1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks and only 6 * uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/bit_spinlock.h> 14 #include <linux/interrupt.h> 15 #include <linux/bitops.h> 16 #include <linux/slab.h> 17 #include <linux/proc_fs.h> 18 #include <linux/seq_file.h> 19 #include <trace/kmemtrace.h> 20 #include <linux/cpu.h> 21 #include <linux/cpuset.h> 22 #include <linux/mempolicy.h> 23 #include <linux/ctype.h> 24 #include <linux/debugobjects.h> 25 #include <linux/kallsyms.h> 26 #include <linux/memory.h> 27 #include <linux/math64.h> 28 #include <linux/fault-inject.h> 29 30 /* 31 * Lock order: 32 * 1. slab_lock(page) 33 * 2. slab->list_lock 34 * 35 * The slab_lock protects operations on the object of a particular 36 * slab and its metadata in the page struct. If the slab lock 37 * has been taken then no allocations nor frees can be performed 38 * on the objects in the slab nor can the slab be added or removed 39 * from the partial or full lists since this would mean modifying 40 * the page_struct of the slab. 41 * 42 * The list_lock protects the partial and full list on each node and 43 * the partial slab counter. If taken then no new slabs may be added or 44 * removed from the lists nor make the number of partial slabs be modified. 45 * (Note that the total number of slabs is an atomic value that may be 46 * modified without taking the list lock). 47 * 48 * The list_lock is a centralized lock and thus we avoid taking it as 49 * much as possible. As long as SLUB does not have to handle partial 50 * slabs, operations can continue without any centralized lock. F.e. 51 * allocating a long series of objects that fill up slabs does not require 52 * the list lock. 53 * 54 * The lock order is sometimes inverted when we are trying to get a slab 55 * off a list. We take the list_lock and then look for a page on the list 56 * to use. While we do that objects in the slabs may be freed. We can 57 * only operate on the slab if we have also taken the slab_lock. So we use 58 * a slab_trylock() on the slab. If trylock was successful then no frees 59 * can occur anymore and we can use the slab for allocations etc. If the 60 * slab_trylock() does not succeed then frees are in progress in the slab and 61 * we must stay away from it for a while since we may cause a bouncing 62 * cacheline if we try to acquire the lock. So go onto the next slab. 63 * If all pages are busy then we may allocate a new slab instead of reusing 64 * a partial slab. A new slab has noone operating on it and thus there is 65 * no danger of cacheline contention. 66 * 67 * Interrupts are disabled during allocation and deallocation in order to 68 * make the slab allocator safe to use in the context of an irq. In addition 69 * interrupts are disabled to ensure that the processor does not change 70 * while handling per_cpu slabs, due to kernel preemption. 71 * 72 * SLUB assigns one slab for allocation to each processor. 73 * Allocations only occur from these slabs called cpu slabs. 74 * 75 * Slabs with free elements are kept on a partial list and during regular 76 * operations no list for full slabs is used. If an object in a full slab is 77 * freed then the slab will show up again on the partial lists. 78 * We track full slabs for debugging purposes though because otherwise we 79 * cannot scan all objects. 80 * 81 * Slabs are freed when they become empty. Teardown and setup is 82 * minimal so we rely on the page allocators per cpu caches for 83 * fast frees and allocs. 84 * 85 * Overloading of page flags that are otherwise used for LRU management. 86 * 87 * PageActive The slab is frozen and exempt from list processing. 88 * This means that the slab is dedicated to a purpose 89 * such as satisfying allocations for a specific 90 * processor. Objects may be freed in the slab while 91 * it is frozen but slab_free will then skip the usual 92 * list operations. It is up to the processor holding 93 * the slab to integrate the slab into the slab lists 94 * when the slab is no longer needed. 95 * 96 * One use of this flag is to mark slabs that are 97 * used for allocations. Then such a slab becomes a cpu 98 * slab. The cpu slab may be equipped with an additional 99 * freelist that allows lockless access to 100 * free objects in addition to the regular freelist 101 * that requires the slab lock. 102 * 103 * PageError Slab requires special handling due to debug 104 * options set. This moves slab handling out of 105 * the fast path and disables lockless freelists. 106 */ 107 108 #ifdef CONFIG_SLUB_DEBUG 109 #define SLABDEBUG 1 110 #else 111 #define SLABDEBUG 0 112 #endif 113 114 /* 115 * Issues still to be resolved: 116 * 117 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 118 * 119 * - Variable sizing of the per node arrays 120 */ 121 122 /* Enable to test recovery from slab corruption on boot */ 123 #undef SLUB_RESILIENCY_TEST 124 125 /* 126 * Mininum number of partial slabs. These will be left on the partial 127 * lists even if they are empty. kmem_cache_shrink may reclaim them. 128 */ 129 #define MIN_PARTIAL 5 130 131 /* 132 * Maximum number of desirable partial slabs. 133 * The existence of more partial slabs makes kmem_cache_shrink 134 * sort the partial list by the number of objects in the. 135 */ 136 #define MAX_PARTIAL 10 137 138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 139 SLAB_POISON | SLAB_STORE_USER) 140 141 /* 142 * Set of flags that will prevent slab merging 143 */ 144 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 145 SLAB_TRACE | SLAB_DESTROY_BY_RCU) 146 147 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 148 SLAB_CACHE_DMA) 149 150 #ifndef ARCH_KMALLOC_MINALIGN 151 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 152 #endif 153 154 #ifndef ARCH_SLAB_MINALIGN 155 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 156 #endif 157 158 #define OO_SHIFT 16 159 #define OO_MASK ((1 << OO_SHIFT) - 1) 160 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ 161 162 /* Internal SLUB flags */ 163 #define __OBJECT_POISON 0x80000000 /* Poison object */ 164 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ 165 166 static int kmem_size = sizeof(struct kmem_cache); 167 168 #ifdef CONFIG_SMP 169 static struct notifier_block slab_notifier; 170 #endif 171 172 static enum { 173 DOWN, /* No slab functionality available */ 174 PARTIAL, /* kmem_cache_open() works but kmalloc does not */ 175 UP, /* Everything works but does not show up in sysfs */ 176 SYSFS /* Sysfs up */ 177 } slab_state = DOWN; 178 179 /* A list of all slab caches on the system */ 180 static DECLARE_RWSEM(slub_lock); 181 static LIST_HEAD(slab_caches); 182 183 /* 184 * Tracking user of a slab. 185 */ 186 struct track { 187 unsigned long addr; /* Called from address */ 188 int cpu; /* Was running on cpu */ 189 int pid; /* Pid context */ 190 unsigned long when; /* When did the operation occur */ 191 }; 192 193 enum track_item { TRACK_ALLOC, TRACK_FREE }; 194 195 #ifdef CONFIG_SLUB_DEBUG 196 static int sysfs_slab_add(struct kmem_cache *); 197 static int sysfs_slab_alias(struct kmem_cache *, const char *); 198 static void sysfs_slab_remove(struct kmem_cache *); 199 200 #else 201 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 202 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 203 { return 0; } 204 static inline void sysfs_slab_remove(struct kmem_cache *s) 205 { 206 kfree(s); 207 } 208 209 #endif 210 211 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) 212 { 213 #ifdef CONFIG_SLUB_STATS 214 c->stat[si]++; 215 #endif 216 } 217 218 /******************************************************************** 219 * Core slab cache functions 220 *******************************************************************/ 221 222 int slab_is_available(void) 223 { 224 return slab_state >= UP; 225 } 226 227 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 228 { 229 #ifdef CONFIG_NUMA 230 return s->node[node]; 231 #else 232 return &s->local_node; 233 #endif 234 } 235 236 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) 237 { 238 #ifdef CONFIG_SMP 239 return s->cpu_slab[cpu]; 240 #else 241 return &s->cpu_slab; 242 #endif 243 } 244 245 /* Verify that a pointer has an address that is valid within a slab page */ 246 static inline int check_valid_pointer(struct kmem_cache *s, 247 struct page *page, const void *object) 248 { 249 void *base; 250 251 if (!object) 252 return 1; 253 254 base = page_address(page); 255 if (object < base || object >= base + page->objects * s->size || 256 (object - base) % s->size) { 257 return 0; 258 } 259 260 return 1; 261 } 262 263 /* 264 * Slow version of get and set free pointer. 265 * 266 * This version requires touching the cache lines of kmem_cache which 267 * we avoid to do in the fast alloc free paths. There we obtain the offset 268 * from the page struct. 269 */ 270 static inline void *get_freepointer(struct kmem_cache *s, void *object) 271 { 272 return *(void **)(object + s->offset); 273 } 274 275 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 276 { 277 *(void **)(object + s->offset) = fp; 278 } 279 280 /* Loop over all objects in a slab */ 281 #define for_each_object(__p, __s, __addr, __objects) \ 282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 283 __p += (__s)->size) 284 285 /* Scan freelist */ 286 #define for_each_free_object(__p, __s, __free) \ 287 for (__p = (__free); __p; __p = get_freepointer((__s), __p)) 288 289 /* Determine object index from a given position */ 290 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 291 { 292 return (p - addr) / s->size; 293 } 294 295 static inline struct kmem_cache_order_objects oo_make(int order, 296 unsigned long size) 297 { 298 struct kmem_cache_order_objects x = { 299 (order << OO_SHIFT) + (PAGE_SIZE << order) / size 300 }; 301 302 return x; 303 } 304 305 static inline int oo_order(struct kmem_cache_order_objects x) 306 { 307 return x.x >> OO_SHIFT; 308 } 309 310 static inline int oo_objects(struct kmem_cache_order_objects x) 311 { 312 return x.x & OO_MASK; 313 } 314 315 #ifdef CONFIG_SLUB_DEBUG 316 /* 317 * Debug settings: 318 */ 319 #ifdef CONFIG_SLUB_DEBUG_ON 320 static int slub_debug = DEBUG_DEFAULT_FLAGS; 321 #else 322 static int slub_debug; 323 #endif 324 325 static char *slub_debug_slabs; 326 327 /* 328 * Object debugging 329 */ 330 static void print_section(char *text, u8 *addr, unsigned int length) 331 { 332 int i, offset; 333 int newline = 1; 334 char ascii[17]; 335 336 ascii[16] = 0; 337 338 for (i = 0; i < length; i++) { 339 if (newline) { 340 printk(KERN_ERR "%8s 0x%p: ", text, addr + i); 341 newline = 0; 342 } 343 printk(KERN_CONT " %02x", addr[i]); 344 offset = i % 16; 345 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; 346 if (offset == 15) { 347 printk(KERN_CONT " %s\n", ascii); 348 newline = 1; 349 } 350 } 351 if (!newline) { 352 i %= 16; 353 while (i < 16) { 354 printk(KERN_CONT " "); 355 ascii[i] = ' '; 356 i++; 357 } 358 printk(KERN_CONT " %s\n", ascii); 359 } 360 } 361 362 static struct track *get_track(struct kmem_cache *s, void *object, 363 enum track_item alloc) 364 { 365 struct track *p; 366 367 if (s->offset) 368 p = object + s->offset + sizeof(void *); 369 else 370 p = object + s->inuse; 371 372 return p + alloc; 373 } 374 375 static void set_track(struct kmem_cache *s, void *object, 376 enum track_item alloc, unsigned long addr) 377 { 378 struct track *p = get_track(s, object, alloc); 379 380 if (addr) { 381 p->addr = addr; 382 p->cpu = smp_processor_id(); 383 p->pid = current->pid; 384 p->when = jiffies; 385 } else 386 memset(p, 0, sizeof(struct track)); 387 } 388 389 static void init_tracking(struct kmem_cache *s, void *object) 390 { 391 if (!(s->flags & SLAB_STORE_USER)) 392 return; 393 394 set_track(s, object, TRACK_FREE, 0UL); 395 set_track(s, object, TRACK_ALLOC, 0UL); 396 } 397 398 static void print_track(const char *s, struct track *t) 399 { 400 if (!t->addr) 401 return; 402 403 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 404 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 405 } 406 407 static void print_tracking(struct kmem_cache *s, void *object) 408 { 409 if (!(s->flags & SLAB_STORE_USER)) 410 return; 411 412 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 413 print_track("Freed", get_track(s, object, TRACK_FREE)); 414 } 415 416 static void print_page_info(struct page *page) 417 { 418 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 419 page, page->objects, page->inuse, page->freelist, page->flags); 420 421 } 422 423 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 424 { 425 va_list args; 426 char buf[100]; 427 428 va_start(args, fmt); 429 vsnprintf(buf, sizeof(buf), fmt, args); 430 va_end(args); 431 printk(KERN_ERR "========================================" 432 "=====================================\n"); 433 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 434 printk(KERN_ERR "----------------------------------------" 435 "-------------------------------------\n\n"); 436 } 437 438 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 439 { 440 va_list args; 441 char buf[100]; 442 443 va_start(args, fmt); 444 vsnprintf(buf, sizeof(buf), fmt, args); 445 va_end(args); 446 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 447 } 448 449 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 450 { 451 unsigned int off; /* Offset of last byte */ 452 u8 *addr = page_address(page); 453 454 print_tracking(s, p); 455 456 print_page_info(page); 457 458 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 459 p, p - addr, get_freepointer(s, p)); 460 461 if (p > addr + 16) 462 print_section("Bytes b4", p - 16, 16); 463 464 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); 465 466 if (s->flags & SLAB_RED_ZONE) 467 print_section("Redzone", p + s->objsize, 468 s->inuse - s->objsize); 469 470 if (s->offset) 471 off = s->offset + sizeof(void *); 472 else 473 off = s->inuse; 474 475 if (s->flags & SLAB_STORE_USER) 476 off += 2 * sizeof(struct track); 477 478 if (off != s->size) 479 /* Beginning of the filler is the free pointer */ 480 print_section("Padding", p + off, s->size - off); 481 482 dump_stack(); 483 } 484 485 static void object_err(struct kmem_cache *s, struct page *page, 486 u8 *object, char *reason) 487 { 488 slab_bug(s, "%s", reason); 489 print_trailer(s, page, object); 490 } 491 492 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 493 { 494 va_list args; 495 char buf[100]; 496 497 va_start(args, fmt); 498 vsnprintf(buf, sizeof(buf), fmt, args); 499 va_end(args); 500 slab_bug(s, "%s", buf); 501 print_page_info(page); 502 dump_stack(); 503 } 504 505 static void init_object(struct kmem_cache *s, void *object, int active) 506 { 507 u8 *p = object; 508 509 if (s->flags & __OBJECT_POISON) { 510 memset(p, POISON_FREE, s->objsize - 1); 511 p[s->objsize - 1] = POISON_END; 512 } 513 514 if (s->flags & SLAB_RED_ZONE) 515 memset(p + s->objsize, 516 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, 517 s->inuse - s->objsize); 518 } 519 520 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) 521 { 522 while (bytes) { 523 if (*start != (u8)value) 524 return start; 525 start++; 526 bytes--; 527 } 528 return NULL; 529 } 530 531 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 532 void *from, void *to) 533 { 534 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 535 memset(from, data, to - from); 536 } 537 538 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 539 u8 *object, char *what, 540 u8 *start, unsigned int value, unsigned int bytes) 541 { 542 u8 *fault; 543 u8 *end; 544 545 fault = check_bytes(start, value, bytes); 546 if (!fault) 547 return 1; 548 549 end = start + bytes; 550 while (end > fault && end[-1] == value) 551 end--; 552 553 slab_bug(s, "%s overwritten", what); 554 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 555 fault, end - 1, fault[0], value); 556 print_trailer(s, page, object); 557 558 restore_bytes(s, what, value, fault, end); 559 return 0; 560 } 561 562 /* 563 * Object layout: 564 * 565 * object address 566 * Bytes of the object to be managed. 