xref: /linux/mm/slub.c (revision e27ecdd94d81e5bc3d1f68591701db5adb342f0d)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks and only
6  * uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/kmemleak.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31 
32 /*
33  * Lock order:
34  *   1. slab_lock(page)
35  *   2. slab->list_lock
36  *
37  *   The slab_lock protects operations on the object of a particular
38  *   slab and its metadata in the page struct. If the slab lock
39  *   has been taken then no allocations nor frees can be performed
40  *   on the objects in the slab nor can the slab be added or removed
41  *   from the partial or full lists since this would mean modifying
42  *   the page_struct of the slab.
43  *
44  *   The list_lock protects the partial and full list on each node and
45  *   the partial slab counter. If taken then no new slabs may be added or
46  *   removed from the lists nor make the number of partial slabs be modified.
47  *   (Note that the total number of slabs is an atomic value that may be
48  *   modified without taking the list lock).
49  *
50  *   The list_lock is a centralized lock and thus we avoid taking it as
51  *   much as possible. As long as SLUB does not have to handle partial
52  *   slabs, operations can continue without any centralized lock. F.e.
53  *   allocating a long series of objects that fill up slabs does not require
54  *   the list lock.
55  *
56  *   The lock order is sometimes inverted when we are trying to get a slab
57  *   off a list. We take the list_lock and then look for a page on the list
58  *   to use. While we do that objects in the slabs may be freed. We can
59  *   only operate on the slab if we have also taken the slab_lock. So we use
60  *   a slab_trylock() on the slab. If trylock was successful then no frees
61  *   can occur anymore and we can use the slab for allocations etc. If the
62  *   slab_trylock() does not succeed then frees are in progress in the slab and
63  *   we must stay away from it for a while since we may cause a bouncing
64  *   cacheline if we try to acquire the lock. So go onto the next slab.
65  *   If all pages are busy then we may allocate a new slab instead of reusing
66  *   a partial slab. A new slab has noone operating on it and thus there is
67  *   no danger of cacheline contention.
68  *
69  *   Interrupts are disabled during allocation and deallocation in order to
70  *   make the slab allocator safe to use in the context of an irq. In addition
71  *   interrupts are disabled to ensure that the processor does not change
72  *   while handling per_cpu slabs, due to kernel preemption.
73  *
74  * SLUB assigns one slab for allocation to each processor.
75  * Allocations only occur from these slabs called cpu slabs.
76  *
77  * Slabs with free elements are kept on a partial list and during regular
78  * operations no list for full slabs is used. If an object in a full slab is
79  * freed then the slab will show up again on the partial lists.
80  * We track full slabs for debugging purposes though because otherwise we
81  * cannot scan all objects.
82  *
83  * Slabs are freed when they become empty. Teardown and setup is
84  * minimal so we rely on the page allocators per cpu caches for
85  * fast frees and allocs.
86  *
87  * Overloading of page flags that are otherwise used for LRU management.
88  *
89  * PageActive 		The slab is frozen and exempt from list processing.
90  * 			This means that the slab is dedicated to a purpose
91  * 			such as satisfying allocations for a specific
92  * 			processor. Objects may be freed in the slab while
93  * 			it is frozen but slab_free will then skip the usual
94  * 			list operations. It is up to the processor holding
95  * 			the slab to integrate the slab into the slab lists
96  * 			when the slab is no longer needed.
97  *
98  * 			One use of this flag is to mark slabs that are
99  * 			used for allocations. Then such a slab becomes a cpu
100  * 			slab. The cpu slab may be equipped with an additional
101  * 			freelist that allows lockless access to
102  * 			free objects in addition to the regular freelist
103  * 			that requires the slab lock.
104  *
105  * PageError		Slab requires special handling due to debug
106  * 			options set. This moves	slab handling out of
107  * 			the fast path and disables lockless freelists.
108  */
109 
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115 
116 /*
117  * Issues still to be resolved:
118  *
119  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120  *
121  * - Variable sizing of the per node arrays
122  */
123 
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126 
127 /*
128  * Mininum number of partial slabs. These will be left on the partial
129  * lists even if they are empty. kmem_cache_shrink may reclaim them.
130  */
131 #define MIN_PARTIAL 5
132 
133 /*
134  * Maximum number of desirable partial slabs.
135  * The existence of more partial slabs makes kmem_cache_shrink
136  * sort the partial list by the number of objects in the.
137  */
138 #define MAX_PARTIAL 10
139 
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 				SLAB_POISON | SLAB_STORE_USER)
142 
143 /*
144  * Set of flags that will prevent slab merging
145  */
146 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
147 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
148 
149 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 		SLAB_CACHE_DMA)
151 
152 #ifndef ARCH_KMALLOC_MINALIGN
153 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
154 #endif
155 
156 #ifndef ARCH_SLAB_MINALIGN
157 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
158 #endif
159 
160 #define OO_SHIFT	16
161 #define OO_MASK		((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE	65535 /* since page.objects is u16 */
163 
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON		0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
167 
168 static int kmem_size = sizeof(struct kmem_cache);
169 
170 #ifdef CONFIG_SMP
171 static struct notifier_block slab_notifier;
172 #endif
173 
174 static enum {
175 	DOWN,		/* No slab functionality available */
176 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
177 	UP,		/* Everything works but does not show up in sysfs */
178 	SYSFS		/* Sysfs up */
179 } slab_state = DOWN;
180 
181 /*
182  * The slab allocator is initialized with interrupts disabled. Therefore, make
183  * sure early boot allocations don't accidentally enable interrupts.
184  */
185 static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
186 
187 /* A list of all slab caches on the system */
188 static DECLARE_RWSEM(slub_lock);
189 static LIST_HEAD(slab_caches);
190 
191 /*
192  * Tracking user of a slab.
193  */
194 struct track {
195 	unsigned long addr;	/* Called from address */
196 	int cpu;		/* Was running on cpu */
197 	int pid;		/* Pid context */
198 	unsigned long when;	/* When did the operation occur */
199 };
200 
201 enum track_item { TRACK_ALLOC, TRACK_FREE };
202 
203 #ifdef CONFIG_SLUB_DEBUG
204 static int sysfs_slab_add(struct kmem_cache *);
205 static int sysfs_slab_alias(struct kmem_cache *, const char *);
206 static void sysfs_slab_remove(struct kmem_cache *);
207 
208 #else
209 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 							{ return 0; }
212 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 {
214 	kfree(s);
215 }
216 
217 #endif
218 
219 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
220 {
221 #ifdef CONFIG_SLUB_STATS
222 	c->stat[si]++;
223 #endif
224 }
225 
226 /********************************************************************
227  * 			Core slab cache functions
228  *******************************************************************/
229 
230 int slab_is_available(void)
231 {
232 	return slab_state >= UP;
233 }
234 
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 #ifdef CONFIG_NUMA
238 	return s->node[node];
239 #else
240 	return &s->local_node;
241 #endif
242 }
243 
244 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
245 {
246 #ifdef CONFIG_SMP
247 	return s->cpu_slab[cpu];
248 #else
249 	return &s->cpu_slab;
250 #endif
251 }
252 
253 /* Verify that a pointer has an address that is valid within a slab page */
254 static inline int check_valid_pointer(struct kmem_cache *s,
255 				struct page *page, const void *object)
256 {
257 	void *base;
258 
259 	if (!object)
260 		return 1;
261 
262 	base = page_address(page);
263 	if (object < base || object >= base + page->objects * s->size ||
264 		(object - base) % s->size) {
265 		return 0;
266 	}
267 
268 	return 1;
269 }
270 
271 /*
272  * Slow version of get and set free pointer.
273  *
274  * This version requires touching the cache lines of kmem_cache which
275  * we avoid to do in the fast alloc free paths. There we obtain the offset
276  * from the page struct.
277  */
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 	return *(void **)(object + s->offset);
281 }
282 
283 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
284 {
285 	*(void **)(object + s->offset) = fp;
286 }
287 
288 /* Loop over all objects in a slab */
289 #define for_each_object(__p, __s, __addr, __objects) \
290 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
291 			__p += (__s)->size)
292 
293 /* Scan freelist */
294 #define for_each_free_object(__p, __s, __free) \
295 	for (__p = (__free); __p; __p = get_freepointer((__s), __p))
296 
297 /* Determine object index from a given position */
298 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
299 {
300 	return (p - addr) / s->size;
301 }
302 
303 static inline struct kmem_cache_order_objects oo_make(int order,
304 						unsigned long size)
305 {
306 	struct kmem_cache_order_objects x = {
307 		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
308 	};
309 
310 	return x;
311 }
312 
313 static inline int oo_order(struct kmem_cache_order_objects x)
314 {
315 	return x.x >> OO_SHIFT;
316 }
317 
318 static inline int oo_objects(struct kmem_cache_order_objects x)
319 {
320 	return x.x & OO_MASK;
321 }
322 
323 #ifdef CONFIG_SLUB_DEBUG
324 /*
325  * Debug settings:
326  */
327 #ifdef CONFIG_SLUB_DEBUG_ON
328 static int slub_debug = DEBUG_DEFAULT_FLAGS;
329 #else
330 static int slub_debug;
331 #endif
332 
333 static char *slub_debug_slabs;
334 
335 /*
336  * Object debugging
337  */
338 static void print_section(char *text, u8 *addr, unsigned int length)
339 {
340 	int i, offset;
341 	int newline = 1;
342 	char ascii[17];
343 
344 	ascii[16] = 0;
345 
346 	for (i = 0; i < length; i++) {
347 		if (newline) {
348 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
349 			newline = 0;
350 		}
351 		printk(KERN_CONT " %02x", addr[i]);
352 		offset = i % 16;
353 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
354 		if (offset == 15) {
355 			printk(KERN_CONT " %s\n", ascii);
356 			newline = 1;
357 		}
358 	}
359 	if (!newline) {
360 		i %= 16;
361 		while (i < 16) {
362 			printk(KERN_CONT "   ");
363 			ascii[i] = ' ';
364 			i++;
365 		}
366 		printk(KERN_CONT " %s\n", ascii);
367 	}
368 }
369 
370 static struct track *get_track(struct kmem_cache *s, void *object,
371 	enum track_item alloc)
372 {
373 	struct track *p;
374 
375 	if (s->offset)
376 		p = object + s->offset + sizeof(void *);
377 	else
378 		p = object + s->inuse;
379 
380 	return p + alloc;
381 }
382 
383 static void set_track(struct kmem_cache *s, void *object,
384 			enum track_item alloc, unsigned long addr)
385 {
386 	struct track *p = get_track(s, object, alloc);
387 
388 	if (addr) {
389 		p->addr = addr;
390 		p->cpu = smp_processor_id();
391 		p->pid = current->pid;
392 		p->when = jiffies;
393 	} else
394 		memset(p, 0, sizeof(struct track));
395 }
396 
397 static void init_tracking(struct kmem_cache *s, void *object)
398 {
399 	if (!(s->flags & SLAB_STORE_USER))
400 		return;
401 
402 	set_track(s, object, TRACK_FREE, 0UL);
403 	set_track(s, object, TRACK_ALLOC, 0UL);
404 }
405 
406 static void print_track(const char *s, struct track *t)
407 {
408 	if (!t->addr)
409 		return;
410 
411 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
412 		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
413 }
414 
415 static void print_tracking(struct kmem_cache *s, void *object)
416 {
417 	if (!(s->flags & SLAB_STORE_USER))
418 		return;
419 
420 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
421 	print_track("Freed", get_track(s, object, TRACK_FREE));
422 }
423 
424 static void print_page_info(struct page *page)
425 {
426 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
427 		page, page->objects, page->inuse, page->freelist, page->flags);
428 
429 }
430 
431 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
432 {
433 	va_list args;
434 	char buf[100];
435 
436 	va_start(args, fmt);
437 	vsnprintf(buf, sizeof(buf), fmt, args);
438 	va_end(args);
439 	printk(KERN_ERR "========================================"
440 			"=====================================\n");
441 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
442 	printk(KERN_ERR "----------------------------------------"
443 			"-------------------------------------\n\n");
444 }
445 
446 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
447 {
448 	va_list args;
449 	char buf[100];
450 
451 	va_start(args, fmt);
452 	vsnprintf(buf, sizeof(buf), fmt, args);
453 	va_end(args);
454 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
455 }
456 
457 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
458 {
459 	unsigned int off;	/* Offset of last byte */
460 	u8 *addr = page_address(page);
461 
462 	print_tracking(s, p);
463 
464 	print_page_info(page);
465 
466 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
467 			p, p - addr, get_freepointer(s, p));
468 
469 	if (p > addr + 16)
470 		print_section("Bytes b4", p - 16, 16);
471 
472 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
473 
474 	if (s->flags & SLAB_RED_ZONE)
475 		print_section("Redzone", p + s->objsize,
476 			s->inuse - s->objsize);
477 
478 	if (s->offset)
479 		off = s->offset + sizeof(void *);
480 	else
481 		off = s->inuse;
482 
483 	if (s->flags & SLAB_STORE_USER)
484 		off += 2 * sizeof(struct track);
485 
486 	if (off != s->size)
487 		/* Beginning of the filler is the free pointer */
488 		print_section("Padding", p + off, s->size - off);
489 
490 	dump_stack();
491 }
492 
493 static void object_err(struct kmem_cache *s, struct page *page,
494 			u8 *object, char *reason)
495 {
496 	slab_bug(s, "%s", reason);
497 	print_trailer(s, page, object);
498 }
499 
500 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
501 {
502 	va_list args;
503 	char buf[100];
504 
505 	va_start(args, fmt);
506 	vsnprintf(buf, sizeof(buf), fmt, args);
507 	va_end(args);
508 	slab_bug(s, "%s", buf);
509 	print_page_info(page);
510 	dump_stack();
511 }
512 
513 static void init_object(struct kmem_cache *s, void *object, int active)
514 {
515 	u8 *p = object;
516 
517 	if (s->flags & __OBJECT_POISON) {
518 		memset(p, POISON_FREE, s->objsize - 1);
519 		p[s->objsize - 1] = POISON_END;
520 	}
521 
522 	if (s->flags & SLAB_RED_ZONE)
523 		memset(p + s->objsize,
524 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
525 			s->inuse - s->objsize);
526 }
527 
528 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
529 {
530 	while (bytes) {
531 		if (*start != (u8)value)
532 			return start;
533 		start++;
534 		bytes--;
535 	}
536 	return NULL;
537 }
538 
539 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
540 						void *from, void *to)
541 {
542 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
543 	memset(from, data, to - from);
544 }
545 
546 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
547 			u8 *object, char *what,
548 			u8 *start, unsigned int value, unsigned int bytes)
549 {
550 	u8 *fault;
551 	u8 *end;
552 
553 	fault = check_bytes(start, value, bytes);
554 	if (!fault)
555 		return 1;
556 
557 	end = start + bytes;
558 	while (end > fault && end[-1] == value)
559 		end--;
560 
561 	slab_bug(s, "%s overwritten", what);
562 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
563 					fault, end - 1, fault[0], value);
564 	print_trailer(s, page, object);
565 
566 	restore_bytes(s, what, value, fault, end);
567 	return 0;
568 }
569 
570 /*
571  * Object layout:
572  *
573  * object address
574  * 	Bytes of the object to be managed.
575  * 	If the freepointer may overlay the object then the free
576  * 	pointer is the first word of the object.
577  *
578  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
579  * 	0xa5 (POISON_END)
580  *
581  * object + s->objsize
582  * 	Padding to reach word boundary. This is also used for Redzoning.
583  * 	Padding is extended by another word if Redzoning is enabled and
584  * 	objsize == inuse.
585  *
586  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
587  * 	0xcc (RED_ACTIVE) for objects in use.
588  *
589  * object + s->inuse
590  * 	Meta data starts here.
591  *
592  * 	A. Free pointer (if we cannot overwrite object on free)
593  * 	B. Tracking data for SLAB_STORE_USER
594  * 	C. Padding to reach required alignment boundary or at mininum
595  * 		one word if debugging is on to be able to detect writes
596  * 		before the word boundary.
597  *
598  *	Padding is done using 0x5a (POISON_INUSE)
599  *
600  * object + s->size
601  * 	Nothing is used beyond s->size.
602  *
603  * If slabcaches are merged then the objsize and inuse boundaries are mostly
604  * ignored. And therefore no slab options that rely on these boundaries
605  * may be used with merged slabcaches.
