xref: /linux/mm/slub.c (revision eb057b44dbe35ae14527830236a92f51de8f9184)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
40 
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
43 
44 #include "internal.h"
45 
46 /*
47  * Lock order:
48  *   1. slab_mutex (Global Mutex)
49  *   2. node->list_lock (Spinlock)
50  *   3. kmem_cache->cpu_slab->lock (Local lock)
51  *   4. slab_lock(slab) (Only on some arches or for debugging)
52  *   5. object_map_lock (Only for debugging)
53  *
54  *   slab_mutex
55  *
56  *   The role of the slab_mutex is to protect the list of all the slabs
57  *   and to synchronize major metadata changes to slab cache structures.
58  *   Also synchronizes memory hotplug callbacks.
59  *
60  *   slab_lock
61  *
62  *   The slab_lock is a wrapper around the page lock, thus it is a bit
63  *   spinlock.
64  *
65  *   The slab_lock is only used for debugging and on arches that do not
66  *   have the ability to do a cmpxchg_double. It only protects:
67  *	A. slab->freelist	-> List of free objects in a slab
68  *	B. slab->inuse		-> Number of objects in use
69  *	C. slab->objects	-> Number of objects in slab
70  *	D. slab->frozen		-> frozen state
71  *
72  *   Frozen slabs
73  *
74  *   If a slab is frozen then it is exempt from list management. It is not
75  *   on any list except per cpu partial list. The processor that froze the
76  *   slab is the one who can perform list operations on the slab. Other
77  *   processors may put objects onto the freelist but the processor that
78  *   froze the slab is the only one that can retrieve the objects from the
79  *   slab's freelist.
80  *
81  *   list_lock
82  *
83  *   The list_lock protects the partial and full list on each node and
84  *   the partial slab counter. If taken then no new slabs may be added or
85  *   removed from the lists nor make the number of partial slabs be modified.
86  *   (Note that the total number of slabs is an atomic value that may be
87  *   modified without taking the list lock).
88  *
89  *   The list_lock is a centralized lock and thus we avoid taking it as
90  *   much as possible. As long as SLUB does not have to handle partial
91  *   slabs, operations can continue without any centralized lock. F.e.
92  *   allocating a long series of objects that fill up slabs does not require
93  *   the list lock.
94  *
95  *   cpu_slab->lock local lock
96  *
97  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
98  *   except the stat counters. This is a percpu structure manipulated only by
99  *   the local cpu, so the lock protects against being preempted or interrupted
100  *   by an irq. Fast path operations rely on lockless operations instead.
101  *   On PREEMPT_RT, the local lock does not actually disable irqs (and thus
102  *   prevent the lockless operations), so fastpath operations also need to take
103  *   the lock and are no longer lockless.
104  *
105  *   lockless fastpaths
106  *
107  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
108  *   are fully lockless when satisfied from the percpu slab (and when
109  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
110  *   They also don't disable preemption or migration or irqs. They rely on
111  *   the transaction id (tid) field to detect being preempted or moved to
112  *   another cpu.
113  *
114  *   irq, preemption, migration considerations
115  *
116  *   Interrupts are disabled as part of list_lock or local_lock operations, or
117  *   around the slab_lock operation, in order to make the slab allocator safe
118  *   to use in the context of an irq.
119  *
120  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
121  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
122  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
123  *   doesn't have to be revalidated in each section protected by the local lock.
124  *
125  * SLUB assigns one slab for allocation to each processor.
126  * Allocations only occur from these slabs called cpu slabs.
127  *
128  * Slabs with free elements are kept on a partial list and during regular
129  * operations no list for full slabs is used. If an object in a full slab is
130  * freed then the slab will show up again on the partial lists.
131  * We track full slabs for debugging purposes though because otherwise we
132  * cannot scan all objects.
133  *
134  * Slabs are freed when they become empty. Teardown and setup is
135  * minimal so we rely on the page allocators per cpu caches for
136  * fast frees and allocs.
137  *
138  * slab->frozen		The slab is frozen and exempt from list processing.
139  * 			This means that the slab is dedicated to a purpose
140  * 			such as satisfying allocations for a specific
141  * 			processor. Objects may be freed in the slab while
142  * 			it is frozen but slab_free will then skip the usual
143  * 			list operations. It is up to the processor holding
144  * 			the slab to integrate the slab into the slab lists
145  * 			when the slab is no longer needed.
146  *
147  * 			One use of this flag is to mark slabs that are
148  * 			used for allocations. Then such a slab becomes a cpu
149  * 			slab. The cpu slab may be equipped with an additional
150  * 			freelist that allows lockless access to
151  * 			free objects in addition to the regular freelist
152  * 			that requires the slab lock.
153  *
154  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
155  * 			options set. This moves	slab handling out of
156  * 			the fast path and disables lockless freelists.
157  */
158 
159 /*
160  * We could simply use migrate_disable()/enable() but as long as it's a
161  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
162  */
163 #ifndef CONFIG_PREEMPT_RT
164 #define slub_get_cpu_ptr(var)	get_cpu_ptr(var)
165 #define slub_put_cpu_ptr(var)	put_cpu_ptr(var)
166 #else
167 #define slub_get_cpu_ptr(var)		\
168 ({					\
169 	migrate_disable();		\
170 	this_cpu_ptr(var);		\
171 })
172 #define slub_put_cpu_ptr(var)		\
173 do {					\
174 	(void)(var);			\
175 	migrate_enable();		\
176 } while (0)
177 #endif
178 
179 #ifdef CONFIG_SLUB_DEBUG
180 #ifdef CONFIG_SLUB_DEBUG_ON
181 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
182 #else
183 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
184 #endif
185 #endif		/* CONFIG_SLUB_DEBUG */
186 
187 static inline bool kmem_cache_debug(struct kmem_cache *s)
188 {
189 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
190 }
191 
192 void *fixup_red_left(struct kmem_cache *s, void *p)
193 {
194 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
195 		p += s->red_left_pad;
196 
197 	return p;
198 }
199 
200 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
201 {
202 #ifdef CONFIG_SLUB_CPU_PARTIAL
203 	return !kmem_cache_debug(s);
204 #else
205 	return false;
206 #endif
207 }
208 
209 /*
210  * Issues still to be resolved:
211  *
212  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
213  *
214  * - Variable sizing of the per node arrays
215  */
216 
217 /* Enable to log cmpxchg failures */
218 #undef SLUB_DEBUG_CMPXCHG
219 
220 /*
221  * Minimum number of partial slabs. These will be left on the partial
222  * lists even if they are empty. kmem_cache_shrink may reclaim them.
223  */
224 #define MIN_PARTIAL 5
225 
226 /*
227  * Maximum number of desirable partial slabs.
228  * The existence of more partial slabs makes kmem_cache_shrink
229  * sort the partial list by the number of objects in use.
230  */
231 #define MAX_PARTIAL 10
232 
233 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
234 				SLAB_POISON | SLAB_STORE_USER)
235 
236 /*
237  * These debug flags cannot use CMPXCHG because there might be consistency
238  * issues when checking or reading debug information
239  */
240 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
241 				SLAB_TRACE)
242 
243 
244 /*
245  * Debugging flags that require metadata to be stored in the slab.  These get
246  * disabled when slub_debug=O is used and a cache's min order increases with
247  * metadata.
248  */
249 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
250 
251 #define OO_SHIFT	16
252 #define OO_MASK		((1 << OO_SHIFT) - 1)
253 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
254 
255 /* Internal SLUB flags */
256 /* Poison object */
257 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
258 /* Use cmpxchg_double */
259 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
260 
261 /*
262  * Tracking user of a slab.
263  */
264 #define TRACK_ADDRS_COUNT 16
265 struct track {
266 	unsigned long addr;	/* Called from address */
267 #ifdef CONFIG_STACKTRACE
268 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
269 #endif
270 	int cpu;		/* Was running on cpu */
271 	int pid;		/* Pid context */
272 	unsigned long when;	/* When did the operation occur */
273 };
274 
275 enum track_item { TRACK_ALLOC, TRACK_FREE };
276 
277 #ifdef CONFIG_SYSFS
278 static int sysfs_slab_add(struct kmem_cache *);
279 static int sysfs_slab_alias(struct kmem_cache *, const char *);
280 #else
281 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
282 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
283 							{ return 0; }
284 #endif
285 
286 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
287 static void debugfs_slab_add(struct kmem_cache *);
288 #else
289 static inline void debugfs_slab_add(struct kmem_cache *s) { }
290 #endif
291 
292 static inline void stat(const struct kmem_cache *s, enum stat_item si)
293 {
294 #ifdef CONFIG_SLUB_STATS
295 	/*
296 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
297 	 * avoid this_cpu_add()'s irq-disable overhead.
298 	 */
299 	raw_cpu_inc(s->cpu_slab->stat[si]);
300 #endif
301 }
302 
303 /*
304  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
305  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
306  * differ during memory hotplug/hotremove operations.
307  * Protected by slab_mutex.
308  */
309 static nodemask_t slab_nodes;
310 
311 /********************************************************************
312  * 			Core slab cache functions
313  *******************************************************************/
314 
315 /*
316  * Returns freelist pointer (ptr). With hardening, this is obfuscated
317  * with an XOR of the address where the pointer is held and a per-cache
318  * random number.
319  */
320 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
321 				 unsigned long ptr_addr)
322 {
323 #ifdef CONFIG_SLAB_FREELIST_HARDENED
324 	/*
325 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
326 	 * Normally, this doesn't cause any issues, as both set_freepointer()
327 	 * and get_freepointer() are called with a pointer with the same tag.
328 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
329 	 * example, when __free_slub() iterates over objects in a cache, it
330 	 * passes untagged pointers to check_object(). check_object() in turns
331 	 * calls get_freepointer() with an untagged pointer, which causes the
332 	 * freepointer to be restored incorrectly.
333 	 */
334 	return (void *)((unsigned long)ptr ^ s->random ^
335 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
336 #else
337 	return ptr;
338 #endif
339 }
340 
341 /* Returns the freelist pointer recorded at location ptr_addr. */
342 static inline void *freelist_dereference(const struct kmem_cache *s,
343 					 void *ptr_addr)
344 {
345 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
346 			    (unsigned long)ptr_addr);
347 }
348 
349 static inline void *get_freepointer(struct kmem_cache *s, void *object)
350 {
351 	object = kasan_reset_tag(object);
352 	return freelist_dereference(s, object + s->offset);
353 }
354 
355 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
356 {
357 	prefetchw(object + s->offset);
358 }
359 
360 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
361 {
362 	unsigned long freepointer_addr;
363 	void *p;
364 
365 	if (!debug_pagealloc_enabled_static())
366 		return get_freepointer(s, object);
367 
368 	object = kasan_reset_tag(object);
369 	freepointer_addr = (unsigned long)object + s->offset;
370 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
371 	return freelist_ptr(s, p, freepointer_addr);
372 }
373 
374 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
375 {
376 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
377 
378 #ifdef CONFIG_SLAB_FREELIST_HARDENED
379 	BUG_ON(object == fp); /* naive detection of double free or corruption */
380 #endif
381 
382 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
383 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
384 }
385 
386 /* Loop over all objects in a slab */
387 #define for_each_object(__p, __s, __addr, __objects) \
388 	for (__p = fixup_red_left(__s, __addr); \
389 		__p < (__addr) + (__objects) * (__s)->size; \
390 		__p += (__s)->size)
391 
392 static inline unsigned int order_objects(unsigned int order, unsigned int size)
393 {
394 	return ((unsigned int)PAGE_SIZE << order) / size;
395 }
396 
397 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
398 		unsigned int size)
399 {
400 	struct kmem_cache_order_objects x = {
401 		(order << OO_SHIFT) + order_objects(order, size)
402 	};
403 
404 	return x;
405 }
406 
407 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
408 {
409 	return x.x >> OO_SHIFT;
410 }
411 
412 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
413 {
414 	return x.x & OO_MASK;
415 }
416 
417 #ifdef CONFIG_SLUB_CPU_PARTIAL
418 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
419 {
420 	unsigned int nr_slabs;
421 
422 	s->cpu_partial = nr_objects;
423 
424 	/*
425 	 * We take the number of objects but actually limit the number of
426 	 * slabs on the per cpu partial list, in order to limit excessive
427 	 * growth of the list. For simplicity we assume that the slabs will
428 	 * be half-full.
429 	 */
430 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
431 	s->cpu_partial_slabs = nr_slabs;
432 }
433 #else
434 static inline void
435 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
436 {
437 }
438 #endif /* CONFIG_SLUB_CPU_PARTIAL */
439 
440 /*
441  * Per slab locking using the pagelock
442  */
443 static __always_inline void __slab_lock(struct slab *slab)
444 {
445 	struct page *page = slab_page(slab);
446 
447 	VM_BUG_ON_PAGE(PageTail(page), page);
448 	bit_spin_lock(PG_locked, &page->flags);
449 }
450 
451 static __always_inline void __slab_unlock(struct slab *slab)
452 {
453 	struct page *page = slab_page(slab);
454 
455 	VM_BUG_ON_PAGE(PageTail(page), page);
456 	__bit_spin_unlock(PG_locked, &page->flags);
457 }
458 
459 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
460 {
461 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
462 		local_irq_save(*flags);
463 	__slab_lock(slab);
464 }
465 
466 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
467 {
468 	__slab_unlock(slab);
469 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
470 		local_irq_restore(*flags);
471 }
472 
473 /*
474  * Interrupts must be disabled (for the fallback code to work right), typically
475  * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
476  * so we disable interrupts as part of slab_[un]lock().
477  */
478 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
479 		void *freelist_old, unsigned long counters_old,
480 		void *freelist_new, unsigned long counters_new,
481 		const char *n)
482 {
483 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
484 		lockdep_assert_irqs_disabled();
485 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
486     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
487 	if (s->flags & __CMPXCHG_DOUBLE) {
488 		if (cmpxchg_double(&slab->freelist, &slab->counters,
489 				   freelist_old, counters_old,
490 				   freelist_new, counters_new))
491 			return true;
492 	} else
493 #endif
494 	{
495 		/* init to 0 to prevent spurious warnings */
496 		unsigned long flags = 0;
497 
498 		slab_lock(slab, &flags);
499 		if (slab->freelist == freelist_old &&
500 					slab->counters == counters_old) {
501 			slab->freelist = freelist_new;
502 			slab->counters = counters_new;
503 			slab_unlock(slab, &flags);
504 			return true;
505 		}
506 		slab_unlock(slab, &flags);
507 	}
508 
509 	cpu_relax();
510 	stat(s, CMPXCHG_DOUBLE_FAIL);
511 
512 #ifdef SLUB_DEBUG_CMPXCHG
513 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
514 #endif
515 
516 	return false;
517 }
518 
519 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
520 		void *freelist_old, unsigned long counters_old,
521 		void *freelist_new, unsigned long counters_new,
522 		const char *n)
523 {
524 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
525     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
526 	if (s->flags & __CMPXCHG_DOUBLE) {
527 		if (cmpxchg_double(&slab->freelist, &slab->counters,
528 				   freelist_old, counters_old,
529 				   freelist_new, counters_new))
530 			return true;
531 	} else
532 #endif
533 	{
534 		unsigned long flags;
535 
536 		local_irq_save(flags);
537 		__slab_lock(slab);
538 		if (slab->freelist == freelist_old &&
539 					slab->counters == counters_old) {
540 			slab->freelist = freelist_new;
541 			slab->counters = counters_new;
542 			__slab_unlock(slab);
543 			local_irq_restore(flags);
544 			return true;
545 		}
546 		__slab_unlock(slab);
547 		local_irq_restore(flags);
548 	}
549 
550 	cpu_relax();
551 	stat(s, CMPXCHG_DOUBLE_FAIL);
552 
553 #ifdef SLUB_DEBUG_CMPXCHG
554 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
555 #endif
556 
557 	return false;
558 }
559 
560 #ifdef CONFIG_SLUB_DEBUG
561 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
562 static DEFINE_RAW_SPINLOCK(object_map_lock);
563 
564 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
565 		       struct slab *slab)
566 {
567 	void *addr = slab_address(slab);
568 	void *p;
569 
570 	bitmap_zero(obj_map, slab->objects);
571 
572 	for (p = slab->freelist; p; p = get_freepointer(s, p))
573 		set_bit(__obj_to_index(s, addr, p), obj_map);
574 }
575 
576 #if IS_ENABLED(CONFIG_KUNIT)
577 static bool slab_add_kunit_errors(void)
578 {
579 	struct kunit_resource *resource;
580 
581 	if (likely(!current->kunit_test))
582 		return false;
583 
584 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
585 	if (!resource)
586 		return false;
587 
588 	(*(int *)resource->data)++;
589 	kunit_put_resource(resource);
590 	return true;
591 }
592 #else
593 static inline bool slab_add_kunit_errors(void) { return false; }
594 #endif
595 
596 /*
597  * Determine a map of objects in use in a slab.
598  *
599  * Node listlock must be held to guarantee that the slab does
600  * not vanish from under us.
601  */
602 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
603 	__acquires(&object_map_lock)
604 {
605 	VM_BUG_ON(!irqs_disabled());
606 
607 	raw_spin_lock(&object_map_lock);
608 
609 	__fill_map(object_map, s, slab);
610 
611 	return object_map;
612 }
613 
614 static void put_map(unsigned long *map) __releases(&object_map_lock)
615 {
616 	VM_BUG_ON(map != object_map);
617 	raw_spin_unlock(&object_map_lock);
618 }
619 
620 static inline unsigned int size_from_object(struct kmem_cache *s)
621 {
622 	if (s->flags & SLAB_RED_ZONE)
623 		return s->size - s->red_left_pad;
624 
625 	return s->size;
626 }
627 
628 static inline void *restore_red_left(struct kmem_cache *s, void *p)
629 {
630 	if (s->flags & SLAB_RED_ZONE)
631 		p -= s->red_left_pad;
632 
633 	return p;
634 }
635 
636 /*
637  * Debug settings:
638  */
639 #if defined(CONFIG_SLUB_DEBUG_ON)
640 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
641 #else
642 static slab_flags_t slub_debug;
643 #endif
644 
645 static char *slub_debug_string;
646 static int disable_higher_order_debug;
647 
648 /*
649  * slub is about to manipulate internal object metadata.  This memory lies
650  * outside the range of the allocated object, so accessing it would normally
651  * be reported by kasan as a bounds error.  metadata_access_enable() is used
652  * to tell kasan that these accesses are OK.
653  */
654 static inline void metadata_access_enable(void)
655 {
656 	kasan_disable_current();
657 }
658 
659 static inline void metadata_access_disable(void)
660 {
661 	kasan_enable_current();
662 }
663 
664 /*
665  * Object debugging
666  */
667 
668 /* Verify that a pointer has an address that is valid within a slab page */
669 static inline int check_valid_pointer(struct kmem_cache *s,
670 				struct slab *slab, void *object)
671 {
672 	void *base;
673 
674 	if (!object)
675 		return 1;
676 
677 	base = slab_address(slab);
678 	object = kasan_reset_tag(object);
679 	object = restore_red_left(s, object);
680 	if (object < base || object >= base + slab->objects * s->size ||
681 		(object - base) % s->size) {
682 		return 0;
683 	}
684 
685 	return 1;
686 }
687 
688 static void print_section(char *level, char *text, u8 *addr,
689 			  unsigned int length)
690 {
691 	metadata_access_enable();
692 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
693 			16, 1, kasan_reset_tag((void *)addr), length, 1);
694 	metadata_access_disable();
695 }
696 
697 /*
698  * See comment in calculate_sizes().
699  */
700 static inline bool freeptr_outside_object(struct kmem_cache *s)
701 {
702 	return s->offset >= s->inuse;
703 }
704 
705 /*
706  * Return offset of the end of info block which is inuse + free pointer if
707  * not overlapping with object.
708  */
709 static inline unsigned int get_info_end(struct kmem_cache *s)
710 {
711 	if (freeptr_outside_object(s))
712 		return s->inuse + sizeof(void *);
713 	else
714 		return s->inuse;
715 }
716 
717 static struct track *get_track(struct kmem_cache *s, void *object,
718 	enum track_item alloc)
719 {
720 	struct track *p;
721 
722 	p = object + get_info_end(s);
723 
724 	return kasan_reset_tag(p + alloc);
725 }
726 
727 static void set_track(struct kmem_cache *s, void *object,
728 			enum track_item alloc, unsigned long addr)
729 {
730 	struct track *p = get_track(s, object, alloc);
731 
732 	if (addr) {
733 #ifdef CONFIG_STACKTRACE
734 		unsigned int nr_entries;
735 
736 		metadata_access_enable();
737 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
738 					      TRACK_ADDRS_COUNT, 3);
739 		metadata_access_disable();
740 
741 		if (nr_entries < TRACK_ADDRS_COUNT)
742 			p->addrs[nr_entries] = 0;
743 #endif
744 		p->addr = addr;
745 		p->cpu = smp_processor_id();
746 		p->pid = current->pid;
747 		p->when = jiffies;
748 	} else {
749 		memset(p, 0, sizeof(struct track));
750 	}
751 }
752 
753 static void init_tracking(struct kmem_cache *s, void *object)
754 {
755 	if (!(s->flags & SLAB_STORE_USER))
756 		return;
757 
758 	set_track(s, object, TRACK_FREE, 0UL);
759 	set_track(s, object, TRACK_ALLOC, 0UL);
760 }
761 
762 static void print_track(const char *s, struct track *t, unsigned long pr_time)
763 {
764 	if (!t->addr)
765 		return;
766 
767 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
768 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
769 #ifdef CONFIG_STACKTRACE
770 	{
771 		int i;
772 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
773 			if (t->addrs[i])
774 				pr_err("\t%pS\n", (void *)t->addrs[i]);
775 			else
776 				break;
777 	}
778 #endif
779 }
780 
781 void print_tracking(struct kmem_cache *s, void *object)
782 {
783 	unsigned long pr_time = jiffies;
784 	if (!(s->flags & SLAB_STORE_USER))
785 		return;
786 
787 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
788 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
789 }
790 
791 static void print_slab_info(const struct slab *slab)
792 {
793 	struct folio *folio = (struct folio *)slab_folio(slab);
794 
795 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
796 	       slab, slab->objects, slab->inuse, slab->freelist,
797 	       folio_flags(folio, 0));
798 }
799 
800 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
801 {
802 	struct va_format vaf;
803 	va_list args;
804 
805 	va_start(args, fmt);
806 	vaf.fmt = fmt;
807 	vaf.va = &args;
808 	pr_err("=============================================================================\n");
809 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
810 	pr_err("-----------------------------------------------------------------------------\n\n");
811 	va_end(args);
812 }
813 
814 __printf(2, 3)
815 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
816 {
817 	struct va_format vaf;
818 	va_list args;
819 
820 	if (slab_add_kunit_errors())
821 		return;
822 
823 	va_start(args, fmt);
824 	vaf.fmt = fmt;
825 	vaf.va = &args;
826 	pr_err("FIX %s: %pV\n", s->name, &vaf);
827 	va_end(args);
828 }
829 
830 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
831 {
832 	unsigned int off;	/* Offset of last byte */
833 	u8 *addr = slab_address(slab);
834 
835 	print_tracking(s, p);
836 
837 	print_slab_info(slab);
838 
839 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
840 	       p, p - addr, get_freepointer(s, p));
841 
842 	if (s->flags & SLAB_RED_ZONE)
843 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
844 			      s->red_left_pad);
845 	else if (p > addr + 16)
846 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
847 
848 	print_section(KERN_ERR,         "Object   ", p,
849 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
850 	if (s->flags & SLAB_RED_ZONE)
851 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
852 			s->inuse - s->object_size);
853 
854 	off = get_info_end(s);
855 
856 	if (s->flags & SLAB_STORE_USER)
857 		off += 2 * sizeof(struct track);
858 
859 	off += kasan_metadata_size(s);
860 
861 	if (off != size_from_object(s))
862 		/* Beginning of the filler is the free pointer */
863 		print_section(KERN_ERR, "Padding  ", p + off,
864 			      size_from_object(s) - off);
865 
866 	dump_stack();
867 }
868 
869 static void object_err(struct kmem_cache *s, struct slab *slab,
870 			u8 *object, char *reason)
871 {
872 	if (slab_add_kunit_errors())
873 		return;
874 
875 	slab_bug(s, "%s", reason);
876 	print_trailer(s, slab, object);
877 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
878 }
879 
880 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
881 			       void **freelist, void *nextfree)
882 {
883 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
884 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
885 		object_err(s, slab, *freelist, "Freechain corrupt");
886 		*freelist = NULL;
887 		slab_fix(s, "Isolate corrupted freechain");
888 		return true;
889 	}
890 
891 	return false;
892 }
893 
894 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
895 			const char *fmt, ...)
