xref: /linux/mm/slub.c (revision e73173dbe55e5b4c2306728aad50c8e42194f6d5)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <trace/kmemtrace.h>
20 #include <linux/cpu.h>
21 #include <linux/cpuset.h>
22 #include <linux/mempolicy.h>
23 #include <linux/ctype.h>
24 #include <linux/debugobjects.h>
25 #include <linux/kallsyms.h>
26 #include <linux/memory.h>
27 #include <linux/math64.h>
28 #include <linux/fault-inject.h>
29 
30 /*
31  * Lock order:
32  *   1. slab_lock(page)
33  *   2. slab->list_lock
34  *
35  *   The slab_lock protects operations on the object of a particular
36  *   slab and its metadata in the page struct. If the slab lock
37  *   has been taken then no allocations nor frees can be performed
38  *   on the objects in the slab nor can the slab be added or removed
39  *   from the partial or full lists since this would mean modifying
40  *   the page_struct of the slab.
41  *
42  *   The list_lock protects the partial and full list on each node and
43  *   the partial slab counter. If taken then no new slabs may be added or
44  *   removed from the lists nor make the number of partial slabs be modified.
45  *   (Note that the total number of slabs is an atomic value that may be
46  *   modified without taking the list lock).
47  *
48  *   The list_lock is a centralized lock and thus we avoid taking it as
49  *   much as possible. As long as SLUB does not have to handle partial
50  *   slabs, operations can continue without any centralized lock. F.e.
51  *   allocating a long series of objects that fill up slabs does not require
52  *   the list lock.
53  *
54  *   The lock order is sometimes inverted when we are trying to get a slab
55  *   off a list. We take the list_lock and then look for a page on the list
56  *   to use. While we do that objects in the slabs may be freed. We can
57  *   only operate on the slab if we have also taken the slab_lock. So we use
58  *   a slab_trylock() on the slab. If trylock was successful then no frees
59  *   can occur anymore and we can use the slab for allocations etc. If the
60  *   slab_trylock() does not succeed then frees are in progress in the slab and
61  *   we must stay away from it for a while since we may cause a bouncing
62  *   cacheline if we try to acquire the lock. So go onto the next slab.
63  *   If all pages are busy then we may allocate a new slab instead of reusing
64  *   a partial slab. A new slab has noone operating on it and thus there is
65  *   no danger of cacheline contention.
66  *
67  *   Interrupts are disabled during allocation and deallocation in order to
68  *   make the slab allocator safe to use in the context of an irq. In addition
69  *   interrupts are disabled to ensure that the processor does not change
70  *   while handling per_cpu slabs, due to kernel preemption.
71  *
72  * SLUB assigns one slab for allocation to each processor.
73  * Allocations only occur from these slabs called cpu slabs.
74  *
75  * Slabs with free elements are kept on a partial list and during regular
76  * operations no list for full slabs is used. If an object in a full slab is
77  * freed then the slab will show up again on the partial lists.
78  * We track full slabs for debugging purposes though because otherwise we
79  * cannot scan all objects.
80  *
81  * Slabs are freed when they become empty. Teardown and setup is
82  * minimal so we rely on the page allocators per cpu caches for
83  * fast frees and allocs.
84  *
85  * Overloading of page flags that are otherwise used for LRU management.
86  *
87  * PageActive 		The slab is frozen and exempt from list processing.
88  * 			This means that the slab is dedicated to a purpose
89  * 			such as satisfying allocations for a specific
90  * 			processor. Objects may be freed in the slab while
91  * 			it is frozen but slab_free will then skip the usual
92  * 			list operations. It is up to the processor holding
93  * 			the slab to integrate the slab into the slab lists
94  * 			when the slab is no longer needed.
95  *
96  * 			One use of this flag is to mark slabs that are
97  * 			used for allocations. Then such a slab becomes a cpu
98  * 			slab. The cpu slab may be equipped with an additional
99  * 			freelist that allows lockless access to
100  * 			free objects in addition to the regular freelist
101  * 			that requires the slab lock.
102  *
103  * PageError		Slab requires special handling due to debug
104  * 			options set. This moves	slab handling out of
105  * 			the fast path and disables lockless freelists.
106  */
107 
108 #ifdef CONFIG_SLUB_DEBUG
109 #define SLABDEBUG 1
110 #else
111 #define SLABDEBUG 0
112 #endif
113 
114 /*
115  * Issues still to be resolved:
116  *
117  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
118  *
119  * - Variable sizing of the per node arrays
120  */
121 
122 /* Enable to test recovery from slab corruption on boot */
123 #undef SLUB_RESILIENCY_TEST
124 
125 /*
126  * Mininum number of partial slabs. These will be left on the partial
127  * lists even if they are empty. kmem_cache_shrink may reclaim them.
128  */
129 #define MIN_PARTIAL 5
130 
131 /*
132  * Maximum number of desirable partial slabs.
133  * The existence of more partial slabs makes kmem_cache_shrink
134  * sort the partial list by the number of objects in the.
135  */
136 #define MAX_PARTIAL 10
137 
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 				SLAB_POISON | SLAB_STORE_USER)
140 
141 /*
142  * Set of flags that will prevent slab merging
143  */
144 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
145 		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
146 
147 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
148 		SLAB_CACHE_DMA)
149 
150 #ifndef ARCH_KMALLOC_MINALIGN
151 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
152 #endif
153 
154 #ifndef ARCH_SLAB_MINALIGN
155 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
156 #endif
157 
158 #define OO_SHIFT	16
159 #define OO_MASK		((1 << OO_SHIFT) - 1)
160 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
161 
162 /* Internal SLUB flags */
163 #define __OBJECT_POISON		0x80000000 /* Poison object */
164 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
165 
166 static int kmem_size = sizeof(struct kmem_cache);
167 
168 #ifdef CONFIG_SMP
169 static struct notifier_block slab_notifier;
170 #endif
171 
172 static enum {
173 	DOWN,		/* No slab functionality available */
174 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
175 	UP,		/* Everything works but does not show up in sysfs */
176 	SYSFS		/* Sysfs up */
177 } slab_state = DOWN;
178 
179 /* A list of all slab caches on the system */
180 static DECLARE_RWSEM(slub_lock);
181 static LIST_HEAD(slab_caches);
182 
183 /*
184  * Tracking user of a slab.
185  */
186 struct track {
187 	unsigned long addr;	/* Called from address */
188 	int cpu;		/* Was running on cpu */
189 	int pid;		/* Pid context */
190 	unsigned long when;	/* When did the operation occur */
191 };
192 
193 enum track_item { TRACK_ALLOC, TRACK_FREE };
194 
195 #ifdef CONFIG_SLUB_DEBUG
196 static int sysfs_slab_add(struct kmem_cache *);
197 static int sysfs_slab_alias(struct kmem_cache *, const char *);
198 static void sysfs_slab_remove(struct kmem_cache *);
199 
200 #else
201 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
202 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
203 							{ return 0; }
204 static inline void sysfs_slab_remove(struct kmem_cache *s)
205 {
206 	kfree(s);
207 }
208 
209 #endif
210 
211 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
212 {
213 #ifdef CONFIG_SLUB_STATS
214 	c->stat[si]++;
215 #endif
216 }
217 
218 /********************************************************************
219  * 			Core slab cache functions
220  *******************************************************************/
221 
222 int slab_is_available(void)
223 {
224 	return slab_state >= UP;
225 }
226 
227 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
228 {
229 #ifdef CONFIG_NUMA
230 	return s->node[node];
231 #else
232 	return &s->local_node;
233 #endif
234 }
235 
236 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
237 {
238 #ifdef CONFIG_SMP
239 	return s->cpu_slab[cpu];
240 #else
241 	return &s->cpu_slab;
242 #endif
243 }
244 
245 /* Verify that a pointer has an address that is valid within a slab page */
246 static inline int check_valid_pointer(struct kmem_cache *s,
247 				struct page *page, const void *object)
248 {
249 	void *base;
250 
251 	if (!object)
252 		return 1;
253 
254 	base = page_address(page);
255 	if (object < base || object >= base + page->objects * s->size ||
256 		(object - base) % s->size) {
257 		return 0;
258 	}
259 
260 	return 1;
261 }
262 
263 /*
264  * Slow version of get and set free pointer.
265  *
266  * This version requires touching the cache lines of kmem_cache which
267  * we avoid to do in the fast alloc free paths. There we obtain the offset
268  * from the page struct.
269  */
270 static inline void *get_freepointer(struct kmem_cache *s, void *object)
271 {
272 	return *(void **)(object + s->offset);
273 }
274 
275 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276 {
277 	*(void **)(object + s->offset) = fp;
278 }
279 
280 /* Loop over all objects in a slab */
281 #define for_each_object(__p, __s, __addr, __objects) \
282 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
283 			__p += (__s)->size)
284 
285 /* Scan freelist */
286 #define for_each_free_object(__p, __s, __free) \
287 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288 
289 /* Determine object index from a given position */
290 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291 {
292 	return (p - addr) / s->size;
293 }
294 
295 static inline struct kmem_cache_order_objects oo_make(int order,
296 						unsigned long size)
297 {
298 	struct kmem_cache_order_objects x = {
299 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
300 	};
301 
302 	return x;
303 }
304 
305 static inline int oo_order(struct kmem_cache_order_objects x)
306 {
307 	return x.x >> OO_SHIFT;
308 }
309 
310 static inline int oo_objects(struct kmem_cache_order_objects x)
311 {
312 	return x.x & OO_MASK;
313 }
314 
315 #ifdef CONFIG_SLUB_DEBUG
316 /*
317  * Debug settings:
318  */
319 #ifdef CONFIG_SLUB_DEBUG_ON
320 static int slub_debug = DEBUG_DEFAULT_FLAGS;
321 #else
322 static int slub_debug;
323 #endif
324 
325 static char *slub_debug_slabs;
326 
327 /*
328  * Object debugging
329  */
330 static void print_section(char *text, u8 *addr, unsigned int length)
331 {
332 	int i, offset;
333 	int newline = 1;
334 	char ascii[17];
335 
336 	ascii[16] = 0;
337 
338 	for (i = 0; i < length; i++) {
339 		if (newline) {
340 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
341 			newline = 0;
342 		}
343 		printk(KERN_CONT " %02x", addr[i]);
344 		offset = i % 16;
345 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
346 		if (offset == 15) {
347 			printk(KERN_CONT " %s\n", ascii);
348 			newline = 1;
349 		}
350 	}
351 	if (!newline) {
352 		i %= 16;
353 		while (i < 16) {
354 			printk(KERN_CONT "   ");
355 			ascii[i] = ' ';
356 			i++;
357 		}
358 		printk(KERN_CONT " %s\n", ascii);
359 	}
360 }
361 
362 static struct track *get_track(struct kmem_cache *s, void *object,
363 	enum track_item alloc)
364 {
365 	struct track *p;
366 
367 	if (s->offset)
368 		p = object + s->offset + sizeof(void *);
369 	else
370 		p = object + s->inuse;
371 
372 	return p + alloc;
373 }
374 
375 static void set_track(struct kmem_cache *s, void *object,
376 			enum track_item alloc, unsigned long addr)
377 {
378 	struct track *p = get_track(s, object, alloc);
379 
380 	if (addr) {
381 		p->addr = addr;
382 		p->cpu = smp_processor_id();
383 		p->pid = current->pid;
384 		p->when = jiffies;
385 	} else
386 		memset(p, 0, sizeof(struct track));
387 }
388 
389 static void init_tracking(struct kmem_cache *s, void *object)
390 {
391 	if (!(s->flags & SLAB_STORE_USER))
392 		return;
393 
394 	set_track(s, object, TRACK_FREE, 0UL);
395 	set_track(s, object, TRACK_ALLOC, 0UL);
396 }
397 
398 static void print_track(const char *s, struct track *t)
399 {
400 	if (!t->addr)
401 		return;
402 
403 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
404 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
405 }
406 
407 static void print_tracking(struct kmem_cache *s, void *object)
408 {
409 	if (!(s->flags & SLAB_STORE_USER))
410 		return;
411 
412 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
413 	print_track("Freed", get_track(s, object, TRACK_FREE));
414 }
415 
416 static void print_page_info(struct page *page)
417 {
418 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
419 		page, page->objects, page->inuse, page->freelist, page->flags);
420 
421 }
422 
423 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
424 {
425 	va_list args;
426 	char buf[100];
427 
428 	va_start(args, fmt);
429 	vsnprintf(buf, sizeof(buf), fmt, args);
430 	va_end(args);
431 	printk(KERN_ERR "========================================"
432 			"=====================================\n");
433 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
434 	printk(KERN_ERR "----------------------------------------"
435 			"-------------------------------------\n\n");
436 }
437 
438 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
439 {
440 	va_list args;
441 	char buf[100];
442 
443 	va_start(args, fmt);
444 	vsnprintf(buf, sizeof(buf), fmt, args);
445 	va_end(args);
446 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
447 }
448 
449 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
450 {
451 	unsigned int off;	/* Offset of last byte */
452 	u8 *addr = page_address(page);
453 
454 	print_tracking(s, p);
455 
456 	print_page_info(page);
457 
458 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
459 			p, p - addr, get_freepointer(s, p));
460 
461 	if (p > addr + 16)
462 		print_section("Bytes b4", p - 16, 16);
463 
464 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
465 
466 	if (s->flags & SLAB_RED_ZONE)
467 		print_section("Redzone", p + s->objsize,
468 			s->inuse - s->objsize);
469 
470 	if (s->offset)
471 		off = s->offset + sizeof(void *);
472 	else
473 		off = s->inuse;
474 
475 	if (s->flags & SLAB_STORE_USER)
476 		off += 2 * sizeof(struct track);
477 
478 	if (off != s->size)
479 		/* Beginning of the filler is the free pointer */
480 		print_section("Padding", p + off, s->size - off);
481 
482 	dump_stack();
483 }
484 
485 static void object_err(struct kmem_cache *s, struct page *page,
486 			u8 *object, char *reason)
487 {
488 	slab_bug(s, "%s", reason);
489 	print_trailer(s, page, object);
490 }
491 
492 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
493 {
494 	va_list args;
495 	char buf[100];
496 
497 	va_start(args, fmt);
498 	vsnprintf(buf, sizeof(buf), fmt, args);
499 	va_end(args);
500 	slab_bug(s, "%s", buf);
501 	print_page_info(page);
502 	dump_stack();
503 }
504 
505 static void init_object(struct kmem_cache *s, void *object, int active)
506 {
507 	u8 *p = object;
508 
509 	if (s->flags & __OBJECT_POISON) {
510 		memset(p, POISON_FREE, s->objsize - 1);
511 		p[s->objsize - 1] = POISON_END;
512 	}
513 
514 	if (s->flags & SLAB_RED_ZONE)
515 		memset(p + s->objsize,
516 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
517 			s->inuse - s->objsize);
518 }
519 
520 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
521 {
522 	while (bytes) {
523 		if (*start != (u8)value)
524 			return start;
525 		start++;
526 		bytes--;
527 	}
528 	return NULL;
529 }
530 
531 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
532 						void *from, void *to)
533 {
534 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
535 	memset(from, data, to - from);
536 }
537 
538 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
539 			u8 *object, char *what,
540 			u8 *start, unsigned int value, unsigned int bytes)
541 {
542 	u8 *fault;
543 	u8 *end;
544 
545 	fault = check_bytes(start, value, bytes);
546 	if (!fault)
547 		return 1;
548 
549 	end = start + bytes;
550 	while (end > fault && end[-1] == value)
551 		end--;
552 
553 	slab_bug(s, "%s overwritten", what);
554 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
555 					fault, end - 1, fault[0], value);
556 	print_trailer(s, page, object);
557 
558 	restore_bytes(s, what, value, fault, end);
559 	return 0;
560 }
561 
562 /*
563  * Object layout:
564  *
565  * object address
566  * 	Bytes of the object to be managed.
567  * 	If the freepointer may overlay the object then the free
568  * 	pointer is the first word of the object.
569  *
570  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
571  * 	0xa5 (POISON_END)
572  *
573  * object + s->objsize
574  * 	Padding to reach word boundary. This is also used for Redzoning.
575  * 	Padding is extended by another word if Redzoning is enabled and
576  * 	objsize == inuse.
577  *
578  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
579  * 	0xcc (RED_ACTIVE) for objects in use.
580  *
581  * object + s->inuse
582  * 	Meta data starts here.
583  *
584  * 	A. Free pointer (if we cannot overwrite object on free)
585  * 	B. Tracking data for SLAB_STORE_USER
586  * 	C. Padding to reach required alignment boundary or at mininum
587  * 		one word if debugging is on to be able to detect writes
588  * 		before the word boundary.
589  *
590  *	Padding is done using 0x5a (POISON_INUSE)
591  *
592  * object + s->size
593  * 	Nothing is used beyond s->size.
594  *
595  * If slabcaches are merged then the objsize and inuse boundaries are mostly
596  * ignored. And therefore no slab options that rely on these boundaries
597  * may be used with merged slabcaches.