606  */
607 
608 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
609 {
610 	unsigned long off = s->inuse;	/* The end of info */
611 
612 	if (s->offset)
613 		/* Freepointer is placed after the object. */
614 		off += sizeof(void *);
615 
616 	if (s->flags & SLAB_STORE_USER)
617 		/* We also have user information there */
618 		off += 2 * sizeof(struct track);
619 
620 	if (s->size == off)
621 		return 1;
622 
623 	return check_bytes_and_report(s, page, p, "Object padding",
624 				p + off, POISON_INUSE, s->size - off);
625 }
626 
627 /* Check the pad bytes at the end of a slab page */
628 static int slab_pad_check(struct kmem_cache *s, struct page *page)
629 {
630 	u8 *start;
631 	u8 *fault;
632 	u8 *end;
633 	int length;
634 	int remainder;
635 
636 	if (!(s->flags & SLAB_POISON))
637 		return 1;
638 
639 	start = page_address(page);
640 	length = (PAGE_SIZE << compound_order(page));
641 	end = start + length;
642 	remainder = length % s->size;
643 	if (!remainder)
644 		return 1;
645 
646 	fault = check_bytes(end - remainder, POISON_INUSE, remainder);
647 	if (!fault)
648 		return 1;
649 	while (end > fault && end[-1] == POISON_INUSE)
650 		end--;
651 
652 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
653 	print_section("Padding", end - remainder, remainder);
654 
655 	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
656 	return 0;
657 }
658 
659 static int check_object(struct kmem_cache *s, struct page *page,
660 					void *object, int active)
661 {
662 	u8 *p = object;
663 	u8 *endobject = object + s->objsize;
664 
665 	if (s->flags & SLAB_RED_ZONE) {
666 		unsigned int red =
667 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
668 
669 		if (!check_bytes_and_report(s, page, object, "Redzone",
670 			endobject, red, s->inuse - s->objsize))
671 			return 0;
672 	} else {
673 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
674 			check_bytes_and_report(s, page, p, "Alignment padding",
675 				endobject, POISON_INUSE, s->inuse - s->objsize);
676 		}
677 	}
678 
679 	if (s->flags & SLAB_POISON) {
680 		if (!active && (s->flags & __OBJECT_POISON) &&
681 			(!check_bytes_and_report(s, page, p, "Poison", p,
682 					POISON_FREE, s->objsize - 1) ||
683 			 !check_bytes_and_report(s, page, p, "Poison",
684 				p + s->objsize - 1, POISON_END, 1)))
685 			return 0;
686 		/*
687 		 * check_pad_bytes cleans up on its own.
688 		 */
689 		check_pad_bytes(s, page, p);
690 	}
691 
692 	if (!s->offset && active)
693 		/*
694 		 * Object and freepointer overlap. Cannot check
695 		 * freepointer while object is allocated.
696 		 */
697 		return 1;
698 
699 	/* Check free pointer validity */
700 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
701 		object_err(s, page, p, "Freepointer corrupt");
702 		/*
703 		 * No choice but to zap it and thus lose the remainder
704 		 * of the free objects in this slab. May cause
705 		 * another error because the object count is now wrong.
706 		 */
707 		set_freepointer(s, p, NULL);
708 		return 0;
709 	}
710 	return 1;
711 }
712 
713 static int check_slab(struct kmem_cache *s, struct page *page)
714 {
715 	int maxobj;
716 
717 	VM_BUG_ON(!irqs_disabled());
718 
719 	if (!PageSlab(page)) {
720 		slab_err(s, page, "Not a valid slab page");
721 		return 0;
722 	}
723 
724 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
725 	if (page->objects > maxobj) {
726 		slab_err(s, page, "objects %u > max %u",
727 			s->name, page->objects, maxobj);
728 		return 0;
729 	}
730 	if (page->inuse > page->objects) {
731 		slab_err(s, page, "inuse %u > max %u",
732 			s->name, page->inuse, page->objects);
733 		return 0;
734 	}
735 	/* Slab_pad_check fixes things up after itself */
736 	slab_pad_check(s, page);
737 	return 1;
738 }
739 
740 /*
741  * Determine if a certain object on a page is on the freelist. Must hold the
742  * slab lock to guarantee that the chains are in a consistent state.
743  */
744 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
745 {
746 	int nr = 0;
747 	void *fp = page->freelist;
748 	void *object = NULL;
749 	unsigned long max_objects;
750 
751 	while (fp && nr <= page->objects) {
752 		if (fp == search)
753 			return 1;
754 		if (!check_valid_pointer(s, page, fp)) {
755 			if (object) {
756 				object_err(s, page, object,
757 					"Freechain corrupt");
758 				set_freepointer(s, object, NULL);
759 				break;
760 			} else {
761 				slab_err(s, page, "Freepointer corrupt");
762 				page->freelist = NULL;
763 				page->inuse = page->objects;
764 				slab_fix(s, "Freelist cleared");
765 				return 0;
766 			}
767 			break;
768 		}
769 		object = fp;
770 		fp = get_freepointer(s, object);
771 		nr++;
772 	}
773 
774 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
775 	if (max_objects > MAX_OBJS_PER_PAGE)
776 		max_objects = MAX_OBJS_PER_PAGE;
777 
778 	if (page->objects != max_objects) {
779 		slab_err(s, page, "Wrong number of objects. Found %d but "
780 			"should be %d", page->objects, max_objects);
781 		page->objects = max_objects;
782 		slab_fix(s, "Number of objects adjusted.");
783 	}
784 	if (page->inuse != page->objects - nr) {
785 		slab_err(s, page, "Wrong object count. Counter is %d but "
786 			"counted were %d", page->inuse, page->objects - nr);
787 		page->inuse = page->objects - nr;
788 		slab_fix(s, "Object count adjusted.");
789 	}
790 	return search == NULL;
791 }
792 
793 static void trace(struct kmem_cache *s, struct page *page, void *object,
794 								int alloc)
795 {
796 	if (s->flags & SLAB_TRACE) {
797 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
798 			s->name,
799 			alloc ? "alloc" : "free",
800 			object, page->inuse,
801 			page->freelist);
802 
803 		if (!alloc)
804 			print_section("Object", (void *)object, s->objsize);
805 
806 		dump_stack();
807 	}
808 }
809 
810 /*
811  * Tracking of fully allocated slabs for debugging purposes.
812  */
813 static void add_full(struct kmem_cache_node *n, struct page *page)
814 {
815 	spin_lock(&n->list_lock);
816 	list_add(&page->lru, &n->full);
817 	spin_unlock(&n->list_lock);
818 }
819 
820 static void remove_full(struct kmem_cache *s, struct page *page)
821 {
822 	struct kmem_cache_node *n;
823 
824 	if (!(s->flags & SLAB_STORE_USER))
825 		return;
826 
827 	n = get_node(s, page_to_nid(page));
828 
829 	spin_lock(&n->list_lock);
830 	list_del(&page->lru);
831 	spin_unlock(&n->list_lock);
832 }
833 
834 /* Tracking of the number of slabs for debugging purposes */
835 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
836 {
837 	struct kmem_cache_node *n = get_node(s, node);
838 
839 	return atomic_long_read(&n->nr_slabs);
840 }
841 
842 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
843 {
844 	struct kmem_cache_node *n = get_node(s, node);
845 
846 	/*
847 	 * May be called early in order to allocate a slab for the
848 	 * kmem_cache_node structure. Solve the chicken-egg
849 	 * dilemma by deferring the increment of the count during
850 	 * bootstrap (see early_kmem_cache_node_alloc).
851 	 */
852 	if (!NUMA_BUILD || n) {
853 		atomic_long_inc(&n->nr_slabs);
854 		atomic_long_add(objects, &n->total_objects);
855 	}
856 }
857 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
858 {
859 	struct kmem_cache_node *n = get_node(s, node);
860 
861 	atomic_long_dec(&n->nr_slabs);
862 	atomic_long_sub(objects, &n->total_objects);
863 }
864 
865 /* Object debug checks for alloc/free paths */
866 static void setup_object_debug(struct kmem_cache *s, struct page *page,
867 								void *object)
868 {
869 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
870 		return;
871 
872 	init_object(s, object, 0);
873 	init_tracking(s, object);
874 }
875 
876 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
877 					void *object, unsigned long addr)
878 {
879 	if (!check_slab(s, page))
880 		goto bad;
881 
882 	if (!on_freelist(s, page, object)) {
883 		object_err(s, page, object, "Object already allocated");
884 		goto bad;
885 	}
886 
887 	if (!check_valid_pointer(s, page, object)) {
888 		object_err(s, page, object, "Freelist Pointer check fails");
889 		goto bad;
890 	}
891 
892 	if (!check_object(s, page, object, 0))
893 		goto bad;
894 
895 	/* Success perform special debug activities for allocs */
896 	if (s->flags & SLAB_STORE_USER)
897 		set_track(s, object, TRACK_ALLOC, addr);
898 	trace(s, page, object, 1);
899 	init_object(s, object, 1);
900 	return 1;
901 
902 bad:
903 	if (PageSlab(page)) {
904 		/*
905 		 * If this is a slab page then lets do the best we can
906 		 * to avoid issues in the future. Marking all objects
907 		 * as used avoids touching the remaining objects.
908 		 */
909 		slab_fix(s, "Marking all objects used");
910 		page->inuse = page->objects;
911 		page->freelist = NULL;
912 	}
913 	return 0;
914 }
915 
916 static int free_debug_processing(struct kmem_cache *s, struct page *page,
917 					void *object, unsigned long addr)
918 {
919 	if (!check_slab(s, page))
920 		goto fail;
921 
922 	if (!check_valid_pointer(s, page, object)) {
923 		slab_err(s, page, "Invalid object pointer 0x%p", object);
924 		goto fail;
925 	}
926 
927 	if (on_freelist(s, page, object)) {
928 		object_err(s, page, object, "Object already free");
929 		goto fail;
930 	}
931 
932 	if (!check_object(s, page, object, 1))
933 		return 0;
934 
935 	if (unlikely(s != page->slab)) {
936 		if (!PageSlab(page)) {
937 			slab_err(s, page, "Attempt to free object(0x%p) "
938 				"outside of slab", object);
939 		} else if (!page->slab) {
940 			printk(KERN_ERR
941 				"SLUB <none>: no slab for object 0x%p.\n",
942 						object);
943 			dump_stack();
944 		} else
945 			object_err(s, page, object,
946 					"page slab pointer corrupt.");
947 		goto fail;
948 	}
949 
950 	/* Special debug activities for freeing objects */
951 	if (!PageSlubFrozen(page) && !page->freelist)
952 		remove_full(s, page);
953 	if (s->flags & SLAB_STORE_USER)
954 		set_track(s, object, TRACK_FREE, addr);
955 	trace(s, page, object, 0);
956 	init_object(s, object, 0);
957 	return 1;
958 
959 fail:
960 	slab_fix(s, "Object at 0x%p not freed", object);
961 	return 0;
962 }
963 
964 static int __init setup_slub_debug(char *str)
965 {
966 	slub_debug = DEBUG_DEFAULT_FLAGS;
967 	if (*str++ != '=' || !*str)
968 		/*
969 		 * No options specified. Switch on full debugging.
970 		 */
971 		goto out;
972 
973 	if (*str == ',')
974 		/*
975 		 * No options but restriction on slabs. This means full
976 		 * debugging for slabs matching a pattern.
977 		 */
978 		goto check_slabs;
979 
980 	slub_debug = 0;
981 	if (*str == '-')
982 		/*
983 		 * Switch off all debugging measures.
984 		 */
985 		goto out;
986 
987 	/*
988 	 * Determine which debug features should be switched on
989 	 */
990 	for (; *str && *str != ','; str++) {
991 		switch (tolower(*str)) {
992 		case 'f':
993 			slub_debug |= SLAB_DEBUG_FREE;
994 			break;
995 		case 'z':
996 			slub_debug |= SLAB_RED_ZONE;
997 			break;
998 		case 'p':
999 			slub_debug |= SLAB_POISON;
1000 			break;
1001 		case 'u':
1002 			slub_debug |= SLAB_STORE_USER;
1003 			break;
1004 		case 't':
1005 			slub_debug |= SLAB_TRACE;
1006 			break;
1007 		default:
1008 			printk(KERN_ERR "slub_debug option '%c' "
1009 				"unknown. skipped\n", *str);
1010 		}
1011 	}
1012 
1013 check_slabs:
1014 	if (*str == ',')
1015 		slub_debug_slabs = str + 1;
1016 out:
1017 	return 1;
1018 }
1019 
1020 __setup("slub_debug", setup_slub_debug);
1021 
1022 static unsigned long kmem_cache_flags(unsigned long objsize,
1023 	unsigned long flags, const char *name,
1024 	void (*ctor)(void *))
1025 {
1026 	/*
1027 	 * Enable debugging if selected on the kernel commandline.
1028 	 */
1029 	if (slub_debug && (!slub_debug_slabs ||
1030 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1031 			flags |= slub_debug;
1032 
1033 	return flags;
1034 }
1035 #else
1036 static inline void setup_object_debug(struct kmem_cache *s,
1037 			struct page *page, void *object) {}
1038 
1039 static inline int alloc_debug_processing(struct kmem_cache *s,
1040 	struct page *page, void *object, unsigned long addr) { return 0; }
1041 
1042 static inline int free_debug_processing(struct kmem_cache *s,
1043 	struct page *page, void *object, unsigned long addr) { return 0; }
1044 
1045 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1046 			{ return 1; }
1047 static inline int check_object(struct kmem_cache *s, struct page *page,
1048 			void *object, int active) { return 1; }
1049 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1050 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1051 	unsigned long flags, const char *name,
1052 	void (*ctor)(void *))
1053 {
1054 	return flags;
1055 }
1056 #define slub_debug 0
1057 
1058 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1059 							{ return 0; }
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1061 							int objects) {}
1062 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 							int objects) {}
1064 #endif
1065 
1066 /*
1067  * Slab allocation and freeing
1068  */
1069 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 					struct kmem_cache_order_objects oo)
1071 {
1072 	int order = oo_order(oo);
1073 
1074 	if (node == -1)
1075 		return alloc_pages(flags, order);
1076 	else
1077 		return alloc_pages_node(node, flags, order);
1078 }
1079 
1080 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1081 {
1082 	struct page *page;
1083 	struct kmem_cache_order_objects oo = s->oo;
1084 
1085 	flags |= s->allocflags;
1086 
1087 	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1088 									oo);
1089 	if (unlikely(!page)) {
1090 		oo = s->min;
1091 		/*
1092 		 * Allocation may have failed due to fragmentation.
1093 		 * Try a lower order alloc if possible
1094 		 */
1095 		page = alloc_slab_page(flags, node, oo);
1096 		if (!page)
1097 			return NULL;
1098 
1099 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1100 	}
1101 	page->objects = oo_objects(oo);
1102 	mod_zone_page_state(page_zone(page),
1103 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1104 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1105 		1 << oo_order(oo));
1106 
1107 	return page;
1108 }
1109 
1110 static void setup_object(struct kmem_cache *s, struct page *page,
1111 				void *object)
1112 {
1113 	setup_object_debug(s, page, object);
1114 	if (unlikely(s->ctor))
1115 		s->ctor(object);
1116 }
1117 
1118 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1119 {
1120 	struct page *page;
1121 	void *start;
1122 	void *last;
1123 	void *p;
1124 
1125 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1126 
1127 	page = allocate_slab(s,
1128 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1129 	if (!page)
1130 		goto out;
1131 
1132 	inc_slabs_node(s, page_to_nid(page), page->objects);
1133 	page->slab = s;
1134 	page->flags |= 1 << PG_slab;
1135 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1136 			SLAB_STORE_USER | SLAB_TRACE))
1137 		__SetPageSlubDebug(page);
1138 
1139 	start = page_address(page);
1140 
1141 	if (unlikely(s->flags & SLAB_POISON))
1142 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1143 
1144 	last = start;
1145 	for_each_object(p, s, start, page->objects) {
1146 		setup_object(s, page, last);
1147 		set_freepointer(s, last, p);
1148 		last = p;
1149 	}
1150 	setup_object(s, page, last);
1151 	set_freepointer(s, last, NULL);
1152 
1153 	page->freelist = start;
1154 	page->inuse = 0;
1155 out:
1156 	return page;
1157 }
1158 
1159 static void __free_slab(struct kmem_cache *s, struct page *page)
1160 {
1161 	int order = compound_order(page);
1162 	int pages = 1 << order;
1163 
1164 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1165 		void *p;
1166 
1167 		slab_pad_check(s, page);
1168 		for_each_object(p, s, page_address(page),
1169 						page->objects)
1170 			check_object(s, page, p, 0);
1171 		__ClearPageSlubDebug(page);
1172 	}
1173 
1174 	mod_zone_page_state(page_zone(page),
1175 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1176 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1177 		-pages);
1178 
1179 	__ClearPageSlab(page);
1180 	reset_page_mapcount(page);
1181 	if (current->reclaim_state)
1182 		current->reclaim_state->reclaimed_slab += pages;
1183 	__free_pages(page, order);
1184 }
1185 
1186 static void rcu_free_slab(struct rcu_head *h)
1187 {
1188 	struct page *page;
1189 
1190 	page = container_of((struct list_head *)h, struct page, lru);
1191 	__free_slab(page->slab, page);
1192 }
1193 
1194 static void free_slab(struct kmem_cache *s, struct page *page)
1195 {
1196 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1197 		/*
1198 		 * RCU free overloads the RCU head over the LRU
1199 		 */
1200 		struct rcu_head *head = (void *)&page->lru;
1201 
1202 		call_rcu(head, rcu_free_slab);
1203 	} else
1204 		__free_slab(s, page);
1205 }
1206 
1207 static void discard_slab(struct kmem_cache *s, struct page *page)
1208 {
1209 	dec_slabs_node(s, page_to_nid(page), page->objects);
1210 	free_slab(s, page);
1211 }
1212 
1213 /*
1214  * Per slab locking using the pagelock
1215  */
1216 static __always_inline void slab_lock(struct page *page)
1217 {
1218 	bit_spin_lock(PG_locked, &page->flags);
1219 }
1220 
1221 static __always_inline void slab_unlock(struct page *page)
1222 {
1223 	__bit_spin_unlock(PG_locked, &page->flags);
1224 }
1225 
1226 static __always_inline int slab_trylock(struct page *page)
1227 {
1228 	int rc = 1;
1229 
1230 	rc = bit_spin_trylock(PG_locked, &page->flags);
1231 	return rc;
1232 }
1233 
1234 /*
1235  * Management of partially allocated slabs
1236  */
1237 static void add_partial(struct kmem_cache_node *n,
1238 				struct page *page, int tail)
1239 {
1240 	spin_lock(&n->list_lock);
1241 	n->nr_partial++;
1242 	if (tail)
1243 		list_add_tail(&page->lru, &n->partial);
1244 	else
1245 		list_add(&page->lru, &n->partial);
1246 	spin_unlock(&n->list_lock);
1247 }
1248 
1249 static void remove_partial(struct kmem_cache *s, struct page *page)
1250 {
1251 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1252 
1253 	spin_lock(&n->list_lock);
1254 	list_del(&page->lru);
1255 	n->nr_partial--;
1256 	spin_unlock(&n->list_lock);
1257 }
1258 
1259 /*
1260  * Lock slab and remove from the partial list.
