unlikely(PageError(page)))
1197 		goto debug;
1198 
1199 have_object:
1200 	page->inuse++;
1201 	page->freelist = object[page->offset];
1202 	slab_unlock(page);
1203 	local_irq_restore(flags);
1204 	return object;
1205 
1206 another_slab:
1207 	deactivate_slab(s, page, cpu);
1208 
1209 new_slab:
1210 	page = get_partial(s, gfpflags, node);
1211 	if (likely(page)) {
1212 have_slab:
1213 		s->cpu_slab[cpu] = page;
1214 		SetPageActive(page);
1215 		goto redo;
1216 	}
1217 
1218 	page = new_slab(s, gfpflags, node);
1219 	if (page) {
1220 		cpu = smp_processor_id();
1221 		if (s->cpu_slab[cpu]) {
1222 			/*
1223 			 * Someone else populated the cpu_slab while we enabled
1224 			 * interrupts, or we have got scheduled on another cpu.
1225 			 * The page may not be on the requested node.
1226 			 */
1227 			if (node == -1 ||
1228 				page_to_nid(s->cpu_slab[cpu]) == node) {
1229 				/*
1230 				 * Current cpuslab is acceptable and we
1231 				 * want the current one since its cache hot
1232 				 */
1233 				discard_slab(s, page);
1234 				page = s->cpu_slab[cpu];
1235 				slab_lock(page);
1236 				goto redo;
1237 			}
1238 			/* Dump the current slab */
1239 			flush_slab(s, s->cpu_slab[cpu], cpu);
1240 		}
1241 		slab_lock(page);
1242 		goto have_slab;
1243 	}
1244 	local_irq_restore(flags);
1245 	return NULL;
1246 debug:
1247 	if (!alloc_object_checks(s, page, object))
1248 		goto another_slab;
1249 	if (s->flags & SLAB_STORE_USER)
1250 		set_track(s, object, TRACK_ALLOC, addr);
1251 	if (s->flags & SLAB_TRACE) {
1252 		printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
1253 			s->name, object, page->inuse,
1254 			page->freelist);
1255 		dump_stack();
1256 	}
1257 	init_object(s, object, 1);
1258 	goto have_object;
1259 }
1260 
1261 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1262 {
1263 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1264 }
1265 EXPORT_SYMBOL(kmem_cache_alloc);
1266 
1267 #ifdef CONFIG_NUMA
1268 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1269 {
1270 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1271 }
1272 EXPORT_SYMBOL(kmem_cache_alloc_node);
1273 #endif
1274 
1275 /*
1276  * The fastpath only writes the cacheline of the page struct and the first
1277  * cacheline of the object.
1278  *
1279  * No special cachelines need to be read
1280  */
1281 static void slab_free(struct kmem_cache *s, struct page *page,
1282 					void *x, void *addr)
1283 {
1284 	void *prior;
1285 	void **object = (void *)x;
1286 	unsigned long flags;
1287 
1288 	local_irq_save(flags);
1289 	slab_lock(page);
1290 
1291 	if (unlikely(PageError(page)))
1292 		goto debug;
1293 checks_ok:
1294 	prior = object[page->offset] = page->freelist;
1295 	page->freelist = object;
1296 	page->inuse--;
1297 
1298 	if (unlikely(PageActive(page)))
1299 		/*
1300 		 * Cpu slabs are never on partial lists and are
1301 		 * never freed.
1302 		 */
1303 		goto out_unlock;
1304 
1305 	if (unlikely(!page->inuse))
1306 		goto slab_empty;
1307 
1308 	/*
1309 	 * Objects left in the slab. If it
1310 	 * was not on the partial list before
1311 	 * then add it.
1312 	 */
1313 	if (unlikely(!prior))
1314 		add_partial(get_node(s, page_to_nid(page)), page);
1315 
1316 out_unlock:
1317 	slab_unlock(page);
1318 	local_irq_restore(flags);
1319 	return;
1320 
1321 slab_empty:
1322 	if (prior)
1323 		/*
1324 		 * Slab on the partial list.
1325 		 */
1326 		remove_partial(s, page);
1327 
1328 	slab_unlock(page);
1329 	discard_slab(s, page);
1330 	local_irq_restore(flags);
1331 	return;
1332 
1333 debug:
1334 	if (!free_object_checks(s, page, x))
1335 		goto out_unlock;
1336 	if (!PageActive(page) && !page->freelist)
1337 		remove_full(s, page);
1338 	if (s->flags & SLAB_STORE_USER)
1339 		set_track(s, x, TRACK_FREE, addr);
1340 	if (s->flags & SLAB_TRACE) {
1341 		printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
1342 			s->name, object, page->inuse,
1343 			page->freelist);
1344 		print_section("Object", (void *)object, s->objsize);
1345 		dump_stack();
1346 	}
1347 	init_object(s, object, 0);
1348 	goto checks_ok;
1349 }
1350 
1351 void kmem_cache_free(struct kmem_cache *s, void *x)
1352 {
1353 	struct page *page;
1354 
1355 	page = virt_to_head_page(x);
1356 
1357 	slab_free(s, page, x, __builtin_return_address(0));
1358 }
1359 EXPORT_SYMBOL(kmem_cache_free);
1360 
1361 /* Figure out on which slab object the object resides */
1362 static struct page *get_object_page(const void *x)
1363 {
1364 	struct page *page = virt_to_head_page(x);
1365 
1366 	if (!PageSlab(page))
1367 		return NULL;
1368 
1369 	return page;
1370 }
1371 
1372 /*
1373  * kmem_cache_open produces objects aligned at "size" and the first object
1374  * is placed at offset 0 in the slab (We have no metainformation on the
1375  * slab, all slabs are in essence "off slab").
1376  *
1377  * In order to get the desired alignment one just needs to align the
1378  * size.
1379  *
1380  * Notice that the allocation order determines the sizes of the per cpu
1381  * caches. Each processor has always one slab available for allocations.
1382  * Increasing the allocation order reduces the number of times that slabs
1383  * must be moved on and off the partial lists and therefore may influence
1384  * locking overhead.
1385  *
1386  * The offset is used to relocate the free list link in each object. It is
1387  * therefore possible to move the free list link behind the object. This
1388  * is necessary for RCU to work properly and also useful for debugging.
1389  */
1390 
1391 /*
1392  * Mininum / Maximum order of slab pages. This influences locking overhead
1393  * and slab fragmentation. A higher order reduces the number of partial slabs
1394  * and increases the number of allocations possible without having to
1395  * take the list_lock.
1396  */
1397 static int slub_min_order;
1398 static int slub_max_order = DEFAULT_MAX_ORDER;
1399 
1400 /*
1401  * Minimum number of objects per slab. This is necessary in order to
1402  * reduce locking overhead. Similar to the queue size in SLAB.
1403  */
1404 static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1405 
1406 /*
1407  * Merge control. If this is set then no merging of slab caches will occur.
1408  */
1409 static int slub_nomerge;
1410 
1411 /*
1412  * Debug settings:
1413  */
1414 static int slub_debug;
1415 
1416 static char *slub_debug_slabs;
1417 
1418 /*
1419  * Calculate the order of allocation given an slab object size.
1420  *
1421  * The order of allocation has significant impact on other elements
1422  * of the system. Generally order 0 allocations should be preferred
1423  * since they do not cause fragmentation in the page allocator. Larger
1424  * objects may have problems with order 0 because there may be too much
1425  * space left unused in a slab. We go to a higher order if more than 1/8th
1426  * of the slab would be wasted.
1427  *
1428  * In order to reach satisfactory performance we must ensure that
1429  * a minimum number of objects is in one slab. Otherwise we may
1430  * generate too much activity on the partial lists. This is less a
1431  * concern for large slabs though. slub_max_order specifies the order
1432  * where we begin to stop considering the number of objects in a slab.
1433  *
1434  * Higher order allocations also allow the placement of more objects
1435  * in a slab and thereby reduce object handling overhead. If the user
1436  * has requested a higher mininum order then we start with that one
1437  * instead of zero.
1438  */
1439 static int calculate_order(int size)
1440 {
1441 	int order;
1442 	int rem;
1443 
1444 	for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1445 			order < MAX_ORDER; order++) {
1446 		unsigned long slab_size = PAGE_SIZE << order;
1447 
1448 		if (slub_max_order > order &&
1449 				slab_size < slub_min_objects * size)
1450 			continue;
1451 
1452 		if (slab_size < size)
1453 			continue;
1454 
1455 		rem = slab_size % size;
1456 
1457 		if (rem <= (PAGE_SIZE << order) / 8)
1458 			break;
1459 
1460 	}
1461 	if (order >= MAX_ORDER)
1462 		return -E2BIG;
1463 	return order;
1464 }
1465 
1466 /*
1467  * Function to figure out which alignment to use from the
1468  * various ways of specifying it.
1469  */
1470 static unsigned long calculate_alignment(unsigned long flags,
1471 		unsigned long align, unsigned long size)
1472 {
1473 	/*
1474 	 * If the user wants hardware cache aligned objects then
1475 	 * follow that suggestion if the object is sufficiently
1476 	 * large.