598  */
599 
600 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
601 {
602 	unsigned long off = s->inuse;	/* The end of info */
603 
604 	if (s->offset)
605 		/* Freepointer is placed after the object. */
606 		off += sizeof(void *);
607 
608 	if (s->flags & SLAB_STORE_USER)
609 		/* We also have user information there */
610 		off += 2 * sizeof(struct track);
611 
612 	if (s->size == off)
613 		return 1;
614 
615 	return check_bytes_and_report(s, page, p, "Object padding",
616 				p + off, POISON_INUSE, s->size - off);
617 }
618 
619 /* Check the pad bytes at the end of a slab page */
620 static int slab_pad_check(struct kmem_cache *s, struct page *page)
621 {
622 	u8 *start;
623 	u8 *fault;
624 	u8 *end;
625 	int length;
626 	int remainder;
627 
628 	if (!(s->flags & SLAB_POISON))
629 		return 1;
630 
631 	start = page_address(page);
632 	length = (PAGE_SIZE << compound_order(page));
633 	end = start + length;
634 	remainder = length % s->size;
635 	if (!remainder)
636 		return 1;
637 
638 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
639 	if (!fault)
640 		return 1;
641 	while (end > fault && end[-1] == POISON_INUSE)
642 		end--;
643 
644 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
645 	print_section("Padding", end - remainder, remainder);
646 
647 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
648 	return 0;
649 }
650 
651 static int check_object(struct kmem_cache *s, struct page *page,
652 					void *object, int active)
653 {
654 	u8 *p = object;
655 	u8 *endobject = object + s->objsize;
656 
657 	if (s->flags & SLAB_RED_ZONE) {
658 		unsigned int red =
659 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
660 
661 		if (!check_bytes_and_report(s, page, object, "Redzone",
662 			endobject, red, s->inuse - s->objsize))
663 			return 0;
664 	} else {
665 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
666 			check_bytes_and_report(s, page, p, "Alignment padding",
667 				endobject, POISON_INUSE, s->inuse - s->objsize);
668 		}
669 	}
670 
671 	if (s->flags & SLAB_POISON) {
672 		if (!active && (s->flags & __OBJECT_POISON) &&
673 			(!check_bytes_and_report(s, page, p, "Poison", p,
674 					POISON_FREE, s->objsize - 1) ||
675 			 !check_bytes_and_report(s, page, p, "Poison",
676 				p + s->objsize - 1, POISON_END, 1)))
677 			return 0;
678 		/*
679 		 * check_pad_bytes cleans up on its own.
680 		 */
681 		check_pad_bytes(s, page, p);
682 	}
683 
684 	if (!s->offset && active)
685 		/*
686 		 * Object and freepointer overlap. Cannot check
687 		 * freepointer while object is allocated.
688 		 */
689 		return 1;
690 
691 	/* Check free pointer validity */
692 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
693 		object_err(s, page, p, "Freepointer corrupt");
694 		/*
695 		 * No choice but to zap it and thus lose the remainder
696 		 * of the free objects in this slab. May cause
697 		 * another error because the object count is now wrong.
698 		 */
699 		set_freepointer(s, p, NULL);
700 		return 0;
701 	}
702 	return 1;
703 }
704 
705 static int check_slab(struct kmem_cache *s, struct page *page)
706 {
707 	int maxobj;
708 
709 	VM_BUG_ON(!irqs_disabled());
710 
711 	if (!PageSlab(page)) {
712 		slab_err(s, page, "Not a valid slab page");
713 		return 0;
714 	}
715 
716 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
717 	if (page->objects > maxobj) {
718 		slab_err(s, page, "objects %u > max %u",
719 			s->name, page->objects, maxobj);
720 		return 0;
721 	}
722 	if (page->inuse > page->objects) {
723 		slab_err(s, page, "inuse %u > max %u",
724 			s->name, page->inuse, page->objects);
725 		return 0;
726 	}
727 	/* Slab_pad_check fixes things up after itself */
728 	slab_pad_check(s, page);
729 	return 1;
730 }
731 
732 /*
733  * Determine if a certain object on a page is on the freelist. Must hold the
734  * slab lock to guarantee that the chains are in a consistent state.
735  */
736 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
737 {
738 	int nr = 0;
739 	void *fp = page->freelist;
740 	void *object = NULL;
741 	unsigned long max_objects;
742 
743 	while (fp && nr <= page->objects) {
744 		if (fp == search)
745 			return 1;
746 		if (!check_valid_pointer(s, page, fp)) {
747 			if (object) {
748 				object_err(s, page, object,
749 					"Freechain corrupt");
750 				set_freepointer(s, object, NULL);
751 				break;
752 			} else {
753 				slab_err(s, page, "Freepointer corrupt");
754 				page->freelist = NULL;
755 				page->inuse = page->objects;
756 				slab_fix(s, "Freelist cleared");
757 				return 0;
758 			}
759 			break;
760 		}
761 		object = fp;
762 		fp = get_freepointer(s, object);
763 		nr++;
764 	}
765 
766 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
767 	if (max_objects > MAX_OBJS_PER_PAGE)
768 		max_objects = MAX_OBJS_PER_PAGE;
769 
770 	if (page->objects != max_objects) {
771 		slab_err(s, page, "Wrong number of objects. Found %d but "
772 			"should be %d", page->objects, max_objects);
773 		page->objects = max_objects;
774 		slab_fix(s, "Number of objects adjusted.");
775 	}
776 	if (page->inuse != page->objects - nr) {
777 		slab_err(s, page, "Wrong object count. Counter is %d but "
778 			"counted were %d", page->inuse, page->objects - nr);
779 		page->inuse = page->objects - nr;
780 		slab_fix(s, "Object count adjusted.");
781 	}
782 	return search == NULL;
783 }
784 
785 static void trace(struct kmem_cache *s, struct page *page, void *object,
786 								int alloc)
787 {
788 	if (s->flags & SLAB_TRACE) {
789 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
790 			s->name,
791 			alloc ? "alloc" : "free",
792 			object, page->inuse,
793 			page->freelist);
794 
795 		if (!alloc)
796 			print_section("Object", (void *)object, s->objsize);
797 
798 		dump_stack();
799 	}
800 }
801 
802 /*
803  * Tracking of fully allocated slabs for debugging purposes.
804  */
805 static void add_full(struct kmem_cache_node *n, struct page *page)
806 {
807 	spin_lock(&n->list_lock);
808 	list_add(&page->lru, &n->full);
809 	spin_unlock(&n->list_lock);
810 }
811 
812 static void remove_full(struct kmem_cache *s, struct page *page)
813 {
814 	struct kmem_cache_node *n;
815 
816 	if (!(s->flags & SLAB_STORE_USER))
817 		return;
818 
819 	n = get_node(s, page_to_nid(page));
820 
821 	spin_lock(&n->list_lock);
822 	list_del(&page->lru);
823 	spin_unlock(&n->list_lock);
824 }
825 
826 /* Tracking of the number of slabs for debugging purposes */
827 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
828 {
829 	struct kmem_cache_node *n = get_node(s, node);
830 
831 	return atomic_long_read(&n->nr_slabs);
832 }
833 
834 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
835 {
836 	struct kmem_cache_node *n = get_node(s, node);
837 
838 	/*
839 	 * May be called early in order to allocate a slab for the
840 	 * kmem_cache_node structure. Solve the chicken-egg
841 	 * dilemma by deferring the increment of the count during
842 	 * bootstrap (see early_kmem_cache_node_alloc).
843 	 */
844 	if (!NUMA_BUILD || n) {
845 		atomic_long_inc(&n->nr_slabs);
846 		atomic_long_add(objects, &n->total_objects);
847 	}
848 }
849 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
850 {
851 	struct kmem_cache_node *n = get_node(s, node);
852 
853 	atomic_long_dec(&n->nr_slabs);
854 	atomic_long_sub(objects, &n->total_objects);
855 }
856 
857 /* Object debug checks for alloc/free paths */
858 static void setup_object_debug(struct kmem_cache *s, struct page *page,
859 								void *object)
860 {
861 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
862 		return;
863 
864 	init_object(s, object, 0);
865 	init_tracking(s, object);
866 }
867 
868 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
869 					void *object, unsigned long addr)
870 {
871 	if (!check_slab(s, page))
872 		goto bad;
873 
874 	if (!on_freelist(s, page, object)) {
875 		object_err(s, page, object, "Object already allocated");
876 		goto bad;
877 	}
878 
879 	if (!check_valid_pointer(s, page, object)) {
880 		object_err(s, page, object, "Freelist Pointer check fails");
881 		goto bad;
882 	}
883 
884 	if (!check_object(s, page, object, 0))
885 		goto bad;
886 
887 	/* Success perform special debug activities for allocs */
888 	if (s->flags & SLAB_STORE_USER)
889 		set_track(s, object, TRACK_ALLOC, addr);
890 	trace(s, page, object, 1);
891 	init_object(s, object, 1);
892 	return 1;
893 
894 bad:
895 	if (PageSlab(page)) {
896 		/*
897 		 * If this is a slab page then lets do the best we can
898 		 * to avoid issues in the future. Marking all objects
899 		 * as used avoids touching the remaining objects.
900 		 */
901 		slab_fix(s, "Marking all objects used");
902 		page->inuse = page->objects;
903 		page->freelist = NULL;
904 	}
905 	return 0;
906 }
907 
908 static int free_debug_processing(struct kmem_cache *s, struct page *page,
909 					void *object, unsigned long addr)
910 {
911 	if (!check_slab(s, page))
912 		goto fail;
913 
914 	if (!check_valid_pointer(s, page, object)) {
915 		slab_err(s, page, "Invalid object pointer 0x%p", object);
916 		goto fail;
917 	}
918 
919 	if (on_freelist(s, page, object)) {
920 		object_err(s, page, object, "Object already free");
921 		goto fail;
922 	}
923 
924 	if (!check_object(s, page, object, 1))
925 		return 0;
926 
927 	if (unlikely(s != page->slab)) {
928 		if (!PageSlab(page)) {
929 			slab_err(s, page, "Attempt to free object(0x%p) "
930 				"outside of slab", object);
931 		} else if (!page->slab) {
932 			printk(KERN_ERR
933 				"SLUB <none>: no slab for object 0x%p.\n",
934 						object);
935 			dump_stack();
936 		} else
937 			object_err(s, page, object,
938 					"page slab pointer corrupt.");
939 		goto fail;
940 	}
941 
942 	/* Special debug activities for freeing objects */
943 	if (!PageSlubFrozen(page) && !page->freelist)
944 		remove_full(s, page);
945 	if (s->flags & SLAB_STORE_USER)
946 		set_track(s, object, TRACK_FREE, addr);
947 	trace(s, page, object, 0);
948 	init_object(s, object, 0);
949 	return 1;
950 
951 fail:
952 	slab_fix(s, "Object at 0x%p not freed", object);
953 	return 0;
954 }
955 
956 static int __init setup_slub_debug(char *str)
957 {
958 	slub_debug = DEBUG_DEFAULT_FLAGS;
959 	if (*str++ != '=' || !*str)
960 		/*
961 		 * No options specified. Switch on full debugging.
962 		 */
963 		goto out;
964 
965 	if (*str == ',')
966 		/*
967 		 * No options but restriction on slabs. This means full
968 		 * debugging for slabs matching a pattern.
969 		 */
970 		goto check_slabs;
971 
972 	slub_debug = 0;
973 	if (*str == '-')
974 		/*
975 		 * Switch off all debugging measures.
976 		 */
977 		goto out;
978 
979 	/*
980 	 * Determine which debug features should be switched on
981 	 */
982 	for (; *str && *str != ','; str++) {
983 		switch (tolower(*str)) {
984 		case 'f':
985 			slub_debug |= SLAB_DEBUG_FREE;
986 			break;
987 		case 'z':
988 			slub_debug |= SLAB_RED_ZONE;
989 			break;
990 		case 'p':
991 			slub_debug |= SLAB_POISON;
992 			break;
993 		case 'u':
994 			slub_debug |= SLAB_STORE_USER;
995 			break;
996 		case 't':
997 			slub_debug |= SLAB_TRACE;
998 			break;
999 		default:
1000 			printk(KERN_ERR "slub_debug option '%c' "
1001 				"unknown. skipped\n", *str);
1002 		}
1003 	}
1004 
1005 check_slabs:
1006 	if (*str == ',')
1007 		slub_debug_slabs = str + 1;
1008 out:
1009 	return 1;
1010 }
1011 
1012 __setup("slub_debug", setup_slub_debug);
1013 
1014 static unsigned long kmem_cache_flags(unsigned long objsize,
1015 	unsigned long flags, const char *name,
1016 	void (*ctor)(void *))
1017 {
1018 	/*
1019 	 * Enable debugging if selected on the kernel commandline.
1020 	 */
1021 	if (slub_debug && (!slub_debug_slabs ||
1022 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1023 			flags |= slub_debug;
1024 
1025 	return flags;
1026 }
1027 #else
1028 static inline void setup_object_debug(struct kmem_cache *s,
1029 			struct page *page, void *object) {}
1030 
1031 static inline int alloc_debug_processing(struct kmem_cache *s,
1032 	struct page *page, void *object, unsigned long addr) { return 0; }
1033 
1034 static inline int free_debug_processing(struct kmem_cache *s,
1035 	struct page *page, void *object, unsigned long addr) { return 0; }
1036 
1037 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1038 			{ return 1; }
1039 static inline int check_object(struct kmem_cache *s, struct page *page,
1040 			void *object, int active) { return 1; }
1041 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1042 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1043 	unsigned long flags, const char *name,
1044 	void (*ctor)(void *))
1045 {
1046 	return flags;
1047 }
1048 #define slub_debug 0
1049 
1050 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1051 							{ return 0; }
1052 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1053 							int objects) {}
1054 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1055 							int objects) {}
1056 #endif
1057 
1058 /*
1059  * Slab allocation and freeing
1060  */
1061 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1062 					struct kmem_cache_order_objects oo)
1063 {
1064 	int order = oo_order(oo);
1065 
1066 	if (node == -1)
1067 		return alloc_pages(flags, order);
1068 	else
1069 		return alloc_pages_node(node, flags, order);
1070 }
1071 
1072 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1073 {
1074 	struct page *page;
1075 	struct kmem_cache_order_objects oo = s->oo;
1076 
1077 	flags |= s->allocflags;
1078 
1079 	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1080 									oo);
1081 	if (unlikely(!page)) {
1082 		oo = s->min;
1083 		/*
1084 		 * Allocation may have failed due to fragmentation.
1085 		 * Try a lower order alloc if possible
1086 		 */
1087 		page = alloc_slab_page(flags, node, oo);
1088 		if (!page)
1089 			return NULL;
1090 
1091 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1092 	}
1093 	page->objects = oo_objects(oo);
1094 	mod_zone_page_state(page_zone(page),
1095 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1096 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1097 		1 << oo_order(oo));
1098 
1099 	return page;
1100 }
1101 
1102 static void setup_object(struct kmem_cache *s, struct page *page,
1103 				void *object)
1104 {
1105 	setup_object_debug(s, page, object);
1106 	if (unlikely(s->ctor))
1107 		s->ctor(object);
1108 }
1109 
1110 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1111 {
1112 	struct page *page;
1113 	void *start;
1114 	void *last;
1115 	void *p;
1116 
1117 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1118 
1119 	page = allocate_slab(s,
1120 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1121 	if (!page)
1122 		goto out;
1123 
1124 	inc_slabs_node(s, page_to_nid(page), page->objects);
1125 	page->slab = s;
1126 	page->flags |= 1 << PG_slab;
1127 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1128 			SLAB_STORE_USER | SLAB_TRACE))
1129 		__SetPageSlubDebug(page);
1130 
1131 	start = page_address(page);
1132 
1133 	if (unlikely(s->flags & SLAB_POISON))
1134 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1135 
1136 	last = start;
1137 	for_each_object(p, s, start, page->objects) {
1138 		setup_object(s, page, last);
1139 		set_freepointer(s, last, p);
1140 		last = p;
1141 	}
1142 	setup_object(s, page, last);
1143 	set_freepointer(s, last, NULL);
1144 
1145 	page->freelist = start;
1146 	page->inuse = 0;
1147 out:
1148 	return page;
1149 }
1150 
1151 static void __free_slab(struct kmem_cache *s, struct page *page)
1152 {
1153 	int order = compound_order(page);
1154 	int pages = 1 << order;
1155 
1156 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1157 		void *p;
1158 
1159 		slab_pad_check(s, page);
1160 		for_each_object(p, s, page_address(page),
1161 						page->objects)
1162 			check_object(s, page, p, 0);
1163 		__ClearPageSlubDebug(page);
1164 	}
1165 
1166 	mod_zone_page_state(page_zone(page),
1167 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1168 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1169 		-pages);
1170 
1171 	__ClearPageSlab(page);
1172 	reset_page_mapcount(page);
1173 	__free_pages(page, order);
1174 }
1175 
1176 static void rcu_free_slab(struct rcu_head *h)
1177 {
1178 	struct page *page;
1179 
1180 	page = container_of((struct list_head *)h, struct page, lru);
1181 	__free_slab(page->slab, page);
1182 }
1183 
1184 static void free_slab(struct kmem_cache *s, struct page *page)
1185 {
1186 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1187 		/*
1188 		 * RCU free overloads the RCU head over the LRU
1189 		 */
1190 		struct rcu_head *head = (void *)&page->lru;
1191 
1192 		call_rcu(head, rcu_free_slab);
1193 	} else
1194 		__free_slab(s, page);
1195 }
1196 
1197 static void discard_slab(struct kmem_cache *s, struct page *page)
1198 {
1199 	dec_slabs_node(s, page_to_nid(page), page->objects);
1200 	free_slab(s, page);
1201 }
1202 
1203 /*
1204  * Per slab locking using the pagelock
1205  */
1206 static __always_inline void slab_lock(struct page *page)
1207 {
1208 	bit_spin_lock(PG_locked, &page->flags);
1209 }
1210 
1211 static __always_inline void slab_unlock(struct page *page)
1212 {
1213 	__bit_spin_unlock(PG_locked, &page->flags);
1214 }
1215 
1216 static __always_inline int slab_trylock(struct page *page)
1217 {
1218 	int rc = 1;
1219 
1220 	rc = bit_spin_trylock(PG_locked, &page->flags);
1221 	return rc;
1222 }
1223 
1224 /*
1225  * Management of partially allocated slabs
1226  */
1227 static void add_partial(struct kmem_cache_node *n,
1228 				struct page *page, int tail)
1229 {
1230 	spin_lock(&n->list_lock);
1231 	n->nr_partial++;
1232 	if (tail)
1233 		list_add_tail(&page->lru, &n->partial);
1234 	else
1235 		list_add(&page->lru, &n->partial);
1236 	spin_unlock(&n->list_lock);
1237 }
1238 
1239 static void remove_partial(struct kmem_cache *s, struct page *page)
1240 {
1241 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1242 
1243 	spin_lock(&n->list_lock);
1244 	list_del(&page->lru);
1245 	n->nr_partial--;
1246 	spin_unlock(&n->list_lock);
1247 }
1248 
1249 /*
1250  * Lock slab and remove from the partial list.