896 {
897 	va_list args;
898 	char buf[100];
899 
900 	if (slab_add_kunit_errors())
901 		return;
902 
903 	va_start(args, fmt);
904 	vsnprintf(buf, sizeof(buf), fmt, args);
905 	va_end(args);
906 	slab_bug(s, "%s", buf);
907 	print_slab_info(slab);
908 	dump_stack();
909 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
910 }
911 
912 static void init_object(struct kmem_cache *s, void *object, u8 val)
913 {
914 	u8 *p = kasan_reset_tag(object);
915 
916 	if (s->flags & SLAB_RED_ZONE)
917 		memset(p - s->red_left_pad, val, s->red_left_pad);
918 
919 	if (s->flags & __OBJECT_POISON) {
920 		memset(p, POISON_FREE, s->object_size - 1);
921 		p[s->object_size - 1] = POISON_END;
922 	}
923 
924 	if (s->flags & SLAB_RED_ZONE)
925 		memset(p + s->object_size, val, s->inuse - s->object_size);
926 }
927 
928 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
929 						void *from, void *to)
930 {
931 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
932 	memset(from, data, to - from);
933 }
934 
935 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
936 			u8 *object, char *what,
937 			u8 *start, unsigned int value, unsigned int bytes)
938 {
939 	u8 *fault;
940 	u8 *end;
941 	u8 *addr = slab_address(slab);
942 
943 	metadata_access_enable();
944 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
945 	metadata_access_disable();
946 	if (!fault)
947 		return 1;
948 
949 	end = start + bytes;
950 	while (end > fault && end[-1] == value)
951 		end--;
952 
953 	if (slab_add_kunit_errors())
954 		goto skip_bug_print;
955 
956 	slab_bug(s, "%s overwritten", what);
957 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
958 					fault, end - 1, fault - addr,
959 					fault[0], value);
960 	print_trailer(s, slab, object);
961 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
962 
963 skip_bug_print:
964 	restore_bytes(s, what, value, fault, end);
965 	return 0;
966 }
967 
968 /*
969  * Object layout:
970  *
971  * object address
972  * 	Bytes of the object to be managed.
973  * 	If the freepointer may overlay the object then the free
974  *	pointer is at the middle of the object.
975  *
976  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
977  * 	0xa5 (POISON_END)
978  *
979  * object + s->object_size
980  * 	Padding to reach word boundary. This is also used for Redzoning.
981  * 	Padding is extended by another word if Redzoning is enabled and
982  * 	object_size == inuse.
983  *
984  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
985  * 	0xcc (RED_ACTIVE) for objects in use.
986  *
987  * object + s->inuse
988  * 	Meta data starts here.
989  *
990  * 	A. Free pointer (if we cannot overwrite object on free)
991  * 	B. Tracking data for SLAB_STORE_USER
992  *	C. Padding to reach required alignment boundary or at minimum
993  * 		one word if debugging is on to be able to detect writes
994  * 		before the word boundary.
995  *
996  *	Padding is done using 0x5a (POISON_INUSE)
997  *
998  * object + s->size
999  * 	Nothing is used beyond s->size.
1000  *
1001  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1002  * ignored. And therefore no slab options that rely on these boundaries
1003  * may be used with merged slabcaches.
1004  */
1005 
1006 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1007 {
1008 	unsigned long off = get_info_end(s);	/* The end of info */
1009 
1010 	if (s->flags & SLAB_STORE_USER)
1011 		/* We also have user information there */
1012 		off += 2 * sizeof(struct track);
1013 
1014 	off += kasan_metadata_size(s);
1015 
1016 	if (size_from_object(s) == off)
1017 		return 1;
1018 
1019 	return check_bytes_and_report(s, slab, p, "Object padding",
1020 			p + off, POISON_INUSE, size_from_object(s) - off);
1021 }
1022 
1023 /* Check the pad bytes at the end of a slab page */
1024 static int slab_pad_check(struct kmem_cache *s, struct slab *slab)
1025 {
1026 	u8 *start;
1027 	u8 *fault;
1028 	u8 *end;
1029 	u8 *pad;
1030 	int length;
1031 	int remainder;
1032 
1033 	if (!(s->flags & SLAB_POISON))
1034 		return 1;
1035 
1036 	start = slab_address(slab);
1037 	length = slab_size(slab);
1038 	end = start + length;
1039 	remainder = length % s->size;
1040 	if (!remainder)
1041 		return 1;
1042 
1043 	pad = end - remainder;
1044 	metadata_access_enable();
1045 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1046 	metadata_access_disable();
1047 	if (!fault)
1048 		return 1;
1049 	while (end > fault && end[-1] == POISON_INUSE)
1050 		end--;
1051 
1052 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1053 			fault, end - 1, fault - start);
1054 	print_section(KERN_ERR, "Padding ", pad, remainder);
1055 
1056 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1057 	return 0;
1058 }
1059 
1060 static int check_object(struct kmem_cache *s, struct slab *slab,
1061 					void *object, u8 val)
1062 {
1063 	u8 *p = object;
1064 	u8 *endobject = object + s->object_size;
1065 
1066 	if (s->flags & SLAB_RED_ZONE) {
1067 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1068 			object - s->red_left_pad, val, s->red_left_pad))
1069 			return 0;
1070 
1071 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1072 			endobject, val, s->inuse - s->object_size))
1073 			return 0;
1074 	} else {
1075 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1076 			check_bytes_and_report(s, slab, p, "Alignment padding",
1077 				endobject, POISON_INUSE,
1078 				s->inuse - s->object_size);
1079 		}
1080 	}
1081 
1082 	if (s->flags & SLAB_POISON) {
1083 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1084 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1085 					POISON_FREE, s->object_size - 1) ||
1086 			 !check_bytes_and_report(s, slab, p, "End Poison",
1087 				p + s->object_size - 1, POISON_END, 1)))
1088 			return 0;
1089 		/*
1090 		 * check_pad_bytes cleans up on its own.
1091 		 */
1092 		check_pad_bytes(s, slab, p);
1093 	}
1094 
1095 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1096 		/*
1097 		 * Object and freepointer overlap. Cannot check
1098 		 * freepointer while object is allocated.
1099 		 */
1100 		return 1;
1101 
1102 	/* Check free pointer validity */
1103 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1104 		object_err(s, slab, p, "Freepointer corrupt");
1105 		/*
1106 		 * No choice but to zap it and thus lose the remainder
1107 		 * of the free objects in this slab. May cause
1108 		 * another error because the object count is now wrong.
1109 		 */
1110 		set_freepointer(s, p, NULL);
1111 		return 0;
1112 	}
1113 	return 1;
1114 }
1115 
1116 static int check_slab(struct kmem_cache *s, struct slab *slab)
1117 {
1118 	int maxobj;
1119 
1120 	if (!folio_test_slab(slab_folio(slab))) {
1121 		slab_err(s, slab, "Not a valid slab page");
1122 		return 0;
1123 	}
1124 
1125 	maxobj = order_objects(slab_order(slab), s->size);
1126 	if (slab->objects > maxobj) {
1127 		slab_err(s, slab, "objects %u > max %u",
1128 			slab->objects, maxobj);
1129 		return 0;
1130 	}
1131 	if (slab->inuse > slab->objects) {
1132 		slab_err(s, slab, "inuse %u > max %u",
1133 			slab->inuse, slab->objects);
1134 		return 0;
1135 	}
1136 	/* Slab_pad_check fixes things up after itself */
1137 	slab_pad_check(s, slab);
1138 	return 1;
1139 }
1140 
1141 /*
1142  * Determine if a certain object in a slab is on the freelist. Must hold the
1143  * slab lock to guarantee that the chains are in a consistent state.
1144  */
1145 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1146 {
1147 	int nr = 0;
1148 	void *fp;
1149 	void *object = NULL;
1150 	int max_objects;
1151 
1152 	fp = slab->freelist;
1153 	while (fp && nr <= slab->objects) {
1154 		if (fp == search)
1155 			return 1;
1156 		if (!check_valid_pointer(s, slab, fp)) {
1157 			if (object) {
1158 				object_err(s, slab, object,
1159 					"Freechain corrupt");
1160 				set_freepointer(s, object, NULL);
1161 			} else {
1162 				slab_err(s, slab, "Freepointer corrupt");
1163 				slab->freelist = NULL;
1164 				slab->inuse = slab->objects;
1165 				slab_fix(s, "Freelist cleared");
1166 				return 0;
1167 			}
1168 			break;
1169 		}
1170 		object = fp;
1171 		fp = get_freepointer(s, object);
1172 		nr++;
1173 	}
1174 
1175 	max_objects = order_objects(slab_order(slab), s->size);
1176 	if (max_objects > MAX_OBJS_PER_PAGE)
1177 		max_objects = MAX_OBJS_PER_PAGE;
1178 
1179 	if (slab->objects != max_objects) {
1180 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1181 			 slab->objects, max_objects);
1182 		slab->objects = max_objects;
1183 		slab_fix(s, "Number of objects adjusted");
1184 	}
1185 	if (slab->inuse != slab->objects - nr) {
1186 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1187 			 slab->inuse, slab->objects - nr);
1188 		slab->inuse = slab->objects - nr;
1189 		slab_fix(s, "Object count adjusted");
1190 	}
1191 	return search == NULL;
1192 }
1193 
1194 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1195 								int alloc)
1196 {
1197 	if (s->flags & SLAB_TRACE) {
1198 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1199 			s->name,
1200 			alloc ? "alloc" : "free",
1201 			object, slab->inuse,
1202 			slab->freelist);
1203 
1204 		if (!alloc)
1205 			print_section(KERN_INFO, "Object ", (void *)object,
1206 					s->object_size);
1207 
1208 		dump_stack();
1209 	}
1210 }
1211 
1212 /*
1213  * Tracking of fully allocated slabs for debugging purposes.
1214  */
1215 static void add_full(struct kmem_cache *s,
1216 	struct kmem_cache_node *n, struct slab *slab)
1217 {
1218 	if (!(s->flags & SLAB_STORE_USER))
1219 		return;
1220 
1221 	lockdep_assert_held(&n->list_lock);
1222 	list_add(&slab->slab_list, &n->full);
1223 }
1224 
1225 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1226 {
1227 	if (!(s->flags & SLAB_STORE_USER))
1228 		return;
1229 
1230 	lockdep_assert_held(&n->list_lock);
1231 	list_del(&slab->slab_list);
1232 }
1233 
1234 /* Tracking of the number of slabs for debugging purposes */
1235 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1236 {
1237 	struct kmem_cache_node *n = get_node(s, node);
1238 
1239 	return atomic_long_read(&n->nr_slabs);
1240 }
1241 
1242 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1243 {
1244 	return atomic_long_read(&n->nr_slabs);
1245 }
1246 
1247 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1248 {
1249 	struct kmem_cache_node *n = get_node(s, node);
1250 
1251 	/*
1252 	 * May be called early in order to allocate a slab for the
1253 	 * kmem_cache_node structure. Solve the chicken-egg
1254 	 * dilemma by deferring the increment of the count during
1255 	 * bootstrap (see early_kmem_cache_node_alloc).
1256 	 */
1257 	if (likely(n)) {
1258 		atomic_long_inc(&n->nr_slabs);
1259 		atomic_long_add(objects, &n->total_objects);
1260 	}
1261 }
1262 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1263 {
1264 	struct kmem_cache_node *n = get_node(s, node);
1265 
1266 	atomic_long_dec(&n->nr_slabs);
1267 	atomic_long_sub(objects, &n->total_objects);
1268 }
1269 
1270 /* Object debug checks for alloc/free paths */
1271 static void setup_object_debug(struct kmem_cache *s, struct slab *slab,
1272 								void *object)
1273 {
1274 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1275 		return;
1276 
1277 	init_object(s, object, SLUB_RED_INACTIVE);
1278 	init_tracking(s, object);
1279 }
1280 
1281 static
1282 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1283 {
1284 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1285 		return;
1286 
1287 	metadata_access_enable();
1288 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1289 	metadata_access_disable();
1290 }
1291 
1292 static inline int alloc_consistency_checks(struct kmem_cache *s,
1293 					struct slab *slab, void *object)
1294 {
1295 	if (!check_slab(s, slab))
1296 		return 0;
1297 
1298 	if (!check_valid_pointer(s, slab, object)) {
1299 		object_err(s, slab, object, "Freelist Pointer check fails");
1300 		return 0;
1301 	}
1302 
1303 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1304 		return 0;
1305 
1306 	return 1;
1307 }
1308 
1309 static noinline int alloc_debug_processing(struct kmem_cache *s,
1310 					struct slab *slab,
1311 					void *object, unsigned long addr)
1312 {
1313 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1314 		if (!alloc_consistency_checks(s, slab, object))
1315 			goto bad;
1316 	}
1317 
1318 	/* Success perform special debug activities for allocs */
1319 	if (s->flags & SLAB_STORE_USER)
1320 		set_track(s, object, TRACK_ALLOC, addr);
1321 	trace(s, slab, object, 1);
1322 	init_object(s, object, SLUB_RED_ACTIVE);
1323 	return 1;
1324 
1325 bad:
1326 	if (folio_test_slab(slab_folio(slab))) {
1327 		/*
1328 		 * If this is a slab page then lets do the best we can
1329 		 * to avoid issues in the future. Marking all objects
1330 		 * as used avoids touching the remaining objects.
1331 		 */
1332 		slab_fix(s, "Marking all objects used");
1333 		slab->inuse = slab->objects;
1334 		slab->freelist = NULL;
1335 	}
1336 	return 0;
1337 }
1338 
1339 static inline int free_consistency_checks(struct kmem_cache *s,
1340 		struct slab *slab, void *object, unsigned long addr)
1341 {
1342 	if (!check_valid_pointer(s, slab, object)) {
1343 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1344 		return 0;
1345 	}
1346 
1347 	if (on_freelist(s, slab, object)) {
1348 		object_err(s, slab, object, "Object already free");
1349 		return 0;
1350 	}
1351 
1352 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1353 		return 0;
1354 
1355 	if (unlikely(s != slab->slab_cache)) {
1356 		if (!folio_test_slab(slab_folio(slab))) {
1357 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1358 				 object);
1359 		} else if (!slab->slab_cache) {
1360 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1361 			       object);
1362 			dump_stack();
1363 		} else
1364 			object_err(s, slab, object,
1365 					"page slab pointer corrupt.");
1366 		return 0;
1367 	}
1368 	return 1;
1369 }
1370 
1371 /* Supports checking bulk free of a constructed freelist */
1372 static noinline int free_debug_processing(
1373 	struct kmem_cache *s, struct slab *slab,
1374 	void *head, void *tail, int bulk_cnt,
1375 	unsigned long addr)
1376 {
1377 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
1378 	void *object = head;
1379 	int cnt = 0;
1380 	unsigned long flags, flags2;
1381 	int ret = 0;
1382 
1383 	spin_lock_irqsave(&n->list_lock, flags);
1384 	slab_lock(slab, &flags2);
1385 
1386 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1387 		if (!check_slab(s, slab))
1388 			goto out;
1389 	}
1390 
1391 next_object:
1392 	cnt++;
1393 
1394 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1395 		if (!free_consistency_checks(s, slab, object, addr))
1396 			goto out;
1397 	}
1398 
1399 	if (s->flags & SLAB_STORE_USER)
1400 		set_track(s, object, TRACK_FREE, addr);
1401 	trace(s, slab, object, 0);
1402 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1403 	init_object(s, object, SLUB_RED_INACTIVE);
1404 
1405 	/* Reached end of constructed freelist yet? */
1406 	if (object != tail) {
1407 		object = get_freepointer(s, object);
1408 		goto next_object;
1409 	}
1410 	ret = 1;
1411 
1412 out:
1413 	if (cnt != bulk_cnt)
1414 		slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
1415 			 bulk_cnt, cnt);
1416 
1417 	slab_unlock(slab, &flags2);
1418 	spin_unlock_irqrestore(&n->list_lock, flags);
1419 	if (!ret)
1420 		slab_fix(s, "Object at 0x%p not freed", object);
1421 	return ret;
1422 }
1423 
1424 /*
1425  * Parse a block of slub_debug options. Blocks are delimited by ';'
1426  *
1427  * @str:    start of block
1428  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1429  * @slabs:  return start of list of slabs, or NULL when there's no list
1430  * @init:   assume this is initial parsing and not per-kmem-create parsing
1431  *
1432  * returns the start of next block if there's any, or NULL
1433  */
1434 static char *
1435 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1436 {
1437 	bool higher_order_disable = false;
1438 
1439 	/* Skip any completely empty blocks */
1440 	while (*str && *str == ';')
1441 		str++;
1442 
1443 	if (*str == ',') {
1444 		/*
1445 		 * No options but restriction on slabs. This means full
1446 		 * debugging for slabs matching a pattern.
1447 		 */
1448 		*flags = DEBUG_DEFAULT_FLAGS;
1449 		goto check_slabs;
1450 	}
1451 	*flags = 0;
1452 
1453 	/* Determine which debug features should be switched on */
1454 	for (; *str && *str != ',' && *str != ';'; str++) {
1455 		switch (tolower(*str)) {
1456 		case '-':
1457 			*flags = 0;
1458 			break;
1459 		case 'f':
1460 			*flags |= SLAB_CONSISTENCY_CHECKS;
1461 			break;
1462 		case 'z':
1463 			*flags |= SLAB_RED_ZONE;
1464 			break;
1465 		case 'p':
1466 			*flags |= SLAB_POISON;
1467 			break;
1468 		case 'u':
1469 			*flags |= SLAB_STORE_USER;
1470 			break;
1471 		case 't':
1472 			*flags |= SLAB_TRACE;
1473 			break;
1474 		case 'a':
1475 			*flags |= SLAB_FAILSLAB;
1476 			break;
1477 		case 'o':
1478 			/*
1479 			 * Avoid enabling debugging on caches if its minimum
1480 			 * order would increase as a result.
1481 			 */
1482 			higher_order_disable = true;
1483 			break;
1484 		default:
1485 			if (init)
1486 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1487 		}
1488 	}
1489 check_slabs:
1490 	if (*str == ',')
1491 		*slabs = ++str;
1492 	else
1493 		*slabs = NULL;
1494 
1495 	/* Skip over the slab list */
1496 	while (*str && *str != ';')
1497 		str++;
1498 
1499 	/* Skip any completely empty blocks */
1500 	while (*str && *str == ';')
1501 		str++;
1502 
1503 	if (init && higher_order_disable)
1504 		disable_higher_order_debug = 1;
1505 
1506 	if (*str)
1507 		return str;
1508 	else
1509 		return NULL;
1510 }
1511 
1512 static int __init setup_slub_debug(char *str)
1513 {
1514 	slab_flags_t flags;
1515 	slab_flags_t global_flags;
1516 	char *saved_str;
1517 	char *slab_list;
1518 	bool global_slub_debug_changed = false;
1519 	bool slab_list_specified = false;
1520 
1521 	global_flags = DEBUG_DEFAULT_FLAGS;
1522 	if (*str++ != '=' || !*str)
1523 		/*
1524 		 * No options specified. Switch on full debugging.
1525 		 */
1526 		goto out;
1527 
1528 	saved_str = str;
1529 	while (str) {
1530 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1531 
1532 		if (!slab_list) {
1533 			global_flags = flags;
1534 			global_slub_debug_changed = true;
1535 		} else {
1536 			slab_list_specified = true;
1537 		}
1538 	}
1539 
1540 	/*
1541 	 * For backwards compatibility, a single list of flags with list of
1542 	 * slabs means debugging is only changed for those slabs, so the global
1543 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1544 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1545 	 * long as there is no option specifying flags without a slab list.
1546 	 */
1547 	if (slab_list_specified) {
1548 		if (!global_slub_debug_changed)
1549 			global_flags = slub_debug;
1550 		slub_debug_string = saved_str;
1551 	}
1552 out:
1553 	slub_debug = global_flags;
1554 	if (slub_debug != 0 || slub_debug_string)
1555 		static_branch_enable(&slub_debug_enabled);
1556 	else
1557 		static_branch_disable(&slub_debug_enabled);
1558 	if ((static_branch_unlikely(&init_on_alloc) ||
1559 	     static_branch_unlikely(&init_on_free)) &&
1560 	    (slub_debug & SLAB_POISON))
1561 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1562 	return 1;
1563 }
1564 
1565 __setup("slub_debug", setup_slub_debug);
1566 
1567 /*
1568  * kmem_cache_flags - apply debugging options to the cache
1569  * @object_size:	the size of an object without meta data
1570  * @flags:		flags to set
1571  * @name:		name of the cache
1572  *
1573  * Debug option(s) are applied to @flags. In addition to the debug
1574  * option(s), if a slab name (or multiple) is specified i.e.
1575  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1576  * then only the select slabs will receive the debug option(s).
1577  */
1578 slab_flags_t kmem_cache_flags(unsigned int object_size,
1579 	slab_flags_t flags, const char *name)
1580 {
1581 	char *iter;
1582 	size_t len;
1583 	char *next_block;
1584 	slab_flags_t block_flags;
1585 	slab_flags_t slub_debug_local = slub_debug;
1586 
1587 	/*
1588 	 * If the slab cache is for debugging (e.g. kmemleak) then
1589 	 * don't store user (stack trace) information by default,
1590 	 * but let the user enable it via the command line below.