567 * If the freepointer may overlay the object then the free 568 * pointer is the first word of the object. 569 * 570 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 571 * 0xa5 (POISON_END) 572 * 573 * object + s->objsize 574 * Padding to reach word boundary. This is also used for Redzoning. 575 * Padding is extended by another word if Redzoning is enabled and 576 * objsize == inuse. 577 * 578 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 579 * 0xcc (RED_ACTIVE) for objects in use. 580 * 581 * object + s->inuse 582 * Meta data starts here. 583 * 584 * A. Free pointer (if we cannot overwrite object on free) 585 * B. Tracking data for SLAB_STORE_USER 586 * C. Padding to reach required alignment boundary or at mininum 587 * one word if debugging is on to be able to detect writes 588 * before the word boundary. 589 * 590 * Padding is done using 0x5a (POISON_INUSE) 591 * 592 * object + s->size 593 * Nothing is used beyond s->size. 594 * 595 * If slabcaches are merged then the objsize and inuse boundaries are mostly 596 * ignored. And therefore no slab options that rely on these boundaries 597 * may be used with merged slabcaches. 598 */ 599 600 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 601 { 602 unsigned long off = s->inuse; /* The end of info */ 603 604 if (s->offset) 605 /* Freepointer is placed after the object. */ 606 off += sizeof(void *); 607 608 if (s->flags & SLAB_STORE_USER) 609 /* We also have user information there */ 610 off += 2 * sizeof(struct track); 611 612 if (s->size == off) 613 return 1; 614 615 return check_bytes_and_report(s, page, p, "Object padding", 616 p + off, POISON_INUSE, s->size - off); 617 } 618 619 /* Check the pad bytes at the end of a slab page */ 620 static int slab_pad_check(struct kmem_cache *s, struct page *page) 621 { 622 u8 *start; 623 u8 *fault; 624 u8 *end; 625 int length; 626 int remainder; 627 628 if (!(s->flags & SLAB_POISON)) 629 return 1; 630 631 start = page_address(page); 632 length = (PAGE_SIZE << compound_order(page)); 633 end = start + length; 634 remainder = length % s->size; 635 if (!remainder) 636 return 1; 637 638 fault = check_bytes(end - remainder, POISON_INUSE, remainder); 639 if (!fault) 640 return 1; 641 while (end > fault && end[-1] == POISON_INUSE) 642 end--; 643 644 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 645 print_section("Padding", end - remainder, remainder); 646 647 restore_bytes(s, "slab padding", POISON_INUSE, start, end); 648 return 0; 649 } 650 651 static int check_object(struct kmem_cache *s, struct page *page, 652 void *object, int active) 653 { 654 u8 *p = object; 655 u8 *endobject = object + s->objsize; 656 657 if (s->flags & SLAB_RED_ZONE) { 658 unsigned int red = 659 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; 660 661 if (!check_bytes_and_report(s, page, object, "Redzone", 662 endobject, red, s->inuse - s->objsize)) 663 return 0; 664 } else { 665 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 666 check_bytes_and_report(s, page, p, "Alignment padding", 667 endobject, POISON_INUSE, s->inuse - s->objsize); 668 } 669 } 670 671 if (s->flags & SLAB_POISON) { 672 if (!active && (s->flags & __OBJECT_POISON) && 673 (!check_bytes_and_report(s, page, p, "Poison", p, 674 POISON_FREE, s->objsize - 1) || 675 !check_bytes_and_report(s, page, p, "Poison", 676 p + s->objsize - 1, POISON_END, 1))) 677 return 0; 678 /* 679 * check_pad_bytes cleans up on its own. 680 */ 681 check_pad_bytes(s, page, p); 682 } 683 684 if (!s->offset && active) 685 /* 686 * Object and freepointer overlap. Cannot check 687 * freepointer while object is allocated. 688 */ 689 return 1; 690 691 /* Check free pointer validity */ 692 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 693 object_err(s, page, p, "Freepointer corrupt"); 694 /* 695 * No choice but to zap it and thus lose the remainder 696 * of the free objects in this slab. May cause 697 * another error because the object count is now wrong. 698 */ 699 set_freepointer(s, p, NULL); 700 return 0; 701 } 702 return 1; 703 } 704 705 static int check_slab(struct kmem_cache *s, struct page *page) 706 { 707 int maxobj; 708 709 VM_BUG_ON(!irqs_disabled()); 710 711 if (!PageSlab(page)) { 712 slab_err(s, page, "Not a valid slab page"); 713 return 0; 714 } 715 716 maxobj = (PAGE_SIZE << compound_order(page)) / s->size; 717 if (page->objects > maxobj) { 718 slab_err(s, page, "objects %u > max %u", 719 s->name, page->objects, maxobj); 720 return 0; 721 } 722 if (page->inuse > page->objects) { 723 slab_err(s, page, "inuse %u > max %u", 724 s->name, page->inuse, page->objects); 725 return 0; 726 } 727 /* Slab_pad_check fixes things up after itself */ 728 slab_pad_check(s, page); 729 return 1; 730 } 731 732 /* 733 * Determine if a certain object on a page is on the freelist. Must hold the 734 * slab lock to guarantee that the chains are in a consistent state. 735 */ 736 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 737 { 738 int nr = 0; 739 void *fp = page->freelist; 740 void *object = NULL; 741 unsigned long max_objects; 742 743 while (fp && nr <= page->objects) { 744 if (fp == search) 745 return 1; 746 if (!check_valid_pointer(s, page, fp)) { 747 if (object) { 748 object_err(s, page, object, 749 "Freechain corrupt"); 750 set_freepointer(s, object, NULL); 751 break; 752 } else { 753 slab_err(s, page, "Freepointer corrupt"); 754 page->freelist = NULL; 755 page->inuse = page->objects; 756 slab_fix(s, "Freelist cleared"); 757 return 0; 758 } 759 break; 760 } 761 object = fp; 762 fp = get_freepointer(s, object); 763 nr++; 764 } 765 766 max_objects = (PAGE_SIZE << compound_order(page)) / s->size; 767 if (max_objects > MAX_OBJS_PER_PAGE) 768 max_objects = MAX_OBJS_PER_PAGE; 769 770 if (page->objects != max_objects) { 771 slab_err(s, page, "Wrong number of objects. Found %d but " 772 "should be %d", page->objects, max_objects); 773 page->objects = max_objects; 774 slab_fix(s, "Number of objects adjusted."); 775 } 776 if (page->inuse != page->objects - nr) { 777 slab_err(s, page, "Wrong object count. Counter is %d but " 778 "counted were %d", page->inuse, page->objects - nr); 779 page->inuse = page->objects - nr; 780 slab_fix(s, "Object count adjusted."); 781 } 782 return search == NULL; 783 } 784 785 static void trace(struct kmem_cache *s, struct page *page, void *object, 786 int alloc) 787 { 788 if (s->flags & SLAB_TRACE) { 789 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 790 s->name, 791 alloc ? "alloc" : "free", 792 object, page->inuse, 793 page->freelist); 794 795 if (!alloc) 796 print_section("Object", (void *)object, s->objsize); 797 798 dump_stack(); 799 } 800 } 801 802 /* 803 * Tracking of fully allocated slabs for debugging purposes. 804 */ 805 static void add_full(struct kmem_cache_node *n, struct page *page) 806 { 807 spin_lock(&n->list_lock); 808 list_add(&page->lru, &n->full); 809 spin_unlock(&n->list_lock); 810 } 811 812 static void remove_full(struct kmem_cache *s, struct page *page) 813 { 814 struct kmem_cache_node *n; 815 816 if (!(s->flags & SLAB_STORE_USER)) 817 return; 818 819 n = get_node(s, page_to_nid(page)); 820 821 spin_lock(&n->list_lock); 822 list_del(&page->lru); 823 spin_unlock(&n->list_lock); 824 } 825 826 /* Tracking of the number of slabs for debugging purposes */ 827 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 828 { 829 struct kmem_cache_node *n = get_node(s, node); 830 831 return atomic_long_read(&n->nr_slabs); 832 } 833 834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 835 { 836 struct kmem_cache_node *n = get_node(s, node); 837 838 /* 839 * May be called early in order to allocate a slab for the 840 * kmem_cache_node structure. Solve the chicken-egg 841 * dilemma by deferring the increment of the count during 842 * bootstrap (see early_kmem_cache_node_alloc). 843 */ 844 if (!NUMA_BUILD || n) { 845 atomic_long_inc(&n->nr_slabs); 846 atomic_long_add(objects, &n->total_objects); 847 } 848 } 849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 850 { 851 struct kmem_cache_node *n = get_node(s, node); 852 853 atomic_long_dec(&n->nr_slabs); 854 atomic_long_sub(objects, &n->total_objects); 855 } 856 857 /* Object debug checks for alloc/free paths */ 858 static void setup_object_debug(struct kmem_cache *s, struct page *page, 859 void *object) 860 { 861 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 862 return; 863 864 init_object(s, object, 0); 865 init_tracking(s, object); 866 } 867 868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page, 869 void *object, unsigned long addr) 870 { 871 if (!check_slab(s, page)) 872 goto bad; 873 874 if (!on_freelist(s, page, object)) { 875 object_err(s, page, object, "Object already allocated"); 876 goto bad; 877 } 878 879 if (!check_valid_pointer(s, page, object)) { 880 object_err(s, page, object, "Freelist Pointer check fails"); 881 goto bad; 882 } 883 884 if (!check_object(s, page, object, 0)) 885 goto bad; 886 887 /* Success perform special debug activities for allocs */ 888 if (s->flags & SLAB_STORE_USER) 889 set_track(s, object, TRACK_ALLOC, addr); 890 trace(s, page, object, 1); 891 init_object(s, object, 1); 892 return 1; 893 894 bad: 895 if (PageSlab(page)) { 896 /* 897 * If this is a slab page then lets do the best we can 898 * to avoid issues in the future. Marking all objects 899 * as used avoids touching the remaining objects. 900 */ 901 slab_fix(s, "Marking all objects used"); 902 page->inuse = page->objects; 903 page->freelist = NULL; 904 } 905 return 0; 906 } 907 908 static int free_debug_processing(struct kmem_cache *s, struct page *page, 909 void *object, unsigned long addr) 910 { 911 if (!check_slab(s, page)) 912 goto fail; 913 914 if (!check_valid_pointer(s, page, object)) { 915 slab_err(s, page, "Invalid object pointer 0x%p", object); 916 goto fail; 917 } 918 919 if (on_freelist(s, page, object)) { 920 object_err(s, page, object, "Object already free"); 921 goto fail; 922 } 923 924 if (!check_object(s, page, object, 1)) 925 return 0; 926 927 if (unlikely(s != page->slab)) { 928 if (!PageSlab(page)) { 929 slab_err(s, page, "Attempt to free object(0x%p) " 930 "outside of slab", object); 931 } else if (!page->slab) { 932 printk(KERN_ERR 933 "SLUB <none>: no slab for object 0x%p.\n", 934 object); 935 dump_stack(); 936 } else 937 object_err(s, page, object, 938 "page slab pointer corrupt."); 939 goto fail; 940 } 941 942 /* Special debug activities for freeing objects */ 943 if (!PageSlubFrozen(page) && !page->freelist) 944 remove_full(s, page); 945 if (s->flags & SLAB_STORE_USER) 946 set_track(s, object, TRACK_FREE, addr); 947 trace(s, page, object, 0); 948 init_object(s, object, 0); 949 return 1; 950 951 fail: 952 slab_fix(s, "Object at 0x%p not freed", object); 953 return 0; 954 } 955 956 static int __init setup_slub_debug(char *str) 957 { 958 slub_debug = DEBUG_DEFAULT_FLAGS; 959 if (*str++ != '=' || !*str) 960 /* 961 * No options specified. Switch on full debugging. 962 */ 963 goto out; 964 965 if (*str == ',') 966 /* 967 * No options but restriction on slabs. This means full 968 * debugging for slabs matching a pattern. 969 */ 970 goto check_slabs; 971 972 slub_debug = 0; 973 if (*str == '-') 974 /* 975 * Switch off all debugging measures. 976 */ 977 goto out; 978 979 /* 980 * Determine which debug features should be switched on 981 */ 982 for (; *str && *str != ','; str++) { 983 switch (tolower(*str)) { 984 case 'f': 985 slub_debug |= SLAB_DEBUG_FREE; 986 break; 987 case 'z': 988 slub_debug |= SLAB_RED_ZONE; 989 break; 990 case 'p': 991 slub_debug |= SLAB_POISON; 992 break; 993 case 'u': 994 slub_debug |= SLAB_STORE_USER; 995 break; 996 case 't': 997 slub_debug |= SLAB_TRACE; 998 break; 999 default: 1000 printk(KERN_ERR "slub_debug option '%c' " 1001 "unknown. skipped\n", *str); 1002 } 1003 } 1004 1005 check_slabs: 1006 if (*str == ',') 1007 slub_debug_slabs = str + 1; 1008 out: 1009 return 1; 1010 } 1011 1012 __setup("slub_debug", setup_slub_debug); 1013 1014 static unsigned long kmem_cache_flags(unsigned long objsize, 1015 unsigned long flags, const char *name, 1016 void (*ctor)(void *)) 1017 { 1018 /* 1019 * Enable debugging if selected on the kernel commandline. 1020 */ 1021 if (slub_debug && (!slub_debug_slabs || 1022 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) 1023 flags |= slub_debug; 1024 1025 return flags; 1026 } 1027 #else 1028 static inline void setup_object_debug(struct kmem_cache *s, 1029 struct page *page, void *object) {} 1030 1031 static inline int alloc_debug_processing(struct kmem_cache *s, 1032 struct page *page, void *object, unsigned long addr) { return 0; } 1033 1034 static inline int free_debug_processing(struct kmem_cache *s, 1035 struct page *page, void *object, unsigned long addr) { return 0; } 1036 1037 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1038 { return 1; } 1039 static inline int check_object(struct kmem_cache *s, struct page *page, 1040 void *object, int active) { return 1; } 1041 static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1042 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1043 unsigned long flags, const char *name, 1044 void (*ctor)(void *)) 1045 { 1046 return flags; 1047 } 1048 #define slub_debug 0 1049 1050 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1051 { return 0; } 1052 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1053 int objects) {} 1054 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1055 int objects) {} 1056 #endif 1057 1058 /* 1059 * Slab allocation and freeing 1060 */ 1061 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1062 struct kmem_cache_order_objects oo) 1063 { 1064 int order = oo_order(oo); 1065 1066 if (node == -1) 1067 return alloc_pages(flags, order); 1068 else 1069 return alloc_pages_node(node, flags, order); 1070 } 1071 1072 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1073 { 1074 struct page *page; 1075 struct kmem_cache_order_objects oo = s->oo; 1076 1077 flags |= s->allocflags; 1078 1079 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, 1080 oo); 1081 if (unlikely(!page)) { 1082 oo = s->min; 1083 /* 1084 * Allocation may have failed due to fragmentation. 