1477 	 *
1478 	 * The hardware cache alignment cannot override the
1479 	 * specified alignment though. If that is greater
1480 	 * then use it.
1481 	 */
1482 	if ((flags & SLAB_HWCACHE_ALIGN) &&
1483 			size > L1_CACHE_BYTES / 2)
1484 		return max_t(unsigned long, align, L1_CACHE_BYTES);
1485 
1486 	if (align < ARCH_SLAB_MINALIGN)
1487 		return ARCH_SLAB_MINALIGN;
1488 
1489 	return ALIGN(align, sizeof(void *));
1490 }
1491 
1492 static void init_kmem_cache_node(struct kmem_cache_node *n)
1493 {
1494 	n->nr_partial = 0;
1495 	atomic_long_set(&n->nr_slabs, 0);
1496 	spin_lock_init(&n->list_lock);
1497 	INIT_LIST_HEAD(&n->partial);
1498 	INIT_LIST_HEAD(&n->full);
1499 }
1500 
1501 #ifdef CONFIG_NUMA
1502 /*
1503  * No kmalloc_node yet so do it by hand. We know that this is the first
1504  * slab on the node for this slabcache. There are no concurrent accesses
1505  * possible.
1506  *
1507  * Note that this function only works on the kmalloc_node_cache
1508  * when allocating for the kmalloc_node_cache.
1509  */
1510 static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1511 								int node)
1512 {
1513 	struct page *page;
1514 	struct kmem_cache_node *n;
1515 
1516 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1517 
1518 	page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1519 	/* new_slab() disables interupts */
1520 	local_irq_enable();
1521 
1522 	BUG_ON(!page);
1523 	n = page->freelist;
1524 	BUG_ON(!n);
1525 	page->freelist = get_freepointer(kmalloc_caches, n);
1526 	page->inuse++;
1527 	kmalloc_caches->node[node] = n;
1528 	init_object(kmalloc_caches, n, 1);
1529 	init_kmem_cache_node(n);
1530 	atomic_long_inc(&n->nr_slabs);
1531 	add_partial(n, page);
1532 	return n;
1533 }
1534 
1535 static void free_kmem_cache_nodes(struct kmem_cache *s)
1536 {
1537 	int node;
1538 
1539 	for_each_online_node(node) {
1540 		struct kmem_cache_node *n = s->node[node];
1541 		if (n && n != &s->local_node)
1542 			kmem_cache_free(kmalloc_caches, n);
1543 		s->node[node] = NULL;
1544 	}
1545 }
1546 
1547 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1548 {
1549 	int node;
1550 	int local_node;
1551 
1552 	if (slab_state >= UP)
1553 		local_node = page_to_nid(virt_to_page(s));
1554 	else
1555 		local_node = 0;
1556 
1557 	for_each_online_node(node) {
1558 		struct kmem_cache_node *n;
1559 
1560 		if (local_node == node)
1561 			n = &s->local_node;
1562 		else {
1563 			if (slab_state == DOWN) {
1564 				n = early_kmem_cache_node_alloc(gfpflags,
1565 								node);
1566 				continue;
1567 			}
1568 			n = kmem_cache_alloc_node(kmalloc_caches,
1569 							gfpflags, node);
1570 
1571 			if (!n) {
1572 				free_kmem_cache_nodes(s);
1573 				return 0;
1574 			}
1575 
1576 		}
1577 		s->node[node] = n;
1578 		init_kmem_cache_node(n);
1579 	}
1580 	return 1;
1581 }
1582 #else
1583 static void free_kmem_cache_nodes(struct kmem_cache *s)
1584 {
1585 }
1586 
1587 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1588 {
1589 	init_kmem_cache_node(&s->local_node);
1590 	return 1;
1591 }
1592 #endif
1593 
1594 /*
1595  * calculate_sizes() determines the order and the distribution of data within
1596  * a slab object.
1597  */
1598 static int calculate_sizes(struct kmem_cache *s)
1599 {
1600 	unsigned long flags = s->flags;
1601 	unsigned long size = s->objsize;
1602 	unsigned long align = s->align;
1603 
1604 	/*
1605 	 * Determine if we can poison the object itself. If the user of
1606 	 * the slab may touch the object after free or before allocation
1607 	 * then we should never poison the object itself.
1608 	 */
1609 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1610 			!s->ctor && !s->dtor)
1611 		s->flags |= __OBJECT_POISON;
1612 	else
1613 		s->flags &= ~__OBJECT_POISON;
1614 
1615 	/*
1616 	 * Round up object size to the next word boundary. We can only
1617 	 * place the free pointer at word boundaries and this determines
1618 	 * the possible location of the free pointer.
1619 	 */
1620 	size = ALIGN(size, sizeof(void *));
1621 
1622 	/*
1623 	 * If we are redzoning then check if there is some space between the
1624 	 * end of the object and the free pointer. If not then add an
1625 	 * additional word, so that we can establish a redzone between
1626 	 * the object and the freepointer to be able to check for overwrites.
1627 	 */
1628 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1629 		size += sizeof(void *);
1630 
1631 	/*
1632 	 * With that we have determined how much of the slab is in actual
1633 	 * use by the object. This is the potential offset to the free
1634 	 * pointer.
1635 	 */
1636 	s->inuse = size;
1637 
1638 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1639 		s->ctor || s->dtor)) {
1640 		/*
1641 		 * Relocate free pointer after the object if it is not
1642 		 * permitted to overwrite the first word of the object on
1643 		 * kmem_cache_free.
1644 		 *
1645 		 * This is the case if we do RCU, have a constructor or
1646 		 * destructor or are poisoning the objects.
1647 		 */
1648 		s->offset = size;
1649 		size += sizeof(void *);
1650 	}
1651 
1652 	if (flags & SLAB_STORE_USER)
1653 		/*
1654 		 * Need to store information about allocs and frees after
1655 		 * the object.
1656 		 */
1657 		size += 2 * sizeof(struct track);
1658 
1659 	if (flags & DEBUG_DEFAULT_FLAGS)
1660 		/*
1661 		 * Add some empty padding so that we can catch
1662 		 * overwrites from earlier objects rather than let
1663 		 * tracking information or the free pointer be
1664 		 * corrupted if an user writes before the start
1665 		 * of the object.
1666 		 */
1667 		size += sizeof(void *);
1668 	/*
1669 	 * Determine the alignment based on various parameters that the
1670 	 * user specified (this is unecessarily complex due to the attempt
1671 	 * to be compatible with SLAB. Should be cleaned up some day).
1672 	 */
1673 	align = calculate_alignment(flags, align, s->objsize);
1674 
1675 	/*
1676 	 * SLUB stores one object immediately after another beginning from
1677 	 * offset 0. In order to align the objects we have to simply size
1678 	 * each object to conform to the alignment.
1679 	 */
1680 	size = ALIGN(size, align);
1681 	s->size = size;
1682 
1683 	s->order = calculate_order(size);
1684 	if (s->order < 0)
1685 		return 0;
1686 
1687 	/*
1688 	 * Determine the number of objects per slab
1689 	 */
1690 	s->objects = (PAGE_SIZE << s->order) / size;
1691 
1692 	/*
1693 	 * Verify that the number of objects is within permitted limits.
1694 	 * The page->inuse field is only 16 bit wide! So we cannot have
1695 	 * more than 64k objects per slab.
1696 	 */
1697 	if (!s->objects || s->objects > 65535)
1698 		return 0;
1699 	return 1;
1700 
1701 }
1702 
1703 static int __init finish_bootstrap(void)
1704 {
1705 	struct list_head *h;
1706 	int err;
1707 
1708 	slab_state = SYSFS;
1709 
1710 	list_for_each(h, &slab_caches) {
1711 		struct kmem_cache *s =
1712 			container_of(h, struct kmem_cache, list);
1713 
1714 		err = sysfs_slab_add(s);
1715 		BUG_ON(err);
1716 	}
1717 	return 0;
1718 }
1719 
1720 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1721 		const char *name, size_t size,
1722 		size_t align, unsigned long flags,
1723 		void (*ctor)(void *, struct kmem_cache *, unsigned long),
1724 		void (*dtor)(void *, struct kmem_cache *, unsigned long))
1725 {
1726 	memset(s, 0, kmem_size);
1727 	s->name = name;
1728 	s->ctor = ctor;
1729 	s->dtor = dtor;
1730 	s->objsize = size;
1731 	s->flags = flags;
1732 	s->align = align;
1733 
1734 	/*
1735 	 * The page->offset field is only 16 bit wide. This is an offset
1736 	 * in units of words from the beginning of an object. If the slab
1737 	 * size is bigger then we cannot move the free pointer behind the
1738 	 * object anymore.
1739 	 *
1740 	 * On 32 bit platforms the limit is 256k. On 64bit platforms
1741 	 * the limit is 512k.
1742 	 *
1743 	 * Debugging or ctor/dtors may create a need to move the free
1744 	 * pointer. Fail if this happens.
1745 	 */
1746 	if (s->size >= 65535 * sizeof(void *)) {
1747 		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1748 				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1749 		BUG_ON(ctor || dtor);
1750 	}
1751 	else
1752 		/*
1753 		 * Enable debugging if selected on the kernel commandline.
