1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/kfence.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 #include <linux/random.h> 38 39 #include <trace/events/kmem.h> 40 41 #include "internal.h" 42 43 /* 44 * Lock order: 45 * 1. slab_mutex (Global Mutex) 46 * 2. node->list_lock 47 * 3. slab_lock(page) (Only on some arches and for debugging) 48 * 49 * slab_mutex 50 * 51 * The role of the slab_mutex is to protect the list of all the slabs 52 * and to synchronize major metadata changes to slab cache structures. 53 * 54 * The slab_lock is only used for debugging and on arches that do not 55 * have the ability to do a cmpxchg_double. It only protects: 56 * A. page->freelist -> List of object free in a page 57 * B. page->inuse -> Number of objects in use 58 * C. page->objects -> Number of objects in page 59 * D. page->frozen -> frozen state 60 * 61 * If a slab is frozen then it is exempt from list management. It is not 62 * on any list except per cpu partial list. The processor that froze the 63 * slab is the one who can perform list operations on the page. Other 64 * processors may put objects onto the freelist but the processor that 65 * froze the slab is the only one that can retrieve the objects from the 66 * page's freelist. 67 * 68 * The list_lock protects the partial and full list on each node and 69 * the partial slab counter. If taken then no new slabs may be added or 70 * removed from the lists nor make the number of partial slabs be modified. 71 * (Note that the total number of slabs is an atomic value that may be 72 * modified without taking the list lock). 73 * 74 * The list_lock is a centralized lock and thus we avoid taking it as 75 * much as possible. As long as SLUB does not have to handle partial 76 * slabs, operations can continue without any centralized lock. F.e. 77 * allocating a long series of objects that fill up slabs does not require 78 * the list lock. 79 * Interrupts are disabled during allocation and deallocation in order to 80 * make the slab allocator safe to use in the context of an irq. In addition 81 * interrupts are disabled to ensure that the processor does not change 82 * while handling per_cpu slabs, due to kernel preemption. 83 * 84 * SLUB assigns one slab for allocation to each processor. 85 * Allocations only occur from these slabs called cpu slabs. 86 * 87 * Slabs with free elements are kept on a partial list and during regular 88 * operations no list for full slabs is used. If an object in a full slab is 89 * freed then the slab will show up again on the partial lists. 90 * We track full slabs for debugging purposes though because otherwise we 91 * cannot scan all objects. 92 * 93 * Slabs are freed when they become empty. Teardown and setup is 94 * minimal so we rely on the page allocators per cpu caches for 95 * fast frees and allocs. 96 * 97 * page->frozen The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 #ifdef CONFIG_SLUB_DEBUG 119 #ifdef CONFIG_SLUB_DEBUG_ON 120 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 121 #else 122 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 123 #endif 124 #endif 125 126 static inline bool kmem_cache_debug(struct kmem_cache *s) 127 { 128 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 129 } 130 131 void *fixup_red_left(struct kmem_cache *s, void *p) 132 { 133 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 134 p += s->red_left_pad; 135 136 return p; 137 } 138 139 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 140 { 141 #ifdef CONFIG_SLUB_CPU_PARTIAL 142 return !kmem_cache_debug(s); 143 #else 144 return false; 145 #endif 146 } 147 148 /* 149 * Issues still to be resolved: 150 * 151 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 152 * 153 * - Variable sizing of the per node arrays 154 */ 155 156 /* Enable to test recovery from slab corruption on boot */ 157 #undef SLUB_RESILIENCY_TEST 158 159 /* Enable to log cmpxchg failures */ 160 #undef SLUB_DEBUG_CMPXCHG 161 162 /* 163 * Mininum number of partial slabs. These will be left on the partial 164 * lists even if they are empty. kmem_cache_shrink may reclaim them. 165 */ 166 #define MIN_PARTIAL 5 167 168 /* 169 * Maximum number of desirable partial slabs. 170 * The existence of more partial slabs makes kmem_cache_shrink 171 * sort the partial list by the number of objects in use. 172 */ 173 #define MAX_PARTIAL 10 174 175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 176 SLAB_POISON | SLAB_STORE_USER) 177 178 /* 179 * These debug flags cannot use CMPXCHG because there might be consistency 180 * issues when checking or reading debug information 181 */ 182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 183 SLAB_TRACE) 184 185 186 /* 187 * Debugging flags that require metadata to be stored in the slab. These get 188 * disabled when slub_debug=O is used and a cache's min order increases with 189 * metadata. 190 */ 191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 192 193 #define OO_SHIFT 16 194 #define OO_MASK ((1 << OO_SHIFT) - 1) 195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 196 197 /* Internal SLUB flags */ 198 /* Poison object */ 199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 200 /* Use cmpxchg_double */ 201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 202 203 /* 204 * Tracking user of a slab. 205 */ 206 #define TRACK_ADDRS_COUNT 16 207 struct track { 208 unsigned long addr; /* Called from address */ 209 #ifdef CONFIG_STACKTRACE 210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 211 #endif 212 int cpu; /* Was running on cpu */ 213 int pid; /* Pid context */ 214 unsigned long when; /* When did the operation occur */ 215 }; 216 217 enum track_item { TRACK_ALLOC, TRACK_FREE }; 218 219 #ifdef CONFIG_SYSFS 220 static int sysfs_slab_add(struct kmem_cache *); 221 static int sysfs_slab_alias(struct kmem_cache *, const char *); 222 #else 223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 225 { return 0; } 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 /* 232 * The rmw is racy on a preemptible kernel but this is acceptable, so 233 * avoid this_cpu_add()'s irq-disable overhead. 234 */ 235 raw_cpu_inc(s->cpu_slab->stat[si]); 236 #endif 237 } 238 239 /* 240 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 241 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 242 * differ during memory hotplug/hotremove operations. 243 * Protected by slab_mutex. 244 */ 245 static nodemask_t slab_nodes; 246 247 /******************************************************************** 248 * Core slab cache functions 249 *******************************************************************/ 250 251 /* 252 * Returns freelist pointer (ptr). With hardening, this is obfuscated 253 * with an XOR of the address where the pointer is held and a per-cache 254 * random number. 255 */ 256 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 257 unsigned long ptr_addr) 258 { 259 #ifdef CONFIG_SLAB_FREELIST_HARDENED 260 /* 261 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 262 * Normally, this doesn't cause any issues, as both set_freepointer() 263 * and get_freepointer() are called with a pointer with the same tag. 264 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 265 * example, when __free_slub() iterates over objects in a cache, it 266 * passes untagged pointers to check_object(). check_object() in turns 267 * calls get_freepointer() with an untagged pointer, which causes the 268 * freepointer to be restored incorrectly. 269 */ 270 return (void *)((unsigned long)ptr ^ s->random ^ 271 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 272 #else 273 return ptr; 274 #endif 275 } 276 277 /* Returns the freelist pointer recorded at location ptr_addr. */ 278 static inline void *freelist_dereference(const struct kmem_cache *s, 279 void *ptr_addr) 280 { 281 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 282 (unsigned long)ptr_addr); 283 } 284 285 static inline void *get_freepointer(struct kmem_cache *s, void *object) 286 { 287 object = kasan_reset_tag(object); 288 return freelist_dereference(s, object + s->offset); 289 } 290 291 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 292 { 293 prefetch(object + s->offset); 294 } 295 296 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 297 { 298 unsigned long freepointer_addr; 299 void *p; 300 301 if (!debug_pagealloc_enabled_static()) 302 return get_freepointer(s, object); 303 304 freepointer_addr = (unsigned long)object + s->offset; 305 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 306 return freelist_ptr(s, p, freepointer_addr); 307 } 308 309 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 310 { 311 unsigned long freeptr_addr = (unsigned long)object + s->offset; 312 313 #ifdef CONFIG_SLAB_FREELIST_HARDENED 314 BUG_ON(object == fp); /* naive detection of double free or corruption */ 315 #endif 316 317 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 318 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 319 } 320 321 /* Loop over all objects in a slab */ 322 #define for_each_object(__p, __s, __addr, __objects) \ 323 for (__p = fixup_red_left(__s, __addr); \ 324 __p < (__addr) + (__objects) * (__s)->size; \ 325 __p += (__s)->size) 326 327 static inline unsigned int order_objects(unsigned int order, unsigned int size) 328 { 329 return ((unsigned int)PAGE_SIZE << order) / size; 330 } 331 332 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 333 unsigned int size) 334 { 335 struct kmem_cache_order_objects x = { 336 (order << OO_SHIFT) + order_objects(order, size) 337 }; 338 339 return x; 340 } 341 342 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 343 { 344 return x.x >> OO_SHIFT; 345 } 346 347 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 348 { 349 return x.x & OO_MASK; 350 } 351 352 /* 353 * Per slab locking using the pagelock 354 */ 355 static __always_inline void slab_lock(struct page *page) 356 { 357 VM_BUG_ON_PAGE(PageTail(page), page); 358 bit_spin_lock(PG_locked, &page->flags); 359 } 360 361 static __always_inline void slab_unlock(struct page *page) 362 { 363 VM_BUG_ON_PAGE(PageTail(page), page); 364 __bit_spin_unlock(PG_locked, &page->flags); 365 } 366 367 /* Interrupts must be disabled (for the fallback code to work right) */ 368 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 369 void *freelist_old, unsigned long counters_old, 370 void *freelist_new, unsigned long counters_new, 371 const char *n) 372 { 373 VM_BUG_ON(!irqs_disabled()); 374 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 375 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 376 if (s->flags & __CMPXCHG_DOUBLE) { 377 if (cmpxchg_double(&page->freelist, &page->counters, 378 freelist_old, counters_old, 379 freelist_new, counters_new)) 380 return true; 381 } else 382 #endif 383 { 384 slab_lock(page); 385 if (page->freelist == freelist_old && 386 page->counters == counters_old) { 387 page->freelist = freelist_new; 388 page->counters = counters_new; 389 slab_unlock(page); 390 return true; 391 } 392 slab_unlock(page); 393 } 394 395 cpu_relax(); 396 stat(s, CMPXCHG_DOUBLE_FAIL); 397 398 #ifdef SLUB_DEBUG_CMPXCHG 399 pr_info("%s %s: cmpxchg double redo ", n, s->name); 400 #endif 401 402 return false; 403 } 404 405 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 406 void *freelist_old, unsigned long counters_old, 407 void *freelist_new, unsigned long counters_new, 408 const char *n) 409 { 410 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 412 if (s->flags & __CMPXCHG_DOUBLE) { 413 if (cmpxchg_double(&page->freelist, &page->counters, 414 freelist_old, counters_old, 415 freelist_new, counters_new)) 416 return true; 417 } else 418 #endif 419 { 420 unsigned long flags; 421 422 local_irq_save(flags); 423 slab_lock(page); 424 if (page->freelist == freelist_old && 425 page->counters == counters_old) { 426 page->freelist = freelist_new; 427 page->counters = counters_new; 428 slab_unlock(page); 429 local_irq_restore(flags); 430 return true; 431 } 432 slab_unlock(page); 433 local_irq_restore(flags); 434 } 435 436 cpu_relax(); 437 stat(s, CMPXCHG_DOUBLE_FAIL); 438 439 #ifdef SLUB_DEBUG_CMPXCHG 440 pr_info("%s %s: cmpxchg double redo ", n, s->name); 441 #endif 442 443 return false; 444 } 445 446 #ifdef CONFIG_SLUB_DEBUG 447 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 448 static DEFINE_SPINLOCK(object_map_lock); 449 450 /* 451 * Determine a map of object in use on a page. 452 * 453 * Node listlock must be held to guarantee that the page does 454 * not vanish from under us. 455 */ 456 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 457 __acquires(&object_map_lock) 458 { 459 void *p; 460 void *addr = page_address(page); 461 462 VM_BUG_ON(!irqs_disabled()); 463 464 spin_lock(&object_map_lock); 465 466 bitmap_zero(object_map, page->objects); 467 468 for (p = page->freelist; p; p = get_freepointer(s, p)) 469 set_bit(__obj_to_index(s, addr, p), object_map); 470 471 return object_map; 472 } 473 474 static void put_map(unsigned long *map) __releases(&object_map_lock) 475 { 476 VM_BUG_ON(map != object_map); 477 spin_unlock(&object_map_lock); 478 } 479 480 static inline unsigned int size_from_object(struct kmem_cache *s) 481 { 482 if (s->flags & SLAB_RED_ZONE) 483 return s->size - s->red_left_pad; 484 485 return s->size; 486 } 487 488 static inline void *restore_red_left(struct kmem_cache *s, void *p) 489 { 490 if (s->flags & SLAB_RED_ZONE) 491 p -= s->red_left_pad; 492 493 return p; 494 } 495 496 /* 497 * Debug settings: 498 */ 499 #if defined(CONFIG_SLUB_DEBUG_ON) 500 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 501 #else 502 static slab_flags_t slub_debug; 503 #endif 504 505 static char *slub_debug_string; 506 static int disable_higher_order_debug; 507 508 /* 509 * slub is about to manipulate internal object metadata. This memory lies 510 * outside the range of the allocated object, so accessing it would normally 511 * be reported by kasan as a bounds error. metadata_access_enable() is used 512 * to tell kasan that these accesses are OK. 513 */ 514 static inline void metadata_access_enable(void) 515 { 516 kasan_disable_current(); 517 } 518 519 static inline void metadata_access_disable(void) 520 { 521 kasan_enable_current(); 522 } 523 524 /* 525 * Object debugging 526 */ 527 528 /* Verify that a pointer has an address that is valid within a slab page */ 529 static inline int check_valid_pointer(struct kmem_cache *s, 530 struct page *page, void *object) 531 { 532 void *base; 533 534 if (!object) 535 return 1; 536 537 base = page_address(page); 538 object = kasan_reset_tag(object); 539 object = restore_red_left(s, object); 540 if (object < base || object >= base + page->objects * s->size || 541 (object - base) % s->size) { 542 return 0; 543 } 544 545 return 1; 546 } 547 548 static void print_section(char *level, char *text, u8 *addr, 549 unsigned int length) 550 { 551 metadata_access_enable(); 552 print_hex_dump(level, kasan_reset_tag(text), DUMP_PREFIX_ADDRESS, 553 16, 1, addr, length, 1); 554 metadata_access_disable(); 555 } 556 557 /* 558 * See comment in calculate_sizes(). 559 */ 560 static inline bool freeptr_outside_object(struct kmem_cache *s) 561 { 562 return s->offset >= s->inuse; 563 } 564 565 /* 566 * Return offset of the end of info block which is inuse + free pointer if 567 * not overlapping with object. 568 */ 569 static inline unsigned int get_info_end(struct kmem_cache *s) 570 { 571 if (freeptr_outside_object(s)) 572 return s->inuse + sizeof(void *); 573 else 574 return s->inuse; 575 } 576 577 static struct track *get_track(struct kmem_cache *s, void *object, 578 enum track_item alloc) 579 { 580 struct track *p; 581 582 p = object + get_info_end(s); 583 584 return kasan_reset_tag(p + alloc); 585 } 586 587 static void set_track(struct kmem_cache *s, void *object, 588 enum track_item alloc, unsigned long addr) 589 { 590 struct track *p = get_track(s, object, alloc); 591 592 if (addr) { 593 #ifdef CONFIG_STACKTRACE 594 unsigned int nr_entries; 595 596 metadata_access_enable(); 597 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs), 598 TRACK_ADDRS_COUNT, 3); 599 metadata_access_disable(); 600 601 if (nr_entries < TRACK_ADDRS_COUNT) 602 p->addrs[nr_entries] = 0; 603 #endif 604 p->addr = addr; 605 p->cpu = smp_processor_id(); 606 p->pid = current->pid; 607 p->when = jiffies; 608 } else { 609 memset(p, 0, sizeof(struct track)); 610 } 611 } 612 613 static void init_tracking(struct kmem_cache *s, void *object) 614 { 615 if (!(s->flags & SLAB_STORE_USER)) 616 return; 617 618 set_track(s, object, TRACK_FREE, 0UL); 619 set_track(s, object, TRACK_ALLOC, 0UL); 620 } 621 622 static void print_track(const char *s, struct track *t, unsigned long pr_time) 623 { 624 if (!t->addr) 625 return; 626 627 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 628 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 629 #ifdef CONFIG_STACKTRACE 630 { 631 int i; 632 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 633 if (t->addrs[i]) 634 pr_err("\t%pS\n", (void *)t->addrs[i]); 635 else 636 break; 637 } 638 #endif 639 } 640 641 void print_tracking(struct kmem_cache *s, void *object) 642 { 643 unsigned long pr_time = jiffies; 644 if (!(s->flags & SLAB_STORE_USER)) 645 return; 646 647 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 648 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 649 } 650 651 static void print_page_info(struct page *page) 652 { 653 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 654 page, page->objects, page->inuse, page->freelist, page->flags); 655 656 } 657 658 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 659 { 660 struct va_format vaf; 661 va_list args; 662 663 va_start(args, fmt); 664 vaf.fmt = fmt; 665 vaf.va = &args; 666 pr_err("=============================================================================\n"); 667 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 668 pr_err("-----------------------------------------------------------------------------\n\n"); 669 670 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 671 va_end(args); 672 } 673 674 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 675 { 676 struct va_format vaf; 677 va_list args; 678 679 va_start(args, fmt); 680 vaf.fmt = fmt; 681 vaf.va = &args; 682 pr_err("FIX %s: %pV\n", s->name, &vaf); 683 va_end(args); 684 } 685 686 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 687 void **freelist, void *nextfree) 688 { 689 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 690 !check_valid_pointer(s, page, nextfree) && freelist) { 691 object_err(s, page, *freelist, "Freechain corrupt"); 692 *freelist = NULL; 693 slab_fix(s, "Isolate corrupted freechain"); 694 return true; 695 } 696 697 return false; 698 } 699 700 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 701 { 702 unsigned int off; /* Offset of last byte */ 703 u8 *addr = page_address(page); 704 705 print_tracking(s, p); 706 707 print_page_info(page); 708 709 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 710 p, p - addr, get_freepointer(s, p)); 711 712 if (s->flags & SLAB_RED_ZONE) 713 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 714 s->red_left_pad); 715 else if (p > addr + 16) 716 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 717 718 print_section(KERN_ERR, "Object ", p, 719 min_t(unsigned int, s->object_size, PAGE_SIZE)); 720 if (s->flags & SLAB_RED_ZONE) 721 print_section(KERN_ERR, "Redzone ", p + s->object_size, 722 s->inuse - s->object_size); 723 724 off = get_info_end(s); 725 726 if (s->flags & SLAB_STORE_USER) 727 off += 2 * sizeof(struct track); 728 729 off += kasan_metadata_size(s); 730 731 if (off != size_from_object(s)) 732 /* Beginning of the filler is the free pointer */ 733 print_section(KERN_ERR, "Padding ", p + off, 734 size_from_object(s) - off); 735 736 dump_stack(); 737 } 738 739 void object_err(struct kmem_cache *s, struct page *page, 740 u8 *object, char *reason) 741 { 742 slab_bug(s, "%s", reason); 743 print_trailer(s, page, object); 744 } 745 746 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 747 const char *fmt, ...) 