1085 * Try a lower order alloc if possible 1086 */ 1087 page = alloc_slab_page(flags, node, oo); 1088 if (!page) 1089 return NULL; 1090 1091 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); 1092 } 1093 page->objects = oo_objects(oo); 1094 mod_zone_page_state(page_zone(page), 1095 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1096 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1097 1 << oo_order(oo)); 1098 1099 return page; 1100 } 1101 1102 static void setup_object(struct kmem_cache *s, struct page *page, 1103 void *object) 1104 { 1105 setup_object_debug(s, page, object); 1106 if (unlikely(s->ctor)) 1107 s->ctor(object); 1108 } 1109 1110 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1111 { 1112 struct page *page; 1113 void *start; 1114 void *last; 1115 void *p; 1116 1117 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1118 1119 page = allocate_slab(s, 1120 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1121 if (!page) 1122 goto out; 1123 1124 inc_slabs_node(s, page_to_nid(page), page->objects); 1125 page->slab = s; 1126 page->flags |= 1 << PG_slab; 1127 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | 1128 SLAB_STORE_USER | SLAB_TRACE)) 1129 __SetPageSlubDebug(page); 1130 1131 start = page_address(page); 1132 1133 if (unlikely(s->flags & SLAB_POISON)) 1134 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1135 1136 last = start; 1137 for_each_object(p, s, start, page->objects) { 1138 setup_object(s, page, last); 1139 set_freepointer(s, last, p); 1140 last = p; 1141 } 1142 setup_object(s, page, last); 1143 set_freepointer(s, last, NULL); 1144 1145 page->freelist = start; 1146 page->inuse = 0; 1147 out: 1148 return page; 1149 } 1150 1151 static void __free_slab(struct kmem_cache *s, struct page *page) 1152 { 1153 int order = compound_order(page); 1154 int pages = 1 << order; 1155 1156 if (unlikely(SLABDEBUG && PageSlubDebug(page))) { 1157 void *p; 1158 1159 slab_pad_check(s, page); 1160 for_each_object(p, s, page_address(page), 1161 page->objects) 1162 check_object(s, page, p, 0); 1163 __ClearPageSlubDebug(page); 1164 } 1165 1166 mod_zone_page_state(page_zone(page), 1167 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1168 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1169 -pages); 1170 1171 __ClearPageSlab(page); 1172 reset_page_mapcount(page); 1173 __free_pages(page, order); 1174 } 1175 1176 static void rcu_free_slab(struct rcu_head *h) 1177 { 1178 struct page *page; 1179 1180 page = container_of((struct list_head *)h, struct page, lru); 1181 __free_slab(page->slab, page); 1182 } 1183 1184 static void free_slab(struct kmem_cache *s, struct page *page) 1185 { 1186 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1187 /* 1188 * RCU free overloads the RCU head over the LRU 1189 */ 1190 struct rcu_head *head = (void *)&page->lru; 1191 1192 call_rcu(head, rcu_free_slab); 1193 } else 1194 __free_slab(s, page); 1195 } 1196 1197 static void discard_slab(struct kmem_cache *s, struct page *page) 1198 { 1199 dec_slabs_node(s, page_to_nid(page), page->objects); 1200 free_slab(s, page); 1201 } 1202 1203 /* 1204 * Per slab locking using the pagelock 1205 */ 1206 static __always_inline void slab_lock(struct page *page) 1207 { 1208 bit_spin_lock(PG_locked, &page->flags); 1209 } 1210 1211 static __always_inline void slab_unlock(struct page *page) 1212 { 1213 __bit_spin_unlock(PG_locked, &page->flags); 1214 } 1215 1216 static __always_inline int slab_trylock(struct page *page) 1217 { 1218 int rc = 1; 1219 1220 rc = bit_spin_trylock(PG_locked, &page->flags); 1221 return rc; 1222 } 1223 1224 /* 1225 * Management of partially allocated slabs 1226 */ 1227 static void add_partial(struct kmem_cache_node *n, 1228 struct page *page, int tail) 1229 { 1230 spin_lock(&n->list_lock); 1231 n->nr_partial++; 1232 if (tail) 1233 list_add_tail(&page->lru, &n->partial); 1234 else 1235 list_add(&page->lru, &n->partial); 1236 spin_unlock(&n->list_lock); 1237 } 1238 1239 static void remove_partial(struct kmem_cache *s, struct page *page) 1240 { 1241 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1242 1243 spin_lock(&n->list_lock); 1244 list_del(&page->lru); 1245 n->nr_partial--; 1246 spin_unlock(&n->list_lock); 1247 } 1248 1249 /* 1250 * Lock slab and remove from the partial list. 1251 * 1252 * Must hold list_lock. 1253 */ 1254 static inline int lock_and_freeze_slab(struct kmem_cache_node *n, 1255 struct page *page) 1256 { 1257 if (slab_trylock(page)) { 1258 list_del(&page->lru); 1259 n->nr_partial--; 1260 __SetPageSlubFrozen(page); 1261 return 1; 1262 } 1263 return 0; 1264 } 1265 1266 /* 1267 * Try to allocate a partial slab from a specific node. 1268 */ 1269 static struct page *get_partial_node(struct kmem_cache_node *n) 1270 { 1271 struct page *page; 1272 1273 /* 1274 * Racy check. If we mistakenly see no partial slabs then we 1275 * just allocate an empty slab. If we mistakenly try to get a 1276 * partial slab and there is none available then get_partials() 1277 * will return NULL. 1278 */ 1279 if (!n || !n->nr_partial) 1280 return NULL; 1281 1282 spin_lock(&n->list_lock); 1283 list_for_each_entry(page, &n->partial, lru) 1284 if (lock_and_freeze_slab(n, page)) 1285 goto out; 1286 page = NULL; 1287 out: 1288 spin_unlock(&n->list_lock); 1289 return page; 1290 } 1291 1292 /* 1293 * Get a page from somewhere. Search in increasing NUMA distances. 1294 */ 1295 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) 1296 { 1297 #ifdef CONFIG_NUMA 1298 struct zonelist *zonelist; 1299 struct zoneref *z; 1300 struct zone *zone; 1301 enum zone_type high_zoneidx = gfp_zone(flags); 1302 struct page *page; 1303 1304 /* 1305 * The defrag ratio allows a configuration of the tradeoffs between 1306 * inter node defragmentation and node local allocations. A lower 1307 * defrag_ratio increases the tendency to do local allocations 1308 * instead of attempting to obtain partial slabs from other nodes. 1309 * 1310 * If the defrag_ratio is set to 0 then kmalloc() always 1311 * returns node local objects. If the ratio is higher then kmalloc() 1312 * may return off node objects because partial slabs are obtained 1313 * from other nodes and filled up. 1314 * 1315 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1316 * defrag_ratio = 1000) then every (well almost) allocation will 1317 * first attempt to defrag slab caches on other nodes. This means 1318 * scanning over all nodes to look for partial slabs which may be 1319 * expensive if we do it every time we are trying to find a slab 1320 * with available objects. 1321 */ 1322 if (!s->remote_node_defrag_ratio || 1323 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1324 return NULL; 1325 1326 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1327 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1328 struct kmem_cache_node *n; 1329 1330 n = get_node(s, zone_to_nid(zone)); 1331 1332 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1333 n->nr_partial > s->min_partial) { 1334 page = get_partial_node(n); 1335 if (page) 1336 return page; 1337 } 1338 } 1339 #endif 1340 return NULL; 1341 } 1342 1343 /* 1344 * Get a partial page, lock it and return it. 1345 */ 1346 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) 1347 { 1348 struct page *page; 1349 int searchnode = (node == -1) ? numa_node_id() : node; 1350 1351 page = get_partial_node(get_node(s, searchnode)); 1352 if (page || (flags & __GFP_THISNODE)) 1353 return page; 1354 1355 return get_any_partial(s, flags); 1356 } 1357 1358 /* 1359 * Move a page back to the lists. 1360 * 1361 * Must be called with the slab lock held. 1362 * 1363 * On exit the slab lock will have been dropped. 1364 */ 1365 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) 1366 { 1367 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1368 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); 1369 1370 __ClearPageSlubFrozen(page); 1371 if (page->inuse) { 1372 1373 if (page->freelist) { 1374 add_partial(n, page, tail); 1375 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1376 } else { 1377 stat(c, DEACTIVATE_FULL); 1378 if (SLABDEBUG && PageSlubDebug(page) && 1379 (s->flags & SLAB_STORE_USER)) 1380 add_full(n, page); 1381 } 1382 slab_unlock(page); 1383 } else { 1384 stat(c, DEACTIVATE_EMPTY); 1385 if (n->nr_partial < s->min_partial) { 1386 /* 1387 * Adding an empty slab to the partial slabs in order 1388 * to avoid page allocator overhead. This slab needs 1389 * to come after the other slabs with objects in 1390 * so that the others get filled first. That way the 1391 * size of the partial list stays small. 1392 * 1393 * kmem_cache_shrink can reclaim any empty slabs from 1394 * the partial list. 1395 */ 1396 add_partial(n, page, 1); 1397 slab_unlock(page); 1398 } else { 1399 slab_unlock(page); 1400 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); 1401 discard_slab(s, page); 1402 } 1403 } 1404 } 1405 1406 /* 1407 * Remove the cpu slab 1408 */ 1409 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1410 { 1411 struct page *page = c->page; 1412 int tail = 1; 1413 1414 if (page->freelist) 1415 stat(c, DEACTIVATE_REMOTE_FREES); 1416 /* 1417 * Merge cpu freelist into slab freelist. Typically we get here 1418 * because both freelists are empty. So this is unlikely 1419 * to occur. 1420 */ 1421 while (unlikely(c->freelist)) { 1422 void **object; 1423 1424 tail = 0; /* Hot objects. Put the slab first */ 1425 1426 /* Retrieve object from cpu_freelist */ 1427 object = c->freelist; 1428 c->freelist = c->freelist[c->offset]; 1429 1430 /* And put onto the regular freelist */ 1431 object[c->offset] = page->freelist; 1432 page->freelist = object; 1433 page->inuse--; 1434 } 1435 c->page = NULL; 1436 unfreeze_slab(s, page, tail); 1437 } 1438 1439 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1440 { 1441 stat(c, CPUSLAB_FLUSH); 1442 slab_lock(c->page); 1443 deactivate_slab(s, c); 1444 } 1445 1446 /* 1447 * Flush cpu slab. 1448 * 1449 * Called from IPI handler with interrupts disabled. 1450 */ 1451 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1452 { 1453 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 1454 1455 if (likely(c && c->page)) 1456 flush_slab(s, c); 1457 } 1458 1459 static void flush_cpu_slab(void *d) 1460 { 1461 struct kmem_cache *s = d; 1462 1463 __flush_cpu_slab(s, smp_processor_id()); 1464 } 1465 1466 static void flush_all(struct kmem_cache *s) 1467 { 1468 on_each_cpu(flush_cpu_slab, s, 1); 1469 } 1470 1471 /* 1472 * Check if the objects in a per cpu structure fit numa 1473 * locality expectations. 1474 */ 1475 static inline int node_match(struct kmem_cache_cpu *c, int node) 1476 { 1477 #ifdef CONFIG_NUMA 1478 if (node != -1 && c->node != node) 1479 return 0; 1480 #endif 1481 return 1; 1482 } 1483 1484 /* 1485 * Slow path. The lockless freelist is empty or we need to perform 1486 * debugging duties. 1487 * 1488 * Interrupts are disabled. 1489 * 1490 * Processing is still very fast if new objects have been freed to the 1491 * regular freelist. In that case we simply take over the regular freelist 1492 * as the lockless freelist and zap the regular freelist. 1493 * 1494 * If that is not working then we fall back to the partial lists. We take the 1495 * first element of the freelist as the object to allocate now and move the 1496 * rest of the freelist to the lockless freelist. 1497 * 1498 * And if we were unable to get a new slab from the partial slab lists then 1499 * we need to allocate a new slab. This is the slowest path since it involves 1500 * a call to the page allocator and the setup of a new slab. 1501 */ 1502 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 1503 unsigned long addr, struct kmem_cache_cpu *c) 1504 { 1505 void **object; 1506 struct page *new; 1507 1508 /* We handle __GFP_ZERO in the caller */ 1509 gfpflags &= ~__GFP_ZERO; 1510 1511 if (!c->page) 1512 goto new_slab; 1513 1514 slab_lock(c->page); 1515 if (unlikely(!node_match(c, node))) 1516 goto another_slab; 1517 1518 stat(c, ALLOC_REFILL); 1519 1520 load_freelist: 1521 object = c->page->freelist; 1522 if (unlikely(!object)) 1523 goto another_slab; 1524 if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) 1525 goto debug; 1526 1527 c->freelist = object[c->offset]; 1528 c->page->inuse = c->page->objects; 1529 c->page->freelist = NULL; 1530 c->node = page_to_nid(c->page); 1531 unlock_out: 1532 slab_unlock(c->page); 1533 stat(c, ALLOC_SLOWPATH); 1534 return object; 1535 1536 another_slab: 1537 deactivate_slab(s, c); 1538 1539 new_slab: 1540 new = get_partial(s, gfpflags, node); 1541 if (new) { 1542 c->page = new; 1543 stat(c, ALLOC_FROM_PARTIAL); 1544 goto load_freelist; 1545 } 1546 1547 if (gfpflags & __GFP_WAIT) 1548 local_irq_enable(); 1549 1550 new = new_slab(s, gfpflags, node); 1551 1552 if (gfpflags & __GFP_WAIT) 1553 local_irq_disable(); 1554 1555 if (new) { 1556 c = get_cpu_slab(s, smp_processor_id()); 1557 stat(c, ALLOC_SLAB); 1558 if (c->page) 1559 flush_slab(s, c); 1560 slab_lock(new); 1561 __SetPageSlubFrozen(new); 1562 c->page = new; 1563 goto load_freelist; 1564 } 1565 return NULL; 1566 debug: 1567 if (!alloc_debug_processing(s, c->page, object, addr)) 1568 goto another_slab; 1569 1570 c->page->inuse++; 1571 c->page->freelist = object[c->offset]; 1572 c->node = -1; 1573 goto unlock_out; 1574 } 1575 1576 /* 1577 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 1578 * have the fastpath folded into their functions. So no function call 1579 * overhead for requests that can be satisfied on the fastpath. 1580 * 1581 * The fastpath works by first checking if the lockless freelist can be used. 1582 * If not then __slab_alloc is called for slow processing. 1583 * 1584 * Otherwise we can simply pick the next object from the lockless free list. 1585 */ 1586 static __always_inline void *slab_alloc(struct kmem_cache *s, 1587 gfp_t gfpflags, int node, unsigned long addr) 1588 { 1589 void **object; 1590 struct kmem_cache_cpu *c; 1591 unsigned long flags; 1592 unsigned int objsize; 1593 1594 lockdep_trace_alloc(gfpflags); 1595 might_sleep_if(gfpflags & __GFP_WAIT); 1596 1597 if (should_failslab(s->objsize, gfpflags)) 1598 return NULL; 1599 1600 local_irq_save(flags); 1601 c = get_cpu_slab(s, smp_processor_id()); 1602 objsize = c->objsize; 1603 if (unlikely(!c->freelist || !node_match(c, node))) 1604 1605 object = __slab_alloc(s, gfpflags, node, addr, c); 1606 1607 else { 1608 object = c->freelist; 1609 c->freelist = object[c->offset]; 1610 stat(c, ALLOC_FASTPATH); 1611 } 1612 local_irq_restore(flags); 1613 1614 if (unlikely((gfpflags & __GFP_ZERO) && object)) 1615 memset(object, 0, objsize); 1616 1617 return object; 1618 } 1619 1620 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 1621 { 1622 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); 1623 1624 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 1625 1626 return ret; 1627 } 1628 EXPORT_SYMBOL(kmem_cache_alloc); 1629 1630 #ifdef CONFIG_KMEMTRACE 1631 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) 1632 { 1633 return slab_alloc(s, gfpflags, -1, _RET_IP_); 1634 } 1635 EXPORT_SYMBOL(kmem_cache_alloc_notrace); 1636 #endif 1637 1638 #ifdef CONFIG_NUMA 1639 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 1640 { 1641 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 1642 1643 trace_kmem_cache_alloc_node(_RET_IP_, ret, 1644 s->objsize, s->size, gfpflags, node); 1645 1646 return ret; 1647 } 1648 EXPORT_SYMBOL(kmem_cache_alloc_node); 1649 #endif 1650 1651 #ifdef CONFIG_KMEMTRACE 1652 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s, 1653 gfp_t gfpflags, 1654 int node) 1655 { 1656 return slab_alloc(s, gfpflags, node, _RET_IP_); 1657 } 1658 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); 1659 #endif 1660 1661 /* 1662 * Slow patch handling. This may still be called frequently since objects 1663 * have a longer lifetime than the cpu slabs in most processing loads. 1664 * 1665 * So we still attempt to reduce cache line usage. Just take the slab 1666 * lock and free the item. If there is no additional partial page 1667 * handling required then we can return immediately. 