1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/stackdepot.h> 30 #include <linux/debugobjects.h> 31 #include <linux/kallsyms.h> 32 #include <linux/kfence.h> 33 #include <linux/memory.h> 34 #include <linux/math64.h> 35 #include <linux/fault-inject.h> 36 #include <linux/stacktrace.h> 37 #include <linux/prefetch.h> 38 #include <linux/memcontrol.h> 39 #include <linux/random.h> 40 #include <kunit/test.h> 41 #include <linux/sort.h> 42 43 #include <linux/debugfs.h> 44 #include <trace/events/kmem.h> 45 46 #include "internal.h" 47 48 /* 49 * Lock order: 50 * 1. slab_mutex (Global Mutex) 51 * 2. node->list_lock (Spinlock) 52 * 3. kmem_cache->cpu_slab->lock (Local lock) 53 * 4. slab_lock(slab) (Only on some arches or for debugging) 54 * 5. object_map_lock (Only for debugging) 55 * 56 * slab_mutex 57 * 58 * The role of the slab_mutex is to protect the list of all the slabs 59 * and to synchronize major metadata changes to slab cache structures. 60 * Also synchronizes memory hotplug callbacks. 61 * 62 * slab_lock 63 * 64 * The slab_lock is a wrapper around the page lock, thus it is a bit 65 * spinlock. 66 * 67 * The slab_lock is only used for debugging and on arches that do not 68 * have the ability to do a cmpxchg_double. It only protects: 69 * A. slab->freelist -> List of free objects in a slab 70 * B. slab->inuse -> Number of objects in use 71 * C. slab->objects -> Number of objects in slab 72 * D. slab->frozen -> frozen state 73 * 74 * Frozen slabs 75 * 76 * If a slab is frozen then it is exempt from list management. It is not 77 * on any list except per cpu partial list. The processor that froze the 78 * slab is the one who can perform list operations on the slab. Other 79 * processors may put objects onto the freelist but the processor that 80 * froze the slab is the only one that can retrieve the objects from the 81 * slab's freelist. 82 * 83 * list_lock 84 * 85 * The list_lock protects the partial and full list on each node and 86 * the partial slab counter. If taken then no new slabs may be added or 87 * removed from the lists nor make the number of partial slabs be modified. 88 * (Note that the total number of slabs is an atomic value that may be 89 * modified without taking the list lock). 90 * 91 * The list_lock is a centralized lock and thus we avoid taking it as 92 * much as possible. As long as SLUB does not have to handle partial 93 * slabs, operations can continue without any centralized lock. F.e. 94 * allocating a long series of objects that fill up slabs does not require 95 * the list lock. 96 * 97 * cpu_slab->lock local lock 98 * 99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 100 * except the stat counters. This is a percpu structure manipulated only by 101 * the local cpu, so the lock protects against being preempted or interrupted 102 * by an irq. Fast path operations rely on lockless operations instead. 103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus 104 * prevent the lockless operations), so fastpath operations also need to take 105 * the lock and are no longer lockless. 106 * 107 * lockless fastpaths 108 * 109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 110 * are fully lockless when satisfied from the percpu slab (and when 111 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 112 * They also don't disable preemption or migration or irqs. They rely on 113 * the transaction id (tid) field to detect being preempted or moved to 114 * another cpu. 115 * 116 * irq, preemption, migration considerations 117 * 118 * Interrupts are disabled as part of list_lock or local_lock operations, or 119 * around the slab_lock operation, in order to make the slab allocator safe 120 * to use in the context of an irq. 121 * 122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 125 * doesn't have to be revalidated in each section protected by the local lock. 126 * 127 * SLUB assigns one slab for allocation to each processor. 128 * Allocations only occur from these slabs called cpu slabs. 129 * 130 * Slabs with free elements are kept on a partial list and during regular 131 * operations no list for full slabs is used. If an object in a full slab is 132 * freed then the slab will show up again on the partial lists. 133 * We track full slabs for debugging purposes though because otherwise we 134 * cannot scan all objects. 135 * 136 * Slabs are freed when they become empty. Teardown and setup is 137 * minimal so we rely on the page allocators per cpu caches for 138 * fast frees and allocs. 139 * 140 * slab->frozen The slab is frozen and exempt from list processing. 141 * This means that the slab is dedicated to a purpose 142 * such as satisfying allocations for a specific 143 * processor. Objects may be freed in the slab while 144 * it is frozen but slab_free will then skip the usual 145 * list operations. It is up to the processor holding 146 * the slab to integrate the slab into the slab lists 147 * when the slab is no longer needed. 148 * 149 * One use of this flag is to mark slabs that are 150 * used for allocations. Then such a slab becomes a cpu 151 * slab. The cpu slab may be equipped with an additional 152 * freelist that allows lockless access to 153 * free objects in addition to the regular freelist 154 * that requires the slab lock. 155 * 156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 157 * options set. This moves slab handling out of 158 * the fast path and disables lockless freelists. 159 */ 160 161 /* 162 * We could simply use migrate_disable()/enable() but as long as it's a 163 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 164 */ 165 #ifndef CONFIG_PREEMPT_RT 166 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 167 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 168 #else 169 #define slub_get_cpu_ptr(var) \ 170 ({ \ 171 migrate_disable(); \ 172 this_cpu_ptr(var); \ 173 }) 174 #define slub_put_cpu_ptr(var) \ 175 do { \ 176 (void)(var); \ 177 migrate_enable(); \ 178 } while (0) 179 #endif 180 181 #ifdef CONFIG_SLUB_DEBUG 182 #ifdef CONFIG_SLUB_DEBUG_ON 183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 184 #else 185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 186 #endif 187 #endif /* CONFIG_SLUB_DEBUG */ 188 189 static inline bool kmem_cache_debug(struct kmem_cache *s) 190 { 191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 192 } 193 194 void *fixup_red_left(struct kmem_cache *s, void *p) 195 { 196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 197 p += s->red_left_pad; 198 199 return p; 200 } 201 202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 203 { 204 #ifdef CONFIG_SLUB_CPU_PARTIAL 205 return !kmem_cache_debug(s); 206 #else 207 return false; 208 #endif 209 } 210 211 /* 212 * Issues still to be resolved: 213 * 214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 215 * 216 * - Variable sizing of the per node arrays 217 */ 218 219 /* Enable to log cmpxchg failures */ 220 #undef SLUB_DEBUG_CMPXCHG 221 222 /* 223 * Minimum number of partial slabs. These will be left on the partial 224 * lists even if they are empty. kmem_cache_shrink may reclaim them. 225 */ 226 #define MIN_PARTIAL 5 227 228 /* 229 * Maximum number of desirable partial slabs. 230 * The existence of more partial slabs makes kmem_cache_shrink 231 * sort the partial list by the number of objects in use. 232 */ 233 #define MAX_PARTIAL 10 234 235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 236 SLAB_POISON | SLAB_STORE_USER) 237 238 /* 239 * These debug flags cannot use CMPXCHG because there might be consistency 240 * issues when checking or reading debug information 241 */ 242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 243 SLAB_TRACE) 244 245 246 /* 247 * Debugging flags that require metadata to be stored in the slab. These get 248 * disabled when slub_debug=O is used and a cache's min order increases with 249 * metadata. 250 */ 251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 252 253 #define OO_SHIFT 16 254 #define OO_MASK ((1 << OO_SHIFT) - 1) 255 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 256 257 /* Internal SLUB flags */ 258 /* Poison object */ 259 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 260 /* Use cmpxchg_double */ 261 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 262 263 /* 264 * Tracking user of a slab. 265 */ 266 #define TRACK_ADDRS_COUNT 16 267 struct track { 268 unsigned long addr; /* Called from address */ 269 #ifdef CONFIG_STACKDEPOT 270 depot_stack_handle_t handle; 271 #endif 272 int cpu; /* Was running on cpu */ 273 int pid; /* Pid context */ 274 unsigned long when; /* When did the operation occur */ 275 }; 276 277 enum track_item { TRACK_ALLOC, TRACK_FREE }; 278 279 #ifdef CONFIG_SYSFS 280 static int sysfs_slab_add(struct kmem_cache *); 281 static int sysfs_slab_alias(struct kmem_cache *, const char *); 282 #else 283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 285 { return 0; } 286 #endif 287 288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 289 static void debugfs_slab_add(struct kmem_cache *); 290 #else 291 static inline void debugfs_slab_add(struct kmem_cache *s) { } 292 #endif 293 294 static inline void stat(const struct kmem_cache *s, enum stat_item si) 295 { 296 #ifdef CONFIG_SLUB_STATS 297 /* 298 * The rmw is racy on a preemptible kernel but this is acceptable, so 299 * avoid this_cpu_add()'s irq-disable overhead. 300 */ 301 raw_cpu_inc(s->cpu_slab->stat[si]); 302 #endif 303 } 304 305 /* 306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 308 * differ during memory hotplug/hotremove operations. 309 * Protected by slab_mutex. 310 */ 311 static nodemask_t slab_nodes; 312 313 /******************************************************************** 314 * Core slab cache functions 315 *******************************************************************/ 316 317 /* 318 * Returns freelist pointer (ptr). With hardening, this is obfuscated 319 * with an XOR of the address where the pointer is held and a per-cache 320 * random number. 321 */ 322 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 323 unsigned long ptr_addr) 324 { 325 #ifdef CONFIG_SLAB_FREELIST_HARDENED 326 /* 327 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged. 328 * Normally, this doesn't cause any issues, as both set_freepointer() 329 * and get_freepointer() are called with a pointer with the same tag. 330 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 331 * example, when __free_slub() iterates over objects in a cache, it 332 * passes untagged pointers to check_object(). check_object() in turns 333 * calls get_freepointer() with an untagged pointer, which causes the 334 * freepointer to be restored incorrectly. 335 */ 336 return (void *)((unsigned long)ptr ^ s->random ^ 337 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 338 #else 339 return ptr; 340 #endif 341 } 342 343 /* Returns the freelist pointer recorded at location ptr_addr. */ 344 static inline void *freelist_dereference(const struct kmem_cache *s, 345 void *ptr_addr) 346 { 347 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 348 (unsigned long)ptr_addr); 349 } 350 351 static inline void *get_freepointer(struct kmem_cache *s, void *object) 352 { 353 object = kasan_reset_tag(object); 354 return freelist_dereference(s, object + s->offset); 355 } 356 357 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 358 { 359 prefetchw(object + s->offset); 360 } 361 362 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 363 { 364 unsigned long freepointer_addr; 365 void *p; 366 367 if (!debug_pagealloc_enabled_static()) 368 return get_freepointer(s, object); 369 370 object = kasan_reset_tag(object); 371 freepointer_addr = (unsigned long)object + s->offset; 372 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p)); 373 return freelist_ptr(s, p, freepointer_addr); 374 } 375 376 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 377 { 378 unsigned long freeptr_addr = (unsigned long)object + s->offset; 379 380 #ifdef CONFIG_SLAB_FREELIST_HARDENED 381 BUG_ON(object == fp); /* naive detection of double free or corruption */ 382 #endif 383 384 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 385 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 386 } 387 388 /* Loop over all objects in a slab */ 389 #define for_each_object(__p, __s, __addr, __objects) \ 390 for (__p = fixup_red_left(__s, __addr); \ 391 __p < (__addr) + (__objects) * (__s)->size; \ 392 __p += (__s)->size) 393 394 static inline unsigned int order_objects(unsigned int order, unsigned int size) 395 { 396 return ((unsigned int)PAGE_SIZE << order) / size; 397 } 398 399 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 400 unsigned int size) 401 { 402 struct kmem_cache_order_objects x = { 403 (order << OO_SHIFT) + order_objects(order, size) 404 }; 405 406 return x; 407 } 408 409 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 410 { 411 return x.x >> OO_SHIFT; 412 } 413 414 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 415 { 416 return x.x & OO_MASK; 417 } 418 419 #ifdef CONFIG_SLUB_CPU_PARTIAL 420 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 421 { 422 unsigned int nr_slabs; 423 424 s->cpu_partial = nr_objects; 425 426 /* 427 * We take the number of objects but actually limit the number of 428 * slabs on the per cpu partial list, in order to limit excessive 429 * growth of the list. For simplicity we assume that the slabs will 430 * be half-full. 431 */ 432 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 433 s->cpu_partial_slabs = nr_slabs; 434 } 435 #else 436 static inline void 437 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 438 { 439 } 440 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 441 442 /* 443 * Per slab locking using the pagelock 444 */ 445 static __always_inline void __slab_lock(struct slab *slab) 446 { 447 struct page *page = slab_page(slab); 448 449 VM_BUG_ON_PAGE(PageTail(page), page); 450 bit_spin_lock(PG_locked, &page->flags); 451 } 452 453 static __always_inline void __slab_unlock(struct slab *slab) 454 { 455 struct page *page = slab_page(slab); 456 457 VM_BUG_ON_PAGE(PageTail(page), page); 458 __bit_spin_unlock(PG_locked, &page->flags); 459 } 460 461 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags) 462 { 463 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 464 local_irq_save(*flags); 465 __slab_lock(slab); 466 } 467 468 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags) 469 { 470 __slab_unlock(slab); 471 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 472 local_irq_restore(*flags); 473 } 474 475 /* 476 * Interrupts must be disabled (for the fallback code to work right), typically 477 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different 478 * so we disable interrupts as part of slab_[un]lock(). 