1251  *
1252  * Must hold list_lock.
1253  */
1254 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1255 							struct page *page)
1256 {
1257 	if (slab_trylock(page)) {
1258 		list_del(&page->lru);
1259 		n->nr_partial--;
1260 		__SetPageSlubFrozen(page);
1261 		return 1;
1262 	}
1263 	return 0;
1264 }
1265 
1266 /*
1267  * Try to allocate a partial slab from a specific node.
1268  */
1269 static struct page *get_partial_node(struct kmem_cache_node *n)
1270 {
1271 	struct page *page;
1272 
1273 	/*
1274 	 * Racy check. If we mistakenly see no partial slabs then we
1275 	 * just allocate an empty slab. If we mistakenly try to get a
1276 	 * partial slab and there is none available then get_partials()
1277 	 * will return NULL.
1278 	 */
1279 	if (!n || !n->nr_partial)
1280 		return NULL;
1281 
1282 	spin_lock(&n->list_lock);
1283 	list_for_each_entry(page, &n->partial, lru)
1284 		if (lock_and_freeze_slab(n, page))
1285 			goto out;
1286 	page = NULL;
1287 out:
1288 	spin_unlock(&n->list_lock);
1289 	return page;
1290 }
1291 
1292 /*
1293  * Get a page from somewhere. Search in increasing NUMA distances.
1294  */
1295 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1296 {
1297 #ifdef CONFIG_NUMA
1298 	struct zonelist *zonelist;
1299 	struct zoneref *z;
1300 	struct zone *zone;
1301 	enum zone_type high_zoneidx = gfp_zone(flags);
1302 	struct page *page;
1303 
1304 	/*
1305 	 * The defrag ratio allows a configuration of the tradeoffs between
1306 	 * inter node defragmentation and node local allocations. A lower
1307 	 * defrag_ratio increases the tendency to do local allocations
1308 	 * instead of attempting to obtain partial slabs from other nodes.
1309 	 *
1310 	 * If the defrag_ratio is set to 0 then kmalloc() always
1311 	 * returns node local objects. If the ratio is higher then kmalloc()
1312 	 * may return off node objects because partial slabs are obtained
1313 	 * from other nodes and filled up.
1314 	 *
1315 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1316 	 * defrag_ratio = 1000) then every (well almost) allocation will
1317 	 * first attempt to defrag slab caches on other nodes. This means
1318 	 * scanning over all nodes to look for partial slabs which may be
1319 	 * expensive if we do it every time we are trying to find a slab
1320 	 * with available objects.
1321 	 */
1322 	if (!s->remote_node_defrag_ratio ||
1323 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1324 		return NULL;
1325 
1326 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1327 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1328 		struct kmem_cache_node *n;
1329 
1330 		n = get_node(s, zone_to_nid(zone));
1331 
1332 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1333 				n->nr_partial > s->min_partial) {
1334 			page = get_partial_node(n);
1335 			if (page)
1336 				return page;
1337 		}
1338 	}
1339 #endif
1340 	return NULL;
1341 }
1342 
1343 /*
1344  * Get a partial page, lock it and return it.
1345  */
1346 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1347 {
1348 	struct page *page;
1349 	int searchnode = (node == -1) ? numa_node_id() : node;
1350 
1351 	page = get_partial_node(get_node(s, searchnode));
1352 	if (page || (flags & __GFP_THISNODE))
1353 		return page;
1354 
1355 	return get_any_partial(s, flags);
1356 }
1357 
1358 /*
1359  * Move a page back to the lists.
1360  *
1361  * Must be called with the slab lock held.
1362  *
1363  * On exit the slab lock will have been dropped.
1364  */
1365 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1366 {
1367 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1368 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1369 
1370 	__ClearPageSlubFrozen(page);
1371 	if (page->inuse) {
1372 
1373 		if (page->freelist) {
1374 			add_partial(n, page, tail);
1375 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1376 		} else {
1377 			stat(c, DEACTIVATE_FULL);
1378 			if (SLABDEBUG && PageSlubDebug(page) &&
1379 						(s->flags & SLAB_STORE_USER))
1380 				add_full(n, page);
1381 		}
1382 		slab_unlock(page);
1383 	} else {
1384 		stat(c, DEACTIVATE_EMPTY);
1385 		if (n->nr_partial < s->min_partial) {
1386 			/*
1387 			 * Adding an empty slab to the partial slabs in order
1388 			 * to avoid page allocator overhead. This slab needs
1389 			 * to come after the other slabs with objects in
1390 			 * so that the others get filled first. That way the
1391 			 * size of the partial list stays small.
1392 			 *
1393 			 * kmem_cache_shrink can reclaim any empty slabs from
1394 			 * the partial list.
1395 			 */
1396 			add_partial(n, page, 1);
1397 			slab_unlock(page);
1398 		} else {
1399 			slab_unlock(page);
1400 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1401 			discard_slab(s, page);
1402 		}
1403 	}
1404 }
1405 
1406 /*
1407  * Remove the cpu slab
1408  */
1409 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1410 {
1411 	struct page *page = c->page;
1412 	int tail = 1;
1413 
1414 	if (page->freelist)
1415 		stat(c, DEACTIVATE_REMOTE_FREES);
1416 	/*
1417 	 * Merge cpu freelist into slab freelist. Typically we get here
1418 	 * because both freelists are empty. So this is unlikely
1419 	 * to occur.
1420 	 */
1421 	while (unlikely(c->freelist)) {
1422 		void **object;
1423 
1424 		tail = 0;	/* Hot objects. Put the slab first */
1425 
1426 		/* Retrieve object from cpu_freelist */
1427 		object = c->freelist;
1428 		c->freelist = c->freelist[c->offset];
1429 
1430 		/* And put onto the regular freelist */
1431 		object[c->offset] = page->freelist;
1432 		page->freelist = object;
1433 		page->inuse--;
1434 	}
1435 	c->page = NULL;
1436 	unfreeze_slab(s, page, tail);
1437 }
1438 
1439 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1440 {
1441 	stat(c, CPUSLAB_FLUSH);
1442 	slab_lock(c->page);
1443 	deactivate_slab(s, c);
1444 }
1445 
1446 /*
1447  * Flush cpu slab.
1448  *
1449  * Called from IPI handler with interrupts disabled.
1450  */
1451 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1452 {
1453 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1454 
1455 	if (likely(c && c->page))
1456 		flush_slab(s, c);
1457 }
1458 
1459 static void flush_cpu_slab(void *d)
1460 {
1461 	struct kmem_cache *s = d;
1462 
1463 	__flush_cpu_slab(s, smp_processor_id());
1464 }
1465 
1466 static void flush_all(struct kmem_cache *s)
1467 {
1468 	on_each_cpu(flush_cpu_slab, s, 1);
1469 }
1470 
1471 /*
1472  * Check if the objects in a per cpu structure fit numa
1473  * locality expectations.
1474  */
1475 static inline int node_match(struct kmem_cache_cpu *c, int node)
1476 {
1477 #ifdef CONFIG_NUMA
1478 	if (node != -1 && c->node != node)
1479 		return 0;
1480 #endif
1481 	return 1;
1482 }
1483 
1484 /*
1485  * Slow path. The lockless freelist is empty or we need to perform
1486  * debugging duties.
1487  *
1488  * Interrupts are disabled.
1489  *
1490  * Processing is still very fast if new objects have been freed to the
1491  * regular freelist. In that case we simply take over the regular freelist
1492  * as the lockless freelist and zap the regular freelist.
1493  *
1494  * If that is not working then we fall back to the partial lists. We take the
1495  * first element of the freelist as the object to allocate now and move the
1496  * rest of the freelist to the lockless freelist.
1497  *
1498  * And if we were unable to get a new slab from the partial slab lists then
1499  * we need to allocate a new slab. This is the slowest path since it involves
1500  * a call to the page allocator and the setup of a new slab.
1501  */
1502 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1503 			  unsigned long addr, struct kmem_cache_cpu *c)
1504 {
1505 	void **object;
1506 	struct page *new;
1507 
1508 	/* We handle __GFP_ZERO in the caller */
1509 	gfpflags &= ~__GFP_ZERO;
1510 
1511 	if (!c->page)
1512 		goto new_slab;
1513 
1514 	slab_lock(c->page);
1515 	if (unlikely(!node_match(c, node)))
1516 		goto another_slab;
1517 
1518 	stat(c, ALLOC_REFILL);
1519 
1520 load_freelist:
1521 	object = c->page->freelist;
1522 	if (unlikely(!object))
1523 		goto another_slab;
1524 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1525 		goto debug;
1526 
1527 	c->freelist = object[c->offset];
1528 	c->page->inuse = c->page->objects;
1529 	c->page->freelist = NULL;
1530 	c->node = page_to_nid(c->page);
1531 unlock_out:
1532 	slab_unlock(c->page);
1533 	stat(c, ALLOC_SLOWPATH);
1534 	return object;
1535 
1536 another_slab:
1537 	deactivate_slab(s, c);
1538 
1539 new_slab:
1540 	new = get_partial(s, gfpflags, node);
1541 	if (new) {
1542 		c->page = new;
1543 		stat(c, ALLOC_FROM_PARTIAL);
1544 		goto load_freelist;
1545 	}
1546 
1547 	if (gfpflags & __GFP_WAIT)
1548 		local_irq_enable();
1549 
1550 	new = new_slab(s, gfpflags, node);
1551 
1552 	if (gfpflags & __GFP_WAIT)
1553 		local_irq_disable();
1554 
1555 	if (new) {
1556 		c = get_cpu_slab(s, smp_processor_id());
1557 		stat(c, ALLOC_SLAB);
1558 		if (c->page)
1559 			flush_slab(s, c);
1560 		slab_lock(new);
1561 		__SetPageSlubFrozen(new);
1562 		c->page = new;
1563 		goto load_freelist;
1564 	}
1565 	return NULL;
1566 debug:
1567 	if (!alloc_debug_processing(s, c->page, object, addr))
1568 		goto another_slab;
1569 
1570 	c->page->inuse++;
1571 	c->page->freelist = object[c->offset];
1572 	c->node = -1;
1573 	goto unlock_out;
1574 }
1575 
1576 /*
1577  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1578  * have the fastpath folded into their functions. So no function call
1579  * overhead for requests that can be satisfied on the fastpath.
1580  *
1581  * The fastpath works by first checking if the lockless freelist can be used.
1582  * If not then __slab_alloc is called for slow processing.
1583  *
1584  * Otherwise we can simply pick the next object from the lockless free list.
1585  */
1586 static __always_inline void *slab_alloc(struct kmem_cache *s,
1587 		gfp_t gfpflags, int node, unsigned long addr)
1588 {
1589 	void **object;
1590 	struct kmem_cache_cpu *c;
1591 	unsigned long flags;
1592 	unsigned int objsize;
1593 
1594 	lockdep_trace_alloc(gfpflags);
1595 	might_sleep_if(gfpflags & __GFP_WAIT);
1596 
1597 	if (should_failslab(s->objsize, gfpflags))
1598 		return NULL;
1599 
1600 	local_irq_save(flags);
1601 	c = get_cpu_slab(s, smp_processor_id());
1602 	objsize = c->objsize;
1603 	if (unlikely(!c->freelist || !node_match(c, node)))
1604 
1605 		object = __slab_alloc(s, gfpflags, node, addr, c);
1606 
1607 	else {
1608 		object = c->freelist;
1609 		c->freelist = object[c->offset];
1610 		stat(c, ALLOC_FASTPATH);
1611 	}
1612 	local_irq_restore(flags);
1613 
1614 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1615 		memset(object, 0, objsize);
1616 
1617 	return object;
1618 }
1619 
1620 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1621 {
1622 	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1623 
1624 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1625 
1626 	return ret;
1627 }
1628 EXPORT_SYMBOL(kmem_cache_alloc);
1629 
1630 #ifdef CONFIG_KMEMTRACE
1631 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1632 {
1633 	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1634 }
1635 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1636 #endif
1637 
1638 #ifdef CONFIG_NUMA
1639 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1640 {
1641 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1642 
1643 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1644 				    s->objsize, s->size, gfpflags, node);
1645 
1646 	return ret;
1647 }
1648 EXPORT_SYMBOL(kmem_cache_alloc_node);
1649 #endif
1650 
1651 #ifdef CONFIG_KMEMTRACE
1652 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1653 				    gfp_t gfpflags,
1654 				    int node)
1655 {
1656 	return slab_alloc(s, gfpflags, node, _RET_IP_);
1657 }
1658 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1659 #endif
1660 
1661 /*
1662  * Slow patch handling. This may still be called frequently since objects
1663  * have a longer lifetime than the cpu slabs in most processing loads.
1664  *
1665  * So we still attempt to reduce cache line usage. Just take the slab
1666  * lock and free the item. If there is no additional partial page
1667  * handling required then we can return immediately.
1668  */
1669 static void __slab_free(struct kmem_cache *s, struct page *page,
1670 			void *x, unsigned long addr, unsigned int offset)
1671 {
1672 	void *prior;
1673 	void **object = (void *)x;
1674 	struct kmem_cache_cpu *c;
1675 
1676 	c = get_cpu_slab(s, raw_smp_processor_id());
1677 	stat(c, FREE_SLOWPATH);
1678 	slab_lock(page);
1679 
1680 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1681 		goto debug;
1682 
1683 checks_ok:
1684 	prior = object[offset] = page->freelist;
1685 	page->freelist = object;
1686 	page->inuse--;
1687 
1688 	if (unlikely(PageSlubFrozen(page))) {
1689 		stat(c, FREE_FROZEN);
1690 		goto out_unlock;
1691 	}
1692 
1693 	if (unlikely(!page->inuse))
1694 		goto slab_empty;
1695 
1696 	/*
1697 	 * Objects left in the slab. If it was not on the partial list before
1698 	 * then add it.
1699 	 */
1700 	if (unlikely(!prior)) {
1701 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1702 		stat(c, FREE_ADD_PARTIAL);
1703 	}
1704 
1705 out_unlock:
1706 	slab_unlock(page);
1707 	return;
1708 
1709 slab_empty:
1710 	if (prior) {
1711 		/*
1712 		 * Slab still on the partial list.
1713 		 */
1714 		remove_partial(s, page);
1715 		stat(c, FREE_REMOVE_PARTIAL);
1716 	}
1717 	slab_unlock(page);
1718 	stat(c, FREE_SLAB);
1719 	discard_slab(s, page);
1720 	return;
1721 
1722 debug:
1723 	if (!free_debug_processing(s, page, x, addr))
1724 		goto out_unlock;
1725 	goto checks_ok;
1726 }
1727 
1728 /*
1729  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1730  * can perform fastpath freeing without additional function calls.
1731  *
1732  * The fastpath is only possible if we are freeing to the current cpu slab
1733  * of this processor. This typically the case if we have just allocated
1734  * the item before.
1735  *
1736  * If fastpath is not possible then fall back to __slab_free where we deal
1737  * with all sorts of special processing.