1754 		 */
1755 		if (slub_debug && (!slub_debug_slabs ||
1756 		    strncmp(slub_debug_slabs, name,
1757 		    	strlen(slub_debug_slabs)) == 0))
1758 				s->flags |= slub_debug;
1759 
1760 	if (!calculate_sizes(s))
1761 		goto error;
1762 
1763 	s->refcount = 1;
1764 #ifdef CONFIG_NUMA
1765 	s->defrag_ratio = 100;
1766 #endif
1767 
1768 	if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1769 		return 1;
1770 error:
1771 	if (flags & SLAB_PANIC)
1772 		panic("Cannot create slab %s size=%lu realsize=%u "
1773 			"order=%u offset=%u flags=%lx\n",
1774 			s->name, (unsigned long)size, s->size, s->order,
1775 			s->offset, flags);
1776 	return 0;
1777 }
1778 EXPORT_SYMBOL(kmem_cache_open);
1779 
1780 /*
1781  * Check if a given pointer is valid
1782  */
1783 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1784 {
1785 	struct page * page;
1786 	void *addr;
1787 
1788 	page = get_object_page(object);
1789 
1790 	if (!page || s != page->slab)
1791 		/* No slab or wrong slab */
1792 		return 0;
1793 
1794 	addr = page_address(page);
1795 	if (object < addr || object >= addr + s->objects * s->size)
1796 		/* Out of bounds */
1797 		return 0;
1798 
1799 	if ((object - addr) % s->size)
1800 		/* Improperly aligned */
1801 		return 0;
1802 
1803 	/*
1804 	 * We could also check if the object is on the slabs freelist.
1805 	 * But this would be too expensive and it seems that the main
1806 	 * purpose of kmem_ptr_valid is to check if the object belongs
1807 	 * to a certain slab.
1808 	 */
1809 	return 1;
1810 }
1811 EXPORT_SYMBOL(kmem_ptr_validate);
1812 
1813 /*
1814  * Determine the size of a slab object
1815  */
1816 unsigned int kmem_cache_size(struct kmem_cache *s)
1817 {
1818 	return s->objsize;
1819 }
1820 EXPORT_SYMBOL(kmem_cache_size);
1821 
1822 const char *kmem_cache_name(struct kmem_cache *s)
1823 {
1824 	return s->name;
1825 }
1826 EXPORT_SYMBOL(kmem_cache_name);
1827 
1828 /*
1829  * Attempt to free all slabs on a node
1830  */
1831 static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1832 			struct list_head *list)
1833 {
1834 	int slabs_inuse = 0;
1835 	unsigned long flags;
1836 	struct page *page, *h;
1837 
1838 	spin_lock_irqsave(&n->list_lock, flags);
1839 	list_for_each_entry_safe(page, h, list, lru)
1840 		if (!page->inuse) {
1841 			list_del(&page->lru);
1842 			discard_slab(s, page);
1843 		} else
1844 			slabs_inuse++;
1845 	spin_unlock_irqrestore(&n->list_lock, flags);
1846 	return slabs_inuse;
1847 }
1848 
1849 /*
1850  * Release all resources used by slab cache
1851  */
1852 static int kmem_cache_close(struct kmem_cache *s)
1853 {
1854 	int node;
1855 
1856 	flush_all(s);
1857 
1858 	/* Attempt to free all objects */
1859 	for_each_online_node(node) {
1860 		struct kmem_cache_node *n = get_node(s, node);
1861 
1862 		n->nr_partial -= free_list(s, n, &n->partial);
1863 		if (atomic_long_read(&n->nr_slabs))
1864 			return 1;
1865 	}
1866 	free_kmem_cache_nodes(s);
1867 	return 0;
1868 }
1869 
1870 /*
1871  * Close a cache and release the kmem_cache structure
1872  * (must be used for caches created using kmem_cache_create)
1873  */
1874 void kmem_cache_destroy(struct kmem_cache *s)
1875 {
1876 	down_write(&slub_lock);
1877 	s->refcount--;
1878 	if (!s->refcount) {
1879 		list_del(&s->list);
1880 		if (kmem_cache_close(s))
1881 			WARN_ON(1);
1882 		sysfs_slab_remove(s);
1883 		kfree(s);
1884 	}
1885 	up_write(&slub_lock);
1886 }
1887 EXPORT_SYMBOL(kmem_cache_destroy);
1888 
1889 /********************************************************************
1890  *		Kmalloc subsystem
1891  *******************************************************************/
1892 
1893 struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1894 EXPORT_SYMBOL(kmalloc_caches);
1895 
1896 #ifdef CONFIG_ZONE_DMA
1897 static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1898 #endif
1899 
1900 static int __init setup_slub_min_order(char *str)
1901 {
1902 	get_option (&str, &slub_min_order);
1903 
1904 	return 1;
1905 }
1906 
1907 __setup("slub_min_order=", setup_slub_min_order);
1908 
1909 static int __init setup_slub_max_order(char *str)
1910 {
1911 	get_option (&str, &slub_max_order);
1912 
1913 	return 1;
1914 }
1915 
1916 __setup("slub_max_order=", setup_slub_max_order);
1917 
1918 static int __init setup_slub_min_objects(char *str)
1919 {
1920 	get_option (&str, &slub_min_objects);
1921 
1922 	return 1;
1923 }
1924 
1925 __setup("slub_min_objects=", setup_slub_min_objects);
1926 
1927 static int __init setup_slub_nomerge(char *str)
1928 {
1929 	slub_nomerge = 1;
1930 	return 1;
1931 }
1932 
1933 __setup("slub_nomerge", setup_slub_nomerge);
1934 
1935 static int __init setup_slub_debug(char *str)
1936 {
1937 	if (!str || *str != '=')
1938 		slub_debug = DEBUG_DEFAULT_FLAGS;
1939 	else {
1940 		str++;
1941 		if (*str == 0 || *str == ',')
1942 			slub_debug = DEBUG_DEFAULT_FLAGS;
1943 		else
1944 		for( ;*str && *str != ','; str++)
1945 			switch (*str) {
1946 			case 'f' : case 'F' :
1947 				slub_debug |= SLAB_DEBUG_FREE;
1948 				break;
1949 			case 'z' : case 'Z' :
1950 				slub_debug |= SLAB_RED_ZONE;
1951 				break;
1952 			case 'p' : case 'P' :
1953 				slub_debug |= SLAB_POISON;
1954 				break;
1955 			case 'u' : case 'U' :
1956 				slub_debug |= SLAB_STORE_USER;
1957 				break;
1958 			case 't' : case 'T' :
1959 				slub_debug |= SLAB_TRACE;
1960 				break;
1961 			default:
1962 				printk(KERN_ERR "slub_debug option '%c' "
1963 					"unknown. skipped\n",*str);
1964 			}
1965 	}
1966 
1967 	if (*str == ',')
1968 		slub_debug_slabs = str + 1;
1969 	return 1;
1970 }
1971 
1972 __setup("slub_debug", setup_slub_debug);
1973 
1974 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
1975 		const char *name, int size, gfp_t gfp_flags)
1976 {
1977 	unsigned int flags = 0;
1978 
1979 	if (gfp_flags & SLUB_DMA)
1980 		flags = SLAB_CACHE_DMA;
1981 
1982 	down_write(&slub_lock);
1983 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
1984 			flags, NULL, NULL))
1985 		goto panic;
1986 
1987 	list_add(&s->list, &slab_caches);
1988 	up_write(&slub_lock);
1989 	if (sysfs_slab_add(s))
1990 		goto panic;
1991 	return s;
1992 
1993 panic:
1994 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
1995 }
1996 
1997 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
1998 {
1999 	int index = kmalloc_index(size);
2000 
2001 	if (!index)
2002 		return NULL;
2003 
2004 	/* Allocation too large? */
2005 	BUG_ON(index < 0);
2006 
2007 #ifdef CONFIG_ZONE_DMA
2008 	if ((flags & SLUB_DMA)) {
2009 		struct kmem_cache *s;
2010 		struct kmem_cache *x;
2011 		char *text;
2012 		size_t realsize;
2013 
2014 		s = kmalloc_caches_dma[index];
2015 		if (s)
2016 			return s;
2017 
2018 		/* Dynamically create dma cache */
2019 		x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2020 		if (!x)
2021 			panic("Unable to allocate memory for dma cache\n");
2022 
2023 		if (index <= KMALLOC_SHIFT_HIGH)
2024 			realsize = 1 << index;
2025 		else {
2026 			if (index == 1)
2027 				realsize = 96;
2028 			else
2029 				realsize = 192;
2030 		}
2031 
2032 		text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2033 				(unsigned int)realsize);
2034 		s = create_kmalloc_cache(x, text, realsize, flags);
2035 		kmalloc_caches_dma[index] = s;
2036 		return s;
2037 	}
2038 #endif
2039 	return &kmalloc_caches[index];
2040 }
2041 
2042 void *__kmalloc(size_t size, gfp_t flags)
2043 {
2044 	struct kmem_cache *s = get_slab(size, flags);
2045 
2046 	if (s)
2047 		return slab_alloc(s, flags, -1, __builtin_return_address(0));
2048 	return NULL;
2049 }
2050 EXPORT_SYMBOL(__kmalloc);
2051 
2052 #ifdef CONFIG_NUMA
2053 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2054 {
2055 	struct kmem_cache *s = get_slab(size, flags);
2056 
2057 	if (s)
2058 		return slab_alloc(s, flags, node, __builtin_return_address(0));
2059 	return NULL;
2060 }
2061 EXPORT_SYMBOL(__kmalloc_node);
2062 #endif
2063 
2064 size_t ksize(const void *object)
2065 {
2066 	struct page *page = get_object_page(object);
2067 	struct kmem_cache *s;
2068 
2069 	BUG_ON(!page);
2070 	s = page->slab;
2071 	BUG_ON(!s);
2072 
2073 	/*
2074 	 * Debugging requires use of the padding between object
2075 	 * and whatever may come after it.