479 */ 480 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 481 void *freelist_old, unsigned long counters_old, 482 void *freelist_new, unsigned long counters_new, 483 const char *n) 484 { 485 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 486 lockdep_assert_irqs_disabled(); 487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 488 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 489 if (s->flags & __CMPXCHG_DOUBLE) { 490 if (cmpxchg_double(&slab->freelist, &slab->counters, 491 freelist_old, counters_old, 492 freelist_new, counters_new)) 493 return true; 494 } else 495 #endif 496 { 497 /* init to 0 to prevent spurious warnings */ 498 unsigned long flags = 0; 499 500 slab_lock(slab, &flags); 501 if (slab->freelist == freelist_old && 502 slab->counters == counters_old) { 503 slab->freelist = freelist_new; 504 slab->counters = counters_new; 505 slab_unlock(slab, &flags); 506 return true; 507 } 508 slab_unlock(slab, &flags); 509 } 510 511 cpu_relax(); 512 stat(s, CMPXCHG_DOUBLE_FAIL); 513 514 #ifdef SLUB_DEBUG_CMPXCHG 515 pr_info("%s %s: cmpxchg double redo ", n, s->name); 516 #endif 517 518 return false; 519 } 520 521 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab, 522 void *freelist_old, unsigned long counters_old, 523 void *freelist_new, unsigned long counters_new, 524 const char *n) 525 { 526 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 527 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 528 if (s->flags & __CMPXCHG_DOUBLE) { 529 if (cmpxchg_double(&slab->freelist, &slab->counters, 530 freelist_old, counters_old, 531 freelist_new, counters_new)) 532 return true; 533 } else 534 #endif 535 { 536 unsigned long flags; 537 538 local_irq_save(flags); 539 __slab_lock(slab); 540 if (slab->freelist == freelist_old && 541 slab->counters == counters_old) { 542 slab->freelist = freelist_new; 543 slab->counters = counters_new; 544 __slab_unlock(slab); 545 local_irq_restore(flags); 546 return true; 547 } 548 __slab_unlock(slab); 549 local_irq_restore(flags); 550 } 551 552 cpu_relax(); 553 stat(s, CMPXCHG_DOUBLE_FAIL); 554 555 #ifdef SLUB_DEBUG_CMPXCHG 556 pr_info("%s %s: cmpxchg double redo ", n, s->name); 557 #endif 558 559 return false; 560 } 561 562 #ifdef CONFIG_SLUB_DEBUG 563 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 564 static DEFINE_RAW_SPINLOCK(object_map_lock); 565 566 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 567 struct slab *slab) 568 { 569 void *addr = slab_address(slab); 570 void *p; 571 572 bitmap_zero(obj_map, slab->objects); 573 574 for (p = slab->freelist; p; p = get_freepointer(s, p)) 575 set_bit(__obj_to_index(s, addr, p), obj_map); 576 } 577 578 #if IS_ENABLED(CONFIG_KUNIT) 579 static bool slab_add_kunit_errors(void) 580 { 581 struct kunit_resource *resource; 582 583 if (likely(!current->kunit_test)) 584 return false; 585 586 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 587 if (!resource) 588 return false; 589 590 (*(int *)resource->data)++; 591 kunit_put_resource(resource); 592 return true; 593 } 594 #else 595 static inline bool slab_add_kunit_errors(void) { return false; } 596 #endif 597 598 /* 599 * Determine a map of objects in use in a slab. 600 * 601 * Node listlock must be held to guarantee that the slab does 602 * not vanish from under us. 603 */ 604 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab) 605 __acquires(&object_map_lock) 606 { 607 VM_BUG_ON(!irqs_disabled()); 608 609 raw_spin_lock(&object_map_lock); 610 611 __fill_map(object_map, s, slab); 612 613 return object_map; 614 } 615 616 static void put_map(unsigned long *map) __releases(&object_map_lock) 617 { 618 VM_BUG_ON(map != object_map); 619 raw_spin_unlock(&object_map_lock); 620 } 621 622 static inline unsigned int size_from_object(struct kmem_cache *s) 623 { 624 if (s->flags & SLAB_RED_ZONE) 625 return s->size - s->red_left_pad; 626 627 return s->size; 628 } 629 630 static inline void *restore_red_left(struct kmem_cache *s, void *p) 631 { 632 if (s->flags & SLAB_RED_ZONE) 633 p -= s->red_left_pad; 634 635 return p; 636 } 637 638 /* 639 * Debug settings: 640 */ 641 #if defined(CONFIG_SLUB_DEBUG_ON) 642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 643 #else 644 static slab_flags_t slub_debug; 645 #endif 646 647 static char *slub_debug_string; 648 static int disable_higher_order_debug; 649 650 /* 651 * slub is about to manipulate internal object metadata. This memory lies 652 * outside the range of the allocated object, so accessing it would normally 653 * be reported by kasan as a bounds error. metadata_access_enable() is used 654 * to tell kasan that these accesses are OK. 655 */ 656 static inline void metadata_access_enable(void) 657 { 658 kasan_disable_current(); 659 } 660 661 static inline void metadata_access_disable(void) 662 { 663 kasan_enable_current(); 664 } 665 666 /* 667 * Object debugging 668 */ 669 670 /* Verify that a pointer has an address that is valid within a slab page */ 671 static inline int check_valid_pointer(struct kmem_cache *s, 672 struct slab *slab, void *object) 673 { 674 void *base; 675 676 if (!object) 677 return 1; 678 679 base = slab_address(slab); 680 object = kasan_reset_tag(object); 681 object = restore_red_left(s, object); 682 if (object < base || object >= base + slab->objects * s->size || 683 (object - base) % s->size) { 684 return 0; 685 } 686 687 return 1; 688 } 689 690 static void print_section(char *level, char *text, u8 *addr, 691 unsigned int length) 692 { 693 metadata_access_enable(); 694 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 695 16, 1, kasan_reset_tag((void *)addr), length, 1); 696 metadata_access_disable(); 697 } 698 699 /* 700 * See comment in calculate_sizes(). 701 */ 702 static inline bool freeptr_outside_object(struct kmem_cache *s) 703 { 704 return s->offset >= s->inuse; 705 } 706 707 /* 708 * Return offset of the end of info block which is inuse + free pointer if 709 * not overlapping with object. 710 */ 711 static inline unsigned int get_info_end(struct kmem_cache *s) 712 { 713 if (freeptr_outside_object(s)) 714 return s->inuse + sizeof(void *); 715 else 716 return s->inuse; 717 } 718 719 static struct track *get_track(struct kmem_cache *s, void *object, 720 enum track_item alloc) 721 { 722 struct track *p; 723 724 p = object + get_info_end(s); 725 726 return kasan_reset_tag(p + alloc); 727 } 728 729 static void noinline set_track(struct kmem_cache *s, void *object, 730 enum track_item alloc, unsigned long addr) 731 { 732 struct track *p = get_track(s, object, alloc); 733 734 #ifdef CONFIG_STACKDEPOT 735 unsigned long entries[TRACK_ADDRS_COUNT]; 736 unsigned int nr_entries; 737 738 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 739 p->handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 740 #endif 741 742 p->addr = addr; 743 p->cpu = smp_processor_id(); 744 p->pid = current->pid; 745 p->when = jiffies; 746 } 747 748 static void init_tracking(struct kmem_cache *s, void *object) 749 { 750 struct track *p; 751 752 if (!(s->flags & SLAB_STORE_USER)) 753 return; 754 755 p = get_track(s, object, TRACK_ALLOC); 756 memset(p, 0, 2*sizeof(struct track)); 757 } 758 759 static void print_track(const char *s, struct track *t, unsigned long pr_time) 760 { 761 depot_stack_handle_t handle __maybe_unused; 762 763 if (!t->addr) 764 return; 765 766 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 767 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 768 #ifdef CONFIG_STACKDEPOT 769 handle = READ_ONCE(t->handle); 770 if (handle) 771 stack_depot_print(handle); 772 else 773 pr_err("object allocation/free stack trace missing\n"); 774 #endif 775 } 776 777 void print_tracking(struct kmem_cache *s, void *object) 778 { 779 unsigned long pr_time = jiffies; 780 if (!(s->flags & SLAB_STORE_USER)) 781 return; 782 783 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 784 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 785 } 786 787 static void print_slab_info(const struct slab *slab) 788 { 789 struct folio *folio = (struct folio *)slab_folio(slab); 790 791 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 792 slab, slab->objects, slab->inuse, slab->freelist, 793 folio_flags(folio, 0)); 794 } 795 796 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 797 { 798 struct va_format vaf; 799 va_list args; 800 801 va_start(args, fmt); 802 vaf.fmt = fmt; 803 vaf.va = &args; 804 pr_err("=============================================================================\n"); 805 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 806 pr_err("-----------------------------------------------------------------------------\n\n"); 807 va_end(args); 808 } 809 810 __printf(2, 3) 811 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 812 { 813 struct va_format vaf; 814 va_list args; 815 816 if (slab_add_kunit_errors()) 817 return; 818 819 va_start(args, fmt); 820 vaf.fmt = fmt; 821 vaf.va = &args; 822 pr_err("FIX %s: %pV\n", s->name, &vaf); 823 va_end(args); 824 } 825 826 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 827 { 828 unsigned int off; /* Offset of last byte */ 829 u8 *addr = slab_address(slab); 830 831 print_tracking(s, p); 832 833 print_slab_info(slab); 834 835 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 836 p, p - addr, get_freepointer(s, p)); 837 838 if (s->flags & SLAB_RED_ZONE) 839 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 840 s->red_left_pad); 841 else if (p > addr + 16) 842 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 843 844 print_section(KERN_ERR, "Object ", p, 845 min_t(unsigned int, s->object_size, PAGE_SIZE)); 846 if (s->flags & SLAB_RED_ZONE) 847 print_section(KERN_ERR, "Redzone ", p + s->object_size, 848 s->inuse - s->object_size); 849 850 off = get_info_end(s); 851 852 if (s->flags & SLAB_STORE_USER) 853 off += 2 * sizeof(struct track); 854 855 off += kasan_metadata_size(s); 856 857 if (off != size_from_object(s)) 858 /* Beginning of the filler is the free pointer */ 859 print_section(KERN_ERR, "Padding ", p + off, 860 size_from_object(s) - off); 861 862 dump_stack(); 863 } 864 865 static void object_err(struct kmem_cache *s, struct slab *slab, 866 u8 *object, char *reason) 867 { 868 if (slab_add_kunit_errors()) 869 return; 870 871 slab_bug(s, "%s", reason); 872 print_trailer(s, slab, object); 873 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 874 } 875 876 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 877 void **freelist, void *nextfree) 878 { 879 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 880 !check_valid_pointer(s, slab, nextfree) && freelist) { 881 object_err(s, slab, *freelist, "Freechain corrupt"); 882 *freelist = NULL; 883 slab_fix(s, "Isolate corrupted freechain"); 884 return true; 885 } 886 887 return false; 888 } 889 890 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 891 const char *fmt, ...) 892 { 893 va_list args; 894 char buf[100]; 895 896 if (slab_add_kunit_errors()) 897 return; 898 899 va_start(args, fmt); 900 vsnprintf(buf, sizeof(buf), fmt, args); 901 va_end(args); 902 slab_bug(s, "%s", buf); 903 print_slab_info(slab); 904 dump_stack(); 905 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 906 } 907 908 static void init_object(struct kmem_cache *s, void *object, u8 val) 909 { 910 u8 *p = kasan_reset_tag(object); 911 912 if (s->flags & SLAB_RED_ZONE) 913 memset(p - s->red_left_pad, val, s->red_left_pad); 914 915 if (s->flags & __OBJECT_POISON) { 916 memset(p, POISON_FREE, s->object_size - 1); 917 p[s->object_size - 1] = POISON_END; 918 } 919 920 if (s->flags & SLAB_RED_ZONE) 921 memset(p + s->object_size, val, s->inuse - s->object_size); 922 } 923 924 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 925 void *from, void *to) 926 { 927 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 928 memset(from, data, to - from); 929 } 930 931 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 932 u8 *object, char *what, 933 u8 *start, unsigned int value, unsigned int bytes) 934 { 935 u8 *fault; 936 u8 *end; 937 u8 *addr = slab_address(slab); 938 939 metadata_access_enable(); 940 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 941 metadata_access_disable(); 942 if (!fault) 943 return 1; 944 945 end = start + bytes; 946 while (end > fault && end[-1] == value) 947 end--; 948 949 if (slab_add_kunit_errors()) 950 goto skip_bug_print; 951 952 slab_bug(s, "%s overwritten", what); 953 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 954 fault, end - 1, fault - addr, 955 fault[0], value); 956 print_trailer(s, slab, object); 957 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 958 959 skip_bug_print: 960 restore_bytes(s, what, value, fault, end); 961 return 0; 962 } 963 964 /* 965 * Object layout: 966 * 967 * object address 968 * Bytes of the object to be managed. 969 * If the freepointer may overlay the object then the free 970 * pointer is at the middle of the object. 971 * 972 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 973 * 0xa5 (POISON_END) 974 * 975 * object + s->object_size 976 * Padding to reach word boundary. This is also used for Redzoning. 977 * Padding is extended by another word if Redzoning is enabled and 978 * object_size == inuse. 979 * 980 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 981 * 0xcc (RED_ACTIVE) for objects in use. 982 * 983 * object + s->inuse 984 * Meta data starts here. 985 * 986 * A. Free pointer (if we cannot overwrite object on free) 987 * B. Tracking data for SLAB_STORE_USER 988 * C. Padding to reach required alignment boundary or at minimum 989 * one word if debugging is on to be able to detect writes 990 * before the word boundary. 991 * 992 * Padding is done using 0x5a (POISON_INUSE) 993 * 994 * object + s->size 995 * Nothing is used beyond s->size. 996 * 997 * If slabcaches are merged then the object_size and inuse boundaries are mostly 998 * ignored. And therefore no slab options that rely on these boundaries 999 * may be used with merged slabcaches. 1000 */ 1001 1002 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1003 { 1004 unsigned long off = get_info_end(s); /* The end of info */ 1005 1006 if (s->flags & SLAB_STORE_USER) 1007 /* We also have user information there */ 1008 off += 2 * sizeof(struct track); 1009 1010 off += kasan_metadata_size(s); 1011 1012 if (size_from_object(s) == off) 1013 return 1; 1014 1015 return check_bytes_and_report(s, slab, p, "Object padding", 1016 p + off, POISON_INUSE, size_from_object(s) - off); 1017 } 1018 1019 /* Check the pad bytes at the end of a slab page */ 1020 static void slab_pad_check(struct kmem_cache *s, struct slab *slab) 1021 { 1022 u8 *start; 1023 u8 *fault; 1024 u8 *end; 1025 u8 *pad; 1026 int length; 1027 int remainder; 1028 1029 if (!(s->flags & SLAB_POISON)) 1030 return; 1031 1032 start = slab_address(slab); 1033 length = slab_size(slab); 1034 end = start + length; 1035 remainder = length % s->size; 1036 if (!remainder) 1037 return; 1038 1039 pad = end - remainder; 1040 metadata_access_enable(); 1041 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1042 metadata_access_disable(); 1043 if (!fault) 1044 return; 1045 while (end > fault && end[-1] == POISON_INUSE) 1046 end--; 1047 1048 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1049 fault, end - 1, fault - start); 1050 print_section(KERN_ERR, "Padding ", pad, remainder); 1051 1052 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1053 } 1054 1055 static int check_object(struct kmem_cache *s, struct slab *slab, 1056 void *object, u8 val) 1057 { 1058 u8 *p = object; 1059 u8 *endobject = object + s->object_size; 1060 1061 if (s->flags & SLAB_RED_ZONE) { 1062 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1063 object - s->red_left_pad, val, s->red_left_pad)) 1064 return 0; 1065 1066 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1067 endobject, val, s->inuse - s->object_size)) 1068 return 0; 1069 } else { 1070 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1071 check_bytes_and_report(s, slab, p, "Alignment padding", 1072 endobject, POISON_INUSE, 1073 s->inuse - s->object_size); 1074 } 1075 } 1076 1077 if (s->flags & SLAB_POISON) { 1078 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 1079 (!check_bytes_and_report(s, slab, p, "Poison", p, 1080 POISON_FREE, s->object_size - 1) || 1081 !check_bytes_and_report(s, slab, p, "End Poison", 1082 p + s->object_size - 1, POISON_END, 1))) 1083 return 0; 1084 /* 1085 * check_pad_bytes cleans up on its own. 1086 */ 1087 check_pad_bytes(s, slab, p); 1088 } 1089 1090 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 1091 /* 1092 * Object and freepointer overlap. Cannot check 1093 * freepointer while object is allocated. 