1261  *
1262  * Must hold list_lock.
1263  */
1264 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1265 							struct page *page)
1266 {
1267 	if (slab_trylock(page)) {
1268 		list_del(&page->lru);
1269 		n->nr_partial--;
1270 		__SetPageSlubFrozen(page);
1271 		return 1;
1272 	}
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Try to allocate a partial slab from a specific node.
1278  */
1279 static struct page *get_partial_node(struct kmem_cache_node *n)
1280 {
1281 	struct page *page;
1282 
1283 	/*
1284 	 * Racy check. If we mistakenly see no partial slabs then we
1285 	 * just allocate an empty slab. If we mistakenly try to get a
1286 	 * partial slab and there is none available then get_partials()
1287 	 * will return NULL.
1288 	 */
1289 	if (!n || !n->nr_partial)
1290 		return NULL;
1291 
1292 	spin_lock(&n->list_lock);
1293 	list_for_each_entry(page, &n->partial, lru)
1294 		if (lock_and_freeze_slab(n, page))
1295 			goto out;
1296 	page = NULL;
1297 out:
1298 	spin_unlock(&n->list_lock);
1299 	return page;
1300 }
1301 
1302 /*
1303  * Get a page from somewhere. Search in increasing NUMA distances.
1304  */
1305 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1306 {
1307 #ifdef CONFIG_NUMA
1308 	struct zonelist *zonelist;
1309 	struct zoneref *z;
1310 	struct zone *zone;
1311 	enum zone_type high_zoneidx = gfp_zone(flags);
1312 	struct page *page;
1313 
1314 	/*
1315 	 * The defrag ratio allows a configuration of the tradeoffs between
1316 	 * inter node defragmentation and node local allocations. A lower
1317 	 * defrag_ratio increases the tendency to do local allocations
1318 	 * instead of attempting to obtain partial slabs from other nodes.
1319 	 *
1320 	 * If the defrag_ratio is set to 0 then kmalloc() always
1321 	 * returns node local objects. If the ratio is higher then kmalloc()
1322 	 * may return off node objects because partial slabs are obtained
1323 	 * from other nodes and filled up.
1324 	 *
1325 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1326 	 * defrag_ratio = 1000) then every (well almost) allocation will
1327 	 * first attempt to defrag slab caches on other nodes. This means
1328 	 * scanning over all nodes to look for partial slabs which may be
1329 	 * expensive if we do it every time we are trying to find a slab
1330 	 * with available objects.
1331 	 */
1332 	if (!s->remote_node_defrag_ratio ||
1333 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1334 		return NULL;
1335 
1336 	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1337 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1338 		struct kmem_cache_node *n;
1339 
1340 		n = get_node(s, zone_to_nid(zone));
1341 
1342 		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1343 				n->nr_partial > s->min_partial) {
1344 			page = get_partial_node(n);
1345 			if (page)
1346 				return page;
1347 		}
1348 	}
1349 #endif
1350 	return NULL;
1351 }
1352 
1353 /*
1354  * Get a partial page, lock it and return it.
1355  */
1356 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1357 {
1358 	struct page *page;
1359 	int searchnode = (node == -1) ? numa_node_id() : node;
1360 
1361 	page = get_partial_node(get_node(s, searchnode));
1362 	if (page || (flags & __GFP_THISNODE))
1363 		return page;
1364 
1365 	return get_any_partial(s, flags);
1366 }
1367 
1368 /*
1369  * Move a page back to the lists.
1370  *
1371  * Must be called with the slab lock held.
1372  *
1373  * On exit the slab lock will have been dropped.
1374  */
1375 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1376 {
1377 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1378 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1379 
1380 	__ClearPageSlubFrozen(page);
1381 	if (page->inuse) {
1382 
1383 		if (page->freelist) {
1384 			add_partial(n, page, tail);
1385 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1386 		} else {
1387 			stat(c, DEACTIVATE_FULL);
1388 			if (SLABDEBUG && PageSlubDebug(page) &&
1389 						(s->flags & SLAB_STORE_USER))
1390 				add_full(n, page);
1391 		}
1392 		slab_unlock(page);
1393 	} else {
1394 		stat(c, DEACTIVATE_EMPTY);
1395 		if (n->nr_partial < s->min_partial) {
1396 			/*
1397 			 * Adding an empty slab to the partial slabs in order
1398 			 * to avoid page allocator overhead. This slab needs
1399 			 * to come after the other slabs with objects in
1400 			 * so that the others get filled first. That way the
1401 			 * size of the partial list stays small.
1402 			 *
1403 			 * kmem_cache_shrink can reclaim any empty slabs from
1404 			 * the partial list.
1405 			 */
1406 			add_partial(n, page, 1);
1407 			slab_unlock(page);
1408 		} else {
1409 			slab_unlock(page);
1410 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1411 			discard_slab(s, page);
1412 		}
1413 	}
1414 }
1415 
1416 /*
1417  * Remove the cpu slab
1418  */
1419 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1420 {
1421 	struct page *page = c->page;
1422 	int tail = 1;
1423 
1424 	if (page->freelist)
1425 		stat(c, DEACTIVATE_REMOTE_FREES);
1426 	/*
1427 	 * Merge cpu freelist into slab freelist. Typically we get here
1428 	 * because both freelists are empty. So this is unlikely
1429 	 * to occur.
1430 	 */
1431 	while (unlikely(c->freelist)) {
1432 		void **object;
1433 
1434 		tail = 0;	/* Hot objects. Put the slab first */
1435 
1436 		/* Retrieve object from cpu_freelist */
1437 		object = c->freelist;
1438 		c->freelist = c->freelist[c->offset];
1439 
1440 		/* And put onto the regular freelist */
1441 		object[c->offset] = page->freelist;
1442 		page->freelist = object;
1443 		page->inuse--;
1444 	}
1445 	c->page = NULL;
1446 	unfreeze_slab(s, page, tail);
1447 }
1448 
1449 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 {
1451 	stat(c, CPUSLAB_FLUSH);
1452 	slab_lock(c->page);
1453 	deactivate_slab(s, c);
1454 }
1455 
1456 /*
1457  * Flush cpu slab.
1458  *
1459  * Called from IPI handler with interrupts disabled.
1460  */
1461 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1462 {
1463 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1464 
1465 	if (likely(c && c->page))
1466 		flush_slab(s, c);
1467 }
1468 
1469 static void flush_cpu_slab(void *d)
1470 {
1471 	struct kmem_cache *s = d;
1472 
1473 	__flush_cpu_slab(s, smp_processor_id());
1474 }
1475 
1476 static void flush_all(struct kmem_cache *s)
1477 {
1478 	on_each_cpu(flush_cpu_slab, s, 1);
1479 }
1480 
1481 /*
1482  * Check if the objects in a per cpu structure fit numa
1483  * locality expectations.
1484  */
1485 static inline int node_match(struct kmem_cache_cpu *c, int node)
1486 {
1487 #ifdef CONFIG_NUMA
1488 	if (node != -1 && c->node != node)
1489 		return 0;
1490 #endif
1491 	return 1;
1492 }
1493 
1494 /*
1495  * Slow path. The lockless freelist is empty or we need to perform
1496  * debugging duties.
1497  *
1498  * Interrupts are disabled.
1499  *
1500  * Processing is still very fast if new objects have been freed to the
1501  * regular freelist. In that case we simply take over the regular freelist
1502  * as the lockless freelist and zap the regular freelist.
1503  *
1504  * If that is not working then we fall back to the partial lists. We take the
1505  * first element of the freelist as the object to allocate now and move the
1506  * rest of the freelist to the lockless freelist.
1507  *
1508  * And if we were unable to get a new slab from the partial slab lists then
1509  * we need to allocate a new slab. This is the slowest path since it involves
1510  * a call to the page allocator and the setup of a new slab.
1511  */
1512 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1513 			  unsigned long addr, struct kmem_cache_cpu *c)
1514 {
1515 	void **object;
1516 	struct page *new;
1517 
1518 	/* We handle __GFP_ZERO in the caller */
1519 	gfpflags &= ~__GFP_ZERO;
1520 
1521 	if (!c->page)
1522 		goto new_slab;
1523 
1524 	slab_lock(c->page);
1525 	if (unlikely(!node_match(c, node)))
1526 		goto another_slab;
1527 
1528 	stat(c, ALLOC_REFILL);
1529 
1530 load_freelist:
1531 	object = c->page->freelist;
1532 	if (unlikely(!object))
1533 		goto another_slab;
1534 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1535 		goto debug;
1536 
1537 	c->freelist = object[c->offset];
1538 	c->page->inuse = c->page->objects;
1539 	c->page->freelist = NULL;
1540 	c->node = page_to_nid(c->page);
1541 unlock_out:
1542 	slab_unlock(c->page);
1543 	stat(c, ALLOC_SLOWPATH);
1544 	return object;
1545 
1546 another_slab:
1547 	deactivate_slab(s, c);
1548 
1549 new_slab:
1550 	new = get_partial(s, gfpflags, node);
1551 	if (new) {
1552 		c->page = new;
1553 		stat(c, ALLOC_FROM_PARTIAL);
1554 		goto load_freelist;
1555 	}
1556 
1557 	if (gfpflags & __GFP_WAIT)
1558 		local_irq_enable();
1559 
1560 	new = new_slab(s, gfpflags, node);
1561 
1562 	if (gfpflags & __GFP_WAIT)
1563 		local_irq_disable();
1564 
1565 	if (new) {
1566 		c = get_cpu_slab(s, smp_processor_id());
1567 		stat(c, ALLOC_SLAB);
1568 		if (c->page)
1569 			flush_slab(s, c);
1570 		slab_lock(new);
1571 		__SetPageSlubFrozen(new);
1572 		c->page = new;
1573 		goto load_freelist;
1574 	}
1575 	return NULL;
1576 debug:
1577 	if (!alloc_debug_processing(s, c->page, object, addr))
1578 		goto another_slab;
1579 
1580 	c->page->inuse++;
1581 	c->page->freelist = object[c->offset];
1582 	c->node = -1;
1583 	goto unlock_out;
1584 }
1585 
1586 /*
1587  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1588  * have the fastpath folded into their functions. So no function call
1589  * overhead for requests that can be satisfied on the fastpath.
1590  *
1591  * The fastpath works by first checking if the lockless freelist can be used.
1592  * If not then __slab_alloc is called for slow processing.
1593  *
1594  * Otherwise we can simply pick the next object from the lockless free list.
1595  */
1596 static __always_inline void *slab_alloc(struct kmem_cache *s,
1597 		gfp_t gfpflags, int node, unsigned long addr)
1598 {
1599 	void **object;
1600 	struct kmem_cache_cpu *c;
1601 	unsigned long flags;
1602 	unsigned int objsize;
1603 
1604 	gfpflags &= slab_gfp_mask;
1605 
1606 	lockdep_trace_alloc(gfpflags);
1607 	might_sleep_if(gfpflags & __GFP_WAIT);
1608 
1609 	if (should_failslab(s->objsize, gfpflags))
1610 		return NULL;
1611 
1612 	local_irq_save(flags);
1613 	c = get_cpu_slab(s, smp_processor_id());
1614 	objsize = c->objsize;
1615 	if (unlikely(!c->freelist || !node_match(c, node)))
1616 
1617 		object = __slab_alloc(s, gfpflags, node, addr, c);
1618 
1619 	else {
1620 		object = c->freelist;
1621 		c->freelist = object[c->offset];
1622 		stat(c, ALLOC_FASTPATH);
1623 	}
1624 	local_irq_restore(flags);
1625 
1626 	if (unlikely((gfpflags & __GFP_ZERO) && object))
1627 		memset(object, 0, objsize);
1628 
1629 	kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
1630 	return object;
1631 }
1632 
1633 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1634 {
1635 	void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1636 
1637 	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1638 
1639 	return ret;
1640 }
1641 EXPORT_SYMBOL(kmem_cache_alloc);
1642 
1643 #ifdef CONFIG_KMEMTRACE
1644 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1645 {
1646 	return slab_alloc(s, gfpflags, -1, _RET_IP_);
1647 }
1648 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1649 #endif
1650 
1651 #ifdef CONFIG_NUMA
1652 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1653 {
1654 	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1655 
1656 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
1657 				    s->objsize, s->size, gfpflags, node);
1658 
1659 	return ret;
1660 }
1661 EXPORT_SYMBOL(kmem_cache_alloc_node);
1662 #endif
1663 
1664 #ifdef CONFIG_KMEMTRACE
1665 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1666 				    gfp_t gfpflags,
1667 				    int node)
1668 {
1669 	return slab_alloc(s, gfpflags, node, _RET_IP_);
1670 }
1671 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1672 #endif
1673 
1674 /*
1675  * Slow patch handling. This may still be called frequently since objects
1676  * have a longer lifetime than the cpu slabs in most processing loads.
1677  *
1678  * So we still attempt to reduce cache line usage. Just take the slab
1679  * lock and free the item. If there is no additional partial page
1680  * handling required then we can return immediately.
1681  */
1682 static void __slab_free(struct kmem_cache *s, struct page *page,
1683 			void *x, unsigned long addr, unsigned int offset)
1684 {
1685 	void *prior;
1686 	void **object = (void *)x;
1687 	struct kmem_cache_cpu *c;
1688 
1689 	c = get_cpu_slab(s, raw_smp_processor_id());
1690 	stat(c, FREE_SLOWPATH);
1691 	slab_lock(page);
1692 
1693 	if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1694 		goto debug;
1695 
1696 checks_ok:
1697 	prior = object[offset] = page->freelist;
1698 	page->freelist = object;
1699 	page->inuse--;
1700 
1701 	if (unlikely(PageSlubFrozen(page))) {
1702 		stat(c, FREE_FROZEN);
1703 		goto out_unlock;
1704 	}
1705 
1706 	if (unlikely(!page->inuse))
1707 		goto slab_empty;
1708 
1709 	/*
1710 	 * Objects left in the slab. If it was not on the partial list before
1711 	 * then add it.
1712 	 */
1713 	if (unlikely(!prior)) {
1714 		add_partial(get_node(s, page_to_nid(page)), page, 1);
1715 		stat(c, FREE_ADD_PARTIAL);
1716 	}
1717 
1718 out_unlock:
1719 	slab_unlock(page);
1720 	return;
1721 
1722 slab_empty:
1723 	if (prior) {
1724 		/*
1725 		 * Slab still on the partial list.
1726 		 */
1727 		remove_partial(s, page);
1728 		stat(c, FREE_REMOVE_PARTIAL);
1729 	}
1730 	slab_unlock(page);
1731 	stat(c, FREE_SLAB);
1732 	discard_slab(s, page);
1733 	return;
1734 
1735 debug:
1736 	if (!free_debug_processing(s, page, x, addr))
1737 		goto out_unlock;
1738 	goto checks_ok;
1739 }
1740 
1741 /*
1742  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1743  * can perform fastpath freeing without additional function calls.
1744  *
1745  * The fastpath is only possible if we are freeing to the current cpu slab
1746  * of this processor. This typically the case if we have just allocated
1747  * the item before.
1748  *
1749  * If fastpath is not possible then fall back to __slab_free where we deal
1750  * with all sorts of special processing.
1751  */
1752 static __always_inline void slab_free(struct kmem_cache *s,
1753 			struct page *page, void *x, unsigned long addr)
1754 {
1755 	void **object = (void *)x;
1756 	struct kmem_cache_cpu *c;
1757 	unsigned long flags;
1758 
1759 	kmemleak_free_recursive(x, s->flags);
1760 	local_irq_save(flags);
1761 	c = get_cpu_slab(s, smp_processor_id());
1762 	debug_check_no_locks_freed(object, c->objsize);
1763 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1764 		debug_check_no_obj_freed(object, c->objsize);
1765 	if (likely(page == c->page && c->node >= 0)) {
1766 		object[c->offset] = c->freelist;
1767 		c->freelist = object;
1768 		stat(c, FREE_FASTPATH);
1769 	} else
1770 		__slab_free(s, page, x, addr, c->offset);
1771 
1772 	local_irq_restore(flags);
1773 }
1774 
1775 void kmem_cache_free(struct kmem_cache *s, void *x)
1776 {
1777 	struct page *page;
1778 
1779 	page = virt_to_head_page(x);
1780 
1781 	slab_free(s, page, x, _RET_IP_);
1782 
1783 	trace_kmem_cache_free(_RET_IP_, x);
1784 }
1785 EXPORT_SYMBOL(kmem_cache_free);
1786 
1787 /* Figure out on which slab page the object resides */
1788 static struct page *get_object_page(const void *x)
1789 {
1790 	struct page *page = virt_to_head_page(x);
1791 
1792 	if (!PageSlab(page))
1793 		return NULL;
1794 
1795 	return page;
1796 }
1797 
1798 /*
1799  * Object placement in a slab is made very easy because we always start at
1800  * offset 0. If we tune the size of the object to the alignment then we can
1801  * get the required alignment by putting one properly sized object after
1802  * another.