2076 	 */
2077 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2078 		return s->objsize;
2079 
2080 	/*
2081 	 * If we have the need to store the freelist pointer
2082 	 * back there or track user information then we can
2083 	 * only use the space before that information.
2084 	 */
2085 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2086 		return s->inuse;
2087 
2088 	/*
2089 	 * Else we can use all the padding etc for the allocation
2090 	 */
2091 	return s->size;
2092 }
2093 EXPORT_SYMBOL(ksize);
2094 
2095 void kfree(const void *x)
2096 {
2097 	struct kmem_cache *s;
2098 	struct page *page;
2099 
2100 	if (!x)
2101 		return;
2102 
2103 	page = virt_to_head_page(x);
2104 	s = page->slab;
2105 
2106 	slab_free(s, page, (void *)x, __builtin_return_address(0));
2107 }
2108 EXPORT_SYMBOL(kfree);
2109 
2110 /*
2111  *  kmem_cache_shrink removes empty slabs from the partial lists
2112  *  and then sorts the partially allocated slabs by the number
2113  *  of items in use. The slabs with the most items in use
2114  *  come first. New allocations will remove these from the
2115  *  partial list because they are full. The slabs with the
2116  *  least items are placed last. If it happens that the objects
2117  *  are freed then the page can be returned to the page allocator.
2118  */
2119 int kmem_cache_shrink(struct kmem_cache *s)
2120 {
2121 	int node;
2122 	int i;
2123 	struct kmem_cache_node *n;
2124 	struct page *page;
2125 	struct page *t;
2126 	struct list_head *slabs_by_inuse =
2127 		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2128 	unsigned long flags;
2129 
2130 	if (!slabs_by_inuse)
2131 		return -ENOMEM;
2132 
2133 	flush_all(s);
2134 	for_each_online_node(node) {
2135 		n = get_node(s, node);
2136 
2137 		if (!n->nr_partial)
2138 			continue;
2139 
2140 		for (i = 0; i < s->objects; i++)
2141 			INIT_LIST_HEAD(slabs_by_inuse + i);
2142 
2143 		spin_lock_irqsave(&n->list_lock, flags);
2144 
2145 		/*
2146 		 * Build lists indexed by the items in use in
2147 		 * each slab or free slabs if empty.
2148 		 *
2149 		 * Note that concurrent frees may occur while
2150 		 * we hold the list_lock. page->inuse here is
2151 		 * the upper limit.
2152 		 */
2153 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2154 			if (!page->inuse && slab_trylock(page)) {
2155 				/*
2156 				 * Must hold slab lock here because slab_free
2157 				 * may have freed the last object and be
2158 				 * waiting to release the slab.
2159 				 */
2160 				list_del(&page->lru);
2161 				n->nr_partial--;
2162 				slab_unlock(page);
2163 				discard_slab(s, page);
2164 			} else {
2165 				if (n->nr_partial > MAX_PARTIAL)
2166 					list_move(&page->lru,
2167 					slabs_by_inuse + page->inuse);
2168 			}
2169 		}
2170 
2171 		if (n->nr_partial <= MAX_PARTIAL)
2172 			goto out;
2173 
2174 		/*
2175 		 * Rebuild the partial list with the slabs filled up
2176 		 * most first and the least used slabs at the end.
2177 		 */
2178 		for (i = s->objects - 1; i >= 0; i--)
2179 			list_splice(slabs_by_inuse + i, n->partial.prev);
2180 
2181 	out:
2182 		spin_unlock_irqrestore(&n->list_lock, flags);
2183 	}
2184 
2185 	kfree(slabs_by_inuse);
2186 	return 0;
2187 }
2188 EXPORT_SYMBOL(kmem_cache_shrink);
2189 
2190 /**
2191  * krealloc - reallocate memory. The contents will remain unchanged.
2192  *
2193  * @p: object to reallocate memory for.
2194  * @new_size: how many bytes of memory are required.
2195  * @flags: the type of memory to allocate.
2196  *
2197  * The contents of the object pointed to are preserved up to the
2198  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
2199  * behaves exactly like kmalloc().  If @size is 0 and @p is not a
2200  * %NULL pointer, the object pointed to is freed.
2201  */
2202 void *krealloc(const void *p, size_t new_size, gfp_t flags)
2203 {
2204 	struct kmem_cache *new_cache;
2205 	void *ret;
2206 	struct page *page;
2207 
2208 	if (unlikely(!p))
2209 		return kmalloc(new_size, flags);
2210 
2211 	if (unlikely(!new_size)) {
2212 		kfree(p);
2213 		return NULL;
2214 	}
2215 
2216 	page = virt_to_head_page(p);
2217 
2218 	new_cache = get_slab(new_size, flags);
2219 
2220 	/*
2221  	 * If new size fits in the current cache, bail out.
2222  	 */
2223 	if (likely(page->slab == new_cache))
2224 		return (void *)p;
2225 
2226 	ret = kmalloc(new_size, flags);
2227 	if (ret) {
2228 		memcpy(ret, p, min(new_size, ksize(p)));
2229 		kfree(p);
2230 	}
2231 	return ret;
2232 }
2233 EXPORT_SYMBOL(krealloc);
2234 
2235 /********************************************************************
2236  *			Basic setup of slabs
2237  *******************************************************************/
2238 
2239 void __init kmem_cache_init(void)
2240 {
2241 	int i;
2242 
2243 #ifdef CONFIG_NUMA
2244 	/*
2245 	 * Must first have the slab cache available for the allocations of the
2246 	 * struct kmalloc_cache_node's. There is special bootstrap code in
2247 	 * kmem_cache_open for slab_state == DOWN.
2248 	 */
2249 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2250 		sizeof(struct kmem_cache_node), GFP_KERNEL);
2251 #endif
2252 
2253 	/* Able to allocate the per node structures */
2254 	slab_state = PARTIAL;
2255 
2256 	/* Caches that are not of the two-to-the-power-of size */
2257 	create_kmalloc_cache(&kmalloc_caches[1],
2258 				"kmalloc-96", 96, GFP_KERNEL);
2259 	create_kmalloc_cache(&kmalloc_caches[2],
2260 				"kmalloc-192", 192, GFP_KERNEL);
2261 
2262 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2263 		create_kmalloc_cache(&kmalloc_caches[i],
2264 			"kmalloc", 1 << i, GFP_KERNEL);
2265 
2266 	slab_state = UP;
2267 
2268 	/* Provide the correct kmalloc names now that the caches are up */
2269 	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2270 		kmalloc_caches[i]. name =
2271 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2272 
2273 #ifdef CONFIG_SMP
2274 	register_cpu_notifier(&slab_notifier);
2275 #endif
2276 
2277 	if (nr_cpu_ids)	/* Remove when nr_cpu_ids is fixed upstream ! */
2278 		kmem_size = offsetof(struct kmem_cache, cpu_slab)
2279 			 + nr_cpu_ids * sizeof(struct page *);
2280 
2281 	printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2282 		" Processors=%d, Nodes=%d\n",
2283 		KMALLOC_SHIFT_HIGH, L1_CACHE_BYTES,
2284 		slub_min_order, slub_max_order, slub_min_objects,
2285 		nr_cpu_ids, nr_node_ids);
2286 }
2287 
2288 /*
2289  * Find a mergeable slab cache
2290  */
2291 static int slab_unmergeable(struct kmem_cache *s)
2292 {
2293 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2294 		return 1;
2295 
2296 	if (s->ctor || s->dtor)
2297 		return 1;
2298 
2299 	return 0;
2300 }
2301 
2302 static struct kmem_cache *find_mergeable(size_t size,
2303 		size_t align, unsigned long flags,
2304 		void (*ctor)(void *, struct kmem_cache *, unsigned long),
2305 		void (*dtor)(void *, struct kmem_cache *, unsigned long))
2306 {
2307 	struct list_head *h;
2308 
2309 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2310 		return NULL;
2311 
2312 	if (ctor || dtor)
2313 		return NULL;
2314 
2315 	size = ALIGN(size, sizeof(void *));
2316 	align = calculate_alignment(flags, align, size);
2317 	size = ALIGN(size, align);
2318 
2319 	list_for_each(h, &slab_caches) {
2320 		struct kmem_cache *s =
2321 			container_of(h, struct kmem_cache, list);
2322 
2323 		if (slab_unmergeable(s))
2324 			continue;
2325 
2326 		if (size > s->size)
2327 			continue;
2328 
2329 		if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2330 			(s->flags & SLUB_MERGE_SAME))
2331 				continue;
2332 		/*
2333 		 * Check if alignment is compatible.