1094 */ 1095 return 1; 1096 1097 /* Check free pointer validity */ 1098 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) { 1099 object_err(s, slab, p, "Freepointer corrupt"); 1100 /* 1101 * No choice but to zap it and thus lose the remainder 1102 * of the free objects in this slab. May cause 1103 * another error because the object count is now wrong. 1104 */ 1105 set_freepointer(s, p, NULL); 1106 return 0; 1107 } 1108 return 1; 1109 } 1110 1111 static int check_slab(struct kmem_cache *s, struct slab *slab) 1112 { 1113 int maxobj; 1114 1115 if (!folio_test_slab(slab_folio(slab))) { 1116 slab_err(s, slab, "Not a valid slab page"); 1117 return 0; 1118 } 1119 1120 maxobj = order_objects(slab_order(slab), s->size); 1121 if (slab->objects > maxobj) { 1122 slab_err(s, slab, "objects %u > max %u", 1123 slab->objects, maxobj); 1124 return 0; 1125 } 1126 if (slab->inuse > slab->objects) { 1127 slab_err(s, slab, "inuse %u > max %u", 1128 slab->inuse, slab->objects); 1129 return 0; 1130 } 1131 /* Slab_pad_check fixes things up after itself */ 1132 slab_pad_check(s, slab); 1133 return 1; 1134 } 1135 1136 /* 1137 * Determine if a certain object in a slab is on the freelist. Must hold the 1138 * slab lock to guarantee that the chains are in a consistent state. 1139 */ 1140 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1141 { 1142 int nr = 0; 1143 void *fp; 1144 void *object = NULL; 1145 int max_objects; 1146 1147 fp = slab->freelist; 1148 while (fp && nr <= slab->objects) { 1149 if (fp == search) 1150 return 1; 1151 if (!check_valid_pointer(s, slab, fp)) { 1152 if (object) { 1153 object_err(s, slab, object, 1154 "Freechain corrupt"); 1155 set_freepointer(s, object, NULL); 1156 } else { 1157 slab_err(s, slab, "Freepointer corrupt"); 1158 slab->freelist = NULL; 1159 slab->inuse = slab->objects; 1160 slab_fix(s, "Freelist cleared"); 1161 return 0; 1162 } 1163 break; 1164 } 1165 object = fp; 1166 fp = get_freepointer(s, object); 1167 nr++; 1168 } 1169 1170 max_objects = order_objects(slab_order(slab), s->size); 1171 if (max_objects > MAX_OBJS_PER_PAGE) 1172 max_objects = MAX_OBJS_PER_PAGE; 1173 1174 if (slab->objects != max_objects) { 1175 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1176 slab->objects, max_objects); 1177 slab->objects = max_objects; 1178 slab_fix(s, "Number of objects adjusted"); 1179 } 1180 if (slab->inuse != slab->objects - nr) { 1181 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1182 slab->inuse, slab->objects - nr); 1183 slab->inuse = slab->objects - nr; 1184 slab_fix(s, "Object count adjusted"); 1185 } 1186 return search == NULL; 1187 } 1188 1189 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1190 int alloc) 1191 { 1192 if (s->flags & SLAB_TRACE) { 1193 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1194 s->name, 1195 alloc ? "alloc" : "free", 1196 object, slab->inuse, 1197 slab->freelist); 1198 1199 if (!alloc) 1200 print_section(KERN_INFO, "Object ", (void *)object, 1201 s->object_size); 1202 1203 dump_stack(); 1204 } 1205 } 1206 1207 /* 1208 * Tracking of fully allocated slabs for debugging purposes. 1209 */ 1210 static void add_full(struct kmem_cache *s, 1211 struct kmem_cache_node *n, struct slab *slab) 1212 { 1213 if (!(s->flags & SLAB_STORE_USER)) 1214 return; 1215 1216 lockdep_assert_held(&n->list_lock); 1217 list_add(&slab->slab_list, &n->full); 1218 } 1219 1220 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1221 { 1222 if (!(s->flags & SLAB_STORE_USER)) 1223 return; 1224 1225 lockdep_assert_held(&n->list_lock); 1226 list_del(&slab->slab_list); 1227 } 1228 1229 /* Tracking of the number of slabs for debugging purposes */ 1230 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1231 { 1232 struct kmem_cache_node *n = get_node(s, node); 1233 1234 return atomic_long_read(&n->nr_slabs); 1235 } 1236 1237 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1238 { 1239 return atomic_long_read(&n->nr_slabs); 1240 } 1241 1242 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1243 { 1244 struct kmem_cache_node *n = get_node(s, node); 1245 1246 /* 1247 * May be called early in order to allocate a slab for the 1248 * kmem_cache_node structure. Solve the chicken-egg 1249 * dilemma by deferring the increment of the count during 1250 * bootstrap (see early_kmem_cache_node_alloc). 1251 */ 1252 if (likely(n)) { 1253 atomic_long_inc(&n->nr_slabs); 1254 atomic_long_add(objects, &n->total_objects); 1255 } 1256 } 1257 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1258 { 1259 struct kmem_cache_node *n = get_node(s, node); 1260 1261 atomic_long_dec(&n->nr_slabs); 1262 atomic_long_sub(objects, &n->total_objects); 1263 } 1264 1265 /* Object debug checks for alloc/free paths */ 1266 static void setup_object_debug(struct kmem_cache *s, void *object) 1267 { 1268 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1269 return; 1270 1271 init_object(s, object, SLUB_RED_INACTIVE); 1272 init_tracking(s, object); 1273 } 1274 1275 static 1276 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1277 { 1278 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1279 return; 1280 1281 metadata_access_enable(); 1282 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1283 metadata_access_disable(); 1284 } 1285 1286 static inline int alloc_consistency_checks(struct kmem_cache *s, 1287 struct slab *slab, void *object) 1288 { 1289 if (!check_slab(s, slab)) 1290 return 0; 1291 1292 if (!check_valid_pointer(s, slab, object)) { 1293 object_err(s, slab, object, "Freelist Pointer check fails"); 1294 return 0; 1295 } 1296 1297 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1298 return 0; 1299 1300 return 1; 1301 } 1302 1303 static noinline int alloc_debug_processing(struct kmem_cache *s, 1304 struct slab *slab, 1305 void *object, unsigned long addr) 1306 { 1307 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1308 if (!alloc_consistency_checks(s, slab, object)) 1309 goto bad; 1310 } 1311 1312 /* Success perform special debug activities for allocs */ 1313 if (s->flags & SLAB_STORE_USER) 1314 set_track(s, object, TRACK_ALLOC, addr); 1315 trace(s, slab, object, 1); 1316 init_object(s, object, SLUB_RED_ACTIVE); 1317 return 1; 1318 1319 bad: 1320 if (folio_test_slab(slab_folio(slab))) { 1321 /* 1322 * If this is a slab page then lets do the best we can 1323 * to avoid issues in the future. Marking all objects 1324 * as used avoids touching the remaining objects. 1325 */ 1326 slab_fix(s, "Marking all objects used"); 1327 slab->inuse = slab->objects; 1328 slab->freelist = NULL; 1329 } 1330 return 0; 1331 } 1332 1333 static inline int free_consistency_checks(struct kmem_cache *s, 1334 struct slab *slab, void *object, unsigned long addr) 1335 { 1336 if (!check_valid_pointer(s, slab, object)) { 1337 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1338 return 0; 1339 } 1340 1341 if (on_freelist(s, slab, object)) { 1342 object_err(s, slab, object, "Object already free"); 1343 return 0; 1344 } 1345 1346 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1347 return 0; 1348 1349 if (unlikely(s != slab->slab_cache)) { 1350 if (!folio_test_slab(slab_folio(slab))) { 1351 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1352 object); 1353 } else if (!slab->slab_cache) { 1354 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1355 object); 1356 dump_stack(); 1357 } else 1358 object_err(s, slab, object, 1359 "page slab pointer corrupt."); 1360 return 0; 1361 } 1362 return 1; 1363 } 1364 1365 /* Supports checking bulk free of a constructed freelist */ 1366 static noinline int free_debug_processing( 1367 struct kmem_cache *s, struct slab *slab, 1368 void *head, void *tail, int bulk_cnt, 1369 unsigned long addr) 1370 { 1371 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 1372 void *object = head; 1373 int cnt = 0; 1374 unsigned long flags, flags2; 1375 int ret = 0; 1376 1377 spin_lock_irqsave(&n->list_lock, flags); 1378 slab_lock(slab, &flags2); 1379 1380 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1381 if (!check_slab(s, slab)) 1382 goto out; 1383 } 1384 1385 next_object: 1386 cnt++; 1387 1388 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1389 if (!free_consistency_checks(s, slab, object, addr)) 1390 goto out; 1391 } 1392 1393 if (s->flags & SLAB_STORE_USER) 1394 set_track(s, object, TRACK_FREE, addr); 1395 trace(s, slab, object, 0); 1396 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1397 init_object(s, object, SLUB_RED_INACTIVE); 1398 1399 /* Reached end of constructed freelist yet? */ 1400 if (object != tail) { 1401 object = get_freepointer(s, object); 1402 goto next_object; 1403 } 1404 ret = 1; 1405 1406 out: 1407 if (cnt != bulk_cnt) 1408 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n", 1409 bulk_cnt, cnt); 1410 1411 slab_unlock(slab, &flags2); 1412 spin_unlock_irqrestore(&n->list_lock, flags); 1413 if (!ret) 1414 slab_fix(s, "Object at 0x%p not freed", object); 1415 return ret; 1416 } 1417 1418 /* 1419 * Parse a block of slub_debug options. Blocks are delimited by ';' 1420 * 1421 * @str: start of block 1422 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1423 * @slabs: return start of list of slabs, or NULL when there's no list 1424 * @init: assume this is initial parsing and not per-kmem-create parsing 1425 * 1426 * returns the start of next block if there's any, or NULL 1427 */ 1428 static char * 1429 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1430 { 1431 bool higher_order_disable = false; 1432 1433 /* Skip any completely empty blocks */ 1434 while (*str && *str == ';') 1435 str++; 1436 1437 if (*str == ',') { 1438 /* 1439 * No options but restriction on slabs. This means full 1440 * debugging for slabs matching a pattern. 1441 */ 1442 *flags = DEBUG_DEFAULT_FLAGS; 1443 goto check_slabs; 1444 } 1445 *flags = 0; 1446 1447 /* Determine which debug features should be switched on */ 1448 for (; *str && *str != ',' && *str != ';'; str++) { 1449 switch (tolower(*str)) { 1450 case '-': 1451 *flags = 0; 1452 break; 1453 case 'f': 1454 *flags |= SLAB_CONSISTENCY_CHECKS; 1455 break; 1456 case 'z': 1457 *flags |= SLAB_RED_ZONE; 1458 break; 1459 case 'p': 1460 *flags |= SLAB_POISON; 1461 break; 1462 case 'u': 1463 *flags |= SLAB_STORE_USER; 1464 break; 1465 case 't': 1466 *flags |= SLAB_TRACE; 1467 break; 1468 case 'a': 1469 *flags |= SLAB_FAILSLAB; 1470 break; 1471 case 'o': 1472 /* 1473 * Avoid enabling debugging on caches if its minimum 1474 * order would increase as a result. 1475 */ 1476 higher_order_disable = true; 1477 break; 1478 default: 1479 if (init) 1480 pr_err("slub_debug option '%c' unknown. skipped\n", *str); 1481 } 1482 } 1483 check_slabs: 1484 if (*str == ',') 1485 *slabs = ++str; 1486 else 1487 *slabs = NULL; 1488 1489 /* Skip over the slab list */ 1490 while (*str && *str != ';') 1491 str++; 1492 1493 /* Skip any completely empty blocks */ 1494 while (*str && *str == ';') 1495 str++; 1496 1497 if (init && higher_order_disable) 1498 disable_higher_order_debug = 1; 1499 1500 if (*str) 1501 return str; 1502 else 1503 return NULL; 1504 } 1505 1506 static int __init setup_slub_debug(char *str) 1507 { 1508 slab_flags_t flags; 1509 slab_flags_t global_flags; 1510 char *saved_str; 1511 char *slab_list; 1512 bool global_slub_debug_changed = false; 1513 bool slab_list_specified = false; 1514 1515 global_flags = DEBUG_DEFAULT_FLAGS; 1516 if (*str++ != '=' || !*str) 1517 /* 1518 * No options specified. Switch on full debugging. 1519 */ 1520 goto out; 1521 1522 saved_str = str; 1523 while (str) { 1524 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1525 1526 if (!slab_list) { 1527 global_flags = flags; 1528 global_slub_debug_changed = true; 1529 } else { 1530 slab_list_specified = true; 1531 if (flags & SLAB_STORE_USER) 1532 stack_depot_want_early_init(); 1533 } 1534 } 1535 1536 /* 1537 * For backwards compatibility, a single list of flags with list of 1538 * slabs means debugging is only changed for those slabs, so the global 1539 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1540 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1541 * long as there is no option specifying flags without a slab list. 1542 */ 1543 if (slab_list_specified) { 1544 if (!global_slub_debug_changed) 1545 global_flags = slub_debug; 1546 slub_debug_string = saved_str; 1547 } 1548 out: 1549 slub_debug = global_flags; 1550 if (slub_debug & SLAB_STORE_USER) 1551 stack_depot_want_early_init(); 1552 if (slub_debug != 0 || slub_debug_string) 1553 static_branch_enable(&slub_debug_enabled); 1554 else 1555 static_branch_disable(&slub_debug_enabled); 1556 if ((static_branch_unlikely(&init_on_alloc) || 1557 static_branch_unlikely(&init_on_free)) && 1558 (slub_debug & SLAB_POISON)) 1559 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1560 return 1; 1561 } 1562 1563 __setup("slub_debug", setup_slub_debug); 1564 1565 /* 1566 * kmem_cache_flags - apply debugging options to the cache 1567 * @object_size: the size of an object without meta data 1568 * @flags: flags to set 1569 * @name: name of the cache 1570 * 1571 * Debug option(s) are applied to @flags. In addition to the debug 1572 * option(s), if a slab name (or multiple) is specified i.e. 1573 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1574 * then only the select slabs will receive the debug option(s). 1575 */ 1576 slab_flags_t kmem_cache_flags(unsigned int object_size, 1577 slab_flags_t flags, const char *name) 1578 { 1579 char *iter; 1580 size_t len; 1581 char *next_block; 1582 slab_flags_t block_flags; 1583 slab_flags_t slub_debug_local = slub_debug; 1584 1585 if (flags & SLAB_NO_USER_FLAGS) 1586 return flags; 1587 1588 /* 1589 * If the slab cache is for debugging (e.g. kmemleak) then 1590 * don't store user (stack trace) information by default, 1591 * but let the user enable it via the command line below. 1592 */ 1593 if (flags & SLAB_NOLEAKTRACE) 1594 slub_debug_local &= ~SLAB_STORE_USER; 1595 1596 len = strlen(name); 1597 next_block = slub_debug_string; 1598 /* Go through all blocks of debug options, see if any matches our slab's name */ 1599 while (next_block) { 1600 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1601 if (!iter) 1602 continue; 1603 /* Found a block that has a slab list, search it */ 1604 while (*iter) { 1605 char *end, *glob; 1606 size_t cmplen; 1607 1608 end = strchrnul(iter, ','); 1609 if (next_block && next_block < end) 1610 end = next_block - 1; 1611 1612 glob = strnchr(iter, end - iter, '*'); 1613 if (glob) 1614 cmplen = glob - iter; 1615 else 1616 cmplen = max_t(size_t, len, (end - iter)); 1617 1618 if (!strncmp(name, iter, cmplen)) { 1619 flags |= block_flags; 1620 return flags; 1621 } 1622 1623 if (!