1803  *
1804  * Notice that the allocation order determines the sizes of the per cpu
1805  * caches. Each processor has always one slab available for allocations.
1806  * Increasing the allocation order reduces the number of times that slabs
1807  * must be moved on and off the partial lists and is therefore a factor in
1808  * locking overhead.
1809  */
1810 
1811 /*
1812  * Mininum / Maximum order of slab pages. This influences locking overhead
1813  * and slab fragmentation. A higher order reduces the number of partial slabs
1814  * and increases the number of allocations possible without having to
1815  * take the list_lock.
1816  */
1817 static int slub_min_order;
1818 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1819 static int slub_min_objects;
1820 
1821 /*
1822  * Merge control. If this is set then no merging of slab caches will occur.
1823  * (Could be removed. This was introduced to pacify the merge skeptics.)
1824  */
1825 static int slub_nomerge;
1826 
1827 /*
1828  * Calculate the order of allocation given an slab object size.
1829  *
1830  * The order of allocation has significant impact on performance and other
1831  * system components. Generally order 0 allocations should be preferred since
1832  * order 0 does not cause fragmentation in the page allocator. Larger objects
1833  * be problematic to put into order 0 slabs because there may be too much
1834  * unused space left. We go to a higher order if more than 1/16th of the slab
1835  * would be wasted.
1836  *
1837  * In order to reach satisfactory performance we must ensure that a minimum
1838  * number of objects is in one slab. Otherwise we may generate too much
1839  * activity on the partial lists which requires taking the list_lock. This is
1840  * less a concern for large slabs though which are rarely used.
1841  *
1842  * slub_max_order specifies the order where we begin to stop considering the
1843  * number of objects in a slab as critical. If we reach slub_max_order then
1844  * we try to keep the page order as low as possible. So we accept more waste
1845  * of space in favor of a small page order.
1846  *
1847  * Higher order allocations also allow the placement of more objects in a
1848  * slab and thereby reduce object handling overhead. If the user has
1849  * requested a higher mininum order then we start with that one instead of
1850  * the smallest order which will fit the object.
1851  */
1852 static inline int slab_order(int size, int min_objects,
1853 				int max_order, int fract_leftover)
1854 {
1855 	int order;
1856 	int rem;
1857 	int min_order = slub_min_order;
1858 
1859 	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1860 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1861 
1862 	for (order = max(min_order,
1863 				fls(min_objects * size - 1) - PAGE_SHIFT);
1864 			order <= max_order; order++) {
1865 
1866 		unsigned long slab_size = PAGE_SIZE << order;
1867 
1868 		if (slab_size < min_objects * size)
1869 			continue;
1870 
1871 		rem = slab_size % size;
1872 
1873 		if (rem <= slab_size / fract_leftover)
1874 			break;
1875 
1876 	}
1877 
1878 	return order;
1879 }
1880 
1881 static inline int calculate_order(int size)
1882 {
1883 	int order;
1884 	int min_objects;
1885 	int fraction;
1886 	int max_objects;
1887 
1888 	/*
1889 	 * Attempt to find best configuration for a slab. This
1890 	 * works by first attempting to generate a layout with
1891 	 * the best configuration and backing off gradually.
1892 	 *
1893 	 * First we reduce the acceptable waste in a slab. Then
1894 	 * we reduce the minimum objects required in a slab.
1895 	 */
1896 	min_objects = slub_min_objects;
1897 	if (!min_objects)
1898 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
1899 	max_objects = (PAGE_SIZE << slub_max_order)/size;
1900 	min_objects = min(min_objects, max_objects);
1901 
1902 	while (min_objects > 1) {
1903 		fraction = 16;
1904 		while (fraction >= 4) {
1905 			order = slab_order(size, min_objects,
1906 						slub_max_order, fraction);
1907 			if (order <= slub_max_order)
1908 				return order;
1909 			fraction /= 2;
1910 		}
1911 		min_objects --;
1912 	}
1913 
1914 	/*
1915 	 * We were unable to place multiple objects in a slab. Now
1916 	 * lets see if we can place a single object there.
1917 	 */
1918 	order = slab_order(size, 1, slub_max_order, 1);
1919 	if (order <= slub_max_order)
1920 		return order;
1921 
1922 	/*
1923 	 * Doh this slab cannot be placed using slub_max_order.
1924 	 */
1925 	order = slab_order(size, 1, MAX_ORDER, 1);
1926 	if (order < MAX_ORDER)
1927 		return order;
1928 	return -ENOSYS;
1929 }
1930 
1931 /*
1932  * Figure out what the alignment of the objects will be.
1933  */
1934 static unsigned long calculate_alignment(unsigned long flags,
1935 		unsigned long align, unsigned long size)
1936 {
1937 	/*
1938 	 * If the user wants hardware cache aligned objects then follow that
1939 	 * suggestion if the object is sufficiently large.
1940 	 *
1941 	 * The hardware cache alignment cannot override the specified
1942 	 * alignment though. If that is greater then use it.
1943 	 */
1944 	if (flags & SLAB_HWCACHE_ALIGN) {
1945 		unsigned long ralign = cache_line_size();
1946 		while (size <= ralign / 2)
1947 			ralign /= 2;
1948 		align = max(align, ralign);
1949 	}
1950 
1951 	if (align < ARCH_SLAB_MINALIGN)
1952 		align = ARCH_SLAB_MINALIGN;
1953 
1954 	return ALIGN(align, sizeof(void *));
1955 }
1956 
1957 static void init_kmem_cache_cpu(struct kmem_cache *s,
1958 			struct kmem_cache_cpu *c)
1959 {
1960 	c->page = NULL;
1961 	c->freelist = NULL;
1962 	c->node = 0;
1963 	c->offset = s->offset / sizeof(void *);
1964 	c->objsize = s->objsize;
1965 #ifdef CONFIG_SLUB_STATS
1966 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1967 #endif
1968 }
1969 
1970 static void
1971 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1972 {
1973 	n->nr_partial = 0;
1974 	spin_lock_init(&n->list_lock);
1975 	INIT_LIST_HEAD(&n->partial);
1976 #ifdef CONFIG_SLUB_DEBUG
1977 	atomic_long_set(&n->nr_slabs, 0);
1978 	atomic_long_set(&n->total_objects, 0);
1979 	INIT_LIST_HEAD(&n->full);
1980 #endif
1981 }
1982 
1983 #ifdef CONFIG_SMP
1984 /*
1985  * Per cpu array for per cpu structures.
1986  *
1987  * The per cpu array places all kmem_cache_cpu structures from one processor
1988  * close together meaning that it becomes possible that multiple per cpu
1989  * structures are contained in one cacheline. This may be particularly
1990  * beneficial for the kmalloc caches.
1991  *
1992  * A desktop system typically has around 60-80 slabs. With 100 here we are
1993  * likely able to get per cpu structures for all caches from the array defined
1994  * here. We must be able to cover all kmalloc caches during bootstrap.
1995  *
1996  * If the per cpu array is exhausted then fall back to kmalloc
1997  * of individual cachelines. No sharing is possible then.
1998  */
1999 #define NR_KMEM_CACHE_CPU 100
2000 
2001 static DEFINE_PER_CPU(struct kmem_cache_cpu,
2002 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2003 
2004 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
2005 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
2006 
2007 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2008 							int cpu, gfp_t flags)
2009 {
2010 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2011 
2012 	if (c)
2013 		per_cpu(kmem_cache_cpu_free, cpu) =
2014 				(void *)c->freelist;
2015 	else {
2016 		/* Table overflow: So allocate ourselves */
2017 		c = kmalloc_node(
2018 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2019 			flags, cpu_to_node(cpu));
2020 		if (!c)
2021 			return NULL;
2022 	}
2023 
2024 	init_kmem_cache_cpu(s, c);
2025 	return c;
2026 }
2027 
2028 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2029 {
2030 	if (c < per_cpu(kmem_cache_cpu, cpu) ||
2031 			c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2032 		kfree(c);
2033 		return;
2034 	}
2035 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2036 	per_cpu(kmem_cache_cpu_free, cpu) = c;
2037 }
2038 
2039 static void free_kmem_cache_cpus(struct kmem_cache *s)
2040 {
2041 	int cpu;
2042 
2043 	for_each_online_cpu(cpu) {
2044 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2045 
2046 		if (c) {
2047 			s->cpu_slab[cpu] = NULL;
2048 			free_kmem_cache_cpu(c, cpu);
2049 		}
2050 	}
2051 }
2052 
2053 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2054 {
2055 	int cpu;
2056 
2057 	for_each_online_cpu(cpu) {
2058 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2059 
2060 		if (c)
2061 			continue;
2062 
2063 		c = alloc_kmem_cache_cpu(s, cpu, flags);
2064 		if (!c) {
2065 			free_kmem_cache_cpus(s);
2066 			return 0;
2067 		}
2068 		s->cpu_slab[cpu] = c;
2069 	}
2070 	return 1;
2071 }
2072 
2073 /*
2074  * Initialize the per cpu array.
2075  */
2076 static void init_alloc_cpu_cpu(int cpu)
2077 {
2078 	int i;
2079 
2080 	if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2081 		return;
2082 
2083 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2084 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2085 
2086 	cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2087 }
2088 
2089 static void __init init_alloc_cpu(void)
2090 {
2091 	int cpu;
2092 
2093 	for_each_online_cpu(cpu)
2094 		init_alloc_cpu_cpu(cpu);
2095   }
2096 
2097 #else
2098 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2099 static inline void init_alloc_cpu(void) {}
2100 
2101 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2102 {
2103 	init_kmem_cache_cpu(s, &s->cpu_slab);
2104 	return 1;
2105 }
2106 #endif
2107 
2108 #ifdef CONFIG_NUMA
2109 /*
2110  * No kmalloc_node yet so do it by hand. We know that this is the first
2111  * slab on the node for this slabcache. There are no concurrent accesses
2112  * possible.
2113  *
2114  * Note that this function only works on the kmalloc_node_cache
2115  * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2116  * memory on a fresh node that has no slab structures yet.
2117  */
2118 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2119 {
2120 	struct page *page;
2121 	struct kmem_cache_node *n;
2122 	unsigned long flags;
2123 
2124 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2125 
2126 	page = new_slab(kmalloc_caches, gfpflags, node);
2127 
2128 	BUG_ON(!page);
2129 	if (page_to_nid(page) != node) {
2130 		printk(KERN_ERR "SLUB: Unable to allocate memory from "
2131 				"node %d\n", node);
2132 		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2133 				"in order to be able to continue\n");
2134 	}
2135 
2136 	n = page->freelist;
2137 	BUG_ON(!n);
2138 	page->freelist = get_freepointer(kmalloc_caches, n);
2139 	page->inuse++;
2140 	kmalloc_caches->node[node] = n;
2141 #ifdef CONFIG_SLUB_DEBUG
2142 	init_object(kmalloc_caches, n, 1);
2143 	init_tracking(kmalloc_caches, n);
2144 #endif
2145 	init_kmem_cache_node(n, kmalloc_caches);
2146 	inc_slabs_node(kmalloc_caches, node, page->objects);
2147 
2148 	/*
2149 	 * lockdep requires consistent irq usage for each lock
2150 	 * so even though there cannot be a race this early in
2151 	 * the boot sequence, we still disable irqs.
2152 	 */
2153 	local_irq_save(flags);
2154 	add_partial(n, page, 0);
2155 	local_irq_restore(flags);
2156 }
2157 
2158 static void free_kmem_cache_nodes(struct kmem_cache *s)
2159 {
2160 	int node;
2161 
2162 	for_each_node_state(node, N_NORMAL_MEMORY) {
2163 		struct kmem_cache_node *n = s->node[node];
2164 		if (n && n != &s->local_node)
2165 			kmem_cache_free(kmalloc_caches, n);
2166 		s->node[node] = NULL;
2167 	}
2168 }
2169 
2170 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2171 {
2172 	int node;
2173 	int local_node;
2174 
2175 	if (slab_state >= UP)
2176 		local_node = page_to_nid(virt_to_page(s));
2177 	else
2178 		local_node = 0;
2179 
2180 	for_each_node_state(node, N_NORMAL_MEMORY) {
2181 		struct kmem_cache_node *n;
2182 
2183 		if (local_node == node)
2184 			n = &s->local_node;
2185 		else {
2186 			if (slab_state == DOWN) {
2187 				early_kmem_cache_node_alloc(gfpflags, node);
2188 				continue;
2189 			}
2190 			n = kmem_cache_alloc_node(kmalloc_caches,
2191 							gfpflags, node);
2192 
2193 			if (!n) {
2194 				free_kmem_cache_nodes(s);
2195 				return 0;
2196 			}
2197 
2198 		}
2199 		s->node[node] = n;
2200 		init_kmem_cache_node(n, s);
2201 	}
2202 	return 1;
2203 }
2204 #else
2205 static void free_kmem_cache_nodes(struct kmem_cache *s)
2206 {
2207 }
2208 
2209 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2210 {
2211 	init_kmem_cache_node(&s->local_node, s);
2212 	return 1;
2213 }
2214 #endif
2215 
2216 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2217 {
2218 	if (min < MIN_PARTIAL)
2219 		min = MIN_PARTIAL;
2220 	else if (min > MAX_PARTIAL)
2221 		min = MAX_PARTIAL;
2222 	s->min_partial = min;
2223 }
2224 
2225 /*
2226  * calculate_sizes() determines the order and the distribution of data within
2227  * a slab object.
2228  */
2229 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2230 {
2231 	unsigned long flags = s->flags;
2232 	unsigned long size = s->objsize;
2233 	unsigned long align = s->align;
2234 	int order;
2235 
2236 	/*
2237 	 * Round up object size to the next word boundary. We can only
2238 	 * place the free pointer at word boundaries and this determines
2239 	 * the possible location of the free pointer.
2240 	 */
2241 	size = ALIGN(size, sizeof(void *));
2242 
2243 #ifdef CONFIG_SLUB_DEBUG
2244 	/*
2245 	 * Determine if we can poison the object itself. If the user of
2246 	 * the slab may touch the object after free or before allocation
2247 	 * then we should never poison the object itself.
2248 	 */
2249 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2250 			!s->ctor)
2251 		s->flags |= __OBJECT_POISON;
2252 	else
2253 		s->flags &= ~__OBJECT_POISON;
2254 
2255 
2256 	/*
2257 	 * If we are Redzoning then check if there is some space between the
2258 	 * end of the object and the free pointer. If not then add an
2259 	 * additional word to have some bytes to store Redzone information.
2260 	 */
2261 	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2262 		size += sizeof(void *);
2263 #endif
2264 
2265 	/*
2266 	 * With that we have determined the number of bytes in actual use
2267 	 * by the object. This is the potential offset to the free pointer.
2268 	 */
2269 	s->inuse = size;
2270 
2271 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2272 		s->ctor)) {
2273 		/*
2274 		 * Relocate free pointer after the object if it is not
2275 		 * permitted to overwrite the first word of the object on
2276 		 * kmem_cache_free.
2277 		 *
2278 		 * This is the case if we do RCU, have a constructor or
2279 		 * destructor or are poisoning the objects.
2280 		 */
2281 		s->offset = size;
2282 		size += sizeof(void *);
2283 	}
2284 
2285 #ifdef CONFIG_SLUB_DEBUG
2286 	if (flags & SLAB_STORE_USER)
2287 		/*
2288 		 * Need to store information about allocs and frees after
2289 		 * the object.
2290 		 */
2291 		size += 2 * sizeof(struct track);
2292 
2293 	if (flags & SLAB_RED_ZONE)
2294 		/*
2295 		 * Add some empty padding so that we can catch
2296 		 * overwrites from earlier objects rather than let
2297 		 * tracking information or the free pointer be
2298 		 * corrupted if a user writes before the start
2299 		 * of the object.
2300 		 */
2301 		size += sizeof(void *);
2302 #endif
2303 
2304 	/*
2305 	 * Determine the alignment based on various parameters that the
2306 	 * user specified and the dynamic determination of cache line size
2307 	 * on bootup.
2308 	 */
2309 	align = calculate_alignment(flags, align, s->objsize);
2310 
2311 	/*
2312 	 * SLUB stores one object immediately after another beginning from
2313 	 * offset 0. In order to align the objects we have to simply size
2314 	 * each object to conform to the alignment.
2315 	 */
2316 	size = ALIGN(size, align);
2317 	s->size = size;
2318 	if (forced_order >= 0)
2319 		order = forced_order;
2320 	else
2321 		order = calculate_order(size);
2322 
2323 	if (order < 0)
2324 		return 0;
2325 
2326 	s->allocflags = 0;
2327 	if (order)
2328 		s->allocflags |= __GFP_COMP;
2329 
2330 	if (s->flags & SLAB_CACHE_DMA)
2331 		s->allocflags |= SLUB_DMA;
2332 
2333 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
2334 		s->allocflags |= __GFP_RECLAIMABLE;
2335 
2336 	/*
2337 	 * Determine the number of objects per slab
2338 	 */
2339 	s->oo = oo_make(order, size);
2340 	s->min = oo_make(get_order(size), size);
2341 	if (oo_objects(s->oo) > oo_objects(s->max))
2342 		s->max = s->oo;
2343 
2344 	return !!oo_objects(s->oo);
2345 
2346 }
2347 
2348 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2349 		const char *name, size_t size,
2350 		size_t align, unsigned long flags,
2351 		void (*ctor)(void *))
2352 {
2353 	memset(s, 0, kmem_size);
2354 	s->name = name;
2355 	s->ctor = ctor;
2356 	s->objsize = size;
2357 	s->align = align;
2358 	s->flags = kmem_cache_flags(size, flags, name, ctor);
2359 
2360 	if (!calculate_sizes(s, -1))
2361 		goto error;
2362 
2363 	/*
2364 	 * The larger the object size is, the more pages we want on the partial
2365 	 * list to avoid pounding the page allocator excessively.