748 { 749 va_list args; 750 char buf[100]; 751 752 va_start(args, fmt); 753 vsnprintf(buf, sizeof(buf), fmt, args); 754 va_end(args); 755 slab_bug(s, "%s", buf); 756 print_page_info(page); 757 dump_stack(); 758 } 759 760 static void init_object(struct kmem_cache *s, void *object, u8 val) 761 { 762 u8 *p = kasan_reset_tag(object); 763 764 if (s->flags & SLAB_RED_ZONE) 765 memset(p - s->red_left_pad, val, s->red_left_pad); 766 767 if (s->flags & __OBJECT_POISON) { 768 memset(p, POISON_FREE, s->object_size - 1); 769 p[s->object_size - 1] = POISON_END; 770 } 771 772 if (s->flags & SLAB_RED_ZONE) 773 memset(p + s->object_size, val, s->inuse - s->object_size); 774 } 775 776 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 777 void *from, void *to) 778 { 779 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 780 memset(from, data, to - from); 781 } 782 783 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 784 u8 *object, char *what, 785 u8 *start, unsigned int value, unsigned int bytes) 786 { 787 u8 *fault; 788 u8 *end; 789 u8 *addr = page_address(page); 790 791 metadata_access_enable(); 792 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 793 metadata_access_disable(); 794 if (!fault) 795 return 1; 796 797 end = start + bytes; 798 while (end > fault && end[-1] == value) 799 end--; 800 801 slab_bug(s, "%s overwritten", what); 802 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 803 fault, end - 1, fault - addr, 804 fault[0], value); 805 print_trailer(s, page, object); 806 807 restore_bytes(s, what, value, fault, end); 808 return 0; 809 } 810 811 /* 812 * Object layout: 813 * 814 * object address 815 * Bytes of the object to be managed. 816 * If the freepointer may overlay the object then the free 817 * pointer is at the middle of the object. 818 * 819 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 820 * 0xa5 (POISON_END) 821 * 822 * object + s->object_size 823 * Padding to reach word boundary. This is also used for Redzoning. 824 * Padding is extended by another word if Redzoning is enabled and 825 * object_size == inuse. 826 * 827 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 828 * 0xcc (RED_ACTIVE) for objects in use. 829 * 830 * object + s->inuse 831 * Meta data starts here. 832 * 833 * A. Free pointer (if we cannot overwrite object on free) 834 * B. Tracking data for SLAB_STORE_USER 835 * C. Padding to reach required alignment boundary or at mininum 836 * one word if debugging is on to be able to detect writes 837 * before the word boundary. 838 * 839 * Padding is done using 0x5a (POISON_INUSE) 840 * 841 * object + s->size 842 * Nothing is used beyond s->size. 843 * 844 * If slabcaches are merged then the object_size and inuse boundaries are mostly 845 * ignored. And therefore no slab options that rely on these boundaries 846 * may be used with merged slabcaches. 847 */ 848 849 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 850 { 851 unsigned long off = get_info_end(s); /* The end of info */ 852 853 if (s->flags & SLAB_STORE_USER) 854 /* We also have user information there */ 855 off += 2 * sizeof(struct track); 856 857 off += kasan_metadata_size(s); 858 859 if (size_from_object(s) == off) 860 return 1; 861 862 return check_bytes_and_report(s, page, p, "Object padding", 863 p + off, POISON_INUSE, size_from_object(s) - off); 864 } 865 866 /* Check the pad bytes at the end of a slab page */ 867 static int slab_pad_check(struct kmem_cache *s, struct page *page) 868 { 869 u8 *start; 870 u8 *fault; 871 u8 *end; 872 u8 *pad; 873 int length; 874 int remainder; 875 876 if (!(s->flags & SLAB_POISON)) 877 return 1; 878 879 start = page_address(page); 880 length = page_size(page); 881 end = start + length; 882 remainder = length % s->size; 883 if (!remainder) 884 return 1; 885 886 pad = end - remainder; 887 metadata_access_enable(); 888 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 889 metadata_access_disable(); 890 if (!fault) 891 return 1; 892 while (end > fault && end[-1] == POISON_INUSE) 893 end--; 894 895 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 896 fault, end - 1, fault - start); 897 print_section(KERN_ERR, "Padding ", pad, remainder); 898 899 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 900 return 0; 901 } 902 903 static int check_object(struct kmem_cache *s, struct page *page, 904 void *object, u8 val) 905 { 906 u8 *p = object; 907 u8 *endobject = object + s->object_size; 908 909 if (s->flags & SLAB_RED_ZONE) { 910 if (!check_bytes_and_report(s, page, object, "Redzone", 911 object - s->red_left_pad, val, s->red_left_pad)) 912 return 0; 913 914 if (!check_bytes_and_report(s, page, object, "Redzone", 915 endobject, val, s->inuse - s->object_size)) 916 return 0; 917 } else { 918 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 919 check_bytes_and_report(s, page, p, "Alignment padding", 920 endobject, POISON_INUSE, 921 s->inuse - s->object_size); 922 } 923 } 924 925 if (s->flags & SLAB_POISON) { 926 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 927 (!check_bytes_and_report(s, page, p, "Poison", p, 928 POISON_FREE, s->object_size - 1) || 929 !check_bytes_and_report(s, page, p, "Poison", 930 p + s->object_size - 1, POISON_END, 1))) 931 return 0; 932 /* 933 * check_pad_bytes cleans up on its own. 934 */ 935 check_pad_bytes(s, page, p); 936 } 937 938 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 939 /* 940 * Object and freepointer overlap. Cannot check 941 * freepointer while object is allocated. 942 */ 943 return 1; 944 945 /* Check free pointer validity */ 946 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 947 object_err(s, page, p, "Freepointer corrupt"); 948 /* 949 * No choice but to zap it and thus lose the remainder 950 * of the free objects in this slab. May cause 951 * another error because the object count is now wrong. 952 */ 953 set_freepointer(s, p, NULL); 954 return 0; 955 } 956 return 1; 957 } 958 959 static int check_slab(struct kmem_cache *s, struct page *page) 960 { 961 int maxobj; 962 963 VM_BUG_ON(!irqs_disabled()); 964 965 if (!PageSlab(page)) { 966 slab_err(s, page, "Not a valid slab page"); 967 return 0; 968 } 969 970 maxobj = order_objects(compound_order(page), s->size); 971 if (page->objects > maxobj) { 972 slab_err(s, page, "objects %u > max %u", 973 page->objects, maxobj); 974 return 0; 975 } 976 if (page->inuse > page->objects) { 977 slab_err(s, page, "inuse %u > max %u", 978 page->inuse, page->objects); 979 return 0; 980 } 981 /* Slab_pad_check fixes things up after itself */ 982 slab_pad_check(s, page); 983 return 1; 984 } 985 986 /* 987 * Determine if a certain object on a page is on the freelist. Must hold the 988 * slab lock to guarantee that the chains are in a consistent state. 989 */ 990 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 991 { 992 int nr = 0; 993 void *fp; 994 void *object = NULL; 995 int max_objects; 996 997 fp = page->freelist; 998 while (fp && nr <= page->objects) { 999 if (fp == search) 1000 return 1; 1001 if (!check_valid_pointer(s, page, fp)) { 1002 if (object) { 1003 object_err(s, page, object, 1004 "Freechain corrupt"); 1005 set_freepointer(s, object, NULL); 1006 } else { 1007 slab_err(s, page, "Freepointer corrupt"); 1008 page->freelist = NULL; 1009 page->inuse = page->objects; 1010 slab_fix(s, "Freelist cleared"); 1011 return 0; 1012 } 1013 break; 1014 } 1015 object = fp; 1016 fp = get_freepointer(s, object); 1017 nr++; 1018 } 1019 1020 max_objects = order_objects(compound_order(page), s->size); 1021 if (max_objects > MAX_OBJS_PER_PAGE) 1022 max_objects = MAX_OBJS_PER_PAGE; 1023 1024 if (page->objects != max_objects) { 1025 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 1026 page->objects, max_objects); 1027 page->objects = max_objects; 1028 slab_fix(s, "Number of objects adjusted."); 1029 } 1030 if (page->inuse != page->objects - nr) { 1031 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1032 page->inuse, page->objects - nr); 1033 page->inuse = page->objects - nr; 1034 slab_fix(s, "Object count adjusted."); 1035 } 1036 return search == NULL; 1037 } 1038 1039 static void trace(struct kmem_cache *s, struct page *page, void *object, 1040 int alloc) 1041 { 1042 if (s->flags & SLAB_TRACE) { 1043 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1044 s->name, 1045 alloc ? "alloc" : "free", 1046 object, page->inuse, 1047 page->freelist); 1048 1049 if (!alloc) 1050 print_section(KERN_INFO, "Object ", (void *)object, 1051 s->object_size); 1052 1053 dump_stack(); 1054 } 1055 } 1056 1057 /* 1058 * Tracking of fully allocated slabs for debugging purposes. 1059 */ 1060 static void add_full(struct kmem_cache *s, 1061 struct kmem_cache_node *n, struct page *page) 1062 { 1063 if (!(s->flags & SLAB_STORE_USER)) 1064 return; 1065 1066 lockdep_assert_held(&n->list_lock); 1067 list_add(&page->slab_list, &n->full); 1068 } 1069 1070 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1071 { 1072 if (!(s->flags & SLAB_STORE_USER)) 1073 return; 1074 1075 lockdep_assert_held(&n->list_lock); 1076 list_del(&page->slab_list); 1077 } 1078 1079 /* Tracking of the number of slabs for debugging purposes */ 1080 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1081 { 1082 struct kmem_cache_node *n = get_node(s, node); 1083 1084 return atomic_long_read(&n->nr_slabs); 1085 } 1086 1087 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1088 { 1089 return atomic_long_read(&n->nr_slabs); 1090 } 1091 1092 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1093 { 1094 struct kmem_cache_node *n = get_node(s, node); 1095 1096 /* 1097 * May be called early in order to allocate a slab for the 1098 * kmem_cache_node structure. Solve the chicken-egg 1099 * dilemma by deferring the increment of the count during 1100 * bootstrap (see early_kmem_cache_node_alloc). 1101 */ 1102 if (likely(n)) { 1103 atomic_long_inc(&n->nr_slabs); 1104 atomic_long_add(objects, &n->total_objects); 1105 } 1106 } 1107 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1108 { 1109 struct kmem_cache_node *n = get_node(s, node); 1110 1111 atomic_long_dec(&n->nr_slabs); 1112 atomic_long_sub(objects, &n->total_objects); 1113 } 1114 1115 /* Object debug checks for alloc/free paths */ 1116 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1117 void *object) 1118 { 1119 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1120 return; 1121 1122 init_object(s, object, SLUB_RED_INACTIVE); 1123 init_tracking(s, object); 1124 } 1125 1126 static 1127 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1128 { 1129 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1130 return; 1131 1132 metadata_access_enable(); 1133 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page)); 1134 metadata_access_disable(); 1135 } 1136 1137 static inline int alloc_consistency_checks(struct kmem_cache *s, 1138 struct page *page, void *object) 1139 { 1140 if (!check_slab(s, page)) 1141 return 0; 1142 1143 if (!check_valid_pointer(s, page, object)) { 1144 object_err(s, page, object, "Freelist Pointer check fails"); 1145 return 0; 1146 } 1147 1148 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1149 return 0; 1150 1151 return 1; 1152 } 1153 1154 static noinline int alloc_debug_processing(struct kmem_cache *s, 1155 struct page *page, 1156 void *object, unsigned long addr) 1157 { 1158 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1159 if (!alloc_consistency_checks(s, page, object)) 1160 goto bad; 1161 } 1162 1163 /* Success perform special debug activities for allocs */ 1164 if (s->flags & SLAB_STORE_USER) 1165 set_track(s, object, TRACK_ALLOC, addr); 1166 trace(s, page, object, 1); 1167 init_object(s, object, SLUB_RED_ACTIVE); 1168 return 1; 1169 1170 bad: 1171 if (PageSlab(page)) { 1172 /* 1173 * If this is a slab page then lets do the best we can 1174 * to avoid issues in the future. Marking all objects 1175 * as used avoids touching the remaining objects. 1176 */ 1177 slab_fix(s, "Marking all objects used"); 1178 page->inuse = page->objects; 1179 page->freelist = NULL; 1180 } 1181 return 0; 1182 } 1183 1184 static inline int free_consistency_checks(struct kmem_cache *s, 1185 struct page *page, void *object, unsigned long addr) 1186 { 1187 if (!check_valid_pointer(s, page, object)) { 1188 slab_err(s, page, "Invalid object pointer 0x%p", object); 1189 return 0; 1190 } 1191 1192 if (on_freelist(s, page, object)) { 1193 object_err(s, page, object, "Object already free"); 1194 return 0; 1195 } 1196 1197 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1198 return 0; 1199 1200 if (unlikely(s != page->slab_cache)) { 1201 if (!PageSlab(page)) { 1202 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1203 object); 1204 } else if (!page->slab_cache) { 1205 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1206 object); 1207 dump_stack(); 1208 } else 1209 object_err(s, page, object, 1210 "page slab pointer corrupt."); 1211 return 0; 1212 } 1213 return 1; 1214 } 1215 1216 /* Supports checking bulk free of a constructed freelist */ 1217 static noinline int free_debug_processing( 1218 struct kmem_cache *s, struct page *page, 1219 void *head, void *tail, int bulk_cnt, 1220 unsigned long addr) 1221 { 1222 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1223 void *object = head; 1224 int cnt = 0; 1225 unsigned long flags; 1226 int ret = 0; 1227 1228 spin_lock_irqsave(&n->list_lock, flags); 1229 slab_lock(page); 1230 1231 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1232 if (!check_slab(s, page)) 1233 goto out; 1234 } 1235 1236 next_object: 1237 cnt++; 1238 1239 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1240 if (!free_consistency_checks(s, page, object, addr)) 1241 goto out; 1242 } 1243 1244 if (s->flags & SLAB_STORE_USER) 1245 set_track(s, object, TRACK_FREE, addr); 1246 trace(s, page, object, 0); 1247 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1248 init_object(s, object, SLUB_RED_INACTIVE); 1249 1250 /* Reached end of constructed freelist yet? */ 1251 if (object != tail) { 1252 object = get_freepointer(s, object); 1253 goto next_object; 1254 } 1255 ret = 1; 1256 1257 out: 1258 if (cnt != bulk_cnt) 1259 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1260 bulk_cnt, cnt); 1261 1262 slab_unlock(page); 1263 spin_unlock_irqrestore(&n->list_lock, flags); 1264 if (!ret) 1265 slab_fix(s, "Object at 0x%p not freed", object); 1266 return ret; 1267 } 1268 1269 /* 1270 * Parse a block of slub_debug options. Blocks are delimited by ';' 1271 * 1272 * @str: start of block 1273 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1274 * @slabs: return start of list of slabs, or NULL when there's no list 1275 * @init: assume this is initial parsing and not per-kmem-create parsing 1276 * 1277 * returns the start of next block if there's any, or NULL 1278 */ 1279 static char * 1280 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1281 { 1282 bool higher_order_disable = false; 1283 1284 /* Skip any completely empty blocks */ 1285 while (*str && *str == ';') 1286 str++; 1287 1288 if (*str == ',') { 1289 /* 1290 * No options but restriction on slabs. This means full 1291 * debugging for slabs matching a pattern. 1292 */ 1293 *flags = DEBUG_DEFAULT_FLAGS; 1294 goto check_slabs; 1295 } 1296 *flags = 0; 1297 1298 /* Determine which debug features should be switched on */ 1299 for (; *str && *str != ',' && *str != ';'; str++) { 1300 switch (tolower(*str)) { 1301 case '-': 1302 *flags = 0; 1303 break; 1304 case 'f': 1305 *flags |= SLAB_CONSISTENCY_CHECKS; 1306 break; 1307 case 'z': 1308 *flags |= SLAB_RED_ZONE; 1309 break; 1310 case 'p': 1311 *flags |= SLAB_POISON; 1312 break; 1313 case 'u': 1314 *flags |= SLAB_STORE_USER; 1315 break; 1316 case 't': 1317 *flags |= SLAB_TRACE; 1318 break; 1319 case 'a': 1320 *flags |= SLAB_FAILSLAB; 1321 break; 1322 case 'o': 1323 /* 1324 * Avoid enabling debugging on caches if its minimum 1325 * order would increase as a result. 1326 */ 1327 higher_order_disable = true; 1328 break; 1329 default: 1330 if (init) 1331 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1332 } 1333 } 1334 check_slabs: 1335 if (*str == ',') 1336 *slabs = ++str; 1337 else 1338 *slabs = NULL; 1339 1340 /* Skip over the slab list */ 1341 while (*str && *str != ';') 1342 str++; 1343 1344 /* Skip any completely empty blocks */ 1345 while (*str && *str == ';') 1346 str++; 1347 1348 if (init && higher_order_disable) 1349 disable_higher_order_debug = 1; 1350 1351 if (*str) 1352 return str; 1353 else 1354 return NULL; 1355 } 1356 1357 static int __init setup_slub_debug(char *str) 1358 { 1359 slab_flags_t flags; 1360 char *saved_str; 1361 char *slab_list; 1362 bool global_slub_debug_changed = false; 1363 bool slab_list_specified = false; 1364 1365 slub_debug = DEBUG_DEFAULT_FLAGS; 1366 if (*str++ != '=' || !*str) 1367 /* 1368 * No options specified. Switch on full debugging. 1369 */ 1370 goto out; 1371 1372 saved_str = str; 1373 while (str) { 1374 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1375 1376 if (!slab_list) { 1377 slub_debug = flags; 1378 global_slub_debug_changed = true; 1379 } else { 1380 slab_list_specified = true; 1381 } 1382 } 1383 1384 /* 1385 * For backwards compatibility, a single list of flags with list of 1386 * slabs means debugging is only enabled for those slabs, so the global 1387 * slub_debug should be 0. We can extended that to multiple lists as 1388 * long as there is no option specifying flags without a slab list. 1389 */ 1390 if (slab_list_specified) { 1391 if (!global_slub_debug_changed) 1392 slub_debug = 0; 1393 slub_debug_string = saved_str; 1394 } 1395 out: 1396 if (slub_debug != 0 || slub_debug_string) 1397 static_branch_enable(&slub_debug_enabled); 1398 if ((static_branch_unlikely(&init_on_alloc) || 1399 static_branch_unlikely(&init_on_free)) && 1400 (slub_debug & SLAB_POISON)) 1401 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1402 return 1; 1403 } 1404 1405 __setup("slub_debug", setup_slub_debug); 1406 1407 /* 1408 * kmem_cache_flags - apply debugging options to the cache 1409 * @object_size: the size of an object without meta data 1410 * @flags: flags to set 1411 * @name: name of the cache 1412 * 1413 * Debug option(s) are applied to @flags. In addition to the debug 1414 * option(s), if a slab name (or multiple) is specified i.e. 1415 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1416 * then only the select slabs will receive the debug option(s). 1417 */ 1418 slab_flags_t kmem_cache_flags(unsigned int object_size, 1419 slab_flags_t flags, const char *name) 1420 { 1421 char *iter; 1422 size_t len; 1423 char *next_block; 1424 slab_flags_t block_flags; 1425 slab_flags_t slub_debug_local = slub_debug; 1426 1427 /* 1428 * If the slab cache is for debugging (e.g. kmemleak) then 1429 * don't store user (stack trace) information by default, 1430 * but let the user enable it via the command line below. 1431 */ 1432 if (flags & SLAB_NOLEAKTRACE) 1433 slub_debug_local &= ~SLAB_STORE_USER; 1434 1435 len = strlen(name); 1436 next_block = slub_debug_string; 1437 /* Go through all blocks of debug options, see if any matches our slab's name */ 1438 while (next_block) { 1439 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1440 if (!iter) 1441 continue; 1442 /* Found a block that has a slab list, search it */ 1443 while (*iter) { 1444 char *end, *glob; 1445 size_t cmplen; 1446 1447 end = strchrnul(iter, ','); 1448 if (next_block && next_block < end) 1449 end = next_block - 1; 1450 1451 glob = strnchr(iter, end - iter, '*'); 1452 if (glob) 1453 cmplen = glob - iter; 1454 else 1455 cmplen = max_t(size_t, len, (end - iter)); 1456 1457 if (!strncmp(name, iter, cmplen)) { 1458 flags |= block_flags; 1459 return flags; 1460 } 1461 1462 if (!