2334 		 * Courtesy of Adrian Drzewiecki
2335 		 */
2336 		if ((s->size & ~(align -1)) != s->size)
2337 			continue;
2338 
2339 		if (s->size - size >= sizeof(void *))
2340 			continue;
2341 
2342 		return s;
2343 	}
2344 	return NULL;
2345 }
2346 
2347 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2348 		size_t align, unsigned long flags,
2349 		void (*ctor)(void *, struct kmem_cache *, unsigned long),
2350 		void (*dtor)(void *, struct kmem_cache *, unsigned long))
2351 {
2352 	struct kmem_cache *s;
2353 
2354 	down_write(&slub_lock);
2355 	s = find_mergeable(size, align, flags, dtor, ctor);
2356 	if (s) {
2357 		s->refcount++;
2358 		/*
2359 		 * Adjust the object sizes so that we clear
2360 		 * the complete object on kzalloc.
2361 		 */
2362 		s->objsize = max(s->objsize, (int)size);
2363 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2364 		if (sysfs_slab_alias(s, name))
2365 			goto err;
2366 	} else {
2367 		s = kmalloc(kmem_size, GFP_KERNEL);
2368 		if (s && kmem_cache_open(s, GFP_KERNEL, name,
2369 				size, align, flags, ctor, dtor)) {
2370 			if (sysfs_slab_add(s)) {
2371 				kfree(s);
2372 				goto err;
2373 			}
2374 			list_add(&s->list, &slab_caches);
2375 		} else
2376 			kfree(s);
2377 	}
2378 	up_write(&slub_lock);
2379 	return s;
2380 
2381 err:
2382 	up_write(&slub_lock);
2383 	if (flags & SLAB_PANIC)
2384 		panic("Cannot create slabcache %s\n", name);
2385 	else
2386 		s = NULL;
2387 	return s;
2388 }
2389 EXPORT_SYMBOL(kmem_cache_create);
2390 
2391 void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2392 {
2393 	void *x;
2394 
2395 	x = slab_alloc(s, flags, -1, __builtin_return_address(0));
2396 	if (x)
2397 		memset(x, 0, s->objsize);
2398 	return x;
2399 }
2400 EXPORT_SYMBOL(kmem_cache_zalloc);
2401 
2402 #ifdef CONFIG_SMP
2403 static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2404 {
2405 	struct list_head *h;
2406 
2407 	down_read(&slub_lock);
2408 	list_for_each(h, &slab_caches) {
2409 		struct kmem_cache *s =
2410 			container_of(h, struct kmem_cache, list);
2411 
2412 		func(s, cpu);
2413 	}
2414 	up_read(&slub_lock);
2415 }
2416 
2417 /*
2418  * Use the cpu notifier to insure that the slab are flushed
2419  * when necessary.
2420  */
2421 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2422 		unsigned long action, void *hcpu)
2423 {
2424 	long cpu = (long)hcpu;
2425 
2426 	switch (action) {
2427 	case CPU_UP_CANCELED:
2428 	case CPU_DEAD:
2429 		for_all_slabs(__flush_cpu_slab, cpu);
2430 		break;
2431 	default:
2432 		break;
2433 	}
2434 	return NOTIFY_OK;
2435 }
2436 
2437 static struct notifier_block __cpuinitdata slab_notifier =
2438 	{ &slab_cpuup_callback, NULL, 0 };
2439 
2440 #endif
2441 
2442 #ifdef CONFIG_NUMA
2443 
2444 /*****************************************************************
2445  * Generic reaper used to support the page allocator
2446  * (the cpu slabs are reaped by a per slab workqueue).
2447  *
2448  * Maybe move this to the page allocator?
2449  ****************************************************************/
2450 
2451 static DEFINE_PER_CPU(unsigned long, reap_node);
2452 
2453 static void init_reap_node(int cpu)
2454 {
2455 	int node;
2456 
2457 	node = next_node(cpu_to_node(cpu), node_online_map);
2458 	if (node == MAX_NUMNODES)
2459 		node = first_node(node_online_map);
2460 
2461 	__get_cpu_var(reap_node) = node;
2462 }
2463 
2464 static void next_reap_node(void)
2465 {
2466 	int node = __get_cpu_var(reap_node);
2467 
2468 	/*
2469 	 * Also drain per cpu pages on remote zones
2470 	 */
2471 	if (node != numa_node_id())
2472 		drain_node_pages(node);
2473 
2474 	node = next_node(node, node_online_map);
2475 	if (unlikely(node >= MAX_NUMNODES))
2476 		node = first_node(node_online_map);
2477 	__get_cpu_var(reap_node) = node;
2478 }
2479 #else
2480 #define init_reap_node(cpu) do { } while (0)
2481 #define next_reap_node(void) do { } while (0)
2482 #endif
2483 
2484 #define REAPTIMEOUT_CPUC	(2*HZ)
2485 
2486 #ifdef CONFIG_SMP
2487 static DEFINE_PER_CPU(struct delayed_work, reap_work);
2488 
2489 static void cache_reap(struct work_struct *unused)
2490 {
2491 	next_reap_node();
2492 	refresh_cpu_vm_stats(smp_processor_id());
2493 	schedule_delayed_work(&__get_cpu_var(reap_work),
2494 				      REAPTIMEOUT_CPUC);
2495 }
2496 
2497 static void __devinit start_cpu_timer(int cpu)
2498 {
2499 	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2500 
2501 	/*
2502 	 * When this gets called from do_initcalls via cpucache_init(),
2503 	 * init_workqueues() has already run, so keventd will be setup
2504 	 * at that time.
2505 	 */
2506 	if (keventd_up() && reap_work->work.func == NULL) {
2507 		init_reap_node(cpu);
2508 		INIT_DELAYED_WORK(reap_work, cache_reap);
2509 		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2510 	}
2511 }
2512 
2513 static int __init cpucache_init(void)
2514 {
2515 	int cpu;
2516 
2517 	/*
2518 	 * Register the timers that drain pcp pages and update vm statistics
2519 	 */
2520 	for_each_online_cpu(cpu)
2521 		start_cpu_timer(cpu);
2522 	return 0;
2523 }
2524 __initcall(cpucache_init);
2525 #endif
2526 
2527 #ifdef SLUB_RESILIENCY_TEST
2528 static unsigned long validate_slab_cache(struct kmem_cache *s);
2529 
2530 static void resiliency_test(void)
2531 {
2532 	u8 *p;
2533 
2534 	printk(KERN_ERR "SLUB resiliency testing\n");
2535 	printk(KERN_ERR "-----------------------\n");
2536 	printk(KERN_ERR "A. Corruption after allocation\n");
2537 
2538 	p = kzalloc(16, GFP_KERNEL);
2539 	p[16] = 0x12;
2540 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2541 			" 0x12->0x%p\n\n", p + 16);
2542 
2543 	validate_slab_cache(kmalloc_caches + 4);
2544 
2545 	/* Hmmm... The next two are dangerous */
2546 	p = kzalloc(32, GFP_KERNEL);
2547 	p[32 + sizeof(void *)] = 0x34;
2548 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2549 		 	" 0x34 -> -0x%p\n", p);
2550 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2551 
2552 	validate_slab_cache(kmalloc_caches + 5);
2553 	p = kzalloc(64, GFP_KERNEL);
2554 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2555 	*p = 0x56;
2556 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2557 									p);
2558 	printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2559 	validate_slab_cache(kmalloc_caches + 6);
2560 
2561 	printk(KERN_ERR "\nB. Corruption after free\n");
2562 	p = kzalloc(128, GFP_KERNEL);
2563 	kfree(p);
2564 	*p = 0x78;
2565 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2566 	validate_slab_cache(kmalloc_caches + 7);
2567 
2568 	p = kzalloc(256, GFP_KERNEL);
2569 	kfree(p);
2570 	p[50] = 0x9a;
2571 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2572 	validate_slab_cache(kmalloc_caches + 8);
2573 
2574 	p = kzalloc(512, GFP_KERNEL);
2575 	kfree(p);
2576 	p[512] = 0xab;
2577 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2578 	validate_slab_cache(kmalloc_caches + 9);
2579 }
2580 #else
2581 static void resiliency_test(void) {};
2582 #endif
2583 
2584 /*
2585  * These are not as efficient as kmalloc for the non debug case.
2586  * We do not have the page struct available so we have to touch one
2587  * cacheline in struct kmem_cache to check slab flags.