*end || *end == ';') 1624 break; 1625 iter = end + 1; 1626 } 1627 } 1628 1629 return flags | slub_debug_local; 1630 } 1631 #else /* !CONFIG_SLUB_DEBUG */ 1632 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1633 static inline 1634 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1635 1636 static inline int alloc_debug_processing(struct kmem_cache *s, 1637 struct slab *slab, void *object, unsigned long addr) { return 0; } 1638 1639 static inline int free_debug_processing( 1640 struct kmem_cache *s, struct slab *slab, 1641 void *head, void *tail, int bulk_cnt, 1642 unsigned long addr) { return 0; } 1643 1644 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1645 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1646 void *object, u8 val) { return 1; } 1647 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1648 struct slab *slab) {} 1649 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1650 struct slab *slab) {} 1651 slab_flags_t kmem_cache_flags(unsigned int object_size, 1652 slab_flags_t flags, const char *name) 1653 { 1654 return flags; 1655 } 1656 #define slub_debug 0 1657 1658 #define disable_higher_order_debug 0 1659 1660 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1661 { return 0; } 1662 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1663 { return 0; } 1664 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1665 int objects) {} 1666 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1667 int objects) {} 1668 1669 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1670 void **freelist, void *nextfree) 1671 { 1672 return false; 1673 } 1674 #endif /* CONFIG_SLUB_DEBUG */ 1675 1676 /* 1677 * Hooks for other subsystems that check memory allocations. In a typical 1678 * production configuration these hooks all should produce no code at all. 1679 */ 1680 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1681 { 1682 ptr = kasan_kmalloc_large(ptr, size, flags); 1683 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1684 kmemleak_alloc(ptr, size, 1, flags); 1685 return ptr; 1686 } 1687 1688 static __always_inline void kfree_hook(void *x) 1689 { 1690 kmemleak_free(x); 1691 kasan_kfree_large(x); 1692 } 1693 1694 static __always_inline bool slab_free_hook(struct kmem_cache *s, 1695 void *x, bool init) 1696 { 1697 kmemleak_free_recursive(x, s->flags); 1698 1699 debug_check_no_locks_freed(x, s->object_size); 1700 1701 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1702 debug_check_no_obj_freed(x, s->object_size); 1703 1704 /* Use KCSAN to help debug racy use-after-free. */ 1705 if (!(s->flags & SLAB_TYPESAFE_BY_RCU)) 1706 __kcsan_check_access(x, s->object_size, 1707 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 1708 1709 /* 1710 * As memory initialization might be integrated into KASAN, 1711 * kasan_slab_free and initialization memset's must be 1712 * kept together to avoid discrepancies in behavior. 1713 * 1714 * The initialization memset's clear the object and the metadata, 1715 * but don't touch the SLAB redzone. 1716 */ 1717 if (init) { 1718 int rsize; 1719 1720 if (!kasan_has_integrated_init()) 1721 memset(kasan_reset_tag(x), 0, s->object_size); 1722 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 1723 memset((char *)kasan_reset_tag(x) + s->inuse, 0, 1724 s->size - s->inuse - rsize); 1725 } 1726 /* KASAN might put x into memory quarantine, delaying its reuse. */ 1727 return kasan_slab_free(s, x, init); 1728 } 1729 1730 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1731 void **head, void **tail, 1732 int *cnt) 1733 { 1734 1735 void *object; 1736 void *next = *head; 1737 void *old_tail = *tail ? *tail : *head; 1738 1739 if (is_kfence_address(next)) { 1740 slab_free_hook(s, next, false); 1741 return true; 1742 } 1743 1744 /* Head and tail of the reconstructed freelist */ 1745 *head = NULL; 1746 *tail = NULL; 1747 1748 do { 1749 object = next; 1750 next = get_freepointer(s, object); 1751 1752 /* If object's reuse doesn't have to be delayed */ 1753 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) { 1754 /* Move object to the new freelist */ 1755 set_freepointer(s, object, *head); 1756 *head = object; 1757 if (!*tail) 1758 *tail = object; 1759 } else { 1760 /* 1761 * Adjust the reconstructed freelist depth 1762 * accordingly if object's reuse is delayed. 1763 */ 1764 --(*cnt); 1765 } 1766 } while (object != old_tail); 1767 1768 if (*head == *tail) 1769 *tail = NULL; 1770 1771 return *head != NULL; 1772 } 1773 1774 static void *setup_object(struct kmem_cache *s, void *object) 1775 { 1776 setup_object_debug(s, object); 1777 object = kasan_init_slab_obj(s, object); 1778 if (unlikely(s->ctor)) { 1779 kasan_unpoison_object_data(s, object); 1780 s->ctor(object); 1781 kasan_poison_object_data(s, object); 1782 } 1783 return object; 1784 } 1785 1786 /* 1787 * Slab allocation and freeing 1788 */ 1789 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 1790 struct kmem_cache_order_objects oo) 1791 { 1792 struct folio *folio; 1793 struct slab *slab; 1794 unsigned int order = oo_order(oo); 1795 1796 if (node == NUMA_NO_NODE) 1797 folio = (struct folio *)alloc_pages(flags, order); 1798 else 1799 folio = (struct folio *)__alloc_pages_node(node, flags, order); 1800 1801 if (!folio) 1802 return NULL; 1803 1804 slab = folio_slab(folio); 1805 __folio_set_slab(folio); 1806 if (page_is_pfmemalloc(folio_page(folio, 0))) 1807 slab_set_pfmemalloc(slab); 1808 1809 return slab; 1810 } 1811 1812 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1813 /* Pre-initialize the random sequence cache */ 1814 static int init_cache_random_seq(struct kmem_cache *s) 1815 { 1816 unsigned int count = oo_objects(s->oo); 1817 int err; 1818 1819 /* Bailout if already initialised */ 1820 if (s->random_seq) 1821 return 0; 1822 1823 err = cache_random_seq_create(s, count, GFP_KERNEL); 1824 if (err) { 1825 pr_err("SLUB: Unable to initialize free list for %s\n", 1826 s->name); 1827 return err; 1828 } 1829 1830 /* Transform to an offset on the set of pages */ 1831 if (s->random_seq) { 1832 unsigned int i; 1833 1834 for (i = 0; i < count; i++) 1835 s->random_seq[i] *= s->size; 1836 } 1837 return 0; 1838 } 1839 1840 /* Initialize each random sequence freelist per cache */ 1841 static void __init init_freelist_randomization(void) 1842 { 1843 struct kmem_cache *s; 1844 1845 mutex_lock(&slab_mutex); 1846 1847 list_for_each_entry(s, &slab_caches, list) 1848 init_cache_random_seq(s); 1849 1850 mutex_unlock(&slab_mutex); 1851 } 1852 1853 /* Get the next entry on the pre-computed freelist randomized */ 1854 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab, 1855 unsigned long *pos, void *start, 1856 unsigned long page_limit, 1857 unsigned long freelist_count) 1858 { 1859 unsigned int idx; 1860 1861 /* 1862 * If the target page allocation failed, the number of objects on the 1863 * page might be smaller than the usual size defined by the cache. 1864 */ 1865 do { 1866 idx = s->random_seq[*pos]; 1867 *pos += 1; 1868 if (*pos >= freelist_count) 1869 *pos = 0; 1870 } while (unlikely(idx >= page_limit)); 1871 1872 return (char *)start + idx; 1873 } 1874 1875 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1876 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1877 { 1878 void *start; 1879 void *cur; 1880 void *next; 1881 unsigned long idx, pos, page_limit, freelist_count; 1882 1883 if (slab->objects < 2 || !s->random_seq) 1884 return false; 1885 1886 freelist_count = oo_objects(s->oo); 1887 pos = get_random_int() % freelist_count; 1888 1889 page_limit = slab->objects * s->size; 1890 start = fixup_red_left(s, slab_address(slab)); 1891 1892 /* First entry is used as the base of the freelist */ 1893 cur = next_freelist_entry(s, slab, &pos, start, page_limit, 1894 freelist_count); 1895 cur = setup_object(s, cur); 1896 slab->freelist = cur; 1897 1898 for (idx = 1; idx < slab->objects; idx++) { 1899 next = next_freelist_entry(s, slab, &pos, start, page_limit, 1900 freelist_count); 1901 next = setup_object(s, next); 1902 set_freepointer(s, cur, next); 1903 cur = next; 1904 } 1905 set_freepointer(s, cur, NULL); 1906 1907 return true; 1908 } 1909 #else 1910 static inline int init_cache_random_seq(struct kmem_cache *s) 1911 { 1912 return 0; 1913 } 1914 static inline void init_freelist_randomization(void) { } 1915 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 1916 { 1917 return false; 1918 } 1919 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1920 1921 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1922 { 1923 struct slab *slab; 1924 struct kmem_cache_order_objects oo = s->oo; 1925 gfp_t alloc_gfp; 1926 void *start, *p, *next; 1927 int idx; 1928 bool shuffle; 1929 1930 flags &= gfp_allowed_mask; 1931 1932 flags |= s->allocflags; 1933 1934 /* 1935 * Let the initial higher-order allocation fail under memory pressure 1936 * so we fall-back to the minimum order allocation. 1937 */ 1938 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1939 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1940 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 1941 1942 slab = alloc_slab_page(alloc_gfp, node, oo); 1943 if (unlikely(!slab)) { 1944 oo = s->min; 1945 alloc_gfp = flags; 1946 /* 1947 * Allocation may have failed due to fragmentation. 1948 * Try a lower order alloc if possible 1949 */ 1950 slab = alloc_slab_page(alloc_gfp, node, oo); 1951 if (unlikely(!slab)) 1952 goto out; 1953 stat(s, ORDER_FALLBACK); 1954 } 1955 1956 slab->objects = oo_objects(oo); 1957 1958 account_slab(slab, oo_order(oo), s, flags); 1959 1960 slab->slab_cache = s; 1961 1962 kasan_poison_slab(slab); 1963 1964 start = slab_address(slab); 1965 1966 setup_slab_debug(s, slab, start); 1967 1968 shuffle = shuffle_freelist(s, slab); 1969 1970 if (!shuffle) { 1971 start = fixup_red_left(s, start); 1972 start = setup_object(s, start); 1973 slab->freelist = start; 1974 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 1975 next = p + s->size; 1976 next = setup_object(s, next); 1977 set_freepointer(s, p, next); 1978 p = next; 1979 } 1980 set_freepointer(s, p, NULL); 1981 } 1982 1983 slab->inuse = slab->objects; 1984 slab->frozen = 1; 1985 1986 out: 1987 if (!slab) 1988 return NULL; 1989 1990 inc_slabs_node(s, slab_nid(slab), slab->objects); 1991 1992 return slab; 1993 } 1994 1995 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1996 { 1997 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 1998 flags = kmalloc_fix_flags(flags); 1999 2000 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2001 2002 return allocate_slab(s, 2003 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2004 } 2005 2006 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2007 { 2008 struct folio *folio = slab_folio(slab); 2009 int order = folio_order(folio); 2010 int pages = 1 << order; 2011 2012 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2013 void *p; 2014 2015 slab_pad_check(s, slab); 2016 for_each_object(p, s, slab_address(slab), slab->objects) 2017 check_object(s, slab, p, SLUB_RED_INACTIVE); 2018 } 2019 2020 __slab_clear_pfmemalloc(slab); 2021 __folio_clear_slab(folio); 2022 folio->mapping = NULL; 2023 if (current->reclaim_state) 2024 current->reclaim_state->reclaimed_slab += pages; 2025 unaccount_slab(slab, order, s); 2026 __free_pages(folio_page(folio, 0), order); 2027 } 2028 2029 static void rcu_free_slab(struct rcu_head *h) 2030 { 2031 struct slab *slab = container_of(h, struct slab, rcu_head); 2032 2033 __free_slab(slab->slab_cache, slab); 2034 } 2035 2036 static void free_slab(struct kmem_cache *s, struct slab *slab) 2037 { 2038 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 2039 call_rcu(&slab->rcu_head, rcu_free_slab); 2040 } else 2041 __free_slab(s, slab); 2042 } 2043 2044 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2045 { 2046 dec_slabs_node(s, slab_nid(slab), slab->objects); 2047 free_slab(s, slab); 2048 } 2049 2050 /* 2051 * Management of partially allocated slabs. 2052 */ 2053 static inline void 2054 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2055 { 2056 n->nr_partial++; 2057 if (tail == DEACTIVATE_TO_TAIL) 2058 list_add_tail(&slab->slab_list, &n->partial); 2059 else 2060 list_add(&slab->slab_list, &n->partial); 2061 } 2062 2063 static inline void add_partial(struct kmem_cache_node *n, 2064 struct slab *slab, int tail) 2065 { 2066 lockdep_assert_held(&n->list_lock); 2067 __add_partial(n, slab, tail); 2068 } 2069 2070 static inline void remove_partial(struct kmem_cache_node *n, 2071 struct slab *slab) 2072 { 2073 lockdep_assert_held(&n->list_lock); 2074 list_del(&slab->slab_list); 2075 n->nr_partial--; 2076 } 2077 2078 /* 2079 * Remove slab from the partial list, freeze it and 2080 * return the pointer to the freelist. 2081 * 2082 * Returns a list of objects or NULL if it fails. 2083 */ 2084 static inline void *acquire_slab(struct kmem_cache *s, 2085 struct kmem_cache_node *n, struct slab *slab, 2086 int mode) 2087 { 2088 void *freelist; 2089 unsigned long counters; 2090 struct slab new; 2091 2092 lockdep_assert_held(&n->list_lock); 2093 2094 /* 2095 * Zap the freelist and set the frozen bit. 2096 * The old freelist is the list of objects for the 2097 * per cpu allocation list. 2098 */ 2099 freelist = slab->freelist; 2100 counters = slab->counters; 2101 new.counters = counters; 2102 if (mode) { 2103 new.inuse = slab->objects; 2104 new.freelist = NULL; 2105 } else { 2106 new.freelist = freelist; 2107 } 2108 2109 VM_BUG_ON(new.frozen); 2110 new.frozen = 1; 2111 2112 if (!__cmpxchg_double_slab(s, slab, 2113 freelist, counters, 2114 new.freelist, new.counters, 2115 "acquire_slab")) 2116 return NULL; 2117 2118 remove_partial(n, slab); 2119 WARN_ON(!freelist); 2120 return freelist; 2121 } 2122 2123 #ifdef CONFIG_SLUB_CPU_PARTIAL 2124 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2125 #else 2126 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2127 int drain) { } 2128 #endif 2129 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2130 2131 /* 2132 * Try to allocate a partial slab from a specific node. 2133 */ 2134 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 2135 struct slab **ret_slab, gfp_t gfpflags) 2136 { 2137 struct slab *slab, *slab2; 2138 void *object = NULL; 2139 unsigned long flags; 2140 unsigned int partial_slabs = 0; 2141 2142 /* 2143 * Racy check. If we mistakenly see no partial slabs then we 2144 * just allocate an empty slab. If we mistakenly try to get a 2145 * partial slab and there is none available then get_partial() 2146 * will return NULL. 2147 */ 2148 if (!n || !n->nr_partial) 2149 return NULL; 2150 2151 spin_lock_irqsave(&n->list_lock, flags); 2152 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2153 void *t; 2154 2155 if (!pfmemalloc_match(slab, gfpflags)) 2156 continue; 2157 2158 t = acquire_slab(s, n, slab, object == NULL); 2159 if (!t) 2160 break; 2161 2162 if (!object) { 2163 *ret_slab = slab; 2164 stat(s, ALLOC_FROM_PARTIAL); 2165 object = t; 2166 } else { 2167 put_cpu_partial(s, slab, 0); 2168 stat(s, CPU_PARTIAL_NODE); 2169 partial_slabs++; 2170 } 2171 #ifdef CONFIG_SLUB_CPU_PARTIAL 2172 if (!kmem_cache_has_cpu_partial(s) 2173 || partial_slabs > s->cpu_partial_slabs / 2) 2174 break; 2175 #else 2176 break; 2177 #endif 2178 2179 } 2180 spin_unlock_irqrestore(&n->list_lock, flags); 2181 return object; 2182 } 2183 2184 /* 2185 * Get a slab from somewhere. Search in increasing NUMA distances. 2186 */ 2187 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 2188 struct slab **ret_slab) 2189 { 2190 #ifdef CONFIG_NUMA 2191 struct zonelist *zonelist; 2192 struct zoneref *z; 2193 struct zone *zone; 2194 enum zone_type highest_zoneidx = gfp_zone(flags); 2195 void *object; 2196 unsigned int cpuset_mems_cookie; 2197 2198 /* 2199 * The defrag ratio allows a configuration of the tradeoffs between 2200 * inter node defragmentation and node local allocations. A lower 2201 * defrag_ratio increases the tendency to do local allocations 2202 * instead of attempting to obtain partial slabs from other nodes. 