1591 	 */
1592 	if (flags & SLAB_NOLEAKTRACE)
1593 		slub_debug_local &= ~SLAB_STORE_USER;
1594 
1595 	len = strlen(name);
1596 	next_block = slub_debug_string;
1597 	/* Go through all blocks of debug options, see if any matches our slab's name */
1598 	while (next_block) {
1599 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1600 		if (!iter)
1601 			continue;
1602 		/* Found a block that has a slab list, search it */
1603 		while (*iter) {
1604 			char *end, *glob;
1605 			size_t cmplen;
1606 
1607 			end = strchrnul(iter, ',');
1608 			if (next_block && next_block < end)
1609 				end = next_block - 1;
1610 
1611 			glob = strnchr(iter, end - iter, '*');
1612 			if (glob)
1613 				cmplen = glob - iter;
1614 			else
1615 				cmplen = max_t(size_t, len, (end - iter));
1616 
1617 			if (!strncmp(name, iter, cmplen)) {
1618 				flags |= block_flags;
1619 				return flags;
1620 			}
1621 
1622 			if (!*end || *end == ';')
1623 				break;
1624 			iter = end + 1;
1625 		}
1626 	}
1627 
1628 	return flags | slub_debug_local;
1629 }
1630 #else /* !CONFIG_SLUB_DEBUG */
1631 static inline void setup_object_debug(struct kmem_cache *s,
1632 			struct slab *slab, void *object) {}
1633 static inline
1634 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1635 
1636 static inline int alloc_debug_processing(struct kmem_cache *s,
1637 	struct slab *slab, void *object, unsigned long addr) { return 0; }
1638 
1639 static inline int free_debug_processing(
1640 	struct kmem_cache *s, struct slab *slab,
1641 	void *head, void *tail, int bulk_cnt,
1642 	unsigned long addr) { return 0; }
1643 
1644 static inline int slab_pad_check(struct kmem_cache *s, struct slab *slab)
1645 			{ return 1; }
1646 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1647 			void *object, u8 val) { return 1; }
1648 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1649 					struct slab *slab) {}
1650 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1651 					struct slab *slab) {}
1652 slab_flags_t kmem_cache_flags(unsigned int object_size,
1653 	slab_flags_t flags, const char *name)
1654 {
1655 	return flags;
1656 }
1657 #define slub_debug 0
1658 
1659 #define disable_higher_order_debug 0
1660 
1661 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1662 							{ return 0; }
1663 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1664 							{ return 0; }
1665 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1666 							int objects) {}
1667 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1668 							int objects) {}
1669 
1670 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1671 			       void **freelist, void *nextfree)
1672 {
1673 	return false;
1674 }
1675 #endif /* CONFIG_SLUB_DEBUG */
1676 
1677 /*
1678  * Hooks for other subsystems that check memory allocations. In a typical
1679  * production configuration these hooks all should produce no code at all.
1680  */
1681 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1682 {
1683 	ptr = kasan_kmalloc_large(ptr, size, flags);
1684 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1685 	kmemleak_alloc(ptr, size, 1, flags);
1686 	return ptr;
1687 }
1688 
1689 static __always_inline void kfree_hook(void *x)
1690 {
1691 	kmemleak_free(x);
1692 	kasan_kfree_large(x);
1693 }
1694 
1695 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1696 						void *x, bool init)
1697 {
1698 	kmemleak_free_recursive(x, s->flags);
1699 
1700 	debug_check_no_locks_freed(x, s->object_size);
1701 
1702 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1703 		debug_check_no_obj_freed(x, s->object_size);
1704 
1705 	/* Use KCSAN to help debug racy use-after-free. */
1706 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1707 		__kcsan_check_access(x, s->object_size,
1708 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1709 
1710 	/*
1711 	 * As memory initialization might be integrated into KASAN,
1712 	 * kasan_slab_free and initialization memset's must be
1713 	 * kept together to avoid discrepancies in behavior.
1714 	 *
1715 	 * The initialization memset's clear the object and the metadata,
1716 	 * but don't touch the SLAB redzone.
1717 	 */
1718 	if (init) {
1719 		int rsize;
1720 
1721 		if (!kasan_has_integrated_init())
1722 			memset(kasan_reset_tag(x), 0, s->object_size);
1723 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1724 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1725 		       s->size - s->inuse - rsize);
1726 	}
1727 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1728 	return kasan_slab_free(s, x, init);
1729 }
1730 
1731 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1732 					   void **head, void **tail,
1733 					   int *cnt)
1734 {
1735 
1736 	void *object;
1737 	void *next = *head;
1738 	void *old_tail = *tail ? *tail : *head;
1739 
1740 	if (is_kfence_address(next)) {
1741 		slab_free_hook(s, next, false);
1742 		return true;
1743 	}
1744 
1745 	/* Head and tail of the reconstructed freelist */
1746 	*head = NULL;
1747 	*tail = NULL;
1748 
1749 	do {
1750 		object = next;
1751 		next = get_freepointer(s, object);
1752 
1753 		/* If object's reuse doesn't have to be delayed */
1754 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1755 			/* Move object to the new freelist */
1756 			set_freepointer(s, object, *head);
1757 			*head = object;
1758 			if (!*tail)
1759 				*tail = object;
1760 		} else {
1761 			/*
1762 			 * Adjust the reconstructed freelist depth
1763 			 * accordingly if object's reuse is delayed.
1764 			 */
1765 			--(*cnt);
1766 		}
1767 	} while (object != old_tail);
1768 
1769 	if (*head == *tail)
1770 		*tail = NULL;
1771 
1772 	return *head != NULL;
1773 }
1774 
1775 static void *setup_object(struct kmem_cache *s, struct slab *slab,
1776 				void *object)
1777 {
1778 	setup_object_debug(s, slab, object);
1779 	object = kasan_init_slab_obj(s, object);
1780 	if (unlikely(s->ctor)) {
1781 		kasan_unpoison_object_data(s, object);
1782 		s->ctor(object);
1783 		kasan_poison_object_data(s, object);
1784 	}
1785 	return object;
1786 }
1787 
1788 /*
1789  * Slab allocation and freeing
1790  */
1791 static inline struct slab *alloc_slab_page(struct kmem_cache *s,
1792 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1793 {
1794 	struct folio *folio;
1795 	struct slab *slab;
1796 	unsigned int order = oo_order(oo);
1797 
1798 	if (node == NUMA_NO_NODE)
1799 		folio = (struct folio *)alloc_pages(flags, order);
1800 	else
1801 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1802 
1803 	if (!folio)
1804 		return NULL;
1805 
1806 	slab = folio_slab(folio);
1807 	__folio_set_slab(folio);
1808 	if (page_is_pfmemalloc(folio_page(folio, 0)))
1809 		slab_set_pfmemalloc(slab);
1810 
1811 	return slab;
1812 }
1813 
1814 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1815 /* Pre-initialize the random sequence cache */
1816 static int init_cache_random_seq(struct kmem_cache *s)
1817 {
1818 	unsigned int count = oo_objects(s->oo);
1819 	int err;
1820 
1821 	/* Bailout if already initialised */
1822 	if (s->random_seq)
1823 		return 0;
1824 
1825 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1826 	if (err) {
1827 		pr_err("SLUB: Unable to initialize free list for %s\n",
1828 			s->name);
1829 		return err;
1830 	}
1831 
1832 	/* Transform to an offset on the set of pages */
1833 	if (s->random_seq) {
1834 		unsigned int i;
1835 
1836 		for (i = 0; i < count; i++)
1837 			s->random_seq[i] *= s->size;
1838 	}
1839 	return 0;
1840 }
1841 
1842 /* Initialize each random sequence freelist per cache */
1843 static void __init init_freelist_randomization(void)
1844 {
1845 	struct kmem_cache *s;
1846 
1847 	mutex_lock(&slab_mutex);
1848 
1849 	list_for_each_entry(s, &slab_caches, list)
1850 		init_cache_random_seq(s);
1851 
1852 	mutex_unlock(&slab_mutex);
1853 }
1854 
1855 /* Get the next entry on the pre-computed freelist randomized */
1856 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1857 				unsigned long *pos, void *start,
1858 				unsigned long page_limit,
1859 				unsigned long freelist_count)
1860 {
1861 	unsigned int idx;
1862 
1863 	/*
1864 	 * If the target page allocation failed, the number of objects on the
1865 	 * page might be smaller than the usual size defined by the cache.
1866 	 */
1867 	do {
1868 		idx = s->random_seq[*pos];
1869 		*pos += 1;
1870 		if (*pos >= freelist_count)
1871 			*pos = 0;
1872 	} while (unlikely(idx >= page_limit));
1873 
1874 	return (char *)start + idx;
1875 }
1876 
1877 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1878 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1879 {
1880 	void *start;
1881 	void *cur;
1882 	void *next;
1883 	unsigned long idx, pos, page_limit, freelist_count;
1884 
1885 	if (slab->objects < 2 || !s->random_seq)
1886 		return false;
1887 
1888 	freelist_count = oo_objects(s->oo);
1889 	pos = get_random_int() % freelist_count;
1890 
1891 	page_limit = slab->objects * s->size;
1892 	start = fixup_red_left(s, slab_address(slab));
1893 
1894 	/* First entry is used as the base of the freelist */
1895 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1896 				freelist_count);
1897 	cur = setup_object(s, slab, cur);
1898 	slab->freelist = cur;
1899 
1900 	for (idx = 1; idx < slab->objects; idx++) {
1901 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1902 			freelist_count);
1903 		next = setup_object(s, slab, next);
1904 		set_freepointer(s, cur, next);
1905 		cur = next;
1906 	}
1907 	set_freepointer(s, cur, NULL);
1908 
1909 	return true;
1910 }
1911 #else
1912 static inline int init_cache_random_seq(struct kmem_cache *s)
1913 {
1914 	return 0;
1915 }
1916 static inline void init_freelist_randomization(void) { }
1917 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1918 {
1919 	return false;
1920 }
1921 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1922 
1923 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1924 {
1925 	struct slab *slab;
1926 	struct kmem_cache_order_objects oo = s->oo;
1927 	gfp_t alloc_gfp;
1928 	void *start, *p, *next;
1929 	int idx;
1930 	bool shuffle;
1931 
1932 	flags &= gfp_allowed_mask;
1933 
1934 	flags |= s->allocflags;
1935 
1936 	/*
1937 	 * Let the initial higher-order allocation fail under memory pressure
1938 	 * so we fall-back to the minimum order allocation.
1939 	 */
1940 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1941 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1942 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1943 
1944 	slab = alloc_slab_page(s, alloc_gfp, node, oo);
1945 	if (unlikely(!slab)) {
1946 		oo = s->min;
1947 		alloc_gfp = flags;
1948 		/*
1949 		 * Allocation may have failed due to fragmentation.
1950 		 * Try a lower order alloc if possible
1951 		 */
1952 		slab = alloc_slab_page(s, alloc_gfp, node, oo);
1953 		if (unlikely(!slab))
1954 			goto out;
1955 		stat(s, ORDER_FALLBACK);
1956 	}
1957 
1958 	slab->objects = oo_objects(oo);
1959 
1960 	account_slab(slab, oo_order(oo), s, flags);
1961 
1962 	slab->slab_cache = s;
1963 
1964 	kasan_poison_slab(slab);
1965 
1966 	start = slab_address(slab);
1967 
1968 	setup_slab_debug(s, slab, start);
1969 
1970 	shuffle = shuffle_freelist(s, slab);
1971 
1972 	if (!shuffle) {
1973 		start = fixup_red_left(s, start);
1974 		start = setup_object(s, slab, start);
1975 		slab->freelist = start;
1976 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
1977 			next = p + s->size;
1978 			next = setup_object(s, slab, next);
1979 			set_freepointer(s, p, next);
1980 			p = next;
1981 		}
1982 		set_freepointer(s, p, NULL);
1983 	}
1984 
1985 	slab->inuse = slab->objects;
1986 	slab->frozen = 1;
1987 
1988 out:
1989 	if (!slab)
1990 		return NULL;
1991 
1992 	inc_slabs_node(s, slab_nid(slab), slab->objects);
1993 
1994 	return slab;
1995 }
1996 
1997 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1998 {
1999 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2000 		flags = kmalloc_fix_flags(flags);
2001 
2002 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2003 
2004 	return allocate_slab(s,
2005 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2006 }
2007 
2008 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2009 {
2010 	struct folio *folio = slab_folio(slab);
2011 	int order = folio_order(folio);
2012 	int pages = 1 << order;
2013 
2014 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2015 		void *p;
2016 
2017 		slab_pad_check(s, slab);
2018 		for_each_object(p, s, slab_address(slab), slab->objects)
2019 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2020 	}
2021 
2022 	__slab_clear_pfmemalloc(slab);
2023 	__folio_clear_slab(folio);
2024 	folio->mapping = NULL;
2025 	if (current->reclaim_state)
2026 		current->reclaim_state->reclaimed_slab += pages;
2027 	unaccount_slab(slab, order, s);
2028 	__free_pages(folio_page(folio, 0), order);
2029 }
2030 
2031 static void rcu_free_slab(struct rcu_head *h)
2032 {
2033 	struct slab *slab = container_of(h, struct slab, rcu_head);
2034 
2035 	__free_slab(slab->slab_cache, slab);
2036 }
2037 
2038 static void free_slab(struct kmem_cache *s, struct slab *slab)
2039 {
2040 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2041 		call_rcu(&slab->rcu_head, rcu_free_slab);
2042 	} else
2043 		__free_slab(s, slab);
2044 }
2045 
2046 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2047 {
2048 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2049 	free_slab(s, slab);
2050 }
2051 
2052 /*
2053  * Management of partially allocated slabs.
2054  */
2055 static inline void
2056 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2057 {
2058 	n->nr_partial++;
2059 	if (tail == DEACTIVATE_TO_TAIL)
2060 		list_add_tail(&slab->slab_list, &n->partial);
2061 	else
2062 		list_add(&slab->slab_list, &n->partial);
2063 }
2064 
2065 static inline void add_partial(struct kmem_cache_node *n,
2066 				struct slab *slab, int tail)
2067 {
2068 	lockdep_assert_held(&n->list_lock);
2069 	__add_partial(n, slab, tail);
2070 }
2071 
2072 static inline void remove_partial(struct kmem_cache_node *n,
2073 					struct slab *slab)
2074 {
2075 	lockdep_assert_held(&n->list_lock);
2076 	list_del(&slab->slab_list);
2077 	n->nr_partial--;
2078 }
2079 
2080 /*
2081  * Remove slab from the partial list, freeze it and
2082  * return the pointer to the freelist.
2083  *
2084  * Returns a list of objects or NULL if it fails.
2085  */
2086 static inline void *acquire_slab(struct kmem_cache *s,
2087 		struct kmem_cache_node *n, struct slab *slab,
2088 		int mode)
2089 {
2090 	void *freelist;
2091 	unsigned long counters;
2092 	struct slab new;
2093 
2094 	lockdep_assert_held(&n->list_lock);
2095 
2096 	/*
2097 	 * Zap the freelist and set the frozen bit.
2098 	 * The old freelist is the list of objects for the
2099 	 * per cpu allocation list.
2100 	 */
2101 	freelist = slab->freelist;
2102 	counters = slab->counters;
2103 	new.counters = counters;
2104 	if (mode) {
2105 		new.inuse = slab->objects;
2106 		new.freelist = NULL;
2107 	} else {
2108 		new.freelist = freelist;
2109 	}
2110 
2111 	VM_BUG_ON(new.frozen);
2112 	new.frozen = 1;
2113 
2114 	if (!__cmpxchg_double_slab(s, slab,
2115 			freelist, counters,
2116 			new.freelist, new.counters,
2117 			"acquire_slab"))
2118 		return NULL;
2119 
2120 	remove_partial(n, slab);
2121 	WARN_ON(!freelist);
2122 	return freelist;
2123 }
2124 
2125 #ifdef CONFIG_SLUB_CPU_PARTIAL
2126 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2127 #else
2128 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2129 				   int drain) { }
2130 #endif
2131 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2132 
2133 /*
2134  * Try to allocate a partial slab from a specific node.
2135  */
2136 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2137 			      struct slab **ret_slab, gfp_t gfpflags)
2138 {
2139 	struct slab *slab, *slab2;
2140 	void *object = NULL;
2141 	unsigned long flags;
2142 	unsigned int partial_slabs = 0;
2143 
2144 	/*
2145 	 * Racy check. If we mistakenly see no partial slabs then we
2146 	 * just allocate an empty slab. If we mistakenly try to get a
2147 	 * partial slab and there is none available then get_partial()
2148 	 * will return NULL.
2149 	 */
2150 	if (!n || !n->nr_partial)
2151 		return NULL;
2152 
2153 	spin_lock_irqsave(&n->list_lock, flags);
2154 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2155 		void *t;
2156 
2157 		if (!pfmemalloc_match(slab, gfpflags))
2158 			continue;
2159 
2160 		t = acquire_slab(s, n, slab, object == NULL);
2161 		if (!t)
2162 			break;
2163 
2164 		if (!object) {
2165 			*ret_slab = slab;
2166 			stat(s, ALLOC_FROM_PARTIAL);
2167 			object = t;
2168 		} else {
2169 			put_cpu_partial(s, slab, 0);
2170 			stat(s, CPU_PARTIAL_NODE);
2171 			partial_slabs++;
2172 		}
2173 #ifdef CONFIG_SLUB_CPU_PARTIAL
2174 		if (!kmem_cache_has_cpu_partial(s)
2175 			|| partial_slabs > s->cpu_partial_slabs / 2)
2176 			break;
2177 #else
2178 		break;
2179 #endif
2180 
2181 	}
2182 	spin_unlock_irqrestore(&n->list_lock, flags);
2183 	return object;
2184 }
2185 
2186 /*
2187  * Get a slab from somewhere. Search in increasing NUMA distances.
2188  */
2189 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2190 			     struct slab **ret_slab)
2191 {
2192 #ifdef CONFIG_NUMA
2193 	struct zonelist *zonelist;
2194 	struct zoneref *z;
2195 	struct zone *zone;
2196 	enum zone_type highest_zoneidx = gfp_zone(flags);
2197 	void *object;
2198 	unsigned int cpuset_mems_cookie;
2199 
2200 	/*
2201 	 * The defrag ratio allows a configuration of the tradeoffs between
2202 	 * inter node defragmentation and node local allocations. A lower
2203 	 * defrag_ratio increases the tendency to do local allocations
2204 	 * instead of attempting to obtain partial slabs from other nodes.
2205 	 *
2206 	 * If the defrag_ratio is set to 0 then kmalloc() always
2207 	 * returns node local objects. If the ratio is higher then kmalloc()
2208 	 * may return off node objects because partial slabs are obtained
2209 	 * from other nodes and filled up.
2210 	 *
2211 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2212 	 * (which makes defrag_ratio = 1000) then every (well almost)
2213 	 * allocation will first attempt to defrag slab caches on other nodes.
2214 	 * This means scanning over all nodes to look for partial slabs which
2215 	 * may be expensive if we do it every time we are trying to find a slab
2216 	 * with available objects.
2217 	 */
2218 	if (!s->remote_node_defrag_ratio ||
2219 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2220 		return NULL;
2221 
2222 	do {
2223 		cpuset_mems_cookie = read_mems_allowed_begin();
2224 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2225 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2226 			struct kmem_cache_node *n;
2227 
2228 			n = get_node(s, zone_to_nid(zone));
2229 
2230 			if (n && cpuset_zone_allowed(zone, flags) &&
2231 					n->nr_partial > s->min_partial) {
2232 				object = get_partial_node(s, n, ret_slab, flags);
2233 				if (object) {
2234 					/*
2235 					 * Don't check read_mems_allowed_retry()
2236 					 * here - if mems_allowed was updated in
2237 					 * parallel, that was a harmless race
2238 					 * between allocation and the cpuset
2239 					 * update
2240 					 */
2241 					return object;
2242 				}
2243 			}
2244 		}
2245 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2246 #endif	/* CONFIG_NUMA */
2247 	return NULL;
2248 }
2249 
2250 /*
2251  * Get a partial slab, lock it and return it.
2252  */
2253 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2254 			 struct slab **ret_slab)
2255 {
2256 	void *object;
2257 	int searchnode = node;
2258 
2259 	if (node == NUMA_NO_NODE)
2260 		searchnode = numa_mem_id();
2261 
2262 	object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
2263 	if (object || node != NUMA_NO_NODE)
2264 		return object;
2265 
2266 	return get_any_partial(s, flags, ret_slab);
2267 }
2268 
2269 #ifdef CONFIG_PREEMPTION
2270 /*
2271  * Calculate the next globally unique transaction for disambiguation
2272  * during cmpxchg. The transactions start with the cpu number and are then
2273  * incremented by CONFIG_NR_CPUS.
2274  */
2275 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2276 #else
2277 /*
2278  * No preemption supported therefore also no need to check for
2279  * different cpus.
2280  */
2281 #define TID_STEP 1
2282 #endif
2283 
2284 static inline unsigned long next_tid(unsigned long tid)
2285 {
2286 	return tid + TID_STEP;
2287 }
2288 
2289 #ifdef SLUB_DEBUG_CMPXCHG
2290 static inline unsigned int tid_to_cpu(unsigned long tid)
2291 {
2292 	return tid % TID_STEP;
2293 }
2294 
2295 static inline unsigned long tid_to_event(unsigned long tid)
2296 {
2297 	return tid / TID_STEP;
2298 }
2299 #endif
2300 
2301 static inline unsigned int init_tid(int cpu)
2302 {
2303 	return cpu;
2304 }
2305 
2306 static inline void note_cmpxchg_failure(const char *n,
2307 		const struct kmem_cache *s, unsigned long tid)
2308 {
2309 #ifdef SLUB_DEBUG_CMPXCHG
2310 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2311 
2312 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2313 
2314 #ifdef CONFIG_PREEMPTION
2315 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2316 		pr_warn("due to cpu change %d -> %d\n",
2317 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2318 	else
2319 #endif
2320 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2321 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2322 			tid_to_event(tid), tid_to_event(actual_tid));
2323 	else
2324 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2325 			actual_tid, tid, next_tid(tid));
2326 #endif
2327 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2328 }
2329 
2330 static void init_kmem_cache_cpus(struct kmem_cache *s)
2331 {
2332 	int cpu;
2333 	struct kmem_cache_cpu *c;
2334 
2335 	for_each_possible_cpu(cpu) {
2336 		c = per_cpu_ptr(s->cpu_slab, cpu);
2337 		local_lock_init(&c->lock);
2338 		c->tid = init_tid(cpu);
2339 	}
2340 }
2341 
2342 /*
2343  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2344  * unfreezes the slabs and puts it on the proper list.
2345  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2346  * by the caller.
2347  */
2348 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2349 			    void *freelist)
2350 {
2351 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2352 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2353 	int lock = 0, free_delta = 0;
2354 	enum slab_modes l = M_NONE, m = M_NONE;
2355 	void *nextfree, *freelist_iter, *freelist_tail;
2356 	int tail = DEACTIVATE_TO_HEAD;
2357 	unsigned long flags = 0;
2358 	struct slab new;
2359 	struct slab old;
2360 
2361 	if (slab->freelist) {
2362 		stat(s, DEACTIVATE_REMOTE_FREES);
2363 		tail = DEACTIVATE_TO_TAIL;
2364 	}
2365 
2366 	/*
2367 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2368 	 * remember the last object in freelist_tail for later splicing.
2369 	 */
2370 	freelist_tail = NULL;
2371 	freelist_iter = freelist;
2372 	while (freelist_iter) {
2373 		nextfree = get_freepointer(s, freelist_iter);
2374 
2375 		/*
2376 		 * If 'nextfree' is invalid, it is possible that the object at
2377 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2378 		 * starting at 'freelist_iter' by skipping them.
2379 		 */
2380 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2381 			break;
2382 
2383 		freelist_tail = freelist_iter;
2384 		free_delta++;
2385 
2386 		freelist_iter = nextfree;
2387 	}
2388 
2389 	/*
2390 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2391 	 * freelist to the head of slab's freelist.
2392 	 *
2393 	 * Ensure that the slab is unfrozen while the list presence
2394 	 * reflects the actual number of objects during unfreeze.
2395 	 *
2396 	 * We setup the list membership and then perform a cmpxchg
2397 	 * with the count. If there is a mismatch then the slab
2398 	 * is not unfrozen but the slab is on the wrong list.
2399 	 *
2400 	 * Then we restart the process which may have to remove
2401 	 * the slab from the list that we just put it on again
2402 	 * because the number of objects in the slab may have
2403 	 * changed.