1738  */
1739 static __always_inline void slab_free(struct kmem_cache *s,
1740 			struct page *page, void *x, unsigned long addr)
1741 {
1742 	void **object = (void *)x;
1743 	struct kmem_cache_cpu *c;
1744 	unsigned long flags;
1745 
1746 	local_irq_save(flags);
1747 	c = get_cpu_slab(s, smp_processor_id());
1748 	debug_check_no_locks_freed(object, c->objsize);
1749 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1750 		debug_check_no_obj_freed(object, c->objsize);
1751 	if (likely(page == c->page && c->node >= 0)) {
1752 		object[c->offset] = c->freelist;
1753 		c->freelist = object;
1754 		stat(c, FREE_FASTPATH);
1755 	} else
1756 		__slab_free(s, page, x, addr, c->offset);
1757 
1758 	local_irq_restore(flags);
1759 }
1760 
1761 void kmem_cache_free(struct kmem_cache *s, void *x)
1762 {
1763 	struct page *page;
1764 
1765 	page = virt_to_head_page(x);
1766 
1767 	slab_free(s, page, x, _RET_IP_);
1768 
1769 	trace_kmem_cache_free(_RET_IP_, x);
1770 }
1771 EXPORT_SYMBOL(kmem_cache_free);
1772 
1773 /* Figure out on which slab page the object resides */
1774 static struct page *get_object_page(const void *x)
1775 {
1776 	struct page *page = virt_to_head_page(x);
1777 
1778 	if (!PageSlab(page))
1779 		return NULL;
1780 
1781 	return page;
1782 }
1783 
1784 /*
1785  * Object placement in a slab is made very easy because we always start at
1786  * offset 0. If we tune the size of the object to the alignment then we can
1787  * get the required alignment by putting one properly sized object after
1788  * another.
1789  *
1790  * Notice that the allocation order determines the sizes of the per cpu
1791  * caches. Each processor has always one slab available for allocations.
1792  * Increasing the allocation order reduces the number of times that slabs
1793  * must be moved on and off the partial lists and is therefore a factor in
1794  * locking overhead.
1795  */
1796 
1797 /*
1798  * Mininum / Maximum order of slab pages. This influences locking overhead
1799  * and slab fragmentation. A higher order reduces the number of partial slabs
1800  * and increases the number of allocations possible without having to
1801  * take the list_lock.
1802  */
1803 static int slub_min_order;
1804 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1805 static int slub_min_objects;
1806 
1807 /*
1808  * Merge control. If this is set then no merging of slab caches will occur.
1809  * (Could be removed. This was introduced to pacify the merge skeptics.)
1810  */
1811 static int slub_nomerge;
1812 
1813 /*
1814  * Calculate the order of allocation given an slab object size.
1815  *
1816  * The order of allocation has significant impact on performance and other
1817  * system components. Generally order 0 allocations should be preferred since
1818  * order 0 does not cause fragmentation in the page allocator. Larger objects
1819  * be problematic to put into order 0 slabs because there may be too much
1820  * unused space left. We go to a higher order if more than 1/16th of the slab
1821  * would be wasted.
1822  *
1823  * In order to reach satisfactory performance we must ensure that a minimum
1824  * number of objects is in one slab. Otherwise we may generate too much
1825  * activity on the partial lists which requires taking the list_lock. This is
1826  * less a concern for large slabs though which are rarely used.
1827  *
1828  * slub_max_order specifies the order where we begin to stop considering the
1829  * number of objects in a slab as critical. If we reach slub_max_order then
1830  * we try to keep the page order as low as possible. So we accept more waste
1831  * of space in favor of a small page order.
1832  *
1833  * Higher order allocations also allow the placement of more objects in a
1834  * slab and thereby reduce object handling overhead. If the user has
1835  * requested a higher mininum order then we start with that one instead of
1836  * the smallest order which will fit the object.
1837  */
1838 static inline int slab_order(int size, int min_objects,
1839 				int max_order, int fract_leftover)
1840 {
1841 	int order;
1842 	int rem;
1843 	int min_order = slub_min_order;
1844 
1845 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1846 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1847 
1848 	for (order = max(min_order,
1849 				fls(min_objects * size - 1) - PAGE_SHIFT);
1850 			order <= max_order; order++) {
1851 
1852 		unsigned long slab_size = PAGE_SIZE << order;
1853 
1854 		if (slab_size < min_objects * size)
1855 			continue;
1856 
1857 		rem = slab_size % size;
1858 
1859 		if (rem <= slab_size / fract_leftover)
1860 			break;
1861 
1862 	}
1863 
1864 	return order;
1865 }
1866 
1867 static inline int calculate_order(int size)
1868 {
1869 	int order;
1870 	int min_objects;
1871 	int fraction;
1872 	int max_objects;
1873 
1874 	/*
1875 	 * Attempt to find best configuration for a slab. This
1876 	 * works by first attempting to generate a layout with
1877 	 * the best configuration and backing off gradually.
1878 	 *
1879 	 * First we reduce the acceptable waste in a slab. Then
1880 	 * we reduce the minimum objects required in a slab.
1881 	 */
1882 	min_objects = slub_min_objects;
1883 	if (!min_objects)
1884 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1885 	max_objects = (PAGE_SIZE << slub_max_order)/size;
1886 	min_objects = min(min_objects, max_objects);
1887 
1888 	while (min_objects > 1) {
1889 		fraction = 16;
1890 		while (fraction >= 4) {
1891 			order = slab_order(size, min_objects,
1892 						slub_max_order, fraction);
1893 			if (order <= slub_max_order)
1894 				return order;
1895 			fraction /= 2;
1896 		}
1897 		min_objects --;
1898 	}
1899 
1900 	/*
1901 	 * We were unable to place multiple objects in a slab. Now
1902 	 * lets see if we can place a single object there.
1903 	 */
1904 	order = slab_order(size, 1, slub_max_order, 1);
1905 	if (order <= slub_max_order)
1906 		return order;
1907 
1908 	/*
1909 	 * Doh this slab cannot be placed using slub_max_order.
1910 	 */
1911 	order = slab_order(size, 1, MAX_ORDER, 1);
1912 	if (order <= MAX_ORDER)
1913 		return order;
1914 	return -ENOSYS;
1915 }
1916 
1917 /*
1918  * Figure out what the alignment of the objects will be.
1919  */
1920 static unsigned long calculate_alignment(unsigned long flags,
1921 		unsigned long align, unsigned long size)
1922 {
1923 	/*
1924 	 * If the user wants hardware cache aligned objects then follow that
1925 	 * suggestion if the object is sufficiently large.
1926 	 *
1927 	 * The hardware cache alignment cannot override the specified
1928 	 * alignment though. If that is greater then use it.
1929 	 */
1930 	if (flags & SLAB_HWCACHE_ALIGN) {
1931 		unsigned long ralign = cache_line_size();
1932 		while (size <= ralign / 2)
1933 			ralign /= 2;
1934 		align = max(align, ralign);
1935 	}
1936 
1937 	if (align < ARCH_SLAB_MINALIGN)
1938 		align = ARCH_SLAB_MINALIGN;
1939 
1940 	return ALIGN(align, sizeof(void *));
1941 }
1942 
1943 static void init_kmem_cache_cpu(struct kmem_cache *s,
1944 			struct kmem_cache_cpu *c)
1945 {
1946 	c->page = NULL;
1947 	c->freelist = NULL;
1948 	c->node = 0;
1949 	c->offset = s->offset / sizeof(void *);
1950 	c->objsize = s->objsize;
1951 #ifdef CONFIG_SLUB_STATS
1952 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1953 #endif
1954 }
1955 
1956 static void
1957 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1958 {
1959 	n->nr_partial = 0;
1960 	spin_lock_init(&n->list_lock);
1961 	INIT_LIST_HEAD(&n->partial);
1962 #ifdef CONFIG_SLUB_DEBUG
1963 	atomic_long_set(&n->nr_slabs, 0);
1964 	atomic_long_set(&n->total_objects, 0);
1965 	INIT_LIST_HEAD(&n->full);
1966 #endif
1967 }
1968 
1969 #ifdef CONFIG_SMP
1970 /*
1971  * Per cpu array for per cpu structures.
1972  *
1973  * The per cpu array places all kmem_cache_cpu structures from one processor
1974  * close together meaning that it becomes possible that multiple per cpu
1975  * structures are contained in one cacheline. This may be particularly
1976  * beneficial for the kmalloc caches.
1977  *
1978  * A desktop system typically has around 60-80 slabs. With 100 here we are
1979  * likely able to get per cpu structures for all caches from the array defined
1980  * here. We must be able to cover all kmalloc caches during bootstrap.
1981  *
1982  * If the per cpu array is exhausted then fall back to kmalloc
1983  * of individual cachelines. No sharing is possible then.
1984  */
1985 #define NR_KMEM_CACHE_CPU 100
1986 
1987 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1988 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1989 
1990 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1991 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1992 
1993 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1994 							int cpu, gfp_t flags)
1995 {
1996 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1997 
1998 	if (c)
1999 		per_cpu(kmem_cache_cpu_free, cpu) =
2000 				(void *)c->freelist;
2001 	else {
2002 		/* Table overflow: So allocate ourselves */
2003 		c = kmalloc_node(
2004 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2005 			flags, cpu_to_node(cpu));
2006 		if (!c)
2007 			return NULL;
2008 	}
2009 
2010 	init_kmem_cache_cpu(s, c);
2011 	return c;
2012 }
2013 
2014 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2015 {
2016 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2017 			c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2018 		kfree(c);
2019 		return;
2020 	}
2021 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2022 	per_cpu(kmem_cache_cpu_free, cpu) = c;
2023 }
2024 
2025 static void free_kmem_cache_cpus(struct kmem_cache *s)
2026 {
2027 	int cpu;
2028 
2029 	for_each_online_cpu(cpu) {
2030 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2031 
2032 		if (c) {
2033 			s->cpu_slab[cpu] = NULL;
2034 			free_kmem_cache_cpu(c, cpu);
2035 		}
2036 	}
2037 }
2038 
2039 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2040 {
2041 	int cpu;
2042 
2043 	for_each_online_cpu(cpu) {
2044 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2045 
2046 		if (c)
2047 			continue;
2048 
2049 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2050 		if (!c) {
2051 			free_kmem_cache_cpus(s);
2052 			return 0;
2053 		}
2054 		s->cpu_slab[cpu] = c;
2055 	}
2056 	return 1;
2057 }
2058 
2059 /*
2060  * Initialize the per cpu array.
2061  */
2062 static void init_alloc_cpu_cpu(int cpu)
2063 {
2064 	int i;
2065 
2066 	if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2067 		return;
2068 
2069 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2070 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2071 
2072 	cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2073 }
2074 
2075 static void __init init_alloc_cpu(void)
2076 {
2077 	int cpu;
2078 
2079 	for_each_online_cpu(cpu)
2080 		init_alloc_cpu_cpu(cpu);
2081   }
2082 
2083 #else
2084 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2085 static inline void init_alloc_cpu(void) {}
2086 
2087 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2088 {
2089 	init_kmem_cache_cpu(s, &s->cpu_slab);
2090 	return 1;
2091 }
2092 #endif
2093 
2094 #ifdef CONFIG_NUMA
2095 /*
2096  * No kmalloc_node yet so do it by hand. We know that this is the first
2097  * slab on the node for this slabcache. There are no concurrent accesses
2098  * possible.
2099  *
2100  * Note that this function only works on the kmalloc_node_cache
2101  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2102  * memory on a fresh node that has no slab structures yet.
2103  */
2104 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2105 {
2106 	struct page *page;
2107 	struct kmem_cache_node *n;
2108 	unsigned long flags;
2109 
2110 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2111 
2112 	page = new_slab(kmalloc_caches, gfpflags, node);
2113 
2114 	BUG_ON(!page);
2115 	if (page_to_nid(page) != node) {
2116 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2117 				"node %d\n", node);
2118 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2119 				"in order to be able to continue\n");
2120 	}
2121 
2122 	n = page->freelist;
2123 	BUG_ON(!n);
2124 	page->freelist = get_freepointer(kmalloc_caches, n);
2125 	page->inuse++;
2126 	kmalloc_caches->node[node] = n;
2127 #ifdef CONFIG_SLUB_DEBUG
2128 	init_object(kmalloc_caches, n, 1);
2129 	init_tracking(kmalloc_caches, n);
2130 #endif
2131 	init_kmem_cache_node(n, kmalloc_caches);
2132 	inc_slabs_node(kmalloc_caches, node, page->objects);
2133 
2134 	/*
2135 	 * lockdep requires consistent irq usage for each lock
2136 	 * so even though there cannot be a race this early in
2137 	 * the boot sequence, we still disable irqs.
2138 	 */
2139 	local_irq_save(flags);
2140 	add_partial(n, page, 0);
2141 	local_irq_restore(flags);
2142 }
2143 
2144 static void free_kmem_cache_nodes(struct kmem_cache *s)
2145 {
2146 	int node;
2147 
2148 	for_each_node_state(node, N_NORMAL_MEMORY) {
2149 		struct kmem_cache_node *n = s->node[node];
2150 		if (n && n != &s->local_node)
2151 			kmem_cache_free(kmalloc_caches, n);
2152 		s->node[node] = NULL;
2153 	}
2154 }
2155 
2156 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2157 {
2158 	int node;
2159 	int local_node;
2160 
2161 	if (slab_state >= UP)
2162 		local_node = page_to_nid(virt_to_page(s));
2163 	else
2164 		local_node = 0;
2165 
2166 	for_each_node_state(node, N_NORMAL_MEMORY) {
2167 		struct kmem_cache_node *n;
2168 
2169 		if (local_node == node)
2170 			n = &s->local_node;
2171 		else {
2172 			if (slab_state == DOWN) {
2173 				early_kmem_cache_node_alloc(gfpflags, node);
2174 				continue;
2175 			}
2176 			n = kmem_cache_alloc_node(kmalloc_caches,
2177 							gfpflags, node);
2178 
2179 			if (!n) {
2180 				free_kmem_cache_nodes(s);
2181 				return 0;
2182 			}
2183 
2184 		}
2185 		s->node[node] = n;
2186 		init_kmem_cache_node(n, s);
2187 	}
2188 	return 1;
2189 }
2190 #else
2191 static void free_kmem_cache_nodes(struct kmem_cache *s)
2192 {
2193 }
2194 
2195 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2196 {
2197 	init_kmem_cache_node(&s->local_node, s);
2198 	return 1;
2199 }
2200 #endif
2201 
2202 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2203 {
2204 	if (min < MIN_PARTIAL)
2205 		min = MIN_PARTIAL;
2206 	else if (min > MAX_PARTIAL)
2207 		min = MAX_PARTIAL;
2208 	s->min_partial = min;
2209 }
2210 
2211 /*
2212  * calculate_sizes() determines the order and the distribution of data within
2213  * a slab object.
2214  */
2215 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2216 {
2217 	unsigned long flags = s->flags;
2218 	unsigned long size = s->objsize;
2219 	unsigned long align = s->align;
2220 	int order;
2221 
2222 	/*
2223 	 * Round up object size to the next word boundary. We can only
2224 	 * place the free pointer at word boundaries and this determines
2225 	 * the possible location of the free pointer.
2226 	 */
2227 	size = ALIGN(size, sizeof(void *));
2228 
2229 #ifdef CONFIG_SLUB_DEBUG
2230 	/*
2231 	 * Determine if we can poison the object itself. If the user of
2232 	 * the slab may touch the object after free or before allocation
2233 	 * then we should never poison the object itself.
2234 	 */
2235 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2236 			!s->ctor)
2237 		s->flags |= __OBJECT_POISON;
2238 	else
2239 		s->flags &= ~__OBJECT_POISON;
2240 
2241 
2242 	/*
2243 	 * If we are Redzoning then check if there is some space between the
2244 	 * end of the object and the free pointer. If not then add an
2245 	 * additional word to have some bytes to store Redzone information.
2246 	 */
2247 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2248 		size += sizeof(void *);
2249 #endif
2250 
2251 	/*
2252 	 * With that we have determined the number of bytes in actual use
2253 	 * by the object. This is the potential offset to the free pointer.
2254 	 */
2255 	s->inuse = size;
2256 
2257 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2258 		s->ctor)) {
2259 		/*
2260 		 * Relocate free pointer after the object if it is not
2261 		 * permitted to overwrite the first word of the object on
2262 		 * kmem_cache_free.
2263 		 *
2264 		 * This is the case if we do RCU, have a constructor or
2265 		 * destructor or are poisoning the objects.
2266 		 */
2267 		s->offset = size;
2268 		size += sizeof(void *);
2269 	}
2270 
2271 #ifdef CONFIG_SLUB_DEBUG
2272 	if (flags & SLAB_STORE_USER)
2273 		/*
2274 		 * Need to store information about allocs and frees after
2275 		 * the object.
2276 		 */
2277 		size += 2 * sizeof(struct track);
2278 
2279 	if (flags & SLAB_RED_ZONE)
2280 		/*
2281 		 * Add some empty padding so that we can catch
2282 		 * overwrites from earlier objects rather than let
2283 		 * tracking information or the free pointer be
2284 		 * corrupted if a user writes before the start
2285 		 * of the object.
2286 		 */
2287 		size += sizeof(void *);
2288 #endif
2289 
2290 	/*
2291 	 * Determine the alignment based on various parameters that the
2292 	 * user specified and the dynamic determination of cache line size
2293 	 * on bootup.
2294 	 */
2295 	align = calculate_alignment(flags, align, s->objsize);
2296 
2297 	/*
2298 	 * SLUB stores one object immediately after another beginning from
2299 	 * offset 0. In order to align the objects we have to simply size
2300 	 * each object to conform to the alignment.