1668 */ 1669 static void __slab_free(struct kmem_cache *s, struct page *page, 1670 void *x, unsigned long addr, unsigned int offset) 1671 { 1672 void *prior; 1673 void **object = (void *)x; 1674 struct kmem_cache_cpu *c; 1675 1676 c = get_cpu_slab(s, raw_smp_processor_id()); 1677 stat(c, FREE_SLOWPATH); 1678 slab_lock(page); 1679 1680 if (unlikely(SLABDEBUG && PageSlubDebug(page))) 1681 goto debug; 1682 1683 checks_ok: 1684 prior = object[offset] = page->freelist; 1685 page->freelist = object; 1686 page->inuse--; 1687 1688 if (unlikely(PageSlubFrozen(page))) { 1689 stat(c, FREE_FROZEN); 1690 goto out_unlock; 1691 } 1692 1693 if (unlikely(!page->inuse)) 1694 goto slab_empty; 1695 1696 /* 1697 * Objects left in the slab. If it was not on the partial list before 1698 * then add it. 1699 */ 1700 if (unlikely(!prior)) { 1701 add_partial(get_node(s, page_to_nid(page)), page, 1); 1702 stat(c, FREE_ADD_PARTIAL); 1703 } 1704 1705 out_unlock: 1706 slab_unlock(page); 1707 return; 1708 1709 slab_empty: 1710 if (prior) { 1711 /* 1712 * Slab still on the partial list. 1713 */ 1714 remove_partial(s, page); 1715 stat(c, FREE_REMOVE_PARTIAL); 1716 } 1717 slab_unlock(page); 1718 stat(c, FREE_SLAB); 1719 discard_slab(s, page); 1720 return; 1721 1722 debug: 1723 if (!free_debug_processing(s, page, x, addr)) 1724 goto out_unlock; 1725 goto checks_ok; 1726 } 1727 1728 /* 1729 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 1730 * can perform fastpath freeing without additional function calls. 1731 * 1732 * The fastpath is only possible if we are freeing to the current cpu slab 1733 * of this processor. This typically the case if we have just allocated 1734 * the item before. 1735 * 1736 * If fastpath is not possible then fall back to __slab_free where we deal 1737 * with all sorts of special processing. 1738 */ 1739 static __always_inline void slab_free(struct kmem_cache *s, 1740 struct page *page, void *x, unsigned long addr) 1741 { 1742 void **object = (void *)x; 1743 struct kmem_cache_cpu *c; 1744 unsigned long flags; 1745 1746 local_irq_save(flags); 1747 c = get_cpu_slab(s, smp_processor_id()); 1748 debug_check_no_locks_freed(object, c->objsize); 1749 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1750 debug_check_no_obj_freed(object, c->objsize); 1751 if (likely(page == c->page && c->node >= 0)) { 1752 object[c->offset] = c->freelist; 1753 c->freelist = object; 1754 stat(c, FREE_FASTPATH); 1755 } else 1756 __slab_free(s, page, x, addr, c->offset); 1757 1758 local_irq_restore(flags); 1759 } 1760 1761 void kmem_cache_free(struct kmem_cache *s, void *x) 1762 { 1763 struct page *page; 1764 1765 page = virt_to_head_page(x); 1766 1767 slab_free(s, page, x, _RET_IP_); 1768 1769 trace_kmem_cache_free(_RET_IP_, x); 1770 } 1771 EXPORT_SYMBOL(kmem_cache_free); 1772 1773 /* Figure out on which slab page the object resides */ 1774 static struct page *get_object_page(const void *x) 1775 { 1776 struct page *page = virt_to_head_page(x); 1777 1778 if (!PageSlab(page)) 1779 return NULL; 1780 1781 return page; 1782 } 1783 1784 /* 1785 * Object placement in a slab is made very easy because we always start at 1786 * offset 0. If we tune the size of the object to the alignment then we can 1787 * get the required alignment by putting one properly sized object after 1788 * another. 1789 * 1790 * Notice that the allocation order determines the sizes of the per cpu 1791 * caches. Each processor has always one slab available for allocations. 1792 * Increasing the allocation order reduces the number of times that slabs 1793 * must be moved on and off the partial lists and is therefore a factor in 1794 * locking overhead. 1795 */ 1796 1797 /* 1798 * Mininum / Maximum order of slab pages. This influences locking overhead 1799 * and slab fragmentation. A higher order reduces the number of partial slabs 1800 * and increases the number of allocations possible without having to 1801 * take the list_lock. 1802 */ 1803 static int slub_min_order; 1804 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 1805 static int slub_min_objects; 1806 1807 /* 1808 * Merge control. If this is set then no merging of slab caches will occur. 1809 * (Could be removed. This was introduced to pacify the merge skeptics.) 1810 */ 1811 static int slub_nomerge; 1812 1813 /* 1814 * Calculate the order of allocation given an slab object size. 1815 * 1816 * The order of allocation has significant impact on performance and other 1817 * system components. Generally order 0 allocations should be preferred since 1818 * order 0 does not cause fragmentation in the page allocator. Larger objects 1819 * be problematic to put into order 0 slabs because there may be too much 1820 * unused space left. We go to a higher order if more than 1/16th of the slab 1821 * would be wasted. 1822 * 1823 * In order to reach satisfactory performance we must ensure that a minimum 1824 * number of objects is in one slab. Otherwise we may generate too much 1825 * activity on the partial lists which requires taking the list_lock. This is 1826 * less a concern for large slabs though which are rarely used. 1827 * 1828 * slub_max_order specifies the order where we begin to stop considering the 1829 * number of objects in a slab as critical. If we reach slub_max_order then 1830 * we try to keep the page order as low as possible. So we accept more waste 1831 * of space in favor of a small page order. 1832 * 1833 * Higher order allocations also allow the placement of more objects in a 1834 * slab and thereby reduce object handling overhead. If the user has 1835 * requested a higher mininum order then we start with that one instead of 1836 * the smallest order which will fit the object. 1837 */ 1838 static inline int slab_order(int size, int min_objects, 1839 int max_order, int fract_leftover) 1840 { 1841 int order; 1842 int rem; 1843 int min_order = slub_min_order; 1844 1845 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) 1846 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 1847 1848 for (order = max(min_order, 1849 fls(min_objects * size - 1) - PAGE_SHIFT); 1850 order <= max_order; order++) { 1851 1852 unsigned long slab_size = PAGE_SIZE << order; 1853 1854 if (slab_size < min_objects * size) 1855 continue; 1856 1857 rem = slab_size % size; 1858 1859 if (rem <= slab_size / fract_leftover) 1860 break; 1861 1862 } 1863 1864 return order; 1865 } 1866 1867 static inline int calculate_order(int size) 1868 { 1869 int order; 1870 int min_objects; 1871 int fraction; 1872 int max_objects; 1873 1874 /* 1875 * Attempt to find best configuration for a slab. This 1876 * works by first attempting to generate a layout with 1877 * the best configuration and backing off gradually. 1878 * 1879 * First we reduce the acceptable waste in a slab. Then 1880 * we reduce the minimum objects required in a slab. 1881 */ 1882 min_objects = slub_min_objects; 1883 if (!min_objects) 1884 min_objects = 4 * (fls(nr_cpu_ids) + 1); 1885 max_objects = (PAGE_SIZE << slub_max_order)/size; 1886 min_objects = min(min_objects, max_objects); 1887 1888 while (min_objects > 1) { 1889 fraction = 16; 1890 while (fraction >= 4) { 1891 order = slab_order(size, min_objects, 1892 slub_max_order, fraction); 1893 if (order <= slub_max_order) 1894 return order; 1895 fraction /= 2; 1896 } 1897 min_objects --; 1898 } 1899 1900 /* 1901 * We were unable to place multiple objects in a slab. Now 1902 * lets see if we can place a single object there. 1903 */ 1904 order = slab_order(size, 1, slub_max_order, 1); 1905 if (order <= slub_max_order) 1906 return order; 1907 1908 /* 1909 * Doh this slab cannot be placed using slub_max_order. 1910 */ 1911 order = slab_order(size, 1, MAX_ORDER, 1); 1912 if (order <= MAX_ORDER) 1913 return order; 1914 return -ENOSYS; 1915 } 1916 1917 /* 1918 * Figure out what the alignment of the objects will be. 1919 */ 1920 static unsigned long calculate_alignment(unsigned long flags, 1921 unsigned long align, unsigned long size) 1922 { 1923 /* 1924 * If the user wants hardware cache aligned objects then follow that 1925 * suggestion if the object is sufficiently large. 1926 * 1927 * The hardware cache alignment cannot override the specified 1928 * alignment though. If that is greater then use it. 1929 */ 1930 if (flags & SLAB_HWCACHE_ALIGN) { 1931 unsigned long ralign = cache_line_size(); 1932 while (size <= ralign / 2) 1933 ralign /= 2; 1934 align = max(align, ralign); 1935 } 1936 1937 if (align < ARCH_SLAB_MINALIGN) 1938 align = ARCH_SLAB_MINALIGN; 1939 1940 return ALIGN(align, sizeof(void *)); 1941 } 1942 1943 static void init_kmem_cache_cpu(struct kmem_cache *s, 1944 struct kmem_cache_cpu *c) 1945 { 1946 c->page = NULL; 1947 c->freelist = NULL; 1948 c->node = 0; 1949 c->offset = s->offset / sizeof(void *); 1950 c->objsize = s->objsize; 1951 #ifdef CONFIG_SLUB_STATS 1952 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); 1953 #endif 1954 } 1955 1956 static void 1957 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 1958 { 1959 n->nr_partial = 0; 1960 spin_lock_init(&n->list_lock); 1961 INIT_LIST_HEAD(&n->partial); 1962 #ifdef CONFIG_SLUB_DEBUG 1963 atomic_long_set(&n->nr_slabs, 0); 1964 atomic_long_set(&n->total_objects, 0); 1965 INIT_LIST_HEAD(&n->full); 1966 #endif 1967 } 1968 1969 #ifdef CONFIG_SMP 1970 /* 1971 * Per cpu array for per cpu structures. 1972 * 1973 * The per cpu array places all kmem_cache_cpu structures from one processor 1974 * close together meaning that it becomes possible that multiple per cpu 1975 * structures are contained in one cacheline. This may be particularly 1976 * beneficial for the kmalloc caches. 1977 * 1978 * A desktop system typically has around 60-80 slabs. With 100 here we are 1979 * likely able to get per cpu structures for all caches from the array defined 1980 * here. We must be able to cover all kmalloc caches during bootstrap. 1981 * 1982 * If the per cpu array is exhausted then fall back to kmalloc 1983 * of individual cachelines. No sharing is possible then. 1984 */ 1985 #define NR_KMEM_CACHE_CPU 100 1986 1987 static DEFINE_PER_CPU(struct kmem_cache_cpu, 1988 kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; 1989 1990 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); 1991 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS); 1992 1993 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, 1994 int cpu, gfp_t flags) 1995 { 1996 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); 1997 1998 if (c) 1999 per_cpu(kmem_cache_cpu_free, cpu) = 2000 (void *)c->freelist; 2001 else { 2002 /* Table overflow: So allocate ourselves */ 2003 c = kmalloc_node( 2004 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), 2005 flags, cpu_to_node(cpu)); 2006 if (!c) 2007 return NULL; 2008 } 2009 2010 init_kmem_cache_cpu(s, c); 2011 return c; 2012 } 2013 2014 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) 2015 { 2016 if (c < per_cpu(kmem_cache_cpu, cpu) || 2017 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { 2018 kfree(c); 2019 return; 2020 } 2021 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); 2022 per_cpu(kmem_cache_cpu_free, cpu) = c; 2023 } 2024 2025 static void free_kmem_cache_cpus(struct kmem_cache *s) 2026 { 2027 int cpu; 2028 2029 for_each_online_cpu(cpu) { 2030 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2031 2032 if (c) { 2033 s->cpu_slab[cpu] = NULL; 2034 free_kmem_cache_cpu(c, cpu); 2035 } 2036 } 2037 } 2038 2039 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2040 { 2041 int cpu; 2042 2043 for_each_online_cpu(cpu) { 2044 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 2045 2046 if (c) 2047 continue; 2048 2049 c = alloc_kmem_cache_cpu(s, cpu, flags); 2050 if (!c) { 2051 free_kmem_cache_cpus(s); 2052 return 0; 2053 } 2054 s->cpu_slab[cpu] = c; 2055 } 2056 return 1; 2057 } 2058 2059 /* 2060 * Initialize the per cpu array. 2061 */ 2062 static void init_alloc_cpu_cpu(int cpu) 2063 { 2064 int i; 2065 2066 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once))) 2067 return; 2068 2069 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) 2070 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); 2071 2072 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)); 2073 } 2074 2075 static void __init init_alloc_cpu(void) 2076 { 2077 int cpu; 2078 2079 for_each_online_cpu(cpu) 2080 init_alloc_cpu_cpu(cpu); 2081 } 2082 2083 #else 2084 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} 2085 static inline void init_alloc_cpu(void) {} 2086 2087 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) 2088 { 2089 init_kmem_cache_cpu(s, &s->cpu_slab); 2090 return 1; 2091 } 2092 #endif 2093 2094 #ifdef CONFIG_NUMA 2095 /* 2096 * No kmalloc_node yet so do it by hand. We know that this is the first 2097 * slab on the node for this slabcache. There are no concurrent accesses 2098 * possible. 2099 * 2100 * Note that this function only works on the kmalloc_node_cache 2101 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2102 * memory on a fresh node that has no slab structures yet. 2103 */ 2104 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node) 2105 { 2106 struct page *page; 2107 struct kmem_cache_node *n; 2108 unsigned long flags; 2109 2110 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); 2111 2112 page = new_slab(kmalloc_caches, gfpflags, node); 2113 2114 BUG_ON(!page); 2115 if (page_to_nid(page) != node) { 2116 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2117 "node %d\n", node); 2118 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2119 "in order to be able to continue\n"); 2120 } 2121 2122 n = page->freelist; 2123 BUG_ON(!n); 2124 page->freelist = get_freepointer(kmalloc_caches, n); 2125 page->inuse++; 2126 kmalloc_caches->node[node] = n; 2127 #ifdef CONFIG_SLUB_DEBUG 2128 init_object(kmalloc_caches, n, 1); 2129 init_tracking(kmalloc_caches, n); 2130 #endif 2131 init_kmem_cache_node(n, kmalloc_caches); 2132 inc_slabs_node(kmalloc_caches, node, page->objects); 2133 2134 /* 2135 * lockdep requires consistent irq usage for each lock 2136 * so even though there cannot be a race this early in 2137 * the boot sequence, we still disable irqs. 2138 */ 2139 local_irq_save(flags); 2140 add_partial(n, page, 0); 2141 local_irq_restore(flags); 2142 } 2143 2144 static void free_kmem_cache_nodes(struct kmem_cache *s) 2145 { 2146 int node; 2147 2148 for_each_node_state(node, N_NORMAL_MEMORY) { 2149 struct kmem_cache_node *n = s->node[node]; 2150 if (n && n != &s->local_node) 2151 kmem_cache_free(kmalloc_caches, n); 2152 s->node[node] = NULL; 2153 } 2154 } 2155 2156 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2157 { 2158 int node; 2159 int local_node; 2160 2161 if (slab_state >= UP) 2162 local_node = page_to_nid(virt_to_page(s)); 2163 else 2164 local_node = 0; 2165 2166 for_each_node_state(node, N_NORMAL_MEMORY) { 2167 struct kmem_cache_node *n; 2168 2169 if (local_node == node) 2170 n = &s->local_node; 2171 else { 2172 if (slab_state == DOWN) { 2173 early_kmem_cache_node_alloc(gfpflags, node); 2174 continue; 2175 } 2176 n = kmem_cache_alloc_node(kmalloc_caches, 2177 gfpflags, node); 2178 2179 if (!n) { 2180 free_kmem_cache_nodes(s); 2181 return 0; 2182 } 2183 2184 } 2185 s->node[node] = n; 2186 init_kmem_cache_node(n, s); 2187 } 2188 return 1; 2189 } 2190 #else 2191 static void free_kmem_cache_nodes(struct kmem_cache *s) 2192 { 2193 } 2194 2195 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) 2196 { 2197 init_kmem_cache_node(&s->local_node, s); 2198 return 1; 2199 } 2200 #endif 2201 2202 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2203 { 2204 if (min < MIN_PARTIAL) 2205 min = MIN_PARTIAL; 2206 else if (min > MAX_PARTIAL) 2207 min = MAX_PARTIAL; 2208 s->min_partial = min; 2209 } 2210 2211 /* 2212 * calculate_sizes() determines the order and the distribution of data within 2213 * a slab object. 