*end || *end == ';') 1463 break; 1464 iter = end + 1; 1465 } 1466 } 1467 1468 return flags | slub_debug_local; 1469 } 1470 #else /* !CONFIG_SLUB_DEBUG */ 1471 static inline void setup_object_debug(struct kmem_cache *s, 1472 struct page *page, void *object) {} 1473 static inline 1474 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1475 1476 static inline int alloc_debug_processing(struct kmem_cache *s, 1477 struct page *page, void *object, unsigned long addr) { return 0; } 1478 1479 static inline int free_debug_processing( 1480 struct kmem_cache *s, struct page *page, 1481 void *head, void *tail, int bulk_cnt, 1482 unsigned long addr) { return 0; } 1483 1484 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1485 { return 1; } 1486 static inline int check_object(struct kmem_cache *s, struct page *page, 1487 void *object, u8 val) { return 1; } 1488 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1489 struct page *page) {} 1490 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1491 struct page *page) {} 1492 slab_flags_t kmem_cache_flags(unsigned int object_size, 1493 slab_flags_t flags, const char *name) 1494 { 1495 return flags; 1496 } 1497 #define slub_debug 0 1498 1499 #define disable_higher_order_debug 0 1500 1501 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1502 { return 0; } 1503 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1504 { return 0; } 1505 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1506 int objects) {} 1507 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1508 int objects) {} 1509 1510 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 1511 void **freelist, void *nextfree) 1512 { 1513 return false; 1514 } 1515 #endif /* CONFIG_SLUB_DEBUG */ 1516 1517 /* 1518 * Hooks for other subsystems that check memory allocations. In a typical 1519 * production configuration these hooks all should produce no code at all. 1520 */ 1521 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1522 { 1523 ptr = kasan_kmalloc_large(ptr, size, flags); 1524 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1525 kmemleak_alloc(ptr, size, 1, flags); 1526 return ptr; 1527 } 1528 1529 static __always_inline void kfree_hook(void *x) 1530 { 1531 kmemleak_free(x); 1532 kasan_kfree_large(x); 1533 } 1534 1535 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1536 { 1537 kmemleak_free_recursive(x, s->flags); 1538 1539 /* 1540 * Trouble is that we may no longer disable interrupts in the fast path 1541 * So in order to make the debug calls that expect irqs to be 1542 * disabled we need to disable interrupts temporarily. 1543 */ 1544 #ifdef CONFIG_LOCKDEP 1545 { 1546 unsigned long flags; 1547 1548 local_irq_save(flags); 1549 debug_check_no_locks_freed(x, s->object_size); 1550 local_irq_restore(flags); 1551 } 1552 #endif 1553 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1554 debug_check_no_obj_freed(x, s->object_size); 1555 1556 /* Use KCSAN to help debug racy use-after-free. */ 1557 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1558 __kcsan_check_access(x, s->object_size, 1559 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1560 1561 /* KASAN might put x into memory quarantine, delaying its reuse */ 1562 return kasan_slab_free(s, x); 1563 } 1564 1565 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1566 void **head, void **tail) 1567 { 1568 1569 void *object; 1570 void *next = *head; 1571 void *old_tail = *tail ? *tail : *head; 1572 int rsize; 1573 1574 if (is_kfence_address(next)) { 1575 slab_free_hook(s, next); 1576 return true; 1577 } 1578 1579 /* Head and tail of the reconstructed freelist */ 1580 *head = NULL; 1581 *tail = NULL; 1582 1583 do { 1584 object = next; 1585 next = get_freepointer(s, object); 1586 1587 if (slab_want_init_on_free(s)) { 1588 /* 1589 * Clear the object and the metadata, but don't touch 1590 * the redzone. 1591 */ 1592 memset(kasan_reset_tag(object), 0, s->object_size); 1593 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1594 : 0; 1595 memset((char *)kasan_reset_tag(object) + s->inuse, 0, 1596 s->size - s->inuse - rsize); 1597 1598 } 1599 /* If object's reuse doesn't have to be delayed */ 1600 if (!slab_free_hook(s, object)) { 1601 /* Move object to the new freelist */ 1602 set_freepointer(s, object, *head); 1603 *head = object; 1604 if (!*tail) 1605 *tail = object; 1606 } 1607 } while (object != old_tail); 1608 1609 if (*head == *tail) 1610 *tail = NULL; 1611 1612 return *head != NULL; 1613 } 1614 1615 static void *setup_object(struct kmem_cache *s, struct page *page, 1616 void *object) 1617 { 1618 setup_object_debug(s, page, object); 1619 object = kasan_init_slab_obj(s, object); 1620 if (unlikely(s->ctor)) { 1621 kasan_unpoison_object_data(s, object); 1622 s->ctor(object); 1623 kasan_poison_object_data(s, object); 1624 } 1625 return object; 1626 } 1627 1628 /* 1629 * Slab allocation and freeing 1630 */ 1631 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1632 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1633 { 1634 struct page *page; 1635 unsigned int order = oo_order(oo); 1636 1637 if (node == NUMA_NO_NODE) 1638 page = alloc_pages(flags, order); 1639 else 1640 page = __alloc_pages_node(node, flags, order); 1641 1642 return page; 1643 } 1644 1645 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1646 /* Pre-initialize the random sequence cache */ 1647 static int init_cache_random_seq(struct kmem_cache *s) 1648 { 1649 unsigned int count = oo_objects(s->oo); 1650 int err; 1651 1652 /* Bailout if already initialised */ 1653 if (s->random_seq) 1654 return 0; 1655 1656 err = cache_random_seq_create(s, count, GFP_KERNEL); 1657 if (err) { 1658 pr_err("SLUB: Unable to initialize free list for %s\n", 1659 s->name); 1660 return err; 1661 } 1662 1663 /* Transform to an offset on the set of pages */ 1664 if (s->random_seq) { 1665 unsigned int i; 1666 1667 for (i = 0; i < count; i++) 1668 s->random_seq[i] *= s->size; 1669 } 1670 return 0; 1671 } 1672 1673 /* Initialize each random sequence freelist per cache */ 1674 static void __init init_freelist_randomization(void) 1675 { 1676 struct kmem_cache *s; 1677 1678 mutex_lock(&slab_mutex); 1679 1680 list_for_each_entry(s, &slab_caches, list) 1681 init_cache_random_seq(s); 1682 1683 mutex_unlock(&slab_mutex); 1684 } 1685 1686 /* Get the next entry on the pre-computed freelist randomized */ 1687 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1688 unsigned long *pos, void *start, 1689 unsigned long page_limit, 1690 unsigned long freelist_count) 1691 { 1692 unsigned int idx; 1693 1694 /* 1695 * If the target page allocation failed, the number of objects on the 1696 * page might be smaller than the usual size defined by the cache. 1697 */ 1698 do { 1699 idx = s->random_seq[*pos]; 1700 *pos += 1; 1701 if (*pos >= freelist_count) 1702 *pos = 0; 1703 } while (unlikely(idx >= page_limit)); 1704 1705 return (char *)start + idx; 1706 } 1707 1708 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1709 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1710 { 1711 void *start; 1712 void *cur; 1713 void *next; 1714 unsigned long idx, pos, page_limit, freelist_count; 1715 1716 if (page->objects < 2 || !s->random_seq) 1717 return false; 1718 1719 freelist_count = oo_objects(s->oo); 1720 pos = get_random_int() % freelist_count; 1721 1722 page_limit = page->objects * s->size; 1723 start = fixup_red_left(s, page_address(page)); 1724 1725 /* First entry is used as the base of the freelist */ 1726 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1727 freelist_count); 1728 cur = setup_object(s, page, cur); 1729 page->freelist = cur; 1730 1731 for (idx = 1; idx < page->objects; idx++) { 1732 next = next_freelist_entry(s, page, &pos, start, page_limit, 1733 freelist_count); 1734 next = setup_object(s, page, next); 1735 set_freepointer(s, cur, next); 1736 cur = next; 1737 } 1738 set_freepointer(s, cur, NULL); 1739 1740 return true; 1741 } 1742 #else 1743 static inline int init_cache_random_seq(struct kmem_cache *s) 1744 { 1745 return 0; 1746 } 1747 static inline void init_freelist_randomization(void) { } 1748 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1749 { 1750 return false; 1751 } 1752 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1753 1754 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1755 { 1756 struct page *page; 1757 struct kmem_cache_order_objects oo = s->oo; 1758 gfp_t alloc_gfp; 1759 void *start, *p, *next; 1760 int idx; 1761 bool shuffle; 1762 1763 flags &= gfp_allowed_mask; 1764 1765 if (gfpflags_allow_blocking(flags)) 1766 local_irq_enable(); 1767 1768 flags |= s->allocflags; 1769 1770 /* 1771 * Let the initial higher-order allocation fail under memory pressure 1772 * so we fall-back to the minimum order allocation. 1773 */ 1774 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1775 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1776 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1777 1778 page = alloc_slab_page(s, alloc_gfp, node, oo); 1779 if (unlikely(!page)) { 1780 oo = s->min; 1781 alloc_gfp = flags; 1782 /* 1783 * Allocation may have failed due to fragmentation. 1784 * Try a lower order alloc if possible 1785 */ 1786 page = alloc_slab_page(s, alloc_gfp, node, oo); 1787 if (unlikely(!page)) 1788 goto out; 1789 stat(s, ORDER_FALLBACK); 1790 } 1791 1792 page->objects = oo_objects(oo); 1793 1794 account_slab_page(page, oo_order(oo), s, flags); 1795 1796 page->slab_cache = s; 1797 __SetPageSlab(page); 1798 if (page_is_pfmemalloc(page)) 1799 SetPageSlabPfmemalloc(page); 1800 1801 kasan_poison_slab(page); 1802 1803 start = page_address(page); 1804 1805 setup_page_debug(s, page, start); 1806 1807 shuffle = shuffle_freelist(s, page); 1808 1809 if (!shuffle) { 1810 start = fixup_red_left(s, start); 1811 start = setup_object(s, page, start); 1812 page->freelist = start; 1813 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1814 next = p + s->size; 1815 next = setup_object(s, page, next); 1816 set_freepointer(s, p, next); 1817 p = next; 1818 } 1819 set_freepointer(s, p, NULL); 1820 } 1821 1822 page->inuse = page->objects; 1823 page->frozen = 1; 1824 1825 out: 1826 if (gfpflags_allow_blocking(flags)) 1827 local_irq_disable(); 1828 if (!page) 1829 return NULL; 1830 1831 inc_slabs_node(s, page_to_nid(page), page->objects); 1832 1833 return page; 1834 } 1835 1836 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1837 { 1838 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 1839 flags = kmalloc_fix_flags(flags); 1840 1841 return allocate_slab(s, 1842 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1843 } 1844 1845 static void __free_slab(struct kmem_cache *s, struct page *page) 1846 { 1847 int order = compound_order(page); 1848 int pages = 1 << order; 1849 1850 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 1851 void *p; 1852 1853 slab_pad_check(s, page); 1854 for_each_object(p, s, page_address(page), 1855 page->objects) 1856 check_object(s, page, p, SLUB_RED_INACTIVE); 1857 } 1858 1859 __ClearPageSlabPfmemalloc(page); 1860 __ClearPageSlab(page); 1861 /* In union with page->mapping where page allocator expects NULL */ 1862 page->slab_cache = NULL; 1863 if (current->reclaim_state) 1864 current->reclaim_state->reclaimed_slab += pages; 1865 unaccount_slab_page(page, order, s); 1866 __free_pages(page, order); 1867 } 1868 1869 static void rcu_free_slab(struct rcu_head *h) 1870 { 1871 struct page *page = container_of(h, struct page, rcu_head); 1872 1873 __free_slab(page->slab_cache, page); 1874 } 1875 1876 static void free_slab(struct kmem_cache *s, struct page *page) 1877 { 1878 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1879 call_rcu(&page->rcu_head, rcu_free_slab); 1880 } else 1881 __free_slab(s, page); 1882 } 1883 1884 static void discard_slab(struct kmem_cache *s, struct page *page) 1885 { 1886 dec_slabs_node(s, page_to_nid(page), page->objects); 1887 free_slab(s, page); 1888 } 1889 1890 /* 1891 * Management of partially allocated slabs. 1892 */ 1893 static inline void 1894 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1895 { 1896 n->nr_partial++; 1897 if (tail == DEACTIVATE_TO_TAIL) 1898 list_add_tail(&page->slab_list, &n->partial); 1899 else 1900 list_add(&page->slab_list, &n->partial); 1901 } 1902 1903 static inline void add_partial(struct kmem_cache_node *n, 1904 struct page *page, int tail) 1905 { 1906 lockdep_assert_held(&n->list_lock); 1907 __add_partial(n, page, tail); 1908 } 1909 1910 static inline void remove_partial(struct kmem_cache_node *n, 1911 struct page *page) 1912 { 1913 lockdep_assert_held(&n->list_lock); 1914 list_del(&page->slab_list); 1915 n->nr_partial--; 1916 } 1917 1918 /* 1919 * Remove slab from the partial list, freeze it and 1920 * return the pointer to the freelist. 1921 * 1922 * Returns a list of objects or NULL if it fails. 1923 */ 1924 static inline void *acquire_slab(struct kmem_cache *s, 1925 struct kmem_cache_node *n, struct page *page, 1926 int mode, int *objects) 1927 { 1928 void *freelist; 1929 unsigned long counters; 1930 struct page new; 1931 1932 lockdep_assert_held(&n->list_lock); 1933 1934 /* 1935 * Zap the freelist and set the frozen bit. 1936 * The old freelist is the list of objects for the 1937 * per cpu allocation list. 1938 */ 1939 freelist = page->freelist; 1940 counters = page->counters; 1941 new.counters = counters; 1942 *objects = new.objects - new.inuse; 1943 if (mode) { 1944 new.inuse = page->objects; 1945 new.freelist = NULL; 1946 } else { 1947 new.freelist = freelist; 1948 } 1949 1950 VM_BUG_ON(new.frozen); 1951 new.frozen = 1; 1952 1953 if (!__cmpxchg_double_slab(s, page, 1954 freelist, counters, 1955 new.freelist, new.counters, 1956 "acquire_slab")) 1957 return NULL; 1958 1959 remove_partial(n, page); 1960 WARN_ON(!freelist); 1961 return freelist; 1962 } 1963 1964 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1965 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1966 1967 /* 1968 * Try to allocate a partial slab from a specific node. 1969 */ 1970 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1971 struct kmem_cache_cpu *c, gfp_t flags) 1972 { 1973 struct page *page, *page2; 1974 void *object = NULL; 1975 unsigned int available = 0; 1976 int objects; 1977 1978 /* 1979 * Racy check. If we mistakenly see no partial slabs then we 1980 * just allocate an empty slab. If we mistakenly try to get a 1981 * partial slab and there is none available then get_partial() 1982 * will return NULL. 1983 */ 1984 if (!n || !n->nr_partial) 1985 return NULL; 1986 1987 spin_lock(&n->list_lock); 1988 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1989 void *t; 1990 1991 if (!pfmemalloc_match(page, flags)) 1992 continue; 1993 1994 t = acquire_slab(s, n, page, object == NULL, &objects); 1995 if (!t) 1996 break; 1997 1998 available += objects; 1999 if (!object) { 2000 c->page = page; 2001 stat(s, ALLOC_FROM_PARTIAL); 2002 object = t; 2003 } else { 2004 put_cpu_partial(s, page, 0); 2005 stat(s, CPU_PARTIAL_NODE); 2006 } 2007 if (!kmem_cache_has_cpu_partial(s) 2008 || available > slub_cpu_partial(s) / 2) 2009 break; 2010 2011 } 2012 spin_unlock(&n->list_lock); 2013 return object; 2014 } 2015 2016 /* 2017 * Get a page from somewhere. Search in increasing NUMA distances. 2018 */ 2019 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2020 struct kmem_cache_cpu *c) 2021 { 2022 #ifdef CONFIG_NUMA 2023 struct zonelist *zonelist; 2024 struct zoneref *z; 2025 struct zone *zone; 2026 enum zone_type highest_zoneidx = gfp_zone(flags); 2027 void *object; 2028 unsigned int cpuset_mems_cookie; 2029 2030 /* 2031 * The defrag ratio allows a configuration of the tradeoffs between 2032 * inter node defragmentation and node local allocations. A lower 2033 * defrag_ratio increases the tendency to do local allocations 2034 * instead of attempting to obtain partial slabs from other nodes. 2035 * 2036 * If the defrag_ratio is set to 0 then kmalloc() always 2037 * returns node local objects. If the ratio is higher then kmalloc() 2038 * may return off node objects because partial slabs are obtained 2039 * from other nodes and filled up. 2040 * 2041 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2042 * (which makes defrag_ratio = 1000) then every (well almost) 2043 * allocation will first attempt to defrag slab caches on other nodes. 2044 * This means scanning over all nodes to look for partial slabs which 2045 * may be expensive if we do it every time we are trying to find a slab 2046 * with available objects. 2047 */ 2048 if (!s->remote_node_defrag_ratio || 2049 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2050 return NULL; 2051 2052 do { 2053 cpuset_mems_cookie = read_mems_allowed_begin(); 2054 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2055 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2056 struct kmem_cache_node *n; 2057 2058 n = get_node(s, zone_to_nid(zone)); 2059 2060 if (n && cpuset_zone_allowed(zone, flags) && 2061 n->nr_partial > s->min_partial) { 2062 object = get_partial_node(s, n, c, flags); 2063 if (object) { 2064 /* 2065 * Don't check read_mems_allowed_retry() 2066 * here - if mems_allowed was updated in 2067 * parallel, that was a harmless race 2068 * between allocation and the cpuset 2069 * update 2070 */ 2071 return object; 2072 } 2073 } 2074 } 2075 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2076 #endif /* CONFIG_NUMA */ 2077 return NULL; 2078 } 2079 2080 /* 2081 * Get a partial page, lock it and return it. 2082 */ 2083 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2084 struct kmem_cache_cpu *c) 2085 { 2086 void *object; 2087 int searchnode = node; 2088 2089 if (node == NUMA_NO_NODE) 2090 searchnode = numa_mem_id(); 2091 2092 object = get_partial_node(s, get_node(s, searchnode), c, flags); 2093 if (object || node != NUMA_NO_NODE) 2094 return object; 2095 2096 return get_any_partial(s, flags, c); 2097 } 2098 2099 #ifdef CONFIG_PREEMPTION 2100 /* 2101 * Calculate the next globally unique transaction for disambiguation 2102 * during cmpxchg. The transactions start with the cpu number and are then 2103 * incremented by CONFIG_NR_CPUS. 2104 */ 2105 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2106 #else 2107 /* 2108 * No preemption supported therefore also no need to check for 2109 * different cpus. 2110 */ 2111 #define TID_STEP 1 2112 #endif 2113 2114 static inline unsigned long next_tid(unsigned long tid) 2115 { 2116 return tid + TID_STEP; 2117 } 2118 2119 #ifdef SLUB_DEBUG_CMPXCHG 2120 static inline unsigned int tid_to_cpu(unsigned long tid) 2121 { 2122 return tid % TID_STEP; 2123 } 2124 2125 static inline unsigned long tid_to_event(unsigned long tid) 2126 { 2127 return tid / TID_STEP; 2128 } 2129 #endif 2130 2131 static inline unsigned int init_tid(int cpu) 2132 { 2133 return cpu; 2134 } 2135 2136 static inline void note_cmpxchg_failure(const char *n, 2137 const struct kmem_cache *s, unsigned long tid) 2138 { 2139 #ifdef SLUB_DEBUG_CMPXCHG 2140 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2141 2142 pr_info("%s %s: cmpxchg redo ", n, s->name); 2143 2144 #ifdef CONFIG_PREEMPTION 2145 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2146 pr_warn("due to cpu change %d -> %d\n", 2147 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2148 else 2149 #endif 2150 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2151 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2152 tid_to_event(tid), tid_to_event(actual_tid)); 2153 else 2154 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2155 actual_tid, tid, next_tid(tid)); 2156 #endif 2157 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2158 } 2159 2160 static void init_kmem_cache_cpus(struct kmem_cache *s) 2161 { 2162 int cpu; 2163 2164 for_each_possible_cpu(cpu) 2165 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2166 } 2167 2168 /* 2169 * Remove the cpu slab 2170 */ 2171 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2172 void *freelist, struct kmem_cache_cpu *c) 2173 { 2174 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2175 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2176 int lock = 0, free_delta = 0; 2177 enum slab_modes l = M_NONE, m = M_NONE; 2178 void *nextfree, *freelist_iter, *freelist_tail; 2179 int tail = DEACTIVATE_TO_HEAD; 2180 struct page new; 2181 struct page old; 2182 2183 if (page->freelist) { 2184 stat(s, DEACTIVATE_REMOTE_FREES); 2185 tail = DEACTIVATE_TO_TAIL; 2186 } 2187 2188 /* 2189 * Stage one: Count the objects on cpu's freelist as free_delta and 2190 * remember the last object in freelist_tail for later splicing. 