2588  */
2589 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2590 {
2591 	struct kmem_cache *s = get_slab(size, gfpflags);
2592 
2593 	if (!s)
2594 		return NULL;
2595 
2596 	return slab_alloc(s, gfpflags, -1, caller);
2597 }
2598 
2599 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2600 					int node, void *caller)
2601 {
2602 	struct kmem_cache *s = get_slab(size, gfpflags);
2603 
2604 	if (!s)
2605 		return NULL;
2606 
2607 	return slab_alloc(s, gfpflags, node, caller);
2608 }
2609 
2610 #ifdef CONFIG_SYSFS
2611 
2612 static int validate_slab(struct kmem_cache *s, struct page *page)
2613 {
2614 	void *p;
2615 	void *addr = page_address(page);
2616 	unsigned long map[BITS_TO_LONGS(s->objects)];
2617 
2618 	if (!check_slab(s, page) ||
2619 			!on_freelist(s, page, NULL))
2620 		return 0;
2621 
2622 	/* Now we know that a valid freelist exists */
2623 	bitmap_zero(map, s->objects);
2624 
2625 	for(p = page->freelist; p; p = get_freepointer(s, p)) {
2626 		set_bit((p - addr) / s->size, map);
2627 		if (!check_object(s, page, p, 0))
2628 			return 0;
2629 	}
2630 
2631 	for(p = addr; p < addr + s->objects * s->size; p += s->size)
2632 		if (!test_bit((p - addr) / s->size, map))
2633 			if (!check_object(s, page, p, 1))
2634 				return 0;
2635 	return 1;
2636 }
2637 
2638 static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2639 {
2640 	if (slab_trylock(page)) {
2641 		validate_slab(s, page);
2642 		slab_unlock(page);
2643 	} else
2644 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2645 			s->name, page);
2646 
2647 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
2648 		if (!PageError(page))
2649 			printk(KERN_ERR "SLUB %s: PageError not set "
2650 				"on slab 0x%p\n", s->name, page);
2651 	} else {
2652 		if (PageError(page))
2653 			printk(KERN_ERR "SLUB %s: PageError set on "
2654 				"slab 0x%p\n", s->name, page);
2655 	}
2656 }
2657 
2658 static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2659 {
2660 	unsigned long count = 0;
2661 	struct page *page;
2662 	unsigned long flags;
2663 
2664 	spin_lock_irqsave(&n->list_lock, flags);
2665 
2666 	list_for_each_entry(page, &n->partial, lru) {
2667 		validate_slab_slab(s, page);
2668 		count++;
2669 	}
2670 	if (count != n->nr_partial)
2671 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2672 			"counter=%ld\n", s->name, count, n->nr_partial);
2673 
2674 	if (!(s->flags & SLAB_STORE_USER))
2675 		goto out;
2676 
2677 	list_for_each_entry(page, &n->full, lru) {
2678 		validate_slab_slab(s, page);
2679 		count++;
2680 	}
2681 	if (count != atomic_long_read(&n->nr_slabs))
2682 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2683 			"counter=%ld\n", s->name, count,
2684 			atomic_long_read(&n->nr_slabs));
2685 
2686 out:
2687 	spin_unlock_irqrestore(&n->list_lock, flags);
2688 	return count;
2689 }
2690 
2691 static unsigned long validate_slab_cache(struct kmem_cache *s)
2692 {
2693 	int node;
2694 	unsigned long count = 0;
2695 
2696 	flush_all(s);
2697 	for_each_online_node(node) {
2698 		struct kmem_cache_node *n = get_node(s, node);
2699 
2700 		count += validate_slab_node(s, n);
2701 	}
2702 	return count;
2703 }
2704 
2705 /*
2706  * Generate lists of locations where slabcache objects are allocated
2707  * and freed.
2708  */
2709 
2710 struct location {
2711 	unsigned long count;
2712 	void *addr;
2713 };
2714 
2715 struct loc_track {
2716 	unsigned long max;
2717 	unsigned long count;
2718 	struct location *loc;
2719 };
2720 
2721 static void free_loc_track(struct loc_track *t)
2722 {
2723 	if (t->max)
2724 		free_pages((unsigned long)t->loc,
2725 			get_order(sizeof(struct location) * t->max));
2726 }
2727 
2728 static int alloc_loc_track(struct loc_track *t, unsigned long max)
2729 {
2730 	struct location *l;
2731 	int order;
2732 
2733 	if (!max)
2734 		max = PAGE_SIZE / sizeof(struct location);
2735 
2736 	order = get_order(sizeof(struct location) * max);
2737 
2738 	l = (void *)__get_free_pages(GFP_KERNEL, order);
2739 
2740 	if (!l)
2741 		return 0;
2742 
2743 	if (t->count) {
2744 		memcpy(l, t->loc, sizeof(struct location) * t->count);
2745 		free_loc_track(t);
2746 	}
2747 	t->max = max;
2748 	t->loc = l;
2749 	return 1;
2750 }
2751 
2752 static int add_location(struct loc_track *t, struct kmem_cache *s,
2753 						void *addr)
2754 {
2755 	long start, end, pos;
2756 	struct location *l;
2757 	void *caddr;
2758 
2759 	start = -1;
2760 	end = t->count;
2761 
2762 	for ( ; ; ) {
2763 		pos = start + (end - start + 1) / 2;
2764 
2765 		/*
2766 		 * There is nothing at "end". If we end up there
2767 		 * we need to add something to before end.
2768 		 */
2769 		if (pos == end)
2770 			break;
2771 
2772 		caddr = t->loc[pos].addr;
2773 		if (addr == caddr) {
2774 			t->loc[pos].count++;
2775 			return 1;
2776 		}
2777 
2778 		if (addr < caddr)
2779 			end = pos;
2780 		else
2781 			start = pos;
2782 	}
2783 
2784 	/*
2785 	 * Not found. Insert new tracking element
2786 	 */
2787 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2788 		return 0;
2789 
2790 	l = t->loc + pos;
2791 	if (pos < t->count)
2792 		memmove(l + 1, l,
2793 			(t->count - pos) * sizeof(struct location));
2794 	t->count++;
2795 	l->count = 1;
2796 	l->addr = addr;
2797 	return 1;
2798 }
2799 
2800 static void process_slab(struct loc_track *t, struct kmem_cache *s,
2801 		struct page *page, enum track_item alloc)
2802 {
2803 	void *addr = page_address(page);
2804 	unsigned long map[BITS_TO_LONGS(s->objects)];
2805 	void *p;
2806 
2807 	bitmap_zero(map, s->objects);
2808 	for (p = page->freelist; p; p = get_freepointer(s, p))
2809 		set_bit((p - addr) / s->size, map);
2810 
2811 	for (p = addr; p < addr + s->objects * s->size; p += s->size)
2812 		if (!test_bit((p - addr) / s->size, map)) {
2813 			void *addr = get_track(s, p, alloc)->addr;
2814 
2815 			add_location(t, s, addr);
2816 		}
2817 }
2818 
2819 static int list_locations(struct kmem_cache *s, char *buf,
2820 					enum track_item alloc)
2821 {
2822 	int n = 0;
2823 	unsigned long i;
2824 	struct loc_track t;
2825 	int node;
2826 
2827 	t.count = 0;
2828 	t.max = 0;
2829 
2830 	/* Push back cpu slabs */
2831 	flush_all(s);
2832 
2833 	for_each_online_node(node) {
2834 		struct kmem_cache_node *n = get_node(s, node);
2835 		unsigned long flags;
2836 		struct page *page;
2837 
2838 		if (!atomic_read(&n->nr_slabs))
2839 			continue;
2840 
2841 		spin_lock_irqsave(&n->list_lock, flags);
2842 		list_for_each_entry(page, &n->partial, lru)
2843 			process_slab(&t, s, page, alloc);
2844 		list_for_each_entry(page, &n->full, lru)
2845 			process_slab(&t, s, page, alloc);
2846 		spin_unlock_irqrestore(&n->list_lock, flags);
2847 	}
2848 
2849 	for (i = 0; i < t.count; i++) {
2850 		void *addr = t.loc[i].addr;
2851 
2852 		if (n > PAGE_SIZE - 100)
2853 			break;
2854 		n += sprintf(buf + n, "%7ld ", t.loc[i].count);
2855 		if (addr)
2856 			n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
2857 		else
2858 			n += sprintf(buf + n, "<not-available>");
2859 		n += sprintf(buf + n, "\n");
2860 	}
2861 
2862 	free_loc_track(&t);
2863 	if (!t.count)
2864 		n += sprintf(buf, "No data\n");
2865 	return n;
2866 }
2867 
2868 static unsigned long count_partial(struct kmem_cache_node *n)
2869 {
2870 	unsigned long flags;
2871 	unsigned long x = 0;
2872 	struct page *page;
2873 
2874 	spin_lock_irqsave(&n->list_lock, flags);
2875 	list_for_each_entry(page, &n->partial, lru)
2876 		x += page->inuse;
2877 	spin_unlock_irqrestore(&n->list_lock, flags);
2878 	return x;
2879 }
2880 
2881 enum slab_stat_type {
2882 	SL_FULL,
2883 	SL_PARTIAL,
2884 	SL_CPU,
2885 	SL_OBJECTS
2886 };
2887 
2888 #define SO_FULL		(1 << SL_FULL)
2889 #define SO_PARTIAL	(1 << SL_PARTIAL)
2890 #define SO_CPU		(1 << SL_CPU)
2891 #define SO_OBJECTS	(1 << SL_OBJECTS)
2892 
2893 static unsigned long slab_objects(struct kmem_cache *s,