2404 	 */
2405 redo:
2406 
2407 	old.freelist = READ_ONCE(slab->freelist);
2408 	old.counters = READ_ONCE(slab->counters);
2409 	VM_BUG_ON(!old.frozen);
2410 
2411 	/* Determine target state of the slab */
2412 	new.counters = old.counters;
2413 	if (freelist_tail) {
2414 		new.inuse -= free_delta;
2415 		set_freepointer(s, freelist_tail, old.freelist);
2416 		new.freelist = freelist;
2417 	} else
2418 		new.freelist = old.freelist;
2419 
2420 	new.frozen = 0;
2421 
2422 	if (!new.inuse && n->nr_partial >= s->min_partial)
2423 		m = M_FREE;
2424 	else if (new.freelist) {
2425 		m = M_PARTIAL;
2426 		if (!lock) {
2427 			lock = 1;
2428 			/*
2429 			 * Taking the spinlock removes the possibility that
2430 			 * acquire_slab() will see a slab that is frozen
2431 			 */
2432 			spin_lock_irqsave(&n->list_lock, flags);
2433 		}
2434 	} else {
2435 		m = M_FULL;
2436 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2437 			lock = 1;
2438 			/*
2439 			 * This also ensures that the scanning of full
2440 			 * slabs from diagnostic functions will not see
2441 			 * any frozen slabs.
2442 			 */
2443 			spin_lock_irqsave(&n->list_lock, flags);
2444 		}
2445 	}
2446 
2447 	if (l != m) {
2448 		if (l == M_PARTIAL)
2449 			remove_partial(n, slab);
2450 		else if (l == M_FULL)
2451 			remove_full(s, n, slab);
2452 
2453 		if (m == M_PARTIAL)
2454 			add_partial(n, slab, tail);
2455 		else if (m == M_FULL)
2456 			add_full(s, n, slab);
2457 	}
2458 
2459 	l = m;
2460 	if (!cmpxchg_double_slab(s, slab,
2461 				old.freelist, old.counters,
2462 				new.freelist, new.counters,
2463 				"unfreezing slab"))
2464 		goto redo;
2465 
2466 	if (lock)
2467 		spin_unlock_irqrestore(&n->list_lock, flags);
2468 
2469 	if (m == M_PARTIAL)
2470 		stat(s, tail);
2471 	else if (m == M_FULL)
2472 		stat(s, DEACTIVATE_FULL);
2473 	else if (m == M_FREE) {
2474 		stat(s, DEACTIVATE_EMPTY);
2475 		discard_slab(s, slab);
2476 		stat(s, FREE_SLAB);
2477 	}
2478 }
2479 
2480 #ifdef CONFIG_SLUB_CPU_PARTIAL
2481 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2482 {
2483 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2484 	struct slab *slab, *slab_to_discard = NULL;
2485 	unsigned long flags = 0;
2486 
2487 	while (partial_slab) {
2488 		struct slab new;
2489 		struct slab old;
2490 
2491 		slab = partial_slab;
2492 		partial_slab = slab->next;
2493 
2494 		n2 = get_node(s, slab_nid(slab));
2495 		if (n != n2) {
2496 			if (n)
2497 				spin_unlock_irqrestore(&n->list_lock, flags);
2498 
2499 			n = n2;
2500 			spin_lock_irqsave(&n->list_lock, flags);
2501 		}
2502 
2503 		do {
2504 
2505 			old.freelist = slab->freelist;
2506 			old.counters = slab->counters;
2507 			VM_BUG_ON(!old.frozen);
2508 
2509 			new.counters = old.counters;
2510 			new.freelist = old.freelist;
2511 
2512 			new.frozen = 0;
2513 
2514 		} while (!__cmpxchg_double_slab(s, slab,
2515 				old.freelist, old.counters,
2516 				new.freelist, new.counters,
2517 				"unfreezing slab"));
2518 
2519 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2520 			slab->next = slab_to_discard;
2521 			slab_to_discard = slab;
2522 		} else {
2523 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2524 			stat(s, FREE_ADD_PARTIAL);
2525 		}
2526 	}
2527 
2528 	if (n)
2529 		spin_unlock_irqrestore(&n->list_lock, flags);
2530 
2531 	while (slab_to_discard) {
2532 		slab = slab_to_discard;
2533 		slab_to_discard = slab_to_discard->next;
2534 
2535 		stat(s, DEACTIVATE_EMPTY);
2536 		discard_slab(s, slab);
2537 		stat(s, FREE_SLAB);
2538 	}
2539 }
2540 
2541 /*
2542  * Unfreeze all the cpu partial slabs.
2543  */
2544 static void unfreeze_partials(struct kmem_cache *s)
2545 {
2546 	struct slab *partial_slab;
2547 	unsigned long flags;
2548 
2549 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2550 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2551 	this_cpu_write(s->cpu_slab->partial, NULL);
2552 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2553 
2554 	if (partial_slab)
2555 		__unfreeze_partials(s, partial_slab);
2556 }
2557 
2558 static void unfreeze_partials_cpu(struct kmem_cache *s,
2559 				  struct kmem_cache_cpu *c)
2560 {
2561 	struct slab *partial_slab;
2562 
2563 	partial_slab = slub_percpu_partial(c);
2564 	c->partial = NULL;
2565 
2566 	if (partial_slab)
2567 		__unfreeze_partials(s, partial_slab);
2568 }
2569 
2570 /*
2571  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2572  * partial slab slot if available.
2573  *
2574  * If we did not find a slot then simply move all the partials to the
2575  * per node partial list.
2576  */
2577 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2578 {
2579 	struct slab *oldslab;
2580 	struct slab *slab_to_unfreeze = NULL;
2581 	unsigned long flags;
2582 	int slabs = 0;
2583 
2584 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2585 
2586 	oldslab = this_cpu_read(s->cpu_slab->partial);
2587 
2588 	if (oldslab) {
2589 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2590 			/*
2591 			 * Partial array is full. Move the existing set to the
2592 			 * per node partial list. Postpone the actual unfreezing
2593 			 * outside of the critical section.
2594 			 */
2595 			slab_to_unfreeze = oldslab;
2596 			oldslab = NULL;
2597 		} else {
2598 			slabs = oldslab->slabs;
2599 		}
2600 	}
2601 
2602 	slabs++;
2603 
2604 	slab->slabs = slabs;
2605 	slab->next = oldslab;
2606 
2607 	this_cpu_write(s->cpu_slab->partial, slab);
2608 
2609 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2610 
2611 	if (slab_to_unfreeze) {
2612 		__unfreeze_partials(s, slab_to_unfreeze);
2613 		stat(s, CPU_PARTIAL_DRAIN);
2614 	}
2615 }
2616 
2617 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2618 
2619 static inline void unfreeze_partials(struct kmem_cache *s) { }
2620 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2621 				  struct kmem_cache_cpu *c) { }
2622 
2623 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2624 
2625 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2626 {
2627 	unsigned long flags;
2628 	struct slab *slab;
2629 	void *freelist;
2630 
2631 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2632 
2633 	slab = c->slab;
2634 	freelist = c->freelist;
2635 
2636 	c->slab = NULL;
2637 	c->freelist = NULL;
2638 	c->tid = next_tid(c->tid);
2639 
2640 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2641 
2642 	if (slab) {
2643 		deactivate_slab(s, slab, freelist);
2644 		stat(s, CPUSLAB_FLUSH);
2645 	}
2646 }
2647 
2648 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2649 {
2650 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2651 	void *freelist = c->freelist;
2652 	struct slab *slab = c->slab;
2653 
2654 	c->slab = NULL;
2655 	c->freelist = NULL;
2656 	c->tid = next_tid(c->tid);
2657 
2658 	if (slab) {
2659 		deactivate_slab(s, slab, freelist);
2660 		stat(s, CPUSLAB_FLUSH);
2661 	}
2662 
2663 	unfreeze_partials_cpu(s, c);
2664 }
2665 
2666 struct slub_flush_work {
2667 	struct work_struct work;
2668 	struct kmem_cache *s;
2669 	bool skip;
2670 };
2671 
2672 /*
2673  * Flush cpu slab.
2674  *
2675  * Called from CPU work handler with migration disabled.
2676  */
2677 static void flush_cpu_slab(struct work_struct *w)
2678 {
2679 	struct kmem_cache *s;
2680 	struct kmem_cache_cpu *c;
2681 	struct slub_flush_work *sfw;
2682 
2683 	sfw = container_of(w, struct slub_flush_work, work);
2684 
2685 	s = sfw->s;
2686 	c = this_cpu_ptr(s->cpu_slab);
2687 
2688 	if (c->slab)
2689 		flush_slab(s, c);
2690 
2691 	unfreeze_partials(s);
2692 }
2693 
2694 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2695 {
2696 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2697 
2698 	return c->slab || slub_percpu_partial(c);
2699 }
2700 
2701 static DEFINE_MUTEX(flush_lock);
2702 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2703 
2704 static void flush_all_cpus_locked(struct kmem_cache *s)
2705 {
2706 	struct slub_flush_work *sfw;
2707 	unsigned int cpu;
2708 
2709 	lockdep_assert_cpus_held();
2710 	mutex_lock(&flush_lock);
2711 
2712 	for_each_online_cpu(cpu) {
2713 		sfw = &per_cpu(slub_flush, cpu);
2714 		if (!has_cpu_slab(cpu, s)) {
2715 			sfw->skip = true;
2716 			continue;
2717 		}
2718 		INIT_WORK(&sfw->work, flush_cpu_slab);
2719 		sfw->skip = false;
2720 		sfw->s = s;
2721 		schedule_work_on(cpu, &sfw->work);
2722 	}
2723 
2724 	for_each_online_cpu(cpu) {
2725 		sfw = &per_cpu(slub_flush, cpu);
2726 		if (sfw->skip)
2727 			continue;
2728 		flush_work(&sfw->work);
2729 	}
2730 
2731 	mutex_unlock(&flush_lock);
2732 }
2733 
2734 static void flush_all(struct kmem_cache *s)
2735 {
2736 	cpus_read_lock();
2737 	flush_all_cpus_locked(s);
2738 	cpus_read_unlock();
2739 }
2740 
2741 /*
2742  * Use the cpu notifier to insure that the cpu slabs are flushed when
2743  * necessary.
2744  */
2745 static int slub_cpu_dead(unsigned int cpu)
2746 {
2747 	struct kmem_cache *s;
2748 
2749 	mutex_lock(&slab_mutex);
2750 	list_for_each_entry(s, &slab_caches, list)
2751 		__flush_cpu_slab(s, cpu);
2752 	mutex_unlock(&slab_mutex);
2753 	return 0;
2754 }
2755 
2756 /*
2757  * Check if the objects in a per cpu structure fit numa
2758  * locality expectations.
2759  */
2760 static inline int node_match(struct slab *slab, int node)
2761 {
2762 #ifdef CONFIG_NUMA
2763 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2764 		return 0;
2765 #endif
2766 	return 1;
2767 }
2768 
2769 #ifdef CONFIG_SLUB_DEBUG
2770 static int count_free(struct slab *slab)
2771 {
2772 	return slab->objects - slab->inuse;
2773 }
2774 
2775 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2776 {
2777 	return atomic_long_read(&n->total_objects);
2778 }
2779 #endif /* CONFIG_SLUB_DEBUG */
2780 
2781 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2782 static unsigned long count_partial(struct kmem_cache_node *n,
2783 					int (*get_count)(struct slab *))
2784 {
2785 	unsigned long flags;
2786 	unsigned long x = 0;
2787 	struct slab *slab;
2788 
2789 	spin_lock_irqsave(&n->list_lock, flags);
2790 	list_for_each_entry(slab, &n->partial, slab_list)
2791 		x += get_count(slab);
2792 	spin_unlock_irqrestore(&n->list_lock, flags);
2793 	return x;
2794 }
2795 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2796 
2797 static noinline void
2798 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2799 {
2800 #ifdef CONFIG_SLUB_DEBUG
2801 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2802 				      DEFAULT_RATELIMIT_BURST);
2803 	int node;
2804 	struct kmem_cache_node *n;
2805 
2806 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2807 		return;
2808 
2809 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2810 		nid, gfpflags, &gfpflags);
2811 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2812 		s->name, s->object_size, s->size, oo_order(s->oo),
2813 		oo_order(s->min));
2814 
2815 	if (oo_order(s->min) > get_order(s->object_size))
2816 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2817 			s->name);
2818 
2819 	for_each_kmem_cache_node(s, node, n) {
2820 		unsigned long nr_slabs;
2821 		unsigned long nr_objs;
2822 		unsigned long nr_free;
2823 
2824 		nr_free  = count_partial(n, count_free);
2825 		nr_slabs = node_nr_slabs(n);
2826 		nr_objs  = node_nr_objs(n);
2827 
2828 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2829 			node, nr_slabs, nr_objs, nr_free);
2830 	}
2831 #endif
2832 }
2833 
2834 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2835 {
2836 	if (unlikely(slab_test_pfmemalloc(slab)))
2837 		return gfp_pfmemalloc_allowed(gfpflags);
2838 
2839 	return true;
2840 }
2841 
2842 /*
2843  * Check the slab->freelist and either transfer the freelist to the
2844  * per cpu freelist or deactivate the slab.
2845  *
2846  * The slab is still frozen if the return value is not NULL.
2847  *
2848  * If this function returns NULL then the slab has been unfrozen.
2849  */
2850 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2851 {
2852 	struct slab new;
2853 	unsigned long counters;
2854 	void *freelist;
2855 
2856 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2857 
2858 	do {
2859 		freelist = slab->freelist;
2860 		counters = slab->counters;
2861 
2862 		new.counters = counters;
2863 		VM_BUG_ON(!new.frozen);
2864 
2865 		new.inuse = slab->objects;
2866 		new.frozen = freelist != NULL;
2867 
2868 	} while (!__cmpxchg_double_slab(s, slab,
2869 		freelist, counters,
2870 		NULL, new.counters,
2871 		"get_freelist"));
2872 
2873 	return freelist;
2874 }
2875 
2876 /*
2877  * Slow path. The lockless freelist is empty or we need to perform
2878  * debugging duties.
2879  *
2880  * Processing is still very fast if new objects have been freed to the
2881  * regular freelist. In that case we simply take over the regular freelist
2882  * as the lockless freelist and zap the regular freelist.
2883  *
2884  * If that is not working then we fall back to the partial lists. We take the
2885  * first element of the freelist as the object to allocate now and move the
2886  * rest of the freelist to the lockless freelist.
2887  *
2888  * And if we were unable to get a new slab from the partial slab lists then
2889  * we need to allocate a new slab. This is the slowest path since it involves
2890  * a call to the page allocator and the setup of a new slab.
2891  *
2892  * Version of __slab_alloc to use when we know that preemption is
2893  * already disabled (which is the case for bulk allocation).
2894  */
2895 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2896 			  unsigned long addr, struct kmem_cache_cpu *c)
2897 {
2898 	void *freelist;
2899 	struct slab *slab;
2900 	unsigned long flags;
2901 
2902 	stat(s, ALLOC_SLOWPATH);
2903 
2904 reread_slab:
2905 
2906 	slab = READ_ONCE(c->slab);
2907 	if (!slab) {
2908 		/*
2909 		 * if the node is not online or has no normal memory, just
2910 		 * ignore the node constraint
2911 		 */
2912 		if (unlikely(node != NUMA_NO_NODE &&
2913 			     !node_isset(node, slab_nodes)))
2914 			node = NUMA_NO_NODE;
2915 		goto new_slab;
2916 	}
2917 redo:
2918 
2919 	if (unlikely(!node_match(slab, node))) {
2920 		/*
2921 		 * same as above but node_match() being false already
2922 		 * implies node != NUMA_NO_NODE
2923 		 */
2924 		if (!node_isset(node, slab_nodes)) {
2925 			node = NUMA_NO_NODE;
2926 			goto redo;
2927 		} else {
2928 			stat(s, ALLOC_NODE_MISMATCH);
2929 			goto deactivate_slab;
2930 		}
2931 	}
2932 
2933 	/*
2934 	 * By rights, we should be searching for a slab page that was
2935 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2936 	 * information when the page leaves the per-cpu allocator
2937 	 */
2938 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
2939 		goto deactivate_slab;
2940 
2941 	/* must check again c->slab in case we got preempted and it changed */
2942 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2943 	if (unlikely(slab != c->slab)) {
2944 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2945 		goto reread_slab;
2946 	}
2947 	freelist = c->freelist;
2948 	if (freelist)
2949 		goto load_freelist;
2950 
2951 	freelist = get_freelist(s, slab);
2952 
2953 	if (!freelist) {
2954 		c->slab = NULL;
2955 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2956 		stat(s, DEACTIVATE_BYPASS);
2957 		goto new_slab;
2958 	}
2959 
2960 	stat(s, ALLOC_REFILL);
2961 
2962 load_freelist:
2963 
2964 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2965 
2966 	/*
2967 	 * freelist is pointing to the list of objects to be used.
2968 	 * slab is pointing to the slab from which the objects are obtained.
2969 	 * That slab must be frozen for per cpu allocations to work.
2970 	 */
2971 	VM_BUG_ON(!c->slab->frozen);
2972 	c->freelist = get_freepointer(s, freelist);
2973 	c->tid = next_tid(c->tid);
2974 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2975 	return freelist;
2976 
2977 deactivate_slab:
2978 
2979 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2980 	if (slab != c->slab) {
2981 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2982 		goto reread_slab;
2983 	}
2984 	freelist = c->freelist;
2985 	c->slab = NULL;
2986 	c->freelist = NULL;
2987 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2988 	deactivate_slab(s, slab, freelist);
2989 
2990 new_slab:
2991 
2992 	if (slub_percpu_partial(c)) {
2993 		local_lock_irqsave(&s->cpu_slab->lock, flags);
2994 		if (unlikely(c->slab)) {
2995 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2996 			goto reread_slab;
2997 		}
2998 		if (unlikely(!slub_percpu_partial(c))) {
2999 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3000 			/* we were preempted and partial list got empty */
3001 			goto new_objects;
3002 		}
3003 
3004 		slab = c->slab = slub_percpu_partial(c);
3005 		slub_set_percpu_partial(c, slab);
3006 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3007 		stat(s, CPU_PARTIAL_ALLOC);
3008 		goto redo;
3009 	}
3010 
3011 new_objects:
3012 
3013 	freelist = get_partial(s, gfpflags, node, &slab);
3014 	if (freelist)
3015 		goto check_new_slab;
3016 
3017 	slub_put_cpu_ptr(s->cpu_slab);
3018 	slab = new_slab(s, gfpflags, node);
3019 	c = slub_get_cpu_ptr(s->cpu_slab);
3020 
3021 	if (unlikely(!slab)) {
3022 		slab_out_of_memory(s, gfpflags, node);
3023 		return NULL;
3024 	}
3025 
3026 	/*
3027 	 * No other reference to the slab yet so we can
3028 	 * muck around with it freely without cmpxchg
3029 	 */
3030 	freelist = slab->freelist;
3031 	slab->freelist = NULL;
3032 
3033 	stat(s, ALLOC_SLAB);
3034 
3035 check_new_slab:
3036 
3037 	if (kmem_cache_debug(s)) {
3038 		if (!alloc_debug_processing(s, slab, freelist, addr)) {
3039 			/* Slab failed checks. Next slab needed */
3040 			goto new_slab;
3041 		} else {
3042 			/*
3043 			 * For debug case, we don't load freelist so that all
3044 			 * allocations go through alloc_debug_processing()
3045 			 */
3046 			goto return_single;
3047 		}
3048 	}
3049 
3050 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3051 		/*
3052 		 * For !pfmemalloc_match() case we don't load freelist so that
3053 		 * we don't make further mismatched allocations easier.
3054 		 */
3055 		goto return_single;
3056 
3057 retry_load_slab:
3058 
3059 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3060 	if (unlikely(c->slab)) {
3061 		void *flush_freelist = c->freelist;
3062 		struct slab *flush_slab = c->slab;
3063 
3064 		c->slab = NULL;
3065 		c->freelist = NULL;
3066 		c->tid = next_tid(c->tid);
3067 
3068 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3069 
3070 		deactivate_slab(s, flush_slab, flush_freelist);
3071 
3072 		stat(s, CPUSLAB_FLUSH);
3073 
3074 		goto retry_load_slab;
3075 	}
3076 	c->slab = slab;
3077 
3078 	goto load_freelist;
3079 
3080 return_single:
3081 
3082 	deactivate_slab(s, slab, get_freepointer(s, freelist));
3083 	return freelist;
3084 }
3085 
3086 /*
3087  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3088  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3089  * pointer.
3090  */
3091 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3092 			  unsigned long addr, struct kmem_cache_cpu *c)
3093 {
3094 	void *p;
3095 
3096 #ifdef CONFIG_PREEMPT_COUNT
3097 	/*
3098 	 * We may have been preempted and rescheduled on a different
3099 	 * cpu before disabling preemption. Need to reload cpu area
3100 	 * pointer.
3101 	 */
3102 	c = slub_get_cpu_ptr(s->cpu_slab);
3103 #endif
3104 
3105 	p = ___slab_alloc(s, gfpflags, node, addr, c);
3106 #ifdef CONFIG_PREEMPT_COUNT
3107 	slub_put_cpu_ptr(s->cpu_slab);
3108 #endif
3109 	return p;
3110 }
3111 
3112 /*
3113  * If the object has been wiped upon free, make sure it's fully initialized by
3114  * zeroing out freelist pointer.
3115  */
3116 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3117 						   void *obj)
3118 {
3119 	if (unlikely(slab_want_init_on_free(s)) && obj)
3120 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3121 			0, sizeof(void *));
3122 }
3123 
3124 /*
3125  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3126  * have the fastpath folded into their functions. So no function call
3127  * overhead for requests that can be satisfied on the fastpath.
3128  *
3129  * The fastpath works by first checking if the lockless freelist can be used.
3130  * If not then __slab_alloc is called for slow processing.
3131  *
3132  * Otherwise we can simply pick the next object from the lockless free list.
3133  */
3134 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
3135 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3136 {
3137 	void *object;
3138 	struct kmem_cache_cpu *c;
3139 	struct slab *slab;
3140 	unsigned long tid;
3141 	struct obj_cgroup *objcg = NULL;
3142 	bool init = false;
3143 
3144 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
3145 	if (!s)
3146 		return NULL;
3147 
3148 	object = kfence_alloc(s, orig_size, gfpflags);
3149 	if (unlikely(object))
3150 		goto out;
3151 
3152 redo:
3153 	/*
3154 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3155 	 * enabled. We may switch back and forth between cpus while
3156 	 * reading from one cpu area. That does not matter as long
3157 	 * as we end up on the original cpu again when doing the cmpxchg.
3158 	 *
3159 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3160 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3161 	 * the tid. If we are preempted and switched to another cpu between the
3162 	 * two reads, it's OK as the two are still associated with the same cpu
3163 	 * and cmpxchg later will validate the cpu.
3164 	 */
3165 	c = raw_cpu_ptr(s->cpu_slab);
3166 	tid = READ_ONCE(c->tid);
3167 
3168 	/*
3169 	 * Irqless object alloc/free algorithm used here depends on sequence
3170 	 * of fetching cpu_slab's data. tid should be fetched before anything
3171 	 * on c to guarantee that object and slab associated with previous tid
3172 	 * won't be used with current tid. If we fetch tid first, object and
3173 	 * slab could be one associated with next tid and our alloc/free
3174 	 * request will be failed. In this case, we will retry. So, no problem.
3175 	 */
3176 	barrier();
3177 
3178 	/*
3179 	 * The transaction ids are globally unique per cpu and per operation on
3180 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3181 	 * occurs on the right processor and that there was no operation on the
3182 	 * linked list in between.