2203 * 2204 * If the defrag_ratio is set to 0 then kmalloc() always 2205 * returns node local objects. If the ratio is higher then kmalloc() 2206 * may return off node objects because partial slabs are obtained 2207 * from other nodes and filled up. 2208 * 2209 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2210 * (which makes defrag_ratio = 1000) then every (well almost) 2211 * allocation will first attempt to defrag slab caches on other nodes. 2212 * This means scanning over all nodes to look for partial slabs which 2213 * may be expensive if we do it every time we are trying to find a slab 2214 * with available objects. 2215 */ 2216 if (!s->remote_node_defrag_ratio || 2217 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2218 return NULL; 2219 2220 do { 2221 cpuset_mems_cookie = read_mems_allowed_begin(); 2222 zonelist = node_zonelist(mempolicy_slab_node(), flags); 2223 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2224 struct kmem_cache_node *n; 2225 2226 n = get_node(s, zone_to_nid(zone)); 2227 2228 if (n && cpuset_zone_allowed(zone, flags) && 2229 n->nr_partial > s->min_partial) { 2230 object = get_partial_node(s, n, ret_slab, flags); 2231 if (object) { 2232 /* 2233 * Don't check read_mems_allowed_retry() 2234 * here - if mems_allowed was updated in 2235 * parallel, that was a harmless race 2236 * between allocation and the cpuset 2237 * update 2238 */ 2239 return object; 2240 } 2241 } 2242 } 2243 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2244 #endif /* CONFIG_NUMA */ 2245 return NULL; 2246 } 2247 2248 /* 2249 * Get a partial slab, lock it and return it. 2250 */ 2251 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 2252 struct slab **ret_slab) 2253 { 2254 void *object; 2255 int searchnode = node; 2256 2257 if (node == NUMA_NO_NODE) 2258 searchnode = numa_mem_id(); 2259 2260 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags); 2261 if (object || node != NUMA_NO_NODE) 2262 return object; 2263 2264 return get_any_partial(s, flags, ret_slab); 2265 } 2266 2267 #ifdef CONFIG_PREEMPTION 2268 /* 2269 * Calculate the next globally unique transaction for disambiguation 2270 * during cmpxchg. The transactions start with the cpu number and are then 2271 * incremented by CONFIG_NR_CPUS. 2272 */ 2273 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2274 #else 2275 /* 2276 * No preemption supported therefore also no need to check for 2277 * different cpus. 2278 */ 2279 #define TID_STEP 1 2280 #endif 2281 2282 static inline unsigned long next_tid(unsigned long tid) 2283 { 2284 return tid + TID_STEP; 2285 } 2286 2287 #ifdef SLUB_DEBUG_CMPXCHG 2288 static inline unsigned int tid_to_cpu(unsigned long tid) 2289 { 2290 return tid % TID_STEP; 2291 } 2292 2293 static inline unsigned long tid_to_event(unsigned long tid) 2294 { 2295 return tid / TID_STEP; 2296 } 2297 #endif 2298 2299 static inline unsigned int init_tid(int cpu) 2300 { 2301 return cpu; 2302 } 2303 2304 static inline void note_cmpxchg_failure(const char *n, 2305 const struct kmem_cache *s, unsigned long tid) 2306 { 2307 #ifdef SLUB_DEBUG_CMPXCHG 2308 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2309 2310 pr_info("%s %s: cmpxchg redo ", n, s->name); 2311 2312 #ifdef CONFIG_PREEMPTION 2313 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2314 pr_warn("due to cpu change %d -> %d\n", 2315 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2316 else 2317 #endif 2318 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2319 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2320 tid_to_event(tid), tid_to_event(actual_tid)); 2321 else 2322 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2323 actual_tid, tid, next_tid(tid)); 2324 #endif 2325 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2326 } 2327 2328 static void init_kmem_cache_cpus(struct kmem_cache *s) 2329 { 2330 int cpu; 2331 struct kmem_cache_cpu *c; 2332 2333 for_each_possible_cpu(cpu) { 2334 c = per_cpu_ptr(s->cpu_slab, cpu); 2335 local_lock_init(&c->lock); 2336 c->tid = init_tid(cpu); 2337 } 2338 } 2339 2340 /* 2341 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 2342 * unfreezes the slabs and puts it on the proper list. 2343 * Assumes the slab has been already safely taken away from kmem_cache_cpu 2344 * by the caller. 2345 */ 2346 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 2347 void *freelist) 2348 { 2349 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST }; 2350 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 2351 int free_delta = 0; 2352 enum slab_modes mode = M_NONE; 2353 void *nextfree, *freelist_iter, *freelist_tail; 2354 int tail = DEACTIVATE_TO_HEAD; 2355 unsigned long flags = 0; 2356 struct slab new; 2357 struct slab old; 2358 2359 if (slab->freelist) { 2360 stat(s, DEACTIVATE_REMOTE_FREES); 2361 tail = DEACTIVATE_TO_TAIL; 2362 } 2363 2364 /* 2365 * Stage one: Count the objects on cpu's freelist as free_delta and 2366 * remember the last object in freelist_tail for later splicing. 2367 */ 2368 freelist_tail = NULL; 2369 freelist_iter = freelist; 2370 while (freelist_iter) { 2371 nextfree = get_freepointer(s, freelist_iter); 2372 2373 /* 2374 * If 'nextfree' is invalid, it is possible that the object at 2375 * 'freelist_iter' is already corrupted. So isolate all objects 2376 * starting at 'freelist_iter' by skipping them. 2377 */ 2378 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 2379 break; 2380 2381 freelist_tail = freelist_iter; 2382 free_delta++; 2383 2384 freelist_iter = nextfree; 2385 } 2386 2387 /* 2388 * Stage two: Unfreeze the slab while splicing the per-cpu 2389 * freelist to the head of slab's freelist. 2390 * 2391 * Ensure that the slab is unfrozen while the list presence 2392 * reflects the actual number of objects during unfreeze. 2393 * 2394 * We first perform cmpxchg holding lock and insert to list 2395 * when it succeed. If there is mismatch then the slab is not 2396 * unfrozen and number of objects in the slab may have changed. 2397 * Then release lock and retry cmpxchg again. 2398 */ 2399 redo: 2400 2401 old.freelist = READ_ONCE(slab->freelist); 2402 old.counters = READ_ONCE(slab->counters); 2403 VM_BUG_ON(!old.frozen); 2404 2405 /* Determine target state of the slab */ 2406 new.counters = old.counters; 2407 if (freelist_tail) { 2408 new.inuse -= free_delta; 2409 set_freepointer(s, freelist_tail, old.freelist); 2410 new.freelist = freelist; 2411 } else 2412 new.freelist = old.freelist; 2413 2414 new.frozen = 0; 2415 2416 if (!new.inuse && n->nr_partial >= s->min_partial) { 2417 mode = M_FREE; 2418 } else if (new.freelist) { 2419 mode = M_PARTIAL; 2420 /* 2421 * Taking the spinlock removes the possibility that 2422 * acquire_slab() will see a slab that is frozen 2423 */ 2424 spin_lock_irqsave(&n->list_lock, flags); 2425 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) { 2426 mode = M_FULL; 2427 /* 2428 * This also ensures that the scanning of full 2429 * slabs from diagnostic functions will not see 2430 * any frozen slabs. 2431 */ 2432 spin_lock_irqsave(&n->list_lock, flags); 2433 } else { 2434 mode = M_FULL_NOLIST; 2435 } 2436 2437 2438 if (!cmpxchg_double_slab(s, slab, 2439 old.freelist, old.counters, 2440 new.freelist, new.counters, 2441 "unfreezing slab")) { 2442 if (mode == M_PARTIAL || mode == M_FULL) 2443 spin_unlock_irqrestore(&n->list_lock, flags); 2444 goto redo; 2445 } 2446 2447 2448 if (mode == M_PARTIAL) { 2449 add_partial(n, slab, tail); 2450 spin_unlock_irqrestore(&n->list_lock, flags); 2451 stat(s, tail); 2452 } else if (mode == M_FREE) { 2453 stat(s, DEACTIVATE_EMPTY); 2454 discard_slab(s, slab); 2455 stat(s, FREE_SLAB); 2456 } else if (mode == M_FULL) { 2457 add_full(s, n, slab); 2458 spin_unlock_irqrestore(&n->list_lock, flags); 2459 stat(s, DEACTIVATE_FULL); 2460 } else if (mode == M_FULL_NOLIST) { 2461 stat(s, DEACTIVATE_FULL); 2462 } 2463 } 2464 2465 #ifdef CONFIG_SLUB_CPU_PARTIAL 2466 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab) 2467 { 2468 struct kmem_cache_node *n = NULL, *n2 = NULL; 2469 struct slab *slab, *slab_to_discard = NULL; 2470 unsigned long flags = 0; 2471 2472 while (partial_slab) { 2473 struct slab new; 2474 struct slab old; 2475 2476 slab = partial_slab; 2477 partial_slab = slab->next; 2478 2479 n2 = get_node(s, slab_nid(slab)); 2480 if (n != n2) { 2481 if (n) 2482 spin_unlock_irqrestore(&n->list_lock, flags); 2483 2484 n = n2; 2485 spin_lock_irqsave(&n->list_lock, flags); 2486 } 2487 2488 do { 2489 2490 old.freelist = slab->freelist; 2491 old.counters = slab->counters; 2492 VM_BUG_ON(!old.frozen); 2493 2494 new.counters = old.counters; 2495 new.freelist = old.freelist; 2496 2497 new.frozen = 0; 2498 2499 } while (!__cmpxchg_double_slab(s, slab, 2500 old.freelist, old.counters, 2501 new.freelist, new.counters, 2502 "unfreezing slab")); 2503 2504 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2505 slab->next = slab_to_discard; 2506 slab_to_discard = slab; 2507 } else { 2508 add_partial(n, slab, DEACTIVATE_TO_TAIL); 2509 stat(s, FREE_ADD_PARTIAL); 2510 } 2511 } 2512 2513 if (n) 2514 spin_unlock_irqrestore(&n->list_lock, flags); 2515 2516 while (slab_to_discard) { 2517 slab = slab_to_discard; 2518 slab_to_discard = slab_to_discard->next; 2519 2520 stat(s, DEACTIVATE_EMPTY); 2521 discard_slab(s, slab); 2522 stat(s, FREE_SLAB); 2523 } 2524 } 2525 2526 /* 2527 * Unfreeze all the cpu partial slabs. 2528 */ 2529 static void unfreeze_partials(struct kmem_cache *s) 2530 { 2531 struct slab *partial_slab; 2532 unsigned long flags; 2533 2534 local_lock_irqsave(&s->cpu_slab->lock, flags); 2535 partial_slab = this_cpu_read(s->cpu_slab->partial); 2536 this_cpu_write(s->cpu_slab->partial, NULL); 2537 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2538 2539 if (partial_slab) 2540 __unfreeze_partials(s, partial_slab); 2541 } 2542 2543 static void unfreeze_partials_cpu(struct kmem_cache *s, 2544 struct kmem_cache_cpu *c) 2545 { 2546 struct slab *partial_slab; 2547 2548 partial_slab = slub_percpu_partial(c); 2549 c->partial = NULL; 2550 2551 if (partial_slab) 2552 __unfreeze_partials(s, partial_slab); 2553 } 2554 2555 /* 2556 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a 2557 * partial slab slot if available. 2558 * 2559 * If we did not find a slot then simply move all the partials to the 2560 * per node partial list. 2561 */ 2562 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 2563 { 2564 struct slab *oldslab; 2565 struct slab *slab_to_unfreeze = NULL; 2566 unsigned long flags; 2567 int slabs = 0; 2568 2569 local_lock_irqsave(&s->cpu_slab->lock, flags); 2570 2571 oldslab = this_cpu_read(s->cpu_slab->partial); 2572 2573 if (oldslab) { 2574 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 2575 /* 2576 * Partial array is full. Move the existing set to the 2577 * per node partial list. Postpone the actual unfreezing 2578 * outside of the critical section. 2579 */ 2580 slab_to_unfreeze = oldslab; 2581 oldslab = NULL; 2582 } else { 2583 slabs = oldslab->slabs; 2584 } 2585 } 2586 2587 slabs++; 2588 2589 slab->slabs = slabs; 2590 slab->next = oldslab; 2591 2592 this_cpu_write(s->cpu_slab->partial, slab); 2593 2594 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2595 2596 if (slab_to_unfreeze) { 2597 __unfreeze_partials(s, slab_to_unfreeze); 2598 stat(s, CPU_PARTIAL_DRAIN); 2599 } 2600 } 2601 2602 #else /* CONFIG_SLUB_CPU_PARTIAL */ 2603 2604 static inline void unfreeze_partials(struct kmem_cache *s) { } 2605 static inline void unfreeze_partials_cpu(struct kmem_cache *s, 2606 struct kmem_cache_cpu *c) { } 2607 2608 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2609 2610 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2611 { 2612 unsigned long flags; 2613 struct slab *slab; 2614 void *freelist; 2615 2616 local_lock_irqsave(&s->cpu_slab->lock, flags); 2617 2618 slab = c->slab; 2619 freelist = c->freelist; 2620 2621 c->slab = NULL; 2622 c->freelist = NULL; 2623 c->tid = next_tid(c->tid); 2624 2625 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2626 2627 if (slab) { 2628 deactivate_slab(s, slab, freelist); 2629 stat(s, CPUSLAB_FLUSH); 2630 } 2631 } 2632 2633 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2634 { 2635 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2636 void *freelist = c->freelist; 2637 struct slab *slab = c->slab; 2638 2639 c->slab = NULL; 2640 c->freelist = NULL; 2641 c->tid = next_tid(c->tid); 2642 2643 if (slab) { 2644 deactivate_slab(s, slab, freelist); 2645 stat(s, CPUSLAB_FLUSH); 2646 } 2647 2648 unfreeze_partials_cpu(s, c); 2649 } 2650 2651 struct slub_flush_work { 2652 struct work_struct work; 2653 struct kmem_cache *s; 2654 bool skip; 2655 }; 2656 2657 /* 2658 * Flush cpu slab. 2659 * 2660 * Called from CPU work handler with migration disabled. 2661 */ 2662 static void flush_cpu_slab(struct work_struct *w) 2663 { 2664 struct kmem_cache *s; 2665 struct kmem_cache_cpu *c; 2666 struct slub_flush_work *sfw; 2667 2668 sfw = container_of(w, struct slub_flush_work, work); 2669 2670 s = sfw->s; 2671 c = this_cpu_ptr(s->cpu_slab); 2672 2673 if (c->slab) 2674 flush_slab(s, c); 2675 2676 unfreeze_partials(s); 2677 } 2678 2679 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 2680 { 2681 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2682 2683 return c->slab || slub_percpu_partial(c); 2684 } 2685 2686 static DEFINE_MUTEX(flush_lock); 2687 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 2688 2689 static void flush_all_cpus_locked(struct kmem_cache *s) 2690 { 2691 struct slub_flush_work *sfw; 2692 unsigned int cpu; 2693 2694 lockdep_assert_cpus_held(); 2695 mutex_lock(&flush_lock); 2696 2697 for_each_online_cpu(cpu) { 2698 sfw = &per_cpu(slub_flush, cpu); 2699 if (!has_cpu_slab(cpu, s)) { 2700 sfw->skip = true; 2701 continue; 2702 } 2703 INIT_WORK(&sfw->work, flush_cpu_slab); 2704 sfw->skip = false; 2705 sfw->s = s; 2706 schedule_work_on(cpu, &sfw->work); 2707 } 2708 2709 for_each_online_cpu(cpu) { 2710 sfw = &per_cpu(slub_flush, cpu); 2711 if (sfw->skip) 2712 continue; 2713 flush_work(&sfw->work); 2714 } 2715 2716 mutex_unlock(&flush_lock); 2717 } 2718 2719 static void flush_all(struct kmem_cache *s) 2720 { 2721 cpus_read_lock(); 2722 flush_all_cpus_locked(s); 2723 cpus_read_unlock(); 2724 } 2725 2726 /* 2727 * Use the cpu notifier to insure that the cpu slabs are flushed when 2728 * necessary. 2729 */ 2730 static int slub_cpu_dead(unsigned int cpu) 2731 { 2732 struct kmem_cache *s; 2733 2734 mutex_lock(&slab_mutex); 2735 list_for_each_entry(s, &slab_caches, list) 2736 __flush_cpu_slab(s, cpu); 2737 mutex_unlock(&slab_mutex); 2738 return 0; 2739 } 2740 2741 /* 2742 * Check if the objects in a per cpu structure fit numa 2743 * locality expectations. 