2366 	 */
2367 	set_min_partial(s, ilog2(s->size));
2368 	s->refcount = 1;
2369 #ifdef CONFIG_NUMA
2370 	s->remote_node_defrag_ratio = 1000;
2371 #endif
2372 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2373 		goto error;
2374 
2375 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2376 		return 1;
2377 	free_kmem_cache_nodes(s);
2378 error:
2379 	if (flags & SLAB_PANIC)
2380 		panic("Cannot create slab %s size=%lu realsize=%u "
2381 			"order=%u offset=%u flags=%lx\n",
2382 			s->name, (unsigned long)size, s->size, oo_order(s->oo),
2383 			s->offset, flags);
2384 	return 0;
2385 }
2386 
2387 /*
2388  * Check if a given pointer is valid
2389  */
2390 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2391 {
2392 	struct page *page;
2393 
2394 	page = get_object_page(object);
2395 
2396 	if (!page || s != page->slab)
2397 		/* No slab or wrong slab */
2398 		return 0;
2399 
2400 	if (!check_valid_pointer(s, page, object))
2401 		return 0;
2402 
2403 	/*
2404 	 * We could also check if the object is on the slabs freelist.
2405 	 * But this would be too expensive and it seems that the main
2406 	 * purpose of kmem_ptr_valid() is to check if the object belongs
2407 	 * to a certain slab.
2408 	 */
2409 	return 1;
2410 }
2411 EXPORT_SYMBOL(kmem_ptr_validate);
2412 
2413 /*
2414  * Determine the size of a slab object
2415  */
2416 unsigned int kmem_cache_size(struct kmem_cache *s)
2417 {
2418 	return s->objsize;
2419 }
2420 EXPORT_SYMBOL(kmem_cache_size);
2421 
2422 const char *kmem_cache_name(struct kmem_cache *s)
2423 {
2424 	return s->name;
2425 }
2426 EXPORT_SYMBOL(kmem_cache_name);
2427 
2428 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2429 							const char *text)
2430 {
2431 #ifdef CONFIG_SLUB_DEBUG
2432 	void *addr = page_address(page);
2433 	void *p;
2434 	DECLARE_BITMAP(map, page->objects);
2435 
2436 	bitmap_zero(map, page->objects);
2437 	slab_err(s, page, "%s", text);
2438 	slab_lock(page);
2439 	for_each_free_object(p, s, page->freelist)
2440 		set_bit(slab_index(p, s, addr), map);
2441 
2442 	for_each_object(p, s, addr, page->objects) {
2443 
2444 		if (!test_bit(slab_index(p, s, addr), map)) {
2445 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2446 							p, p - addr);
2447 			print_tracking(s, p);
2448 		}
2449 	}
2450 	slab_unlock(page);
2451 #endif
2452 }
2453 
2454 /*
2455  * Attempt to free all partial slabs on a node.
2456  */
2457 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2458 {
2459 	unsigned long flags;
2460 	struct page *page, *h;
2461 
2462 	spin_lock_irqsave(&n->list_lock, flags);
2463 	list_for_each_entry_safe(page, h, &n->partial, lru) {
2464 		if (!page->inuse) {
2465 			list_del(&page->lru);
2466 			discard_slab(s, page);
2467 			n->nr_partial--;
2468 		} else {
2469 			list_slab_objects(s, page,
2470 				"Objects remaining on kmem_cache_close()");
2471 		}
2472 	}
2473 	spin_unlock_irqrestore(&n->list_lock, flags);
2474 }
2475 
2476 /*
2477  * Release all resources used by a slab cache.
2478  */
2479 static inline int kmem_cache_close(struct kmem_cache *s)
2480 {
2481 	int node;
2482 
2483 	flush_all(s);
2484 
2485 	/* Attempt to free all objects */
2486 	free_kmem_cache_cpus(s);
2487 	for_each_node_state(node, N_NORMAL_MEMORY) {
2488 		struct kmem_cache_node *n = get_node(s, node);
2489 
2490 		free_partial(s, n);
2491 		if (n->nr_partial || slabs_node(s, node))
2492 			return 1;
2493 	}
2494 	free_kmem_cache_nodes(s);
2495 	return 0;
2496 }
2497 
2498 /*
2499  * Close a cache and release the kmem_cache structure
2500  * (must be used for caches created using kmem_cache_create)
2501  */
2502 void kmem_cache_destroy(struct kmem_cache *s)
2503 {
2504 	down_write(&slub_lock);
2505 	s->refcount--;
2506 	if (!s->refcount) {
2507 		list_del(&s->list);
2508 		up_write(&slub_lock);
2509 		if (kmem_cache_close(s)) {
2510 			printk(KERN_ERR "SLUB %s: %s called for cache that "
2511 				"still has objects.\n", s->name, __func__);
2512 			dump_stack();
2513 		}
2514 		sysfs_slab_remove(s);
2515 	} else
2516 		up_write(&slub_lock);
2517 }
2518 EXPORT_SYMBOL(kmem_cache_destroy);
2519 
2520 /********************************************************************
2521  *		Kmalloc subsystem
2522  *******************************************************************/
2523 
2524 struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
2525 EXPORT_SYMBOL(kmalloc_caches);
2526 
2527 static int __init setup_slub_min_order(char *str)
2528 {
2529 	get_option(&str, &slub_min_order);
2530 
2531 	return 1;
2532 }
2533 
2534 __setup("slub_min_order=", setup_slub_min_order);
2535 
2536 static int __init setup_slub_max_order(char *str)
2537 {
2538 	get_option(&str, &slub_max_order);
2539 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2540 
2541 	return 1;
2542 }
2543 
2544 __setup("slub_max_order=", setup_slub_max_order);
2545 
2546 static int __init setup_slub_min_objects(char *str)
2547 {
2548 	get_option(&str, &slub_min_objects);
2549 
2550 	return 1;
2551 }
2552 
2553 __setup("slub_min_objects=", setup_slub_min_objects);
2554 
2555 static int __init setup_slub_nomerge(char *str)
2556 {
2557 	slub_nomerge = 1;
2558 	return 1;
2559 }
2560 
2561 __setup("slub_nomerge", setup_slub_nomerge);
2562 
2563 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2564 		const char *name, int size, gfp_t gfp_flags)
2565 {
2566 	unsigned int flags = 0;
2567 
2568 	if (gfp_flags & SLUB_DMA)
2569 		flags = SLAB_CACHE_DMA;
2570 
2571 	/*
2572 	 * This function is called with IRQs disabled during early-boot on
2573 	 * single CPU so there's no need to take slub_lock here.
2574 	 */
2575 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2576 								flags, NULL))
2577 		goto panic;
2578 
2579 	list_add(&s->list, &slab_caches);
2580 
2581 	if (sysfs_slab_add(s))
2582 		goto panic;
2583 	return s;
2584 
2585 panic:
2586 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2587 }
2588 
2589 #ifdef CONFIG_ZONE_DMA
2590 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2591 
2592 static void sysfs_add_func(struct work_struct *w)
2593 {
2594 	struct kmem_cache *s;
2595 
2596 	down_write(&slub_lock);
2597 	list_for_each_entry(s, &slab_caches, list) {
2598 		if (s->flags & __SYSFS_ADD_DEFERRED) {
2599 			s->flags &= ~__SYSFS_ADD_DEFERRED;
2600 			sysfs_slab_add(s);
2601 		}
2602 	}
2603 	up_write(&slub_lock);
2604 }
2605 
2606 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2607 
2608 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2609 {
2610 	struct kmem_cache *s;
2611 	char *text;
2612 	size_t realsize;
2613 
2614 	s = kmalloc_caches_dma[index];
2615 	if (s)
2616 		return s;
2617 
2618 	/* Dynamically create dma cache */
2619 	if (flags & __GFP_WAIT)
2620 		down_write(&slub_lock);
2621 	else {
2622 		if (!down_write_trylock(&slub_lock))
2623 			goto out;
2624 	}
2625 
2626 	if (kmalloc_caches_dma[index])
2627 		goto unlock_out;
2628 
2629 	realsize = kmalloc_caches[index].objsize;
2630 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2631 			 (unsigned int)realsize);
2632 	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2633 
2634 	if (!s || !text || !kmem_cache_open(s, flags, text,
2635 			realsize, ARCH_KMALLOC_MINALIGN,
2636 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2637 		kfree(s);
2638 		kfree(text);
2639 		goto unlock_out;
2640 	}
2641 
2642 	list_add(&s->list, &slab_caches);
2643 	kmalloc_caches_dma[index] = s;
2644 
2645 	schedule_work(&sysfs_add_work);
2646 
2647 unlock_out:
2648 	up_write(&slub_lock);
2649 out:
2650 	return kmalloc_caches_dma[index];
2651 }
2652 #endif
2653 
2654 /*
2655  * Conversion table for small slabs sizes / 8 to the index in the
2656  * kmalloc array. This is necessary for slabs < 192 since we have non power
2657  * of two cache sizes there. The size of larger slabs can be determined using
2658  * fls.
2659  */
2660 static s8 size_index[24] = {
2661 	3,	/* 8 */
2662 	4,	/* 16 */
2663 	5,	/* 24 */
2664 	5,	/* 32 */
2665 	6,	/* 40 */
2666 	6,	/* 48 */
2667 	6,	/* 56 */
2668 	6,	/* 64 */
2669 	1,	/* 72 */
2670 	1,	/* 80 */
2671 	1,	/* 88 */
2672 	1,	/* 96 */
2673 	7,	/* 104 */
2674 	7,	/* 112 */
2675 	7,	/* 120 */
2676 	7,	/* 128 */
2677 	2,	/* 136 */
2678 	2,	/* 144 */
2679 	2,	/* 152 */
2680 	2,	/* 160 */
2681 	2,	/* 168 */
2682 	2,	/* 176 */
2683 	2,	/* 184 */
2684 	2	/* 192 */
2685 };
2686 
2687 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2688 {
2689 	int index;
2690 
2691 	if (size <= 192) {
2692 		if (!size)
2693 			return ZERO_SIZE_PTR;
2694 
2695 		index = size_index[(size - 1) / 8];
2696 	} else
2697 		index = fls(size - 1);
2698 
2699 #ifdef CONFIG_ZONE_DMA
2700 	if (unlikely((flags & SLUB_DMA)))
2701 		return dma_kmalloc_cache(index, flags);
2702 
2703 #endif
2704 	return &kmalloc_caches[index];
2705 }
2706 
2707 void *__kmalloc(size_t size, gfp_t flags)
2708 {
2709 	struct kmem_cache *s;
2710 	void *ret;
2711 
2712 	if (unlikely(size > SLUB_MAX_SIZE))
2713 		return kmalloc_large(size, flags);
2714 
2715 	s = get_slab(size, flags);
2716 
2717 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2718 		return s;
2719 
2720 	ret = slab_alloc(s, flags, -1, _RET_IP_);
2721 
2722 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2723 
2724 	return ret;
2725 }
2726 EXPORT_SYMBOL(__kmalloc);
2727 
2728 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2729 {
2730 	struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2731 						get_order(size));
2732 
2733 	if (page)
2734 		return page_address(page);
2735 	else
2736 		return NULL;
2737 }
2738 
2739 #ifdef CONFIG_NUMA
2740 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2741 {
2742 	struct kmem_cache *s;
2743 	void *ret;
2744 
2745 	if (unlikely(size > SLUB_MAX_SIZE)) {
2746 		ret = kmalloc_large_node(size, flags, node);
2747 
2748 		trace_kmalloc_node(_RET_IP_, ret,
2749 				   size, PAGE_SIZE << get_order(size),
2750 				   flags, node);
2751 
2752 		return ret;
2753 	}
2754 
2755 	s = get_slab(size, flags);
2756 
2757 	if (unlikely(ZERO_OR_NULL_PTR(s)))
2758 		return s;
2759 
2760 	ret = slab_alloc(s, flags, node, _RET_IP_);
2761 
2762 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2763 
2764 	return ret;
2765 }
2766 EXPORT_SYMBOL(__kmalloc_node);
2767 #endif
2768 
2769 size_t ksize(const void *object)
2770 {
2771 	struct page *page;
2772 	struct kmem_cache *s;
2773 
2774 	if (unlikely(object == ZERO_SIZE_PTR))
2775 		return 0;
2776 
2777 	page = virt_to_head_page(object);
2778 
2779 	if (unlikely(!PageSlab(page))) {
2780 		WARN_ON(!PageCompound(page));
2781 		return PAGE_SIZE << compound_order(page);
2782 	}
2783 	s = page->slab;
2784 
2785 #ifdef CONFIG_SLUB_DEBUG
2786 	/*
2787 	 * Debugging requires use of the padding between object
2788 	 * and whatever may come after it.
2789 	 */
2790 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2791 		return s->objsize;
2792 
2793 #endif
2794 	/*
2795 	 * If we have the need to store the freelist pointer
2796 	 * back there or track user information then we can
2797 	 * only use the space before that information.
2798 	 */
2799 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2800 		return s->inuse;
2801 	/*
2802 	 * Else we can use all the padding etc for the allocation
2803 	 */
2804 	return s->size;
2805 }
2806 EXPORT_SYMBOL(ksize);
2807 
2808 void kfree(const void *x)
2809 {
2810 	struct page *page;
2811 	void *object = (void *)x;
2812 
2813 	trace_kfree(_RET_IP_, x);
2814 
2815 	if (unlikely(ZERO_OR_NULL_PTR(x)))
2816 		return;
2817 
2818 	page = virt_to_head_page(x);
2819 	if (unlikely(!PageSlab(page))) {
2820 		BUG_ON(!PageCompound(page));
2821 		put_page(page);
2822 		return;
2823 	}
2824 	slab_free(page->slab, page, object, _RET_IP_);
2825 }
2826 EXPORT_SYMBOL(kfree);
2827 
2828 /*
2829  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2830  * the remaining slabs by the number of items in use. The slabs with the
2831  * most items in use come first. New allocations will then fill those up
2832  * and thus they can be removed from the partial lists.
2833  *
2834  * The slabs with the least items are placed last. This results in them
2835  * being allocated from last increasing the chance that the last objects
2836  * are freed in them.
2837  */
2838 int kmem_cache_shrink(struct kmem_cache *s)
2839 {
2840 	int node;
2841 	int i;
2842 	struct kmem_cache_node *n;
2843 	struct page *page;
2844 	struct page *t;
2845 	int objects = oo_objects(s->max);
2846 	struct list_head *slabs_by_inuse =
2847 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2848 	unsigned long flags;
2849 
2850 	if (!slabs_by_inuse)
2851 		return -ENOMEM;
2852 
2853 	flush_all(s);
2854 	for_each_node_state(node, N_NORMAL_MEMORY) {
2855 		n = get_node(s, node);
2856 
2857 		if (!n->nr_partial)
2858 			continue;
2859 
2860 		for (i = 0; i < objects; i++)
2861 			INIT_LIST_HEAD(slabs_by_inuse + i);
2862 
2863 		spin_lock_irqsave(&n->list_lock, flags);
2864 
2865 		/*
2866 		 * Build lists indexed by the items in use in each slab.
2867 		 *
2868 		 * Note that concurrent frees may occur while we hold the
2869 		 * list_lock. page->inuse here is the upper limit.
2870 		 */
2871 		list_for_each_entry_safe(page, t, &n->partial, lru) {
2872 			if (!page->inuse && slab_trylock(page)) {
2873 				/*
2874 				 * Must hold slab lock here because slab_free
2875 				 * may have freed the last object and be
2876 				 * waiting to release the slab.
2877 				 */
2878 				list_del(&page->lru);
2879 				n->nr_partial--;
2880 				slab_unlock(page);
2881 				discard_slab(s, page);
2882 			} else {
2883 				list_move(&page->lru,
2884 				slabs_by_inuse + page->inuse);
2885 			}
2886 		}
2887 
2888 		/*
2889 		 * Rebuild the partial list with the slabs filled up most
2890 		 * first and the least used slabs at the end.
2891 		 */
2892 		for (i = objects - 1; i >= 0; i--)
2893 			list_splice(slabs_by_inuse + i, n->partial.prev);
2894 
2895 		spin_unlock_irqrestore(&n->list_lock, flags);
2896 	}
2897 
2898 	kfree(slabs_by_inuse);
2899 	return 0;
2900 }
2901 EXPORT_SYMBOL(kmem_cache_shrink);
2902 
2903 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2904 static int slab_mem_going_offline_callback(void *arg)
2905 {
2906 	struct kmem_cache *s;
2907 
2908 	down_read(&slub_lock);
2909 	list_for_each_entry(s, &slab_caches, list)
2910 		kmem_cache_shrink(s);
2911 	up_read(&slub_lock);
2912 
2913 	return 0;
2914 }
2915 
2916 static void slab_mem_offline_callback(void *arg)
2917 {
2918 	struct kmem_cache_node *n;
2919 	struct kmem_cache *s;
2920 	struct memory_notify *marg = arg;
2921 	int offline_node;
2922 
2923 	offline_node = marg->status_change_nid;
2924 
2925 	/*
2926 	 * If the node still has available memory. we need kmem_cache_node
2927 	 * for it yet.