2894 			char *buf, unsigned long flags)
2895 {
2896 	unsigned long total = 0;
2897 	int cpu;
2898 	int node;
2899 	int x;
2900 	unsigned long *nodes;
2901 	unsigned long *per_cpu;
2902 
2903 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2904 	per_cpu = nodes + nr_node_ids;
2905 
2906 	for_each_possible_cpu(cpu) {
2907 		struct page *page = s->cpu_slab[cpu];
2908 		int node;
2909 
2910 		if (page) {
2911 			node = page_to_nid(page);
2912 			if (flags & SO_CPU) {
2913 				int x = 0;
2914 
2915 				if (flags & SO_OBJECTS)
2916 					x = page->inuse;
2917 				else
2918 					x = 1;
2919 				total += x;
2920 				nodes[node] += x;
2921 			}
2922 			per_cpu[node]++;
2923 		}
2924 	}
2925 
2926 	for_each_online_node(node) {
2927 		struct kmem_cache_node *n = get_node(s, node);
2928 
2929 		if (flags & SO_PARTIAL) {
2930 			if (flags & SO_OBJECTS)
2931 				x = count_partial(n);
2932 			else
2933 				x = n->nr_partial;
2934 			total += x;
2935 			nodes[node] += x;
2936 		}
2937 
2938 		if (flags & SO_FULL) {
2939 			int full_slabs = atomic_read(&n->nr_slabs)
2940 					- per_cpu[node]
2941 					- n->nr_partial;
2942 
2943 			if (flags & SO_OBJECTS)
2944 				x = full_slabs * s->objects;
2945 			else
2946 				x = full_slabs;
2947 			total += x;
2948 			nodes[node] += x;
2949 		}
2950 	}
2951 
2952 	x = sprintf(buf, "%lu", total);
2953 #ifdef CONFIG_NUMA
2954 	for_each_online_node(node)
2955 		if (nodes[node])
2956 			x += sprintf(buf + x, " N%d=%lu",
2957 					node, nodes[node]);
2958 #endif
2959 	kfree(nodes);
2960 	return x + sprintf(buf + x, "\n");
2961 }
2962 
2963 static int any_slab_objects(struct kmem_cache *s)
2964 {
2965 	int node;
2966 	int cpu;
2967 
2968 	for_each_possible_cpu(cpu)
2969 		if (s->cpu_slab[cpu])
2970 			return 1;
2971 
2972 	for_each_node(node) {
2973 		struct kmem_cache_node *n = get_node(s, node);
2974 
2975 		if (n->nr_partial || atomic_read(&n->nr_slabs))
2976 			return 1;
2977 	}
2978 	return 0;
2979 }
2980 
2981 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2982 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
2983 
2984 struct slab_attribute {
2985 	struct attribute attr;
2986 	ssize_t (*show)(struct kmem_cache *s, char *buf);
2987 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
2988 };
2989 
2990 #define SLAB_ATTR_RO(_name) \
2991 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2992 
2993 #define SLAB_ATTR(_name) \
2994 	static struct slab_attribute _name##_attr =  \
2995 	__ATTR(_name, 0644, _name##_show, _name##_store)
2996 
2997 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
2998 {
2999 	return sprintf(buf, "%d\n", s->size);
3000 }
3001 SLAB_ATTR_RO(slab_size);
3002 
3003 static ssize_t align_show(struct kmem_cache *s, char *buf)
3004 {
3005 	return sprintf(buf, "%d\n", s->align);
3006 }
3007 SLAB_ATTR_RO(align);
3008 
3009 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3010 {
3011 	return sprintf(buf, "%d\n", s->objsize);
3012 }
3013 SLAB_ATTR_RO(object_size);
3014 
3015 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3016 {
3017 	return sprintf(buf, "%d\n", s->objects);
3018 }
3019 SLAB_ATTR_RO(objs_per_slab);
3020 
3021 static ssize_t order_show(struct kmem_cache *s, char *buf)
3022 {
3023 	return sprintf(buf, "%d\n", s->order);
3024 }
3025 SLAB_ATTR_RO(order);
3026 
3027 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3028 {
3029 	if (s->ctor) {
3030 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3031 
3032 		return n + sprintf(buf + n, "\n");
3033 	}
3034 	return 0;
3035 }
3036 SLAB_ATTR_RO(ctor);
3037 
3038 static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3039 {
3040 	if (s->dtor) {
3041 		int n = sprint_symbol(buf, (unsigned long)s->dtor);
3042 
3043 		return n + sprintf(buf + n, "\n");
3044 	}
3045 	return 0;
3046 }
3047 SLAB_ATTR_RO(dtor);
3048 
3049 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3050 {
3051 	return sprintf(buf, "%d\n", s->refcount - 1);
3052 }
3053 SLAB_ATTR_RO(aliases);
3054 
3055 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3056 {
3057 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3058 }
3059 SLAB_ATTR_RO(slabs);
3060 
3061 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3062 {
3063 	return slab_objects(s, buf, SO_PARTIAL);
3064 }
3065 SLAB_ATTR_RO(partial);
3066 
3067 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3068 {
3069 	return slab_objects(s, buf, SO_CPU);
3070 }
3071 SLAB_ATTR_RO(cpu_slabs);
3072 
3073 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3074 {
3075 	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3076 }
3077 SLAB_ATTR_RO(objects);
3078 
3079 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3080 {
3081 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3082 }
3083 
3084 static ssize_t sanity_checks_store(struct kmem_cache *s,
3085 				const char *buf, size_t length)
3086 {
3087 	s->flags &= ~SLAB_DEBUG_FREE;
3088 	if (buf[0] == '1')
3089 		s->flags |= SLAB_DEBUG_FREE;
3090 	return length;
3091 }
3092 SLAB_ATTR(sanity_checks);
3093 
3094 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3095 {
3096 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3097 }
3098 
3099 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3100 							size_t length)
3101 {
3102 	s->flags &= ~SLAB_TRACE;
3103 	if (buf[0] == '1')
3104 		s->flags |= SLAB_TRACE;
3105 	return length;
3106 }
3107 SLAB_ATTR(trace);
3108 
3109 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3110 {
3111 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3112 }
3113 
3114 static ssize_t reclaim_account_store(struct kmem_cache *s,
3115 				const char *buf, size_t length)
3116 {
3117 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3118 	if (buf[0] == '1')
3119 		s->flags |= SLAB_RECLAIM_ACCOUNT;
3120 	return length;
3121 }
3122 SLAB_ATTR(reclaim_account);
3123 
3124 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3125 {
3126 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3127 }
3128 SLAB_ATTR_RO(hwcache_align);
3129 
3130 #ifdef CONFIG_ZONE_DMA
3131 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3132 {
3133 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3134 }
3135 SLAB_ATTR_RO(cache_dma);
3136 #endif
3137 
3138 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3139 {
3140 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3141 }
3142 SLAB_ATTR_RO(destroy_by_rcu);
3143 
3144 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3145 {
3146 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3147 }
3148 
3149 static ssize_t red_zone_store(struct kmem_cache *s,
3150 				const char *buf, size_t length)
3151 {
3152 	if (any_slab_objects(s))
3153 		return -EBUSY;
3154 
3155 	s->flags &= ~SLAB_RED_ZONE;
3156 	if (buf[0] == '1')
3157 		s->flags |= SLAB_RED_ZONE;
3158 	calculate_sizes(s);
3159 	return length;
3160 }
3161 SLAB_ATTR(red_zone);
3162 
3163 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3164 {
3165 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3166 }
3167 
3168 static ssize_t poison_store(struct kmem_cache *s,
3169 				const char *buf, size_t length)
3170 {
3171 	if (any_slab_objects(s))
3172 		return -EBUSY;
3173 
3174 	s->flags &= ~SLAB_POISON;
3175 	if (buf[0] == '1')
3176 		s->flags |= SLAB_POISON;
3177 	calculate_sizes(s);
3178 	return length;
3179 }
3180 SLAB_ATTR(poison);
3181 
3182 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3183 {
3184 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3185 }
3186 
3187 static ssize_t store_user_store(struct kmem_cache *s,
3188 				const char *buf, size_t length)
3189 {
3190 	if (any_slab_objects(s))
3191 		return -EBUSY;
3192 
3193 	s->flags &= ~SLAB_STORE_USER;
3194 	if (buf[0] == '1')
3195 		s->flags |= SLAB_STORE_USER;
3196 	calculate_sizes(s);
3197 	return length;
3198 }
3199 SLAB_ATTR(store_user);
3200 
3201 static ssize_t validate_show(struct kmem_cache *s, char *buf)
3202 {