2301 	 */
2302 	size = ALIGN(size, align);
2303 	s->size = size;
2304 	if (forced_order >= 0)
2305 		order = forced_order;
2306 	else
2307 		order = calculate_order(size);
2308 
2309 	if (order < 0)
2310 		return 0;
2311 
2312 	s->allocflags = 0;
2313 	if (order)
2314 		s->allocflags |= __GFP_COMP;
2315 
2316 	if (s->flags & SLAB_CACHE_DMA)
2317 		s->allocflags |= SLUB_DMA;
2318 
2319 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2320 		s->allocflags |= __GFP_RECLAIMABLE;
2321 
2322 	/*
2323 	 * Determine the number of objects per slab
2324 	 */
2325 	s->oo = oo_make(order, size);
2326 	s->min = oo_make(get_order(size), size);
2327 	if (oo_objects(s->oo) > oo_objects(s->max))
2328 		s->max = s->oo;
2329 
2330 	return !!oo_objects(s->oo);
2331 
2332 }
2333 
2334 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2335 		const char *name, size_t size,
2336 		size_t align, unsigned long flags,
2337 		void (*ctor)(void *))
2338 {
2339 	memset(s, 0, kmem_size);
2340 	s->name = name;
2341 	s->ctor = ctor;
2342 	s->objsize = size;
2343 	s->align = align;
2344 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2345 
2346 	if (!calculate_sizes(s, -1))
2347 		goto error;
2348 
2349 	/*
2350 	 * The larger the object size is, the more pages we want on the partial
2351 	 * list to avoid pounding the page allocator excessively.
2352 	 */
2353 	set_min_partial(s, ilog2(s->size));
2354 	s->refcount = 1;
2355 #ifdef CONFIG_NUMA
2356 	s->remote_node_defrag_ratio = 1000;
2357 #endif
2358 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2359 		goto error;
2360 
2361 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2362 		return 1;
2363 	free_kmem_cache_nodes(s);
2364 error:
2365 	if (flags & SLAB_PANIC)
2366 		panic("Cannot create slab %s size=%lu realsize=%u "
2367 			"order=%u offset=%u flags=%lx\n",
2368 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2369 			s->offset, flags);
2370 	return 0;
2371 }
2372 
2373 /*
2374  * Check if a given pointer is valid
2375  */
2376 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2377 {
2378 	struct page *page;
2379 
2380 	page = get_object_page(object);
2381 
2382 	if (!page || s != page->slab)
2383 		/* No slab or wrong slab */
2384 		return 0;
2385 
2386 	if (!check_valid_pointer(s, page, object))
2387 		return 0;
2388 
2389 	/*
2390 	 * We could also check if the object is on the slabs freelist.
2391 	 * But this would be too expensive and it seems that the main
2392 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2393 	 * to a certain slab.
2394 	 */
2395 	return 1;
2396 }
2397 EXPORT_SYMBOL(kmem_ptr_validate);
2398 
2399 /*
2400  * Determine the size of a slab object
2401  */
2402 unsigned int kmem_cache_size(struct kmem_cache *s)
2403 {
2404 	return s->objsize;
2405 }
2406 EXPORT_SYMBOL(kmem_cache_size);
2407 
2408 const char *kmem_cache_name(struct kmem_cache *s)
2409 {
2410 	return s->name;
2411 }
2412 EXPORT_SYMBOL(kmem_cache_name);
2413 
2414 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2415 							const char *text)
2416 {
2417 #ifdef CONFIG_SLUB_DEBUG
2418 	void *addr = page_address(page);
2419 	void *p;
2420 	DECLARE_BITMAP(map, page->objects);
2421 
2422 	bitmap_zero(map, page->objects);
2423 	slab_err(s, page, "%s", text);
2424 	slab_lock(page);
2425 	for_each_free_object(p, s, page->freelist)
2426 		set_bit(slab_index(p, s, addr), map);
2427 
2428 	for_each_object(p, s, addr, page->objects) {
2429 
2430 		if (!test_bit(slab_index(p, s, addr), map)) {
2431 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2432 							p, p - addr);
2433 			print_tracking(s, p);
2434 		}
2435 	}
2436 	slab_unlock(page);
2437 #endif
2438 }
2439 
2440 /*
2441  * Attempt to free all partial slabs on a node.
2442  */
2443 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2444 {
2445 	unsigned long flags;
2446 	struct page *page, *h;
2447 
2448 	spin_lock_irqsave(&n->list_lock, flags);
2449 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2450 		if (!page->inuse) {
2451 			list_del(&page->lru);
2452 			discard_slab(s, page);
2453 			n->nr_partial--;
2454 		} else {
2455 			list_slab_objects(s, page,
2456 				"Objects remaining on kmem_cache_close()");
2457 		}
2458 	}
2459 	spin_unlock_irqrestore(&n->list_lock, flags);
2460 }
2461 
2462 /*
2463  * Release all resources used by a slab cache.
2464  */
2465 static inline int kmem_cache_close(struct kmem_cache *s)
2466 {
2467 	int node;
2468 
2469 	flush_all(s);
2470 
2471 	/* Attempt to free all objects */
2472 	free_kmem_cache_cpus(s);
2473 	for_each_node_state(node, N_NORMAL_MEMORY) {
2474 		struct kmem_cache_node *n = get_node(s, node);
2475 
2476 		free_partial(s, n);
2477 		if (n->nr_partial || slabs_node(s, node))
2478 			return 1;
2479 	}
2480 	free_kmem_cache_nodes(s);
2481 	return 0;
2482 }
2483 
2484 /*
2485  * Close a cache and release the kmem_cache structure
2486  * (must be used for caches created using kmem_cache_create)
2487  */
2488 void kmem_cache_destroy(struct kmem_cache *s)
2489 {
2490 	down_write(&slub_lock);
2491 	s->refcount--;
2492 	if (!s->refcount) {
2493 		list_del(&s->list);
2494 		up_write(&slub_lock);
2495 		if (kmem_cache_close(s)) {
2496 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2497 				"still has objects.\n", s->name, __func__);
2498 			dump_stack();
2499 		}
2500 		sysfs_slab_remove(s);
2501 	} else
2502 		up_write(&slub_lock);
2503 }
2504 EXPORT_SYMBOL(kmem_cache_destroy);
2505 
2506 /********************************************************************
2507  *		Kmalloc subsystem
2508  *******************************************************************/
2509 
2510 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2511 EXPORT_SYMBOL(kmalloc_caches);
2512 
2513 static int __init setup_slub_min_order(char *str)
2514 {
2515 	get_option(&str, &slub_min_order);
2516 
2517 	return 1;
2518 }
2519 
2520 __setup("slub_min_order=", setup_slub_min_order);
2521 
2522 static int __init setup_slub_max_order(char *str)
2523 {
2524 	get_option(&str, &slub_max_order);
2525 
2526 	return 1;
2527 }
2528 
2529 __setup("slub_max_order=", setup_slub_max_order);
2530 
2531 static int __init setup_slub_min_objects(char *str)
2532 {
2533 	get_option(&str, &slub_min_objects);
2534 
2535 	return 1;
2536 }
2537 
2538 __setup("slub_min_objects=", setup_slub_min_objects);
2539 
2540 static int __init setup_slub_nomerge(char *str)
2541 {
2542 	slub_nomerge = 1;
2543 	return 1;
2544 }
2545 
2546 __setup("slub_nomerge", setup_slub_nomerge);
2547 
2548 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2549 		const char *name, int size, gfp_t gfp_flags)
2550 {
2551 	unsigned int flags = 0;
2552 
2553 	if (gfp_flags & SLUB_DMA)
2554 		flags = SLAB_CACHE_DMA;
2555 
2556 	down_write(&slub_lock);
2557 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2558 								flags, NULL))
2559 		goto panic;
2560 
2561 	list_add(&s->list, &slab_caches);
2562 	up_write(&slub_lock);
2563 	if (sysfs_slab_add(s))
2564 		goto panic;
2565 	return s;
2566 
2567 panic:
2568 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2569 }
2570 
2571 #ifdef CONFIG_ZONE_DMA
2572 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2573 
2574 static void sysfs_add_func(struct work_struct *w)
2575 {
2576 	struct kmem_cache *s;
2577 
2578 	down_write(&slub_lock);
2579 	list_for_each_entry(s, &slab_caches, list) {
2580 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2581 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2582 			sysfs_slab_add(s);
2583 		}
2584 	}
2585 	up_write(&slub_lock);
2586 }
2587 
2588 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2589 
2590 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2591 {
2592 	struct kmem_cache *s;
2593 	char *text;
2594 	size_t realsize;
2595 
2596 	s = kmalloc_caches_dma[index];
2597 	if (s)
2598 		return s;
2599 
2600 	/* Dynamically create dma cache */
2601 	if (flags & __GFP_WAIT)
2602 		down_write(&slub_lock);
2603 	else {
2604 		if (!down_write_trylock(&slub_lock))
2605 			goto out;
2606 	}
2607 
2608 	if (kmalloc_caches_dma[index])
2609 		goto unlock_out;
2610 
2611 	realsize = kmalloc_caches[index].objsize;
2612 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2613 			 (unsigned int)realsize);
2614 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2615 
2616 	if (!s || !text || !kmem_cache_open(s, flags, text,
2617 			realsize, ARCH_KMALLOC_MINALIGN,
2618 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2619 		kfree(s);
2620 		kfree(text);
2621 		goto unlock_out;
2622 	}
2623 
2624 	list_add(&s->list, &slab_caches);
2625 	kmalloc_caches_dma[index] = s;
2626 
2627 	schedule_work(&sysfs_add_work);
2628 
2629 unlock_out:
2630 	up_write(&slub_lock);
2631 out:
2632 	return kmalloc_caches_dma[index];
2633 }
2634 #endif
2635 
2636 /*
2637  * Conversion table for small slabs sizes / 8 to the index in the
2638  * kmalloc array. This is necessary for slabs < 192 since we have non power
2639  * of two cache sizes there. The size of larger slabs can be determined using
2640  * fls.
2641  */
2642 static s8 size_index[24] = {
2643 	3,	/* 8 */
2644 	4,	/* 16 */
2645 	5,	/* 24 */
2646 	5,	/* 32 */
2647 	6,	/* 40 */
2648 	6,	/* 48 */
2649 	6,	/* 56 */
2650 	6,	/* 64 */
2651 	1,	/* 72 */
2652 	1,	/* 80 */
2653 	1,	/* 88 */
2654 	1,	/* 96 */
2655 	7,	/* 104 */
2656 	7,	/* 112 */
2657 	7,	/* 120 */
2658 	7,	/* 128 */
2659 	2,	/* 136 */
2660 	2,	/* 144 */
2661 	2,	/* 152 */
2662 	2,	/* 160 */
2663 	2,	/* 168 */
2664 	2,	/* 176 */
2665 	2,	/* 184 */
2666 	2	/* 192 */
2667 };
2668 
2669 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2670 {
2671 	int index;
2672 
2673 	if (size <= 192) {
2674 		if (!size)
2675 			return ZERO_SIZE_PTR;
2676 
2677 		index = size_index[(size - 1) / 8];
2678 	} else
2679 		index = fls(size - 1);
2680 
2681 #ifdef CONFIG_ZONE_DMA
2682 	if (unlikely((flags & SLUB_DMA)))
2683 		return dma_kmalloc_cache(index, flags);
2684 
2685 #endif
2686 	return &kmalloc_caches[index];
2687 }
2688 
2689 void *__kmalloc(size_t size, gfp_t flags)
2690 {
2691 	struct kmem_cache *s;
2692 	void *ret;
2693 
2694 	if (unlikely(size > SLUB_MAX_SIZE))
2695 		return kmalloc_large(size, flags);
2696 
2697 	s = get_slab(size, flags);
2698 
2699 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2700 		return s;
2701 
2702 	ret = slab_alloc(s, flags, -1, _RET_IP_);
2703 
2704 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2705 
2706 	return ret;
2707 }
2708 EXPORT_SYMBOL(__kmalloc);
2709 
2710 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2711 {
2712 	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2713 						get_order(size));
2714 
2715 	if (page)
2716 		return page_address(page);
2717 	else
2718 		return NULL;
2719 }
2720 
2721 #ifdef CONFIG_NUMA
2722 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2723 {
2724 	struct kmem_cache *s;
2725 	void *ret;
2726 
2727 	if (unlikely(size > SLUB_MAX_SIZE)) {
2728 		ret = kmalloc_large_node(size, flags, node);
2729 
2730 		trace_kmalloc_node(_RET_IP_, ret,
2731 				   size, PAGE_SIZE << get_order(size),
2732 				   flags, node);
2733 
2734 		return ret;
2735 	}
2736 
2737 	s = get_slab(size, flags);
2738 
2739 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2740 		return s;
2741 
2742 	ret = slab_alloc(s, flags, node, _RET_IP_);
2743 
2744 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2745 
2746 	return ret;
2747 }
2748 EXPORT_SYMBOL(__kmalloc_node);
2749 #endif
2750 
2751 size_t ksize(const void *object)
2752 {
2753 	struct page *page;
2754 	struct kmem_cache *s;
2755 
2756 	if (unlikely(object == ZERO_SIZE_PTR))
2757 		return 0;
2758 
2759 	page = virt_to_head_page(object);
2760 
2761 	if (unlikely(!PageSlab(page))) {
2762 		WARN_ON(!PageCompound(page));
2763 		return PAGE_SIZE << compound_order(page);
2764 	}
2765 	s = page->slab;
2766 
2767 #ifdef CONFIG_SLUB_DEBUG
2768 	/*
2769 	 * Debugging requires use of the padding between object
2770 	 * and whatever may come after it.
2771 	 */
2772 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2773 		return s->objsize;
2774 
2775 #endif
2776 	/*
2777 	 * If we have the need to store the freelist pointer
2778 	 * back there or track user information then we can
2779 	 * only use the space before that information.
2780 	 */
2781 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2782 		return s->inuse;
2783 	/*
2784 	 * Else we can use all the padding etc for the allocation
2785 	 */
2786 	return s->size;
2787 }
2788 EXPORT_SYMBOL(ksize);
2789 
2790 void kfree(const void *x)
2791 {
2792 	struct page *page;
2793 	void *object = (void *)x;
2794 
2795 	trace_kfree(_RET_IP_, x);
2796 
2797 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2798 		return;
2799 
2800 	page = virt_to_head_page(x);
2801 	if (unlikely(!PageSlab(page))) {
2802 		BUG_ON(!PageCompound(page));
2803 		put_page(page);
2804 		return;
2805 	}
2806 	slab_free(page->slab, page, object, _RET_IP_);
2807 }
2808 EXPORT_SYMBOL(kfree);
2809 
2810 /*
2811  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2812  * the remaining slabs by the number of items in use. The slabs with the
2813  * most items in use come first. New allocations will then fill those up
2814  * and thus they can be removed from the partial lists.
2815  *
2816  * The slabs with the least items are placed last. This results in them
2817  * being allocated from last increasing the chance that the last objects
2818  * are freed in them.
2819  */
2820 int kmem_cache_shrink(struct kmem_cache *s)
2821 {
2822 	int node;
2823 	int i;
2824 	struct kmem_cache_node *n;
2825 	struct page *page;
2826 	struct page *t;
2827 	int objects = oo_objects(s->max);
2828 	struct list_head *slabs_by_inuse =
2829 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2830 	unsigned long flags;
2831 
2832 	if (!slabs_by_inuse)
2833 		return -ENOMEM;
2834 
2835 	flush_all(s);
2836 	for_each_node_state(node, N_NORMAL_MEMORY) {
2837 		n = get_node(s, node);
2838 
2839 		if (!n->nr_partial)
2840 			continue;
2841 
2842 		for (i = 0; i < objects; i++)
2843 			INIT_LIST_HEAD(slabs_by_inuse + i);
2844 
2845 		spin_lock_irqsave(&n->list_lock, flags);
2846 
2847 		/*
2848 		 * Build lists indexed by the items in use in each slab.
2849 		 *
2850 		 * Note that concurrent frees may occur while we hold the
2851 		 * list_lock. page->inuse here is the upper limit.
2852 		 */
2853 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2854 			if (!page->inuse && slab_trylock(page)) {
2855 				/*
2856 				 * Must hold slab lock here because slab_free
2857 				 * may have freed the last object and be
2858 				 * waiting to release the slab.
2859 				 */
2860 				list_del(&page->lru);
2861 				n->nr_partial--;
2862 				slab_unlock(page);
2863 				discard_slab(s, page);
2864 			} else {
2865 				list_move(&page->lru,
2866 				slabs_by_inuse + page->inuse);
2867 			}
2868 		}
2869 
2870 		/*
2871 		 * Rebuild the partial list with the slabs filled up most
2872 		 * first and the least used slabs at the end.