2191 */ 2192 freelist_tail = NULL; 2193 freelist_iter = freelist; 2194 while (freelist_iter) { 2195 nextfree = get_freepointer(s, freelist_iter); 2196 2197 /* 2198 * If 'nextfree' is invalid, it is possible that the object at 2199 * 'freelist_iter' is already corrupted. So isolate all objects 2200 * starting at 'freelist_iter' by skipping them. 2201 */ 2202 if (freelist_corrupted(s, page, &freelist_iter, nextfree)) 2203 break; 2204 2205 freelist_tail = freelist_iter; 2206 free_delta++; 2207 2208 freelist_iter = nextfree; 2209 } 2210 2211 /* 2212 * Stage two: Unfreeze the page while splicing the per-cpu 2213 * freelist to the head of page's freelist. 2214 * 2215 * Ensure that the page is unfrozen while the list presence 2216 * reflects the actual number of objects during unfreeze. 2217 * 2218 * We setup the list membership and then perform a cmpxchg 2219 * with the count. If there is a mismatch then the page 2220 * is not unfrozen but the page is on the wrong list. 2221 * 2222 * Then we restart the process which may have to remove 2223 * the page from the list that we just put it on again 2224 * because the number of objects in the slab may have 2225 * changed. 2226 */ 2227 redo: 2228 2229 old.freelist = READ_ONCE(page->freelist); 2230 old.counters = READ_ONCE(page->counters); 2231 VM_BUG_ON(!old.frozen); 2232 2233 /* Determine target state of the slab */ 2234 new.counters = old.counters; 2235 if (freelist_tail) { 2236 new.inuse -= free_delta; 2237 set_freepointer(s, freelist_tail, old.freelist); 2238 new.freelist = freelist; 2239 } else 2240 new.freelist = old.freelist; 2241 2242 new.frozen = 0; 2243 2244 if (!new.inuse && n->nr_partial >= s->min_partial) 2245 m = M_FREE; 2246 else if (new.freelist) { 2247 m = M_PARTIAL; 2248 if (!lock) { 2249 lock = 1; 2250 /* 2251 * Taking the spinlock removes the possibility 2252 * that acquire_slab() will see a slab page that 2253 * is frozen 2254 */ 2255 spin_lock(&n->list_lock); 2256 } 2257 } else { 2258 m = M_FULL; 2259 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) { 2260 lock = 1; 2261 /* 2262 * This also ensures that the scanning of full 2263 * slabs from diagnostic functions will not see 2264 * any frozen slabs. 2265 */ 2266 spin_lock(&n->list_lock); 2267 } 2268 } 2269 2270 if (l != m) { 2271 if (l == M_PARTIAL) 2272 remove_partial(n, page); 2273 else if (l == M_FULL) 2274 remove_full(s, n, page); 2275 2276 if (m == M_PARTIAL) 2277 add_partial(n, page, tail); 2278 else if (m == M_FULL) 2279 add_full(s, n, page); 2280 } 2281 2282 l = m; 2283 if (!__cmpxchg_double_slab(s, page, 2284 old.freelist, old.counters, 2285 new.freelist, new.counters, 2286 "unfreezing slab")) 2287 goto redo; 2288 2289 if (lock) 2290 spin_unlock(&n->list_lock); 2291 2292 if (m == M_PARTIAL) 2293 stat(s, tail); 2294 else if (m == M_FULL) 2295 stat(s, DEACTIVATE_FULL); 2296 else if (m == M_FREE) { 2297 stat(s, DEACTIVATE_EMPTY); 2298 discard_slab(s, page); 2299 stat(s, FREE_SLAB); 2300 } 2301 2302 c->page = NULL; 2303 c->freelist = NULL; 2304 } 2305 2306 /* 2307 * Unfreeze all the cpu partial slabs. 2308 * 2309 * This function must be called with interrupts disabled 2310 * for the cpu using c (or some other guarantee must be there 2311 * to guarantee no concurrent accesses). 2312 */ 2313 static void unfreeze_partials(struct kmem_cache *s, 2314 struct kmem_cache_cpu *c) 2315 { 2316 #ifdef CONFIG_SLUB_CPU_PARTIAL 2317 struct kmem_cache_node *n = NULL, *n2 = NULL; 2318 struct page *page, *discard_page = NULL; 2319 2320 while ((page = slub_percpu_partial(c))) { 2321 struct page new; 2322 struct page old; 2323 2324 slub_set_percpu_partial(c, page); 2325 2326 n2 = get_node(s, page_to_nid(page)); 2327 if (n != n2) { 2328 if (n) 2329 spin_unlock(&n->list_lock); 2330 2331 n = n2; 2332 spin_lock(&n->list_lock); 2333 } 2334 2335 do { 2336 2337 old.freelist = page->freelist; 2338 old.counters = page->counters; 2339 VM_BUG_ON(!old.frozen); 2340 2341 new.counters = old.counters; 2342 new.freelist = old.freelist; 2343 2344 new.frozen = 0; 2345 2346 } while (!__cmpxchg_double_slab(s, page, 2347 old.freelist, old.counters, 2348 new.freelist, new.counters, 2349 "unfreezing slab")); 2350 2351 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2352 page->next = discard_page; 2353 discard_page = page; 2354 } else { 2355 add_partial(n, page, DEACTIVATE_TO_TAIL); 2356 stat(s, FREE_ADD_PARTIAL); 2357 } 2358 } 2359 2360 if (n) 2361 spin_unlock(&n->list_lock); 2362 2363 while (discard_page) { 2364 page = discard_page; 2365 discard_page = discard_page->next; 2366 2367 stat(s, DEACTIVATE_EMPTY); 2368 discard_slab(s, page); 2369 stat(s, FREE_SLAB); 2370 } 2371 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2372 } 2373 2374 /* 2375 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2376 * partial page slot if available. 2377 * 2378 * If we did not find a slot then simply move all the partials to the 2379 * per node partial list. 2380 */ 2381 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2382 { 2383 #ifdef CONFIG_SLUB_CPU_PARTIAL 2384 struct page *oldpage; 2385 int pages; 2386 int pobjects; 2387 2388 preempt_disable(); 2389 do { 2390 pages = 0; 2391 pobjects = 0; 2392 oldpage = this_cpu_read(s->cpu_slab->partial); 2393 2394 if (oldpage) { 2395 pobjects = oldpage->pobjects; 2396 pages = oldpage->pages; 2397 if (drain && pobjects > slub_cpu_partial(s)) { 2398 unsigned long flags; 2399 /* 2400 * partial array is full. Move the existing 2401 * set to the per node partial list. 2402 */ 2403 local_irq_save(flags); 2404 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2405 local_irq_restore(flags); 2406 oldpage = NULL; 2407 pobjects = 0; 2408 pages = 0; 2409 stat(s, CPU_PARTIAL_DRAIN); 2410 } 2411 } 2412 2413 pages++; 2414 pobjects += page->objects - page->inuse; 2415 2416 page->pages = pages; 2417 page->pobjects = pobjects; 2418 page->next = oldpage; 2419 2420 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2421 != oldpage); 2422 if (unlikely(!slub_cpu_partial(s))) { 2423 unsigned long flags; 2424 2425 local_irq_save(flags); 2426 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2427 local_irq_restore(flags); 2428 } 2429 preempt_enable(); 2430 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2431 } 2432 2433 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2434 { 2435 stat(s, CPUSLAB_FLUSH); 2436 deactivate_slab(s, c->page, c->freelist, c); 2437 2438 c->tid = next_tid(c->tid); 2439 } 2440 2441 /* 2442 * Flush cpu slab. 2443 * 2444 * Called from IPI handler with interrupts disabled. 2445 */ 2446 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2447 { 2448 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2449 2450 if (c->page) 2451 flush_slab(s, c); 2452 2453 unfreeze_partials(s, c); 2454 } 2455 2456 static void flush_cpu_slab(void *d) 2457 { 2458 struct kmem_cache *s = d; 2459 2460 __flush_cpu_slab(s, smp_processor_id()); 2461 } 2462 2463 static bool has_cpu_slab(int cpu, void *info) 2464 { 2465 struct kmem_cache *s = info; 2466 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2467 2468 return c->page || slub_percpu_partial(c); 2469 } 2470 2471 static void flush_all(struct kmem_cache *s) 2472 { 2473 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2474 } 2475 2476 /* 2477 * Use the cpu notifier to insure that the cpu slabs are flushed when 2478 * necessary. 2479 */ 2480 static int slub_cpu_dead(unsigned int cpu) 2481 { 2482 struct kmem_cache *s; 2483 unsigned long flags; 2484 2485 mutex_lock(&slab_mutex); 2486 list_for_each_entry(s, &slab_caches, list) { 2487 local_irq_save(flags); 2488 __flush_cpu_slab(s, cpu); 2489 local_irq_restore(flags); 2490 } 2491 mutex_unlock(&slab_mutex); 2492 return 0; 2493 } 2494 2495 /* 2496 * Check if the objects in a per cpu structure fit numa 2497 * locality expectations. 2498 */ 2499 static inline int node_match(struct page *page, int node) 2500 { 2501 #ifdef CONFIG_NUMA 2502 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2503 return 0; 2504 #endif 2505 return 1; 2506 } 2507 2508 #ifdef CONFIG_SLUB_DEBUG 2509 static int count_free(struct page *page) 2510 { 2511 return page->objects - page->inuse; 2512 } 2513 2514 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2515 { 2516 return atomic_long_read(&n->total_objects); 2517 } 2518 #endif /* CONFIG_SLUB_DEBUG */ 2519 2520 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2521 static unsigned long count_partial(struct kmem_cache_node *n, 2522 int (*get_count)(struct page *)) 2523 { 2524 unsigned long flags; 2525 unsigned long x = 0; 2526 struct page *page; 2527 2528 spin_lock_irqsave(&n->list_lock, flags); 2529 list_for_each_entry(page, &n->partial, slab_list) 2530 x += get_count(page); 2531 spin_unlock_irqrestore(&n->list_lock, flags); 2532 return x; 2533 } 2534 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2535 2536 static noinline void 2537 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2538 { 2539 #ifdef CONFIG_SLUB_DEBUG 2540 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2541 DEFAULT_RATELIMIT_BURST); 2542 int node; 2543 struct kmem_cache_node *n; 2544 2545 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2546 return; 2547 2548 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2549 nid, gfpflags, &gfpflags); 2550 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2551 s->name, s->object_size, s->size, oo_order(s->oo), 2552 oo_order(s->min)); 2553 2554 if (oo_order(s->min) > get_order(s->object_size)) 2555 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2556 s->name); 2557 2558 for_each_kmem_cache_node(s, node, n) { 2559 unsigned long nr_slabs; 2560 unsigned long nr_objs; 2561 unsigned long nr_free; 2562 2563 nr_free = count_partial(n, count_free); 2564 nr_slabs = node_nr_slabs(n); 2565 nr_objs = node_nr_objs(n); 2566 2567 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2568 node, nr_slabs, nr_objs, nr_free); 2569 } 2570 #endif 2571 } 2572 2573 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2574 int node, struct kmem_cache_cpu **pc) 2575 { 2576 void *freelist; 2577 struct kmem_cache_cpu *c = *pc; 2578 struct page *page; 2579 2580 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2581 2582 freelist = get_partial(s, flags, node, c); 2583 2584 if (freelist) 2585 return freelist; 2586 2587 page = new_slab(s, flags, node); 2588 if (page) { 2589 c = raw_cpu_ptr(s->cpu_slab); 2590 if (c->page) 2591 flush_slab(s, c); 2592 2593 /* 2594 * No other reference to the page yet so we can 2595 * muck around with it freely without cmpxchg 2596 */ 2597 freelist = page->freelist; 2598 page->freelist = NULL; 2599 2600 stat(s, ALLOC_SLAB); 2601 c->page = page; 2602 *pc = c; 2603 } 2604 2605 return freelist; 2606 } 2607 2608 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2609 { 2610 if (unlikely(PageSlabPfmemalloc(page))) 2611 return gfp_pfmemalloc_allowed(gfpflags); 2612 2613 return true; 2614 } 2615 2616 /* 2617 * Check the page->freelist of a page and either transfer the freelist to the 2618 * per cpu freelist or deactivate the page. 2619 * 2620 * The page is still frozen if the return value is not NULL. 2621 * 2622 * If this function returns NULL then the page has been unfrozen. 2623 * 2624 * This function must be called with interrupt disabled. 2625 */ 2626 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2627 { 2628 struct page new; 2629 unsigned long counters; 2630 void *freelist; 2631 2632 do { 2633 freelist = page->freelist; 2634 counters = page->counters; 2635 2636 new.counters = counters; 2637 VM_BUG_ON(!new.frozen); 2638 2639 new.inuse = page->objects; 2640 new.frozen = freelist != NULL; 2641 2642 } while (!__cmpxchg_double_slab(s, page, 2643 freelist, counters, 2644 NULL, new.counters, 2645 "get_freelist")); 2646 2647 return freelist; 2648 } 2649 2650 /* 2651 * Slow path. The lockless freelist is empty or we need to perform 2652 * debugging duties. 2653 * 2654 * Processing is still very fast if new objects have been freed to the 2655 * regular freelist. In that case we simply take over the regular freelist 2656 * as the lockless freelist and zap the regular freelist. 2657 * 2658 * If that is not working then we fall back to the partial lists. We take the 2659 * first element of the freelist as the object to allocate now and move the 2660 * rest of the freelist to the lockless freelist. 2661 * 2662 * And if we were unable to get a new slab from the partial slab lists then 2663 * we need to allocate a new slab. This is the slowest path since it involves 2664 * a call to the page allocator and the setup of a new slab. 2665 * 2666 * Version of __slab_alloc to use when we know that interrupts are 2667 * already disabled (which is the case for bulk allocation). 2668 */ 2669 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2670 unsigned long addr, struct kmem_cache_cpu *c) 2671 { 2672 void *freelist; 2673 struct page *page; 2674 2675 stat(s, ALLOC_SLOWPATH); 2676 2677 page = c->page; 2678 if (!page) { 2679 /* 2680 * if the node is not online or has no normal memory, just 2681 * ignore the node constraint 2682 */ 2683 if (unlikely(node != NUMA_NO_NODE && 2684 !node_isset(node, slab_nodes))) 2685 node = NUMA_NO_NODE; 2686 goto new_slab; 2687 } 2688 redo: 2689 2690 if (unlikely(!node_match(page, node))) { 2691 /* 2692 * same as above but node_match() being false already 2693 * implies node != NUMA_NO_NODE 2694 */ 2695 if (!node_isset(node, slab_nodes)) { 2696 node = NUMA_NO_NODE; 2697 goto redo; 2698 } else { 2699 stat(s, ALLOC_NODE_MISMATCH); 2700 deactivate_slab(s, page, c->freelist, c); 2701 goto new_slab; 2702 } 2703 } 2704 2705 /* 2706 * By rights, we should be searching for a slab page that was 2707 * PFMEMALLOC but right now, we are losing the pfmemalloc 2708 * information when the page leaves the per-cpu allocator 2709 */ 2710 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2711 deactivate_slab(s, page, c->freelist, c); 2712 goto new_slab; 2713 } 2714 2715 /* must check again c->freelist in case of cpu migration or IRQ */ 2716 freelist = c->freelist; 2717 if (freelist) 2718 goto load_freelist; 2719 2720 freelist = get_freelist(s, page); 2721 2722 if (!freelist) { 2723 c->page = NULL; 2724 stat(s, DEACTIVATE_BYPASS); 2725 goto new_slab; 2726 } 2727 2728 stat(s, ALLOC_REFILL); 2729 2730 load_freelist: 2731 /* 2732 * freelist is pointing to the list of objects to be used. 2733 * page is pointing to the page from which the objects are obtained. 2734 * That page must be frozen for per cpu allocations to work. 2735 */ 2736 VM_BUG_ON(!c->page->frozen); 2737 c->freelist = get_freepointer(s, freelist); 2738 c->tid = next_tid(c->tid); 2739 return freelist; 2740 2741 new_slab: 2742 2743 if (slub_percpu_partial(c)) { 2744 page = c->page = slub_percpu_partial(c); 2745 slub_set_percpu_partial(c, page); 2746 stat(s, CPU_PARTIAL_ALLOC); 2747 goto redo; 2748 } 2749 2750 freelist = new_slab_objects(s, gfpflags, node, &c); 2751 2752 if (unlikely(!freelist)) { 2753 slab_out_of_memory(s, gfpflags, node); 2754 return NULL; 2755 } 2756 2757 page = c->page; 2758 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2759 goto load_freelist; 2760 2761 /* Only entered in the debug case */ 2762 if (kmem_cache_debug(s) && 2763 !alloc_debug_processing(s, page, freelist, addr)) 2764 goto new_slab; /* Slab failed checks. Next slab needed */ 2765 2766 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2767 return freelist; 2768 } 2769 2770 /* 2771 * Another one that disabled interrupt and compensates for possible 2772 * cpu changes by refetching the per cpu area pointer. 2773 */ 2774 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2775 unsigned long addr, struct kmem_cache_cpu *c) 2776 { 2777 void *p; 2778 unsigned long flags; 2779 2780 local_irq_save(flags); 2781 #ifdef CONFIG_PREEMPTION 2782 /* 2783 * We may have been preempted and rescheduled on a different 2784 * cpu before disabling interrupts. Need to reload cpu area 2785 * pointer. 2786 */ 2787 c = this_cpu_ptr(s->cpu_slab); 2788 #endif 2789 2790 p = ___slab_alloc(s, gfpflags, node, addr, c); 2791 local_irq_restore(flags); 2792 return p; 2793 } 2794 2795 /* 2796 * If the object has been wiped upon free, make sure it's fully initialized by 2797 * zeroing out freelist pointer. 2798 */ 2799 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2800 void *obj) 2801 { 2802 if (unlikely(slab_want_init_on_free(s)) && obj) 2803 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 2804 0, sizeof(void *)); 2805 } 2806 2807 /* 2808 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2809 * have the fastpath folded into their functions. So no function call 2810 * overhead for requests that can be satisfied on the fastpath. 2811 * 2812 * The fastpath works by first checking if the lockless freelist can be used. 2813 * If not then __slab_alloc is called for slow processing. 2814 * 2815 * Otherwise we can simply pick the next object from the lockless free list. 2816 */ 2817 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2818 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 2819 { 2820 void *object; 2821 struct kmem_cache_cpu *c; 2822 struct page *page; 2823 unsigned long tid; 2824 struct obj_cgroup *objcg = NULL; 2825 2826 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags); 2827 if (!s) 2828 return NULL; 2829 2830 object = kfence_alloc(s, orig_size, gfpflags); 2831 if (unlikely(object)) 2832 goto out; 2833 2834 redo: 2835 /* 2836 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2837 * enabled. We may switch back and forth between cpus while 2838 * reading from one cpu area. That does not matter as long 2839 * as we end up on the original cpu again when doing the cmpxchg. 2840 * 2841 * We should guarantee that tid and kmem_cache are retrieved on 2842 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2843 * to check if it is matched or not. 2844 */ 2845 do { 2846 tid = this_cpu_read(s->cpu_slab->tid); 2847 c = raw_cpu_ptr(s->cpu_slab); 2848 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2849 unlikely(tid != READ_ONCE(c->tid))); 2850 2851 /* 2852 * Irqless object alloc/free algorithm used here depends on sequence 2853 * of fetching cpu_slab's data. tid should be fetched before anything 2854 * on c to guarantee that object and page associated with previous tid 2855 * won't be used with current tid. If we fetch tid first, object and 2856 * page could be one associated with next tid and our alloc/free 2857 * request will be failed. In this case, we will retry. So, no problem. 2858 */ 2859 barrier(); 2860 2861 /* 2862 * The transaction ids are globally unique per cpu and per operation on 2863 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2864 * occurs on the right processor and that there was no operation on the 2865 * linked list in between. 2866 */ 2867 2868 object = c->freelist; 2869 page = c->page; 2870 if (unlikely(!object || !page || !node_match(page, node))) { 2871 object = __slab_alloc(s, gfpflags, node, addr, c); 2872 } else { 2873 void *next_object = get_freepointer_safe(s, object); 2874 2875 /* 2876 * The cmpxchg will only match if there was no additional 2877 * operation and if we are on the right processor. 2878 * 2879 * The cmpxchg does the following atomically (without lock 2880 * semantics!) 