2744 */ 2745 static inline int node_match(struct slab *slab, int node) 2746 { 2747 #ifdef CONFIG_NUMA 2748 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 2749 return 0; 2750 #endif 2751 return 1; 2752 } 2753 2754 #ifdef CONFIG_SLUB_DEBUG 2755 static int count_free(struct slab *slab) 2756 { 2757 return slab->objects - slab->inuse; 2758 } 2759 2760 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2761 { 2762 return atomic_long_read(&n->total_objects); 2763 } 2764 #endif /* CONFIG_SLUB_DEBUG */ 2765 2766 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2767 static unsigned long count_partial(struct kmem_cache_node *n, 2768 int (*get_count)(struct slab *)) 2769 { 2770 unsigned long flags; 2771 unsigned long x = 0; 2772 struct slab *slab; 2773 2774 spin_lock_irqsave(&n->list_lock, flags); 2775 list_for_each_entry(slab, &n->partial, slab_list) 2776 x += get_count(slab); 2777 spin_unlock_irqrestore(&n->list_lock, flags); 2778 return x; 2779 } 2780 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2781 2782 static noinline void 2783 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2784 { 2785 #ifdef CONFIG_SLUB_DEBUG 2786 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2787 DEFAULT_RATELIMIT_BURST); 2788 int node; 2789 struct kmem_cache_node *n; 2790 2791 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2792 return; 2793 2794 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2795 nid, gfpflags, &gfpflags); 2796 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2797 s->name, s->object_size, s->size, oo_order(s->oo), 2798 oo_order(s->min)); 2799 2800 if (oo_order(s->min) > get_order(s->object_size)) 2801 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2802 s->name); 2803 2804 for_each_kmem_cache_node(s, node, n) { 2805 unsigned long nr_slabs; 2806 unsigned long nr_objs; 2807 unsigned long nr_free; 2808 2809 nr_free = count_partial(n, count_free); 2810 nr_slabs = node_nr_slabs(n); 2811 nr_objs = node_nr_objs(n); 2812 2813 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2814 node, nr_slabs, nr_objs, nr_free); 2815 } 2816 #endif 2817 } 2818 2819 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 2820 { 2821 if (unlikely(slab_test_pfmemalloc(slab))) 2822 return gfp_pfmemalloc_allowed(gfpflags); 2823 2824 return true; 2825 } 2826 2827 /* 2828 * Check the slab->freelist and either transfer the freelist to the 2829 * per cpu freelist or deactivate the slab. 2830 * 2831 * The slab is still frozen if the return value is not NULL. 2832 * 2833 * If this function returns NULL then the slab has been unfrozen. 2834 */ 2835 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 2836 { 2837 struct slab new; 2838 unsigned long counters; 2839 void *freelist; 2840 2841 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2842 2843 do { 2844 freelist = slab->freelist; 2845 counters = slab->counters; 2846 2847 new.counters = counters; 2848 VM_BUG_ON(!new.frozen); 2849 2850 new.inuse = slab->objects; 2851 new.frozen = freelist != NULL; 2852 2853 } while (!__cmpxchg_double_slab(s, slab, 2854 freelist, counters, 2855 NULL, new.counters, 2856 "get_freelist")); 2857 2858 return freelist; 2859 } 2860 2861 /* 2862 * Slow path. The lockless freelist is empty or we need to perform 2863 * debugging duties. 2864 * 2865 * Processing is still very fast if new objects have been freed to the 2866 * regular freelist. In that case we simply take over the regular freelist 2867 * as the lockless freelist and zap the regular freelist. 2868 * 2869 * If that is not working then we fall back to the partial lists. We take the 2870 * first element of the freelist as the object to allocate now and move the 2871 * rest of the freelist to the lockless freelist. 2872 * 2873 * And if we were unable to get a new slab from the partial slab lists then 2874 * we need to allocate a new slab. This is the slowest path since it involves 2875 * a call to the page allocator and the setup of a new slab. 2876 * 2877 * Version of __slab_alloc to use when we know that preemption is 2878 * already disabled (which is the case for bulk allocation). 2879 */ 2880 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2881 unsigned long addr, struct kmem_cache_cpu *c) 2882 { 2883 void *freelist; 2884 struct slab *slab; 2885 unsigned long flags; 2886 2887 stat(s, ALLOC_SLOWPATH); 2888 2889 reread_slab: 2890 2891 slab = READ_ONCE(c->slab); 2892 if (!slab) { 2893 /* 2894 * if the node is not online or has no normal memory, just 2895 * ignore the node constraint 2896 */ 2897 if (unlikely(node != NUMA_NO_NODE && 2898 !node_isset(node, slab_nodes))) 2899 node = NUMA_NO_NODE; 2900 goto new_slab; 2901 } 2902 redo: 2903 2904 if (unlikely(!node_match(slab, node))) { 2905 /* 2906 * same as above but node_match() being false already 2907 * implies node != NUMA_NO_NODE 2908 */ 2909 if (!node_isset(node, slab_nodes)) { 2910 node = NUMA_NO_NODE; 2911 } else { 2912 stat(s, ALLOC_NODE_MISMATCH); 2913 goto deactivate_slab; 2914 } 2915 } 2916 2917 /* 2918 * By rights, we should be searching for a slab page that was 2919 * PFMEMALLOC but right now, we are losing the pfmemalloc 2920 * information when the page leaves the per-cpu allocator 2921 */ 2922 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 2923 goto deactivate_slab; 2924 2925 /* must check again c->slab in case we got preempted and it changed */ 2926 local_lock_irqsave(&s->cpu_slab->lock, flags); 2927 if (unlikely(slab != c->slab)) { 2928 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2929 goto reread_slab; 2930 } 2931 freelist = c->freelist; 2932 if (freelist) 2933 goto load_freelist; 2934 2935 freelist = get_freelist(s, slab); 2936 2937 if (!freelist) { 2938 c->slab = NULL; 2939 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2940 stat(s, DEACTIVATE_BYPASS); 2941 goto new_slab; 2942 } 2943 2944 stat(s, ALLOC_REFILL); 2945 2946 load_freelist: 2947 2948 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 2949 2950 /* 2951 * freelist is pointing to the list of objects to be used. 2952 * slab is pointing to the slab from which the objects are obtained. 2953 * That slab must be frozen for per cpu allocations to work. 2954 */ 2955 VM_BUG_ON(!c->slab->frozen); 2956 c->freelist = get_freepointer(s, freelist); 2957 c->tid = next_tid(c->tid); 2958 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2959 return freelist; 2960 2961 deactivate_slab: 2962 2963 local_lock_irqsave(&s->cpu_slab->lock, flags); 2964 if (slab != c->slab) { 2965 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2966 goto reread_slab; 2967 } 2968 freelist = c->freelist; 2969 c->slab = NULL; 2970 c->freelist = NULL; 2971 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2972 deactivate_slab(s, slab, freelist); 2973 2974 new_slab: 2975 2976 if (slub_percpu_partial(c)) { 2977 local_lock_irqsave(&s->cpu_slab->lock, flags); 2978 if (unlikely(c->slab)) { 2979 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2980 goto reread_slab; 2981 } 2982 if (unlikely(!slub_percpu_partial(c))) { 2983 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2984 /* we were preempted and partial list got empty */ 2985 goto new_objects; 2986 } 2987 2988 slab = c->slab = slub_percpu_partial(c); 2989 slub_set_percpu_partial(c, slab); 2990 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 2991 stat(s, CPU_PARTIAL_ALLOC); 2992 goto redo; 2993 } 2994 2995 new_objects: 2996 2997 freelist = get_partial(s, gfpflags, node, &slab); 2998 if (freelist) 2999 goto check_new_slab; 3000 3001 slub_put_cpu_ptr(s->cpu_slab); 3002 slab = new_slab(s, gfpflags, node); 3003 c = slub_get_cpu_ptr(s->cpu_slab); 3004 3005 if (unlikely(!slab)) { 3006 slab_out_of_memory(s, gfpflags, node); 3007 return NULL; 3008 } 3009 3010 /* 3011 * No other reference to the slab yet so we can 3012 * muck around with it freely without cmpxchg 3013 */ 3014 freelist = slab->freelist; 3015 slab->freelist = NULL; 3016 3017 stat(s, ALLOC_SLAB); 3018 3019 check_new_slab: 3020 3021 if (kmem_cache_debug(s)) { 3022 if (!alloc_debug_processing(s, slab, freelist, addr)) { 3023 /* Slab failed checks. Next slab needed */ 3024 goto new_slab; 3025 } else { 3026 /* 3027 * For debug case, we don't load freelist so that all 3028 * allocations go through alloc_debug_processing() 3029 */ 3030 goto return_single; 3031 } 3032 } 3033 3034 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3035 /* 3036 * For !pfmemalloc_match() case we don't load freelist so that 3037 * we don't make further mismatched allocations easier. 3038 */ 3039 goto return_single; 3040 3041 retry_load_slab: 3042 3043 local_lock_irqsave(&s->cpu_slab->lock, flags); 3044 if (unlikely(c->slab)) { 3045 void *flush_freelist = c->freelist; 3046 struct slab *flush_slab = c->slab; 3047 3048 c->slab = NULL; 3049 c->freelist = NULL; 3050 c->tid = next_tid(c->tid); 3051 3052 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3053 3054 deactivate_slab(s, flush_slab, flush_freelist); 3055 3056 stat(s, CPUSLAB_FLUSH); 3057 3058 goto retry_load_slab; 3059 } 3060 c->slab = slab; 3061 3062 goto load_freelist; 3063 3064 return_single: 3065 3066 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3067 return freelist; 3068 } 3069 3070 /* 3071 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3072 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3073 * pointer. 3074 */ 3075 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3076 unsigned long addr, struct kmem_cache_cpu *c) 3077 { 3078 void *p; 3079 3080 #ifdef CONFIG_PREEMPT_COUNT 3081 /* 3082 * We may have been preempted and rescheduled on a different 3083 * cpu before disabling preemption. Need to reload cpu area 3084 * pointer. 3085 */ 3086 c = slub_get_cpu_ptr(s->cpu_slab); 3087 #endif 3088 3089 p = ___slab_alloc(s, gfpflags, node, addr, c); 3090 #ifdef CONFIG_PREEMPT_COUNT 3091 slub_put_cpu_ptr(s->cpu_slab); 3092 #endif 3093 return p; 3094 } 3095 3096 /* 3097 * If the object has been wiped upon free, make sure it's fully initialized by 3098 * zeroing out freelist pointer. 3099 */ 3100 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 3101 void *obj) 3102 { 3103 if (unlikely(slab_want_init_on_free(s)) && obj) 3104 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 3105 0, sizeof(void *)); 3106 } 3107 3108 /* 3109 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 3110 * have the fastpath folded into their functions. So no function call 3111 * overhead for requests that can be satisfied on the fastpath. 3112 * 3113 * The fastpath works by first checking if the lockless freelist can be used. 3114 * If not then __slab_alloc is called for slow processing. 3115 * 3116 * Otherwise we can simply pick the next object from the lockless free list. 3117 */ 3118 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 3119 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3120 { 3121 void *object; 3122 struct kmem_cache_cpu *c; 3123 struct slab *slab; 3124 unsigned long tid; 3125 struct obj_cgroup *objcg = NULL; 3126 bool init = false; 3127 3128 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags); 3129 if (!s) 3130 return NULL; 3131 3132 object = kfence_alloc(s, orig_size, gfpflags); 3133 if (unlikely(object)) 3134 goto out; 3135 3136 redo: 3137 /* 3138 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3139 * enabled. We may switch back and forth between cpus while 3140 * reading from one cpu area. That does not matter as long 3141 * as we end up on the original cpu again when doing the cmpxchg. 3142 * 3143 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3144 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3145 * the tid. If we are preempted and switched to another cpu between the 3146 * two reads, it's OK as the two are still associated with the same cpu 3147 * and cmpxchg later will validate the cpu. 3148 */ 3149 c = raw_cpu_ptr(s->cpu_slab); 3150 tid = READ_ONCE(c->tid); 3151 3152 /* 3153 * Irqless object alloc/free algorithm used here depends on sequence 3154 * of fetching cpu_slab's data. tid should be fetched before anything 3155 * on c to guarantee that object and slab associated with previous tid 3156 * won't be used with current tid. If we fetch tid first, object and 3157 * slab could be one associated with next tid and our alloc/free 3158 * request will be failed. In this case, we will retry. So, no problem. 3159 */ 3160 barrier(); 3161 3162 /* 3163 * The transaction ids are globally unique per cpu and per operation on 3164 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3165 * occurs on the right processor and that there was no operation on the 3166 * linked list in between. 3167 */ 3168 3169 object = c->freelist; 3170 slab = c->slab; 3171 /* 3172 * We cannot use the lockless fastpath on PREEMPT_RT because if a 3173 * slowpath has taken the local_lock_irqsave(), it is not protected 3174 * against a fast path operation in an irq handler. So we need to take 3175 * the slow path which uses local_lock. It is still relatively fast if 3176 * there is a suitable cpu freelist. 3177 */ 3178 if (IS_ENABLED(CONFIG_PREEMPT_RT) || 3179 unlikely(!object || !slab || !node_match(slab, node))) { 3180 object = __slab_alloc(s, gfpflags, node, addr, c); 3181 } else { 3182 void *next_object = get_freepointer_safe(s, object); 3183 3184 /* 3185 * The cmpxchg will only match if there was no additional 3186 * operation and if we are on the right processor. 3187 * 3188 * The cmpxchg does the following atomically (without lock 3189 * semantics!) 3190 * 1. Relocate first pointer to the current per cpu area. 3191 * 2. Verify that tid and freelist have not been changed 3192 * 3. If they were not changed replace tid and freelist 3193 * 3194 * Since this is without lock semantics the protection is only 3195 * against code executing on this cpu *not* from access by 3196 * other cpus. 3197 */ 3198 if (unlikely(!this_cpu_cmpxchg_double( 3199 s->cpu_slab->freelist, s->cpu_slab->tid, 3200 object, tid, 3201 next_object, next_tid(tid)))) { 3202 3203 note_cmpxchg_failure("slab_alloc", s, tid); 3204 goto redo; 3205 } 3206 prefetch_freepointer(s, next_object); 3207 stat(s, ALLOC_FASTPATH); 3208 } 3209 3210 maybe_wipe_obj_freeptr(s, object); 3211 init = slab_want_init_on_alloc(gfpflags, s); 3212 3213 out: 3214 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init); 3215 3216 return object; 3217 } 3218 3219 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru, 3220 gfp_t gfpflags, unsigned long addr, size_t orig_size) 3221 { 3222 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size); 3223 } 3224 3225 static __always_inline 3226 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3227 gfp_t gfpflags) 3228 { 3229 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size); 3230 3231 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 3232 s->size, gfpflags); 3233 3234 return ret; 3235 } 3236 3237 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 3238 { 3239 return __kmem_cache_alloc_lru(s, NULL, gfpflags); 3240 } 3241 EXPORT_SYMBOL(kmem_cache_alloc); 3242 3243 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 3244 gfp_t gfpflags) 3245 { 3246 return __kmem_cache_alloc_lru(s, lru, gfpflags); 3247 } 3248 EXPORT_SYMBOL(kmem_cache_alloc_lru); 3249 3250 #ifdef CONFIG_TRACING 3251 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 3252 { 3253 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size); 3254 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 3255 ret = kasan_kmalloc(s, ret, size, gfpflags); 3256 return ret; 3257 } 3258 EXPORT_SYMBOL(kmem_cache_alloc_trace); 3259 #endif 3260 3261 #ifdef CONFIG_NUMA 3262 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 3263 { 3264 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 3265 3266 trace_kmem_cache_alloc_node(_RET_IP_, ret, 3267 s->object_size, s->size, gfpflags, node); 3268 3269 return ret; 3270 } 3271 EXPORT_SYMBOL(kmem_cache_alloc_node); 3272 3273 #ifdef CONFIG_TRACING 3274 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 3275 gfp_t gfpflags, 3276 int node, size_t size) 3277 { 3278 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 3279 3280 trace_kmalloc_node(_RET_IP_, ret, 3281 size, s->size, gfpflags, node); 3282 3283 ret = kasan_kmalloc(s, ret, size, gfpflags); 3284 return ret; 3285 } 3286 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 3287 #endif 3288 #endif /* CONFIG_NUMA */ 3289 3290 /* 3291 * Slow path handling. This may still be called frequently since objects 3292 * have a longer lifetime than the cpu slabs in most processing loads. 