2873 		 */
2874 		for (i = objects - 1; i >= 0; i--)
2875 			list_splice(slabs_by_inuse + i, n->partial.prev);
2876 
2877 		spin_unlock_irqrestore(&n->list_lock, flags);
2878 	}
2879 
2880 	kfree(slabs_by_inuse);
2881 	return 0;
2882 }
2883 EXPORT_SYMBOL(kmem_cache_shrink);
2884 
2885 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2886 static int slab_mem_going_offline_callback(void *arg)
2887 {
2888 	struct kmem_cache *s;
2889 
2890 	down_read(&slub_lock);
2891 	list_for_each_entry(s, &slab_caches, list)
2892 		kmem_cache_shrink(s);
2893 	up_read(&slub_lock);
2894 
2895 	return 0;
2896 }
2897 
2898 static void slab_mem_offline_callback(void *arg)
2899 {
2900 	struct kmem_cache_node *n;
2901 	struct kmem_cache *s;
2902 	struct memory_notify *marg = arg;
2903 	int offline_node;
2904 
2905 	offline_node = marg->status_change_nid;
2906 
2907 	/*
2908 	 * If the node still has available memory. we need kmem_cache_node
2909 	 * for it yet.
2910 	 */
2911 	if (offline_node < 0)
2912 		return;
2913 
2914 	down_read(&slub_lock);
2915 	list_for_each_entry(s, &slab_caches, list) {
2916 		n = get_node(s, offline_node);
2917 		if (n) {
2918 			/*
2919 			 * if n->nr_slabs > 0, slabs still exist on the node
2920 			 * that is going down. We were unable to free them,
2921 			 * and offline_pages() function shoudn't call this
2922 			 * callback. So, we must fail.
2923 			 */
2924 			BUG_ON(slabs_node(s, offline_node));
2925 
2926 			s->node[offline_node] = NULL;
2927 			kmem_cache_free(kmalloc_caches, n);
2928 		}
2929 	}
2930 	up_read(&slub_lock);
2931 }
2932 
2933 static int slab_mem_going_online_callback(void *arg)
2934 {
2935 	struct kmem_cache_node *n;
2936 	struct kmem_cache *s;
2937 	struct memory_notify *marg = arg;
2938 	int nid = marg->status_change_nid;
2939 	int ret = 0;
2940 
2941 	/*
2942 	 * If the node's memory is already available, then kmem_cache_node is
2943 	 * already created. Nothing to do.
2944 	 */
2945 	if (nid < 0)
2946 		return 0;
2947 
2948 	/*
2949 	 * We are bringing a node online. No memory is available yet. We must
2950 	 * allocate a kmem_cache_node structure in order to bring the node
2951 	 * online.
2952 	 */
2953 	down_read(&slub_lock);
2954 	list_for_each_entry(s, &slab_caches, list) {
2955 		/*
2956 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2957 		 *      since memory is not yet available from the node that
2958 		 *      is brought up.
2959 		 */
2960 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2961 		if (!n) {
2962 			ret = -ENOMEM;
2963 			goto out;
2964 		}
2965 		init_kmem_cache_node(n, s);
2966 		s->node[nid] = n;
2967 	}
2968 out:
2969 	up_read(&slub_lock);
2970 	return ret;
2971 }
2972 
2973 static int slab_memory_callback(struct notifier_block *self,
2974 				unsigned long action, void *arg)
2975 {
2976 	int ret = 0;
2977 
2978 	switch (action) {
2979 	case MEM_GOING_ONLINE:
2980 		ret = slab_mem_going_online_callback(arg);
2981 		break;
2982 	case MEM_GOING_OFFLINE:
2983 		ret = slab_mem_going_offline_callback(arg);
2984 		break;
2985 	case MEM_OFFLINE:
2986 	case MEM_CANCEL_ONLINE:
2987 		slab_mem_offline_callback(arg);
2988 		break;
2989 	case MEM_ONLINE:
2990 	case MEM_CANCEL_OFFLINE:
2991 		break;
2992 	}
2993 	if (ret)
2994 		ret = notifier_from_errno(ret);
2995 	else
2996 		ret = NOTIFY_OK;
2997 	return ret;
2998 }
2999 
3000 #endif /* CONFIG_MEMORY_HOTPLUG */
3001 
3002 /********************************************************************
3003  *			Basic setup of slabs
3004  *******************************************************************/
3005 
3006 void __init kmem_cache_init(void)
3007 {
3008 	int i;
3009 	int caches = 0;
3010 
3011 	init_alloc_cpu();
3012 
3013 #ifdef CONFIG_NUMA
3014 	/*
3015 	 * Must first have the slab cache available for the allocations of the
3016 	 * struct kmem_cache_node's. There is special bootstrap code in
3017 	 * kmem_cache_open for slab_state == DOWN.
3018 	 */
3019 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3020 		sizeof(struct kmem_cache_node), GFP_KERNEL);
3021 	kmalloc_caches[0].refcount = -1;
3022 	caches++;
3023 
3024 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3025 #endif
3026 
3027 	/* Able to allocate the per node structures */
3028 	slab_state = PARTIAL;
3029 
3030 	/* Caches that are not of the two-to-the-power-of size */
3031 	if (KMALLOC_MIN_SIZE <= 64) {
3032 		create_kmalloc_cache(&kmalloc_caches[1],
3033 				"kmalloc-96", 96, GFP_KERNEL);
3034 		caches++;
3035 		create_kmalloc_cache(&kmalloc_caches[2],
3036 				"kmalloc-192", 192, GFP_KERNEL);
3037 		caches++;
3038 	}
3039 
3040 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3041 		create_kmalloc_cache(&kmalloc_caches[i],
3042 			"kmalloc", 1 << i, GFP_KERNEL);
3043 		caches++;
3044 	}
3045 
3046 
3047 	/*
3048 	 * Patch up the size_index table if we have strange large alignment
3049 	 * requirements for the kmalloc array. This is only the case for
3050 	 * MIPS it seems. The standard arches will not generate any code here.
3051 	 *
3052 	 * Largest permitted alignment is 256 bytes due to the way we
3053 	 * handle the index determination for the smaller caches.
3054 	 *
3055 	 * Make sure that nothing crazy happens if someone starts tinkering
3056 	 * around with ARCH_KMALLOC_MINALIGN
3057 	 */
3058 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3059 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3060 
3061 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3062 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3063 
3064 	if (KMALLOC_MIN_SIZE == 128) {
3065 		/*
3066 		 * The 192 byte sized cache is not used if the alignment
3067 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3068 		 * instead.
3069 		 */
3070 		for (i = 128 + 8; i <= 192; i += 8)
3071 			size_index[(i - 1) / 8] = 8;
3072 	}
3073 
3074 	slab_state = UP;
3075 
3076 	/* Provide the correct kmalloc names now that the caches are up */
3077 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3078 		kmalloc_caches[i]. name =
3079 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3080 
3081 #ifdef CONFIG_SMP
3082 	register_cpu_notifier(&slab_notifier);
3083 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3084 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3085 #else
3086 	kmem_size = sizeof(struct kmem_cache);
3087 #endif
3088 
3089 	printk(KERN_INFO
3090 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3091 		" CPUs=%d, Nodes=%d\n",
3092 		caches, cache_line_size(),
3093 		slub_min_order, slub_max_order, slub_min_objects,
3094 		nr_cpu_ids, nr_node_ids);
3095 }
3096 
3097 /*
3098  * Find a mergeable slab cache
3099  */
3100 static int slab_unmergeable(struct kmem_cache *s)
3101 {
3102 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3103 		return 1;
3104 
3105 	if (s->ctor)
3106 		return 1;
3107 
3108 	/*
3109 	 * We may have set a slab to be unmergeable during bootstrap.
3110 	 */
3111 	if (s->refcount < 0)
3112 		return 1;
3113 
3114 	return 0;
3115 }
3116 
3117 static struct kmem_cache *find_mergeable(size_t size,
3118 		size_t align, unsigned long flags, const char *name,
3119 		void (*ctor)(void *))
3120 {
3121 	struct kmem_cache *s;
3122 
3123 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3124 		return NULL;
3125 
3126 	if (ctor)
3127 		return NULL;
3128 
3129 	size = ALIGN(size, sizeof(void *));
3130 	align = calculate_alignment(flags, align, size);
3131 	size = ALIGN(size, align);
3132 	flags = kmem_cache_flags(size, flags, name, NULL);
3133 
3134 	list_for_each_entry(s, &slab_caches, list) {
3135 		if (slab_unmergeable(s))
3136 			continue;
3137 
3138 		if (size > s->size)
3139 			continue;
3140 
3141 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3142 				continue;
3143 		/*
3144 		 * Check if alignment is compatible.
3145 		 * Courtesy of Adrian Drzewiecki
3146 		 */
3147 		if ((s->size & ~(align - 1)) != s->size)
3148 			continue;
3149 
3150 		if (s->size - size >= sizeof(void *))
3151 			continue;
3152 
3153 		return s;
3154 	}
3155 	return NULL;
3156 }
3157 
3158 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3159 		size_t align, unsigned long flags, void (*ctor)(void *))
3160 {
3161 	struct kmem_cache *s;
3162 
3163 	down_write(&slub_lock);
3164 	s = find_mergeable(size, align, flags, name, ctor);
3165 	if (s) {
3166 		int cpu;
3167 
3168 		s->refcount++;
3169 		/*
3170 		 * Adjust the object sizes so that we clear
3171 		 * the complete object on kzalloc.
3172 		 */
3173 		s->objsize = max(s->objsize, (int)size);
3174 
3175 		/*
3176 		 * And then we need to update the object size in the
3177 		 * per cpu structures
3178 		 */
3179 		for_each_online_cpu(cpu)
3180 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3181 
3182 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3183 		up_write(&slub_lock);
3184 
3185 		if (sysfs_slab_alias(s, name)) {
3186 			down_write(&slub_lock);
3187 			s->refcount--;
3188 			up_write(&slub_lock);
3189 			goto err;
3190 		}
3191 		return s;
3192 	}
3193 
3194 	s = kmalloc(kmem_size, GFP_KERNEL);
3195 	if (s) {
3196 		if (kmem_cache_open(s, GFP_KERNEL, name,
3197 				size, align, flags, ctor)) {
3198 			list_add(&s->list, &slab_caches);
3199 			up_write(&slub_lock);
3200 			if (sysfs_slab_add(s)) {
3201 				down_write(&slub_lock);
3202 				list_del(&s->list);
3203 				up_write(&slub_lock);
3204 				kfree(s);
3205 				goto err;
3206 			}
3207 			return s;
3208 		}
3209 		kfree(s);
3210 	}
3211 	up_write(&slub_lock);
3212 
3213 err:
3214 	if (flags & SLAB_PANIC)
3215 		panic("Cannot create slabcache %s\n", name);
3216 	else
3217 		s = NULL;
3218 	return s;
3219 }
3220 EXPORT_SYMBOL(kmem_cache_create);
3221 
3222 #ifdef CONFIG_SMP
3223 /*
3224  * Use the cpu notifier to insure that the cpu slabs are flushed when
3225  * necessary.
3226  */
3227 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3228 		unsigned long action, void *hcpu)
3229 {
3230 	long cpu = (long)hcpu;
3231 	struct kmem_cache *s;
3232 	unsigned long flags;
3233 
3234 	switch (action) {
3235 	case CPU_UP_PREPARE:
3236 	case CPU_UP_PREPARE_FROZEN:
3237 		init_alloc_cpu_cpu(cpu);
3238 		down_read(&slub_lock);
3239 		list_for_each_entry(s, &slab_caches, list)
3240 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3241 							GFP_KERNEL);
3242 		up_read(&slub_lock);
3243 		break;
3244 
3245 	case CPU_UP_CANCELED:
3246 	case CPU_UP_CANCELED_FROZEN:
3247 	case CPU_DEAD:
3248 	case CPU_DEAD_FROZEN:
3249 		down_read(&slub_lock);
3250 		list_for_each_entry(s, &slab_caches, list) {
3251 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3252 
3253 			local_irq_save(flags);
3254 			__flush_cpu_slab(s, cpu);
3255 			local_irq_restore(flags);
3256 			free_kmem_cache_cpu(c, cpu);
3257 			s->cpu_slab[cpu] = NULL;
3258 		}
3259 		up_read(&slub_lock);
3260 		break;
3261 	default:
3262 		break;
3263 	}
3264 	return NOTIFY_OK;
3265 }
3266 
3267 static struct notifier_block __cpuinitdata slab_notifier = {
3268 	.notifier_call = slab_cpuup_callback
3269 };
3270 
3271 #endif
3272 
3273 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3274 {
3275 	struct kmem_cache *s;
3276 	void *ret;
3277 
3278 	if (unlikely(size > SLUB_MAX_SIZE))
3279 		return kmalloc_large(size, gfpflags);
3280 
3281 	s = get_slab(size, gfpflags);
3282 
3283 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3284 		return s;
3285 
3286 	ret = slab_alloc(s, gfpflags, -1, caller);
3287 
3288 	/* Honor the call site pointer we recieved. */
3289 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3290 
3291 	return ret;
3292 }
3293 
3294 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3295 					int node, unsigned long caller)
3296 {
3297 	struct kmem_cache *s;
3298 	void *ret;
3299 
3300 	if (unlikely(size > SLUB_MAX_SIZE))
3301 		return kmalloc_large_node(size, gfpflags, node);
3302 
3303 	s = get_slab(size, gfpflags);
3304 
3305 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3306 		return s;
3307 
3308 	ret = slab_alloc(s, gfpflags, node, caller);
3309 
3310 	/* Honor the call site pointer we recieved. */
3311 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3312 
3313 	return ret;
3314 }
3315 
3316 #ifdef CONFIG_SLUB_DEBUG
3317 static unsigned long count_partial(struct kmem_cache_node *n,
3318 					int (*get_count)(struct page *))
3319 {
3320 	unsigned long flags;
3321 	unsigned long x = 0;
3322 	struct page *page;
3323 
3324 	spin_lock_irqsave(&n->list_lock, flags);
3325 	list_for_each_entry(page, &n->partial, lru)
3326 		x += get_count(page);
3327 	spin_unlock_irqrestore(&n->list_lock, flags);
3328 	return x;
3329 }
3330 
3331 static int count_inuse(struct page *page)
3332 {
3333 	return page->inuse;
3334 }
3335 
3336 static int count_total(struct page *page)
3337 {
3338 	return page->objects;
3339 }
3340 
3341 static int count_free(struct page *page)
3342 {
3343 	return page->objects - page->inuse;
3344 }
3345 
3346 static int validate_slab(struct kmem_cache *s, struct page *page,
3347 						unsigned long *map)
3348 {
3349 	void *p;
3350 	void *addr = page_address(page);
3351 
3352 	if (!check_slab(s, page) ||
3353 			!on_freelist(s, page, NULL))
3354 		return 0;
3355 
3356 	/* Now we know that a valid freelist exists */
3357 	bitmap_zero(map, page->objects);
3358 
3359 	for_each_free_object(p, s, page->freelist) {
3360 		set_bit(slab_index(p, s, addr), map);
3361 		if (!check_object(s, page, p, 0))
3362 			return 0;
3363 	}
3364 
3365 	for_each_object(p, s, addr, page->objects)
3366 		if (!test_bit(slab_index(p, s, addr), map))
3367 			if (!check_object(s, page, p, 1))
3368 				return 0;
3369 	return 1;
3370 }
3371 
3372 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3373 						unsigned long *map)
3374 {
3375 	if (slab_trylock(page)) {
3376 		validate_slab(s, page, map);
3377 		slab_unlock(page);
3378 	} else
3379 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3380 			s->name, page);
3381 
3382 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3383 		if (!PageSlubDebug(page))
3384 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3385 				"on slab 0x%p\n", s->name, page);
3386 	} else {
3387 		if (PageSlubDebug(page))
3388 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3389 				"slab 0x%p\n", s->name, page);
3390 	}
3391 }
3392 
3393 static int validate_slab_node(struct kmem_cache *s,
3394 		struct kmem_cache_node *n, unsigned long *map)
3395 {
3396 	unsigned long count = 0;
3397 	struct page *page;
3398 	unsigned long flags;
3399 
3400 	spin_lock_irqsave(&n->list_lock, flags);
3401 
3402 	list_for_each_entry(page, &n->partial, lru) {
3403 		validate_slab_slab(s, page, map);
3404 		count++;
3405 	}
3406 	if (count != n->nr_partial)
3407 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3408 			"counter=%ld\n", s->name, count, n->nr_partial);
3409 
3410 	if (!(s->flags & SLAB_STORE_USER))
3411 		goto out;
3412 
3413 	list_for_each_entry(page, &n->full, lru) {
3414 		validate_slab_slab(s, page, map);
3415 		count++;
3416 	}
3417 	if (count != atomic_long_read(&n->nr_slabs))
3418 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3419 			"counter=%ld\n", s->name, count,
3420 			atomic_long_read(&n->nr_slabs));
3421 
3422 out:
3423 	spin_unlock_irqrestore(&n->list_lock, flags);
3424 	return count;
3425 }
3426 
3427 static long validate_slab_cache(struct kmem_cache *s)
3428 {
3429 	int node;
3430 	unsigned long count = 0;
3431 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3432 				sizeof(unsigned long), GFP_KERNEL);
3433 
3434 	if (!map)
3435 		return -ENOMEM;
3436 
3437 	flush_all(s);
3438 	for_each_node_state(node, N_NORMAL_MEMORY) {
3439 		struct kmem_cache_node *n = get_node(s, node);
3440 
3441 		count += validate_slab_node(s, n, map);
3442 	}
3443 	kfree(map);
3444 	return count;
3445 }
3446 
3447 #ifdef SLUB_RESILIENCY_TEST
3448 static void resiliency_test(void)
3449 {
3450 	u8 *p;
3451 
3452 	printk(KERN_ERR "SLUB resiliency testing\n");
3453 	printk(KERN_ERR "-----------------------\n");
3454 	printk(KERN_ERR "A. Corruption after allocation\n");
3455 
3456 	p = kzalloc(16, GFP_KERNEL);
3457 	p[16] = 0x12;
3458 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3459 			" 0x12->0x%p\n\n", p + 16);
3460 
3461 	validate_slab_cache(kmalloc_caches + 4);
3462 
3463 	/* Hmmm... The next two are dangerous */
3464 	p = kzalloc(32, GFP_KERNEL);
3465 	p[32 + sizeof(void *)] = 0x34;
3466 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3467 			" 0x34 -> -0x%p\n", p);
3468 	printk(KERN_ERR
3469 		"If allocated object is overwritten then not detectable\n\n");
3470 
3471 	validate_slab_cache(kmalloc_caches + 5);
3472 	p = kzalloc(64, GFP_KERNEL);
3473 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3474 	*p = 0x56;
3475 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3476 									p);
3477 	printk(KERN_ERR
3478 		"If allocated object is overwritten then not detectable\n\n");
3479 	validate_slab_cache(kmalloc_caches + 6);
3480 
3481 	printk(KERN_ERR "\nB. Corruption after free\n");
3482 	p = kzalloc(128, GFP_KERNEL);
3483 	kfree(p);
3484 	*p = 0x78;
3485 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3486 	validate_slab_cache(kmalloc_caches + 7);
3487 
3488 	p = kzalloc(256, GFP_KERNEL);
3489 	kfree(p);
3490 	p[50] = 0x9a;
3491 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3492 			p);
3493 	validate_slab_cache(kmalloc_caches + 8);
3494 
3495 	p = kzalloc(512, GFP_KERNEL);
3496 	kfree(p);
3497 	p[512] = 0xab;
3498 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3499 	validate_slab_cache(kmalloc_caches + 9);
3500 }
3501 #else
3502 static void resiliency_test(void) {};
3503 #endif
3504 
3505 /*
3506  * Generate lists of code addresses where slabcache objects are allocated
3507  * and freed.