2881 * 1. Relocate first pointer to the current per cpu area. 2882 * 2. Verify that tid and freelist have not been changed 2883 * 3. If they were not changed replace tid and freelist 2884 * 2885 * Since this is without lock semantics the protection is only 2886 * against code executing on this cpu *not* from access by 2887 * other cpus. 2888 */ 2889 if (unlikely(!this_cpu_cmpxchg_double( 2890 s->cpu_slab->freelist, s->cpu_slab->tid, 2891 object, tid, 2892 next_object, next_tid(tid)))) { 2893 2894 note_cmpxchg_failure("slab_alloc", s, tid); 2895 goto redo; 2896 } 2897 prefetch_freepointer(s, next_object); 2898 stat(s, ALLOC_FASTPATH); 2899 } 2900 2901 maybe_wipe_obj_freeptr(s, object); 2902 2903 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2904 memset(kasan_reset_tag(object), 0, s->object_size); 2905 2906 out: 2907 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object); 2908 2909 return object; 2910 } 2911 2912 static __always_inline void *slab_alloc(struct kmem_cache *s, 2913 gfp_t gfpflags, unsigned long addr, size_t orig_size) 2914 { 2915 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size); 2916 } 2917 2918 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2919 { 2920 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size); 2921 2922 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2923 s->size, gfpflags); 2924 2925 return ret; 2926 } 2927 EXPORT_SYMBOL(kmem_cache_alloc); 2928 2929 #ifdef CONFIG_TRACING 2930 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2931 { 2932 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size); 2933 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2934 ret = kasan_kmalloc(s, ret, size, gfpflags); 2935 return ret; 2936 } 2937 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2938 #endif 2939 2940 #ifdef CONFIG_NUMA 2941 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2942 { 2943 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size); 2944 2945 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2946 s->object_size, s->size, gfpflags, node); 2947 2948 return ret; 2949 } 2950 EXPORT_SYMBOL(kmem_cache_alloc_node); 2951 2952 #ifdef CONFIG_TRACING 2953 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2954 gfp_t gfpflags, 2955 int node, size_t size) 2956 { 2957 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size); 2958 2959 trace_kmalloc_node(_RET_IP_, ret, 2960 size, s->size, gfpflags, node); 2961 2962 ret = kasan_kmalloc(s, ret, size, gfpflags); 2963 return ret; 2964 } 2965 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2966 #endif 2967 #endif /* CONFIG_NUMA */ 2968 2969 /* 2970 * Slow path handling. This may still be called frequently since objects 2971 * have a longer lifetime than the cpu slabs in most processing loads. 2972 * 2973 * So we still attempt to reduce cache line usage. Just take the slab 2974 * lock and free the item. If there is no additional partial page 2975 * handling required then we can return immediately. 2976 */ 2977 static void __slab_free(struct kmem_cache *s, struct page *page, 2978 void *head, void *tail, int cnt, 2979 unsigned long addr) 2980 2981 { 2982 void *prior; 2983 int was_frozen; 2984 struct page new; 2985 unsigned long counters; 2986 struct kmem_cache_node *n = NULL; 2987 unsigned long flags; 2988 2989 stat(s, FREE_SLOWPATH); 2990 2991 if (kfence_free(head)) 2992 return; 2993 2994 if (kmem_cache_debug(s) && 2995 !free_debug_processing(s, page, head, tail, cnt, addr)) 2996 return; 2997 2998 do { 2999 if (unlikely(n)) { 3000 spin_unlock_irqrestore(&n->list_lock, flags); 3001 n = NULL; 3002 } 3003 prior = page->freelist; 3004 counters = page->counters; 3005 set_freepointer(s, tail, prior); 3006 new.counters = counters; 3007 was_frozen = new.frozen; 3008 new.inuse -= cnt; 3009 if ((!new.inuse || !prior) && !was_frozen) { 3010 3011 if (kmem_cache_has_cpu_partial(s) && !prior) { 3012 3013 /* 3014 * Slab was on no list before and will be 3015 * partially empty 3016 * We can defer the list move and instead 3017 * freeze it. 3018 */ 3019 new.frozen = 1; 3020 3021 } else { /* Needs to be taken off a list */ 3022 3023 n = get_node(s, page_to_nid(page)); 3024 /* 3025 * Speculatively acquire the list_lock. 3026 * If the cmpxchg does not succeed then we may 3027 * drop the list_lock without any processing. 3028 * 3029 * Otherwise the list_lock will synchronize with 3030 * other processors updating the list of slabs. 3031 */ 3032 spin_lock_irqsave(&n->list_lock, flags); 3033 3034 } 3035 } 3036 3037 } while (!cmpxchg_double_slab(s, page, 3038 prior, counters, 3039 head, new.counters, 3040 "__slab_free")); 3041 3042 if (likely(!n)) { 3043 3044 if (likely(was_frozen)) { 3045 /* 3046 * The list lock was not taken therefore no list 3047 * activity can be necessary. 3048 */ 3049 stat(s, FREE_FROZEN); 3050 } else if (new.frozen) { 3051 /* 3052 * If we just froze the page then put it onto the 3053 * per cpu partial list. 3054 */ 3055 put_cpu_partial(s, page, 1); 3056 stat(s, CPU_PARTIAL_FREE); 3057 } 3058 3059 return; 3060 } 3061 3062 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3063 goto slab_empty; 3064 3065 /* 3066 * Objects left in the slab. If it was not on the partial list before 3067 * then add it. 3068 */ 3069 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3070 remove_full(s, n, page); 3071 add_partial(n, page, DEACTIVATE_TO_TAIL); 3072 stat(s, FREE_ADD_PARTIAL); 3073 } 3074 spin_unlock_irqrestore(&n->list_lock, flags); 3075 return; 3076 3077 slab_empty: 3078 if (prior) { 3079 /* 3080 * Slab on the partial list. 3081 */ 3082 remove_partial(n, page); 3083 stat(s, FREE_REMOVE_PARTIAL); 3084 } else { 3085 /* Slab must be on the full list */ 3086 remove_full(s, n, page); 3087 } 3088 3089 spin_unlock_irqrestore(&n->list_lock, flags); 3090 stat(s, FREE_SLAB); 3091 discard_slab(s, page); 3092 } 3093 3094 /* 3095 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3096 * can perform fastpath freeing without additional function calls. 3097 * 3098 * The fastpath is only possible if we are freeing to the current cpu slab 3099 * of this processor. This typically the case if we have just allocated 3100 * the item before. 3101 * 3102 * If fastpath is not possible then fall back to __slab_free where we deal 3103 * with all sorts of special processing. 3104 * 3105 * Bulk free of a freelist with several objects (all pointing to the 3106 * same page) possible by specifying head and tail ptr, plus objects 3107 * count (cnt). Bulk free indicated by tail pointer being set. 3108 */ 3109 static __always_inline void do_slab_free(struct kmem_cache *s, 3110 struct page *page, void *head, void *tail, 3111 int cnt, unsigned long addr) 3112 { 3113 void *tail_obj = tail ? : head; 3114 struct kmem_cache_cpu *c; 3115 unsigned long tid; 3116 3117 memcg_slab_free_hook(s, &head, 1); 3118 redo: 3119 /* 3120 * Determine the currently cpus per cpu slab. 3121 * The cpu may change afterward. However that does not matter since 3122 * data is retrieved via this pointer. If we are on the same cpu 3123 * during the cmpxchg then the free will succeed. 3124 */ 3125 do { 3126 tid = this_cpu_read(s->cpu_slab->tid); 3127 c = raw_cpu_ptr(s->cpu_slab); 3128 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3129 unlikely(tid != READ_ONCE(c->tid))); 3130 3131 /* Same with comment on barrier() in slab_alloc_node() */ 3132 barrier(); 3133 3134 if (likely(page == c->page)) { 3135 void **freelist = READ_ONCE(c->freelist); 3136 3137 set_freepointer(s, tail_obj, freelist); 3138 3139 if (unlikely(!this_cpu_cmpxchg_double( 3140 s->cpu_slab->freelist, s->cpu_slab->tid, 3141 freelist, tid, 3142 head, next_tid(tid)))) { 3143 3144 note_cmpxchg_failure("slab_free", s, tid); 3145 goto redo; 3146 } 3147 stat(s, FREE_FASTPATH); 3148 } else 3149 __slab_free(s, page, head, tail_obj, cnt, addr); 3150 3151 } 3152 3153 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3154 void *head, void *tail, int cnt, 3155 unsigned long addr) 3156 { 3157 /* 3158 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3159 * to remove objects, whose reuse must be delayed. 3160 */ 3161 if (slab_free_freelist_hook(s, &head, &tail)) 3162 do_slab_free(s, page, head, tail, cnt, addr); 3163 } 3164 3165 #ifdef CONFIG_KASAN_GENERIC 3166 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3167 { 3168 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3169 } 3170 #endif 3171 3172 void kmem_cache_free(struct kmem_cache *s, void *x) 3173 { 3174 s = cache_from_obj(s, x); 3175 if (!s) 3176 return; 3177 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3178 trace_kmem_cache_free(_RET_IP_, x, s->name); 3179 } 3180 EXPORT_SYMBOL(kmem_cache_free); 3181 3182 struct detached_freelist { 3183 struct page *page; 3184 void *tail; 3185 void *freelist; 3186 int cnt; 3187 struct kmem_cache *s; 3188 }; 3189 3190 /* 3191 * This function progressively scans the array with free objects (with 3192 * a limited look ahead) and extract objects belonging to the same 3193 * page. It builds a detached freelist directly within the given 3194 * page/objects. This can happen without any need for 3195 * synchronization, because the objects are owned by running process. 3196 * The freelist is build up as a single linked list in the objects. 3197 * The idea is, that this detached freelist can then be bulk 3198 * transferred to the real freelist(s), but only requiring a single 3199 * synchronization primitive. Look ahead in the array is limited due 3200 * to performance reasons. 3201 */ 3202 static inline 3203 int build_detached_freelist(struct kmem_cache *s, size_t size, 3204 void **p, struct detached_freelist *df) 3205 { 3206 size_t first_skipped_index = 0; 3207 int lookahead = 3; 3208 void *object; 3209 struct page *page; 3210 3211 /* Always re-init detached_freelist */ 3212 df->page = NULL; 3213 3214 do { 3215 object = p[--size]; 3216 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3217 } while (!object && size); 3218 3219 if (!object) 3220 return 0; 3221 3222 page = virt_to_head_page(object); 3223 if (!s) { 3224 /* Handle kalloc'ed objects */ 3225 if (unlikely(!PageSlab(page))) { 3226 BUG_ON(!PageCompound(page)); 3227 kfree_hook(object); 3228 __free_pages(page, compound_order(page)); 3229 p[size] = NULL; /* mark object processed */ 3230 return size; 3231 } 3232 /* Derive kmem_cache from object */ 3233 df->s = page->slab_cache; 3234 } else { 3235 df->s = cache_from_obj(s, object); /* Support for memcg */ 3236 } 3237 3238 if (is_kfence_address(object)) { 3239 slab_free_hook(df->s, object); 3240 __kfence_free(object); 3241 p[size] = NULL; /* mark object processed */ 3242 return size; 3243 } 3244 3245 /* Start new detached freelist */ 3246 df->page = page; 3247 set_freepointer(df->s, object, NULL); 3248 df->tail = object; 3249 df->freelist = object; 3250 p[size] = NULL; /* mark object processed */ 3251 df->cnt = 1; 3252 3253 while (size) { 3254 object = p[--size]; 3255 if (!object) 3256 continue; /* Skip processed objects */ 3257 3258 /* df->page is always set at this point */ 3259 if (df->page == virt_to_head_page(object)) { 3260 /* Opportunity build freelist */ 3261 set_freepointer(df->s, object, df->freelist); 3262 df->freelist = object; 3263 df->cnt++; 3264 p[size] = NULL; /* mark object processed */ 3265 3266 continue; 3267 } 3268 3269 /* Limit look ahead search */ 3270 if (!--lookahead) 3271 break; 3272 3273 if (!first_skipped_index) 3274 first_skipped_index = size + 1; 3275 } 3276 3277 return first_skipped_index; 3278 } 3279 3280 /* Note that interrupts must be enabled when calling this function. */ 3281 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3282 { 3283 if (WARN_ON(!size)) 3284 return; 3285 3286 memcg_slab_free_hook(s, p, size); 3287 do { 3288 struct detached_freelist df; 3289 3290 size = build_detached_freelist(s, size, p, &df); 3291 if (!df.page) 3292 continue; 3293 3294 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_); 3295 } while (likely(size)); 3296 } 3297 EXPORT_SYMBOL(kmem_cache_free_bulk); 3298 3299 /* Note that interrupts must be enabled when calling this function. */ 3300 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3301 void **p) 3302 { 3303 struct kmem_cache_cpu *c; 3304 int i; 3305 struct obj_cgroup *objcg = NULL; 3306 3307 /* memcg and kmem_cache debug support */ 3308 s = slab_pre_alloc_hook(s, &objcg, size, flags); 3309 if (unlikely(!s)) 3310 return false; 3311 /* 3312 * Drain objects in the per cpu slab, while disabling local 3313 * IRQs, which protects against PREEMPT and interrupts 3314 * handlers invoking normal fastpath. 3315 */ 3316 local_irq_disable(); 3317 c = this_cpu_ptr(s->cpu_slab); 3318 3319 for (i = 0; i < size; i++) { 3320 void *object = kfence_alloc(s, s->object_size, flags); 3321 3322 if (unlikely(object)) { 3323 p[i] = object; 3324 continue; 3325 } 3326 3327 object = c->freelist; 3328 if (unlikely(!object)) { 3329 /* 3330 * We may have removed an object from c->freelist using 3331 * the fastpath in the previous iteration; in that case, 3332 * c->tid has not been bumped yet. 3333 * Since ___slab_alloc() may reenable interrupts while 3334 * allocating memory, we should bump c->tid now. 3335 */ 3336 c->tid = next_tid(c->tid); 3337 3338 /* 3339 * Invoking slow path likely have side-effect 3340 * of re-populating per CPU c->freelist 3341 */ 3342 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3343 _RET_IP_, c); 3344 if (unlikely(!p[i])) 3345 goto error; 3346 3347 c = this_cpu_ptr(s->cpu_slab); 3348 maybe_wipe_obj_freeptr(s, p[i]); 3349 3350 continue; /* goto for-loop */ 3351 } 3352 c->freelist = get_freepointer(s, object); 3353 p[i] = object; 3354 maybe_wipe_obj_freeptr(s, p[i]); 3355 } 3356 c->tid = next_tid(c->tid); 3357 local_irq_enable(); 3358 3359 /* Clear memory outside IRQ disabled fastpath loop */ 3360 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3361 int j; 3362 3363 for (j = 0; j < i; j++) 3364 memset(kasan_reset_tag(p[j]), 0, s->object_size); 3365 } 3366 3367 /* memcg and kmem_cache debug support */ 3368 slab_post_alloc_hook(s, objcg, flags, size, p); 3369 return i; 3370 error: 3371 local_irq_enable(); 3372 slab_post_alloc_hook(s, objcg, flags, i, p); 3373 __kmem_cache_free_bulk(s, i, p); 3374 return 0; 3375 } 3376 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3377 3378 3379 /* 3380 * Object placement in a slab is made very easy because we always start at 3381 * offset 0. If we tune the size of the object to the alignment then we can 3382 * get the required alignment by putting one properly sized object after 3383 * another. 3384 * 3385 * Notice that the allocation order determines the sizes of the per cpu 3386 * caches. Each processor has always one slab available for allocations. 3387 * Increasing the allocation order reduces the number of times that slabs 3388 * must be moved on and off the partial lists and is therefore a factor in 3389 * locking overhead. 3390 */ 3391 3392 /* 3393 * Mininum / Maximum order of slab pages. This influences locking overhead 3394 * and slab fragmentation. A higher order reduces the number of partial slabs 3395 * and increases the number of allocations possible without having to 3396 * take the list_lock. 3397 */ 3398 static unsigned int slub_min_order; 3399 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3400 static unsigned int slub_min_objects; 3401 3402 /* 3403 * Calculate the order of allocation given an slab object size. 3404 * 3405 * The order of allocation has significant impact on performance and other 3406 * system components. Generally order 0 allocations should be preferred since 3407 * order 0 does not cause fragmentation in the page allocator. Larger objects 3408 * be problematic to put into order 0 slabs because there may be too much 3409 * unused space left. We go to a higher order if more than 1/16th of the slab 3410 * would be wasted. 3411 * 3412 * In order to reach satisfactory performance we must ensure that a minimum 3413 * number of objects is in one slab. Otherwise we may generate too much 3414 * activity on the partial lists which requires taking the list_lock. This is 3415 * less a concern for large slabs though which are rarely used. 3416 * 3417 * slub_max_order specifies the order where we begin to stop considering the 3418 * number of objects in a slab as critical. If we reach slub_max_order then 3419 * we try to keep the page order as low as possible. So we accept more waste 3420 * of space in favor of a small page order. 3421 * 3422 * Higher order allocations also allow the placement of more objects in a 3423 * slab and thereby reduce object handling overhead. If the user has 3424 * requested a higher mininum order then we start with that one instead of 3425 * the smallest order which will fit the object. 3426 */ 3427 static inline unsigned int slab_order(unsigned int size, 3428 unsigned int min_objects, unsigned int max_order, 3429 unsigned int fract_leftover) 3430 { 3431 unsigned int min_order = slub_min_order; 3432 unsigned int order; 3433 3434 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3435 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3436 3437 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3438 order <= max_order; order++) { 3439 3440 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3441 unsigned int rem; 3442 3443 rem = slab_size % size; 3444 3445 if (rem <= slab_size / fract_leftover) 3446 break; 3447 } 3448 3449 return order; 3450 } 3451 3452 static inline int calculate_order(unsigned int size) 3453 { 3454 unsigned int order; 3455 unsigned int min_objects; 3456 unsigned int max_objects; 3457 unsigned int nr_cpus; 3458 3459 /* 3460 * Attempt to find best configuration for a slab. This 3461 * works by first attempting to generate a layout with 3462 * the best configuration and backing off gradually. 3463 * 3464 * First we increase the acceptable waste in a slab. Then 3465 * we reduce the minimum objects required in a slab. 3466 */ 3467 min_objects = slub_min_objects; 3468 if (!min_objects) { 3469 /* 3470 * Some architectures will only update present cpus when 3471 * onlining them, so don't trust the number if it's just 1. But 3472 * we also don't want to use nr_cpu_ids always, as on some other 3473 * architectures, there can be many possible cpus, but never 3474 * onlined. Here we compromise between trying to avoid too high 3475 * order on systems that appear larger than they are, and too 3476 * low order on systems that appear smaller than they are. 3477 */ 3478 nr_cpus = num_present_cpus(); 3479 if (nr_cpus <= 1) 3480 nr_cpus = nr_cpu_ids; 3481 min_objects = 4 * (fls(nr_cpus) + 1); 3482 } 3483 max_objects = order_objects(slub_max_order, size); 3484 min_objects = min(min_objects, max_objects); 3485 3486 while (min_objects > 1) { 3487 unsigned int fraction; 3488 3489 fraction = 16; 3490 while (fraction >= 4) { 3491 order = slab_order(size, min_objects, 3492 slub_max_order, fraction); 3493 if (order <= slub_max_order) 3494 return order; 3495 fraction /= 2; 3496 } 3497 min_objects--; 3498 } 3499 3500 /* 3501 * We were unable to place multiple objects in a slab. Now 3502 * lets see if we can place a single object there. 3503 */ 3504 order = slab_order(size, 1, slub_max_order, 1); 3505 if (order <= slub_max_order) 3506 return order; 3507 3508 /* 3509 * Doh this slab cannot be placed using slub_max_order. 3510 */ 3511 order = slab_order(size, 1, MAX_ORDER, 1); 3512 if (order < MAX_ORDER) 3513 return order; 3514 return -ENOSYS; 3515 } 3516 3517 static void 3518 init_kmem_cache_node(struct kmem_cache_node *n) 3519 { 3520 n->nr_partial = 0; 3521 spin_lock_init(&n->list_lock); 3522 INIT_LIST_HEAD(&n->partial); 3523 #ifdef CONFIG_SLUB_DEBUG 3524 atomic_long_set(&n->nr_slabs, 0); 3525 atomic_long_set(&n->total_objects, 0); 3526 INIT_LIST_HEAD(&n->full); 3527 #endif 3528 } 3529 3530 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3531 { 3532 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3533 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3534 3535 /* 3536 * Must align to double word boundary for the double cmpxchg 3537 * instructions to work; see __pcpu_double_call_return_bool(). 3538 */ 3539 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3540 2 * sizeof(void *)); 3541 3542 if (!s->cpu_slab) 3543 return 0; 3544 3545 init_kmem_cache_cpus(s); 3546 3547 return 1; 3548 } 3549 3550 static struct kmem_cache *kmem_cache_node; 3551 3552 /* 3553 * No kmalloc_node yet so do it by hand. We know that this is the first 3554 * slab on the node for this slabcache. There are no concurrent accesses 3555 * possible. 3556 * 3557 * Note that this function only works on the kmem_cache_node 3558 * when allocating for the kmem_cache_node. This is used for bootstrapping 3559 * memory on a fresh node that has no slab structures yet. 3560 */ 3561 static void early_kmem_cache_node_alloc(int node) 3562 { 3563 struct page *page; 3564 struct kmem_cache_node *n; 3565 3566 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3567 3568 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3569 3570 BUG_ON(!page); 3571 if (page_to_nid(page) != node) { 3572 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3573 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3574 } 3575 3576 n = page->freelist; 3577 BUG_ON(!n); 3578 #ifdef CONFIG_SLUB_DEBUG 3579 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3580 init_tracking(kmem_cache_node, n); 3581 #endif 3582 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL); 3583 page->freelist = get_freepointer(kmem_cache_node, n); 3584 page->inuse = 1; 3585 page->frozen = 0; 3586 kmem_cache_node->node[node] = n; 3587 init_kmem_cache_node(n); 3588 inc_slabs_node(kmem_cache_node, node, page->objects); 3589 3590 /* 3591 * No locks need to be taken here as it has just been 3592 * initialized and there is no concurrent access. 