2928 	 */
2929 	if (offline_node < 0)
2930 		return;
2931 
2932 	down_read(&slub_lock);
2933 	list_for_each_entry(s, &slab_caches, list) {
2934 		n = get_node(s, offline_node);
2935 		if (n) {
2936 			/*
2937 			 * if n->nr_slabs > 0, slabs still exist on the node
2938 			 * that is going down. We were unable to free them,
2939 			 * and offline_pages() function shoudn't call this
2940 			 * callback. So, we must fail.
2941 			 */
2942 			BUG_ON(slabs_node(s, offline_node));
2943 
2944 			s->node[offline_node] = NULL;
2945 			kmem_cache_free(kmalloc_caches, n);
2946 		}
2947 	}
2948 	up_read(&slub_lock);
2949 }
2950 
2951 static int slab_mem_going_online_callback(void *arg)
2952 {
2953 	struct kmem_cache_node *n;
2954 	struct kmem_cache *s;
2955 	struct memory_notify *marg = arg;
2956 	int nid = marg->status_change_nid;
2957 	int ret = 0;
2958 
2959 	/*
2960 	 * If the node's memory is already available, then kmem_cache_node is
2961 	 * already created. Nothing to do.
2962 	 */
2963 	if (nid < 0)
2964 		return 0;
2965 
2966 	/*
2967 	 * We are bringing a node online. No memory is available yet. We must
2968 	 * allocate a kmem_cache_node structure in order to bring the node
2969 	 * online.
2970 	 */
2971 	down_read(&slub_lock);
2972 	list_for_each_entry(s, &slab_caches, list) {
2973 		/*
2974 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
2975 		 *      since memory is not yet available from the node that
2976 		 *      is brought up.
2977 		 */
2978 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2979 		if (!n) {
2980 			ret = -ENOMEM;
2981 			goto out;
2982 		}
2983 		init_kmem_cache_node(n, s);
2984 		s->node[nid] = n;
2985 	}
2986 out:
2987 	up_read(&slub_lock);
2988 	return ret;
2989 }
2990 
2991 static int slab_memory_callback(struct notifier_block *self,
2992 				unsigned long action, void *arg)
2993 {
2994 	int ret = 0;
2995 
2996 	switch (action) {
2997 	case MEM_GOING_ONLINE:
2998 		ret = slab_mem_going_online_callback(arg);
2999 		break;
3000 	case MEM_GOING_OFFLINE:
3001 		ret = slab_mem_going_offline_callback(arg);
3002 		break;
3003 	case MEM_OFFLINE:
3004 	case MEM_CANCEL_ONLINE:
3005 		slab_mem_offline_callback(arg);
3006 		break;
3007 	case MEM_ONLINE:
3008 	case MEM_CANCEL_OFFLINE:
3009 		break;
3010 	}
3011 	if (ret)
3012 		ret = notifier_from_errno(ret);
3013 	else
3014 		ret = NOTIFY_OK;
3015 	return ret;
3016 }
3017 
3018 #endif /* CONFIG_MEMORY_HOTPLUG */
3019 
3020 /********************************************************************
3021  *			Basic setup of slabs
3022  *******************************************************************/
3023 
3024 void __init kmem_cache_init(void)
3025 {
3026 	int i;
3027 	int caches = 0;
3028 
3029 	init_alloc_cpu();
3030 
3031 #ifdef CONFIG_NUMA
3032 	/*
3033 	 * Must first have the slab cache available for the allocations of the
3034 	 * struct kmem_cache_node's. There is special bootstrap code in
3035 	 * kmem_cache_open for slab_state == DOWN.
3036 	 */
3037 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3038 		sizeof(struct kmem_cache_node), GFP_NOWAIT);
3039 	kmalloc_caches[0].refcount = -1;
3040 	caches++;
3041 
3042 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3043 #endif
3044 
3045 	/* Able to allocate the per node structures */
3046 	slab_state = PARTIAL;
3047 
3048 	/* Caches that are not of the two-to-the-power-of size */
3049 	if (KMALLOC_MIN_SIZE <= 64) {
3050 		create_kmalloc_cache(&kmalloc_caches[1],
3051 				"kmalloc-96", 96, GFP_NOWAIT);
3052 		caches++;
3053 		create_kmalloc_cache(&kmalloc_caches[2],
3054 				"kmalloc-192", 192, GFP_NOWAIT);
3055 		caches++;
3056 	}
3057 
3058 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3059 		create_kmalloc_cache(&kmalloc_caches[i],
3060 			"kmalloc", 1 << i, GFP_NOWAIT);
3061 		caches++;
3062 	}
3063 
3064 
3065 	/*
3066 	 * Patch up the size_index table if we have strange large alignment
3067 	 * requirements for the kmalloc array. This is only the case for
3068 	 * MIPS it seems. The standard arches will not generate any code here.
3069 	 *
3070 	 * Largest permitted alignment is 256 bytes due to the way we
3071 	 * handle the index determination for the smaller caches.
3072 	 *
3073 	 * Make sure that nothing crazy happens if someone starts tinkering
3074 	 * around with ARCH_KMALLOC_MINALIGN
3075 	 */
3076 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3077 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3078 
3079 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3080 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3081 
3082 	if (KMALLOC_MIN_SIZE == 128) {
3083 		/*
3084 		 * The 192 byte sized cache is not used if the alignment
3085 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3086 		 * instead.
3087 		 */
3088 		for (i = 128 + 8; i <= 192; i += 8)
3089 			size_index[(i - 1) / 8] = 8;
3090 	}
3091 
3092 	slab_state = UP;
3093 
3094 	/* Provide the correct kmalloc names now that the caches are up */
3095 	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3096 		kmalloc_caches[i]. name =
3097 			kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3098 
3099 #ifdef CONFIG_SMP
3100 	register_cpu_notifier(&slab_notifier);
3101 	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3102 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3103 #else
3104 	kmem_size = sizeof(struct kmem_cache);
3105 #endif
3106 
3107 	printk(KERN_INFO
3108 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3109 		" CPUs=%d, Nodes=%d\n",
3110 		caches, cache_line_size(),
3111 		slub_min_order, slub_max_order, slub_min_objects,
3112 		nr_cpu_ids, nr_node_ids);
3113 }
3114 
3115 void __init kmem_cache_init_late(void)
3116 {
3117 	/*
3118 	 * Interrupts are enabled now so all GFP allocations are safe.
3119 	 */
3120 	slab_gfp_mask = __GFP_BITS_MASK;
3121 }
3122 
3123 /*
3124  * Find a mergeable slab cache
3125  */
3126 static int slab_unmergeable(struct kmem_cache *s)
3127 {
3128 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3129 		return 1;
3130 
3131 	if (s->ctor)
3132 		return 1;
3133 
3134 	/*
3135 	 * We may have set a slab to be unmergeable during bootstrap.
3136 	 */
3137 	if (s->refcount < 0)
3138 		return 1;
3139 
3140 	return 0;
3141 }
3142 
3143 static struct kmem_cache *find_mergeable(size_t size,
3144 		size_t align, unsigned long flags, const char *name,
3145 		void (*ctor)(void *))
3146 {
3147 	struct kmem_cache *s;
3148 
3149 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3150 		return NULL;
3151 
3152 	if (ctor)
3153 		return NULL;
3154 
3155 	size = ALIGN(size, sizeof(void *));
3156 	align = calculate_alignment(flags, align, size);
3157 	size = ALIGN(size, align);
3158 	flags = kmem_cache_flags(size, flags, name, NULL);
3159 
3160 	list_for_each_entry(s, &slab_caches, list) {
3161 		if (slab_unmergeable(s))
3162 			continue;
3163 
3164 		if (size > s->size)
3165 			continue;
3166 
3167 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3168 				continue;
3169 		/*
3170 		 * Check if alignment is compatible.
3171 		 * Courtesy of Adrian Drzewiecki
3172 		 */
3173 		if ((s->size & ~(align - 1)) != s->size)
3174 			continue;
3175 
3176 		if (s->size - size >= sizeof(void *))
3177 			continue;
3178 
3179 		return s;
3180 	}
3181 	return NULL;
3182 }
3183 
3184 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3185 		size_t align, unsigned long flags, void (*ctor)(void *))
3186 {
3187 	struct kmem_cache *s;
3188 
3189 	down_write(&slub_lock);
3190 	s = find_mergeable(size, align, flags, name, ctor);
3191 	if (s) {
3192 		int cpu;
3193 
3194 		s->refcount++;
3195 		/*
3196 		 * Adjust the object sizes so that we clear
3197 		 * the complete object on kzalloc.
3198 		 */
3199 		s->objsize = max(s->objsize, (int)size);
3200 
3201 		/*
3202 		 * And then we need to update the object size in the
3203 		 * per cpu structures
3204 		 */
3205 		for_each_online_cpu(cpu)
3206 			get_cpu_slab(s, cpu)->objsize = s->objsize;
3207 
3208 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3209 		up_write(&slub_lock);
3210 
3211 		if (sysfs_slab_alias(s, name)) {
3212 			down_write(&slub_lock);
3213 			s->refcount--;
3214 			up_write(&slub_lock);
3215 			goto err;
3216 		}
3217 		return s;
3218 	}
3219 
3220 	s = kmalloc(kmem_size, GFP_KERNEL);
3221 	if (s) {
3222 		if (kmem_cache_open(s, GFP_KERNEL, name,
3223 				size, align, flags, ctor)) {
3224 			list_add(&s->list, &slab_caches);
3225 			up_write(&slub_lock);
3226 			if (sysfs_slab_add(s)) {
3227 				down_write(&slub_lock);
3228 				list_del(&s->list);
3229 				up_write(&slub_lock);
3230 				kfree(s);
3231 				goto err;
3232 			}
3233 			return s;
3234 		}
3235 		kfree(s);
3236 	}
3237 	up_write(&slub_lock);
3238 
3239 err:
3240 	if (flags & SLAB_PANIC)
3241 		panic("Cannot create slabcache %s\n", name);
3242 	else
3243 		s = NULL;
3244 	return s;
3245 }
3246 EXPORT_SYMBOL(kmem_cache_create);
3247 
3248 #ifdef CONFIG_SMP
3249 /*
3250  * Use the cpu notifier to insure that the cpu slabs are flushed when
3251  * necessary.
3252  */
3253 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3254 		unsigned long action, void *hcpu)
3255 {
3256 	long cpu = (long)hcpu;
3257 	struct kmem_cache *s;
3258 	unsigned long flags;
3259 
3260 	switch (action) {
3261 	case CPU_UP_PREPARE:
3262 	case CPU_UP_PREPARE_FROZEN:
3263 		init_alloc_cpu_cpu(cpu);
3264 		down_read(&slub_lock);
3265 		list_for_each_entry(s, &slab_caches, list)
3266 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3267 							GFP_KERNEL);
3268 		up_read(&slub_lock);
3269 		break;
3270 
3271 	case CPU_UP_CANCELED:
3272 	case CPU_UP_CANCELED_FROZEN:
3273 	case CPU_DEAD:
3274 	case CPU_DEAD_FROZEN:
3275 		down_read(&slub_lock);
3276 		list_for_each_entry(s, &slab_caches, list) {
3277 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3278 
3279 			local_irq_save(flags);
3280 			__flush_cpu_slab(s, cpu);
3281 			local_irq_restore(flags);
3282 			free_kmem_cache_cpu(c, cpu);
3283 			s->cpu_slab[cpu] = NULL;
3284 		}
3285 		up_read(&slub_lock);
3286 		break;
3287 	default:
3288 		break;
3289 	}
3290 	return NOTIFY_OK;
3291 }
3292 
3293 static struct notifier_block __cpuinitdata slab_notifier = {
3294 	.notifier_call = slab_cpuup_callback
3295 };
3296 
3297 #endif
3298 
3299 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3300 {
3301 	struct kmem_cache *s;
3302 	void *ret;
3303 
3304 	if (unlikely(size > SLUB_MAX_SIZE))
3305 		return kmalloc_large(size, gfpflags);
3306 
3307 	s = get_slab(size, gfpflags);
3308 
3309 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3310 		return s;
3311 
3312 	ret = slab_alloc(s, gfpflags, -1, caller);
3313 
3314 	/* Honor the call site pointer we recieved. */
3315 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3316 
3317 	return ret;
3318 }
3319 
3320 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3321 					int node, unsigned long caller)
3322 {
3323 	struct kmem_cache *s;
3324 	void *ret;
3325 
3326 	if (unlikely(size > SLUB_MAX_SIZE))
3327 		return kmalloc_large_node(size, gfpflags, node);
3328 
3329 	s = get_slab(size, gfpflags);
3330 
3331 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3332 		return s;
3333 
3334 	ret = slab_alloc(s, gfpflags, node, caller);
3335 
3336 	/* Honor the call site pointer we recieved. */
3337 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3338 
3339 	return ret;
3340 }
3341 
3342 #ifdef CONFIG_SLUB_DEBUG
3343 static unsigned long count_partial(struct kmem_cache_node *n,
3344 					int (*get_count)(struct page *))
3345 {
3346 	unsigned long flags;
3347 	unsigned long x = 0;
3348 	struct page *page;
3349 
3350 	spin_lock_irqsave(&n->list_lock, flags);
3351 	list_for_each_entry(page, &n->partial, lru)
3352 		x += get_count(page);
3353 	spin_unlock_irqrestore(&n->list_lock, flags);
3354 	return x;
3355 }
3356 
3357 static int count_inuse(struct page *page)
3358 {
3359 	return page->inuse;
3360 }
3361 
3362 static int count_total(struct page *page)
3363 {
3364 	return page->objects;
3365 }
3366 
3367 static int count_free(struct page *page)
3368 {
3369 	return page->objects - page->inuse;
3370 }
3371 
3372 static int validate_slab(struct kmem_cache *s, struct page *page,
3373 						unsigned long *map)
3374 {
3375 	void *p;
3376 	void *addr = page_address(page);
3377 
3378 	if (!check_slab(s, page) ||
3379 			!on_freelist(s, page, NULL))
3380 		return 0;
3381 
3382 	/* Now we know that a valid freelist exists */
3383 	bitmap_zero(map, page->objects);
3384 
3385 	for_each_free_object(p, s, page->freelist) {
3386 		set_bit(slab_index(p, s, addr), map);
3387 		if (!check_object(s, page, p, 0))
3388 			return 0;
3389 	}
3390 
3391 	for_each_object(p, s, addr, page->objects)
3392 		if (!test_bit(slab_index(p, s, addr), map))
3393 			if (!check_object(s, page, p, 1))
3394 				return 0;
3395 	return 1;
3396 }
3397 
3398 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3399 						unsigned long *map)
3400 {
3401 	if (slab_trylock(page)) {
3402 		validate_slab(s, page, map);
3403 		slab_unlock(page);
3404 	} else
3405 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3406 			s->name, page);
3407 
3408 	if (s->flags & DEBUG_DEFAULT_FLAGS) {
3409 		if (!PageSlubDebug(page))
3410 			printk(KERN_ERR "SLUB %s: SlubDebug not set "
3411 				"on slab 0x%p\n", s->name, page);
3412 	} else {
3413 		if (PageSlubDebug(page))
3414 			printk(KERN_ERR "SLUB %s: SlubDebug set on "
3415 				"slab 0x%p\n", s->name, page);
3416 	}
3417 }
3418 
3419 static int validate_slab_node(struct kmem_cache *s,
3420 		struct kmem_cache_node *n, unsigned long *map)
3421 {
3422 	unsigned long count = 0;
3423 	struct page *page;
3424 	unsigned long flags;
3425 
3426 	spin_lock_irqsave(&n->list_lock, flags);
3427 
3428 	list_for_each_entry(page, &n->partial, lru) {
3429 		validate_slab_slab(s, page, map);
3430 		count++;
3431 	}
3432 	if (count != n->nr_partial)
3433 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3434 			"counter=%ld\n", s->name, count, n->nr_partial);
3435 
3436 	if (!(s->flags & SLAB_STORE_USER))
3437 		goto out;
3438 
3439 	list_for_each_entry(page, &n->full, lru) {
3440 		validate_slab_slab(s, page, map);
3441 		count++;
3442 	}
3443 	if (count != atomic_long_read(&n->nr_slabs))
3444 		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3445 			"counter=%ld\n", s->name, count,
3446 			atomic_long_read(&n->nr_slabs));
3447 
3448 out:
3449 	spin_unlock_irqrestore(&n->list_lock, flags);
3450 	return count;
3451 }
3452 
3453 static long validate_slab_cache(struct kmem_cache *s)
3454 {
3455 	int node;
3456 	unsigned long count = 0;
3457 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3458 				sizeof(unsigned long), GFP_KERNEL);
3459 
3460 	if (!map)
3461 		return -ENOMEM;
3462 
3463 	flush_all(s);
3464 	for_each_node_state(node, N_NORMAL_MEMORY) {
3465 		struct kmem_cache_node *n = get_node(s, node);
3466 
3467 		count += validate_slab_node(s, n, map);
3468 	}
3469 	kfree(map);
3470 	return count;
3471 }
3472 
3473 #ifdef SLUB_RESILIENCY_TEST
3474 static void resiliency_test(void)
3475 {
3476 	u8 *p;
3477 
3478 	printk(KERN_ERR "SLUB resiliency testing\n");
3479 	printk(KERN_ERR "-----------------------\n");
3480 	printk(KERN_ERR "A. Corruption after allocation\n");
3481 
3482 	p = kzalloc(16, GFP_KERNEL);
3483 	p[16] = 0x12;
3484 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3485 			" 0x12->0x%p\n\n", p + 16);
3486 
3487 	validate_slab_cache(kmalloc_caches + 4);
3488 
3489 	/* Hmmm... The next two are dangerous */
3490 	p = kzalloc(32, GFP_KERNEL);
3491 	p[32 + sizeof(void *)] = 0x34;
3492 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3493 			" 0x34 -> -0x%p\n", p);
3494 	printk(KERN_ERR
3495 		"If allocated object is overwritten then not detectable\n\n");
3496 
3497 	validate_slab_cache(kmalloc_caches + 5);
3498 	p = kzalloc(64, GFP_KERNEL);
3499 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3500 	*p = 0x56;
3501 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3502 									p);
3503 	printk(KERN_ERR
3504 		"If allocated object is overwritten then not detectable\n\n");
3505 	validate_slab_cache(kmalloc_caches + 6);
3506 
3507 	printk(KERN_ERR "\nB. Corruption after free\n");
3508 	p = kzalloc(128, GFP_KERNEL);
3509 	kfree(p);
3510 	*p = 0x78;
3511 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3512 	validate_slab_cache(kmalloc_caches + 7);
3513 
3514 	p = kzalloc(256, GFP_KERNEL);
3515 	kfree(p);
3516 	p[50] = 0x9a;
3517 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3518 			p);
3519 	validate_slab_cache(kmalloc_caches + 8);
3520 
3521 	p = kzalloc(512, GFP_KERNEL);
3522 	kfree(p);
3523 	p[512] = 0xab;
3524 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3525 	validate_slab_cache(kmalloc_caches + 9);
3526 }
3527 #else
3528 static void resiliency_test(void) {};
3529 #endif
3530 
3531 /*
3532  * Generate lists of code addresses where slabcache objects are allocated
3533  * and freed.