3293 * 3294 * So we still attempt to reduce cache line usage. Just take the slab 3295 * lock and free the item. If there is no additional partial slab 3296 * handling required then we can return immediately. 3297 */ 3298 static void __slab_free(struct kmem_cache *s, struct slab *slab, 3299 void *head, void *tail, int cnt, 3300 unsigned long addr) 3301 3302 { 3303 void *prior; 3304 int was_frozen; 3305 struct slab new; 3306 unsigned long counters; 3307 struct kmem_cache_node *n = NULL; 3308 unsigned long flags; 3309 3310 stat(s, FREE_SLOWPATH); 3311 3312 if (kfence_free(head)) 3313 return; 3314 3315 if (kmem_cache_debug(s) && 3316 !free_debug_processing(s, slab, head, tail, cnt, addr)) 3317 return; 3318 3319 do { 3320 if (unlikely(n)) { 3321 spin_unlock_irqrestore(&n->list_lock, flags); 3322 n = NULL; 3323 } 3324 prior = slab->freelist; 3325 counters = slab->counters; 3326 set_freepointer(s, tail, prior); 3327 new.counters = counters; 3328 was_frozen = new.frozen; 3329 new.inuse -= cnt; 3330 if ((!new.inuse || !prior) && !was_frozen) { 3331 3332 if (kmem_cache_has_cpu_partial(s) && !prior) { 3333 3334 /* 3335 * Slab was on no list before and will be 3336 * partially empty 3337 * We can defer the list move and instead 3338 * freeze it. 3339 */ 3340 new.frozen = 1; 3341 3342 } else { /* Needs to be taken off a list */ 3343 3344 n = get_node(s, slab_nid(slab)); 3345 /* 3346 * Speculatively acquire the list_lock. 3347 * If the cmpxchg does not succeed then we may 3348 * drop the list_lock without any processing. 3349 * 3350 * Otherwise the list_lock will synchronize with 3351 * other processors updating the list of slabs. 3352 */ 3353 spin_lock_irqsave(&n->list_lock, flags); 3354 3355 } 3356 } 3357 3358 } while (!cmpxchg_double_slab(s, slab, 3359 prior, counters, 3360 head, new.counters, 3361 "__slab_free")); 3362 3363 if (likely(!n)) { 3364 3365 if (likely(was_frozen)) { 3366 /* 3367 * The list lock was not taken therefore no list 3368 * activity can be necessary. 3369 */ 3370 stat(s, FREE_FROZEN); 3371 } else if (new.frozen) { 3372 /* 3373 * If we just froze the slab then put it onto the 3374 * per cpu partial list. 3375 */ 3376 put_cpu_partial(s, slab, 1); 3377 stat(s, CPU_PARTIAL_FREE); 3378 } 3379 3380 return; 3381 } 3382 3383 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 3384 goto slab_empty; 3385 3386 /* 3387 * Objects left in the slab. If it was not on the partial list before 3388 * then add it. 3389 */ 3390 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 3391 remove_full(s, n, slab); 3392 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3393 stat(s, FREE_ADD_PARTIAL); 3394 } 3395 spin_unlock_irqrestore(&n->list_lock, flags); 3396 return; 3397 3398 slab_empty: 3399 if (prior) { 3400 /* 3401 * Slab on the partial list. 3402 */ 3403 remove_partial(n, slab); 3404 stat(s, FREE_REMOVE_PARTIAL); 3405 } else { 3406 /* Slab must be on the full list */ 3407 remove_full(s, n, slab); 3408 } 3409 3410 spin_unlock_irqrestore(&n->list_lock, flags); 3411 stat(s, FREE_SLAB); 3412 discard_slab(s, slab); 3413 } 3414 3415 /* 3416 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3417 * can perform fastpath freeing without additional function calls. 3418 * 3419 * The fastpath is only possible if we are freeing to the current cpu slab 3420 * of this processor. This typically the case if we have just allocated 3421 * the item before. 3422 * 3423 * If fastpath is not possible then fall back to __slab_free where we deal 3424 * with all sorts of special processing. 3425 * 3426 * Bulk free of a freelist with several objects (all pointing to the 3427 * same slab) possible by specifying head and tail ptr, plus objects 3428 * count (cnt). Bulk free indicated by tail pointer being set. 3429 */ 3430 static __always_inline void do_slab_free(struct kmem_cache *s, 3431 struct slab *slab, void *head, void *tail, 3432 int cnt, unsigned long addr) 3433 { 3434 void *tail_obj = tail ? : head; 3435 struct kmem_cache_cpu *c; 3436 unsigned long tid; 3437 3438 /* memcg_slab_free_hook() is already called for bulk free. */ 3439 if (!tail) 3440 memcg_slab_free_hook(s, &head, 1); 3441 redo: 3442 /* 3443 * Determine the currently cpus per cpu slab. 3444 * The cpu may change afterward. However that does not matter since 3445 * data is retrieved via this pointer. If we are on the same cpu 3446 * during the cmpxchg then the free will succeed. 3447 */ 3448 c = raw_cpu_ptr(s->cpu_slab); 3449 tid = READ_ONCE(c->tid); 3450 3451 /* Same with comment on barrier() in slab_alloc_node() */ 3452 barrier(); 3453 3454 if (likely(slab == c->slab)) { 3455 #ifndef CONFIG_PREEMPT_RT 3456 void **freelist = READ_ONCE(c->freelist); 3457 3458 set_freepointer(s, tail_obj, freelist); 3459 3460 if (unlikely(!this_cpu_cmpxchg_double( 3461 s->cpu_slab->freelist, s->cpu_slab->tid, 3462 freelist, tid, 3463 head, next_tid(tid)))) { 3464 3465 note_cmpxchg_failure("slab_free", s, tid); 3466 goto redo; 3467 } 3468 #else /* CONFIG_PREEMPT_RT */ 3469 /* 3470 * We cannot use the lockless fastpath on PREEMPT_RT because if 3471 * a slowpath has taken the local_lock_irqsave(), it is not 3472 * protected against a fast path operation in an irq handler. So 3473 * we need to take the local_lock. We shouldn't simply defer to 3474 * __slab_free() as that wouldn't use the cpu freelist at all. 3475 */ 3476 void **freelist; 3477 3478 local_lock(&s->cpu_slab->lock); 3479 c = this_cpu_ptr(s->cpu_slab); 3480 if (unlikely(slab != c->slab)) { 3481 local_unlock(&s->cpu_slab->lock); 3482 goto redo; 3483 } 3484 tid = c->tid; 3485 freelist = c->freelist; 3486 3487 set_freepointer(s, tail_obj, freelist); 3488 c->freelist = head; 3489 c->tid = next_tid(tid); 3490 3491 local_unlock(&s->cpu_slab->lock); 3492 #endif 3493 stat(s, FREE_FASTPATH); 3494 } else 3495 __slab_free(s, slab, head, tail_obj, cnt, addr); 3496 3497 } 3498 3499 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab, 3500 void *head, void *tail, int cnt, 3501 unsigned long addr) 3502 { 3503 /* 3504 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3505 * to remove objects, whose reuse must be delayed. 3506 */ 3507 if (slab_free_freelist_hook(s, &head, &tail, &cnt)) 3508 do_slab_free(s, slab, head, tail, cnt, addr); 3509 } 3510 3511 #ifdef CONFIG_KASAN_GENERIC 3512 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3513 { 3514 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr); 3515 } 3516 #endif 3517 3518 void kmem_cache_free(struct kmem_cache *s, void *x) 3519 { 3520 s = cache_from_obj(s, x); 3521 if (!s) 3522 return; 3523 trace_kmem_cache_free(_RET_IP_, x, s->name); 3524 slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_); 3525 } 3526 EXPORT_SYMBOL(kmem_cache_free); 3527 3528 struct detached_freelist { 3529 struct slab *slab; 3530 void *tail; 3531 void *freelist; 3532 int cnt; 3533 struct kmem_cache *s; 3534 }; 3535 3536 static inline void free_large_kmalloc(struct folio *folio, void *object) 3537 { 3538 unsigned int order = folio_order(folio); 3539 3540 if (WARN_ON_ONCE(order == 0)) 3541 pr_warn_once("object pointer: 0x%p\n", object); 3542 3543 kfree_hook(object); 3544 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B, 3545 -(PAGE_SIZE << order)); 3546 __free_pages(folio_page(folio, 0), order); 3547 } 3548 3549 /* 3550 * This function progressively scans the array with free objects (with 3551 * a limited look ahead) and extract objects belonging to the same 3552 * slab. It builds a detached freelist directly within the given 3553 * slab/objects. This can happen without any need for 3554 * synchronization, because the objects are owned by running process. 3555 * The freelist is build up as a single linked list in the objects. 3556 * The idea is, that this detached freelist can then be bulk 3557 * transferred to the real freelist(s), but only requiring a single 3558 * synchronization primitive. Look ahead in the array is limited due 3559 * to performance reasons. 3560 */ 3561 static inline 3562 int build_detached_freelist(struct kmem_cache *s, size_t size, 3563 void **p, struct detached_freelist *df) 3564 { 3565 size_t first_skipped_index = 0; 3566 int lookahead = 3; 3567 void *object; 3568 struct folio *folio; 3569 struct slab *slab; 3570 3571 /* Always re-init detached_freelist */ 3572 df->slab = NULL; 3573 3574 do { 3575 object = p[--size]; 3576 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3577 } while (!object && size); 3578 3579 if (!object) 3580 return 0; 3581 3582 folio = virt_to_folio(object); 3583 if (!s) { 3584 /* Handle kalloc'ed objects */ 3585 if (unlikely(!folio_test_slab(folio))) { 3586 free_large_kmalloc(folio, object); 3587 p[size] = NULL; /* mark object processed */ 3588 return size; 3589 } 3590 /* Derive kmem_cache from object */ 3591 slab = folio_slab(folio); 3592 df->s = slab->slab_cache; 3593 } else { 3594 slab = folio_slab(folio); 3595 df->s = cache_from_obj(s, object); /* Support for memcg */ 3596 } 3597 3598 if (is_kfence_address(object)) { 3599 slab_free_hook(df->s, object, false); 3600 __kfence_free(object); 3601 p[size] = NULL; /* mark object processed */ 3602 return size; 3603 } 3604 3605 /* Start new detached freelist */ 3606 df->slab = slab; 3607 set_freepointer(df->s, object, NULL); 3608 df->tail = object; 3609 df->freelist = object; 3610 p[size] = NULL; /* mark object processed */ 3611 df->cnt = 1; 3612 3613 while (size) { 3614 object = p[--size]; 3615 if (!object) 3616 continue; /* Skip processed objects */ 3617 3618 /* df->slab is always set at this point */ 3619 if (df->slab == virt_to_slab(object)) { 3620 /* Opportunity build freelist */ 3621 set_freepointer(df->s, object, df->freelist); 3622 df->freelist = object; 3623 df->cnt++; 3624 p[size] = NULL; /* mark object processed */ 3625 3626 continue; 3627 } 3628 3629 /* Limit look ahead search */ 3630 if (!--lookahead) 3631 break; 3632 3633 if (!first_skipped_index) 3634 first_skipped_index = size + 1; 3635 } 3636 3637 return first_skipped_index; 3638 } 3639 3640 /* Note that interrupts must be enabled when calling this function. */ 3641 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3642 { 3643 if (WARN_ON(!size)) 3644 return; 3645 3646 memcg_slab_free_hook(s, p, size); 3647 do { 3648 struct detached_freelist df; 3649 3650 size = build_detached_freelist(s, size, p, &df); 3651 if (!df.slab) 3652 continue; 3653 3654 slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_); 3655 } while (likely(size)); 3656 } 3657 EXPORT_SYMBOL(kmem_cache_free_bulk); 3658 3659 /* Note that interrupts must be enabled when calling this function. */ 3660 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3661 void **p) 3662 { 3663 struct kmem_cache_cpu *c; 3664 int i; 3665 struct obj_cgroup *objcg = NULL; 3666 3667 /* memcg and kmem_cache debug support */ 3668 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags); 3669 if (unlikely(!s)) 3670 return false; 3671 /* 3672 * Drain objects in the per cpu slab, while disabling local 3673 * IRQs, which protects against PREEMPT and interrupts 3674 * handlers invoking normal fastpath. 3675 */ 3676 c = slub_get_cpu_ptr(s->cpu_slab); 3677 local_lock_irq(&s->cpu_slab->lock); 3678 3679 for (i = 0; i < size; i++) { 3680 void *object = kfence_alloc(s, s->object_size, flags); 3681 3682 if (unlikely(object)) { 3683 p[i] = object; 3684 continue; 3685 } 3686 3687 object = c->freelist; 3688 if (unlikely(!object)) { 3689 /* 3690 * We may have removed an object from c->freelist using 3691 * the fastpath in the previous iteration; in that case, 3692 * c->tid has not been bumped yet. 3693 * Since ___slab_alloc() may reenable interrupts while 3694 * allocating memory, we should bump c->tid now. 3695 */ 3696 c->tid = next_tid(c->tid); 3697 3698 local_unlock_irq(&s->cpu_slab->lock); 3699 3700 /* 3701 * Invoking slow path likely have side-effect 3702 * of re-populating per CPU c->freelist 3703 */ 3704 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3705 _RET_IP_, c); 3706 if (unlikely(!p[i])) 3707 goto error; 3708 3709 c = this_cpu_ptr(s->cpu_slab); 3710 maybe_wipe_obj_freeptr(s, p[i]); 3711 3712 local_lock_irq(&s->cpu_slab->lock); 3713 3714 continue; /* goto for-loop */ 3715 } 3716 c->freelist = get_freepointer(s, object); 3717 p[i] = object; 3718 maybe_wipe_obj_freeptr(s, p[i]); 3719 } 3720 c->tid = next_tid(c->tid); 3721 local_unlock_irq(&s->cpu_slab->lock); 3722 slub_put_cpu_ptr(s->cpu_slab); 3723 3724 /* 3725 * memcg and kmem_cache debug support and memory initialization. 3726 * Done outside of the IRQ disabled fastpath loop. 3727 */ 3728 slab_post_alloc_hook(s, objcg, flags, size, p, 3729 slab_want_init_on_alloc(flags, s)); 3730 return i; 3731 error: 3732 slub_put_cpu_ptr(s->cpu_slab); 3733 slab_post_alloc_hook(s, objcg, flags, i, p, false); 3734 __kmem_cache_free_bulk(s, i, p); 3735 return 0; 3736 } 3737 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3738 3739 3740 /* 3741 * Object placement in a slab is made very easy because we always start at 3742 * offset 0. If we tune the size of the object to the alignment then we can 3743 * get the required alignment by putting one properly sized object after 3744 * another. 3745 * 3746 * Notice that the allocation order determines the sizes of the per cpu 3747 * caches. Each processor has always one slab available for allocations. 3748 * Increasing the allocation order reduces the number of times that slabs 3749 * must be moved on and off the partial lists and is therefore a factor in 3750 * locking overhead. 3751 */ 3752 3753 /* 3754 * Minimum / Maximum order of slab pages. This influences locking overhead 3755 * and slab fragmentation. A higher order reduces the number of partial slabs 3756 * and increases the number of allocations possible without having to 3757 * take the list_lock. 3758 */ 3759 static unsigned int slub_min_order; 3760 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3761 static unsigned int slub_min_objects; 3762 3763 /* 3764 * Calculate the order of allocation given an slab object size. 3765 * 3766 * The order of allocation has significant impact on performance and other 3767 * system components. Generally order 0 allocations should be preferred since 3768 * order 0 does not cause fragmentation in the page allocator. Larger objects 3769 * be problematic to put into order 0 slabs because there may be too much 3770 * unused space left. We go to a higher order if more than 1/16th of the slab 3771 * would be wasted. 3772 * 3773 * In order to reach satisfactory performance we must ensure that a minimum 3774 * number of objects is in one slab. Otherwise we may generate too much 3775 * activity on the partial lists which requires taking the list_lock. This is 3776 * less a concern for large slabs though which are rarely used. 3777 * 3778 * slub_max_order specifies the order where we begin to stop considering the 3779 * number of objects in a slab as critical. If we reach slub_max_order then 3780 * we try to keep the page order as low as possible. So we accept more waste 3781 * of space in favor of a small page order. 