3593 */ 3594 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3595 } 3596 3597 static void free_kmem_cache_nodes(struct kmem_cache *s) 3598 { 3599 int node; 3600 struct kmem_cache_node *n; 3601 3602 for_each_kmem_cache_node(s, node, n) { 3603 s->node[node] = NULL; 3604 kmem_cache_free(kmem_cache_node, n); 3605 } 3606 } 3607 3608 void __kmem_cache_release(struct kmem_cache *s) 3609 { 3610 cache_random_seq_destroy(s); 3611 free_percpu(s->cpu_slab); 3612 free_kmem_cache_nodes(s); 3613 } 3614 3615 static int init_kmem_cache_nodes(struct kmem_cache *s) 3616 { 3617 int node; 3618 3619 for_each_node_mask(node, slab_nodes) { 3620 struct kmem_cache_node *n; 3621 3622 if (slab_state == DOWN) { 3623 early_kmem_cache_node_alloc(node); 3624 continue; 3625 } 3626 n = kmem_cache_alloc_node(kmem_cache_node, 3627 GFP_KERNEL, node); 3628 3629 if (!n) { 3630 free_kmem_cache_nodes(s); 3631 return 0; 3632 } 3633 3634 init_kmem_cache_node(n); 3635 s->node[node] = n; 3636 } 3637 return 1; 3638 } 3639 3640 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3641 { 3642 if (min < MIN_PARTIAL) 3643 min = MIN_PARTIAL; 3644 else if (min > MAX_PARTIAL) 3645 min = MAX_PARTIAL; 3646 s->min_partial = min; 3647 } 3648 3649 static void set_cpu_partial(struct kmem_cache *s) 3650 { 3651 #ifdef CONFIG_SLUB_CPU_PARTIAL 3652 /* 3653 * cpu_partial determined the maximum number of objects kept in the 3654 * per cpu partial lists of a processor. 3655 * 3656 * Per cpu partial lists mainly contain slabs that just have one 3657 * object freed. If they are used for allocation then they can be 3658 * filled up again with minimal effort. The slab will never hit the 3659 * per node partial lists and therefore no locking will be required. 3660 * 3661 * This setting also determines 3662 * 3663 * A) The number of objects from per cpu partial slabs dumped to the 3664 * per node list when we reach the limit. 3665 * B) The number of objects in cpu partial slabs to extract from the 3666 * per node list when we run out of per cpu objects. We only fetch 3667 * 50% to keep some capacity around for frees. 3668 */ 3669 if (!kmem_cache_has_cpu_partial(s)) 3670 slub_set_cpu_partial(s, 0); 3671 else if (s->size >= PAGE_SIZE) 3672 slub_set_cpu_partial(s, 2); 3673 else if (s->size >= 1024) 3674 slub_set_cpu_partial(s, 6); 3675 else if (s->size >= 256) 3676 slub_set_cpu_partial(s, 13); 3677 else 3678 slub_set_cpu_partial(s, 30); 3679 #endif 3680 } 3681 3682 /* 3683 * calculate_sizes() determines the order and the distribution of data within 3684 * a slab object. 3685 */ 3686 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3687 { 3688 slab_flags_t flags = s->flags; 3689 unsigned int size = s->object_size; 3690 unsigned int freepointer_area; 3691 unsigned int order; 3692 3693 /* 3694 * Round up object size to the next word boundary. We can only 3695 * place the free pointer at word boundaries and this determines 3696 * the possible location of the free pointer. 3697 */ 3698 size = ALIGN(size, sizeof(void *)); 3699 /* 3700 * This is the area of the object where a freepointer can be 3701 * safely written. If redzoning adds more to the inuse size, we 3702 * can't use that portion for writing the freepointer, so 3703 * s->offset must be limited within this for the general case. 3704 */ 3705 freepointer_area = size; 3706 3707 #ifdef CONFIG_SLUB_DEBUG 3708 /* 3709 * Determine if we can poison the object itself. If the user of 3710 * the slab may touch the object after free or before allocation 3711 * then we should never poison the object itself. 3712 */ 3713 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3714 !s->ctor) 3715 s->flags |= __OBJECT_POISON; 3716 else 3717 s->flags &= ~__OBJECT_POISON; 3718 3719 3720 /* 3721 * If we are Redzoning then check if there is some space between the 3722 * end of the object and the free pointer. If not then add an 3723 * additional word to have some bytes to store Redzone information. 3724 */ 3725 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3726 size += sizeof(void *); 3727 #endif 3728 3729 /* 3730 * With that we have determined the number of bytes in actual use 3731 * by the object. This is the potential offset to the free pointer. 3732 */ 3733 s->inuse = size; 3734 3735 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3736 s->ctor)) { 3737 /* 3738 * Relocate free pointer after the object if it is not 3739 * permitted to overwrite the first word of the object on 3740 * kmem_cache_free. 3741 * 3742 * This is the case if we do RCU, have a constructor or 3743 * destructor or are poisoning the objects. 3744 * 3745 * The assumption that s->offset >= s->inuse means free 3746 * pointer is outside of the object is used in the 3747 * freeptr_outside_object() function. If that is no 3748 * longer true, the function needs to be modified. 3749 */ 3750 s->offset = size; 3751 size += sizeof(void *); 3752 } else if (freepointer_area > sizeof(void *)) { 3753 /* 3754 * Store freelist pointer near middle of object to keep 3755 * it away from the edges of the object to avoid small 3756 * sized over/underflows from neighboring allocations. 3757 */ 3758 s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); 3759 } 3760 3761 #ifdef CONFIG_SLUB_DEBUG 3762 if (flags & SLAB_STORE_USER) 3763 /* 3764 * Need to store information about allocs and frees after 3765 * the object. 3766 */ 3767 size += 2 * sizeof(struct track); 3768 #endif 3769 3770 kasan_cache_create(s, &size, &s->flags); 3771 #ifdef CONFIG_SLUB_DEBUG 3772 if (flags & SLAB_RED_ZONE) { 3773 /* 3774 * Add some empty padding so that we can catch 3775 * overwrites from earlier objects rather than let 3776 * tracking information or the free pointer be 3777 * corrupted if a user writes before the start 3778 * of the object. 3779 */ 3780 size += sizeof(void *); 3781 3782 s->red_left_pad = sizeof(void *); 3783 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3784 size += s->red_left_pad; 3785 } 3786 #endif 3787 3788 /* 3789 * SLUB stores one object immediately after another beginning from 3790 * offset 0. In order to align the objects we have to simply size 3791 * each object to conform to the alignment. 3792 */ 3793 size = ALIGN(size, s->align); 3794 s->size = size; 3795 s->reciprocal_size = reciprocal_value(size); 3796 if (forced_order >= 0) 3797 order = forced_order; 3798 else 3799 order = calculate_order(size); 3800 3801 if ((int)order < 0) 3802 return 0; 3803 3804 s->allocflags = 0; 3805 if (order) 3806 s->allocflags |= __GFP_COMP; 3807 3808 if (s->flags & SLAB_CACHE_DMA) 3809 s->allocflags |= GFP_DMA; 3810 3811 if (s->flags & SLAB_CACHE_DMA32) 3812 s->allocflags |= GFP_DMA32; 3813 3814 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3815 s->allocflags |= __GFP_RECLAIMABLE; 3816 3817 /* 3818 * Determine the number of objects per slab 3819 */ 3820 s->oo = oo_make(order, size); 3821 s->min = oo_make(get_order(size), size); 3822 if (oo_objects(s->oo) > oo_objects(s->max)) 3823 s->max = s->oo; 3824 3825 return !!oo_objects(s->oo); 3826 } 3827 3828 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3829 { 3830 s->flags = kmem_cache_flags(s->size, flags, s->name); 3831 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3832 s->random = get_random_long(); 3833 #endif 3834 3835 if (!calculate_sizes(s, -1)) 3836 goto error; 3837 if (disable_higher_order_debug) { 3838 /* 3839 * Disable debugging flags that store metadata if the min slab 3840 * order increased. 3841 */ 3842 if (get_order(s->size) > get_order(s->object_size)) { 3843 s->flags &= ~DEBUG_METADATA_FLAGS; 3844 s->offset = 0; 3845 if (!calculate_sizes(s, -1)) 3846 goto error; 3847 } 3848 } 3849 3850 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3851 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3852 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3853 /* Enable fast mode */ 3854 s->flags |= __CMPXCHG_DOUBLE; 3855 #endif 3856 3857 /* 3858 * The larger the object size is, the more pages we want on the partial 3859 * list to avoid pounding the page allocator excessively. 3860 */ 3861 set_min_partial(s, ilog2(s->size) / 2); 3862 3863 set_cpu_partial(s); 3864 3865 #ifdef CONFIG_NUMA 3866 s->remote_node_defrag_ratio = 1000; 3867 #endif 3868 3869 /* Initialize the pre-computed randomized freelist if slab is up */ 3870 if (slab_state >= UP) { 3871 if (init_cache_random_seq(s)) 3872 goto error; 3873 } 3874 3875 if (!init_kmem_cache_nodes(s)) 3876 goto error; 3877 3878 if (alloc_kmem_cache_cpus(s)) 3879 return 0; 3880 3881 free_kmem_cache_nodes(s); 3882 error: 3883 return -EINVAL; 3884 } 3885 3886 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3887 const char *text) 3888 { 3889 #ifdef CONFIG_SLUB_DEBUG 3890 void *addr = page_address(page); 3891 unsigned long *map; 3892 void *p; 3893 3894 slab_err(s, page, text, s->name); 3895 slab_lock(page); 3896 3897 map = get_map(s, page); 3898 for_each_object(p, s, addr, page->objects) { 3899 3900 if (!test_bit(__obj_to_index(s, addr, p), map)) { 3901 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3902 print_tracking(s, p); 3903 } 3904 } 3905 put_map(map); 3906 slab_unlock(page); 3907 #endif 3908 } 3909 3910 /* 3911 * Attempt to free all partial slabs on a node. 3912 * This is called from __kmem_cache_shutdown(). We must take list_lock 3913 * because sysfs file might still access partial list after the shutdowning. 3914 */ 3915 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3916 { 3917 LIST_HEAD(discard); 3918 struct page *page, *h; 3919 3920 BUG_ON(irqs_disabled()); 3921 spin_lock_irq(&n->list_lock); 3922 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3923 if (!page->inuse) { 3924 remove_partial(n, page); 3925 list_add(&page->slab_list, &discard); 3926 } else { 3927 list_slab_objects(s, page, 3928 "Objects remaining in %s on __kmem_cache_shutdown()"); 3929 } 3930 } 3931 spin_unlock_irq(&n->list_lock); 3932 3933 list_for_each_entry_safe(page, h, &discard, slab_list) 3934 discard_slab(s, page); 3935 } 3936 3937 bool __kmem_cache_empty(struct kmem_cache *s) 3938 { 3939 int node; 3940 struct kmem_cache_node *n; 3941 3942 for_each_kmem_cache_node(s, node, n) 3943 if (n->nr_partial || slabs_node(s, node)) 3944 return false; 3945 return true; 3946 } 3947 3948 /* 3949 * Release all resources used by a slab cache. 3950 */ 3951 int __kmem_cache_shutdown(struct kmem_cache *s) 3952 { 3953 int node; 3954 struct kmem_cache_node *n; 3955 3956 flush_all(s); 3957 /* Attempt to free all objects */ 3958 for_each_kmem_cache_node(s, node, n) { 3959 free_partial(s, n); 3960 if (n->nr_partial || slabs_node(s, node)) 3961 return 1; 3962 } 3963 return 0; 3964 } 3965 3966 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page) 3967 { 3968 void *base; 3969 int __maybe_unused i; 3970 unsigned int objnr; 3971 void *objp; 3972 void *objp0; 3973 struct kmem_cache *s = page->slab_cache; 3974 struct track __maybe_unused *trackp; 3975 3976 kpp->kp_ptr = object; 3977 kpp->kp_page = page; 3978 kpp->kp_slab_cache = s; 3979 base = page_address(page); 3980 objp0 = kasan_reset_tag(object); 3981 #ifdef CONFIG_SLUB_DEBUG 3982 objp = restore_red_left(s, objp0); 3983 #else 3984 objp = objp0; 3985 #endif 3986 objnr = obj_to_index(s, page, objp); 3987 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 3988 objp = base + s->size * objnr; 3989 kpp->kp_objp = objp; 3990 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) || 3991 !(s->flags & SLAB_STORE_USER)) 3992 return; 3993 #ifdef CONFIG_SLUB_DEBUG 3994 trackp = get_track(s, objp, TRACK_ALLOC); 3995 kpp->kp_ret = (void *)trackp->addr; 3996 #ifdef CONFIG_STACKTRACE 3997 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) { 3998 kpp->kp_stack[i] = (void *)trackp->addrs[i]; 3999 if (!kpp->kp_stack[i]) 4000 break; 4001 } 4002 #endif 4003 #endif 4004 } 4005 4006 /******************************************************************** 4007 * Kmalloc subsystem 4008 *******************************************************************/ 4009 4010 static int __init setup_slub_min_order(char *str) 4011 { 4012 get_option(&str, (int *)&slub_min_order); 4013 4014 return 1; 4015 } 4016 4017 __setup("slub_min_order=", setup_slub_min_order); 4018 4019 static int __init setup_slub_max_order(char *str) 4020 { 4021 get_option(&str, (int *)&slub_max_order); 4022 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4023 4024 return 1; 4025 } 4026 4027 __setup("slub_max_order=", setup_slub_max_order); 4028 4029 static int __init setup_slub_min_objects(char *str) 4030 { 4031 get_option(&str, (int *)&slub_min_objects); 4032 4033 return 1; 4034 } 4035 4036 __setup("slub_min_objects=", setup_slub_min_objects); 4037 4038 void *__kmalloc(size_t size, gfp_t flags) 4039 { 4040 struct kmem_cache *s; 4041 void *ret; 4042 4043 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4044 return kmalloc_large(size, flags); 4045 4046 s = kmalloc_slab(size, flags); 4047 4048 if (unlikely(ZERO_OR_NULL_PTR(s))) 4049 return s; 4050 4051 ret = slab_alloc(s, flags, _RET_IP_, size); 4052 4053 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 4054 4055 ret = kasan_kmalloc(s, ret, size, flags); 4056 4057 return ret; 4058 } 4059 EXPORT_SYMBOL(__kmalloc); 4060 4061 #ifdef CONFIG_NUMA 4062 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4063 { 4064 struct page *page; 4065 void *ptr = NULL; 4066 unsigned int order = get_order(size); 4067 4068 flags |= __GFP_COMP; 4069 page = alloc_pages_node(node, flags, order); 4070 if (page) { 4071 ptr = page_address(page); 4072 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4073 PAGE_SIZE << order); 4074 } 4075 4076 return kmalloc_large_node_hook(ptr, size, flags); 4077 } 4078 4079 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4080 { 4081 struct kmem_cache *s; 4082 void *ret; 4083 4084 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4085 ret = kmalloc_large_node(size, flags, node); 4086 4087 trace_kmalloc_node(_RET_IP_, ret, 4088 size, PAGE_SIZE << get_order(size), 4089 flags, node); 4090 4091 return ret; 4092 } 4093 4094 s = kmalloc_slab(size, flags); 4095 4096 if (unlikely(ZERO_OR_NULL_PTR(s))) 4097 return s; 4098 4099 ret = slab_alloc_node(s, flags, node, _RET_IP_, size); 4100 4101 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4102 4103 ret = kasan_kmalloc(s, ret, size, flags); 4104 4105 return ret; 4106 } 4107 EXPORT_SYMBOL(__kmalloc_node); 4108 #endif /* CONFIG_NUMA */ 4109 4110 #ifdef CONFIG_HARDENED_USERCOPY 4111 /* 4112 * Rejects incorrectly sized objects and objects that are to be copied 4113 * to/from userspace but do not fall entirely within the containing slab 4114 * cache's usercopy region. 4115 * 4116 * Returns NULL if check passes, otherwise const char * to name of cache 4117 * to indicate an error. 4118 */ 4119 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 4120 bool to_user) 4121 { 4122 struct kmem_cache *s; 4123 unsigned int offset; 4124 size_t object_size; 4125 bool is_kfence = is_kfence_address(ptr); 4126 4127 ptr = kasan_reset_tag(ptr); 4128 4129 /* Find object and usable object size. */ 4130 s = page->slab_cache; 4131 4132 /* Reject impossible pointers. */ 4133 if (ptr < page_address(page)) 4134 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4135 to_user, 0, n); 4136 4137 /* Find offset within object. */ 4138 if (is_kfence) 4139 offset = ptr - kfence_object_start(ptr); 4140 else 4141 offset = (ptr - page_address(page)) % s->size; 4142 4143 /* Adjust for redzone and reject if within the redzone. */ 4144 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4145 if (offset < s->red_left_pad) 4146 usercopy_abort("SLUB object in left red zone", 4147 s->name, to_user, offset, n); 4148 offset -= s->red_left_pad; 4149 } 4150 4151 /* Allow address range falling entirely within usercopy region. */ 4152 if (offset >= s->useroffset && 4153 offset - s->useroffset <= s->usersize && 4154 n <= s->useroffset - offset + s->usersize) 4155 return; 4156 4157 /* 4158 * If the copy is still within the allocated object, produce 4159 * a warning instead of rejecting the copy. This is intended 4160 * to be a temporary method to find any missing usercopy 4161 * whitelists. 4162 */ 4163 object_size = slab_ksize(s); 4164 if (usercopy_fallback && 4165 offset <= object_size && n <= object_size - offset) { 4166 usercopy_warn("SLUB object", s->name, to_user, offset, n); 4167 return; 4168 } 4169 4170 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4171 } 4172 #endif /* CONFIG_HARDENED_USERCOPY */ 4173 4174 size_t __ksize(const void *object) 4175 { 4176 struct page *page; 4177 4178 if (unlikely(object == ZERO_SIZE_PTR)) 4179 return 0; 4180 4181 page = virt_to_head_page(object); 4182 4183 if (unlikely(!PageSlab(page))) { 4184 WARN_ON(!PageCompound(page)); 4185 return page_size(page); 4186 } 4187 4188 return slab_ksize(page->slab_cache); 4189 } 4190 EXPORT_SYMBOL(__ksize); 4191 4192 void kfree(const void *x) 4193 { 4194 struct page *page; 4195 void *object = (void *)x; 4196 4197 trace_kfree(_RET_IP_, x); 4198 4199 if (unlikely(ZERO_OR_NULL_PTR(x))) 4200 return; 4201 4202 page = virt_to_head_page(x); 4203 if (unlikely(!PageSlab(page))) { 4204 unsigned int order = compound_order(page); 4205 4206 BUG_ON(!PageCompound(page)); 4207 kfree_hook(object); 4208 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4209 -(PAGE_SIZE << order)); 4210 __free_pages(page, order); 4211 return; 4212 } 4213 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4214 } 4215 EXPORT_SYMBOL(kfree); 4216 4217 #define SHRINK_PROMOTE_MAX 32 4218 4219 /* 4220 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4221 * up most to the head of the partial lists. New allocations will then 4222 * fill those up and thus they can be removed from the partial lists. 4223 * 4224 * The slabs with the least items are placed last. This results in them 4225 * being allocated from last increasing the chance that the last objects 4226 * are freed in them. 4227 */ 4228 int __kmem_cache_shrink(struct kmem_cache *s) 4229 { 4230 int node; 4231 int i; 4232 struct kmem_cache_node *n; 4233 struct page *page; 4234 struct page *t; 4235 struct list_head discard; 4236 struct list_head promote[SHRINK_PROMOTE_MAX]; 4237 unsigned long flags; 4238 int ret = 0; 4239 4240 flush_all(s); 4241 for_each_kmem_cache_node(s, node, n) { 4242 INIT_LIST_HEAD(&discard); 4243 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4244 INIT_LIST_HEAD(promote + i); 4245 4246 spin_lock_irqsave(&n->list_lock, flags); 4247 4248 /* 4249 * Build lists of slabs to discard or promote. 4250 * 4251 * Note that concurrent frees may occur while we hold the 4252 * list_lock. page->inuse here is the upper limit. 4253 */ 4254 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4255 int free = page->objects - page->inuse; 4256 4257 /* Do not reread page->inuse */ 4258 barrier(); 4259 4260 /* We do not keep full slabs on the list */ 4261 BUG_ON(free <= 0); 4262 4263 if (free == page->objects) { 4264 list_move(&page->slab_list, &discard); 4265 n->nr_partial--; 4266 } else if (free <= SHRINK_PROMOTE_MAX) 4267 list_move(&page->slab_list, promote + free - 1); 4268 } 4269 4270 /* 4271 * Promote the slabs filled up most to the head of the 4272 * partial list. 4273 */ 4274 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4275 list_splice(promote + i, &n->partial); 4276 4277 spin_unlock_irqrestore(&n->list_lock, flags); 4278 4279 /* Release empty slabs */ 4280 list_for_each_entry_safe(page, t, &discard, slab_list) 4281 discard_slab(s, page); 4282 4283 if (slabs_node(s, node)) 4284 ret = 1; 4285 } 4286 4287 return ret; 4288 } 4289 4290 static int slab_mem_going_offline_callback(void *arg) 4291 { 4292 struct kmem_cache *s; 4293 4294 mutex_lock(&slab_mutex); 4295 list_for_each_entry(s, &slab_caches, list) 4296 __kmem_cache_shrink(s); 4297 mutex_unlock(&slab_mutex); 4298 4299 return 0; 4300 } 4301 4302 static void slab_mem_offline_callback(void *arg) 4303 { 4304 struct memory_notify *marg = arg; 4305 int offline_node; 4306 4307 offline_node = marg->status_change_nid_normal; 4308 4309 /* 4310 * If the node still has available memory. we need kmem_cache_node 4311 * for it yet. 4312 */ 4313 if (offline_node < 0) 4314 return; 4315 4316 mutex_lock(&slab_mutex); 4317 node_clear(offline_node, slab_nodes); 4318 /* 4319 * We no longer free kmem_cache_node structures here, as it would be 4320 * racy with all get_node() users, and infeasible to protect them with 4321 * slab_mutex. 