3183 	 */
3184 
3185 	object = c->freelist;
3186 	slab = c->slab;
3187 	/*
3188 	 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3189 	 * slowpath has taken the local_lock_irqsave(), it is not protected
3190 	 * against a fast path operation in an irq handler. So we need to take
3191 	 * the slow path which uses local_lock. It is still relatively fast if
3192 	 * there is a suitable cpu freelist.
3193 	 */
3194 	if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3195 	    unlikely(!object || !slab || !node_match(slab, node))) {
3196 		object = __slab_alloc(s, gfpflags, node, addr, c);
3197 	} else {
3198 		void *next_object = get_freepointer_safe(s, object);
3199 
3200 		/*
3201 		 * The cmpxchg will only match if there was no additional
3202 		 * operation and if we are on the right processor.
3203 		 *
3204 		 * The cmpxchg does the following atomically (without lock
3205 		 * semantics!)
3206 		 * 1. Relocate first pointer to the current per cpu area.
3207 		 * 2. Verify that tid and freelist have not been changed
3208 		 * 3. If they were not changed replace tid and freelist
3209 		 *
3210 		 * Since this is without lock semantics the protection is only
3211 		 * against code executing on this cpu *not* from access by
3212 		 * other cpus.
3213 		 */
3214 		if (unlikely(!this_cpu_cmpxchg_double(
3215 				s->cpu_slab->freelist, s->cpu_slab->tid,
3216 				object, tid,
3217 				next_object, next_tid(tid)))) {
3218 
3219 			note_cmpxchg_failure("slab_alloc", s, tid);
3220 			goto redo;
3221 		}
3222 		prefetch_freepointer(s, next_object);
3223 		stat(s, ALLOC_FASTPATH);
3224 	}
3225 
3226 	maybe_wipe_obj_freeptr(s, object);
3227 	init = slab_want_init_on_alloc(gfpflags, s);
3228 
3229 out:
3230 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3231 
3232 	return object;
3233 }
3234 
3235 static __always_inline void *slab_alloc(struct kmem_cache *s,
3236 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3237 {
3238 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
3239 }
3240 
3241 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3242 {
3243 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
3244 
3245 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3246 				s->size, gfpflags);
3247 
3248 	return ret;
3249 }
3250 EXPORT_SYMBOL(kmem_cache_alloc);
3251 
3252 #ifdef CONFIG_TRACING
3253 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3254 {
3255 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
3256 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3257 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3258 	return ret;
3259 }
3260 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3261 #endif
3262 
3263 #ifdef CONFIG_NUMA
3264 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3265 {
3266 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3267 
3268 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3269 				    s->object_size, s->size, gfpflags, node);
3270 
3271 	return ret;
3272 }
3273 EXPORT_SYMBOL(kmem_cache_alloc_node);
3274 
3275 #ifdef CONFIG_TRACING
3276 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3277 				    gfp_t gfpflags,
3278 				    int node, size_t size)
3279 {
3280 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3281 
3282 	trace_kmalloc_node(_RET_IP_, ret,
3283 			   size, s->size, gfpflags, node);
3284 
3285 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3286 	return ret;
3287 }
3288 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3289 #endif
3290 #endif	/* CONFIG_NUMA */
3291 
3292 /*
3293  * Slow path handling. This may still be called frequently since objects
3294  * have a longer lifetime than the cpu slabs in most processing loads.
3295  *
3296  * So we still attempt to reduce cache line usage. Just take the slab
3297  * lock and free the item. If there is no additional partial slab
3298  * handling required then we can return immediately.
3299  */
3300 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3301 			void *head, void *tail, int cnt,
3302 			unsigned long addr)
3303 
3304 {
3305 	void *prior;
3306 	int was_frozen;
3307 	struct slab new;
3308 	unsigned long counters;
3309 	struct kmem_cache_node *n = NULL;
3310 	unsigned long flags;
3311 
3312 	stat(s, FREE_SLOWPATH);
3313 
3314 	if (kfence_free(head))
3315 		return;
3316 
3317 	if (kmem_cache_debug(s) &&
3318 	    !free_debug_processing(s, slab, head, tail, cnt, addr))
3319 		return;
3320 
3321 	do {
3322 		if (unlikely(n)) {
3323 			spin_unlock_irqrestore(&n->list_lock, flags);
3324 			n = NULL;
3325 		}
3326 		prior = slab->freelist;
3327 		counters = slab->counters;
3328 		set_freepointer(s, tail, prior);
3329 		new.counters = counters;
3330 		was_frozen = new.frozen;
3331 		new.inuse -= cnt;
3332 		if ((!new.inuse || !prior) && !was_frozen) {
3333 
3334 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3335 
3336 				/*
3337 				 * Slab was on no list before and will be
3338 				 * partially empty
3339 				 * We can defer the list move and instead
3340 				 * freeze it.
3341 				 */
3342 				new.frozen = 1;
3343 
3344 			} else { /* Needs to be taken off a list */
3345 
3346 				n = get_node(s, slab_nid(slab));
3347 				/*
3348 				 * Speculatively acquire the list_lock.
3349 				 * If the cmpxchg does not succeed then we may
3350 				 * drop the list_lock without any processing.
3351 				 *
3352 				 * Otherwise the list_lock will synchronize with
3353 				 * other processors updating the list of slabs.
3354 				 */
3355 				spin_lock_irqsave(&n->list_lock, flags);
3356 
3357 			}
3358 		}
3359 
3360 	} while (!cmpxchg_double_slab(s, slab,
3361 		prior, counters,
3362 		head, new.counters,
3363 		"__slab_free"));
3364 
3365 	if (likely(!n)) {
3366 
3367 		if (likely(was_frozen)) {
3368 			/*
3369 			 * The list lock was not taken therefore no list
3370 			 * activity can be necessary.
3371 			 */
3372 			stat(s, FREE_FROZEN);
3373 		} else if (new.frozen) {
3374 			/*
3375 			 * If we just froze the slab then put it onto the
3376 			 * per cpu partial list.
3377 			 */
3378 			put_cpu_partial(s, slab, 1);
3379 			stat(s, CPU_PARTIAL_FREE);
3380 		}
3381 
3382 		return;
3383 	}
3384 
3385 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3386 		goto slab_empty;
3387 
3388 	/*
3389 	 * Objects left in the slab. If it was not on the partial list before
3390 	 * then add it.
3391 	 */
3392 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3393 		remove_full(s, n, slab);
3394 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3395 		stat(s, FREE_ADD_PARTIAL);
3396 	}
3397 	spin_unlock_irqrestore(&n->list_lock, flags);
3398 	return;
3399 
3400 slab_empty:
3401 	if (prior) {
3402 		/*
3403 		 * Slab on the partial list.
3404 		 */
3405 		remove_partial(n, slab);
3406 		stat(s, FREE_REMOVE_PARTIAL);
3407 	} else {
3408 		/* Slab must be on the full list */
3409 		remove_full(s, n, slab);
3410 	}
3411 
3412 	spin_unlock_irqrestore(&n->list_lock, flags);
3413 	stat(s, FREE_SLAB);
3414 	discard_slab(s, slab);
3415 }
3416 
3417 /*
3418  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3419  * can perform fastpath freeing without additional function calls.
3420  *
3421  * The fastpath is only possible if we are freeing to the current cpu slab
3422  * of this processor. This typically the case if we have just allocated
3423  * the item before.
3424  *
3425  * If fastpath is not possible then fall back to __slab_free where we deal
3426  * with all sorts of special processing.
3427  *
3428  * Bulk free of a freelist with several objects (all pointing to the
3429  * same slab) possible by specifying head and tail ptr, plus objects
3430  * count (cnt). Bulk free indicated by tail pointer being set.
3431  */
3432 static __always_inline void do_slab_free(struct kmem_cache *s,
3433 				struct slab *slab, void *head, void *tail,
3434 				int cnt, unsigned long addr)
3435 {
3436 	void *tail_obj = tail ? : head;
3437 	struct kmem_cache_cpu *c;
3438 	unsigned long tid;
3439 
3440 	/* memcg_slab_free_hook() is already called for bulk free. */
3441 	if (!tail)
3442 		memcg_slab_free_hook(s, &head, 1);
3443 redo:
3444 	/*
3445 	 * Determine the currently cpus per cpu slab.
3446 	 * The cpu may change afterward. However that does not matter since
3447 	 * data is retrieved via this pointer. If we are on the same cpu
3448 	 * during the cmpxchg then the free will succeed.
3449 	 */
3450 	c = raw_cpu_ptr(s->cpu_slab);
3451 	tid = READ_ONCE(c->tid);
3452 
3453 	/* Same with comment on barrier() in slab_alloc_node() */
3454 	barrier();
3455 
3456 	if (likely(slab == c->slab)) {
3457 #ifndef CONFIG_PREEMPT_RT
3458 		void **freelist = READ_ONCE(c->freelist);
3459 
3460 		set_freepointer(s, tail_obj, freelist);
3461 
3462 		if (unlikely(!this_cpu_cmpxchg_double(
3463 				s->cpu_slab->freelist, s->cpu_slab->tid,
3464 				freelist, tid,
3465 				head, next_tid(tid)))) {
3466 
3467 			note_cmpxchg_failure("slab_free", s, tid);
3468 			goto redo;
3469 		}
3470 #else /* CONFIG_PREEMPT_RT */
3471 		/*
3472 		 * We cannot use the lockless fastpath on PREEMPT_RT because if
3473 		 * a slowpath has taken the local_lock_irqsave(), it is not
3474 		 * protected against a fast path operation in an irq handler. So
3475 		 * we need to take the local_lock. We shouldn't simply defer to
3476 		 * __slab_free() as that wouldn't use the cpu freelist at all.
3477 		 */
3478 		void **freelist;
3479 
3480 		local_lock(&s->cpu_slab->lock);
3481 		c = this_cpu_ptr(s->cpu_slab);
3482 		if (unlikely(slab != c->slab)) {
3483 			local_unlock(&s->cpu_slab->lock);
3484 			goto redo;
3485 		}
3486 		tid = c->tid;
3487 		freelist = c->freelist;
3488 
3489 		set_freepointer(s, tail_obj, freelist);
3490 		c->freelist = head;
3491 		c->tid = next_tid(tid);
3492 
3493 		local_unlock(&s->cpu_slab->lock);
3494 #endif
3495 		stat(s, FREE_FASTPATH);
3496 	} else
3497 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3498 
3499 }
3500 
3501 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3502 				      void *head, void *tail, int cnt,
3503 				      unsigned long addr)
3504 {
3505 	/*
3506 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3507 	 * to remove objects, whose reuse must be delayed.
3508 	 */
3509 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3510 		do_slab_free(s, slab, head, tail, cnt, addr);
3511 }
3512 
3513 #ifdef CONFIG_KASAN_GENERIC
3514 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3515 {
3516 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3517 }
3518 #endif
3519 
3520 void kmem_cache_free(struct kmem_cache *s, void *x)
3521 {
3522 	s = cache_from_obj(s, x);
3523 	if (!s)
3524 		return;
3525 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3526 	slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_);
3527 }
3528 EXPORT_SYMBOL(kmem_cache_free);
3529 
3530 struct detached_freelist {
3531 	struct slab *slab;
3532 	void *tail;
3533 	void *freelist;
3534 	int cnt;
3535 	struct kmem_cache *s;
3536 };
3537 
3538 static inline void free_large_kmalloc(struct folio *folio, void *object)
3539 {
3540 	unsigned int order = folio_order(folio);
3541 
3542 	if (WARN_ON_ONCE(order == 0))
3543 		pr_warn_once("object pointer: 0x%p\n", object);
3544 
3545 	kfree_hook(object);
3546 	mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3547 			      -(PAGE_SIZE << order));
3548 	__free_pages(folio_page(folio, 0), order);
3549 }
3550 
3551 /*
3552  * This function progressively scans the array with free objects (with
3553  * a limited look ahead) and extract objects belonging to the same
3554  * slab.  It builds a detached freelist directly within the given
3555  * slab/objects.  This can happen without any need for
3556  * synchronization, because the objects are owned by running process.
3557  * The freelist is build up as a single linked list in the objects.
3558  * The idea is, that this detached freelist can then be bulk
3559  * transferred to the real freelist(s), but only requiring a single
3560  * synchronization primitive.  Look ahead in the array is limited due
3561  * to performance reasons.
3562  */
3563 static inline
3564 int build_detached_freelist(struct kmem_cache *s, size_t size,
3565 			    void **p, struct detached_freelist *df)
3566 {
3567 	size_t first_skipped_index = 0;
3568 	int lookahead = 3;
3569 	void *object;
3570 	struct folio *folio;
3571 	struct slab *slab;
3572 
3573 	/* Always re-init detached_freelist */
3574 	df->slab = NULL;
3575 
3576 	do {
3577 		object = p[--size];
3578 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3579 	} while (!object && size);
3580 
3581 	if (!object)
3582 		return 0;
3583 
3584 	folio = virt_to_folio(object);
3585 	if (!s) {
3586 		/* Handle kalloc'ed objects */
3587 		if (unlikely(!folio_test_slab(folio))) {
3588 			free_large_kmalloc(folio, object);
3589 			p[size] = NULL; /* mark object processed */
3590 			return size;
3591 		}
3592 		/* Derive kmem_cache from object */
3593 		slab = folio_slab(folio);
3594 		df->s = slab->slab_cache;
3595 	} else {
3596 		slab = folio_slab(folio);
3597 		df->s = cache_from_obj(s, object); /* Support for memcg */
3598 	}
3599 
3600 	if (is_kfence_address(object)) {
3601 		slab_free_hook(df->s, object, false);
3602 		__kfence_free(object);
3603 		p[size] = NULL; /* mark object processed */
3604 		return size;
3605 	}
3606 
3607 	/* Start new detached freelist */
3608 	df->slab = slab;
3609 	set_freepointer(df->s, object, NULL);
3610 	df->tail = object;
3611 	df->freelist = object;
3612 	p[size] = NULL; /* mark object processed */
3613 	df->cnt = 1;
3614 
3615 	while (size) {
3616 		object = p[--size];
3617 		if (!object)
3618 			continue; /* Skip processed objects */
3619 
3620 		/* df->slab is always set at this point */
3621 		if (df->slab == virt_to_slab(object)) {
3622 			/* Opportunity build freelist */
3623 			set_freepointer(df->s, object, df->freelist);
3624 			df->freelist = object;
3625 			df->cnt++;
3626 			p[size] = NULL; /* mark object processed */
3627 
3628 			continue;
3629 		}
3630 
3631 		/* Limit look ahead search */
3632 		if (!--lookahead)
3633 			break;
3634 
3635 		if (!first_skipped_index)
3636 			first_skipped_index = size + 1;
3637 	}
3638 
3639 	return first_skipped_index;
3640 }
3641 
3642 /* Note that interrupts must be enabled when calling this function. */
3643 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3644 {
3645 	if (WARN_ON(!size))
3646 		return;
3647 
3648 	memcg_slab_free_hook(s, p, size);
3649 	do {
3650 		struct detached_freelist df;
3651 
3652 		size = build_detached_freelist(s, size, p, &df);
3653 		if (!df.slab)
3654 			continue;
3655 
3656 		slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_);
3657 	} while (likely(size));
3658 }
3659 EXPORT_SYMBOL(kmem_cache_free_bulk);
3660 
3661 /* Note that interrupts must be enabled when calling this function. */
3662 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3663 			  void **p)
3664 {
3665 	struct kmem_cache_cpu *c;
3666 	int i;
3667 	struct obj_cgroup *objcg = NULL;
3668 
3669 	/* memcg and kmem_cache debug support */
3670 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3671 	if (unlikely(!s))
3672 		return false;
3673 	/*
3674 	 * Drain objects in the per cpu slab, while disabling local
3675 	 * IRQs, which protects against PREEMPT and interrupts
3676 	 * handlers invoking normal fastpath.
3677 	 */
3678 	c = slub_get_cpu_ptr(s->cpu_slab);
3679 	local_lock_irq(&s->cpu_slab->lock);
3680 
3681 	for (i = 0; i < size; i++) {
3682 		void *object = kfence_alloc(s, s->object_size, flags);
3683 
3684 		if (unlikely(object)) {
3685 			p[i] = object;
3686 			continue;
3687 		}
3688 
3689 		object = c->freelist;
3690 		if (unlikely(!object)) {
3691 			/*
3692 			 * We may have removed an object from c->freelist using
3693 			 * the fastpath in the previous iteration; in that case,
3694 			 * c->tid has not been bumped yet.
3695 			 * Since ___slab_alloc() may reenable interrupts while
3696 			 * allocating memory, we should bump c->tid now.
3697 			 */
3698 			c->tid = next_tid(c->tid);
3699 
3700 			local_unlock_irq(&s->cpu_slab->lock);
3701 
3702 			/*
3703 			 * Invoking slow path likely have side-effect
3704 			 * of re-populating per CPU c->freelist
3705 			 */
3706 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3707 					    _RET_IP_, c);
3708 			if (unlikely(!p[i]))
3709 				goto error;
3710 
3711 			c = this_cpu_ptr(s->cpu_slab);
3712 			maybe_wipe_obj_freeptr(s, p[i]);
3713 
3714 			local_lock_irq(&s->cpu_slab->lock);
3715 
3716 			continue; /* goto for-loop */
3717 		}
3718 		c->freelist = get_freepointer(s, object);
3719 		p[i] = object;
3720 		maybe_wipe_obj_freeptr(s, p[i]);
3721 	}
3722 	c->tid = next_tid(c->tid);
3723 	local_unlock_irq(&s->cpu_slab->lock);
3724 	slub_put_cpu_ptr(s->cpu_slab);
3725 
3726 	/*
3727 	 * memcg and kmem_cache debug support and memory initialization.
3728 	 * Done outside of the IRQ disabled fastpath loop.
3729 	 */
3730 	slab_post_alloc_hook(s, objcg, flags, size, p,
3731 				slab_want_init_on_alloc(flags, s));
3732 	return i;
3733 error:
3734 	slub_put_cpu_ptr(s->cpu_slab);
3735 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3736 	__kmem_cache_free_bulk(s, i, p);
3737 	return 0;
3738 }
3739 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3740 
3741 
3742 /*
3743  * Object placement in a slab is made very easy because we always start at
3744  * offset 0. If we tune the size of the object to the alignment then we can
3745  * get the required alignment by putting one properly sized object after
3746  * another.
3747  *
3748  * Notice that the allocation order determines the sizes of the per cpu
3749  * caches. Each processor has always one slab available for allocations.
3750  * Increasing the allocation order reduces the number of times that slabs
3751  * must be moved on and off the partial lists and is therefore a factor in
3752  * locking overhead.
3753  */
3754 
3755 /*
3756  * Minimum / Maximum order of slab pages. This influences locking overhead
3757  * and slab fragmentation. A higher order reduces the number of partial slabs
3758  * and increases the number of allocations possible without having to
3759  * take the list_lock.
3760  */
3761 static unsigned int slub_min_order;
3762 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3763 static unsigned int slub_min_objects;
3764 
3765 /*
3766  * Calculate the order of allocation given an slab object size.
3767  *
3768  * The order of allocation has significant impact on performance and other
3769  * system components. Generally order 0 allocations should be preferred since
3770  * order 0 does not cause fragmentation in the page allocator. Larger objects
3771  * be problematic to put into order 0 slabs because there may be too much
3772  * unused space left. We go to a higher order if more than 1/16th of the slab
3773  * would be wasted.
3774  *
3775  * In order to reach satisfactory performance we must ensure that a minimum
3776  * number of objects is in one slab. Otherwise we may generate too much
3777  * activity on the partial lists which requires taking the list_lock. This is
3778  * less a concern for large slabs though which are rarely used.
3779  *
3780  * slub_max_order specifies the order where we begin to stop considering the
3781  * number of objects in a slab as critical. If we reach slub_max_order then
3782  * we try to keep the page order as low as possible. So we accept more waste
3783  * of space in favor of a small page order.
3784  *
3785  * Higher order allocations also allow the placement of more objects in a
3786  * slab and thereby reduce object handling overhead. If the user has
3787  * requested a higher minimum order then we start with that one instead of
3788  * the smallest order which will fit the object.
3789  */
3790 static inline unsigned int calc_slab_order(unsigned int size,
3791 		unsigned int min_objects, unsigned int max_order,
3792 		unsigned int fract_leftover)
3793 {
3794 	unsigned int min_order = slub_min_order;
3795 	unsigned int order;
3796 
3797 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3798 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3799 
3800 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3801 			order <= max_order; order++) {
3802 
3803 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3804 		unsigned int rem;
3805 
3806 		rem = slab_size % size;
3807 
3808 		if (rem <= slab_size / fract_leftover)
3809 			break;
3810 	}
3811 
3812 	return order;
3813 }
3814 
3815 static inline int calculate_order(unsigned int size)
3816 {
3817 	unsigned int order;
3818 	unsigned int min_objects;
3819 	unsigned int max_objects;
3820 	unsigned int nr_cpus;
3821 
3822 	/*
3823 	 * Attempt to find best configuration for a slab. This
3824 	 * works by first attempting to generate a layout with
3825 	 * the best configuration and backing off gradually.
3826 	 *
3827 	 * First we increase the acceptable waste in a slab. Then
3828 	 * we reduce the minimum objects required in a slab.
3829 	 */
3830 	min_objects = slub_min_objects;
3831 	if (!min_objects) {
3832 		/*
3833 		 * Some architectures will only update present cpus when
3834 		 * onlining them, so don't trust the number if it's just 1. But
3835 		 * we also don't want to use nr_cpu_ids always, as on some other
3836 		 * architectures, there can be many possible cpus, but never
3837 		 * onlined. Here we compromise between trying to avoid too high
3838 		 * order on systems that appear larger than they are, and too
3839 		 * low order on systems that appear smaller than they are.
3840 		 */
3841 		nr_cpus = num_present_cpus();
3842 		if (nr_cpus <= 1)
3843 			nr_cpus = nr_cpu_ids;
3844 		min_objects = 4 * (fls(nr_cpus) + 1);
3845 	}
3846 	max_objects = order_objects(slub_max_order, size);
3847 	min_objects = min(min_objects, max_objects);
3848 
3849 	while (min_objects > 1) {
3850 		unsigned int fraction;
3851 
3852 		fraction = 16;
3853 		while (fraction >= 4) {
3854 			order = calc_slab_order(size, min_objects,
3855 					slub_max_order, fraction);
3856 			if (order <= slub_max_order)
3857 				return order;
3858 			fraction /= 2;
3859 		}
3860 		min_objects--;
3861 	}
3862 
3863 	/*
3864 	 * We were unable to place multiple objects in a slab. Now
3865 	 * lets see if we can place a single object there.
3866 	 */
3867 	order = calc_slab_order(size, 1, slub_max_order, 1);
3868 	if (order <= slub_max_order)
3869 		return order;
3870 
3871 	/*
3872 	 * Doh this slab cannot be placed using slub_max_order.
3873 	 */
3874 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
3875 	if (order < MAX_ORDER)
3876 		return order;
3877 	return -ENOSYS;
3878 }
3879 
3880 static void
3881 init_kmem_cache_node(struct kmem_cache_node *n)
3882 {
3883 	n->nr_partial = 0;
3884 	spin_lock_init(&n->list_lock);
3885 	INIT_LIST_HEAD(&n->partial);
3886 #ifdef CONFIG_SLUB_DEBUG
3887 	atomic_long_set(&n->nr_slabs, 0);
3888 	atomic_long_set(&n->total_objects, 0);
3889 	INIT_LIST_HEAD(&n->full);
3890 #endif
3891 }
3892 
3893 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3894 {
3895 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3896 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3897 
3898 	/*
3899 	 * Must align to double word boundary for the double cmpxchg
3900 	 * instructions to work; see __pcpu_double_call_return_bool().