3534  */
3535 
3536 struct location {
3537 	unsigned long count;
3538 	unsigned long addr;
3539 	long long sum_time;
3540 	long min_time;
3541 	long max_time;
3542 	long min_pid;
3543 	long max_pid;
3544 	DECLARE_BITMAP(cpus, NR_CPUS);
3545 	nodemask_t nodes;
3546 };
3547 
3548 struct loc_track {
3549 	unsigned long max;
3550 	unsigned long count;
3551 	struct location *loc;
3552 };
3553 
3554 static void free_loc_track(struct loc_track *t)
3555 {
3556 	if (t->max)
3557 		free_pages((unsigned long)t->loc,
3558 			get_order(sizeof(struct location) * t->max));
3559 }
3560 
3561 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3562 {
3563 	struct location *l;
3564 	int order;
3565 
3566 	order = get_order(sizeof(struct location) * max);
3567 
3568 	l = (void *)__get_free_pages(flags, order);
3569 	if (!l)
3570 		return 0;
3571 
3572 	if (t->count) {
3573 		memcpy(l, t->loc, sizeof(struct location) * t->count);
3574 		free_loc_track(t);
3575 	}
3576 	t->max = max;
3577 	t->loc = l;
3578 	return 1;
3579 }
3580 
3581 static int add_location(struct loc_track *t, struct kmem_cache *s,
3582 				const struct track *track)
3583 {
3584 	long start, end, pos;
3585 	struct location *l;
3586 	unsigned long caddr;
3587 	unsigned long age = jiffies - track->when;
3588 
3589 	start = -1;
3590 	end = t->count;
3591 
3592 	for ( ; ; ) {
3593 		pos = start + (end - start + 1) / 2;
3594 
3595 		/*
3596 		 * There is nothing at "end". If we end up there
3597 		 * we need to add something to before end.
3598 		 */
3599 		if (pos == end)
3600 			break;
3601 
3602 		caddr = t->loc[pos].addr;
3603 		if (track->addr == caddr) {
3604 
3605 			l = &t->loc[pos];
3606 			l->count++;
3607 			if (track->when) {
3608 				l->sum_time += age;
3609 				if (age < l->min_time)
3610 					l->min_time = age;
3611 				if (age > l->max_time)
3612 					l->max_time = age;
3613 
3614 				if (track->pid < l->min_pid)
3615 					l->min_pid = track->pid;
3616 				if (track->pid > l->max_pid)
3617 					l->max_pid = track->pid;
3618 
3619 				cpumask_set_cpu(track->cpu,
3620 						to_cpumask(l->cpus));
3621 			}
3622 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3623 			return 1;
3624 		}
3625 
3626 		if (track->addr < caddr)
3627 			end = pos;
3628 		else
3629 			start = pos;
3630 	}
3631 
3632 	/*
3633 	 * Not found. Insert new tracking element.
3634 	 */
3635 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3636 		return 0;
3637 
3638 	l = t->loc + pos;
3639 	if (pos < t->count)
3640 		memmove(l + 1, l,
3641 			(t->count - pos) * sizeof(struct location));
3642 	t->count++;
3643 	l->count = 1;
3644 	l->addr = track->addr;
3645 	l->sum_time = age;
3646 	l->min_time = age;
3647 	l->max_time = age;
3648 	l->min_pid = track->pid;
3649 	l->max_pid = track->pid;
3650 	cpumask_clear(to_cpumask(l->cpus));
3651 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3652 	nodes_clear(l->nodes);
3653 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3654 	return 1;
3655 }
3656 
3657 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3658 		struct page *page, enum track_item alloc)
3659 {
3660 	void *addr = page_address(page);
3661 	DECLARE_BITMAP(map, page->objects);
3662 	void *p;
3663 
3664 	bitmap_zero(map, page->objects);
3665 	for_each_free_object(p, s, page->freelist)
3666 		set_bit(slab_index(p, s, addr), map);
3667 
3668 	for_each_object(p, s, addr, page->objects)
3669 		if (!test_bit(slab_index(p, s, addr), map))
3670 			add_location(t, s, get_track(s, p, alloc));
3671 }
3672 
3673 static int list_locations(struct kmem_cache *s, char *buf,
3674 					enum track_item alloc)
3675 {
3676 	int len = 0;
3677 	unsigned long i;
3678 	struct loc_track t = { 0, 0, NULL };
3679 	int node;
3680 
3681 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3682 			GFP_TEMPORARY))
3683 		return sprintf(buf, "Out of memory\n");
3684 
3685 	/* Push back cpu slabs */
3686 	flush_all(s);
3687 
3688 	for_each_node_state(node, N_NORMAL_MEMORY) {
3689 		struct kmem_cache_node *n = get_node(s, node);
3690 		unsigned long flags;
3691 		struct page *page;
3692 
3693 		if (!atomic_long_read(&n->nr_slabs))
3694 			continue;
3695 
3696 		spin_lock_irqsave(&n->list_lock, flags);
3697 		list_for_each_entry(page, &n->partial, lru)
3698 			process_slab(&t, s, page, alloc);
3699 		list_for_each_entry(page, &n->full, lru)
3700 			process_slab(&t, s, page, alloc);
3701 		spin_unlock_irqrestore(&n->list_lock, flags);
3702 	}
3703 
3704 	for (i = 0; i < t.count; i++) {
3705 		struct location *l = &t.loc[i];
3706 
3707 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3708 			break;
3709 		len += sprintf(buf + len, "%7ld ", l->count);
3710 
3711 		if (l->addr)
3712 			len += sprint_symbol(buf + len, (unsigned long)l->addr);
3713 		else
3714 			len += sprintf(buf + len, "<not-available>");
3715 
3716 		if (l->sum_time != l->min_time) {
3717 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
3718 				l->min_time,
3719 				(long)div_u64(l->sum_time, l->count),
3720 				l->max_time);
3721 		} else
3722 			len += sprintf(buf + len, " age=%ld",
3723 				l->min_time);
3724 
3725 		if (l->min_pid != l->max_pid)
3726 			len += sprintf(buf + len, " pid=%ld-%ld",
3727 				l->min_pid, l->max_pid);
3728 		else
3729 			len += sprintf(buf + len, " pid=%ld",
3730 				l->min_pid);
3731 
3732 		if (num_online_cpus() > 1 &&
3733 				!cpumask_empty(to_cpumask(l->cpus)) &&
3734 				len < PAGE_SIZE - 60) {
3735 			len += sprintf(buf + len, " cpus=");
3736 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3737 						 to_cpumask(l->cpus));
3738 		}
3739 
3740 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3741 				len < PAGE_SIZE - 60) {
3742 			len += sprintf(buf + len, " nodes=");
3743 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3744 					l->nodes);
3745 		}
3746 
3747 		len += sprintf(buf + len, "\n");
3748 	}
3749 
3750 	free_loc_track(&t);
3751 	if (!t.count)
3752 		len += sprintf(buf, "No data\n");
3753 	return len;
3754 }
3755 
3756 enum slab_stat_type {
3757 	SL_ALL,			/* All slabs */
3758 	SL_PARTIAL,		/* Only partially allocated slabs */
3759 	SL_CPU,			/* Only slabs used for cpu caches */
3760 	SL_OBJECTS,		/* Determine allocated objects not slabs */
3761 	SL_TOTAL		/* Determine object capacity not slabs */
3762 };
3763 
3764 #define SO_ALL		(1 << SL_ALL)
3765 #define SO_PARTIAL	(1 << SL_PARTIAL)
3766 #define SO_CPU		(1 << SL_CPU)
3767 #define SO_OBJECTS	(1 << SL_OBJECTS)
3768 #define SO_TOTAL	(1 << SL_TOTAL)
3769 
3770 static ssize_t show_slab_objects(struct kmem_cache *s,
3771 			    char *buf, unsigned long flags)
3772 {
3773 	unsigned long total = 0;
3774 	int node;
3775 	int x;
3776 	unsigned long *nodes;
3777 	unsigned long *per_cpu;
3778 
3779 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3780 	if (!nodes)
3781 		return -ENOMEM;
3782 	per_cpu = nodes + nr_node_ids;
3783 
3784 	if (flags & SO_CPU) {
3785 		int cpu;
3786 
3787 		for_each_possible_cpu(cpu) {
3788 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3789 
3790 			if (!c || c->node < 0)
3791 				continue;
3792 
3793 			if (c->page) {
3794 					if (flags & SO_TOTAL)
3795 						x = c->page->objects;
3796 				else if (flags & SO_OBJECTS)
3797 					x = c->page->inuse;
3798 				else
3799 					x = 1;
3800 
3801 				total += x;
3802 				nodes[c->node] += x;
3803 			}
3804 			per_cpu[c->node]++;
3805 		}
3806 	}
3807 
3808 	if (flags & SO_ALL) {
3809 		for_each_node_state(node, N_NORMAL_MEMORY) {
3810 			struct kmem_cache_node *n = get_node(s, node);
3811 
3812 		if (flags & SO_TOTAL)
3813 			x = atomic_long_read(&n->total_objects);
3814 		else if (flags & SO_OBJECTS)
3815 			x = atomic_long_read(&n->total_objects) -
3816 				count_partial(n, count_free);
3817 
3818 			else
3819 				x = atomic_long_read(&n->nr_slabs);
3820 			total += x;
3821 			nodes[node] += x;
3822 		}
3823 
3824 	} else if (flags & SO_PARTIAL) {
3825 		for_each_node_state(node, N_NORMAL_MEMORY) {
3826 			struct kmem_cache_node *n = get_node(s, node);
3827 
3828 			if (flags & SO_TOTAL)
3829 				x = count_partial(n, count_total);
3830 			else if (flags & SO_OBJECTS)
3831 				x = count_partial(n, count_inuse);
3832 			else
3833 				x = n->nr_partial;
3834 			total += x;
3835 			nodes[node] += x;
3836 		}
3837 	}
3838 	x = sprintf(buf, "%lu", total);
3839 #ifdef CONFIG_NUMA
3840 	for_each_node_state(node, N_NORMAL_MEMORY)
3841 		if (nodes[node])
3842 			x += sprintf(buf + x, " N%d=%lu",
3843 					node, nodes[node]);
3844 #endif
3845 	kfree(nodes);
3846 	return x + sprintf(buf + x, "\n");
3847 }
3848 
3849 static int any_slab_objects(struct kmem_cache *s)
3850 {
3851 	int node;
3852 
3853 	for_each_online_node(node) {
3854 		struct kmem_cache_node *n = get_node(s, node);
3855 
3856 		if (!n)
3857 			continue;
3858 
3859 		if (atomic_long_read(&n->total_objects))
3860 			return 1;
3861 	}
3862 	return 0;
3863 }
3864 
3865 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3866 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3867 
3868 struct slab_attribute {
3869 	struct attribute attr;
3870 	ssize_t (*show)(struct kmem_cache *s, char *buf);
3871 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3872 };
3873 
3874 #define SLAB_ATTR_RO(_name) \
3875 	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3876 
3877 #define SLAB_ATTR(_name) \
3878 	static struct slab_attribute _name##_attr =  \
3879 	__ATTR(_name, 0644, _name##_show, _name##_store)
3880 
3881 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3882 {
3883 	return sprintf(buf, "%d\n", s->size);
3884 }
3885 SLAB_ATTR_RO(slab_size);
3886 
3887 static ssize_t align_show(struct kmem_cache *s, char *buf)
3888 {
3889 	return sprintf(buf, "%d\n", s->align);
3890 }
3891 SLAB_ATTR_RO(align);
3892 
3893 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3894 {
3895 	return sprintf(buf, "%d\n", s->objsize);
3896 }
3897 SLAB_ATTR_RO(object_size);
3898 
3899 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3900 {
3901 	return sprintf(buf, "%d\n", oo_objects(s->oo));
3902 }
3903 SLAB_ATTR_RO(objs_per_slab);
3904 
3905 static ssize_t order_store(struct kmem_cache *s,
3906 				const char *buf, size_t length)
3907 {
3908 	unsigned long order;
3909 	int err;
3910 
3911 	err = strict_strtoul(buf, 10, &order);
3912 	if (err)
3913 		return err;
3914 
3915 	if (order > slub_max_order || order < slub_min_order)
3916 		return -EINVAL;
3917 
3918 	calculate_sizes(s, order);
3919 	return length;
3920 }
3921 
3922 static ssize_t order_show(struct kmem_cache *s, char *buf)
3923 {
3924 	return sprintf(buf, "%d\n", oo_order(s->oo));
3925 }
3926 SLAB_ATTR(order);
3927 
3928 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3929 {
3930 	return sprintf(buf, "%lu\n", s->min_partial);
3931 }
3932 
3933 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3934 				 size_t length)
3935 {
3936 	unsigned long min;
3937 	int err;
3938 
3939 	err = strict_strtoul(buf, 10, &min);
3940 	if (err)
3941 		return err;
3942 
3943 	set_min_partial(s, min);
3944 	return length;
3945 }
3946 SLAB_ATTR(min_partial);
3947 
3948 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3949 {
3950 	if (s->ctor) {
3951 		int n = sprint_symbol(buf, (unsigned long)s->ctor);
3952 
3953 		return n + sprintf(buf + n, "\n");
3954 	}
3955 	return 0;
3956 }
3957 SLAB_ATTR_RO(ctor);
3958 
3959 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3960 {
3961 	return sprintf(buf, "%d\n", s->refcount - 1);
3962 }
3963 SLAB_ATTR_RO(aliases);
3964 
3965 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3966 {
3967 	return show_slab_objects(s, buf, SO_ALL);
3968 }
3969 SLAB_ATTR_RO(slabs);
3970 
3971 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3972 {
3973 	return show_slab_objects(s, buf, SO_PARTIAL);
3974 }
3975 SLAB_ATTR_RO(partial);
3976 
3977 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3978 {
3979 	return show_slab_objects(s, buf, SO_CPU);
3980 }
3981 SLAB_ATTR_RO(cpu_slabs);
3982 
3983 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3984 {
3985 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3986 }
3987 SLAB_ATTR_RO(objects);
3988 
3989 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3990 {
3991 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3992 }
3993 SLAB_ATTR_RO(objects_partial);
3994 
3995 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3996 {
3997 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3998 }
3999 SLAB_ATTR_RO(total_objects);
4000 
4001 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4002 {
4003 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4004 }
4005 
4006 static ssize_t sanity_checks_store(struct kmem_cache *s,
4007 				const char *buf, size_t length)
4008 {
4009 	s->flags &= ~SLAB_DEBUG_FREE;
4010 	if (buf[0] == '1')
4011 		s->flags |= SLAB_DEBUG_FREE;
4012 	return length;
4013 }
4014 SLAB_ATTR(sanity_checks);
4015 
4016 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4017 {
4018 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4019 }
4020 
4021 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4022 							size_t length)
4023 {
4024 	s->flags &= ~SLAB_TRACE;
4025 	if (buf[0] == '1')
4026 		s->flags |= SLAB_TRACE;
4027 	return length;
4028 }
4029 SLAB_ATTR(trace);
4030 
4031 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4032 {
4033 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4034 }
4035 
4036 static ssize_t reclaim_account_store(struct kmem_cache *s,
4037 				const char *buf, size_t length)
4038 {
4039 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4040 	if (buf[0] == '1')
4041 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4042 	return length;
4043 }
4044 SLAB_ATTR(reclaim_account);
4045 
4046 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4047 {
4048 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4049 }
4050 SLAB_ATTR_RO(hwcache_align);
4051 
4052 #ifdef CONFIG_ZONE_DMA
4053 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4054 {
4055 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4056 }
4057 SLAB_ATTR_RO(cache_dma);
4058 #endif
4059 
4060 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4061 {
4062 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4063 }
4064 SLAB_ATTR_RO(destroy_by_rcu);
4065 
4066 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4067 {
4068 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4069 }
4070 
4071 static ssize_t red_zone_store(struct kmem_cache *s,
4072 				const char *buf, size_t length)
4073 {
4074 	if (any_slab_objects(s))
4075 		return -EBUSY;
4076 
4077 	s->flags &= ~SLAB_RED_ZONE;
4078 	if (buf[0] == '1')
4079 		s->flags |= SLAB_RED_ZONE;
4080 	calculate_sizes(s, -1);
4081 	return length;
4082 }
4083 SLAB_ATTR(red_zone);
4084 
4085 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4086 {