2214 */ 2215 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2216 { 2217 unsigned long flags = s->flags; 2218 unsigned long size = s->objsize; 2219 unsigned long align = s->align; 2220 int order; 2221 2222 /* 2223 * Round up object size to the next word boundary. We can only 2224 * place the free pointer at word boundaries and this determines 2225 * the possible location of the free pointer. 2226 */ 2227 size = ALIGN(size, sizeof(void *)); 2228 2229 #ifdef CONFIG_SLUB_DEBUG 2230 /* 2231 * Determine if we can poison the object itself. If the user of 2232 * the slab may touch the object after free or before allocation 2233 * then we should never poison the object itself. 2234 */ 2235 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2236 !s->ctor) 2237 s->flags |= __OBJECT_POISON; 2238 else 2239 s->flags &= ~__OBJECT_POISON; 2240 2241 2242 /* 2243 * If we are Redzoning then check if there is some space between the 2244 * end of the object and the free pointer. If not then add an 2245 * additional word to have some bytes to store Redzone information. 2246 */ 2247 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2248 size += sizeof(void *); 2249 #endif 2250 2251 /* 2252 * With that we have determined the number of bytes in actual use 2253 * by the object. This is the potential offset to the free pointer. 2254 */ 2255 s->inuse = size; 2256 2257 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2258 s->ctor)) { 2259 /* 2260 * Relocate free pointer after the object if it is not 2261 * permitted to overwrite the first word of the object on 2262 * kmem_cache_free. 2263 * 2264 * This is the case if we do RCU, have a constructor or 2265 * destructor or are poisoning the objects. 2266 */ 2267 s->offset = size; 2268 size += sizeof(void *); 2269 } 2270 2271 #ifdef CONFIG_SLUB_DEBUG 2272 if (flags & SLAB_STORE_USER) 2273 /* 2274 * Need to store information about allocs and frees after 2275 * the object. 2276 */ 2277 size += 2 * sizeof(struct track); 2278 2279 if (flags & SLAB_RED_ZONE) 2280 /* 2281 * Add some empty padding so that we can catch 2282 * overwrites from earlier objects rather than let 2283 * tracking information or the free pointer be 2284 * corrupted if a user writes before the start 2285 * of the object. 2286 */ 2287 size += sizeof(void *); 2288 #endif 2289 2290 /* 2291 * Determine the alignment based on various parameters that the 2292 * user specified and the dynamic determination of cache line size 2293 * on bootup. 2294 */ 2295 align = calculate_alignment(flags, align, s->objsize); 2296 2297 /* 2298 * SLUB stores one object immediately after another beginning from 2299 * offset 0. In order to align the objects we have to simply size 2300 * each object to conform to the alignment. 2301 */ 2302 size = ALIGN(size, align); 2303 s->size = size; 2304 if (forced_order >= 0) 2305 order = forced_order; 2306 else 2307 order = calculate_order(size); 2308 2309 if (order < 0) 2310 return 0; 2311 2312 s->allocflags = 0; 2313 if (order) 2314 s->allocflags |= __GFP_COMP; 2315 2316 if (s->flags & SLAB_CACHE_DMA) 2317 s->allocflags |= SLUB_DMA; 2318 2319 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2320 s->allocflags |= __GFP_RECLAIMABLE; 2321 2322 /* 2323 * Determine the number of objects per slab 2324 */ 2325 s->oo = oo_make(order, size); 2326 s->min = oo_make(get_order(size), size); 2327 if (oo_objects(s->oo) > oo_objects(s->max)) 2328 s->max = s->oo; 2329 2330 return !!oo_objects(s->oo); 2331 2332 } 2333 2334 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, 2335 const char *name, size_t size, 2336 size_t align, unsigned long flags, 2337 void (*ctor)(void *)) 2338 { 2339 memset(s, 0, kmem_size); 2340 s->name = name; 2341 s->ctor = ctor; 2342 s->objsize = size; 2343 s->align = align; 2344 s->flags = kmem_cache_flags(size, flags, name, ctor); 2345 2346 if (!calculate_sizes(s, -1)) 2347 goto error; 2348 2349 /* 2350 * The larger the object size is, the more pages we want on the partial 2351 * list to avoid pounding the page allocator excessively. 2352 */ 2353 set_min_partial(s, ilog2(s->size)); 2354 s->refcount = 1; 2355 #ifdef CONFIG_NUMA 2356 s->remote_node_defrag_ratio = 1000; 2357 #endif 2358 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) 2359 goto error; 2360 2361 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) 2362 return 1; 2363 free_kmem_cache_nodes(s); 2364 error: 2365 if (flags & SLAB_PANIC) 2366 panic("Cannot create slab %s size=%lu realsize=%u " 2367 "order=%u offset=%u flags=%lx\n", 2368 s->name, (unsigned long)size, s->size, oo_order(s->oo), 2369 s->offset, flags); 2370 return 0; 2371 } 2372 2373 /* 2374 * Check if a given pointer is valid 2375 */ 2376 int kmem_ptr_validate(struct kmem_cache *s, const void *object) 2377 { 2378 struct page *page; 2379 2380 page = get_object_page(object); 2381 2382 if (!page || s != page->slab) 2383 /* No slab or wrong slab */ 2384 return 0; 2385 2386 if (!check_valid_pointer(s, page, object)) 2387 return 0; 2388 2389 /* 2390 * We could also check if the object is on the slabs freelist. 2391 * But this would be too expensive and it seems that the main 2392 * purpose of kmem_ptr_valid() is to check if the object belongs 2393 * to a certain slab. 2394 */ 2395 return 1; 2396 } 2397 EXPORT_SYMBOL(kmem_ptr_validate); 2398 2399 /* 2400 * Determine the size of a slab object 2401 */ 2402 unsigned int kmem_cache_size(struct kmem_cache *s) 2403 { 2404 return s->objsize; 2405 } 2406 EXPORT_SYMBOL(kmem_cache_size); 2407 2408 const char *kmem_cache_name(struct kmem_cache *s) 2409 { 2410 return s->name; 2411 } 2412 EXPORT_SYMBOL(kmem_cache_name); 2413 2414 static void list_slab_objects(struct kmem_cache *s, struct page *page, 2415 const char *text) 2416 { 2417 #ifdef CONFIG_SLUB_DEBUG 2418 void *addr = page_address(page); 2419 void *p; 2420 DECLARE_BITMAP(map, page->objects); 2421 2422 bitmap_zero(map, page->objects); 2423 slab_err(s, page, "%s", text); 2424 slab_lock(page); 2425 for_each_free_object(p, s, page->freelist) 2426 set_bit(slab_index(p, s, addr), map); 2427 2428 for_each_object(p, s, addr, page->objects) { 2429 2430 if (!test_bit(slab_index(p, s, addr), map)) { 2431 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 2432 p, p - addr); 2433 print_tracking(s, p); 2434 } 2435 } 2436 slab_unlock(page); 2437 #endif 2438 } 2439 2440 /* 2441 * Attempt to free all partial slabs on a node. 2442 */ 2443 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 2444 { 2445 unsigned long flags; 2446 struct page *page, *h; 2447 2448 spin_lock_irqsave(&n->list_lock, flags); 2449 list_for_each_entry_safe(page, h, &n->partial, lru) { 2450 if (!page->inuse) { 2451 list_del(&page->lru); 2452 discard_slab(s, page); 2453 n->nr_partial--; 2454 } else { 2455 list_slab_objects(s, page, 2456 "Objects remaining on kmem_cache_close()"); 2457 } 2458 } 2459 spin_unlock_irqrestore(&n->list_lock, flags); 2460 } 2461 2462 /* 2463 * Release all resources used by a slab cache. 2464 */ 2465 static inline int kmem_cache_close(struct kmem_cache *s) 2466 { 2467 int node; 2468 2469 flush_all(s); 2470 2471 /* Attempt to free all objects */ 2472 free_kmem_cache_cpus(s); 2473 for_each_node_state(node, N_NORMAL_MEMORY) { 2474 struct kmem_cache_node *n = get_node(s, node); 2475 2476 free_partial(s, n); 2477 if (n->nr_partial || slabs_node(s, node)) 2478 return 1; 2479 } 2480 free_kmem_cache_nodes(s); 2481 return 0; 2482 } 2483 2484 /* 2485 * Close a cache and release the kmem_cache structure 2486 * (must be used for caches created using kmem_cache_create) 2487 */ 2488 void kmem_cache_destroy(struct kmem_cache *s) 2489 { 2490 down_write(&slub_lock); 2491 s->refcount--; 2492 if (!s->refcount) { 2493 list_del(&s->list); 2494 up_write(&slub_lock); 2495 if (kmem_cache_close(s)) { 2496 printk(KERN_ERR "SLUB %s: %s called for cache that " 2497 "still has objects.\n", s->name, __func__); 2498 dump_stack(); 2499 } 2500 sysfs_slab_remove(s); 2501 } else 2502 up_write(&slub_lock); 2503 } 2504 EXPORT_SYMBOL(kmem_cache_destroy); 2505 2506 /******************************************************************** 2507 * Kmalloc subsystem 2508 *******************************************************************/ 2509 2510 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned; 2511 EXPORT_SYMBOL(kmalloc_caches); 2512 2513 static int __init setup_slub_min_order(char *str) 2514 { 2515 get_option(&str, &slub_min_order); 2516 2517 return 1; 2518 } 2519 2520 __setup("slub_min_order=", setup_slub_min_order); 2521 2522 static int __init setup_slub_max_order(char *str) 2523 { 2524 get_option(&str, &slub_max_order); 2525 2526 return 1; 2527 } 2528 2529 __setup("slub_max_order=", setup_slub_max_order); 2530 2531 static int __init setup_slub_min_objects(char *str) 2532 { 2533 get_option(&str, &slub_min_objects); 2534 2535 return 1; 2536 } 2537 2538 __setup("slub_min_objects=", setup_slub_min_objects); 2539 2540 static int __init setup_slub_nomerge(char *str) 2541 { 2542 slub_nomerge = 1; 2543 return 1; 2544 } 2545 2546 __setup("slub_nomerge", setup_slub_nomerge); 2547 2548 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, 2549 const char *name, int size, gfp_t gfp_flags) 2550 { 2551 unsigned int flags = 0; 2552 2553 if (gfp_flags & SLUB_DMA) 2554 flags = SLAB_CACHE_DMA; 2555 2556 down_write(&slub_lock); 2557 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, 2558 flags, NULL)) 2559 goto panic; 2560 2561 list_add(&s->list, &slab_caches); 2562 up_write(&slub_lock); 2563 if (sysfs_slab_add(s)) 2564 goto panic; 2565 return s; 2566 2567 panic: 2568 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 2569 } 2570 2571 #ifdef CONFIG_ZONE_DMA 2572 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT]; 2573 2574 static void sysfs_add_func(struct work_struct *w) 2575 { 2576 struct kmem_cache *s; 2577 2578 down_write(&slub_lock); 2579 list_for_each_entry(s, &slab_caches, list) { 2580 if (s->flags & __SYSFS_ADD_DEFERRED) { 2581 s->flags &= ~__SYSFS_ADD_DEFERRED; 2582 sysfs_slab_add(s); 2583 } 2584 } 2585 up_write(&slub_lock); 2586 } 2587 2588 static DECLARE_WORK(sysfs_add_work, sysfs_add_func); 2589 2590 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) 2591 { 2592 struct kmem_cache *s; 2593 char *text; 2594 size_t realsize; 2595 2596 s = kmalloc_caches_dma[index]; 2597 if (s) 2598 return s; 2599 2600 /* Dynamically create dma cache */ 2601 if (flags & __GFP_WAIT) 2602 down_write(&slub_lock); 2603 else { 2604 if (!down_write_trylock(&slub_lock)) 2605 goto out; 2606 } 2607 2608 if (kmalloc_caches_dma[index]) 2609 goto unlock_out; 2610 2611 realsize = kmalloc_caches[index].objsize; 2612 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", 2613 (unsigned int)realsize); 2614 s = kmalloc(kmem_size, flags & ~SLUB_DMA); 2615 2616 if (!s || !text || !kmem_cache_open(s, flags, text, 2617 realsize, ARCH_KMALLOC_MINALIGN, 2618 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { 2619 kfree(s); 2620 kfree(text); 2621 goto unlock_out; 2622 } 2623 2624 list_add(&s->list, &slab_caches); 2625 kmalloc_caches_dma[index] = s; 2626 2627 schedule_work(&sysfs_add_work); 2628 2629 unlock_out: 2630 up_write(&slub_lock); 2631 out: 2632 return kmalloc_caches_dma[index]; 2633 } 2634 #endif 2635 2636 /* 2637 * Conversion table for small slabs sizes / 8 to the index in the 2638 * kmalloc array. This is necessary for slabs < 192 since we have non power 2639 * of two cache sizes there. The size of larger slabs can be determined using 2640 * fls. 2641 */ 2642 static s8 size_index[24] = { 2643 3, /* 8 */ 2644 4, /* 16 */ 2645 5, /* 24 */ 2646 5, /* 32 */ 2647 6, /* 40 */ 2648 6, /* 48 */ 2649 6, /* 56 */ 2650 6, /* 64 */ 2651 1, /* 72 */ 2652 1, /* 80 */ 2653 1, /* 88 */ 2654 1, /* 96 */ 2655 7, /* 104 */ 2656 7, /* 112 */ 2657 7, /* 120 */ 2658 7, /* 128 */ 2659 2, /* 136 */ 2660 2, /* 144 */ 2661 2, /* 152 */ 2662 2, /* 160 */ 2663 2, /* 168 */ 2664 2, /* 176 */ 2665 2, /* 184 */ 2666 2 /* 192 */ 2667 }; 2668 2669 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 2670 { 2671 int index; 2672 2673 if (size <= 192) { 2674 if (!size) 2675 return ZERO_SIZE_PTR; 2676 2677 index = size_index[(size - 1) / 8]; 2678 } else 2679 index = fls(size - 1); 2680 2681 #ifdef CONFIG_ZONE_DMA 2682 if (unlikely((flags & SLUB_DMA))) 2683 return dma_kmalloc_cache(index, flags); 2684 2685 #endif 2686 return &kmalloc_caches[index]; 2687 } 2688 2689 void *__kmalloc(size_t size, gfp_t flags) 2690 { 2691 struct kmem_cache *s; 2692 void *ret; 2693 2694 if (unlikely(size > SLUB_MAX_SIZE)) 2695 return kmalloc_large(size, flags); 2696 2697 s = get_slab(size, flags); 2698 2699 if (unlikely(ZERO_OR_NULL_PTR(s))) 2700 return s; 2701 2702 ret = slab_alloc(s, flags, -1, _RET_IP_); 2703 2704 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 2705 2706 return ret; 2707 } 2708 EXPORT_SYMBOL(__kmalloc); 2709 2710 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 2711 { 2712 struct page *page = alloc_pages_node(node, flags | __GFP_COMP, 2713 get_order(size)); 2714 2715 if (page) 2716 return page_address(page); 2717 else 2718 return NULL; 2719 } 2720 2721 #ifdef CONFIG_NUMA 2722 void *__kmalloc_node(size_t size, gfp_t flags, int node) 2723 { 2724 struct kmem_cache *s; 2725 void *ret; 2726 2727 if (unlikely(size > SLUB_MAX_SIZE)) { 2728 ret = kmalloc_large_node(size, flags, node); 2729 2730 trace_kmalloc_node(_RET_IP_, ret, 2731 size, PAGE_SIZE << get_order(size), 2732 flags, node); 2733 2734 return ret; 2735 } 2736 2737 s = get_slab(size, flags); 2738 2739 if (unlikely(ZERO_OR_NULL_PTR(s))) 2740 return s; 2741 2742 ret = slab_alloc(s, flags, node, _RET_IP_); 2743 2744 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 2745 2746 return ret; 2747 } 2748 EXPORT_SYMBOL(__kmalloc_node); 2749 #endif 2750 2751 size_t ksize(const void *object) 2752 { 2753 struct page *page; 2754 struct kmem_cache *s; 2755 2756 if (unlikely(object == ZERO_SIZE_PTR)) 2757 return 0; 2758 2759 page = virt_to_head_page(object); 2760 2761 if (unlikely(!PageSlab(page))) { 2762 WARN_ON(!PageCompound(page)); 2763 return PAGE_SIZE << compound_order(page); 2764 } 2765 s = page->slab; 2766 2767 #ifdef CONFIG_SLUB_DEBUG 2768 /* 2769 * Debugging requires use of the padding between object 2770 * and whatever may come after it. 2771 */ 2772 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 2773 return s->objsize; 2774 2775 #endif 2776 /* 2777 * If we have the need to store the freelist pointer 2778 * back there or track user information then we can 2779 * only use the space before that information. 2780 */ 2781 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 2782 return s->inuse; 2783 /* 2784 * Else we can use all the padding etc for the allocation 2785 */ 2786 return s->size; 2787 } 2788 EXPORT_SYMBOL(ksize); 2789 2790 void kfree(const void *x) 2791 { 2792 struct page *page; 2793 void *object = (void *)x; 2794 2795 trace_kfree(_RET_IP_, x); 2796 2797 if (unlikely(ZERO_OR_NULL_PTR(x))) 2798 return; 2799 2800 page = virt_to_head_page(x); 2801 if (unlikely(!PageSlab(page))) { 2802 BUG_ON(!PageCompound(page)); 2803 put_page(page); 2804 return; 2805 } 2806 slab_free(page->slab, page, object, _RET_IP_); 2807 } 2808 EXPORT_SYMBOL(kfree); 2809 2810 /* 2811 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 2812 * the remaining slabs by the number of items in use. The slabs with the 2813 * most items in use come first. New allocations will then fill those up 2814 * and thus they can be removed from the partial lists. 