4322 */ 4323 mutex_unlock(&slab_mutex); 4324 } 4325 4326 static int slab_mem_going_online_callback(void *arg) 4327 { 4328 struct kmem_cache_node *n; 4329 struct kmem_cache *s; 4330 struct memory_notify *marg = arg; 4331 int nid = marg->status_change_nid_normal; 4332 int ret = 0; 4333 4334 /* 4335 * If the node's memory is already available, then kmem_cache_node is 4336 * already created. Nothing to do. 4337 */ 4338 if (nid < 0) 4339 return 0; 4340 4341 /* 4342 * We are bringing a node online. No memory is available yet. We must 4343 * allocate a kmem_cache_node structure in order to bring the node 4344 * online. 4345 */ 4346 mutex_lock(&slab_mutex); 4347 list_for_each_entry(s, &slab_caches, list) { 4348 /* 4349 * The structure may already exist if the node was previously 4350 * onlined and offlined. 4351 */ 4352 if (get_node(s, nid)) 4353 continue; 4354 /* 4355 * XXX: kmem_cache_alloc_node will fallback to other nodes 4356 * since memory is not yet available from the node that 4357 * is brought up. 4358 */ 4359 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4360 if (!n) { 4361 ret = -ENOMEM; 4362 goto out; 4363 } 4364 init_kmem_cache_node(n); 4365 s->node[nid] = n; 4366 } 4367 /* 4368 * Any cache created after this point will also have kmem_cache_node 4369 * initialized for the new node. 4370 */ 4371 node_set(nid, slab_nodes); 4372 out: 4373 mutex_unlock(&slab_mutex); 4374 return ret; 4375 } 4376 4377 static int slab_memory_callback(struct notifier_block *self, 4378 unsigned long action, void *arg) 4379 { 4380 int ret = 0; 4381 4382 switch (action) { 4383 case MEM_GOING_ONLINE: 4384 ret = slab_mem_going_online_callback(arg); 4385 break; 4386 case MEM_GOING_OFFLINE: 4387 ret = slab_mem_going_offline_callback(arg); 4388 break; 4389 case MEM_OFFLINE: 4390 case MEM_CANCEL_ONLINE: 4391 slab_mem_offline_callback(arg); 4392 break; 4393 case MEM_ONLINE: 4394 case MEM_CANCEL_OFFLINE: 4395 break; 4396 } 4397 if (ret) 4398 ret = notifier_from_errno(ret); 4399 else 4400 ret = NOTIFY_OK; 4401 return ret; 4402 } 4403 4404 static struct notifier_block slab_memory_callback_nb = { 4405 .notifier_call = slab_memory_callback, 4406 .priority = SLAB_CALLBACK_PRI, 4407 }; 4408 4409 /******************************************************************** 4410 * Basic setup of slabs 4411 *******************************************************************/ 4412 4413 /* 4414 * Used for early kmem_cache structures that were allocated using 4415 * the page allocator. Allocate them properly then fix up the pointers 4416 * that may be pointing to the wrong kmem_cache structure. 4417 */ 4418 4419 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4420 { 4421 int node; 4422 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4423 struct kmem_cache_node *n; 4424 4425 memcpy(s, static_cache, kmem_cache->object_size); 4426 4427 /* 4428 * This runs very early, and only the boot processor is supposed to be 4429 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4430 * IPIs around. 4431 */ 4432 __flush_cpu_slab(s, smp_processor_id()); 4433 for_each_kmem_cache_node(s, node, n) { 4434 struct page *p; 4435 4436 list_for_each_entry(p, &n->partial, slab_list) 4437 p->slab_cache = s; 4438 4439 #ifdef CONFIG_SLUB_DEBUG 4440 list_for_each_entry(p, &n->full, slab_list) 4441 p->slab_cache = s; 4442 #endif 4443 } 4444 list_add(&s->list, &slab_caches); 4445 return s; 4446 } 4447 4448 void __init kmem_cache_init(void) 4449 { 4450 static __initdata struct kmem_cache boot_kmem_cache, 4451 boot_kmem_cache_node; 4452 int node; 4453 4454 if (debug_guardpage_minorder()) 4455 slub_max_order = 0; 4456 4457 kmem_cache_node = &boot_kmem_cache_node; 4458 kmem_cache = &boot_kmem_cache; 4459 4460 /* 4461 * Initialize the nodemask for which we will allocate per node 4462 * structures. Here we don't need taking slab_mutex yet. 4463 */ 4464 for_each_node_state(node, N_NORMAL_MEMORY) 4465 node_set(node, slab_nodes); 4466 4467 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4468 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4469 4470 register_hotmemory_notifier(&slab_memory_callback_nb); 4471 4472 /* Able to allocate the per node structures */ 4473 slab_state = PARTIAL; 4474 4475 create_boot_cache(kmem_cache, "kmem_cache", 4476 offsetof(struct kmem_cache, node) + 4477 nr_node_ids * sizeof(struct kmem_cache_node *), 4478 SLAB_HWCACHE_ALIGN, 0, 0); 4479 4480 kmem_cache = bootstrap(&boot_kmem_cache); 4481 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4482 4483 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4484 setup_kmalloc_cache_index_table(); 4485 create_kmalloc_caches(0); 4486 4487 /* Setup random freelists for each cache */ 4488 init_freelist_randomization(); 4489 4490 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4491 slub_cpu_dead); 4492 4493 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4494 cache_line_size(), 4495 slub_min_order, slub_max_order, slub_min_objects, 4496 nr_cpu_ids, nr_node_ids); 4497 } 4498 4499 void __init kmem_cache_init_late(void) 4500 { 4501 } 4502 4503 struct kmem_cache * 4504 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4505 slab_flags_t flags, void (*ctor)(void *)) 4506 { 4507 struct kmem_cache *s; 4508 4509 s = find_mergeable(size, align, flags, name, ctor); 4510 if (s) { 4511 s->refcount++; 4512 4513 /* 4514 * Adjust the object sizes so that we clear 4515 * the complete object on kzalloc. 4516 */ 4517 s->object_size = max(s->object_size, size); 4518 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4519 4520 if (sysfs_slab_alias(s, name)) { 4521 s->refcount--; 4522 s = NULL; 4523 } 4524 } 4525 4526 return s; 4527 } 4528 4529 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4530 { 4531 int err; 4532 4533 err = kmem_cache_open(s, flags); 4534 if (err) 4535 return err; 4536 4537 /* Mutex is not taken during early boot */ 4538 if (slab_state <= UP) 4539 return 0; 4540 4541 err = sysfs_slab_add(s); 4542 if (err) 4543 __kmem_cache_release(s); 4544 4545 return err; 4546 } 4547 4548 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4549 { 4550 struct kmem_cache *s; 4551 void *ret; 4552 4553 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4554 return kmalloc_large(size, gfpflags); 4555 4556 s = kmalloc_slab(size, gfpflags); 4557 4558 if (unlikely(ZERO_OR_NULL_PTR(s))) 4559 return s; 4560 4561 ret = slab_alloc(s, gfpflags, caller, size); 4562 4563 /* Honor the call site pointer we received. */ 4564 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4565 4566 return ret; 4567 } 4568 EXPORT_SYMBOL(__kmalloc_track_caller); 4569 4570 #ifdef CONFIG_NUMA 4571 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4572 int node, unsigned long caller) 4573 { 4574 struct kmem_cache *s; 4575 void *ret; 4576 4577 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4578 ret = kmalloc_large_node(size, gfpflags, node); 4579 4580 trace_kmalloc_node(caller, ret, 4581 size, PAGE_SIZE << get_order(size), 4582 gfpflags, node); 4583 4584 return ret; 4585 } 4586 4587 s = kmalloc_slab(size, gfpflags); 4588 4589 if (unlikely(ZERO_OR_NULL_PTR(s))) 4590 return s; 4591 4592 ret = slab_alloc_node(s, gfpflags, node, caller, size); 4593 4594 /* Honor the call site pointer we received. */ 4595 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4596 4597 return ret; 4598 } 4599 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4600 #endif 4601 4602 #ifdef CONFIG_SYSFS 4603 static int count_inuse(struct page *page) 4604 { 4605 return page->inuse; 4606 } 4607 4608 static int count_total(struct page *page) 4609 { 4610 return page->objects; 4611 } 4612 #endif 4613 4614 #ifdef CONFIG_SLUB_DEBUG 4615 static void validate_slab(struct kmem_cache *s, struct page *page) 4616 { 4617 void *p; 4618 void *addr = page_address(page); 4619 unsigned long *map; 4620 4621 slab_lock(page); 4622 4623 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4624 goto unlock; 4625 4626 /* Now we know that a valid freelist exists */ 4627 map = get_map(s, page); 4628 for_each_object(p, s, addr, page->objects) { 4629 u8 val = test_bit(__obj_to_index(s, addr, p), map) ? 4630 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4631 4632 if (!check_object(s, page, p, val)) 4633 break; 4634 } 4635 put_map(map); 4636 unlock: 4637 slab_unlock(page); 4638 } 4639 4640 static int validate_slab_node(struct kmem_cache *s, 4641 struct kmem_cache_node *n) 4642 { 4643 unsigned long count = 0; 4644 struct page *page; 4645 unsigned long flags; 4646 4647 spin_lock_irqsave(&n->list_lock, flags); 4648 4649 list_for_each_entry(page, &n->partial, slab_list) { 4650 validate_slab(s, page); 4651 count++; 4652 } 4653 if (count != n->nr_partial) 4654 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4655 s->name, count, n->nr_partial); 4656 4657 if (!(s->flags & SLAB_STORE_USER)) 4658 goto out; 4659 4660 list_for_each_entry(page, &n->full, slab_list) { 4661 validate_slab(s, page); 4662 count++; 4663 } 4664 if (count != atomic_long_read(&n->nr_slabs)) 4665 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4666 s->name, count, atomic_long_read(&n->nr_slabs)); 4667 4668 out: 4669 spin_unlock_irqrestore(&n->list_lock, flags); 4670 return count; 4671 } 4672 4673 static long validate_slab_cache(struct kmem_cache *s) 4674 { 4675 int node; 4676 unsigned long count = 0; 4677 struct kmem_cache_node *n; 4678 4679 flush_all(s); 4680 for_each_kmem_cache_node(s, node, n) 4681 count += validate_slab_node(s, n); 4682 4683 return count; 4684 } 4685 /* 4686 * Generate lists of code addresses where slabcache objects are allocated 4687 * and freed. 4688 */ 4689 4690 struct location { 4691 unsigned long count; 4692 unsigned long addr; 4693 long long sum_time; 4694 long min_time; 4695 long max_time; 4696 long min_pid; 4697 long max_pid; 4698 DECLARE_BITMAP(cpus, NR_CPUS); 4699 nodemask_t nodes; 4700 }; 4701 4702 struct loc_track { 4703 unsigned long max; 4704 unsigned long count; 4705 struct location *loc; 4706 }; 4707 4708 static void free_loc_track(struct loc_track *t) 4709 { 4710 if (t->max) 4711 free_pages((unsigned long)t->loc, 4712 get_order(sizeof(struct location) * t->max)); 4713 } 4714 4715 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4716 { 4717 struct location *l; 4718 int order; 4719 4720 order = get_order(sizeof(struct location) * max); 4721 4722 l = (void *)__get_free_pages(flags, order); 4723 if (!l) 4724 return 0; 4725 4726 if (t->count) { 4727 memcpy(l, t->loc, sizeof(struct location) * t->count); 4728 free_loc_track(t); 4729 } 4730 t->max = max; 4731 t->loc = l; 4732 return 1; 4733 } 4734 4735 static int add_location(struct loc_track *t, struct kmem_cache *s, 4736 const struct track *track) 4737 { 4738 long start, end, pos; 4739 struct location *l; 4740 unsigned long caddr; 4741 unsigned long age = jiffies - track->when; 4742 4743 start = -1; 4744 end = t->count; 4745 4746 for ( ; ; ) { 4747 pos = start + (end - start + 1) / 2; 4748 4749 /* 4750 * There is nothing at "end". If we end up there 4751 * we need to add something to before end. 4752 */ 4753 if (pos == end) 4754 break; 4755 4756 caddr = t->loc[pos].addr; 4757 if (track->addr == caddr) { 4758 4759 l = &t->loc[pos]; 4760 l->count++; 4761 if (track->when) { 4762 l->sum_time += age; 4763 if (age < l->min_time) 4764 l->min_time = age; 4765 if (age > l->max_time) 4766 l->max_time = age; 4767 4768 if (track->pid < l->min_pid) 4769 l->min_pid = track->pid; 4770 if (track->pid > l->max_pid) 4771 l->max_pid = track->pid; 4772 4773 cpumask_set_cpu(track->cpu, 4774 to_cpumask(l->cpus)); 4775 } 4776 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4777 return 1; 4778 } 4779 4780 if (track->addr < caddr) 4781 end = pos; 4782 else 4783 start = pos; 4784 } 4785 4786 /* 4787 * Not found. Insert new tracking element. 4788 */ 4789 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4790 return 0; 4791 4792 l = t->loc + pos; 4793 if (pos < t->count) 4794 memmove(l + 1, l, 4795 (t->count - pos) * sizeof(struct location)); 4796 t->count++; 4797 l->count = 1; 4798 l->addr = track->addr; 4799 l->sum_time = age; 4800 l->min_time = age; 4801 l->max_time = age; 4802 l->min_pid = track->pid; 4803 l->max_pid = track->pid; 4804 cpumask_clear(to_cpumask(l->cpus)); 4805 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4806 nodes_clear(l->nodes); 4807 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4808 return 1; 4809 } 4810 4811 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4812 struct page *page, enum track_item alloc) 4813 { 4814 void *addr = page_address(page); 4815 void *p; 4816 unsigned long *map; 4817 4818 map = get_map(s, page); 4819 for_each_object(p, s, addr, page->objects) 4820 if (!test_bit(__obj_to_index(s, addr, p), map)) 4821 add_location(t, s, get_track(s, p, alloc)); 4822 put_map(map); 4823 } 4824 4825 static int list_locations(struct kmem_cache *s, char *buf, 4826 enum track_item alloc) 4827 { 4828 int len = 0; 4829 unsigned long i; 4830 struct loc_track t = { 0, 0, NULL }; 4831 int node; 4832 struct kmem_cache_node *n; 4833 4834 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4835 GFP_KERNEL)) { 4836 return sysfs_emit(buf, "Out of memory\n"); 4837 } 4838 /* Push back cpu slabs */ 4839 flush_all(s); 4840 4841 for_each_kmem_cache_node(s, node, n) { 4842 unsigned long flags; 4843 struct page *page; 4844 4845 if (!atomic_long_read(&n->nr_slabs)) 4846 continue; 4847 4848 spin_lock_irqsave(&n->list_lock, flags); 4849 list_for_each_entry(page, &n->partial, slab_list) 4850 process_slab(&t, s, page, alloc); 4851 list_for_each_entry(page, &n->full, slab_list) 4852 process_slab(&t, s, page, alloc); 4853 spin_unlock_irqrestore(&n->list_lock, flags); 4854 } 4855 4856 for (i = 0; i < t.count; i++) { 4857 struct location *l = &t.loc[i]; 4858 4859 len += sysfs_emit_at(buf, len, "%7ld ", l->count); 4860 4861 if (l->addr) 4862 len += sysfs_emit_at(buf, len, "%pS", (void *)l->addr); 4863 else 4864 len += sysfs_emit_at(buf, len, "<not-available>"); 4865 4866 if (l->sum_time != l->min_time) 4867 len += sysfs_emit_at(buf, len, " age=%ld/%ld/%ld", 4868 l->min_time, 4869 (long)div_u64(l->sum_time, 4870 l->count), 4871 l->max_time); 4872 else 4873 len += sysfs_emit_at(buf, len, " age=%ld", l->min_time); 4874 4875 if (l->min_pid != l->max_pid) 4876 len += sysfs_emit_at(buf, len, " pid=%ld-%ld", 4877 l->min_pid, l->max_pid); 4878 else 4879 len += sysfs_emit_at(buf, len, " pid=%ld", 4880 l->min_pid); 4881 4882 if (num_online_cpus() > 1 && 4883 !cpumask_empty(to_cpumask(l->cpus))) 4884 len += sysfs_emit_at(buf, len, " cpus=%*pbl", 4885 cpumask_pr_args(to_cpumask(l->cpus))); 4886 4887 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 4888 len += sysfs_emit_at(buf, len, " nodes=%*pbl", 4889 nodemask_pr_args(&l->nodes)); 4890 4891 len += sysfs_emit_at(buf, len, "\n"); 4892 } 4893 4894 free_loc_track(&t); 4895 if (!t.count) 4896 len += sysfs_emit_at(buf, len, "No data\n"); 4897 4898 return len; 4899 } 4900 #endif /* CONFIG_SLUB_DEBUG */ 4901 4902 #ifdef SLUB_RESILIENCY_TEST 4903 static void __init resiliency_test(void) 4904 { 4905 u8 *p; 4906 int type = KMALLOC_NORMAL; 4907 4908 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4909 4910 pr_err("SLUB resiliency testing\n"); 4911 pr_err("-----------------------\n"); 4912 pr_err("A. Corruption after allocation\n"); 4913 4914 p = kzalloc(16, GFP_KERNEL); 4915 p[16] = 0x12; 4916 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4917 p + 16); 4918 4919 validate_slab_cache(kmalloc_caches[type][4]); 4920 4921 /* Hmmm... The next two are dangerous */ 4922 p = kzalloc(32, GFP_KERNEL); 4923 p[32 + sizeof(void *)] = 0x34; 4924 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4925 p); 4926 pr_err("If allocated object is overwritten then not detectable\n\n"); 4927 4928 validate_slab_cache(kmalloc_caches[type][5]); 4929 p = kzalloc(64, GFP_KERNEL); 4930 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4931 *p = 0x56; 4932 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4933 p); 4934 pr_err("If allocated object is overwritten then not detectable\n\n"); 4935 validate_slab_cache(kmalloc_caches[type][6]); 4936 4937 pr_err("\nB. Corruption after free\n"); 4938 p = kzalloc(128, GFP_KERNEL); 4939 kfree(p); 4940 *p = 0x78; 4941 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4942 validate_slab_cache(kmalloc_caches[type][7]); 4943 4944 p = kzalloc(256, GFP_KERNEL); 4945 kfree(p); 4946 p[50] = 0x9a; 4947 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4948 validate_slab_cache(kmalloc_caches[type][8]); 4949 4950 p = kzalloc(512, GFP_KERNEL); 4951 kfree(p); 4952 p[512] = 0xab; 4953 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4954 validate_slab_cache(kmalloc_caches[type][9]); 4955 } 4956 #else 4957 #ifdef CONFIG_SYSFS 4958 static void resiliency_test(void) {}; 4959 #endif 4960 #endif /* SLUB_RESILIENCY_TEST */ 4961 4962 #ifdef CONFIG_SYSFS 4963 enum slab_stat_type { 4964 SL_ALL, /* All slabs */ 4965 SL_PARTIAL, /* Only partially allocated slabs */ 4966 SL_CPU, /* Only slabs used for cpu caches */ 4967 SL_OBJECTS, /* Determine allocated objects not slabs */ 4968 SL_TOTAL /* Determine object capacity not slabs */ 4969 }; 4970 4971 #define SO_ALL (1 << SL_ALL) 4972 #define SO_PARTIAL (1 << SL_PARTIAL) 4973 #define SO_CPU (1 << SL_CPU) 4974 #define SO_OBJECTS (1 << SL_OBJECTS) 4975 #define SO_TOTAL (1 << SL_TOTAL) 4976 4977 static ssize_t show_slab_objects(struct kmem_cache *s, 4978 char *buf, unsigned long flags) 4979 { 4980 unsigned long total = 0; 4981 int node; 4982 int x; 4983 unsigned long *nodes; 4984 int len = 0; 4985 4986 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4987 if (!nodes) 4988 return -ENOMEM; 4989 4990 if (flags & SO_CPU) { 4991 int cpu; 4992 4993 for_each_possible_cpu(cpu) { 4994 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4995 cpu); 4996 int node; 4997 struct page *page; 4998 4999 page = READ_ONCE(c->page); 5000 if (!page) 5001 continue; 5002 5003 node = page_to_nid(page); 5004 if (flags & SO_TOTAL) 5005 x = page->objects; 5006 else if (flags & SO_OBJECTS) 5007 x = page->inuse; 5008 else 5009 x = 1; 5010 5011 total += x; 5012 nodes[node] += x; 5013 5014 page = slub_percpu_partial_read_once(c); 5015 if (page) { 5016 node = page_to_nid(page); 5017 if (flags & SO_TOTAL) 5018 WARN_ON_ONCE(1); 5019 else if (flags & SO_OBJECTS) 5020 WARN_ON_ONCE(1); 5021 else 5022 x = page->pages; 5023 total += x; 5024 nodes[node] += x; 5025 } 5026 } 5027 } 5028 5029 /* 5030 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5031 * already held which will conflict with an existing lock order: 5032 * 5033 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5034 * 5035 * We don't really need mem_hotplug_lock (to hold off 5036 * slab_mem_going_offline_callback) here because slab's memory hot 5037 * unplug code doesn't destroy the kmem_cache->node[] data. 5038 */ 5039 5040 #ifdef CONFIG_SLUB_DEBUG 5041 if (flags & SO_ALL) { 5042 struct kmem_cache_node *n; 5043 5044 for_each_kmem_cache_node(s, node, n) { 5045 5046 if (flags & SO_TOTAL) 5047 x = atomic_long_read(&n->total_objects); 5048 else if (flags & SO_OBJECTS) 5049 x = atomic_long_read(&n->total_objects) - 5050 count_partial(n, count_free); 5051 else 5052 x = atomic_long_read(&n->nr_slabs); 5053 total += x; 5054 nodes[node] += x; 5055 } 5056 5057 } else 5058 #endif 5059 if (flags & SO_PARTIAL) { 5060 struct kmem_cache_node *n; 5061 5062 for_each_kmem_cache_node(s, node, n) { 5063 if (flags & SO_TOTAL) 5064 x = count_partial(n, count_total); 5065 else if (flags & SO_OBJECTS) 5066 x = count_partial(n, count_inuse); 5067 else 5068 x = n->nr_partial; 5069 total += x; 5070 nodes[node] += x; 5071 } 5072 } 5073 5074 len += sysfs_emit_at(buf, len, "%lu", total); 5075 #ifdef CONFIG_NUMA 5076 for (node = 0; node < nr_node_ids; node++) { 5077 if (nodes[node]) 5078 len += sysfs_emit_at(buf, len, " N%d=%lu", 5079 node, nodes[node]); 5080 } 5081 #endif 5082 len += sysfs_emit_at(buf, len, "\n"); 5083 kfree(nodes); 5084 5085 return len; 5086 } 5087 5088 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5089 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5090 5091 struct slab_attribute { 5092 struct attribute attr; 5093 ssize_t (*show)(struct kmem_cache *s, char *buf); 5094 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5095 }; 5096 5097 #define SLAB_ATTR_RO(_name) \ 5098 static struct slab_attribute _name##_attr = \ 5099 __ATTR(_name, 0400, _name##_show, NULL) 5100 5101 #define SLAB_ATTR(_name) \ 5102 static struct slab_attribute _name##_attr = \ 5103 __ATTR(_name, 0600, _name##_show, _name##_store) 5104 5105 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5106 { 5107 return sysfs_emit(buf, "%u\n", s->size); 5108 } 5109 SLAB_ATTR_RO(slab_size); 5110 5111 static ssize_t align_show(struct kmem_cache *s, char *buf) 5112 { 5113 return sysfs_emit(buf, "%u\n", s->align); 5114 } 5115 SLAB_ATTR_RO(align); 5116 5117 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5118 { 5119 return sysfs_emit(buf, "%u\n", s->object_size); 5120 } 5121 SLAB_ATTR_RO(object_size); 5122 5123 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5124 { 5125 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5126 } 5127 SLAB_ATTR_RO(objs_per_slab); 5128 5129 static ssize_t order_show(struct kmem_cache *s, char *buf) 5130 { 5131 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5132 } 5133 SLAB_ATTR_RO(order); 5134 5135 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5136 { 5137 return sysfs_emit(buf, "%lu\n", s->min_partial); 5138 } 5139 5140 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5141 size_t length) 5142 { 5143 unsigned long min; 5144 int err; 5145 5146 err = kstrtoul(buf, 10, &min); 5147 if (err) 5148 return err; 5149 5150 set_min_partial(s, min); 5151 return length; 5152 } 5153 SLAB_ATTR(min_partial); 5154 5155 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5156 { 5157 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s)); 5158 } 5159 5160 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5161 size_t length) 5162 { 5163 unsigned int objects; 5164 int err; 5165 5166 err = kstrtouint(buf, 10, &objects); 5167 if (err) 5168 return err; 5169 if (objects && !kmem_cache_has_cpu_partial(s)) 5170 return -EINVAL; 5171 5172 slub_set_cpu_partial(s, objects); 5173 flush_all(s); 5174 return length; 5175 } 5176 SLAB_ATTR(cpu_partial); 5177 5178 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5179 { 5180 if (!s->ctor) 5181 return 0; 5182 return sysfs_emit(buf, "%pS\n", s->ctor); 5183 } 5184 SLAB_ATTR_RO(ctor); 5185 5186 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5187 { 5188 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5189 } 5190 SLAB_ATTR_RO(aliases); 5191 5192 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5193 { 5194 return show_slab_objects(s, buf, SO_PARTIAL); 5195 } 5196 SLAB_ATTR_RO(partial); 5197 5198 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5199 { 5200 return show_slab_objects(s, buf, SO_CPU); 5201 } 5202 SLAB_ATTR_RO(cpu_slabs); 5203 5204 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5205 { 5206 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5207 } 5208 SLAB_ATTR_RO(objects); 5209 5210 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5211 { 5212 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5213 } 5214 SLAB_ATTR_RO(objects_partial); 5215 5216 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5217 { 5218 int objects = 0; 5219 int pages = 0; 5220 int cpu; 5221 int len = 0; 5222 5223 for_each_online_cpu(cpu) { 5224 struct page *page; 5225 5226 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5227 5228 if (page) { 5229 pages += page->pages; 5230 objects += page->pobjects; 5231 } 5232 } 5233 5234 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages); 5235 5236 #ifdef CONFIG_SMP 5237 for_each_online_cpu(cpu) { 5238 struct page *page; 5239 5240 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5241 if (page) 5242 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5243 cpu, page->pobjects, page->pages); 5244 } 5245 #endif 5246 len += sysfs_emit_at(buf, len, "\n"); 5247 5248 return len; 5249 } 5250 SLAB_ATTR_RO(slabs_cpu_partial); 5251 5252 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5253 { 5254 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5255 } 5256 SLAB_ATTR_RO(reclaim_account); 5257 5258 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5259 { 5260 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5261 } 5262 SLAB_ATTR_RO(hwcache_align); 5263 5264 #ifdef CONFIG_ZONE_DMA 5265 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5266 { 5267 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5268 } 5269 SLAB_ATTR_RO(cache_dma); 5270 #endif 5271 5272 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5273 { 5274 return sysfs_emit(buf, "%u\n", s->usersize); 5275 } 5276 SLAB_ATTR_RO(usersize); 5277 5278 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5279 { 5280 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5281 } 5282 SLAB_ATTR_RO(destroy_by_rcu); 5283 5284 #ifdef CONFIG_SLUB_DEBUG 5285 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5286 { 5287 return show_slab_objects(s, buf, SO_ALL); 5288 } 5289 SLAB_ATTR_RO(slabs); 5290 5291 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5292 { 5293 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5294 } 5295 SLAB_ATTR_RO(total_objects); 5296 5297 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5298 { 5299 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5300 } 5301 SLAB_ATTR_RO(sanity_checks); 5302 5303 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5304 { 5305 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5306 } 5307 SLAB_ATTR_RO(trace); 5308 5309 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5310 { 5311 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5312 } 5313 5314 SLAB_ATTR_RO(red_zone); 5315 5316 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5317 { 5318 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5319 } 5320 5321 SLAB_ATTR_RO(poison); 5322 5323 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5324 { 5325 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5326 } 5327 5328 SLAB_ATTR_RO(store_user); 5329 5330 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5331 { 5332 return 0; 5333 } 5334 5335 static ssize_t validate_store(struct kmem_cache *s, 5336 const char *buf, size_t length) 5337 { 5338 int ret = -EINVAL; 5339 5340 if (buf[0] == '1') { 5341 ret = validate_slab_cache(s); 5342 if (ret >= 0) 5343 ret = length; 5344 } 5345 return ret; 5346 } 5347 SLAB_ATTR(validate); 5348 5349 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5350 { 5351 if (!(s->flags & SLAB_STORE_USER)) 5352 return -ENOSYS; 5353 return list_locations(s, buf, TRACK_ALLOC); 5354 } 5355 SLAB_ATTR_RO(alloc_calls); 5356 5357 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5358 { 5359 if (!(s->flags & SLAB_STORE_USER)) 5360 return -ENOSYS; 5361 return list_locations(s, buf, TRACK_FREE); 5362 } 5363 SLAB_ATTR_RO(free_calls); 5364 #endif /* CONFIG_SLUB_DEBUG */ 5365 5366 #ifdef CONFIG_FAILSLAB 5367 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5368 { 5369 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5370 } 5371 SLAB_ATTR_RO(failslab); 5372 #endif 5373 5374 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5375 { 5376 return 0; 5377 } 5378 5379 static ssize_t shrink_store(struct kmem_cache *s, 5380 const char *buf, size_t length) 5381 { 5382 if (buf[0] == '1') 5383 kmem_cache_shrink(s); 5384 else 5385 return -EINVAL; 5386 return length; 5387 } 5388 SLAB_ATTR(shrink); 5389 5390 #ifdef CONFIG_NUMA 5391 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5392 { 5393 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5394 } 5395 5396 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5397 const char *buf, size_t length) 5398 { 5399 unsigned int ratio; 5400 int err; 5401 5402 err = kstrtouint(buf, 10, &ratio); 5403 if (err) 5404 return err; 5405 if (ratio > 100) 5406 return -ERANGE; 5407 5408 s->remote_node_defrag_ratio = ratio * 10; 5409 5410 return length; 5411 } 5412 SLAB_ATTR(remote_node_defrag_ratio); 5413 #endif 5414 5415 #ifdef CONFIG_SLUB_STATS 5416 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5417 { 5418 unsigned long sum = 0; 5419 int cpu; 5420 int len = 0; 5421 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5422 5423 if (!data) 5424 return -ENOMEM; 5425 5426 for_each_online_cpu(cpu) { 5427 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5428 5429 data[cpu] = x; 5430 sum += x; 5431 } 5432 5433 len += sysfs_emit_at(buf, len, "%lu", sum); 5434 5435 #ifdef CONFIG_SMP 5436 for_each_online_cpu(cpu) { 5437 if (data[cpu]) 5438 len += sysfs_emit_at(buf, len, " C%d=%u", 5439 cpu, data[cpu]); 5440 } 5441 #endif 5442 kfree(data); 5443 len += sysfs_emit_at(buf, len, "\n"); 5444 5445 return len; 5446 } 5447 5448 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5449 { 5450 int cpu; 5451 5452 for_each_online_cpu(cpu) 5453 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5454 } 5455 5456 #define STAT_ATTR(si, text) \ 5457 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5458 { \ 5459 return show_stat(s, buf, si); \ 5460 } \ 5461 static ssize_t text##_store(struct kmem_cache *s, \ 5462 const char *buf, size_t length) \ 5463 { \ 5464 if (buf[0] != '0') \ 5465 return -EINVAL; \ 5466 clear_stat(s, si); \ 5467 return length; \ 5468 } \ 5469 SLAB_ATTR(text); \ 5470 5471 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5472 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5473 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5474 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5475 STAT_ATTR(FREE_FROZEN, free_frozen); 5476 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5477 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5478 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5479 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5480 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5481 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5482 STAT_ATTR(FREE_SLAB, free_slab); 5483 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5484 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5485 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5486 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5487 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5488 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5489 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5490 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5491 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5492 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5493 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5494 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5495 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5496 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5497 #endif /* CONFIG_SLUB_STATS */ 5498 5499 static struct attribute *slab_attrs[] = { 5500 &slab_size_attr.attr, 5501 &object_size_attr.attr, 5502 &objs_per_slab_attr.attr, 5503 &order_attr.attr, 5504 &min_partial_attr.attr, 5505 &cpu_partial_attr.attr, 5506 &objects_attr.attr, 5507 &objects_partial_attr.attr, 5508 &partial_attr.attr, 5509 &cpu_slabs_attr.attr, 5510 &ctor_attr.attr, 5511 &aliases_attr.attr, 5512 &align_attr.attr, 5513 &hwcache_align_attr.attr, 5514 &reclaim_account_attr.attr, 5515 &destroy_by_rcu_attr.attr, 5516 &shrink_attr.attr, 5517 &slabs_cpu_partial_attr.attr, 5518 #ifdef CONFIG_SLUB_DEBUG 5519 &total_objects_attr.attr, 5520 &slabs_attr.attr, 5521 &sanity_checks_attr.attr, 5522 &trace_attr.attr, 5523 &red_zone_attr.attr, 5524 &poison_attr.attr, 5525 &store_user_attr.attr, 5526 &validate_attr.attr, 5527 &alloc_calls_attr.attr, 5528 &free_calls_attr.attr, 5529 #endif 5530 #ifdef CONFIG_ZONE_DMA 5531 &cache_dma_attr.attr, 5532 #endif 5533 #ifdef CONFIG_NUMA 5534 &remote_node_defrag_ratio_attr.attr, 5535 #endif 5536 #ifdef CONFIG_SLUB_STATS 5537 &alloc_fastpath_attr.attr, 5538 &alloc_slowpath_attr.attr, 5539 &free_fastpath_attr.attr, 5540 &free_slowpath_attr.attr, 5541 &free_frozen_attr.attr, 5542 &free_add_partial_attr.attr, 5543 &free_remove_partial_attr.attr, 5544 &alloc_from_partial_attr.attr, 5545 &alloc_slab_attr.attr, 5546 &alloc_refill_attr.attr, 5547 &alloc_node_mismatch_attr.attr, 5548 &free_slab_attr.attr, 5549 &cpuslab_flush_attr.attr, 5550 &deactivate_full_attr.attr, 5551 &deactivate_empty_attr.attr, 5552 &deactivate_to_head_attr.attr, 5553 &deactivate_to_tail_attr.attr, 5554 &deactivate_remote_frees_attr.attr, 5555 &deactivate_bypass_attr.attr, 5556 &order_fallback_attr.attr, 5557 &cmpxchg_double_fail_attr.attr, 5558 &cmpxchg_double_cpu_fail_attr.attr, 5559 &cpu_partial_alloc_attr.attr, 5560 &cpu_partial_free_attr.attr, 5561 &cpu_partial_node_attr.attr, 5562 &cpu_partial_drain_attr.attr, 5563 #endif 5564 #ifdef CONFIG_FAILSLAB 5565 &failslab_attr.attr, 5566 #endif 5567 &usersize_attr.attr, 5568 5569 NULL 5570 }; 5571 5572 static const struct attribute_group slab_attr_group = { 5573 .attrs = slab_attrs, 5574 }; 5575 5576 static ssize_t slab_attr_show(struct kobject *kobj, 5577 struct attribute *attr, 5578 char *buf) 5579 { 5580 struct slab_attribute *attribute; 5581 struct kmem_cache *s; 5582 int err; 5583 5584 attribute = to_slab_attr(attr); 5585 s = to_slab(kobj); 5586 5587 if (!attribute->show) 5588 return -EIO; 5589 5590 err = attribute->show(s, buf); 5591 5592 return err; 5593 } 5594 5595 static ssize_t slab_attr_store(struct kobject *kobj, 5596 struct attribute *attr, 5597 const char *buf, size_t len) 5598 { 5599 struct slab_attribute *attribute; 5600 struct kmem_cache *s; 5601 int err; 5602 5603 attribute = to_slab_attr(attr); 5604 s = to_slab(kobj); 5605 5606 if (!attribute->store) 5607 return -EIO; 5608 5609 err = attribute->store(s, buf, len); 5610 return err; 5611 } 5612 5613 static void kmem_cache_release(struct kobject *k) 5614 { 5615 slab_kmem_cache_release(to_slab(k)); 5616 } 5617 5618 static const struct sysfs_ops slab_sysfs_ops = { 5619 .show = slab_attr_show, 5620 .store = slab_attr_store, 5621 }; 5622 5623 static struct kobj_type slab_ktype = { 5624 .sysfs_ops = &slab_sysfs_ops, 5625 .release = kmem_cache_release, 5626 }; 5627 5628 static struct kset *slab_kset; 5629 5630 static inline struct kset *cache_kset(struct kmem_cache *s) 5631 { 5632 return slab_kset; 5633 } 5634 5635 #define ID_STR_LENGTH 64 5636 5637 /* Create a unique string id for a slab cache: 5638 * 5639 * Format :[flags-]size 5640 */ 5641 static char *create_unique_id(struct kmem_cache *s) 5642 { 5643 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5644 char *p = name; 5645 5646 BUG_ON(!name); 5647 5648 *p++ = ':'; 5649 /* 5650 * First flags affecting slabcache operations. We will only 5651 * get here for aliasable slabs so we do not need to support 5652 * too many flags. The flags here must cover all flags that 5653 * are matched during merging to guarantee that the id is 5654 * unique. 5655 */ 5656 if (s->flags & SLAB_CACHE_DMA) 5657 *p++ = 'd'; 5658 if (s->flags & SLAB_CACHE_DMA32) 5659 *p++ = 'D'; 5660 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5661 *p++ = 'a'; 5662 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5663 *p++ = 'F'; 5664 if (s->flags & SLAB_ACCOUNT) 5665 *p++ = 'A'; 5666 if (p != name + 1) 5667 *p++ = '-'; 5668 p += sprintf(p, "%07u", s->size); 5669 5670 BUG_ON(p > name + ID_STR_LENGTH - 1); 5671 return name; 5672 } 5673 5674 static int sysfs_slab_add(struct kmem_cache *s) 5675 { 5676 int err; 5677 const char *name; 5678 struct kset *kset = cache_kset(s); 5679 int unmergeable = slab_unmergeable(s); 5680 5681 if (!kset) { 5682 kobject_init(&s->kobj, &slab_ktype); 5683 return 0; 5684 } 5685 5686 if (!unmergeable && disable_higher_order_debug && 5687 (slub_debug & DEBUG_METADATA_FLAGS)) 5688 unmergeable = 1; 5689 5690 if (unmergeable) { 5691 /* 5692 * Slabcache can never be merged so we can use the name proper. 5693 * This is typically the case for debug situations. In that 5694 * case we can catch duplicate names easily. 5695 */ 5696 sysfs_remove_link(&slab_kset->kobj, s->name); 5697 name = s->name; 5698 } else { 5699 /* 5700 * Create a unique name for the slab as a target 5701 * for the symlinks. 5702 */ 5703 name = create_unique_id(s); 5704 } 5705 5706 s->kobj.kset = kset; 5707 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5708 if (err) 5709 goto out; 5710 5711 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5712 if (err) 5713 goto out_del_kobj; 5714 5715 if (!unmergeable) { 5716 /* Setup first alias */ 5717 sysfs_slab_alias(s, s->name); 5718 } 5719 out: 5720 if (!unmergeable) 5721 kfree(name); 5722 return err; 5723 out_del_kobj: 5724 kobject_del(&s->kobj); 5725 goto out; 5726 } 5727 5728 void sysfs_slab_unlink(struct kmem_cache *s) 5729 { 5730 if (slab_state >= FULL) 5731 kobject_del(&s->kobj); 5732 } 5733 5734 void sysfs_slab_release(struct kmem_cache *s) 5735 { 5736 if (slab_state >= FULL) 5737 kobject_put(&s->kobj); 5738 } 5739 5740 /* 5741 * Need to buffer aliases during bootup until sysfs becomes 5742 * available lest we lose that information. 5743 */ 5744 struct saved_alias { 5745 struct kmem_cache *s; 5746 const char *name; 5747 struct saved_alias *next; 5748 }; 5749 5750 static struct saved_alias *alias_list; 5751 5752 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5753 { 5754 struct saved_alias *al; 5755 5756 if (slab_state == FULL) { 5757 /* 5758 * If we have a leftover link then remove it. 5759 */ 5760 sysfs_remove_link(&slab_kset->kobj, name); 5761 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5762 } 5763 5764 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5765 if (!al) 5766 return -ENOMEM; 5767 5768 al->s = s; 5769 al->name = name; 5770 al->next = alias_list; 5771 alias_list = al; 5772 return 0; 5773 } 5774 5775 static int __init slab_sysfs_init(void) 5776 { 5777 struct kmem_cache *s; 5778 int err; 5779 5780 mutex_lock(&slab_mutex); 5781 5782 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 5783 if (!slab_kset) { 5784 mutex_unlock(&slab_mutex); 5785 pr_err("Cannot register slab subsystem.\n"); 5786 return -ENOSYS; 5787 } 5788 5789 slab_state = FULL; 5790 5791 list_for_each_entry(s, &slab_caches, list) { 5792 err = sysfs_slab_add(s); 5793 if (err) 5794 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5795 s->name); 5796 } 5797 5798 while (alias_list) { 5799 struct saved_alias *al = alias_list; 5800 5801 alias_list = alias_list->next; 5802 err = sysfs_slab_alias(al->s, al->name); 5803 if (err) 5804 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5805 al->name); 5806 kfree(al); 5807 } 5808 5809 mutex_unlock(&slab_mutex); 5810 resiliency_test(); 5811 return 0; 5812 } 5813 5814 __initcall(slab_sysfs_init); 5815 #endif /* CONFIG_SYSFS */ 5816 5817 /* 5818 * The /proc/slabinfo ABI 5819 */ 5820 #ifdef CONFIG_SLUB_DEBUG 5821 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5822 { 5823 unsigned long nr_slabs = 0; 5824 unsigned long nr_objs = 0; 5825 unsigned long nr_free = 0; 5826 int node; 5827 struct kmem_cache_node *n; 5828 5829 for_each_kmem_cache_node(s, node, n) { 5830 nr_slabs += node_nr_slabs(n); 5831 nr_objs += node_nr_objs(n); 5832 nr_free += count_partial(n, count_free); 5833 } 5834 5835 sinfo->active_objs = nr_objs - nr_free; 5836 sinfo->num_objs = nr_objs; 5837 sinfo->active_slabs = nr_slabs; 5838 sinfo->num_slabs = nr_slabs; 5839 sinfo->objects_per_slab = oo_objects(s->oo); 5840 sinfo->cache_order = oo_order(s->oo); 5841 } 5842 5843 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5844 { 5845 } 5846 5847 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5848 size_t count, loff_t *ppos) 5849 { 5850 return -EIO; 5851 } 5852 #endif /* CONFIG_SLUB_DEBUG */ 5853