3901 	 */
3902 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3903 				     2 * sizeof(void *));
3904 
3905 	if (!s->cpu_slab)
3906 		return 0;
3907 
3908 	init_kmem_cache_cpus(s);
3909 
3910 	return 1;
3911 }
3912 
3913 static struct kmem_cache *kmem_cache_node;
3914 
3915 /*
3916  * No kmalloc_node yet so do it by hand. We know that this is the first
3917  * slab on the node for this slabcache. There are no concurrent accesses
3918  * possible.
3919  *
3920  * Note that this function only works on the kmem_cache_node
3921  * when allocating for the kmem_cache_node. This is used for bootstrapping
3922  * memory on a fresh node that has no slab structures yet.
3923  */
3924 static void early_kmem_cache_node_alloc(int node)
3925 {
3926 	struct slab *slab;
3927 	struct kmem_cache_node *n;
3928 
3929 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3930 
3931 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3932 
3933 	BUG_ON(!slab);
3934 	if (slab_nid(slab) != node) {
3935 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3936 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3937 	}
3938 
3939 	n = slab->freelist;
3940 	BUG_ON(!n);
3941 #ifdef CONFIG_SLUB_DEBUG
3942 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3943 	init_tracking(kmem_cache_node, n);
3944 #endif
3945 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3946 	slab->freelist = get_freepointer(kmem_cache_node, n);
3947 	slab->inuse = 1;
3948 	slab->frozen = 0;
3949 	kmem_cache_node->node[node] = n;
3950 	init_kmem_cache_node(n);
3951 	inc_slabs_node(kmem_cache_node, node, slab->objects);
3952 
3953 	/*
3954 	 * No locks need to be taken here as it has just been
3955 	 * initialized and there is no concurrent access.
3956 	 */
3957 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
3958 }
3959 
3960 static void free_kmem_cache_nodes(struct kmem_cache *s)
3961 {
3962 	int node;
3963 	struct kmem_cache_node *n;
3964 
3965 	for_each_kmem_cache_node(s, node, n) {
3966 		s->node[node] = NULL;
3967 		kmem_cache_free(kmem_cache_node, n);
3968 	}
3969 }
3970 
3971 void __kmem_cache_release(struct kmem_cache *s)
3972 {
3973 	cache_random_seq_destroy(s);
3974 	free_percpu(s->cpu_slab);
3975 	free_kmem_cache_nodes(s);
3976 }
3977 
3978 static int init_kmem_cache_nodes(struct kmem_cache *s)
3979 {
3980 	int node;
3981 
3982 	for_each_node_mask(node, slab_nodes) {
3983 		struct kmem_cache_node *n;
3984 
3985 		if (slab_state == DOWN) {
3986 			early_kmem_cache_node_alloc(node);
3987 			continue;
3988 		}
3989 		n = kmem_cache_alloc_node(kmem_cache_node,
3990 						GFP_KERNEL, node);
3991 
3992 		if (!n) {
3993 			free_kmem_cache_nodes(s);
3994 			return 0;
3995 		}
3996 
3997 		init_kmem_cache_node(n);
3998 		s->node[node] = n;
3999 	}
4000 	return 1;
4001 }
4002 
4003 static void set_min_partial(struct kmem_cache *s, unsigned long min)
4004 {
4005 	if (min < MIN_PARTIAL)
4006 		min = MIN_PARTIAL;
4007 	else if (min > MAX_PARTIAL)
4008 		min = MAX_PARTIAL;
4009 	s->min_partial = min;
4010 }
4011 
4012 static void set_cpu_partial(struct kmem_cache *s)
4013 {
4014 #ifdef CONFIG_SLUB_CPU_PARTIAL
4015 	unsigned int nr_objects;
4016 
4017 	/*
4018 	 * cpu_partial determined the maximum number of objects kept in the
4019 	 * per cpu partial lists of a processor.
4020 	 *
4021 	 * Per cpu partial lists mainly contain slabs that just have one
4022 	 * object freed. If they are used for allocation then they can be
4023 	 * filled up again with minimal effort. The slab will never hit the
4024 	 * per node partial lists and therefore no locking will be required.
4025 	 *
4026 	 * For backwards compatibility reasons, this is determined as number
4027 	 * of objects, even though we now limit maximum number of pages, see
4028 	 * slub_set_cpu_partial()
4029 	 */
4030 	if (!kmem_cache_has_cpu_partial(s))
4031 		nr_objects = 0;
4032 	else if (s->size >= PAGE_SIZE)
4033 		nr_objects = 6;
4034 	else if (s->size >= 1024)
4035 		nr_objects = 24;
4036 	else if (s->size >= 256)
4037 		nr_objects = 52;
4038 	else
4039 		nr_objects = 120;
4040 
4041 	slub_set_cpu_partial(s, nr_objects);
4042 #endif
4043 }
4044 
4045 /*
4046  * calculate_sizes() determines the order and the distribution of data within
4047  * a slab object.
4048  */
4049 static int calculate_sizes(struct kmem_cache *s, int forced_order)
4050 {
4051 	slab_flags_t flags = s->flags;
4052 	unsigned int size = s->object_size;
4053 	unsigned int order;
4054 
4055 	/*
4056 	 * Round up object size to the next word boundary. We can only
4057 	 * place the free pointer at word boundaries and this determines
4058 	 * the possible location of the free pointer.
4059 	 */
4060 	size = ALIGN(size, sizeof(void *));
4061 
4062 #ifdef CONFIG_SLUB_DEBUG
4063 	/*
4064 	 * Determine if we can poison the object itself. If the user of
4065 	 * the slab may touch the object after free or before allocation
4066 	 * then we should never poison the object itself.
4067 	 */
4068 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4069 			!s->ctor)
4070 		s->flags |= __OBJECT_POISON;
4071 	else
4072 		s->flags &= ~__OBJECT_POISON;
4073 
4074 
4075 	/*
4076 	 * If we are Redzoning then check if there is some space between the
4077 	 * end of the object and the free pointer. If not then add an
4078 	 * additional word to have some bytes to store Redzone information.
4079 	 */
4080 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4081 		size += sizeof(void *);
4082 #endif
4083 
4084 	/*
4085 	 * With that we have determined the number of bytes in actual use
4086 	 * by the object and redzoning.
4087 	 */
4088 	s->inuse = size;
4089 
4090 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4091 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4092 	    s->ctor) {
4093 		/*
4094 		 * Relocate free pointer after the object if it is not
4095 		 * permitted to overwrite the first word of the object on
4096 		 * kmem_cache_free.
4097 		 *
4098 		 * This is the case if we do RCU, have a constructor or
4099 		 * destructor, are poisoning the objects, or are
4100 		 * redzoning an object smaller than sizeof(void *).
4101 		 *
4102 		 * The assumption that s->offset >= s->inuse means free
4103 		 * pointer is outside of the object is used in the
4104 		 * freeptr_outside_object() function. If that is no
4105 		 * longer true, the function needs to be modified.
4106 		 */
4107 		s->offset = size;
4108 		size += sizeof(void *);
4109 	} else {
4110 		/*
4111 		 * Store freelist pointer near middle of object to keep
4112 		 * it away from the edges of the object to avoid small
4113 		 * sized over/underflows from neighboring allocations.
4114 		 */
4115 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4116 	}
4117 
4118 #ifdef CONFIG_SLUB_DEBUG
4119 	if (flags & SLAB_STORE_USER)
4120 		/*
4121 		 * Need to store information about allocs and frees after
4122 		 * the object.
4123 		 */
4124 		size += 2 * sizeof(struct track);
4125 #endif
4126 
4127 	kasan_cache_create(s, &size, &s->flags);
4128 #ifdef CONFIG_SLUB_DEBUG
4129 	if (flags & SLAB_RED_ZONE) {
4130 		/*
4131 		 * Add some empty padding so that we can catch
4132 		 * overwrites from earlier objects rather than let
4133 		 * tracking information or the free pointer be
4134 		 * corrupted if a user writes before the start
4135 		 * of the object.
4136 		 */
4137 		size += sizeof(void *);
4138 
4139 		s->red_left_pad = sizeof(void *);
4140 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4141 		size += s->red_left_pad;
4142 	}
4143 #endif
4144 
4145 	/*
4146 	 * SLUB stores one object immediately after another beginning from
4147 	 * offset 0. In order to align the objects we have to simply size
4148 	 * each object to conform to the alignment.
4149 	 */
4150 	size = ALIGN(size, s->align);
4151 	s->size = size;
4152 	s->reciprocal_size = reciprocal_value(size);
4153 	if (forced_order >= 0)
4154 		order = forced_order;
4155 	else
4156 		order = calculate_order(size);
4157 
4158 	if ((int)order < 0)
4159 		return 0;
4160 
4161 	s->allocflags = 0;
4162 	if (order)
4163 		s->allocflags |= __GFP_COMP;
4164 
4165 	if (s->flags & SLAB_CACHE_DMA)
4166 		s->allocflags |= GFP_DMA;
4167 
4168 	if (s->flags & SLAB_CACHE_DMA32)
4169 		s->allocflags |= GFP_DMA32;
4170 
4171 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4172 		s->allocflags |= __GFP_RECLAIMABLE;
4173 
4174 	/*
4175 	 * Determine the number of objects per slab
4176 	 */
4177 	s->oo = oo_make(order, size);
4178 	s->min = oo_make(get_order(size), size);
4179 	if (oo_objects(s->oo) > oo_objects(s->max))
4180 		s->max = s->oo;
4181 
4182 	return !!oo_objects(s->oo);
4183 }
4184 
4185 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4186 {
4187 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4188 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4189 	s->random = get_random_long();
4190 #endif
4191 
4192 	if (!calculate_sizes(s, -1))
4193 		goto error;
4194 	if (disable_higher_order_debug) {
4195 		/*
4196 		 * Disable debugging flags that store metadata if the min slab
4197 		 * order increased.
4198 		 */
4199 		if (get_order(s->size) > get_order(s->object_size)) {
4200 			s->flags &= ~DEBUG_METADATA_FLAGS;
4201 			s->offset = 0;
4202 			if (!calculate_sizes(s, -1))
4203 				goto error;
4204 		}
4205 	}
4206 
4207 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4208     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4209 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4210 		/* Enable fast mode */
4211 		s->flags |= __CMPXCHG_DOUBLE;
4212 #endif
4213 
4214 	/*
4215 	 * The larger the object size is, the more slabs we want on the partial
4216 	 * list to avoid pounding the page allocator excessively.
4217 	 */
4218 	set_min_partial(s, ilog2(s->size) / 2);
4219 
4220 	set_cpu_partial(s);
4221 
4222 #ifdef CONFIG_NUMA
4223 	s->remote_node_defrag_ratio = 1000;
4224 #endif
4225 
4226 	/* Initialize the pre-computed randomized freelist if slab is up */
4227 	if (slab_state >= UP) {
4228 		if (init_cache_random_seq(s))
4229 			goto error;
4230 	}
4231 
4232 	if (!init_kmem_cache_nodes(s))
4233 		goto error;
4234 
4235 	if (alloc_kmem_cache_cpus(s))
4236 		return 0;
4237 
4238 error:
4239 	__kmem_cache_release(s);
4240 	return -EINVAL;
4241 }
4242 
4243 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4244 			      const char *text)
4245 {
4246 #ifdef CONFIG_SLUB_DEBUG
4247 	void *addr = slab_address(slab);
4248 	unsigned long flags;
4249 	unsigned long *map;
4250 	void *p;
4251 
4252 	slab_err(s, slab, text, s->name);
4253 	slab_lock(slab, &flags);
4254 
4255 	map = get_map(s, slab);
4256 	for_each_object(p, s, addr, slab->objects) {
4257 
4258 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
4259 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4260 			print_tracking(s, p);
4261 		}
4262 	}
4263 	put_map(map);
4264 	slab_unlock(slab, &flags);
4265 #endif
4266 }
4267 
4268 /*
4269  * Attempt to free all partial slabs on a node.
4270  * This is called from __kmem_cache_shutdown(). We must take list_lock
4271  * because sysfs file might still access partial list after the shutdowning.
4272  */
4273 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4274 {
4275 	LIST_HEAD(discard);
4276 	struct slab *slab, *h;
4277 
4278 	BUG_ON(irqs_disabled());
4279 	spin_lock_irq(&n->list_lock);
4280 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4281 		if (!slab->inuse) {
4282 			remove_partial(n, slab);
4283 			list_add(&slab->slab_list, &discard);
4284 		} else {
4285 			list_slab_objects(s, slab,
4286 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4287 		}
4288 	}
4289 	spin_unlock_irq(&n->list_lock);
4290 
4291 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4292 		discard_slab(s, slab);
4293 }
4294 
4295 bool __kmem_cache_empty(struct kmem_cache *s)
4296 {
4297 	int node;
4298 	struct kmem_cache_node *n;
4299 
4300 	for_each_kmem_cache_node(s, node, n)
4301 		if (n->nr_partial || slabs_node(s, node))
4302 			return false;
4303 	return true;
4304 }
4305 
4306 /*
4307  * Release all resources used by a slab cache.
4308  */
4309 int __kmem_cache_shutdown(struct kmem_cache *s)
4310 {
4311 	int node;
4312 	struct kmem_cache_node *n;
4313 
4314 	flush_all_cpus_locked(s);
4315 	/* Attempt to free all objects */
4316 	for_each_kmem_cache_node(s, node, n) {
4317 		free_partial(s, n);
4318 		if (n->nr_partial || slabs_node(s, node))
4319 			return 1;
4320 	}
4321 	return 0;
4322 }
4323 
4324 #ifdef CONFIG_PRINTK
4325 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4326 {
4327 	void *base;
4328 	int __maybe_unused i;
4329 	unsigned int objnr;
4330 	void *objp;
4331 	void *objp0;
4332 	struct kmem_cache *s = slab->slab_cache;
4333 	struct track __maybe_unused *trackp;
4334 
4335 	kpp->kp_ptr = object;
4336 	kpp->kp_slab = slab;
4337 	kpp->kp_slab_cache = s;
4338 	base = slab_address(slab);
4339 	objp0 = kasan_reset_tag(object);
4340 #ifdef CONFIG_SLUB_DEBUG
4341 	objp = restore_red_left(s, objp0);
4342 #else
4343 	objp = objp0;
4344 #endif
4345 	objnr = obj_to_index(s, slab, objp);
4346 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4347 	objp = base + s->size * objnr;
4348 	kpp->kp_objp = objp;
4349 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4350 			 || (objp - base) % s->size) ||
4351 	    !(s->flags & SLAB_STORE_USER))
4352 		return;
4353 #ifdef CONFIG_SLUB_DEBUG
4354 	objp = fixup_red_left(s, objp);
4355 	trackp = get_track(s, objp, TRACK_ALLOC);
4356 	kpp->kp_ret = (void *)trackp->addr;
4357 #ifdef CONFIG_STACKTRACE
4358 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4359 		kpp->kp_stack[i] = (void *)trackp->addrs[i];
4360 		if (!kpp->kp_stack[i])
4361 			break;
4362 	}
4363 
4364 	trackp = get_track(s, objp, TRACK_FREE);
4365 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4366 		kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4367 		if (!kpp->kp_free_stack[i])
4368 			break;
4369 	}
4370 #endif
4371 #endif
4372 }
4373 #endif
4374 
4375 /********************************************************************
4376  *		Kmalloc subsystem
4377  *******************************************************************/
4378 
4379 static int __init setup_slub_min_order(char *str)
4380 {
4381 	get_option(&str, (int *)&slub_min_order);
4382 
4383 	return 1;
4384 }
4385 
4386 __setup("slub_min_order=", setup_slub_min_order);
4387 
4388 static int __init setup_slub_max_order(char *str)
4389 {
4390 	get_option(&str, (int *)&slub_max_order);
4391 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4392 
4393 	return 1;
4394 }
4395 
4396 __setup("slub_max_order=", setup_slub_max_order);
4397 
4398 static int __init setup_slub_min_objects(char *str)
4399 {
4400 	get_option(&str, (int *)&slub_min_objects);
4401 
4402 	return 1;
4403 }
4404 
4405 __setup("slub_min_objects=", setup_slub_min_objects);
4406 
4407 void *__kmalloc(size_t size, gfp_t flags)
4408 {
4409 	struct kmem_cache *s;
4410 	void *ret;
4411 
4412 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4413 		return kmalloc_large(size, flags);
4414 
4415 	s = kmalloc_slab(size, flags);
4416 
4417 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4418 		return s;
4419 
4420 	ret = slab_alloc(s, flags, _RET_IP_, size);
4421 
4422 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4423 
4424 	ret = kasan_kmalloc(s, ret, size, flags);
4425 
4426 	return ret;
4427 }
4428 EXPORT_SYMBOL(__kmalloc);
4429 
4430 #ifdef CONFIG_NUMA
4431 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4432 {
4433 	struct page *page;
4434 	void *ptr = NULL;
4435 	unsigned int order = get_order(size);
4436 
4437 	flags |= __GFP_COMP;
4438 	page = alloc_pages_node(node, flags, order);
4439 	if (page) {
4440 		ptr = page_address(page);
4441 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4442 				      PAGE_SIZE << order);
4443 	}
4444 
4445 	return kmalloc_large_node_hook(ptr, size, flags);
4446 }
4447 
4448 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4449 {
4450 	struct kmem_cache *s;
4451 	void *ret;
4452 
4453 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4454 		ret = kmalloc_large_node(size, flags, node);
4455 
4456 		trace_kmalloc_node(_RET_IP_, ret,
4457 				   size, PAGE_SIZE << get_order(size),
4458 				   flags, node);
4459 
4460 		return ret;
4461 	}
4462 
4463 	s = kmalloc_slab(size, flags);
4464 
4465 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4466 		return s;
4467 
4468 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4469 
4470 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4471 
4472 	ret = kasan_kmalloc(s, ret, size, flags);
4473 
4474 	return ret;
4475 }
4476 EXPORT_SYMBOL(__kmalloc_node);
4477 #endif	/* CONFIG_NUMA */
4478 
4479 #ifdef CONFIG_HARDENED_USERCOPY
4480 /*
4481  * Rejects incorrectly sized objects and objects that are to be copied
4482  * to/from userspace but do not fall entirely within the containing slab
4483  * cache's usercopy region.
4484  *
4485  * Returns NULL if check passes, otherwise const char * to name of cache
4486  * to indicate an error.
4487  */
4488 void __check_heap_object(const void *ptr, unsigned long n,
4489 			 const struct slab *slab, bool to_user)
4490 {
4491 	struct kmem_cache *s;
4492 	unsigned int offset;
4493 	bool is_kfence = is_kfence_address(ptr);
4494 
4495 	ptr = kasan_reset_tag(ptr);
4496 
4497 	/* Find object and usable object size. */
4498 	s = slab->slab_cache;
4499 
4500 	/* Reject impossible pointers. */
4501 	if (ptr < slab_address(slab))
4502 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4503 			       to_user, 0, n);
4504 
4505 	/* Find offset within object. */
4506 	if (is_kfence)
4507 		offset = ptr - kfence_object_start(ptr);
4508 	else
4509 		offset = (ptr - slab_address(slab)) % s->size;
4510 
4511 	/* Adjust for redzone and reject if within the redzone. */
4512 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4513 		if (offset < s->red_left_pad)
4514 			usercopy_abort("SLUB object in left red zone",
4515 				       s->name, to_user, offset, n);
4516 		offset -= s->red_left_pad;
4517 	}
4518 
4519 	/* Allow address range falling entirely within usercopy region. */
4520 	if (offset >= s->useroffset &&
4521 	    offset - s->useroffset <= s->usersize &&
4522 	    n <= s->useroffset - offset + s->usersize)
4523 		return;
4524 
4525 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4526 }
4527 #endif /* CONFIG_HARDENED_USERCOPY */
4528 
4529 size_t __ksize(const void *object)
4530 {
4531 	struct folio *folio;
4532 
4533 	if (unlikely(object == ZERO_SIZE_PTR))
4534 		return 0;
4535 
4536 	folio = virt_to_folio(object);
4537 
4538 	if (unlikely(!folio_test_slab(folio)))
4539 		return folio_size(folio);
4540 
4541 	return slab_ksize(folio_slab(folio)->slab_cache);
4542 }
4543 EXPORT_SYMBOL(__ksize);
4544 
4545 void kfree(const void *x)
4546 {
4547 	struct folio *folio;
4548 	struct slab *slab;
4549 	void *object = (void *)x;
4550 
4551 	trace_kfree(_RET_IP_, x);
4552 
4553 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4554 		return;
4555 
4556 	folio = virt_to_folio(x);
4557 	if (unlikely(!folio_test_slab(folio))) {
4558 		free_large_kmalloc(folio, object);
4559 		return;
4560 	}
4561 	slab = folio_slab(folio);
4562 	slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_);
4563 }
4564 EXPORT_SYMBOL(kfree);
4565 
4566 #define SHRINK_PROMOTE_MAX 32
4567 
4568 /*
4569  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4570  * up most to the head of the partial lists. New allocations will then
4571  * fill those up and thus they can be removed from the partial lists.
4572  *
4573  * The slabs with the least items are placed last. This results in them
4574  * being allocated from last increasing the chance that the last objects
4575  * are freed in them.
4576  */
4577 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4578 {
4579 	int node;
4580 	int i;
4581 	struct kmem_cache_node *n;
4582 	struct slab *slab;
4583 	struct slab *t;
4584 	struct list_head discard;
4585 	struct list_head promote[SHRINK_PROMOTE_MAX];
4586 	unsigned long flags;
4587 	int ret = 0;
4588 
4589 	for_each_kmem_cache_node(s, node, n) {
4590 		INIT_LIST_HEAD(&discard);
4591 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4592 			INIT_LIST_HEAD(promote + i);
4593 
4594 		spin_lock_irqsave(&n->list_lock, flags);
4595 
4596 		/*
4597 		 * Build lists of slabs to discard or promote.
4598 		 *
4599 		 * Note that concurrent frees may occur while we hold the
4600 		 * list_lock. slab->inuse here is the upper limit.
4601 		 */
4602 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4603 			int free = slab->objects - slab->inuse;
4604 
4605 			/* Do not reread slab->inuse */
4606 			barrier();
4607 
4608 			/* We do not keep full slabs on the list */
4609 			BUG_ON(free <= 0);
4610 
4611 			if (free == slab->objects) {
4612 				list_move(&slab->slab_list, &discard);
4613 				n->nr_partial--;
4614 			} else if (free <= SHRINK_PROMOTE_MAX)
4615 				list_move(&slab->slab_list, promote + free - 1);
4616 		}
4617 
4618 		/*
4619 		 * Promote the slabs filled up most to the head of the
4620 		 * partial list.