2815 * 2816 * The slabs with the least items are placed last. This results in them 2817 * being allocated from last increasing the chance that the last objects 2818 * are freed in them. 2819 */ 2820 int kmem_cache_shrink(struct kmem_cache *s) 2821 { 2822 int node; 2823 int i; 2824 struct kmem_cache_node *n; 2825 struct page *page; 2826 struct page *t; 2827 int objects = oo_objects(s->max); 2828 struct list_head *slabs_by_inuse = 2829 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 2830 unsigned long flags; 2831 2832 if (!slabs_by_inuse) 2833 return -ENOMEM; 2834 2835 flush_all(s); 2836 for_each_node_state(node, N_NORMAL_MEMORY) { 2837 n = get_node(s, node); 2838 2839 if (!n->nr_partial) 2840 continue; 2841 2842 for (i = 0; i < objects; i++) 2843 INIT_LIST_HEAD(slabs_by_inuse + i); 2844 2845 spin_lock_irqsave(&n->list_lock, flags); 2846 2847 /* 2848 * Build lists indexed by the items in use in each slab. 2849 * 2850 * Note that concurrent frees may occur while we hold the 2851 * list_lock. page->inuse here is the upper limit. 2852 */ 2853 list_for_each_entry_safe(page, t, &n->partial, lru) { 2854 if (!page->inuse && slab_trylock(page)) { 2855 /* 2856 * Must hold slab lock here because slab_free 2857 * may have freed the last object and be 2858 * waiting to release the slab. 2859 */ 2860 list_del(&page->lru); 2861 n->nr_partial--; 2862 slab_unlock(page); 2863 discard_slab(s, page); 2864 } else { 2865 list_move(&page->lru, 2866 slabs_by_inuse + page->inuse); 2867 } 2868 } 2869 2870 /* 2871 * Rebuild the partial list with the slabs filled up most 2872 * first and the least used slabs at the end. 2873 */ 2874 for (i = objects - 1; i >= 0; i--) 2875 list_splice(slabs_by_inuse + i, n->partial.prev); 2876 2877 spin_unlock_irqrestore(&n->list_lock, flags); 2878 } 2879 2880 kfree(slabs_by_inuse); 2881 return 0; 2882 } 2883 EXPORT_SYMBOL(kmem_cache_shrink); 2884 2885 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) 2886 static int slab_mem_going_offline_callback(void *arg) 2887 { 2888 struct kmem_cache *s; 2889 2890 down_read(&slub_lock); 2891 list_for_each_entry(s, &slab_caches, list) 2892 kmem_cache_shrink(s); 2893 up_read(&slub_lock); 2894 2895 return 0; 2896 } 2897 2898 static void slab_mem_offline_callback(void *arg) 2899 { 2900 struct kmem_cache_node *n; 2901 struct kmem_cache *s; 2902 struct memory_notify *marg = arg; 2903 int offline_node; 2904 2905 offline_node = marg->status_change_nid; 2906 2907 /* 2908 * If the node still has available memory. we need kmem_cache_node 2909 * for it yet. 2910 */ 2911 if (offline_node < 0) 2912 return; 2913 2914 down_read(&slub_lock); 2915 list_for_each_entry(s, &slab_caches, list) { 2916 n = get_node(s, offline_node); 2917 if (n) { 2918 /* 2919 * if n->nr_slabs > 0, slabs still exist on the node 2920 * that is going down. We were unable to free them, 2921 * and offline_pages() function shoudn't call this 2922 * callback. So, we must fail. 2923 */ 2924 BUG_ON(slabs_node(s, offline_node)); 2925 2926 s->node[offline_node] = NULL; 2927 kmem_cache_free(kmalloc_caches, n); 2928 } 2929 } 2930 up_read(&slub_lock); 2931 } 2932 2933 static int slab_mem_going_online_callback(void *arg) 2934 { 2935 struct kmem_cache_node *n; 2936 struct kmem_cache *s; 2937 struct memory_notify *marg = arg; 2938 int nid = marg->status_change_nid; 2939 int ret = 0; 2940 2941 /* 2942 * If the node's memory is already available, then kmem_cache_node is 2943 * already created. Nothing to do. 2944 */ 2945 if (nid < 0) 2946 return 0; 2947 2948 /* 2949 * We are bringing a node online. No memory is available yet. We must 2950 * allocate a kmem_cache_node structure in order to bring the node 2951 * online. 2952 */ 2953 down_read(&slub_lock); 2954 list_for_each_entry(s, &slab_caches, list) { 2955 /* 2956 * XXX: kmem_cache_alloc_node will fallback to other nodes 2957 * since memory is not yet available from the node that 2958 * is brought up. 2959 */ 2960 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); 2961 if (!n) { 2962 ret = -ENOMEM; 2963 goto out; 2964 } 2965 init_kmem_cache_node(n, s); 2966 s->node[nid] = n; 2967 } 2968 out: 2969 up_read(&slub_lock); 2970 return ret; 2971 } 2972 2973 static int slab_memory_callback(struct notifier_block *self, 2974 unsigned long action, void *arg) 2975 { 2976 int ret = 0; 2977 2978 switch (action) { 2979 case MEM_GOING_ONLINE: 2980 ret = slab_mem_going_online_callback(arg); 2981 break; 2982 case MEM_GOING_OFFLINE: 2983 ret = slab_mem_going_offline_callback(arg); 2984 break; 2985 case MEM_OFFLINE: 2986 case MEM_CANCEL_ONLINE: 2987 slab_mem_offline_callback(arg); 2988 break; 2989 case MEM_ONLINE: 2990 case MEM_CANCEL_OFFLINE: 2991 break; 2992 } 2993 if (ret) 2994 ret = notifier_from_errno(ret); 2995 else 2996 ret = NOTIFY_OK; 2997 return ret; 2998 } 2999 3000 #endif /* CONFIG_MEMORY_HOTPLUG */ 3001 3002 /******************************************************************** 3003 * Basic setup of slabs 3004 *******************************************************************/ 3005 3006 void __init kmem_cache_init(void) 3007 { 3008 int i; 3009 int caches = 0; 3010 3011 init_alloc_cpu(); 3012 3013 #ifdef CONFIG_NUMA 3014 /* 3015 * Must first have the slab cache available for the allocations of the 3016 * struct kmem_cache_node's. There is special bootstrap code in 3017 * kmem_cache_open for slab_state == DOWN. 3018 */ 3019 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", 3020 sizeof(struct kmem_cache_node), GFP_KERNEL); 3021 kmalloc_caches[0].refcount = -1; 3022 caches++; 3023 3024 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3025 #endif 3026 3027 /* Able to allocate the per node structures */ 3028 slab_state = PARTIAL; 3029 3030 /* Caches that are not of the two-to-the-power-of size */ 3031 if (KMALLOC_MIN_SIZE <= 64) { 3032 create_kmalloc_cache(&kmalloc_caches[1], 3033 "kmalloc-96", 96, GFP_KERNEL); 3034 caches++; 3035 create_kmalloc_cache(&kmalloc_caches[2], 3036 "kmalloc-192", 192, GFP_KERNEL); 3037 caches++; 3038 } 3039 3040 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3041 create_kmalloc_cache(&kmalloc_caches[i], 3042 "kmalloc", 1 << i, GFP_KERNEL); 3043 caches++; 3044 } 3045 3046 3047 /* 3048 * Patch up the size_index table if we have strange large alignment 3049 * requirements for the kmalloc array. This is only the case for 3050 * MIPS it seems. The standard arches will not generate any code here. 3051 * 3052 * Largest permitted alignment is 256 bytes due to the way we 3053 * handle the index determination for the smaller caches. 3054 * 3055 * Make sure that nothing crazy happens if someone starts tinkering 3056 * around with ARCH_KMALLOC_MINALIGN 3057 */ 3058 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3059 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3060 3061 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) 3062 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; 3063 3064 if (KMALLOC_MIN_SIZE == 128) { 3065 /* 3066 * The 192 byte sized cache is not used if the alignment 3067 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3068 * instead. 3069 */ 3070 for (i = 128 + 8; i <= 192; i += 8) 3071 size_index[(i - 1) / 8] = 8; 3072 } 3073 3074 slab_state = UP; 3075 3076 /* Provide the correct kmalloc names now that the caches are up */ 3077 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) 3078 kmalloc_caches[i]. name = 3079 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); 3080 3081 #ifdef CONFIG_SMP 3082 register_cpu_notifier(&slab_notifier); 3083 kmem_size = offsetof(struct kmem_cache, cpu_slab) + 3084 nr_cpu_ids * sizeof(struct kmem_cache_cpu *); 3085 #else 3086 kmem_size = sizeof(struct kmem_cache); 3087 #endif 3088 3089 printk(KERN_INFO 3090 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3091 " CPUs=%d, Nodes=%d\n", 3092 caches, cache_line_size(), 3093 slub_min_order, slub_max_order, slub_min_objects, 3094 nr_cpu_ids, nr_node_ids); 3095 } 3096 3097 /* 3098 * Find a mergeable slab cache 3099 */ 3100 static int slab_unmergeable(struct kmem_cache *s) 3101 { 3102 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3103 return 1; 3104 3105 if (s->ctor) 3106 return 1; 3107 3108 /* 3109 * We may have set a slab to be unmergeable during bootstrap. 3110 */ 3111 if (s->refcount < 0) 3112 return 1; 3113 3114 return 0; 3115 } 3116 3117 static struct kmem_cache *find_mergeable(size_t size, 3118 size_t align, unsigned long flags, const char *name, 3119 void (*ctor)(void *)) 3120 { 3121 struct kmem_cache *s; 3122 3123 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3124 return NULL; 3125 3126 if (ctor) 3127 return NULL; 3128 3129 size = ALIGN(size, sizeof(void *)); 3130 align = calculate_alignment(flags, align, size); 3131 size = ALIGN(size, align); 3132 flags = kmem_cache_flags(size, flags, name, NULL); 3133 3134 list_for_each_entry(s, &slab_caches, list) { 3135 if (slab_unmergeable(s)) 3136 continue; 3137 3138 if (size > s->size) 3139 continue; 3140 3141 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3142 continue; 3143 /* 3144 * Check if alignment is compatible. 3145 * Courtesy of Adrian Drzewiecki 3146 */ 3147 if ((s->size & ~(align - 1)) != s->size) 3148 continue; 3149 3150 if (s->size - size >= sizeof(void *)) 3151 continue; 3152 3153 return s; 3154 } 3155 return NULL; 3156 } 3157 3158 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3159 size_t align, unsigned long flags, void (*ctor)(void *)) 3160 { 3161 struct kmem_cache *s; 3162 3163 down_write(&slub_lock); 3164 s = find_mergeable(size, align, flags, name, ctor); 3165 if (s) { 3166 int cpu; 3167 3168 s->refcount++; 3169 /* 3170 * Adjust the object sizes so that we clear 3171 * the complete object on kzalloc. 3172 */ 3173 s->objsize = max(s->objsize, (int)size); 3174 3175 /* 3176 * And then we need to update the object size in the 3177 * per cpu structures 3178 */ 3179 for_each_online_cpu(cpu) 3180 get_cpu_slab(s, cpu)->objsize = s->objsize; 3181 3182 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3183 up_write(&slub_lock); 3184 3185 if (sysfs_slab_alias(s, name)) { 3186 down_write(&slub_lock); 3187 s->refcount--; 3188 up_write(&slub_lock); 3189 goto err; 3190 } 3191 return s; 3192 } 3193 3194 s = kmalloc(kmem_size, GFP_KERNEL); 3195 if (s) { 3196 if (kmem_cache_open(s, GFP_KERNEL, name, 3197 size, align, flags, ctor)) { 3198 list_add(&s->list, &slab_caches); 3199 up_write(&slub_lock); 3200 if (sysfs_slab_add(s)) { 3201 down_write(&slub_lock); 3202 list_del(&s->list); 3203 up_write(&slub_lock); 3204 kfree(s); 3205 goto err; 3206 } 3207 return s; 3208 } 3209 kfree(s); 3210 } 3211 up_write(&slub_lock); 3212 3213 err: 3214 if (flags & SLAB_PANIC) 3215 panic("Cannot create slabcache %s\n", name); 3216 else 3217 s = NULL; 3218 return s; 3219 } 3220 EXPORT_SYMBOL(kmem_cache_create); 3221 3222 #ifdef CONFIG_SMP 3223 /* 3224 * Use the cpu notifier to insure that the cpu slabs are flushed when 3225 * necessary. 3226 */ 3227 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3228 unsigned long action, void *hcpu) 3229 { 3230 long cpu = (long)hcpu; 3231 struct kmem_cache *s; 3232 unsigned long flags; 3233 3234 switch (action) { 3235 case CPU_UP_PREPARE: 3236 case CPU_UP_PREPARE_FROZEN: 3237 init_alloc_cpu_cpu(cpu); 3238 down_read(&slub_lock); 3239 list_for_each_entry(s, &slab_caches, list) 3240 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, 3241 GFP_KERNEL); 3242 up_read(&slub_lock); 3243 break; 3244 3245 case CPU_UP_CANCELED: 3246 case CPU_UP_CANCELED_FROZEN: 3247 case CPU_DEAD: 3248 case CPU_DEAD_FROZEN: 3249 down_read(&slub_lock); 3250 list_for_each_entry(s, &slab_caches, list) { 3251 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3252 3253 local_irq_save(flags); 3254 __flush_cpu_slab(s, cpu); 3255 local_irq_restore(flags); 3256 free_kmem_cache_cpu(c, cpu); 3257 s->cpu_slab[cpu] = NULL; 3258 } 3259 up_read(&slub_lock); 3260 break; 3261 default: 3262 break; 3263 } 3264 return NOTIFY_OK; 3265 } 3266 3267 static struct notifier_block __cpuinitdata slab_notifier = { 3268 .notifier_call = slab_cpuup_callback 3269 }; 3270 3271 #endif 3272 3273 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3274 { 3275 struct kmem_cache *s; 3276 void *ret; 3277 3278 if (unlikely(size > SLUB_MAX_SIZE)) 3279 return kmalloc_large(size, gfpflags); 3280 3281 s = get_slab(size, gfpflags); 3282 3283 if (unlikely(ZERO_OR_NULL_PTR(s))) 3284 return s; 3285 3286 ret = slab_alloc(s, gfpflags, -1, caller); 3287 3288 /* Honor the call site pointer we recieved. */ 3289 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3290 3291 return ret; 3292 } 3293 3294 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3295 int node, unsigned long caller) 3296 { 3297 struct kmem_cache *s; 3298 void *ret; 3299 3300 if (unlikely(size > SLUB_MAX_SIZE)) 3301 return kmalloc_large_node(size, gfpflags, node); 3302 3303 s = get_slab(size, gfpflags); 3304 3305 if (unlikely(ZERO_OR_NULL_PTR(s))) 3306 return s; 3307 3308 ret = slab_alloc(s, gfpflags, node, caller); 3309 3310 /* Honor the call site pointer we recieved. */ 3311 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3312 3313 return ret; 3314 } 3315 3316 #ifdef CONFIG_SLUB_DEBUG 3317 static unsigned long count_partial(struct kmem_cache_node *n, 3318 int (*get_count)(struct page *)) 3319 { 3320 unsigned long flags; 3321 unsigned long x = 0; 3322 struct page *page; 3323 3324 spin_lock_irqsave(&n->list_lock, flags); 3325 list_for_each_entry(page, &n->partial, lru) 3326 x += get_count(page); 3327 spin_unlock_irqrestore(&n->list_lock, flags); 3328 return x; 3329 } 3330 3331 static int count_inuse(struct page *page) 3332 { 3333 return page->inuse; 3334 } 3335 3336 static int count_total(struct page *page) 3337 { 3338 return page->objects; 3339 } 3340 3341 static int count_free(struct page *page) 3342 { 3343 return page->objects - page->inuse; 3344 } 3345 3346 static int validate_slab(struct kmem_cache *s, struct page *page, 3347 unsigned long *map) 3348 { 3349 void *p; 3350 void *addr = page_address(page); 3351 3352 if (!check_slab(s, page) || 3353 !on_freelist(s, page, NULL)) 3354 return 0; 3355 3356 /* Now we know that a valid freelist exists */ 3357 bitmap_zero(map, page->objects); 3358 3359 for_each_free_object(p, s, page->freelist) { 3360 set_bit(slab_index(p, s, addr), map); 3361 if (!check_object(s, page, p, 0)) 3362 return 0; 3363 } 3364 3365 for_each_object(p, s, addr, page->objects) 3366 if (!test_bit(slab_index(p, s, addr), map)) 3367 if (!check_object(s, page, p, 1)) 3368 return 0; 3369 return 1; 3370 } 3371 3372 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3373 unsigned long *map) 3374 { 3375 if (slab_trylock(page)) { 3376 validate_slab(s, page, map); 3377 slab_unlock(page); 3378 } else 3379 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", 3380 s->name, page); 3381 3382 if (s->flags & DEBUG_DEFAULT_FLAGS) { 3383 if (!PageSlubDebug(page)) 3384 printk(KERN_ERR "SLUB %s: SlubDebug not set " 3385 "on slab 0x%p\n", s->name, page); 3386 } else { 3387 if (PageSlubDebug(page)) 3388 printk(KERN_ERR "SLUB %s: SlubDebug set on " 3389 "slab 0x%p\n", s->name, page); 3390 } 3391 } 3392 3393 static int validate_slab_node(struct kmem_cache *s, 3394 struct kmem_cache_node *n, unsigned long *map) 3395 { 3396 unsigned long count = 0; 3397 struct page *page; 3398 unsigned long flags; 3399 3400 spin_lock_irqsave(&n->list_lock, flags); 3401 3402 list_for_each_entry(page, &n->partial, lru) { 3403 validate_slab_slab(s, page, map); 3404 count++; 3405 } 3406 if (count != n->nr_partial) 3407 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 3408 "counter=%ld\n", s->name, count, n->nr_partial); 3409 3410 if (!