4087 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4088 }
4089 
4090 static ssize_t poison_store(struct kmem_cache *s,
4091 				const char *buf, size_t length)
4092 {
4093 	if (any_slab_objects(s))
4094 		return -EBUSY;
4095 
4096 	s->flags &= ~SLAB_POISON;
4097 	if (buf[0] == '1')
4098 		s->flags |= SLAB_POISON;
4099 	calculate_sizes(s, -1);
4100 	return length;
4101 }
4102 SLAB_ATTR(poison);
4103 
4104 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4105 {
4106 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4107 }
4108 
4109 static ssize_t store_user_store(struct kmem_cache *s,
4110 				const char *buf, size_t length)
4111 {
4112 	if (any_slab_objects(s))
4113 		return -EBUSY;
4114 
4115 	s->flags &= ~SLAB_STORE_USER;
4116 	if (buf[0] == '1')
4117 		s->flags |= SLAB_STORE_USER;
4118 	calculate_sizes(s, -1);
4119 	return length;
4120 }
4121 SLAB_ATTR(store_user);
4122 
4123 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4124 {
4125 	return 0;
4126 }
4127 
4128 static ssize_t validate_store(struct kmem_cache *s,
4129 			const char *buf, size_t length)
4130 {
4131 	int ret = -EINVAL;
4132 
4133 	if (buf[0] == '1') {
4134 		ret = validate_slab_cache(s);
4135 		if (ret >= 0)
4136 			ret = length;
4137 	}
4138 	return ret;
4139 }
4140 SLAB_ATTR(validate);
4141 
4142 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4143 {
4144 	return 0;
4145 }
4146 
4147 static ssize_t shrink_store(struct kmem_cache *s,
4148 			const char *buf, size_t length)
4149 {
4150 	if (buf[0] == '1') {
4151 		int rc = kmem_cache_shrink(s);
4152 
4153 		if (rc)
4154 			return rc;
4155 	} else
4156 		return -EINVAL;
4157 	return length;
4158 }
4159 SLAB_ATTR(shrink);
4160 
4161 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4162 {
4163 	if (!(s->flags & SLAB_STORE_USER))
4164 		return -ENOSYS;
4165 	return list_locations(s, buf, TRACK_ALLOC);
4166 }
4167 SLAB_ATTR_RO(alloc_calls);
4168 
4169 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4170 {
4171 	if (!(s->flags & SLAB_STORE_USER))
4172 		return -ENOSYS;
4173 	return list_locations(s, buf, TRACK_FREE);
4174 }
4175 SLAB_ATTR_RO(free_calls);
4176 
4177 #ifdef CONFIG_NUMA
4178 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4179 {
4180 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4181 }
4182 
4183 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4184 				const char *buf, size_t length)
4185 {
4186 	unsigned long ratio;
4187 	int err;
4188 
4189 	err = strict_strtoul(buf, 10, &ratio);
4190 	if (err)
4191 		return err;
4192 
4193 	if (ratio <= 100)
4194 		s->remote_node_defrag_ratio = ratio * 10;
4195 
4196 	return length;
4197 }
4198 SLAB_ATTR(remote_node_defrag_ratio);
4199 #endif
4200 
4201 #ifdef CONFIG_SLUB_STATS
4202 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4203 {
4204 	unsigned long sum  = 0;
4205 	int cpu;
4206 	int len;
4207 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4208 
4209 	if (!data)
4210 		return -ENOMEM;
4211 
4212 	for_each_online_cpu(cpu) {
4213 		unsigned x = get_cpu_slab(s, cpu)->stat[si];
4214 
4215 		data[cpu] = x;
4216 		sum += x;
4217 	}
4218 
4219 	len = sprintf(buf, "%lu", sum);
4220 
4221 #ifdef CONFIG_SMP
4222 	for_each_online_cpu(cpu) {
4223 		if (data[cpu] && len < PAGE_SIZE - 20)
4224 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4225 	}
4226 #endif
4227 	kfree(data);
4228 	return len + sprintf(buf + len, "\n");
4229 }
4230 
4231 #define STAT_ATTR(si, text) 					\
4232 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4233 {								\
4234 	return show_stat(s, buf, si);				\
4235 }								\
4236 SLAB_ATTR_RO(text);						\
4237 
4238 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4239 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4240 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4241 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4242 STAT_ATTR(FREE_FROZEN, free_frozen);
4243 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4244 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4245 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4246 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4247 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4248 STAT_ATTR(FREE_SLAB, free_slab);
4249 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4250 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4251 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4252 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4253 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4254 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4255 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4256 #endif
4257 
4258 static struct attribute *slab_attrs[] = {
4259 	&slab_size_attr.attr,
4260 	&object_size_attr.attr,
4261 	&objs_per_slab_attr.attr,
4262 	&order_attr.attr,
4263 	&min_partial_attr.attr,
4264 	&objects_attr.attr,
4265 	&objects_partial_attr.attr,
4266 	&total_objects_attr.attr,
4267 	&slabs_attr.attr,
4268 	&partial_attr.attr,
4269 	&cpu_slabs_attr.attr,
4270 	&ctor_attr.attr,
4271 	&aliases_attr.attr,
4272 	&align_attr.attr,
4273 	&sanity_checks_attr.attr,
4274 	&trace_attr.attr,
4275 	&hwcache_align_attr.attr,
4276 	&reclaim_account_attr.attr,
4277 	&destroy_by_rcu_attr.attr,
4278 	&red_zone_attr.attr,
4279 	&poison_attr.attr,
4280 	&store_user_attr.attr,
4281 	&validate_attr.attr,
4282 	&shrink_attr.attr,
4283 	&alloc_calls_attr.attr,
4284 	&free_calls_attr.attr,
4285 #ifdef CONFIG_ZONE_DMA
4286 	&cache_dma_attr.attr,
4287 #endif
4288 #ifdef CONFIG_NUMA
4289 	&remote_node_defrag_ratio_attr.attr,
4290 #endif
4291 #ifdef CONFIG_SLUB_STATS
4292 	&alloc_fastpath_attr.attr,
4293 	&alloc_slowpath_attr.attr,
4294 	&free_fastpath_attr.attr,
4295 	&free_slowpath_attr.attr,
4296 	&free_frozen_attr.attr,
4297 	&free_add_partial_attr.attr,
4298 	&free_remove_partial_attr.attr,
4299 	&alloc_from_partial_attr.attr,
4300 	&alloc_slab_attr.attr,
4301 	&alloc_refill_attr.attr,
4302 	&free_slab_attr.attr,
4303 	&cpuslab_flush_attr.attr,
4304 	&deactivate_full_attr.attr,
4305 	&deactivate_empty_attr.attr,
4306 	&deactivate_to_head_attr.attr,
4307 	&deactivate_to_tail_attr.attr,
4308 	&deactivate_remote_frees_attr.attr,
4309 	&order_fallback_attr.attr,
4310 #endif
4311 	NULL
4312 };
4313 
4314 static struct attribute_group slab_attr_group = {
4315 	.attrs = slab_attrs,
4316 };
4317 
4318 static ssize_t slab_attr_show(struct kobject *kobj,
4319 				struct attribute *attr,
4320 				char *buf)
4321 {
4322 	struct slab_attribute *attribute;
4323 	struct kmem_cache *s;
4324 	int err;
4325 
4326 	attribute = to_slab_attr(attr);
4327 	s = to_slab(kobj);
4328 
4329 	if (!attribute->show)
4330 		return -EIO;
4331 
4332 	err = attribute->show(s, buf);
4333 
4334 	return err;
4335 }
4336 
4337 static ssize_t slab_attr_store(struct kobject *kobj,
4338 				struct attribute *attr,
4339 				const char *buf, size_t len)
4340 {
4341 	struct slab_attribute *attribute;
4342 	struct kmem_cache *s;
4343 	int err;
4344 
4345 	attribute = to_slab_attr(attr);
4346 	s = to_slab(kobj);
4347 
4348 	if (!attribute->store)
4349 		return -EIO;
4350 
4351 	err = attribute->store(s, buf, len);
4352 
4353 	return err;
4354 }
4355 
4356 static void kmem_cache_release(struct kobject *kobj)
4357 {
4358 	struct kmem_cache *s = to_slab(kobj);
4359 
4360 	kfree(s);
4361 }
4362 
4363 static struct sysfs_ops slab_sysfs_ops = {
4364 	.show = slab_attr_show,
4365 	.store = slab_attr_store,
4366 };
4367 
4368 static struct kobj_type slab_ktype = {
4369 	.sysfs_ops = &slab_sysfs_ops,
4370 	.release = kmem_cache_release
4371 };
4372 
4373 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4374 {
4375 	struct kobj_type *ktype = get_ktype(kobj);
4376 
4377 	if (ktype == &slab_ktype)
4378 		return 1;
4379 	return 0;
4380 }
4381 
4382 static struct kset_uevent_ops slab_uevent_ops = {
4383 	.filter = uevent_filter,
4384 };
4385 
4386 static struct kset *slab_kset;
4387 
4388 #define ID_STR_LENGTH 64
4389 
4390 /* Create a unique string id for a slab cache:
4391  *
4392  * Format	:[flags-]size
4393  */
4394 static char *create_unique_id(struct kmem_cache *s)
4395 {
4396 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4397 	char *p = name;
4398 
4399 	BUG_ON(!name);
4400 
4401 	*p++ = ':';
4402 	/*
4403 	 * First flags affecting slabcache operations. We will only
4404 	 * get here for aliasable slabs so we do not need to support
4405 	 * too many flags. The flags here must cover all flags that
4406 	 * are matched during merging to guarantee that the id is
4407 	 * unique.
4408 	 */
4409 	if (s->flags & SLAB_CACHE_DMA)
4410 		*p++ = 'd';
4411 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4412 		*p++ = 'a';
4413 	if (s->flags & SLAB_DEBUG_FREE)
4414 		*p++ = 'F';
4415 	if (p != name + 1)
4416 		*p++ = '-';
4417 	p += sprintf(p, "%07d", s->size);
4418 	BUG_ON(p > name + ID_STR_LENGTH - 1);
4419 	return name;
4420 }
4421 
4422 static int sysfs_slab_add(struct kmem_cache *s)
4423 {
4424 	int err;
4425 	const char *name;
4426 	int unmergeable;
4427 
4428 	if (slab_state < SYSFS)
4429 		/* Defer until later */
4430 		return 0;
4431 
4432 	unmergeable = slab_unmergeable(s);
4433 	if (unmergeable) {
4434 		/*
4435 		 * Slabcache can never be merged so we can use the name proper.
4436 		 * This is typically the case for debug situations. In that
4437 		 * case we can catch duplicate names easily.
4438 		 */
4439 		sysfs_remove_link(&slab_kset->kobj, s->name);
4440 		name = s->name;
4441 	} else {
4442 		/*
4443 		 * Create a unique name for the slab as a target
4444 		 * for the symlinks.
4445 		 */
4446 		name = create_unique_id(s);
4447 	}
4448 
4449 	s->kobj.kset = slab_kset;
4450 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4451 	if (err) {
4452 		kobject_put(&s->kobj);
4453 		return err;
4454 	}
4455 
4456 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
4457 	if (err)
4458 		return err;
4459 	kobject_uevent(&s->kobj, KOBJ_ADD);
4460 	if (!unmergeable) {
4461 		/* Setup first alias */
4462 		sysfs_slab_alias(s, s->name);
4463 		kfree(name);
4464 	}
4465 	return 0;
4466 }
4467 
4468 static void sysfs_slab_remove(struct kmem_cache *s)
4469 {
4470 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
4471 	kobject_del(&s->kobj);
4472 	kobject_put(&s->kobj);
4473 }
4474 
4475 /*
4476  * Need to buffer aliases during bootup until sysfs becomes
4477  * available lest we lose that information.
4478  */
4479 struct saved_alias {
4480 	struct kmem_cache *s;
4481 	const char *name;
4482 	struct saved_alias *next;
4483 };
4484 
4485 static struct saved_alias *alias_list;
4486 
4487 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4488 {
4489 	struct saved_alias *al;
4490 
4491 	if (slab_state == SYSFS) {
4492 		/*
4493 		 * If we have a leftover link then remove it.
4494 		 */
4495 		sysfs_remove_link(&slab_kset->kobj, name);
4496 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4497 	}
4498 
4499 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4500 	if (!al)
4501 		return -ENOMEM;
4502 
4503 	al->s = s;
4504 	al->name = name;
4505 	al->next = alias_list;
4506 	alias_list = al;
4507 	return 0;
4508 }
4509 
4510 static int __init slab_sysfs_init(void)
4511 {
4512 	struct kmem_cache *s;
4513 	int err;
4514 
4515 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4516 	if (!slab_kset) {
4517 		printk(KERN_ERR "Cannot register slab subsystem.\n");
4518 		return -ENOSYS;
4519 	}
4520 
4521 	slab_state = SYSFS;
4522 
4523 	list_for_each_entry(s, &slab_caches, list) {
4524 		err = sysfs_slab_add(s);
4525 		if (err)
4526 			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4527 						" to sysfs\n", s->name);
4528 	}
4529 
4530 	while (alias_list) {
4531 		struct saved_alias *al = alias_list;
4532 
4533 		alias_list = alias_list->next;
4534 		err = sysfs_slab_alias(al->s, al->name);
4535 		if (err)
4536 			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4537 					" %s to sysfs\n", s->name);
4538 		kfree(al);
4539 	}
4540 
4541 	resiliency_test();
4542 	return 0;
4543 }
4544 
4545 __initcall(slab_sysfs_init);
4546 #endif
4547 
4548 /*
4549  * The /proc/slabinfo ABI
4550  */
4551 #ifdef CONFIG_SLABINFO
4552 static void print_slabinfo_header(struct seq_file *m)
4553 {
4554 	seq_puts(m, "slabinfo - version: 2.1\n");
4555 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4556 		 "<objperslab> <pagesperslab>");
4557 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4558 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4559 	seq_putc(m, '\n');
4560 }
4561 
4562 static void *s_start(struct seq_file *m, loff_t *pos)
4563 {
4564 	loff_t n = *pos;
4565 
4566 	down_read(&slub_lock);
4567 	if (!n)
4568 		print_slabinfo_header(m);
4569 
4570 	return seq_list_start(&slab_caches, *pos);
4571 }
4572 
4573 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4574 {
4575 	return seq_list_next(p, &slab_caches, pos);
4576 }
4577 
4578 static void s_stop(struct seq_file *m, void *p)
4579 {
4580 	up_read(&slub_lock);
4581 }
4582 
4583 static int s_show(struct seq_file *m, void *p)
4584 {
4585 	unsigned long nr_partials = 0;
4586 	unsigned long nr_slabs = 0;
4587 	unsigned long nr_inuse = 0;
4588 	unsigned long nr_objs = 0;
4589 	unsigned long nr_free = 0;
4590 	struct kmem_cache *s;
4591 	int node;
4592 
4593 	s = list_entry(p, struct kmem_cache, list);
4594 
4595 	for_each_online_node(node) {
4596 		struct kmem_cache_node *n = get_node(s, node);
4597 
4598 		if (!n)
4599 			continue;
4600 
4601 		nr_partials += n->nr_partial;
4602 		nr_slabs += atomic_long_read(&n->nr_slabs);
4603 		nr_objs += atomic_long_read(&n->total_objects);
4604 		nr_free += count_partial(n, count_free);
4605 	}
4606 
4607 	nr_inuse = nr_objs - nr_free;
4608 
4609 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4610 		   nr_objs, s->size, oo_objects(s->oo),
4611 		   (1 << oo_order(s->oo)));
4612 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4613 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4614 		   0UL);
4615 	seq_putc(m, '\n');
4616 	return 0;
4617 }
4618 
4619 static const struct seq_operations slabinfo_op = {
4620 	.start = s_start,
4621 	.next = s_next,
4622 	.stop = s_stop,
4623 	.show = s_show,
4624 };
4625 
4626 static int slabinfo_open(struct inode *inode, struct file *file)
4627 {
4628 	return seq_open(file, &slabinfo_op);
4629 }
4630 
4631 static const struct file_operations proc_slabinfo_operations = {
4632 	.open		= slabinfo_open,
4633 	.read		= seq_read,
4634 	.llseek		= seq_lseek,
4635 	.release	= seq_release,
4636 };
4637 
4638 static int __init slab_proc_init(void)
4639 {
4640 	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4641 	return 0;
4642 }
4643 module_init(slab_proc_init);
4644 #endif /* CONFIG_SLABINFO */
4645