4621 		 */
4622 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4623 			list_splice(promote + i, &n->partial);
4624 
4625 		spin_unlock_irqrestore(&n->list_lock, flags);
4626 
4627 		/* Release empty slabs */
4628 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4629 			discard_slab(s, slab);
4630 
4631 		if (slabs_node(s, node))
4632 			ret = 1;
4633 	}
4634 
4635 	return ret;
4636 }
4637 
4638 int __kmem_cache_shrink(struct kmem_cache *s)
4639 {
4640 	flush_all(s);
4641 	return __kmem_cache_do_shrink(s);
4642 }
4643 
4644 static int slab_mem_going_offline_callback(void *arg)
4645 {
4646 	struct kmem_cache *s;
4647 
4648 	mutex_lock(&slab_mutex);
4649 	list_for_each_entry(s, &slab_caches, list) {
4650 		flush_all_cpus_locked(s);
4651 		__kmem_cache_do_shrink(s);
4652 	}
4653 	mutex_unlock(&slab_mutex);
4654 
4655 	return 0;
4656 }
4657 
4658 static void slab_mem_offline_callback(void *arg)
4659 {
4660 	struct memory_notify *marg = arg;
4661 	int offline_node;
4662 
4663 	offline_node = marg->status_change_nid_normal;
4664 
4665 	/*
4666 	 * If the node still has available memory. we need kmem_cache_node
4667 	 * for it yet.
4668 	 */
4669 	if (offline_node < 0)
4670 		return;
4671 
4672 	mutex_lock(&slab_mutex);
4673 	node_clear(offline_node, slab_nodes);
4674 	/*
4675 	 * We no longer free kmem_cache_node structures here, as it would be
4676 	 * racy with all get_node() users, and infeasible to protect them with
4677 	 * slab_mutex.
4678 	 */
4679 	mutex_unlock(&slab_mutex);
4680 }
4681 
4682 static int slab_mem_going_online_callback(void *arg)
4683 {
4684 	struct kmem_cache_node *n;
4685 	struct kmem_cache *s;
4686 	struct memory_notify *marg = arg;
4687 	int nid = marg->status_change_nid_normal;
4688 	int ret = 0;
4689 
4690 	/*
4691 	 * If the node's memory is already available, then kmem_cache_node is
4692 	 * already created. Nothing to do.
4693 	 */
4694 	if (nid < 0)
4695 		return 0;
4696 
4697 	/*
4698 	 * We are bringing a node online. No memory is available yet. We must
4699 	 * allocate a kmem_cache_node structure in order to bring the node
4700 	 * online.
4701 	 */
4702 	mutex_lock(&slab_mutex);
4703 	list_for_each_entry(s, &slab_caches, list) {
4704 		/*
4705 		 * The structure may already exist if the node was previously
4706 		 * onlined and offlined.
4707 		 */
4708 		if (get_node(s, nid))
4709 			continue;
4710 		/*
4711 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4712 		 *      since memory is not yet available from the node that
4713 		 *      is brought up.
4714 		 */
4715 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4716 		if (!n) {
4717 			ret = -ENOMEM;
4718 			goto out;
4719 		}
4720 		init_kmem_cache_node(n);
4721 		s->node[nid] = n;
4722 	}
4723 	/*
4724 	 * Any cache created after this point will also have kmem_cache_node
4725 	 * initialized for the new node.
4726 	 */
4727 	node_set(nid, slab_nodes);
4728 out:
4729 	mutex_unlock(&slab_mutex);
4730 	return ret;
4731 }
4732 
4733 static int slab_memory_callback(struct notifier_block *self,
4734 				unsigned long action, void *arg)
4735 {
4736 	int ret = 0;
4737 
4738 	switch (action) {
4739 	case MEM_GOING_ONLINE:
4740 		ret = slab_mem_going_online_callback(arg);
4741 		break;
4742 	case MEM_GOING_OFFLINE:
4743 		ret = slab_mem_going_offline_callback(arg);
4744 		break;
4745 	case MEM_OFFLINE:
4746 	case MEM_CANCEL_ONLINE:
4747 		slab_mem_offline_callback(arg);
4748 		break;
4749 	case MEM_ONLINE:
4750 	case MEM_CANCEL_OFFLINE:
4751 		break;
4752 	}
4753 	if (ret)
4754 		ret = notifier_from_errno(ret);
4755 	else
4756 		ret = NOTIFY_OK;
4757 	return ret;
4758 }
4759 
4760 static struct notifier_block slab_memory_callback_nb = {
4761 	.notifier_call = slab_memory_callback,
4762 	.priority = SLAB_CALLBACK_PRI,
4763 };
4764 
4765 /********************************************************************
4766  *			Basic setup of slabs
4767  *******************************************************************/
4768 
4769 /*
4770  * Used for early kmem_cache structures that were allocated using
4771  * the page allocator. Allocate them properly then fix up the pointers
4772  * that may be pointing to the wrong kmem_cache structure.
4773  */
4774 
4775 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4776 {
4777 	int node;
4778 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4779 	struct kmem_cache_node *n;
4780 
4781 	memcpy(s, static_cache, kmem_cache->object_size);
4782 
4783 	/*
4784 	 * This runs very early, and only the boot processor is supposed to be
4785 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4786 	 * IPIs around.
4787 	 */
4788 	__flush_cpu_slab(s, smp_processor_id());
4789 	for_each_kmem_cache_node(s, node, n) {
4790 		struct slab *p;
4791 
4792 		list_for_each_entry(p, &n->partial, slab_list)
4793 			p->slab_cache = s;
4794 
4795 #ifdef CONFIG_SLUB_DEBUG
4796 		list_for_each_entry(p, &n->full, slab_list)
4797 			p->slab_cache = s;
4798 #endif
4799 	}
4800 	list_add(&s->list, &slab_caches);
4801 	return s;
4802 }
4803 
4804 void __init kmem_cache_init(void)
4805 {
4806 	static __initdata struct kmem_cache boot_kmem_cache,
4807 		boot_kmem_cache_node;
4808 	int node;
4809 
4810 	if (debug_guardpage_minorder())
4811 		slub_max_order = 0;
4812 
4813 	/* Print slub debugging pointers without hashing */
4814 	if (__slub_debug_enabled())
4815 		no_hash_pointers_enable(NULL);
4816 
4817 	kmem_cache_node = &boot_kmem_cache_node;
4818 	kmem_cache = &boot_kmem_cache;
4819 
4820 	/*
4821 	 * Initialize the nodemask for which we will allocate per node
4822 	 * structures. Here we don't need taking slab_mutex yet.
4823 	 */
4824 	for_each_node_state(node, N_NORMAL_MEMORY)
4825 		node_set(node, slab_nodes);
4826 
4827 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4828 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4829 
4830 	register_hotmemory_notifier(&slab_memory_callback_nb);
4831 
4832 	/* Able to allocate the per node structures */
4833 	slab_state = PARTIAL;
4834 
4835 	create_boot_cache(kmem_cache, "kmem_cache",
4836 			offsetof(struct kmem_cache, node) +
4837 				nr_node_ids * sizeof(struct kmem_cache_node *),
4838 		       SLAB_HWCACHE_ALIGN, 0, 0);
4839 
4840 	kmem_cache = bootstrap(&boot_kmem_cache);
4841 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4842 
4843 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4844 	setup_kmalloc_cache_index_table();
4845 	create_kmalloc_caches(0);
4846 
4847 	/* Setup random freelists for each cache */
4848 	init_freelist_randomization();
4849 
4850 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4851 				  slub_cpu_dead);
4852 
4853 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4854 		cache_line_size(),
4855 		slub_min_order, slub_max_order, slub_min_objects,
4856 		nr_cpu_ids, nr_node_ids);
4857 }
4858 
4859 void __init kmem_cache_init_late(void)
4860 {
4861 }
4862 
4863 struct kmem_cache *
4864 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4865 		   slab_flags_t flags, void (*ctor)(void *))
4866 {
4867 	struct kmem_cache *s;
4868 
4869 	s = find_mergeable(size, align, flags, name, ctor);
4870 	if (s) {
4871 		s->refcount++;
4872 
4873 		/*
4874 		 * Adjust the object sizes so that we clear
4875 		 * the complete object on kzalloc.
4876 		 */
4877 		s->object_size = max(s->object_size, size);
4878 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4879 
4880 		if (sysfs_slab_alias(s, name)) {
4881 			s->refcount--;
4882 			s = NULL;
4883 		}
4884 	}
4885 
4886 	return s;
4887 }
4888 
4889 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4890 {
4891 	int err;
4892 
4893 	err = kmem_cache_open(s, flags);
4894 	if (err)
4895 		return err;
4896 
4897 	/* Mutex is not taken during early boot */
4898 	if (slab_state <= UP)
4899 		return 0;
4900 
4901 	err = sysfs_slab_add(s);
4902 	if (err) {
4903 		__kmem_cache_release(s);
4904 		return err;
4905 	}
4906 
4907 	if (s->flags & SLAB_STORE_USER)
4908 		debugfs_slab_add(s);
4909 
4910 	return 0;
4911 }
4912 
4913 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4914 {
4915 	struct kmem_cache *s;
4916 	void *ret;
4917 
4918 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4919 		return kmalloc_large(size, gfpflags);
4920 
4921 	s = kmalloc_slab(size, gfpflags);
4922 
4923 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4924 		return s;
4925 
4926 	ret = slab_alloc(s, gfpflags, caller, size);
4927 
4928 	/* Honor the call site pointer we received. */
4929 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4930 
4931 	return ret;
4932 }
4933 EXPORT_SYMBOL(__kmalloc_track_caller);
4934 
4935 #ifdef CONFIG_NUMA
4936 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4937 					int node, unsigned long caller)
4938 {
4939 	struct kmem_cache *s;
4940 	void *ret;
4941 
4942 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4943 		ret = kmalloc_large_node(size, gfpflags, node);
4944 
4945 		trace_kmalloc_node(caller, ret,
4946 				   size, PAGE_SIZE << get_order(size),
4947 				   gfpflags, node);
4948 
4949 		return ret;
4950 	}
4951 
4952 	s = kmalloc_slab(size, gfpflags);
4953 
4954 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4955 		return s;
4956 
4957 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4958 
4959 	/* Honor the call site pointer we received. */
4960 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4961 
4962 	return ret;
4963 }
4964 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4965 #endif
4966 
4967 #ifdef CONFIG_SYSFS
4968 static int count_inuse(struct slab *slab)
4969 {
4970 	return slab->inuse;
4971 }
4972 
4973 static int count_total(struct slab *slab)
4974 {
4975 	return slab->objects;
4976 }
4977 #endif
4978 
4979 #ifdef CONFIG_SLUB_DEBUG
4980 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4981 			  unsigned long *obj_map)
4982 {
4983 	void *p;
4984 	void *addr = slab_address(slab);
4985 	unsigned long flags;
4986 
4987 	slab_lock(slab, &flags);
4988 
4989 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
4990 		goto unlock;
4991 
4992 	/* Now we know that a valid freelist exists */
4993 	__fill_map(obj_map, s, slab);
4994 	for_each_object(p, s, addr, slab->objects) {
4995 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4996 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4997 
4998 		if (!check_object(s, slab, p, val))
4999 			break;
5000 	}
5001 unlock:
5002 	slab_unlock(slab, &flags);
5003 }
5004 
5005 static int validate_slab_node(struct kmem_cache *s,
5006 		struct kmem_cache_node *n, unsigned long *obj_map)
5007 {
5008 	unsigned long count = 0;
5009 	struct slab *slab;
5010 	unsigned long flags;
5011 
5012 	spin_lock_irqsave(&n->list_lock, flags);
5013 
5014 	list_for_each_entry(slab, &n->partial, slab_list) {
5015 		validate_slab(s, slab, obj_map);
5016 		count++;
5017 	}
5018 	if (count != n->nr_partial) {
5019 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5020 		       s->name, count, n->nr_partial);
5021 		slab_add_kunit_errors();
5022 	}
5023 
5024 	if (!(s->flags & SLAB_STORE_USER))
5025 		goto out;
5026 
5027 	list_for_each_entry(slab, &n->full, slab_list) {
5028 		validate_slab(s, slab, obj_map);
5029 		count++;
5030 	}
5031 	if (count != atomic_long_read(&n->nr_slabs)) {
5032 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5033 		       s->name, count, atomic_long_read(&n->nr_slabs));
5034 		slab_add_kunit_errors();
5035 	}
5036 
5037 out:
5038 	spin_unlock_irqrestore(&n->list_lock, flags);
5039 	return count;
5040 }
5041 
5042 long validate_slab_cache(struct kmem_cache *s)
5043 {
5044 	int node;
5045 	unsigned long count = 0;
5046 	struct kmem_cache_node *n;
5047 	unsigned long *obj_map;
5048 
5049 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5050 	if (!obj_map)
5051 		return -ENOMEM;
5052 
5053 	flush_all(s);
5054 	for_each_kmem_cache_node(s, node, n)
5055 		count += validate_slab_node(s, n, obj_map);
5056 
5057 	bitmap_free(obj_map);
5058 
5059 	return count;
5060 }
5061 EXPORT_SYMBOL(validate_slab_cache);
5062 
5063 #ifdef CONFIG_DEBUG_FS
5064 /*
5065  * Generate lists of code addresses where slabcache objects are allocated
5066  * and freed.
5067  */
5068 
5069 struct location {
5070 	unsigned long count;
5071 	unsigned long addr;
5072 	long long sum_time;
5073 	long min_time;
5074 	long max_time;
5075 	long min_pid;
5076 	long max_pid;
5077 	DECLARE_BITMAP(cpus, NR_CPUS);
5078 	nodemask_t nodes;
5079 };
5080 
5081 struct loc_track {
5082 	unsigned long max;
5083 	unsigned long count;
5084 	struct location *loc;
5085 	loff_t idx;
5086 };
5087 
5088 static struct dentry *slab_debugfs_root;
5089 
5090 static void free_loc_track(struct loc_track *t)
5091 {
5092 	if (t->max)
5093 		free_pages((unsigned long)t->loc,
5094 			get_order(sizeof(struct location) * t->max));
5095 }
5096 
5097 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5098 {
5099 	struct location *l;
5100 	int order;
5101 
5102 	order = get_order(sizeof(struct location) * max);
5103 
5104 	l = (void *)__get_free_pages(flags, order);
5105 	if (!l)
5106 		return 0;
5107 
5108 	if (t->count) {
5109 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5110 		free_loc_track(t);
5111 	}
5112 	t->max = max;
5113 	t->loc = l;
5114 	return 1;
5115 }
5116 
5117 static int add_location(struct loc_track *t, struct kmem_cache *s,
5118 				const struct track *track)
5119 {
5120 	long start, end, pos;
5121 	struct location *l;
5122 	unsigned long caddr;
5123 	unsigned long age = jiffies - track->when;
5124 
5125 	start = -1;
5126 	end = t->count;
5127 
5128 	for ( ; ; ) {
5129 		pos = start + (end - start + 1) / 2;
5130 
5131 		/*
5132 		 * There is nothing at "end". If we end up there
5133 		 * we need to add something to before end.
5134 		 */
5135 		if (pos == end)
5136 			break;
5137 
5138 		caddr = t->loc[pos].addr;
5139 		if (track->addr == caddr) {
5140 
5141 			l = &t->loc[pos];
5142 			l->count++;
5143 			if (track->when) {
5144 				l->sum_time += age;
5145 				if (age < l->min_time)
5146 					l->min_time = age;
5147 				if (age > l->max_time)
5148 					l->max_time = age;
5149 
5150 				if (track->pid < l->min_pid)
5151 					l->min_pid = track->pid;
5152 				if (track->pid > l->max_pid)
5153 					l->max_pid = track->pid;
5154 
5155 				cpumask_set_cpu(track->cpu,
5156 						to_cpumask(l->cpus));
5157 			}
5158 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5159 			return 1;
5160 		}
5161 
5162 		if (track->addr < caddr)
5163 			end = pos;
5164 		else
5165 			start = pos;
5166 	}
5167 
5168 	/*
5169 	 * Not found. Insert new tracking element.
5170 	 */
5171 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5172 		return 0;
5173 
5174 	l = t->loc + pos;
5175 	if (pos < t->count)
5176 		memmove(l + 1, l,
5177 			(t->count - pos) * sizeof(struct location));
5178 	t->count++;
5179 	l->count = 1;
5180 	l->addr = track->addr;
5181 	l->sum_time = age;
5182 	l->min_time = age;
5183 	l->max_time = age;
5184 	l->min_pid = track->pid;
5185 	l->max_pid = track->pid;
5186 	cpumask_clear(to_cpumask(l->cpus));
5187 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5188 	nodes_clear(l->nodes);
5189 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5190 	return 1;
5191 }
5192 
5193 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5194 		struct slab *slab, enum track_item alloc,
5195 		unsigned long *obj_map)
5196 {
5197 	void *addr = slab_address(slab);
5198 	void *p;
5199 
5200 	__fill_map(obj_map, s, slab);
5201 
5202 	for_each_object(p, s, addr, slab->objects)
5203 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5204 			add_location(t, s, get_track(s, p, alloc));
5205 }
5206 #endif  /* CONFIG_DEBUG_FS   */
5207 #endif	/* CONFIG_SLUB_DEBUG */
5208 
5209 #ifdef CONFIG_SYSFS
5210 enum slab_stat_type {
5211 	SL_ALL,			/* All slabs */
5212 	SL_PARTIAL,		/* Only partially allocated slabs */
5213 	SL_CPU,			/* Only slabs used for cpu caches */
5214 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5215 	SL_TOTAL		/* Determine object capacity not slabs */
5216 };
5217 
5218 #define SO_ALL		(1 << SL_ALL)
5219 #define SO_PARTIAL	(1 << SL_PARTIAL)
5220 #define SO_CPU		(1 << SL_CPU)
5221 #define SO_OBJECTS	(1 << SL_OBJECTS)
5222 #define SO_TOTAL	(1 << SL_TOTAL)
5223 
5224 static ssize_t show_slab_objects(struct kmem_cache *s,
5225 				 char *buf, unsigned long flags)
5226 {
5227 	unsigned long total = 0;
5228 	int node;
5229 	int x;
5230 	unsigned long *nodes;
5231 	int len = 0;
5232 
5233 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5234 	if (!nodes)
5235 		return -ENOMEM;
5236 
5237 	if (flags & SO_CPU) {
5238 		int cpu;
5239 
5240 		for_each_possible_cpu(cpu) {
5241 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5242 							       cpu);
5243 			int node;
5244 			struct slab *slab;
5245 
5246 			slab = READ_ONCE(c->slab);
5247 			if (!slab)
5248 				continue;
5249 
5250 			node = slab_nid(slab);
5251 			if (flags & SO_TOTAL)
5252 				x = slab->objects;
5253 			else if (flags & SO_OBJECTS)
5254 				x = slab->inuse;
5255 			else
5256 				x = 1;
5257 
5258 			total += x;
5259 			nodes[node] += x;
5260 
5261 #ifdef CONFIG_SLUB_CPU_PARTIAL
5262 			slab = slub_percpu_partial_read_once(c);
5263 			if (slab) {
5264 				node = slab_nid(slab);
5265 				if (flags & SO_TOTAL)
5266 					WARN_ON_ONCE(1);
5267 				else if (flags & SO_OBJECTS)
5268 					WARN_ON_ONCE(1);
5269 				else
5270 					x = slab->slabs;
5271 				total += x;
5272 				nodes[node] += x;
5273 			}
5274 #endif
5275 		}
5276 	}
5277 
5278 	/*
5279 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5280 	 * already held which will conflict with an existing lock order:
5281 	 *
5282 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5283 	 *
5284 	 * We don't really need mem_hotplug_lock (to hold off
5285 	 * slab_mem_going_offline_callback) here because slab's memory hot
5286 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5287 	 */
5288 
5289 #ifdef CONFIG_SLUB_DEBUG
5290 	if (flags & SO_ALL) {
5291 		struct kmem_cache_node *n;
5292 
5293 		for_each_kmem_cache_node(s, node, n) {
5294 
5295 			if (flags & SO_TOTAL)
5296 				x = atomic_long_read(&n->total_objects);
5297 			else if (flags & SO_OBJECTS)
5298 				x = atomic_long_read(&n->total_objects) -
5299 					count_partial(n, count_free);
5300 			else
5301 				x = atomic_long_read(&n->nr_slabs);
5302 			total += x;
5303 			nodes[node] += x;
5304 		}
5305 
5306 	} else
5307 #endif
5308 	if (flags & SO_PARTIAL) {
5309 		struct kmem_cache_node *n;
5310 
5311 		for_each_kmem_cache_node(s, node, n) {
5312 			if (flags & SO_TOTAL)
5313 				x = count_partial(n, count_total);
5314 			else if (flags & SO_OBJECTS)
5315 				x = count_partial(n, count_inuse);
5316 			else
5317 				x = n->nr_partial;
5318 			total += x;
5319 			nodes[node] += x;
5320 		}
5321 	}
5322 
5323 	len += sysfs_emit_at(buf, len, "%lu", total);
5324 #ifdef CONFIG_NUMA
5325 	for (node = 0; node < nr_node_ids; node++) {
5326 		if (nodes[node])
5327 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5328 					     node, nodes[node]);
5329 	}
5330 #endif
5331 	len += sysfs_emit_at(buf, len, "\n");
5332 	kfree(nodes);
5333 
5334 	return len;
5335 }
5336 
5337 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5338 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5339 
5340 struct slab_attribute {
5341 	struct attribute attr;
5342 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5343 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5344 };
5345 
5346 #define SLAB_ATTR_RO(_name) \
5347 	static struct slab_attribute _name##_attr = \
5348 	__ATTR(_name, 0400, _name##_show, NULL)
5349 
5350 #define SLAB_ATTR(_name) \
5351 	static struct slab_attribute _name##_attr =  \
5352 	__ATTR(_name, 0600, _name##_show, _name##_store)
5353 
5354 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5355 {
5356 	return sysfs_emit(buf, "%u\n", s->size);
5357 }
5358 SLAB_ATTR_RO(slab_size);
5359 
5360 static ssize_t align_show(struct kmem_cache *s, char *buf)
5361 {
5362 	return sysfs_emit(buf, "%u\n", s->align);
5363 }
5364 SLAB_ATTR_RO(align);
5365 
5366 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5367 {
5368 	return sysfs_emit(buf, "%u\n", s->object_size);
5369 }
5370 SLAB_ATTR_RO(object_size);
5371 
5372 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5373 {
5374 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5375 }
5376 SLAB_ATTR_RO(objs_per_slab);
5377 
5378 static ssize_t order_show(struct kmem_cache *s, char *buf)
5379 {
5380 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5381 }
5382 SLAB_ATTR_RO(order);
5383 
5384 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5385 {
5386 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5387 }
5388 
5389 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5390 				 size_t length)
5391 {
5392 	unsigned long min;
5393 	int err;
5394 
5395 	err = kstrtoul(buf, 10, &min);
5396 	if (err)
5397 		return err;
5398 
5399 	set_min_partial(s, min);
5400 	return length;
5401 }
5402 SLAB_ATTR(min_partial);
5403 
5404 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5405 {
5406 	unsigned int nr_partial = 0;
5407 #ifdef CONFIG_SLUB_CPU_PARTIAL
5408 	nr_partial = s->cpu_partial;
5409 #endif
5410 
5411 	return sysfs_emit(buf, "%u\n", nr_partial);
5412 }
5413 
5414 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5415 				 size_t length)
5416 {
5417 	unsigned int objects;
5418 	int err;
5419 
5420 	err = kstrtouint(buf, 10, &objects);
5421 	if (err)
5422 		return err;
5423 	if (objects && !kmem_cache_has_cpu_partial(s))
5424 		return -EINVAL;
5425 
5426 	slub_set_cpu_partial(s, objects);
5427 	flush_all(s);
5428 	return length;
5429 }
5430 SLAB_ATTR(cpu_partial);
5431 
5432 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5433 {
5434 	if (!s->ctor)
5435 		return 0;
5436 	return sysfs_emit(buf, "%pS\n", s->ctor);
5437 }
5438 SLAB_ATTR_RO(ctor);
5439 
5440 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5441 {
5442 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5443 }
5444 SLAB_ATTR_RO(aliases);
5445 
5446 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5447 {
5448 	return show_slab_objects(s, buf, SO_PARTIAL);