3203 	return 0;
3204 }
3205 
3206 static ssize_t validate_store(struct kmem_cache *s,
3207 			const char *buf, size_t length)
3208 {
3209 	if (buf[0] == '1')
3210 		validate_slab_cache(s);
3211 	else
3212 		return -EINVAL;
3213 	return length;
3214 }
3215 SLAB_ATTR(validate);
3216 
3217 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3218 {
3219 	return 0;
3220 }
3221 
3222 static ssize_t shrink_store(struct kmem_cache *s,
3223 			const char *buf, size_t length)
3224 {
3225 	if (buf[0] == '1') {
3226 		int rc = kmem_cache_shrink(s);
3227 
3228 		if (rc)
3229 			return rc;
3230 	} else
3231 		return -EINVAL;
3232 	return length;
3233 }
3234 SLAB_ATTR(shrink);
3235 
3236 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3237 {
3238 	if (!(s->flags & SLAB_STORE_USER))
3239 		return -ENOSYS;
3240 	return list_locations(s, buf, TRACK_ALLOC);
3241 }
3242 SLAB_ATTR_RO(alloc_calls);
3243 
3244 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3245 {
3246 	if (!(s->flags & SLAB_STORE_USER))
3247 		return -ENOSYS;
3248 	return list_locations(s, buf, TRACK_FREE);
3249 }
3250 SLAB_ATTR_RO(free_calls);
3251 
3252 #ifdef CONFIG_NUMA
3253 static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3254 {
3255 	return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3256 }
3257 
3258 static ssize_t defrag_ratio_store(struct kmem_cache *s,
3259 				const char *buf, size_t length)
3260 {
3261 	int n = simple_strtoul(buf, NULL, 10);
3262 
3263 	if (n < 100)
3264 		s->defrag_ratio = n * 10;
3265 	return length;
3266 }
3267 SLAB_ATTR(defrag_ratio);
3268 #endif
3269 
3270 static struct attribute * slab_attrs[] = {
3271 	&slab_size_attr.attr,
3272 	&object_size_attr.attr,
3273 	&objs_per_slab_attr.attr,
3274 	&order_attr.attr,
3275 	&objects_attr.attr,
3276 	&slabs_attr.attr,
3277 	&partial_attr.attr,
3278 	&cpu_slabs_attr.attr,
3279 	&ctor_attr.attr,
3280 	&dtor_attr.attr,
3281 	&aliases_attr.attr,
3282 	&align_attr.attr,
3283 	&sanity_checks_attr.attr,
3284 	&trace_attr.attr,
3285 	&hwcache_align_attr.attr,
3286 	&reclaim_account_attr.attr,
3287 	&destroy_by_rcu_attr.attr,
3288 	&red_zone_attr.attr,
3289 	&poison_attr.attr,
3290 	&store_user_attr.attr,
3291 	&validate_attr.attr,
3292 	&shrink_attr.attr,
3293 	&alloc_calls_attr.attr,
3294 	&free_calls_attr.attr,
3295 #ifdef CONFIG_ZONE_DMA
3296 	&cache_dma_attr.attr,
3297 #endif
3298 #ifdef CONFIG_NUMA
3299 	&defrag_ratio_attr.attr,
3300 #endif
3301 	NULL
3302 };
3303 
3304 static struct attribute_group slab_attr_group = {
3305 	.attrs = slab_attrs,
3306 };
3307 
3308 static ssize_t slab_attr_show(struct kobject *kobj,
3309 				struct attribute *attr,
3310 				char *buf)
3311 {
3312 	struct slab_attribute *attribute;
3313 	struct kmem_cache *s;
3314 	int err;
3315 
3316 	attribute = to_slab_attr(attr);
3317 	s = to_slab(kobj);
3318 
3319 	if (!attribute->show)
3320 		return -EIO;
3321 
3322 	err = attribute->show(s, buf);
3323 
3324 	return err;
3325 }
3326 
3327 static ssize_t slab_attr_store(struct kobject *kobj,
3328 				struct attribute *attr,
3329 				const char *buf, size_t len)
3330 {
3331 	struct slab_attribute *attribute;
3332 	struct kmem_cache *s;
3333 	int err;
3334 
3335 	attribute = to_slab_attr(attr);
3336 	s = to_slab(kobj);
3337 
3338 	if (!attribute->store)
3339 		return -EIO;
3340 
3341 	err = attribute->store(s, buf, len);
3342 
3343 	return err;
3344 }
3345 
3346 static struct sysfs_ops slab_sysfs_ops = {
3347 	.show = slab_attr_show,
3348 	.store = slab_attr_store,
3349 };
3350 
3351 static struct kobj_type slab_ktype = {
3352 	.sysfs_ops = &slab_sysfs_ops,
3353 };
3354 
3355 static int uevent_filter(struct kset *kset, struct kobject *kobj)
3356 {
3357 	struct kobj_type *ktype = get_ktype(kobj);
3358 
3359 	if (ktype == &slab_ktype)
3360 		return 1;
3361 	return 0;
3362 }
3363 
3364 static struct kset_uevent_ops slab_uevent_ops = {
3365 	.filter = uevent_filter,
3366 };
3367 
3368 decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3369 
3370 #define ID_STR_LENGTH 64
3371 
3372 /* Create a unique string id for a slab cache:
3373  * format
3374  * :[flags-]size:[memory address of kmemcache]
3375  */
3376 static char *create_unique_id(struct kmem_cache *s)
3377 {
3378 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3379 	char *p = name;
3380 
3381 	BUG_ON(!name);
3382 
3383 	*p++ = ':';
3384 	/*
3385 	 * First flags affecting slabcache operations. We will only
3386 	 * get here for aliasable slabs so we do not need to support
3387 	 * too many flags. The flags here must cover all flags that
3388 	 * are matched during merging to guarantee that the id is
3389 	 * unique.
3390 	 */
3391 	if (s->flags & SLAB_CACHE_DMA)
3392 		*p++ = 'd';
3393 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3394 		*p++ = 'a';
3395 	if (s->flags & SLAB_DEBUG_FREE)
3396 		*p++ = 'F';
3397 	if (p != name + 1)
3398 		*p++ = '-';
3399 	p += sprintf(p, "%07d", s->size);
3400 	BUG_ON(p > name + ID_STR_LENGTH - 1);
3401 	return name;
3402 }
3403 
3404 static int sysfs_slab_add(struct kmem_cache *s)
3405 {
3406 	int err;
3407 	const char *name;
3408 	int unmergeable;
3409 
3410 	if (slab_state < SYSFS)
3411 		/* Defer until later */
3412 		return 0;
3413 
3414 	unmergeable = slab_unmergeable(s);
3415 	if (unmergeable) {
3416 		/*
3417 		 * Slabcache can never be merged so we can use the name proper.
3418 		 * This is typically the case for debug situations. In that
3419 		 * case we can catch duplicate names easily.
3420 		 */
3421 		sysfs_remove_link(&slab_subsys.kset.kobj, s->name);
3422 		name = s->name;
3423 	} else {
3424 		/*
3425 		 * Create a unique name for the slab as a target
3426 		 * for the symlinks.
3427 		 */
3428 		name = create_unique_id(s);
3429 	}
3430 
3431 	kobj_set_kset_s(s, slab_subsys);
3432 	kobject_set_name(&s->kobj, name);
3433 	kobject_init(&s->kobj);
3434 	err = kobject_add(&s->kobj);
3435 	if (err)
3436 		return err;
3437 
3438 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
3439 	if (err)
3440 		return err;
3441 	kobject_uevent(&s->kobj, KOBJ_ADD);
3442 	if (!unmergeable) {
3443 		/* Setup first alias */
3444 		sysfs_slab_alias(s, s->name);
3445 		kfree(name);
3446 	}
3447 	return 0;
3448 }
3449 
3450 static void sysfs_slab_remove(struct kmem_cache *s)
3451 {
3452 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
3453 	kobject_del(&s->kobj);
3454 }
3455 
3456 /*
3457  * Need to buffer aliases during bootup until sysfs becomes
3458  * available lest we loose that information.
3459  */
3460 struct saved_alias {
3461 	struct kmem_cache *s;
3462 	const char *name;
3463 	struct saved_alias *next;
3464 };
3465 
3466 struct saved_alias *alias_list;
3467 
3468 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3469 {
3470 	struct saved_alias *al;
3471 
3472 	if (slab_state == SYSFS) {
3473 		/*
3474 		 * If we have a leftover link then remove it.
3475 		 */
3476 		sysfs_remove_link(&slab_subsys.kset.kobj, name);
3477 		return sysfs_create_link(&slab_subsys.kset.kobj,
3478 						&s->kobj, name);
3479 	}
3480 
3481 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3482 	if (!al)
3483 		return -ENOMEM;
3484 
3485 	al->s = s;
3486 	al->name = name;
3487 	al->next = alias_list;
3488 	alias_list = al;
3489 	return 0;
3490 }
3491 
3492 static int __init slab_sysfs_init(void)
3493 {
3494 	int err;
3495 
3496 	err = subsystem_register(&slab_subsys);
3497 	if (err) {
3498 		printk(KERN_ERR "Cannot register slab subsystem.\n");
3499 		return -ENOSYS;
3500 	}
3501 
3502 	finish_bootstrap();
3503 
3504 	while (alias_list) {
3505 		struct saved_alias *al = alias_list;
3506 
3507 		alias_list = alias_list->next;
3508 		err = sysfs_slab_alias(al->s, al->name);
3509 		BUG_ON(err);
3510 		kfree(al);
3511 	}
3512 
3513 	resiliency_test();
3514 	return 0;
3515 }
3516 
3517 __initcall(slab_sysfs_init);
3518 #else
3519 __initcall(finish_bootstrap);
3520 #endif
3521