(s->flags & SLAB_STORE_USER)) 3411 goto out; 3412 3413 list_for_each_entry(page, &n->full, lru) { 3414 validate_slab_slab(s, page, map); 3415 count++; 3416 } 3417 if (count != atomic_long_read(&n->nr_slabs)) 3418 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 3419 "counter=%ld\n", s->name, count, 3420 atomic_long_read(&n->nr_slabs)); 3421 3422 out: 3423 spin_unlock_irqrestore(&n->list_lock, flags); 3424 return count; 3425 } 3426 3427 static long validate_slab_cache(struct kmem_cache *s) 3428 { 3429 int node; 3430 unsigned long count = 0; 3431 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3432 sizeof(unsigned long), GFP_KERNEL); 3433 3434 if (!map) 3435 return -ENOMEM; 3436 3437 flush_all(s); 3438 for_each_node_state(node, N_NORMAL_MEMORY) { 3439 struct kmem_cache_node *n = get_node(s, node); 3440 3441 count += validate_slab_node(s, n, map); 3442 } 3443 kfree(map); 3444 return count; 3445 } 3446 3447 #ifdef SLUB_RESILIENCY_TEST 3448 static void resiliency_test(void) 3449 { 3450 u8 *p; 3451 3452 printk(KERN_ERR "SLUB resiliency testing\n"); 3453 printk(KERN_ERR "-----------------------\n"); 3454 printk(KERN_ERR "A. Corruption after allocation\n"); 3455 3456 p = kzalloc(16, GFP_KERNEL); 3457 p[16] = 0x12; 3458 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 3459 " 0x12->0x%p\n\n", p + 16); 3460 3461 validate_slab_cache(kmalloc_caches + 4); 3462 3463 /* Hmmm... The next two are dangerous */ 3464 p = kzalloc(32, GFP_KERNEL); 3465 p[32 + sizeof(void *)] = 0x34; 3466 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 3467 " 0x34 -> -0x%p\n", p); 3468 printk(KERN_ERR 3469 "If allocated object is overwritten then not detectable\n\n"); 3470 3471 validate_slab_cache(kmalloc_caches + 5); 3472 p = kzalloc(64, GFP_KERNEL); 3473 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 3474 *p = 0x56; 3475 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 3476 p); 3477 printk(KERN_ERR 3478 "If allocated object is overwritten then not detectable\n\n"); 3479 validate_slab_cache(kmalloc_caches + 6); 3480 3481 printk(KERN_ERR "\nB. Corruption after free\n"); 3482 p = kzalloc(128, GFP_KERNEL); 3483 kfree(p); 3484 *p = 0x78; 3485 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 3486 validate_slab_cache(kmalloc_caches + 7); 3487 3488 p = kzalloc(256, GFP_KERNEL); 3489 kfree(p); 3490 p[50] = 0x9a; 3491 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 3492 p); 3493 validate_slab_cache(kmalloc_caches + 8); 3494 3495 p = kzalloc(512, GFP_KERNEL); 3496 kfree(p); 3497 p[512] = 0xab; 3498 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 3499 validate_slab_cache(kmalloc_caches + 9); 3500 } 3501 #else 3502 static void resiliency_test(void) {}; 3503 #endif 3504 3505 /* 3506 * Generate lists of code addresses where slabcache objects are allocated 3507 * and freed. 3508 */ 3509 3510 struct location { 3511 unsigned long count; 3512 unsigned long addr; 3513 long long sum_time; 3514 long min_time; 3515 long max_time; 3516 long min_pid; 3517 long max_pid; 3518 DECLARE_BITMAP(cpus, NR_CPUS); 3519 nodemask_t nodes; 3520 }; 3521 3522 struct loc_track { 3523 unsigned long max; 3524 unsigned long count; 3525 struct location *loc; 3526 }; 3527 3528 static void free_loc_track(struct loc_track *t) 3529 { 3530 if (t->max) 3531 free_pages((unsigned long)t->loc, 3532 get_order(sizeof(struct location) * t->max)); 3533 } 3534 3535 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 3536 { 3537 struct location *l; 3538 int order; 3539 3540 order = get_order(sizeof(struct location) * max); 3541 3542 l = (void *)__get_free_pages(flags, order); 3543 if (!l) 3544 return 0; 3545 3546 if (t->count) { 3547 memcpy(l, t->loc, sizeof(struct location) * t->count); 3548 free_loc_track(t); 3549 } 3550 t->max = max; 3551 t->loc = l; 3552 return 1; 3553 } 3554 3555 static int add_location(struct loc_track *t, struct kmem_cache *s, 3556 const struct track *track) 3557 { 3558 long start, end, pos; 3559 struct location *l; 3560 unsigned long caddr; 3561 unsigned long age = jiffies - track->when; 3562 3563 start = -1; 3564 end = t->count; 3565 3566 for ( ; ; ) { 3567 pos = start + (end - start + 1) / 2; 3568 3569 /* 3570 * There is nothing at "end". If we end up there 3571 * we need to add something to before end. 3572 */ 3573 if (pos == end) 3574 break; 3575 3576 caddr = t->loc[pos].addr; 3577 if (track->addr == caddr) { 3578 3579 l = &t->loc[pos]; 3580 l->count++; 3581 if (track->when) { 3582 l->sum_time += age; 3583 if (age < l->min_time) 3584 l->min_time = age; 3585 if (age > l->max_time) 3586 l->max_time = age; 3587 3588 if (track->pid < l->min_pid) 3589 l->min_pid = track->pid; 3590 if (track->pid > l->max_pid) 3591 l->max_pid = track->pid; 3592 3593 cpumask_set_cpu(track->cpu, 3594 to_cpumask(l->cpus)); 3595 } 3596 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3597 return 1; 3598 } 3599 3600 if (track->addr < caddr) 3601 end = pos; 3602 else 3603 start = pos; 3604 } 3605 3606 /* 3607 * Not found. Insert new tracking element. 3608 */ 3609 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 3610 return 0; 3611 3612 l = t->loc + pos; 3613 if (pos < t->count) 3614 memmove(l + 1, l, 3615 (t->count - pos) * sizeof(struct location)); 3616 t->count++; 3617 l->count = 1; 3618 l->addr = track->addr; 3619 l->sum_time = age; 3620 l->min_time = age; 3621 l->max_time = age; 3622 l->min_pid = track->pid; 3623 l->max_pid = track->pid; 3624 cpumask_clear(to_cpumask(l->cpus)); 3625 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 3626 nodes_clear(l->nodes); 3627 node_set(page_to_nid(virt_to_page(track)), l->nodes); 3628 return 1; 3629 } 3630 3631 static void process_slab(struct loc_track *t, struct kmem_cache *s, 3632 struct page *page, enum track_item alloc) 3633 { 3634 void *addr = page_address(page); 3635 DECLARE_BITMAP(map, page->objects); 3636 void *p; 3637 3638 bitmap_zero(map, page->objects); 3639 for_each_free_object(p, s, page->freelist) 3640 set_bit(slab_index(p, s, addr), map); 3641 3642 for_each_object(p, s, addr, page->objects) 3643 if (!test_bit(slab_index(p, s, addr), map)) 3644 add_location(t, s, get_track(s, p, alloc)); 3645 } 3646 3647 static int list_locations(struct kmem_cache *s, char *buf, 3648 enum track_item alloc) 3649 { 3650 int len = 0; 3651 unsigned long i; 3652 struct loc_track t = { 0, 0, NULL }; 3653 int node; 3654 3655 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 3656 GFP_TEMPORARY)) 3657 return sprintf(buf, "Out of memory\n"); 3658 3659 /* Push back cpu slabs */ 3660 flush_all(s); 3661 3662 for_each_node_state(node, N_NORMAL_MEMORY) { 3663 struct kmem_cache_node *n = get_node(s, node); 3664 unsigned long flags; 3665 struct page *page; 3666 3667 if (!atomic_long_read(&n->nr_slabs)) 3668 continue; 3669 3670 spin_lock_irqsave(&n->list_lock, flags); 3671 list_for_each_entry(page, &n->partial, lru) 3672 process_slab(&t, s, page, alloc); 3673 list_for_each_entry(page, &n->full, lru) 3674 process_slab(&t, s, page, alloc); 3675 spin_unlock_irqrestore(&n->list_lock, flags); 3676 } 3677 3678 for (i = 0; i < t.count; i++) { 3679 struct location *l = &t.loc[i]; 3680 3681 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 3682 break; 3683 len += sprintf(buf + len, "%7ld ", l->count); 3684 3685 if (l->addr) 3686 len += sprint_symbol(buf + len, (unsigned long)l->addr); 3687 else 3688 len += sprintf(buf + len, "<not-available>"); 3689 3690 if (l->sum_time != l->min_time) { 3691 len += sprintf(buf + len, " age=%ld/%ld/%ld", 3692 l->min_time, 3693 (long)div_u64(l->sum_time, l->count), 3694 l->max_time); 3695 } else 3696 len += sprintf(buf + len, " age=%ld", 3697 l->min_time); 3698 3699 if (l->min_pid != l->max_pid) 3700 len += sprintf(buf + len, " pid=%ld-%ld", 3701 l->min_pid, l->max_pid); 3702 else 3703 len += sprintf(buf + len, " pid=%ld", 3704 l->min_pid); 3705 3706 if (num_online_cpus() > 1 && 3707 !cpumask_empty(to_cpumask(l->cpus)) && 3708 len < PAGE_SIZE - 60) { 3709 len += sprintf(buf + len, " cpus="); 3710 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3711 to_cpumask(l->cpus)); 3712 } 3713 3714 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && 3715 len < PAGE_SIZE - 60) { 3716 len += sprintf(buf + len, " nodes="); 3717 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 3718 l->nodes); 3719 } 3720 3721 len += sprintf(buf + len, "\n"); 3722 } 3723 3724 free_loc_track(&t); 3725 if (!t.count) 3726 len += sprintf(buf, "No data\n"); 3727 return len; 3728 } 3729 3730 enum slab_stat_type { 3731 SL_ALL, /* All slabs */ 3732 SL_PARTIAL, /* Only partially allocated slabs */ 3733 SL_CPU, /* Only slabs used for cpu caches */ 3734 SL_OBJECTS, /* Determine allocated objects not slabs */ 3735 SL_TOTAL /* Determine object capacity not slabs */ 3736 }; 3737 3738 #define SO_ALL (1 << SL_ALL) 3739 #define SO_PARTIAL (1 << SL_PARTIAL) 3740 #define SO_CPU (1 << SL_CPU) 3741 #define SO_OBJECTS (1 << SL_OBJECTS) 3742 #define SO_TOTAL (1 << SL_TOTAL) 3743 3744 static ssize_t show_slab_objects(struct kmem_cache *s, 3745 char *buf, unsigned long flags) 3746 { 3747 unsigned long total = 0; 3748 int node; 3749 int x; 3750 unsigned long *nodes; 3751 unsigned long *per_cpu; 3752 3753 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 3754 if (!nodes) 3755 return -ENOMEM; 3756 per_cpu = nodes + nr_node_ids; 3757 3758 if (flags & SO_CPU) { 3759 int cpu; 3760 3761 for_each_possible_cpu(cpu) { 3762 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); 3763 3764 if (!c || c->node < 0) 3765 continue; 3766 3767 if (c->page) { 3768 if (flags & SO_TOTAL) 3769 x = c->page->objects; 3770 else if (flags & SO_OBJECTS) 3771 x = c->page->inuse; 3772 else 3773 x = 1; 3774 3775 total += x; 3776 nodes[c->node] += x; 3777 } 3778 per_cpu[c->node]++; 3779 } 3780 } 3781 3782 if (flags & SO_ALL) { 3783 for_each_node_state(node, N_NORMAL_MEMORY) { 3784 struct kmem_cache_node *n = get_node(s, node); 3785 3786 if (flags & SO_TOTAL) 3787 x = atomic_long_read(&n->total_objects); 3788 else if (flags & SO_OBJECTS) 3789 x = atomic_long_read(&n->total_objects) - 3790 count_partial(n, count_free); 3791 3792 else 3793 x = atomic_long_read(&n->nr_slabs); 3794 total += x; 3795 nodes[node] += x; 3796 } 3797 3798 } else if (flags & SO_PARTIAL) { 3799 for_each_node_state(node, N_NORMAL_MEMORY) { 3800 struct kmem_cache_node *n = get_node(s, node); 3801 3802 if (flags & SO_TOTAL) 3803 x = count_partial(n, count_total); 3804 else if (flags & SO_OBJECTS) 3805 x = count_partial(n, count_inuse); 3806 else 3807 x = n->nr_partial; 3808 total += x; 3809 nodes[node] += x; 3810 } 3811 } 3812 x = sprintf(buf, "%lu", total); 3813 #ifdef CONFIG_NUMA 3814 for_each_node_state(node, N_NORMAL_MEMORY) 3815 if (nodes[node]) 3816 x += sprintf(buf + x, " N%d=%lu", 3817 node, nodes[node]); 3818 #endif 3819 kfree(nodes); 3820 return x + sprintf(buf + x, "\n"); 3821 } 3822 3823 static int any_slab_objects(struct kmem_cache *s) 3824 { 3825 int node; 3826 3827 for_each_online_node(node) { 3828 struct kmem_cache_node *n = get_node(s, node); 3829 3830 if (!n) 3831 continue; 3832 3833 if (atomic_long_read(&n->total_objects)) 3834 return 1; 3835 } 3836 return 0; 3837 } 3838 3839 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 3840 #define to_slab(n) container_of(n, struct kmem_cache, kobj); 3841 3842 struct slab_attribute { 3843 struct attribute attr; 3844 ssize_t (*show)(struct kmem_cache *s, char *buf); 3845 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 3846 }; 3847 3848 #define SLAB_ATTR_RO(_name) \ 3849 static struct slab_attribute _name##_attr = __ATTR_RO(_name) 3850 3851 #define SLAB_ATTR(_name) \ 3852 static struct slab_attribute _name##_attr = \ 3853 __ATTR(_name, 0644, _name##_show, _name##_store) 3854 3855 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 3856 { 3857 return sprintf(buf, "%d\n", s->size); 3858 } 3859 SLAB_ATTR_RO(slab_size); 3860 3861 static ssize_t align_show(struct kmem_cache *s, char *buf) 3862 { 3863 return sprintf(buf, "%d\n", s->align); 3864 } 3865 SLAB_ATTR_RO(align); 3866 3867 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 3868 { 3869 return sprintf(buf, "%d\n", s->objsize); 3870 } 3871 SLAB_ATTR_RO(object_size); 3872 3873 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 3874 { 3875 return sprintf(buf, "%d\n", oo_objects(s->oo)); 3876 } 3877 SLAB_ATTR_RO(objs_per_slab); 3878 3879 static ssize_t order_store(struct kmem_cache *s, 3880 const char *buf, size_t length) 3881 { 3882 unsigned long order; 3883 int err; 3884 3885 err = strict_strtoul(buf, 10, &order); 3886 if (err) 3887 return err; 3888 3889 if (order > slub_max_order || order < slub_min_order) 3890 return -EINVAL; 3891 3892 calculate_sizes(s, order); 3893 return length; 3894 } 3895 3896 static ssize_t order_show(struct kmem_cache *s, char *buf) 3897 { 3898 return sprintf(buf, "%d\n", oo_order(s->oo)); 3899 } 3900 SLAB_ATTR(order); 3901 3902 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 3903 { 3904 return sprintf(buf, "%lu\n", s->min_partial); 3905 } 3906 3907 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 3908 size_t length) 3909 { 3910 unsigned long min; 3911 int err; 3912 3913 err = strict_strtoul(buf, 10, &min); 3914 if (err) 3915 return err; 3916 3917 set_min_partial(s, min); 3918 return length; 3919 } 3920 SLAB_ATTR(min_partial); 3921 3922 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 3923 { 3924 if (s->ctor) { 3925 int n = sprint_symbol(buf, (unsigned long)s->ctor); 3926 3927 return n + sprintf(buf + n, "\n"); 3928 } 3929 return 0; 3930 } 3931 SLAB_ATTR_RO(ctor); 3932 3933 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 3934 { 3935 return sprintf(buf, "%d\n", s->refcount - 1); 3936 } 3937 SLAB_ATTR_RO(aliases); 3938 3939 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 3940 { 3941 return show_slab_objects(s, buf, SO_ALL); 3942 } 3943 SLAB_ATTR_RO(slabs); 3944 3945 static ssize_t partial_show(struct kmem_cache *s, char *buf) 3946 { 3947 return show_slab_objects(s, buf, SO_PARTIAL); 3948 } 3949 SLAB_ATTR_RO(partial); 3950 3951 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 3952 { 3953 return show_slab_objects(s, buf, SO_CPU); 3954 } 3955 SLAB_ATTR_RO(cpu_slabs); 3956 3957 static ssize_t objects_show(struct kmem_cache *s, char *buf) 3958 { 3959 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 3960 } 3961 SLAB_ATTR_RO(objects); 3962 3963 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 3964 { 3965 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 3966 } 3967 SLAB_ATTR_RO(objects_partial); 3968 3969 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 3970 { 3971 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 3972 } 3973 SLAB_ATTR_RO(total_objects); 3974 3975 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 3976 { 3977 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 3978 } 3979 3980 static ssize_t sanity_checks_store(struct kmem_cache *s, 3981 const char *buf, size_t length) 3982 { 3983 s->flags &= ~SLAB_DEBUG_FREE; 3984 if (buf[0] == '1') 3985 s->flags |= SLAB_DEBUG_FREE; 3986 return length; 3987 } 3988 SLAB_ATTR(sanity_checks); 3989 3990 static ssize_t trace_show(struct kmem_cache *s, char *buf) 3991 { 3992 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 3993 } 3994 3995 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 3996 size_t length) 3997 { 3998 s->flags &= ~SLAB_TRACE; 3999 if (buf[0] == '1') 4000 s->flags |= SLAB_TRACE; 4001 return length; 4002 } 4003 SLAB_ATTR(trace); 4004 4005 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4006 { 4007 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4008 } 4009 4010 static ssize_t