3508  */
3509 
3510 struct location {
3511 	unsigned long count;
3512 	unsigned long addr;
3513 	long long sum_time;
3514 	long min_time;
3515 	long max_time;
3516 	long min_pid;
3517 	long max_pid;
3518 	DECLARE_BITMAP(cpus, NR_CPUS);
3519 	nodemask_t nodes;
3520 };
3521 
3522 struct loc_track {
3523 	unsigned long max;
3524 	unsigned long count;
3525 	struct location *loc;
3526 };
3527 
3528 static void free_loc_track(struct loc_track *t)
3529 {
3530 	if (t->max)
3531 		free_pages((unsigned long)t->loc,
3532 			get_order(sizeof(struct location) * t->max));
3533 }
3534 
3535 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3536 {
3537 	struct location *l;
3538 	int order;
3539 
3540 	order = get_order(sizeof(struct location) * max);
3541 
3542 	l = (void *)__get_free_pages(flags, order);
3543 	if (!l)
3544 		return 0;
3545 
3546 	if (t->count) {
3547 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3548 		free_loc_track(t);
3549 	}
3550 	t->max = max;
3551 	t->loc = l;
3552 	return 1;
3553 }
3554 
3555 static int add_location(struct loc_track *t, struct kmem_cache *s,
3556 				const struct track *track)
3557 {
3558 	long start, end, pos;
3559 	struct location *l;
3560 	unsigned long caddr;
3561 	unsigned long age = jiffies - track->when;
3562 
3563 	start = -1;
3564 	end = t->count;
3565 
3566 	for ( ; ; ) {
3567 		pos = start + (end - start + 1) / 2;
3568 
3569 		/*
3570 		 * There is nothing at "end". If we end up there
3571 		 * we need to add something to before end.
3572 		 */
3573 		if (pos == end)
3574 			break;
3575 
3576 		caddr = t->loc[pos].addr;
3577 		if (track->addr == caddr) {
3578 
3579 			l = &t->loc[pos];
3580 			l->count++;
3581 			if (track->when) {
3582 				l->sum_time += age;
3583 				if (age < l->min_time)
3584 					l->min_time = age;
3585 				if (age > l->max_time)
3586 					l->max_time = age;
3587 
3588 				if (track->pid < l->min_pid)
3589 					l->min_pid = track->pid;
3590 				if (track->pid > l->max_pid)
3591 					l->max_pid = track->pid;
3592 
3593 				cpumask_set_cpu(track->cpu,
3594 						to_cpumask(l->cpus));
3595 			}
3596 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3597 			return 1;
3598 		}
3599 
3600 		if (track->addr < caddr)
3601 			end = pos;
3602 		else
3603 			start = pos;
3604 	}
3605 
3606 	/*
3607 	 * Not found. Insert new tracking element.
3608 	 */
3609 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3610 		return 0;
3611 
3612 	l = t->loc + pos;
3613 	if (pos < t->count)
3614 		memmove(l + 1, l,
3615 			(t->count - pos) * sizeof(struct location));
3616 	t->count++;
3617 	l->count = 1;
3618 	l->addr = track->addr;
3619 	l->sum_time = age;
3620 	l->min_time = age;
3621 	l->max_time = age;
3622 	l->min_pid = track->pid;
3623 	l->max_pid = track->pid;
3624 	cpumask_clear(to_cpumask(l->cpus));
3625 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3626 	nodes_clear(l->nodes);
3627 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3628 	return 1;
3629 }
3630 
3631 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3632 		struct page *page, enum track_item alloc)
3633 {
3634 	void *addr = page_address(page);
3635 	DECLARE_BITMAP(map, page->objects);
3636 	void *p;
3637 
3638 	bitmap_zero(map, page->objects);
3639 	for_each_free_object(p, s, page->freelist)
3640 		set_bit(slab_index(p, s, addr), map);
3641 
3642 	for_each_object(p, s, addr, page->objects)
3643 		if (!test_bit(slab_index(p, s, addr), map))
3644 			add_location(t, s, get_track(s, p, alloc));
3645 }
3646 
3647 static int list_locations(struct kmem_cache *s, char *buf,
3648 					enum track_item alloc)
3649 {
3650 	int len = 0;
3651 	unsigned long i;
3652 	struct loc_track t = { 0, 0, NULL };
3653 	int node;
3654 
3655 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3656 			GFP_TEMPORARY))
3657 		return sprintf(buf, "Out of memory\n");
3658 
3659 	/* Push back cpu slabs */
3660 	flush_all(s);
3661 
3662 	for_each_node_state(node, N_NORMAL_MEMORY) {
3663 		struct kmem_cache_node *n = get_node(s, node);
3664 		unsigned long flags;
3665 		struct page *page;
3666 
3667 		if (!atomic_long_read(&n->nr_slabs))
3668 			continue;
3669 
3670 		spin_lock_irqsave(&n->list_lock, flags);
3671 		list_for_each_entry(page, &n->partial, lru)
3672 			process_slab(&t, s, page, alloc);
3673 		list_for_each_entry(page, &n->full, lru)
3674 			process_slab(&t, s, page, alloc);
3675 		spin_unlock_irqrestore(&n->list_lock, flags);
3676 	}
3677 
3678 	for (i = 0; i < t.count; i++) {
3679 		struct location *l = &t.loc[i];
3680 
3681 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3682 			break;
3683 		len += sprintf(buf + len, "%7ld ", l->count);
3684 
3685 		if (l->addr)
3686 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3687 		else
3688 			len += sprintf(buf + len, "<not-available>");
3689 
3690 		if (l->sum_time != l->min_time) {
3691 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3692 				l->min_time,
3693 				(long)div_u64(l->sum_time, l->count),
3694 				l->max_time);
3695 		} else
3696 			len += sprintf(buf + len, " age=%ld",
3697 				l->min_time);
3698 
3699 		if (l->min_pid != l->max_pid)
3700 			len += sprintf(buf + len, " pid=%ld-%ld",
3701 				l->min_pid, l->max_pid);
3702 		else
3703 			len += sprintf(buf + len, " pid=%ld",
3704 				l->min_pid);
3705 
3706 		if (num_online_cpus() > 1 &&
3707 				!cpumask_empty(to_cpumask(l->cpus)) &&
3708 				len < PAGE_SIZE - 60) {
3709 			len += sprintf(buf + len, " cpus=");
3710 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3711 						 to_cpumask(l->cpus));
3712 		}
3713 
3714 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3715 				len < PAGE_SIZE - 60) {
3716 			len += sprintf(buf + len, " nodes=");
3717 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3718 					l->nodes);
3719 		}
3720 
3721 		len += sprintf(buf + len, "\n");
3722 	}
3723 
3724 	free_loc_track(&t);
3725 	if (!t.count)
3726 		len += sprintf(buf, "No data\n");
3727 	return len;
3728 }
3729 
3730 enum slab_stat_type {
3731 	SL_ALL,			/* All slabs */
3732 	SL_PARTIAL,		/* Only partially allocated slabs */
3733 	SL_CPU,			/* Only slabs used for cpu caches */
3734 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3735 	SL_TOTAL		/* Determine object capacity not slabs */
3736 };
3737 
3738 #define SO_ALL		(1 << SL_ALL)
3739 #define SO_PARTIAL	(1 << SL_PARTIAL)
3740 #define SO_CPU		(1 << SL_CPU)
3741 #define SO_OBJECTS	(1 << SL_OBJECTS)
3742 #define SO_TOTAL	(1 << SL_TOTAL)
3743 
3744 static ssize_t show_slab_objects(struct kmem_cache *s,
3745 			    char *buf, unsigned long flags)
3746 {
3747 	unsigned long total = 0;
3748 	int node;
3749 	int x;
3750 	unsigned long *nodes;
3751 	unsigned long *per_cpu;
3752 
3753 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3754 	if (!nodes)
3755 		return -ENOMEM;
3756 	per_cpu = nodes + nr_node_ids;
3757 
3758 	if (flags & SO_CPU) {
3759 		int cpu;
3760 
3761 		for_each_possible_cpu(cpu) {
3762 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3763 
3764 			if (!c || c->node < 0)
3765 				continue;
3766 
3767 			if (c->page) {
3768 					if (flags & SO_TOTAL)
3769 						x = c->page->objects;
3770 				else if (flags & SO_OBJECTS)
3771 					x = c->page->inuse;
3772 				else
3773 					x = 1;
3774 
3775 				total += x;
3776 				nodes[c->node] += x;
3777 			}
3778 			per_cpu[c->node]++;
3779 		}
3780 	}
3781 
3782 	if (flags & SO_ALL) {
3783 		for_each_node_state(node, N_NORMAL_MEMORY) {
3784 			struct kmem_cache_node *n = get_node(s, node);
3785 
3786 		if (flags & SO_TOTAL)
3787 			x = atomic_long_read(&n->total_objects);
3788 		else if (flags & SO_OBJECTS)
3789 			x = atomic_long_read(&n->total_objects) -
3790 				count_partial(n, count_free);
3791 
3792 			else
3793 				x = atomic_long_read(&n->nr_slabs);
3794 			total += x;
3795 			nodes[node] += x;
3796 		}
3797 
3798 	} else if (flags & SO_PARTIAL) {
3799 		for_each_node_state(node, N_NORMAL_MEMORY) {
3800 			struct kmem_cache_node *n = get_node(s, node);
3801 
3802 			if (flags & SO_TOTAL)
3803 				x = count_partial(n, count_total);
3804 			else if (flags & SO_OBJECTS)
3805 				x = count_partial(n, count_inuse);
3806 			else
3807 				x = n->nr_partial;
3808 			total += x;
3809 			nodes[node] += x;
3810 		}
3811 	}
3812 	x = sprintf(buf, "%lu", total);
3813 #ifdef CONFIG_NUMA
3814 	for_each_node_state(node, N_NORMAL_MEMORY)
3815 		if (nodes[node])
3816 			x += sprintf(buf + x, " N%d=%lu",
3817 					node, nodes[node]);
3818 #endif
3819 	kfree(nodes);
3820 	return x + sprintf(buf + x, "\n");
3821 }
3822 
3823 static int any_slab_objects(struct kmem_cache *s)
3824 {
3825 	int node;
3826 
3827 	for_each_online_node(node) {
3828 		struct kmem_cache_node *n = get_node(s, node);
3829 
3830 		if (!n)
3831 			continue;
3832 
3833 		if (atomic_long_read(&n->total_objects))
3834 			return 1;
3835 	}
3836 	return 0;
3837 }
3838 
3839 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3840 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3841 
3842 struct slab_attribute {
3843 	struct attribute attr;
3844 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3845 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3846 };
3847 
3848 #define SLAB_ATTR_RO(_name) \
3849 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3850 
3851 #define SLAB_ATTR(_name) \
3852 	static struct slab_attribute _name##_attr =  \
3853 	__ATTR(_name, 0644, _name##_show, _name##_store)
3854 
3855 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3856 {
3857 	return sprintf(buf, "%d\n", s->size);
3858 }
3859 SLAB_ATTR_RO(slab_size);
3860 
3861 static ssize_t align_show(struct kmem_cache *s, char *buf)
3862 {
3863 	return sprintf(buf, "%d\n", s->align);
3864 }
3865 SLAB_ATTR_RO(align);
3866 
3867 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3868 {
3869 	return sprintf(buf, "%d\n", s->objsize);
3870 }
3871 SLAB_ATTR_RO(object_size);
3872 
3873 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3874 {
3875 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3876 }
3877 SLAB_ATTR_RO(objs_per_slab);
3878 
3879 static ssize_t order_store(struct kmem_cache *s,
3880 				const char *buf, size_t length)
3881 {
3882 	unsigned long order;
3883 	int err;
3884 
3885 	err = strict_strtoul(buf, 10, &order);
3886 	if (err)
3887 		return err;
3888 
3889 	if (order > slub_max_order || order < slub_min_order)
3890 		return -EINVAL;
3891 
3892 	calculate_sizes(s, order);
3893 	return length;
3894 }
3895 
3896 static ssize_t order_show(struct kmem_cache *s, char *buf)
3897 {
3898 	return sprintf(buf, "%d\n", oo_order(s->oo));
3899 }
3900 SLAB_ATTR(order);
3901 
3902 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3903 {
3904 	return sprintf(buf, "%lu\n", s->min_partial);
3905 }
3906 
3907 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3908 				 size_t length)
3909 {
3910 	unsigned long min;
3911 	int err;
3912 
3913 	err = strict_strtoul(buf, 10, &min);
3914 	if (err)
3915 		return err;
3916 
3917 	set_min_partial(s, min);
3918 	return length;
3919 }
3920 SLAB_ATTR(min_partial);
3921 
3922 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3923 {
3924 	if (s->ctor) {
3925 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3926 
3927 		return n + sprintf(buf + n, "\n");
3928 	}
3929 	return 0;
3930 }
3931 SLAB_ATTR_RO(ctor);
3932 
3933 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3934 {
3935 	return sprintf(buf, "%d\n", s->refcount - 1);
3936 }
3937 SLAB_ATTR_RO(aliases);
3938 
3939 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3940 {
3941 	return show_slab_objects(s, buf, SO_ALL);
3942 }
3943 SLAB_ATTR_RO(slabs);
3944 
3945 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3946 {
3947 	return show_slab_objects(s, buf, SO_PARTIAL);
3948 }
3949 SLAB_ATTR_RO(partial);
3950 
3951 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3952 {
3953 	return show_slab_objects(s, buf, SO_CPU);
3954 }
3955 SLAB_ATTR_RO(cpu_slabs);
3956 
3957 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3958 {
3959 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3960 }
3961 SLAB_ATTR_RO(objects);
3962 
3963 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3964 {
3965 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3966 }
3967 SLAB_ATTR_RO(objects_partial);
3968 
3969 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3970 {
3971 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3972 }
3973 SLAB_ATTR_RO(total_objects);
3974 
3975 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3976 {
3977 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3978 }
3979 
3980 static ssize_t sanity_checks_store(struct kmem_cache *s,
3981 				const char *buf, size_t length)
3982 {
3983 	s->flags &= ~SLAB_DEBUG_FREE;
3984 	if (buf[0] == '1')
3985 		s->flags |= SLAB_DEBUG_FREE;
3986 	return length;
3987 }
3988 SLAB_ATTR(sanity_checks);
3989 
3990 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3991 {
3992 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3993 }
3994 
3995 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3996 							size_t length)
3997 {
3998 	s->flags &= ~SLAB_TRACE;
3999 	if (buf[0] == '1')
4000 		s->flags |= SLAB_TRACE;
4001 	return length;
4002 }
4003 SLAB_ATTR(trace);
4004 
4005 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4006 {
4007 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4008 }
4009 
4010 static ssize_t reclaim_account_store(struct kmem_cache *s,
4011 				const char *buf, size_t length)
4012 {
4013 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4014 	if (buf[0] == '1')
4015 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4016 	return length;
4017 }
4018 SLAB_ATTR(reclaim_account);
4019 
4020 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4021 {
4022 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4023 }
4024 SLAB_ATTR_RO(hwcache_align);
4025 
4026 #ifdef CONFIG_ZONE_DMA
4027 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4028 {
4029 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4030 }
4031 SLAB_ATTR_RO(cache_dma);
4032 #endif
4033 
4034 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4035 {
4036 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4037 }
4038 SLAB_ATTR_RO(destroy_by_rcu);
4039 
4040 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4041 {
4042 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4043 }
4044 
4045 static ssize_t red_zone_store(struct kmem_cache *s,
4046 				const char *buf, size_t length)
4047 {
4048 	if (any_slab_objects(s))
4049 		return -EBUSY;
4050 
4051 	s->flags &= ~SLAB_RED_ZONE;
4052 	if (buf[0] == '1')
4053 		s->flags |= SLAB_RED_ZONE;
4054 	calculate_sizes(s, -1);
4055 	return length;
4056 }
4057 SLAB_ATTR(red_zone);
4058 
4059 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4060 {