5449 }
5450 SLAB_ATTR_RO(partial);
5451 
5452 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5453 {
5454 	return show_slab_objects(s, buf, SO_CPU);
5455 }
5456 SLAB_ATTR_RO(cpu_slabs);
5457 
5458 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5459 {
5460 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5461 }
5462 SLAB_ATTR_RO(objects);
5463 
5464 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5465 {
5466 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5467 }
5468 SLAB_ATTR_RO(objects_partial);
5469 
5470 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5471 {
5472 	int objects = 0;
5473 	int slabs = 0;
5474 	int cpu __maybe_unused;
5475 	int len = 0;
5476 
5477 #ifdef CONFIG_SLUB_CPU_PARTIAL
5478 	for_each_online_cpu(cpu) {
5479 		struct slab *slab;
5480 
5481 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5482 
5483 		if (slab)
5484 			slabs += slab->slabs;
5485 	}
5486 #endif
5487 
5488 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5489 	objects = (slabs * oo_objects(s->oo)) / 2;
5490 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5491 
5492 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5493 	for_each_online_cpu(cpu) {
5494 		struct slab *slab;
5495 
5496 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5497 		if (slab) {
5498 			slabs = READ_ONCE(slab->slabs);
5499 			objects = (slabs * oo_objects(s->oo)) / 2;
5500 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5501 					     cpu, objects, slabs);
5502 		}
5503 	}
5504 #endif
5505 	len += sysfs_emit_at(buf, len, "\n");
5506 
5507 	return len;
5508 }
5509 SLAB_ATTR_RO(slabs_cpu_partial);
5510 
5511 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5512 {
5513 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5514 }
5515 SLAB_ATTR_RO(reclaim_account);
5516 
5517 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5518 {
5519 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5520 }
5521 SLAB_ATTR_RO(hwcache_align);
5522 
5523 #ifdef CONFIG_ZONE_DMA
5524 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5525 {
5526 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5527 }
5528 SLAB_ATTR_RO(cache_dma);
5529 #endif
5530 
5531 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5532 {
5533 	return sysfs_emit(buf, "%u\n", s->usersize);
5534 }
5535 SLAB_ATTR_RO(usersize);
5536 
5537 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5538 {
5539 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5540 }
5541 SLAB_ATTR_RO(destroy_by_rcu);
5542 
5543 #ifdef CONFIG_SLUB_DEBUG
5544 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5545 {
5546 	return show_slab_objects(s, buf, SO_ALL);
5547 }
5548 SLAB_ATTR_RO(slabs);
5549 
5550 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5551 {
5552 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5553 }
5554 SLAB_ATTR_RO(total_objects);
5555 
5556 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5557 {
5558 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5559 }
5560 SLAB_ATTR_RO(sanity_checks);
5561 
5562 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5563 {
5564 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5565 }
5566 SLAB_ATTR_RO(trace);
5567 
5568 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5569 {
5570 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5571 }
5572 
5573 SLAB_ATTR_RO(red_zone);
5574 
5575 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5576 {
5577 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5578 }
5579 
5580 SLAB_ATTR_RO(poison);
5581 
5582 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5583 {
5584 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5585 }
5586 
5587 SLAB_ATTR_RO(store_user);
5588 
5589 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5590 {
5591 	return 0;
5592 }
5593 
5594 static ssize_t validate_store(struct kmem_cache *s,
5595 			const char *buf, size_t length)
5596 {
5597 	int ret = -EINVAL;
5598 
5599 	if (buf[0] == '1') {
5600 		ret = validate_slab_cache(s);
5601 		if (ret >= 0)
5602 			ret = length;
5603 	}
5604 	return ret;
5605 }
5606 SLAB_ATTR(validate);
5607 
5608 #endif /* CONFIG_SLUB_DEBUG */
5609 
5610 #ifdef CONFIG_FAILSLAB
5611 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5612 {
5613 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5614 }
5615 SLAB_ATTR_RO(failslab);
5616 #endif
5617 
5618 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5619 {
5620 	return 0;
5621 }
5622 
5623 static ssize_t shrink_store(struct kmem_cache *s,
5624 			const char *buf, size_t length)
5625 {
5626 	if (buf[0] == '1')
5627 		kmem_cache_shrink(s);
5628 	else
5629 		return -EINVAL;
5630 	return length;
5631 }
5632 SLAB_ATTR(shrink);
5633 
5634 #ifdef CONFIG_NUMA
5635 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5636 {
5637 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5638 }
5639 
5640 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5641 				const char *buf, size_t length)
5642 {
5643 	unsigned int ratio;
5644 	int err;
5645 
5646 	err = kstrtouint(buf, 10, &ratio);
5647 	if (err)
5648 		return err;
5649 	if (ratio > 100)
5650 		return -ERANGE;
5651 
5652 	s->remote_node_defrag_ratio = ratio * 10;
5653 
5654 	return length;
5655 }
5656 SLAB_ATTR(remote_node_defrag_ratio);
5657 #endif
5658 
5659 #ifdef CONFIG_SLUB_STATS
5660 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5661 {
5662 	unsigned long sum  = 0;
5663 	int cpu;
5664 	int len = 0;
5665 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5666 
5667 	if (!data)
5668 		return -ENOMEM;
5669 
5670 	for_each_online_cpu(cpu) {
5671 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5672 
5673 		data[cpu] = x;
5674 		sum += x;
5675 	}
5676 
5677 	len += sysfs_emit_at(buf, len, "%lu", sum);
5678 
5679 #ifdef CONFIG_SMP
5680 	for_each_online_cpu(cpu) {
5681 		if (data[cpu])
5682 			len += sysfs_emit_at(buf, len, " C%d=%u",
5683 					     cpu, data[cpu]);
5684 	}
5685 #endif
5686 	kfree(data);
5687 	len += sysfs_emit_at(buf, len, "\n");
5688 
5689 	return len;
5690 }
5691 
5692 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5693 {
5694 	int cpu;
5695 
5696 	for_each_online_cpu(cpu)
5697 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5698 }
5699 
5700 #define STAT_ATTR(si, text) 					\
5701 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5702 {								\
5703 	return show_stat(s, buf, si);				\
5704 }								\
5705 static ssize_t text##_store(struct kmem_cache *s,		\
5706 				const char *buf, size_t length)	\
5707 {								\
5708 	if (buf[0] != '0')					\
5709 		return -EINVAL;					\
5710 	clear_stat(s, si);					\
5711 	return length;						\
5712 }								\
5713 SLAB_ATTR(text);						\
5714 
5715 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5716 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5717 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5718 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5719 STAT_ATTR(FREE_FROZEN, free_frozen);
5720 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5721 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5722 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5723 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5724 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5725 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5726 STAT_ATTR(FREE_SLAB, free_slab);
5727 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5728 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5729 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5730 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5731 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5732 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5733 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5734 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5735 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5736 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5737 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5738 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5739 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5740 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5741 #endif	/* CONFIG_SLUB_STATS */
5742 
5743 static struct attribute *slab_attrs[] = {
5744 	&slab_size_attr.attr,
5745 	&object_size_attr.attr,
5746 	&objs_per_slab_attr.attr,
5747 	&order_attr.attr,
5748 	&min_partial_attr.attr,
5749 	&cpu_partial_attr.attr,
5750 	&objects_attr.attr,
5751 	&objects_partial_attr.attr,
5752 	&partial_attr.attr,
5753 	&cpu_slabs_attr.attr,
5754 	&ctor_attr.attr,
5755 	&aliases_attr.attr,
5756 	&align_attr.attr,
5757 	&hwcache_align_attr.attr,
5758 	&reclaim_account_attr.attr,
5759 	&destroy_by_rcu_attr.attr,
5760 	&shrink_attr.attr,
5761 	&slabs_cpu_partial_attr.attr,
5762 #ifdef CONFIG_SLUB_DEBUG
5763 	&total_objects_attr.attr,
5764 	&slabs_attr.attr,
5765 	&sanity_checks_attr.attr,
5766 	&trace_attr.attr,
5767 	&red_zone_attr.attr,
5768 	&poison_attr.attr,
5769 	&store_user_attr.attr,
5770 	&validate_attr.attr,
5771 #endif
5772 #ifdef CONFIG_ZONE_DMA
5773 	&cache_dma_attr.attr,
5774 #endif
5775 #ifdef CONFIG_NUMA
5776 	&remote_node_defrag_ratio_attr.attr,
5777 #endif
5778 #ifdef CONFIG_SLUB_STATS
5779 	&alloc_fastpath_attr.attr,
5780 	&alloc_slowpath_attr.attr,
5781 	&free_fastpath_attr.attr,
5782 	&free_slowpath_attr.attr,
5783 	&free_frozen_attr.attr,
5784 	&free_add_partial_attr.attr,
5785 	&free_remove_partial_attr.attr,
5786 	&alloc_from_partial_attr.attr,
5787 	&alloc_slab_attr.attr,
5788 	&alloc_refill_attr.attr,
5789 	&alloc_node_mismatch_attr.attr,
5790 	&free_slab_attr.attr,
5791 	&cpuslab_flush_attr.attr,
5792 	&deactivate_full_attr.attr,
5793 	&deactivate_empty_attr.attr,
5794 	&deactivate_to_head_attr.attr,
5795 	&deactivate_to_tail_attr.attr,
5796 	&deactivate_remote_frees_attr.attr,
5797 	&deactivate_bypass_attr.attr,
5798 	&order_fallback_attr.attr,
5799 	&cmpxchg_double_fail_attr.attr,
5800 	&cmpxchg_double_cpu_fail_attr.attr,
5801 	&cpu_partial_alloc_attr.attr,
5802 	&cpu_partial_free_attr.attr,
5803 	&cpu_partial_node_attr.attr,
5804 	&cpu_partial_drain_attr.attr,
5805 #endif
5806 #ifdef CONFIG_FAILSLAB
5807 	&failslab_attr.attr,
5808 #endif
5809 	&usersize_attr.attr,
5810 
5811 	NULL
5812 };
5813 
5814 static const struct attribute_group slab_attr_group = {
5815 	.attrs = slab_attrs,
5816 };
5817 
5818 static ssize_t slab_attr_show(struct kobject *kobj,
5819 				struct attribute *attr,
5820 				char *buf)
5821 {
5822 	struct slab_attribute *attribute;
5823 	struct kmem_cache *s;
5824 	int err;
5825 
5826 	attribute = to_slab_attr(attr);
5827 	s = to_slab(kobj);
5828 
5829 	if (!attribute->show)
5830 		return -EIO;
5831 
5832 	err = attribute->show(s, buf);
5833 
5834 	return err;
5835 }
5836 
5837 static ssize_t slab_attr_store(struct kobject *kobj,
5838 				struct attribute *attr,
5839 				const char *buf, size_t len)
5840 {
5841 	struct slab_attribute *attribute;
5842 	struct kmem_cache *s;
5843 	int err;
5844 
5845 	attribute = to_slab_attr(attr);
5846 	s = to_slab(kobj);
5847 
5848 	if (!attribute->store)
5849 		return -EIO;
5850 
5851 	err = attribute->store(s, buf, len);
5852 	return err;
5853 }
5854 
5855 static void kmem_cache_release(struct kobject *k)
5856 {
5857 	slab_kmem_cache_release(to_slab(k));
5858 }
5859 
5860 static const struct sysfs_ops slab_sysfs_ops = {
5861 	.show = slab_attr_show,
5862 	.store = slab_attr_store,
5863 };
5864 
5865 static struct kobj_type slab_ktype = {
5866 	.sysfs_ops = &slab_sysfs_ops,
5867 	.release = kmem_cache_release,
5868 };
5869 
5870 static struct kset *slab_kset;
5871 
5872 static inline struct kset *cache_kset(struct kmem_cache *s)
5873 {
5874 	return slab_kset;
5875 }
5876 
5877 #define ID_STR_LENGTH 64
5878 
5879 /* Create a unique string id for a slab cache:
5880  *
5881  * Format	:[flags-]size
5882  */
5883 static char *create_unique_id(struct kmem_cache *s)
5884 {
5885 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5886 	char *p = name;
5887 
5888 	BUG_ON(!name);
5889 
5890 	*p++ = ':';
5891 	/*
5892 	 * First flags affecting slabcache operations. We will only
5893 	 * get here for aliasable slabs so we do not need to support
5894 	 * too many flags. The flags here must cover all flags that
5895 	 * are matched during merging to guarantee that the id is
5896 	 * unique.
5897 	 */
5898 	if (s->flags & SLAB_CACHE_DMA)
5899 		*p++ = 'd';
5900 	if (s->flags & SLAB_CACHE_DMA32)
5901 		*p++ = 'D';
5902 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5903 		*p++ = 'a';
5904 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5905 		*p++ = 'F';
5906 	if (s->flags & SLAB_ACCOUNT)
5907 		*p++ = 'A';
5908 	if (p != name + 1)
5909 		*p++ = '-';
5910 	p += sprintf(p, "%07u", s->size);
5911 
5912 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5913 	return name;
5914 }
5915 
5916 static int sysfs_slab_add(struct kmem_cache *s)
5917 {
5918 	int err;
5919 	const char *name;
5920 	struct kset *kset = cache_kset(s);
5921 	int unmergeable = slab_unmergeable(s);
5922 
5923 	if (!kset) {
5924 		kobject_init(&s->kobj, &slab_ktype);
5925 		return 0;
5926 	}
5927 
5928 	if (!unmergeable && disable_higher_order_debug &&
5929 			(slub_debug & DEBUG_METADATA_FLAGS))
5930 		unmergeable = 1;
5931 
5932 	if (unmergeable) {
5933 		/*
5934 		 * Slabcache can never be merged so we can use the name proper.
5935 		 * This is typically the case for debug situations. In that
5936 		 * case we can catch duplicate names easily.
5937 		 */
5938 		sysfs_remove_link(&slab_kset->kobj, s->name);
5939 		name = s->name;
5940 	} else {
5941 		/*
5942 		 * Create a unique name for the slab as a target
5943 		 * for the symlinks.
5944 		 */
5945 		name = create_unique_id(s);
5946 	}
5947 
5948 	s->kobj.kset = kset;
5949 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5950 	if (err)
5951 		goto out;
5952 
5953 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5954 	if (err)
5955 		goto out_del_kobj;
5956 
5957 	if (!unmergeable) {
5958 		/* Setup first alias */
5959 		sysfs_slab_alias(s, s->name);
5960 	}
5961 out:
5962 	if (!unmergeable)
5963 		kfree(name);
5964 	return err;
5965 out_del_kobj:
5966 	kobject_del(&s->kobj);
5967 	goto out;
5968 }
5969 
5970 void sysfs_slab_unlink(struct kmem_cache *s)
5971 {
5972 	if (slab_state >= FULL)
5973 		kobject_del(&s->kobj);
5974 }
5975 
5976 void sysfs_slab_release(struct kmem_cache *s)
5977 {
5978 	if (slab_state >= FULL)
5979 		kobject_put(&s->kobj);
5980 }
5981 
5982 /*
5983  * Need to buffer aliases during bootup until sysfs becomes
5984  * available lest we lose that information.
5985  */
5986 struct saved_alias {
5987 	struct kmem_cache *s;
5988 	const char *name;
5989 	struct saved_alias *next;
5990 };
5991 
5992 static struct saved_alias *alias_list;
5993 
5994 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5995 {
5996 	struct saved_alias *al;
5997 
5998 	if (slab_state == FULL) {
5999 		/*
6000 		 * If we have a leftover link then remove it.
6001 		 */
6002 		sysfs_remove_link(&slab_kset->kobj, name);
6003 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6004 	}
6005 
6006 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6007 	if (!al)
6008 		return -ENOMEM;
6009 
6010 	al->s = s;
6011 	al->name = name;
6012 	al->next = alias_list;
6013 	alias_list = al;
6014 	return 0;
6015 }
6016 
6017 static int __init slab_sysfs_init(void)
6018 {
6019 	struct kmem_cache *s;
6020 	int err;
6021 
6022 	mutex_lock(&slab_mutex);
6023 
6024 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6025 	if (!slab_kset) {
6026 		mutex_unlock(&slab_mutex);
6027 		pr_err("Cannot register slab subsystem.\n");
6028 		return -ENOSYS;
6029 	}
6030 
6031 	slab_state = FULL;
6032 
6033 	list_for_each_entry(s, &slab_caches, list) {
6034 		err = sysfs_slab_add(s);
6035 		if (err)
6036 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6037 			       s->name);
6038 	}
6039 
6040 	while (alias_list) {
6041 		struct saved_alias *al = alias_list;
6042 
6043 		alias_list = alias_list->next;
6044 		err = sysfs_slab_alias(al->s, al->name);
6045 		if (err)
6046 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6047 			       al->name);
6048 		kfree(al);
6049 	}
6050 
6051 	mutex_unlock(&slab_mutex);
6052 	return 0;
6053 }
6054 
6055 __initcall(slab_sysfs_init);
6056 #endif /* CONFIG_SYSFS */
6057 
6058 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6059 static int slab_debugfs_show(struct seq_file *seq, void *v)
6060 {
6061 	struct loc_track *t = seq->private;
6062 	struct location *l;
6063 	unsigned long idx;
6064 
6065 	idx = (unsigned long) t->idx;
6066 	if (idx < t->count) {
6067 		l = &t->loc[idx];
6068 
6069 		seq_printf(seq, "%7ld ", l->count);
6070 
6071 		if (l->addr)
6072 			seq_printf(seq, "%pS", (void *)l->addr);
6073 		else
6074 			seq_puts(seq, "<not-available>");
6075 
6076 		if (l->sum_time != l->min_time) {
6077 			seq_printf(seq, " age=%ld/%llu/%ld",
6078 				l->min_time, div_u64(l->sum_time, l->count),
6079 				l->max_time);
6080 		} else
6081 			seq_printf(seq, " age=%ld", l->min_time);
6082 
6083 		if (l->min_pid != l->max_pid)
6084 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6085 		else
6086 			seq_printf(seq, " pid=%ld",
6087 				l->min_pid);
6088 
6089 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6090 			seq_printf(seq, " cpus=%*pbl",
6091 				 cpumask_pr_args(to_cpumask(l->cpus)));
6092 
6093 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6094 			seq_printf(seq, " nodes=%*pbl",
6095 				 nodemask_pr_args(&l->nodes));
6096 
6097 		seq_puts(seq, "\n");
6098 	}
6099 
6100 	if (!idx && !t->count)
6101 		seq_puts(seq, "No data\n");
6102 
6103 	return 0;
6104 }
6105 
6106 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6107 {
6108 }
6109 
6110 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6111 {
6112 	struct loc_track *t = seq->private;
6113 
6114 	t->idx = ++(*ppos);
6115 	if (*ppos <= t->count)
6116 		return ppos;
6117 
6118 	return NULL;
6119 }
6120 
6121 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6122 {
6123 	struct loc_track *t = seq->private;
6124 
6125 	t->idx = *ppos;
6126 	return ppos;
6127 }
6128 
6129 static const struct seq_operations slab_debugfs_sops = {
6130 	.start  = slab_debugfs_start,
6131 	.next   = slab_debugfs_next,
6132 	.stop   = slab_debugfs_stop,
6133 	.show   = slab_debugfs_show,
6134 };
6135 
6136 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6137 {
6138 
6139 	struct kmem_cache_node *n;
6140 	enum track_item alloc;
6141 	int node;
6142 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6143 						sizeof(struct loc_track));
6144 	struct kmem_cache *s = file_inode(filep)->i_private;
6145 	unsigned long *obj_map;
6146 
6147 	if (!t)
6148 		return -ENOMEM;
6149 
6150 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6151 	if (!obj_map) {
6152 		seq_release_private(inode, filep);
6153 		return -ENOMEM;
6154 	}
6155 
6156 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6157 		alloc = TRACK_ALLOC;
6158 	else
6159 		alloc = TRACK_FREE;
6160 
6161 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6162 		bitmap_free(obj_map);
6163 		seq_release_private(inode, filep);
6164 		return -ENOMEM;
6165 	}
6166 
6167 	for_each_kmem_cache_node(s, node, n) {
6168 		unsigned long flags;
6169 		struct slab *slab;
6170 
6171 		if (!atomic_long_read(&n->nr_slabs))
6172 			continue;
6173 
6174 		spin_lock_irqsave(&n->list_lock, flags);
6175 		list_for_each_entry(slab, &n->partial, slab_list)
6176 			process_slab(t, s, slab, alloc, obj_map);
6177 		list_for_each_entry(slab, &n->full, slab_list)
6178 			process_slab(t, s, slab, alloc, obj_map);
6179 		spin_unlock_irqrestore(&n->list_lock, flags);
6180 	}
6181 
6182 	bitmap_free(obj_map);
6183 	return 0;
6184 }
6185 
6186 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6187 {
6188 	struct seq_file *seq = file->private_data;
6189 	struct loc_track *t = seq->private;
6190 
6191 	free_loc_track(t);
6192 	return seq_release_private(inode, file);
6193 }
6194 
6195 static const struct file_operations slab_debugfs_fops = {
6196 	.open    = slab_debug_trace_open,
6197 	.read    = seq_read,
6198 	.llseek  = seq_lseek,
6199 	.release = slab_debug_trace_release,
6200 };
6201 
6202 static void debugfs_slab_add(struct kmem_cache *s)
6203 {
6204 	struct dentry *slab_cache_dir;
6205 
6206 	if (unlikely(!slab_debugfs_root))
6207 		return;
6208 
6209 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6210 
6211 	debugfs_create_file("alloc_traces", 0400,
6212 		slab_cache_dir, s, &slab_debugfs_fops);
6213 
6214 	debugfs_create_file("free_traces", 0400,
6215 		slab_cache_dir, s, &slab_debugfs_fops);
6216 }
6217 
6218 void debugfs_slab_release(struct kmem_cache *s)
6219 {
6220 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6221 }
6222 
6223 static int __init slab_debugfs_init(void)
6224 {
6225 	struct kmem_cache *s;
6226 
6227 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6228 
6229 	list_for_each_entry(s, &slab_caches, list)
6230 		if (s->flags & SLAB_STORE_USER)
6231 			debugfs_slab_add(s);
6232 
6233 	return 0;
6234 
6235 }
6236 __initcall(slab_debugfs_init);
6237 #endif
6238 /*
6239  * The /proc/slabinfo ABI
6240  */
6241 #ifdef CONFIG_SLUB_DEBUG
6242 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6243 {
6244 	unsigned long nr_slabs = 0;
6245 	unsigned long nr_objs = 0;
6246 	unsigned long nr_free = 0;
6247 	int node;
6248 	struct kmem_cache_node *n;
6249 
6250 	for_each_kmem_cache_node(s, node, n) {
6251 		nr_slabs += node_nr_slabs(n);
6252 		nr_objs += node_nr_objs(n);
6253 		nr_free += count_partial(n, count_free);
6254 	}
6255 
6256 	sinfo->active_objs = nr_objs - nr_free;
6257 	sinfo->num_objs = nr_objs;
6258 	sinfo->active_slabs = nr_slabs;
6259 	sinfo->num_slabs = nr_slabs;
6260 	sinfo->objects_per_slab = oo_objects(s->oo);
6261 	sinfo->cache_order = oo_order(s->oo);
6262 }
6263 
6264 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6265 {
6266 }
6267 
6268 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6269 		       size_t count, loff_t *ppos)
6270 {
6271 	return -EIO;
6272 }
6273 #endif /* CONFIG_SLUB_DEBUG */
6274