reclaim_account_store(struct kmem_cache *s, 4011 const char *buf, size_t length) 4012 { 4013 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4014 if (buf[0] == '1') 4015 s->flags |= SLAB_RECLAIM_ACCOUNT; 4016 return length; 4017 } 4018 SLAB_ATTR(reclaim_account); 4019 4020 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4021 { 4022 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4023 } 4024 SLAB_ATTR_RO(hwcache_align); 4025 4026 #ifdef CONFIG_ZONE_DMA 4027 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4028 { 4029 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4030 } 4031 SLAB_ATTR_RO(cache_dma); 4032 #endif 4033 4034 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4035 { 4036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4037 } 4038 SLAB_ATTR_RO(destroy_by_rcu); 4039 4040 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4041 { 4042 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4043 } 4044 4045 static ssize_t red_zone_store(struct kmem_cache *s, 4046 const char *buf, size_t length) 4047 { 4048 if (any_slab_objects(s)) 4049 return -EBUSY; 4050 4051 s->flags &= ~SLAB_RED_ZONE; 4052 if (buf[0] == '1') 4053 s->flags |= SLAB_RED_ZONE; 4054 calculate_sizes(s, -1); 4055 return length; 4056 } 4057 SLAB_ATTR(red_zone); 4058 4059 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4060 { 4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4062 } 4063 4064 static ssize_t poison_store(struct kmem_cache *s, 4065 const char *buf, size_t length) 4066 { 4067 if (any_slab_objects(s)) 4068 return -EBUSY; 4069 4070 s->flags &= ~SLAB_POISON; 4071 if (buf[0] == '1') 4072 s->flags |= SLAB_POISON; 4073 calculate_sizes(s, -1); 4074 return length; 4075 } 4076 SLAB_ATTR(poison); 4077 4078 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4079 { 4080 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4081 } 4082 4083 static ssize_t store_user_store(struct kmem_cache *s, 4084 const char *buf, size_t length) 4085 { 4086 if (any_slab_objects(s)) 4087 return -EBUSY; 4088 4089 s->flags &= ~SLAB_STORE_USER; 4090 if (buf[0] == '1') 4091 s->flags |= SLAB_STORE_USER; 4092 calculate_sizes(s, -1); 4093 return length; 4094 } 4095 SLAB_ATTR(store_user); 4096 4097 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4098 { 4099 return 0; 4100 } 4101 4102 static ssize_t validate_store(struct kmem_cache *s, 4103 const char *buf, size_t length) 4104 { 4105 int ret = -EINVAL; 4106 4107 if (buf[0] == '1') { 4108 ret = validate_slab_cache(s); 4109 if (ret >= 0) 4110 ret = length; 4111 } 4112 return ret; 4113 } 4114 SLAB_ATTR(validate); 4115 4116 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4117 { 4118 return 0; 4119 } 4120 4121 static ssize_t shrink_store(struct kmem_cache *s, 4122 const char *buf, size_t length) 4123 { 4124 if (buf[0] == '1') { 4125 int rc = kmem_cache_shrink(s); 4126 4127 if (rc) 4128 return rc; 4129 } else 4130 return -EINVAL; 4131 return length; 4132 } 4133 SLAB_ATTR(shrink); 4134 4135 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4136 { 4137 if (!(s->flags & SLAB_STORE_USER)) 4138 return -ENOSYS; 4139 return list_locations(s, buf, TRACK_ALLOC); 4140 } 4141 SLAB_ATTR_RO(alloc_calls); 4142 4143 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4144 { 4145 if (!(s->flags & SLAB_STORE_USER)) 4146 return -ENOSYS; 4147 return list_locations(s, buf, TRACK_FREE); 4148 } 4149 SLAB_ATTR_RO(free_calls); 4150 4151 #ifdef CONFIG_NUMA 4152 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4153 { 4154 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4155 } 4156 4157 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4158 const char *buf, size_t length) 4159 { 4160 unsigned long ratio; 4161 int err; 4162 4163 err = strict_strtoul(buf, 10, &ratio); 4164 if (err) 4165 return err; 4166 4167 if (ratio <= 100) 4168 s->remote_node_defrag_ratio = ratio * 10; 4169 4170 return length; 4171 } 4172 SLAB_ATTR(remote_node_defrag_ratio); 4173 #endif 4174 4175 #ifdef CONFIG_SLUB_STATS 4176 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4177 { 4178 unsigned long sum = 0; 4179 int cpu; 4180 int len; 4181 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4182 4183 if (!data) 4184 return -ENOMEM; 4185 4186 for_each_online_cpu(cpu) { 4187 unsigned x = get_cpu_slab(s, cpu)->stat[si]; 4188 4189 data[cpu] = x; 4190 sum += x; 4191 } 4192 4193 len = sprintf(buf, "%lu", sum); 4194 4195 #ifdef CONFIG_SMP 4196 for_each_online_cpu(cpu) { 4197 if (data[cpu] && len < PAGE_SIZE - 20) 4198 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4199 } 4200 #endif 4201 kfree(data); 4202 return len + sprintf(buf + len, "\n"); 4203 } 4204 4205 #define STAT_ATTR(si, text) \ 4206 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4207 { \ 4208 return show_stat(s, buf, si); \ 4209 } \ 4210 SLAB_ATTR_RO(text); \ 4211 4212 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4213 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4214 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4215 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4216 STAT_ATTR(FREE_FROZEN, free_frozen); 4217 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4218 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4219 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4220 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4221 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4222 STAT_ATTR(FREE_SLAB, free_slab); 4223 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4224 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4225 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4226 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4227 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4228 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4229 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4230 #endif 4231 4232 static struct attribute *slab_attrs[] = { 4233 &slab_size_attr.attr, 4234 &object_size_attr.attr, 4235 &objs_per_slab_attr.attr, 4236 &order_attr.attr, 4237 &min_partial_attr.attr, 4238 &objects_attr.attr, 4239 &objects_partial_attr.attr, 4240 &total_objects_attr.attr, 4241 &slabs_attr.attr, 4242 &partial_attr.attr, 4243 &cpu_slabs_attr.attr, 4244 &ctor_attr.attr, 4245 &aliases_attr.attr, 4246 &align_attr.attr, 4247 &sanity_checks_attr.attr, 4248 &trace_attr.attr, 4249 &hwcache_align_attr.attr, 4250 &reclaim_account_attr.attr, 4251 &destroy_by_rcu_attr.attr, 4252 &red_zone_attr.attr, 4253 &poison_attr.attr, 4254 &store_user_attr.attr, 4255 &validate_attr.attr, 4256 &shrink_attr.attr, 4257 &alloc_calls_attr.attr, 4258 &free_calls_attr.attr, 4259 #ifdef CONFIG_ZONE_DMA 4260 &cache_dma_attr.attr, 4261 #endif 4262 #ifdef CONFIG_NUMA 4263 &remote_node_defrag_ratio_attr.attr, 4264 #endif 4265 #ifdef CONFIG_SLUB_STATS 4266 &alloc_fastpath_attr.attr, 4267 &alloc_slowpath_attr.attr, 4268 &free_fastpath_attr.attr, 4269 &free_slowpath_attr.attr, 4270 &free_frozen_attr.attr, 4271 &free_add_partial_attr.attr, 4272 &free_remove_partial_attr.attr, 4273 &alloc_from_partial_attr.attr, 4274 &alloc_slab_attr.attr, 4275 &alloc_refill_attr.attr, 4276 &free_slab_attr.attr, 4277 &cpuslab_flush_attr.attr, 4278 &deactivate_full_attr.attr, 4279 &deactivate_empty_attr.attr, 4280 &deactivate_to_head_attr.attr, 4281 &deactivate_to_tail_attr.attr, 4282 &deactivate_remote_frees_attr.attr, 4283 &order_fallback_attr.attr, 4284 #endif 4285 NULL 4286 }; 4287 4288 static struct attribute_group slab_attr_group = { 4289 .attrs = slab_attrs, 4290 }; 4291 4292 static ssize_t slab_attr_show(struct kobject *kobj, 4293 struct attribute *attr, 4294 char *buf) 4295 { 4296 struct slab_attribute *attribute; 4297 struct kmem_cache *s; 4298 int err; 4299 4300 attribute = to_slab_attr(attr); 4301 s = to_slab(kobj); 4302 4303 if (!attribute->show) 4304 return -EIO; 4305 4306 err = attribute->show(s, buf); 4307 4308 return err; 4309 } 4310 4311 static ssize_t slab_attr_store(struct kobject *kobj, 4312 struct attribute *attr, 4313 const char *buf, size_t len) 4314 { 4315 struct slab_attribute *attribute; 4316 struct kmem_cache *s; 4317 int err; 4318 4319 attribute = to_slab_attr(attr); 4320 s = to_slab(kobj); 4321 4322 if (!attribute->store) 4323 return -EIO; 4324 4325 err = attribute->store(s, buf, len); 4326 4327 return err; 4328 } 4329 4330 static void kmem_cache_release(struct kobject *kobj) 4331 { 4332 struct kmem_cache *s = to_slab(kobj); 4333 4334 kfree(s); 4335 } 4336 4337 static struct sysfs_ops slab_sysfs_ops = { 4338 .show = slab_attr_show, 4339 .store = slab_attr_store, 4340 }; 4341 4342 static struct kobj_type slab_ktype = { 4343 .sysfs_ops = &slab_sysfs_ops, 4344 .release = kmem_cache_release 4345 }; 4346 4347 static int uevent_filter(struct kset *kset, struct kobject *kobj) 4348 { 4349 struct kobj_type *ktype = get_ktype(kobj); 4350 4351 if (ktype == &slab_ktype) 4352 return 1; 4353 return 0; 4354 } 4355 4356 static struct kset_uevent_ops slab_uevent_ops = { 4357 .filter = uevent_filter, 4358 }; 4359 4360 static struct kset *slab_kset; 4361 4362 #define ID_STR_LENGTH 64 4363 4364 /* Create a unique string id for a slab cache: 4365 * 4366 * Format :[flags-]size 4367 */ 4368 static char *create_unique_id(struct kmem_cache *s) 4369 { 4370 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 4371 char *p = name; 4372 4373 BUG_ON(!name); 4374 4375 *p++ = ':'; 4376 /* 4377 * First flags affecting slabcache operations. We will only 4378 * get here for aliasable slabs so we do not need to support 4379 * too many flags. The flags here must cover all flags that 4380 * are matched during merging to guarantee that the id is 4381 * unique. 4382 */ 4383 if (s->flags & SLAB_CACHE_DMA) 4384 *p++ = 'd'; 4385 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4386 *p++ = 'a'; 4387 if (s->flags & SLAB_DEBUG_FREE) 4388 *p++ = 'F'; 4389 if (p != name + 1) 4390 *p++ = '-'; 4391 p += sprintf(p, "%07d", s->size); 4392 BUG_ON(p > name + ID_STR_LENGTH - 1); 4393 return name; 4394 } 4395 4396 static int sysfs_slab_add(struct kmem_cache *s) 4397 { 4398 int err; 4399 const char *name; 4400 int unmergeable; 4401 4402 if (slab_state < SYSFS) 4403 /* Defer until later */ 4404 return 0; 4405 4406 unmergeable = slab_unmergeable(s); 4407 if (unmergeable) { 4408 /* 4409 * Slabcache can never be merged so we can use the name proper. 4410 * This is typically the case for debug situations. In that 4411 * case we can catch duplicate names easily. 4412 */ 4413 sysfs_remove_link(&slab_kset->kobj, s->name); 4414 name = s->name; 4415 } else { 4416 /* 4417 * Create a unique name for the slab as a target 4418 * for the symlinks. 4419 */ 4420 name = create_unique_id(s); 4421 } 4422 4423 s->kobj.kset = slab_kset; 4424 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 4425 if (err) { 4426 kobject_put(&s->kobj); 4427 return err; 4428 } 4429 4430 err = sysfs_create_group(&s->kobj, &slab_attr_group); 4431 if (err) 4432 return err; 4433 kobject_uevent(&s->kobj, KOBJ_ADD); 4434 if (!unmergeable) { 4435 /* Setup first alias */ 4436 sysfs_slab_alias(s, s->name); 4437 kfree(name); 4438 } 4439 return 0; 4440 } 4441 4442 static void sysfs_slab_remove(struct kmem_cache *s) 4443 { 4444 kobject_uevent(&s->kobj, KOBJ_REMOVE); 4445 kobject_del(&s->kobj); 4446 kobject_put(&s->kobj); 4447 } 4448 4449 /* 4450 * Need to buffer aliases during bootup until sysfs becomes 4451 * available lest we lose that information. 4452 */ 4453 struct saved_alias { 4454 struct kmem_cache *s; 4455 const char *name; 4456 struct saved_alias *next; 4457 }; 4458 4459 static struct saved_alias *alias_list; 4460 4461 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 4462 { 4463 struct saved_alias *al; 4464 4465 if (slab_state == SYSFS) { 4466 /* 4467 * If we have a leftover link then remove it. 4468 */ 4469 sysfs_remove_link(&slab_kset->kobj, name); 4470 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 4471 } 4472 4473 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 4474 if (!al) 4475 return -ENOMEM; 4476 4477 al->s = s; 4478 al->name = name; 4479 al->next = alias_list; 4480 alias_list = al; 4481 return 0; 4482 } 4483 4484 static int __init slab_sysfs_init(void) 4485 { 4486 struct kmem_cache *s; 4487 int err; 4488 4489 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 4490 if (!slab_kset) { 4491 printk(KERN_ERR "Cannot register slab subsystem.\n"); 4492 return -ENOSYS; 4493 } 4494 4495 slab_state = SYSFS; 4496 4497 list_for_each_entry(s, &slab_caches, list) { 4498 err = sysfs_slab_add(s); 4499 if (err) 4500 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 4501 " to sysfs\n", s->name); 4502 } 4503 4504 while (alias_list) { 4505 struct saved_alias *al = alias_list; 4506 4507 alias_list = alias_list->next; 4508 err = sysfs_slab_alias(al->s, al->name); 4509 if (err) 4510 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 4511 " %s to sysfs\n", s->name); 4512 kfree(al); 4513 } 4514 4515 resiliency_test(); 4516 return 0; 4517 } 4518 4519 __initcall(slab_sysfs_init); 4520 #endif 4521 4522 /* 4523 * The /proc/slabinfo ABI 4524 */ 4525 #ifdef CONFIG_SLABINFO 4526 static void print_slabinfo_header(struct seq_file *m) 4527 { 4528 seq_puts(m, "slabinfo - version: 2.1\n"); 4529 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 4530 "<objperslab> <pagesperslab>"); 4531 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 4532 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 4533 seq_putc(m, '\n'); 4534 } 4535 4536 static void *s_start(struct seq_file *m, loff_t *pos) 4537 { 4538 loff_t n = *pos; 4539 4540 down_read(&slub_lock); 4541 if (!n) 4542 print_slabinfo_header(m); 4543 4544 return seq_list_start(&slab_caches, *pos); 4545 } 4546 4547 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4548 { 4549 return seq_list_next(p, &slab_caches, pos); 4550 } 4551 4552 static void s_stop(struct seq_file *m, void *p) 4553 { 4554 up_read(&slub_lock); 4555 } 4556 4557 static int s_show(struct seq_file *m, void *p) 4558 { 4559 unsigned long nr_partials = 0; 4560 unsigned long nr_slabs = 0; 4561 unsigned long nr_inuse = 0; 4562 unsigned long nr_objs = 0; 4563 unsigned long nr_free = 0; 4564 struct kmem_cache *s; 4565 int node; 4566 4567 s = list_entry(p, struct kmem_cache, list); 4568 4569 for_each_online_node(node) { 4570 struct kmem_cache_node *n = get_node(s, node); 4571 4572 if (!n) 4573 continue; 4574 4575 nr_partials += n->nr_partial; 4576 nr_slabs += atomic_long_read(&n->nr_slabs); 4577 nr_objs += atomic_long_read(&n->total_objects); 4578 nr_free += count_partial(n, count_free); 4579 } 4580 4581 nr_inuse = nr_objs - nr_free; 4582 4583 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 4584 nr_objs, s->size, oo_objects(s->oo), 4585 (1 << oo_order(s->oo))); 4586 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 4587 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 4588 0UL); 4589 seq_putc(m, '\n'); 4590 return 0; 4591 } 4592 4593 static const struct seq_operations slabinfo_op = { 4594 .start = s_start, 4595 .next = s_next, 4596 .stop = s_stop, 4597 .show = s_show, 4598 }; 4599 4600 static int slabinfo_open(struct inode *inode, struct file *file) 4601 { 4602 return seq_open(file, &slabinfo_op); 4603 } 4604 4605 static const struct file_operations proc_slabinfo_operations = { 4606 .open = slabinfo_open, 4607 .read = seq_read, 4608 .llseek = seq_lseek, 4609 .release = seq_release, 4610 }; 4611 4612 static int __init slab_proc_init(void) 4613 { 4614 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); 4615 return 0; 4616 } 4617 module_init(slab_proc_init); 4618 #endif /* CONFIG_SLABINFO */ 4619