4061 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4062 }
4063 
4064 static ssize_t poison_store(struct kmem_cache *s,
4065 				const char *buf, size_t length)
4066 {
4067 	if (any_slab_objects(s))
4068 		return -EBUSY;
4069 
4070 	s->flags &= ~SLAB_POISON;
4071 	if (buf[0] == '1')
4072 		s->flags |= SLAB_POISON;
4073 	calculate_sizes(s, -1);
4074 	return length;
4075 }
4076 SLAB_ATTR(poison);
4077 
4078 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4079 {
4080 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4081 }
4082 
4083 static ssize_t store_user_store(struct kmem_cache *s,
4084 				const char *buf, size_t length)
4085 {
4086 	if (any_slab_objects(s))
4087 		return -EBUSY;
4088 
4089 	s->flags &= ~SLAB_STORE_USER;
4090 	if (buf[0] == '1')
4091 		s->flags |= SLAB_STORE_USER;
4092 	calculate_sizes(s, -1);
4093 	return length;
4094 }
4095 SLAB_ATTR(store_user);
4096 
4097 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4098 {
4099 	return 0;
4100 }
4101 
4102 static ssize_t validate_store(struct kmem_cache *s,
4103 			const char *buf, size_t length)
4104 {
4105 	int ret = -EINVAL;
4106 
4107 	if (buf[0] == '1') {
4108 		ret = validate_slab_cache(s);
4109 		if (ret >= 0)
4110 			ret = length;
4111 	}
4112 	return ret;
4113 }
4114 SLAB_ATTR(validate);
4115 
4116 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4117 {
4118 	return 0;
4119 }
4120 
4121 static ssize_t shrink_store(struct kmem_cache *s,
4122 			const char *buf, size_t length)
4123 {
4124 	if (buf[0] == '1') {
4125 		int rc = kmem_cache_shrink(s);
4126 
4127 		if (rc)
4128 			return rc;
4129 	} else
4130 		return -EINVAL;
4131 	return length;
4132 }
4133 SLAB_ATTR(shrink);
4134 
4135 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4136 {
4137 	if (!(s->flags & SLAB_STORE_USER))
4138 		return -ENOSYS;
4139 	return list_locations(s, buf, TRACK_ALLOC);
4140 }
4141 SLAB_ATTR_RO(alloc_calls);
4142 
4143 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4144 {
4145 	if (!(s->flags & SLAB_STORE_USER))
4146 		return -ENOSYS;
4147 	return list_locations(s, buf, TRACK_FREE);
4148 }
4149 SLAB_ATTR_RO(free_calls);
4150 
4151 #ifdef CONFIG_NUMA
4152 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4153 {
4154 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4155 }
4156 
4157 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4158 				const char *buf, size_t length)
4159 {
4160 	unsigned long ratio;
4161 	int err;
4162 
4163 	err = strict_strtoul(buf, 10, &ratio);
4164 	if (err)
4165 		return err;
4166 
4167 	if (ratio <= 100)
4168 		s->remote_node_defrag_ratio = ratio * 10;
4169 
4170 	return length;
4171 }
4172 SLAB_ATTR(remote_node_defrag_ratio);
4173 #endif
4174 
4175 #ifdef CONFIG_SLUB_STATS
4176 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4177 {
4178 	unsigned long sum  = 0;
4179 	int cpu;
4180 	int len;
4181 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4182 
4183 	if (!data)
4184 		return -ENOMEM;
4185 
4186 	for_each_online_cpu(cpu) {
4187 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4188 
4189 		data[cpu] = x;
4190 		sum += x;
4191 	}
4192 
4193 	len = sprintf(buf, "%lu", sum);
4194 
4195 #ifdef CONFIG_SMP
4196 	for_each_online_cpu(cpu) {
4197 		if (data[cpu] && len < PAGE_SIZE - 20)
4198 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4199 	}
4200 #endif
4201 	kfree(data);
4202 	return len + sprintf(buf + len, "\n");
4203 }
4204 
4205 #define STAT_ATTR(si, text) 					\
4206 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4207 {								\
4208 	return show_stat(s, buf, si);				\
4209 }								\
4210 SLAB_ATTR_RO(text);						\
4211 
4212 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4213 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4214 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4215 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4216 STAT_ATTR(FREE_FROZEN, free_frozen);
4217 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4218 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4219 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4220 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4221 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4222 STAT_ATTR(FREE_SLAB, free_slab);
4223 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4224 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4225 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4226 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4227 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4228 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4229 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4230 #endif
4231 
4232 static struct attribute *slab_attrs[] = {
4233 	&slab_size_attr.attr,
4234 	&object_size_attr.attr,
4235 	&objs_per_slab_attr.attr,
4236 	&order_attr.attr,
4237 	&min_partial_attr.attr,
4238 	&objects_attr.attr,
4239 	&objects_partial_attr.attr,
4240 	&total_objects_attr.attr,
4241 	&slabs_attr.attr,
4242 	&partial_attr.attr,
4243 	&cpu_slabs_attr.attr,
4244 	&ctor_attr.attr,
4245 	&aliases_attr.attr,
4246 	&align_attr.attr,
4247 	&sanity_checks_attr.attr,
4248 	&trace_attr.attr,
4249 	&hwcache_align_attr.attr,
4250 	&reclaim_account_attr.attr,
4251 	&destroy_by_rcu_attr.attr,
4252 	&red_zone_attr.attr,
4253 	&poison_attr.attr,
4254 	&store_user_attr.attr,
4255 	&validate_attr.attr,
4256 	&shrink_attr.attr,
4257 	&alloc_calls_attr.attr,
4258 	&free_calls_attr.attr,
4259 #ifdef CONFIG_ZONE_DMA
4260 	&cache_dma_attr.attr,
4261 #endif
4262 #ifdef CONFIG_NUMA
4263 	&remote_node_defrag_ratio_attr.attr,
4264 #endif
4265 #ifdef CONFIG_SLUB_STATS
4266 	&alloc_fastpath_attr.attr,
4267 	&alloc_slowpath_attr.attr,
4268 	&free_fastpath_attr.attr,
4269 	&free_slowpath_attr.attr,
4270 	&free_frozen_attr.attr,
4271 	&free_add_partial_attr.attr,
4272 	&free_remove_partial_attr.attr,
4273 	&alloc_from_partial_attr.attr,
4274 	&alloc_slab_attr.attr,
4275 	&alloc_refill_attr.attr,
4276 	&free_slab_attr.attr,
4277 	&cpuslab_flush_attr.attr,
4278 	&deactivate_full_attr.attr,
4279 	&deactivate_empty_attr.attr,
4280 	&deactivate_to_head_attr.attr,
4281 	&deactivate_to_tail_attr.attr,
4282 	&deactivate_remote_frees_attr.attr,
4283 	&order_fallback_attr.attr,
4284 #endif
4285 	NULL
4286 };
4287 
4288 static struct attribute_group slab_attr_group = {
4289 	.attrs = slab_attrs,
4290 };
4291 
4292 static ssize_t slab_attr_show(struct kobject *kobj,
4293 				struct attribute *attr,
4294 				char *buf)
4295 {
4296 	struct slab_attribute *attribute;
4297 	struct kmem_cache *s;
4298 	int err;
4299 
4300 	attribute = to_slab_attr(attr);
4301 	s = to_slab(kobj);
4302 
4303 	if (!attribute->show)
4304 		return -EIO;
4305 
4306 	err = attribute->show(s, buf);
4307 
4308 	return err;
4309 }
4310 
4311 static ssize_t slab_attr_store(struct kobject *kobj,
4312 				struct attribute *attr,
4313 				const char *buf, size_t len)
4314 {
4315 	struct slab_attribute *attribute;
4316 	struct kmem_cache *s;
4317 	int err;
4318 
4319 	attribute = to_slab_attr(attr);
4320 	s = to_slab(kobj);
4321 
4322 	if (!attribute->store)
4323 		return -EIO;
4324 
4325 	err = attribute->store(s, buf, len);
4326 
4327 	return err;
4328 }
4329 
4330 static void kmem_cache_release(struct kobject *kobj)
4331 {
4332 	struct kmem_cache *s = to_slab(kobj);
4333 
4334 	kfree(s);
4335 }
4336 
4337 static struct sysfs_ops slab_sysfs_ops = {
4338 	.show = slab_attr_show,
4339 	.store = slab_attr_store,
4340 };
4341 
4342 static struct kobj_type slab_ktype = {
4343 	.sysfs_ops = &slab_sysfs_ops,
4344 	.release = kmem_cache_release
4345 };
4346 
4347 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4348 {
4349 	struct kobj_type *ktype = get_ktype(kobj);
4350 
4351 	if (ktype == &slab_ktype)
4352 		return 1;
4353 	return 0;
4354 }
4355 
4356 static struct kset_uevent_ops slab_uevent_ops = {
4357 	.filter = uevent_filter,
4358 };
4359 
4360 static struct kset *slab_kset;
4361 
4362 #define ID_STR_LENGTH 64
4363 
4364 /* Create a unique string id for a slab cache:
4365  *
4366  * Format	:[flags-]size
4367  */
4368 static char *create_unique_id(struct kmem_cache *s)
4369 {
4370 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4371 	char *p = name;
4372 
4373 	BUG_ON(!name);
4374 
4375 	*p++ = ':';
4376 	/*
4377 	 * First flags affecting slabcache operations. We will only
4378 	 * get here for aliasable slabs so we do not need to support
4379 	 * too many flags. The flags here must cover all flags that
4380 	 * are matched during merging to guarantee that the id is
4381 	 * unique.
4382 	 */
4383 	if (s->flags & SLAB_CACHE_DMA)
4384 		*p++ = 'd';
4385 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4386 		*p++ = 'a';
4387 	if (s->flags & SLAB_DEBUG_FREE)
4388 		*p++ = 'F';
4389 	if (p != name + 1)
4390 		*p++ = '-';
4391 	p += sprintf(p, "%07d", s->size);
4392 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4393 	return name;
4394 }
4395 
4396 static int sysfs_slab_add(struct kmem_cache *s)
4397 {
4398 	int err;
4399 	const char *name;
4400 	int unmergeable;
4401 
4402 	if (slab_state < SYSFS)
4403 		/* Defer until later */
4404 		return 0;
4405 
4406 	unmergeable = slab_unmergeable(s);
4407 	if (unmergeable) {
4408 		/*
4409 		 * Slabcache can never be merged so we can use the name proper.
4410 		 * This is typically the case for debug situations. In that
4411 		 * case we can catch duplicate names easily.
4412 		 */
4413 		sysfs_remove_link(&slab_kset->kobj, s->name);
4414 		name = s->name;
4415 	} else {
4416 		/*
4417 		 * Create a unique name for the slab as a target
4418 		 * for the symlinks.
4419 		 */
4420 		name = create_unique_id(s);
4421 	}
4422 
4423 	s->kobj.kset = slab_kset;
4424 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4425 	if (err) {
4426 		kobject_put(&s->kobj);
4427 		return err;
4428 	}
4429 
4430 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4431 	if (err)
4432 		return err;
4433 	kobject_uevent(&s->kobj, KOBJ_ADD);
4434 	if (!unmergeable) {
4435 		/* Setup first alias */
4436 		sysfs_slab_alias(s, s->name);
4437 		kfree(name);
4438 	}
4439 	return 0;
4440 }
4441 
4442 static void sysfs_slab_remove(struct kmem_cache *s)
4443 {
4444 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4445 	kobject_del(&s->kobj);
4446 	kobject_put(&s->kobj);
4447 }
4448 
4449 /*
4450  * Need to buffer aliases during bootup until sysfs becomes
4451  * available lest we lose that information.
4452  */
4453 struct saved_alias {
4454 	struct kmem_cache *s;
4455 	const char *name;
4456 	struct saved_alias *next;
4457 };
4458 
4459 static struct saved_alias *alias_list;
4460 
4461 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4462 {
4463 	struct saved_alias *al;
4464 
4465 	if (slab_state == SYSFS) {
4466 		/*
4467 		 * If we have a leftover link then remove it.
4468 		 */
4469 		sysfs_remove_link(&slab_kset->kobj, name);
4470 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4471 	}
4472 
4473 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4474 	if (!al)
4475 		return -ENOMEM;
4476 
4477 	al->s = s;
4478 	al->name = name;
4479 	al->next = alias_list;
4480 	alias_list = al;
4481 	return 0;
4482 }
4483 
4484 static int __init slab_sysfs_init(void)
4485 {
4486 	struct kmem_cache *s;
4487 	int err;
4488 
4489 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4490 	if (!slab_kset) {
4491 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4492 		return -ENOSYS;
4493 	}
4494 
4495 	slab_state = SYSFS;
4496 
4497 	list_for_each_entry(s, &slab_caches, list) {
4498 		err = sysfs_slab_add(s);
4499 		if (err)
4500 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4501 						" to sysfs\n", s->name);
4502 	}
4503 
4504 	while (alias_list) {
4505 		struct saved_alias *al = alias_list;
4506 
4507 		alias_list = alias_list->next;
4508 		err = sysfs_slab_alias(al->s, al->name);
4509 		if (err)
4510 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4511 					" %s to sysfs\n", s->name);
4512 		kfree(al);
4513 	}
4514 
4515 	resiliency_test();
4516 	return 0;
4517 }
4518 
4519 __initcall(slab_sysfs_init);
4520 #endif
4521 
4522 /*
4523  * The /proc/slabinfo ABI
4524  */
4525 #ifdef CONFIG_SLABINFO
4526 static void print_slabinfo_header(struct seq_file *m)
4527 {
4528 	seq_puts(m, "slabinfo - version: 2.1\n");
4529 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4530 		 "<objperslab> <pagesperslab>");
4531 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4532 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4533 	seq_putc(m, '\n');
4534 }
4535 
4536 static void *s_start(struct seq_file *m, loff_t *pos)
4537 {
4538 	loff_t n = *pos;
4539 
4540 	down_read(&slub_lock);
4541 	if (!n)
4542 		print_slabinfo_header(m);
4543 
4544 	return seq_list_start(&slab_caches, *pos);
4545 }
4546 
4547 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4548 {
4549 	return seq_list_next(p, &slab_caches, pos);
4550 }
4551 
4552 static void s_stop(struct seq_file *m, void *p)
4553 {
4554 	up_read(&slub_lock);
4555 }
4556 
4557 static int s_show(struct seq_file *m, void *p)
4558 {
4559 	unsigned long nr_partials = 0;
4560 	unsigned long nr_slabs = 0;
4561 	unsigned long nr_inuse = 0;
4562 	unsigned long nr_objs = 0;
4563 	unsigned long nr_free = 0;
4564 	struct kmem_cache *s;
4565 	int node;
4566 
4567 	s = list_entry(p, struct kmem_cache, list);
4568 
4569 	for_each_online_node(node) {
4570 		struct kmem_cache_node *n = get_node(s, node);
4571 
4572 		if (!n)
4573 			continue;
4574 
4575 		nr_partials += n->nr_partial;
4576 		nr_slabs += atomic_long_read(&n->nr_slabs);
4577 		nr_objs += atomic_long_read(&n->total_objects);
4578 		nr_free += count_partial(n, count_free);
4579 	}
4580 
4581 	nr_inuse = nr_objs - nr_free;
4582 
4583 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4584 		   nr_objs, s->size, oo_objects(s->oo),
4585 		   (1 << oo_order(s->oo)));
4586 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4587 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4588 		   0UL);
4589 	seq_putc(m, '\n');
4590 	return 0;
4591 }
4592 
4593 static const struct seq_operations slabinfo_op = {
4594 	.start = s_start,
4595 	.next = s_next,
4596 	.stop = s_stop,
4597 	.show = s_show,
4598 };
4599 
4600 static int slabinfo_open(struct inode *inode, struct file *file)
4601 {
4602 	return seq_open(file, &slabinfo_op);
4603 }
4604 
4605 static const struct file_operations proc_slabinfo_operations = {
4606 	.open		= slabinfo_open,
4607 	.read		= seq_read,
4608 	.llseek		= seq_lseek,
4609 	.release	= seq_release,
4610 };
4611 
4612 static int __init slab_proc_init(void)
4613 {
4614 	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4615 	return 0;
4616 }
4617 module_init(slab_proc_init);
4618 #endif /* CONFIG_SLABINFO */
4619