3782 * 3783 * Higher order allocations also allow the placement of more objects in a 3784 * slab and thereby reduce object handling overhead. If the user has 3785 * requested a higher minimum order then we start with that one instead of 3786 * the smallest order which will fit the object. 3787 */ 3788 static inline unsigned int calc_slab_order(unsigned int size, 3789 unsigned int min_objects, unsigned int max_order, 3790 unsigned int fract_leftover) 3791 { 3792 unsigned int min_order = slub_min_order; 3793 unsigned int order; 3794 3795 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3796 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3797 3798 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3799 order <= max_order; order++) { 3800 3801 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3802 unsigned int rem; 3803 3804 rem = slab_size % size; 3805 3806 if (rem <= slab_size / fract_leftover) 3807 break; 3808 } 3809 3810 return order; 3811 } 3812 3813 static inline int calculate_order(unsigned int size) 3814 { 3815 unsigned int order; 3816 unsigned int min_objects; 3817 unsigned int max_objects; 3818 unsigned int nr_cpus; 3819 3820 /* 3821 * Attempt to find best configuration for a slab. This 3822 * works by first attempting to generate a layout with 3823 * the best configuration and backing off gradually. 3824 * 3825 * First we increase the acceptable waste in a slab. Then 3826 * we reduce the minimum objects required in a slab. 3827 */ 3828 min_objects = slub_min_objects; 3829 if (!min_objects) { 3830 /* 3831 * Some architectures will only update present cpus when 3832 * onlining them, so don't trust the number if it's just 1. But 3833 * we also don't want to use nr_cpu_ids always, as on some other 3834 * architectures, there can be many possible cpus, but never 3835 * onlined. Here we compromise between trying to avoid too high 3836 * order on systems that appear larger than they are, and too 3837 * low order on systems that appear smaller than they are. 3838 */ 3839 nr_cpus = num_present_cpus(); 3840 if (nr_cpus <= 1) 3841 nr_cpus = nr_cpu_ids; 3842 min_objects = 4 * (fls(nr_cpus) + 1); 3843 } 3844 max_objects = order_objects(slub_max_order, size); 3845 min_objects = min(min_objects, max_objects); 3846 3847 while (min_objects > 1) { 3848 unsigned int fraction; 3849 3850 fraction = 16; 3851 while (fraction >= 4) { 3852 order = calc_slab_order(size, min_objects, 3853 slub_max_order, fraction); 3854 if (order <= slub_max_order) 3855 return order; 3856 fraction /= 2; 3857 } 3858 min_objects--; 3859 } 3860 3861 /* 3862 * We were unable to place multiple objects in a slab. Now 3863 * lets see if we can place a single object there. 3864 */ 3865 order = calc_slab_order(size, 1, slub_max_order, 1); 3866 if (order <= slub_max_order) 3867 return order; 3868 3869 /* 3870 * Doh this slab cannot be placed using slub_max_order. 3871 */ 3872 order = calc_slab_order(size, 1, MAX_ORDER, 1); 3873 if (order < MAX_ORDER) 3874 return order; 3875 return -ENOSYS; 3876 } 3877 3878 static void 3879 init_kmem_cache_node(struct kmem_cache_node *n) 3880 { 3881 n->nr_partial = 0; 3882 spin_lock_init(&n->list_lock); 3883 INIT_LIST_HEAD(&n->partial); 3884 #ifdef CONFIG_SLUB_DEBUG 3885 atomic_long_set(&n->nr_slabs, 0); 3886 atomic_long_set(&n->total_objects, 0); 3887 INIT_LIST_HEAD(&n->full); 3888 #endif 3889 } 3890 3891 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3892 { 3893 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3894 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3895 3896 /* 3897 * Must align to double word boundary for the double cmpxchg 3898 * instructions to work; see __pcpu_double_call_return_bool(). 3899 */ 3900 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3901 2 * sizeof(void *)); 3902 3903 if (!s->cpu_slab) 3904 return 0; 3905 3906 init_kmem_cache_cpus(s); 3907 3908 return 1; 3909 } 3910 3911 static struct kmem_cache *kmem_cache_node; 3912 3913 /* 3914 * No kmalloc_node yet so do it by hand. We know that this is the first 3915 * slab on the node for this slabcache. There are no concurrent accesses 3916 * possible. 3917 * 3918 * Note that this function only works on the kmem_cache_node 3919 * when allocating for the kmem_cache_node. This is used for bootstrapping 3920 * memory on a fresh node that has no slab structures yet. 3921 */ 3922 static void early_kmem_cache_node_alloc(int node) 3923 { 3924 struct slab *slab; 3925 struct kmem_cache_node *n; 3926 3927 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3928 3929 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3930 3931 BUG_ON(!slab); 3932 if (slab_nid(slab) != node) { 3933 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3934 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3935 } 3936 3937 n = slab->freelist; 3938 BUG_ON(!n); 3939 #ifdef CONFIG_SLUB_DEBUG 3940 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3941 init_tracking(kmem_cache_node, n); 3942 #endif 3943 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 3944 slab->freelist = get_freepointer(kmem_cache_node, n); 3945 slab->inuse = 1; 3946 slab->frozen = 0; 3947 kmem_cache_node->node[node] = n; 3948 init_kmem_cache_node(n); 3949 inc_slabs_node(kmem_cache_node, node, slab->objects); 3950 3951 /* 3952 * No locks need to be taken here as it has just been 3953 * initialized and there is no concurrent access. 3954 */ 3955 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 3956 } 3957 3958 static void free_kmem_cache_nodes(struct kmem_cache *s) 3959 { 3960 int node; 3961 struct kmem_cache_node *n; 3962 3963 for_each_kmem_cache_node(s, node, n) { 3964 s->node[node] = NULL; 3965 kmem_cache_free(kmem_cache_node, n); 3966 } 3967 } 3968 3969 void __kmem_cache_release(struct kmem_cache *s) 3970 { 3971 cache_random_seq_destroy(s); 3972 free_percpu(s->cpu_slab); 3973 free_kmem_cache_nodes(s); 3974 } 3975 3976 static int init_kmem_cache_nodes(struct kmem_cache *s) 3977 { 3978 int node; 3979 3980 for_each_node_mask(node, slab_nodes) { 3981 struct kmem_cache_node *n; 3982 3983 if (slab_state == DOWN) { 3984 early_kmem_cache_node_alloc(node); 3985 continue; 3986 } 3987 n = kmem_cache_alloc_node(kmem_cache_node, 3988 GFP_KERNEL, node); 3989 3990 if (!n) { 3991 free_kmem_cache_nodes(s); 3992 return 0; 3993 } 3994 3995 init_kmem_cache_node(n); 3996 s->node[node] = n; 3997 } 3998 return 1; 3999 } 4000 4001 static void set_cpu_partial(struct kmem_cache *s) 4002 { 4003 #ifdef CONFIG_SLUB_CPU_PARTIAL 4004 unsigned int nr_objects; 4005 4006 /* 4007 * cpu_partial determined the maximum number of objects kept in the 4008 * per cpu partial lists of a processor. 4009 * 4010 * Per cpu partial lists mainly contain slabs that just have one 4011 * object freed. If they are used for allocation then they can be 4012 * filled up again with minimal effort. The slab will never hit the 4013 * per node partial lists and therefore no locking will be required. 4014 * 4015 * For backwards compatibility reasons, this is determined as number 4016 * of objects, even though we now limit maximum number of pages, see 4017 * slub_set_cpu_partial() 4018 */ 4019 if (!kmem_cache_has_cpu_partial(s)) 4020 nr_objects = 0; 4021 else if (s->size >= PAGE_SIZE) 4022 nr_objects = 6; 4023 else if (s->size >= 1024) 4024 nr_objects = 24; 4025 else if (s->size >= 256) 4026 nr_objects = 52; 4027 else 4028 nr_objects = 120; 4029 4030 slub_set_cpu_partial(s, nr_objects); 4031 #endif 4032 } 4033 4034 /* 4035 * calculate_sizes() determines the order and the distribution of data within 4036 * a slab object. 4037 */ 4038 static int calculate_sizes(struct kmem_cache *s) 4039 { 4040 slab_flags_t flags = s->flags; 4041 unsigned int size = s->object_size; 4042 unsigned int order; 4043 4044 /* 4045 * Round up object size to the next word boundary. We can only 4046 * place the free pointer at word boundaries and this determines 4047 * the possible location of the free pointer. 4048 */ 4049 size = ALIGN(size, sizeof(void *)); 4050 4051 #ifdef CONFIG_SLUB_DEBUG 4052 /* 4053 * Determine if we can poison the object itself. If the user of 4054 * the slab may touch the object after free or before allocation 4055 * then we should never poison the object itself. 4056 */ 4057 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 4058 !s->ctor) 4059 s->flags |= __OBJECT_POISON; 4060 else 4061 s->flags &= ~__OBJECT_POISON; 4062 4063 4064 /* 4065 * If we are Redzoning then check if there is some space between the 4066 * end of the object and the free pointer. If not then add an 4067 * additional word to have some bytes to store Redzone information. 4068 */ 4069 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 4070 size += sizeof(void *); 4071 #endif 4072 4073 /* 4074 * With that we have determined the number of bytes in actual use 4075 * by the object and redzoning. 4076 */ 4077 s->inuse = size; 4078 4079 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 4080 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) || 4081 s->ctor) { 4082 /* 4083 * Relocate free pointer after the object if it is not 4084 * permitted to overwrite the first word of the object on 4085 * kmem_cache_free. 4086 * 4087 * This is the case if we do RCU, have a constructor or 4088 * destructor, are poisoning the objects, or are 4089 * redzoning an object smaller than sizeof(void *). 4090 * 4091 * The assumption that s->offset >= s->inuse means free 4092 * pointer is outside of the object is used in the 4093 * freeptr_outside_object() function. If that is no 4094 * longer true, the function needs to be modified. 4095 */ 4096 s->offset = size; 4097 size += sizeof(void *); 4098 } else { 4099 /* 4100 * Store freelist pointer near middle of object to keep 4101 * it away from the edges of the object to avoid small 4102 * sized over/underflows from neighboring allocations. 4103 */ 4104 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 4105 } 4106 4107 #ifdef CONFIG_SLUB_DEBUG 4108 if (flags & SLAB_STORE_USER) 4109 /* 4110 * Need to store information about allocs and frees after 4111 * the object. 4112 */ 4113 size += 2 * sizeof(struct track); 4114 #endif 4115 4116 kasan_cache_create(s, &size, &s->flags); 4117 #ifdef CONFIG_SLUB_DEBUG 4118 if (flags & SLAB_RED_ZONE) { 4119 /* 4120 * Add some empty padding so that we can catch 4121 * overwrites from earlier objects rather than let 4122 * tracking information or the free pointer be 4123 * corrupted if a user writes before the start 4124 * of the object. 4125 */ 4126 size += sizeof(void *); 4127 4128 s->red_left_pad = sizeof(void *); 4129 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 4130 size += s->red_left_pad; 4131 } 4132 #endif 4133 4134 /* 4135 * SLUB stores one object immediately after another beginning from 4136 * offset 0. In order to align the objects we have to simply size 4137 * each object to conform to the alignment. 4138 */ 4139 size = ALIGN(size, s->align); 4140 s->size = size; 4141 s->reciprocal_size = reciprocal_value(size); 4142 order = calculate_order(size); 4143 4144 if ((int)order < 0) 4145 return 0; 4146 4147 s->allocflags = 0; 4148 if (order) 4149 s->allocflags |= __GFP_COMP; 4150 4151 if (s->flags & SLAB_CACHE_DMA) 4152 s->allocflags |= GFP_DMA; 4153 4154 if (s->flags & SLAB_CACHE_DMA32) 4155 s->allocflags |= GFP_DMA32; 4156 4157 if (s->flags & SLAB_RECLAIM_ACCOUNT) 4158 s->allocflags |= __GFP_RECLAIMABLE; 4159 4160 /* 4161 * Determine the number of objects per slab 4162 */ 4163 s->oo = oo_make(order, size); 4164 s->min = oo_make(get_order(size), size); 4165 4166 return !!oo_objects(s->oo); 4167 } 4168 4169 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 4170 { 4171 s->flags = kmem_cache_flags(s->size, flags, s->name); 4172 #ifdef CONFIG_SLAB_FREELIST_HARDENED 4173 s->random = get_random_long(); 4174 #endif 4175 4176 if (!calculate_sizes(s)) 4177 goto error; 4178 if (disable_higher_order_debug) { 4179 /* 4180 * Disable debugging flags that store metadata if the min slab 4181 * order increased. 4182 */ 4183 if (get_order(s->size) > get_order(s->object_size)) { 4184 s->flags &= ~DEBUG_METADATA_FLAGS; 4185 s->offset = 0; 4186 if (!calculate_sizes(s)) 4187 goto error; 4188 } 4189 } 4190 4191 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 4192 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 4193 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 4194 /* Enable fast mode */ 4195 s->flags |= __CMPXCHG_DOUBLE; 4196 #endif 4197 4198 /* 4199 * The larger the object size is, the more slabs we want on the partial 4200 * list to avoid pounding the page allocator excessively. 4201 */ 4202 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 4203 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 4204 4205 set_cpu_partial(s); 4206 4207 #ifdef CONFIG_NUMA 4208 s->remote_node_defrag_ratio = 1000; 4209 #endif 4210 4211 /* Initialize the pre-computed randomized freelist if slab is up */ 4212 if (slab_state >= UP) { 4213 if (init_cache_random_seq(s)) 4214 goto error; 4215 } 4216 4217 if (!init_kmem_cache_nodes(s)) 4218 goto error; 4219 4220 if (alloc_kmem_cache_cpus(s)) 4221 return 0; 4222 4223 error: 4224 __kmem_cache_release(s); 4225 return -EINVAL; 4226 } 4227 4228 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 4229 const char *text) 4230 { 4231 #ifdef CONFIG_SLUB_DEBUG 4232 void *addr = slab_address(slab); 4233 unsigned long flags; 4234 unsigned long *map; 4235 void *p; 4236 4237 slab_err(s, slab, text, s->name); 4238 slab_lock(slab, &flags); 4239 4240 map = get_map(s, slab); 4241 for_each_object(p, s, addr, slab->objects) { 4242 4243 if (!test_bit(__obj_to_index(s, addr, p), map)) { 4244 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 4245 print_tracking(s, p); 4246 } 4247 } 4248 put_map(map); 4249 slab_unlock(slab, &flags); 4250 #endif 4251 } 4252 4253 /* 4254 * Attempt to free all partial slabs on a node. 4255 * This is called from __kmem_cache_shutdown(). We must take list_lock 4256 * because sysfs file might still access partial list after the shutdowning. 4257 */ 4258 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 4259 { 4260 LIST_HEAD(discard); 4261 struct slab *slab, *h; 4262 4263 BUG_ON(irqs_disabled()); 4264 spin_lock_irq(&n->list_lock); 4265 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 4266 if (!slab->inuse) { 4267 remove_partial(n, slab); 4268 list_add(&slab->slab_list, &discard); 4269 } else { 4270 list_slab_objects(s, slab, 4271 "Objects remaining in %s on __kmem_cache_shutdown()"); 4272 } 4273 } 4274 spin_unlock_irq(&n->list_lock); 4275 4276 list_for_each_entry_safe(slab, h, &discard, slab_list) 4277 discard_slab(s, slab); 4278 } 4279 4280 bool __kmem_cache_empty(struct kmem_cache *s) 4281 { 4282 int node; 4283 struct kmem_cache_node *n; 4284 4285 for_each_kmem_cache_node(s, node, n) 4286 if (n->nr_partial || slabs_node(s, node)) 4287 return false; 4288 return true; 4289 } 4290 4291 /* 4292 * Release all resources used by a slab cache. 4293 */ 4294 int __kmem_cache_shutdown(struct kmem_cache *s) 4295 { 4296 int node; 4297 struct kmem_cache_node *n; 4298 4299 flush_all_cpus_locked(s); 4300 /* Attempt to free all objects */ 4301 for_each_kmem_cache_node(s, node, n) { 4302 free_partial(s, n); 4303 if (n->nr_partial || slabs_node(s, node)) 4304 return 1; 4305 } 4306 return 0; 4307 } 4308 4309 #ifdef CONFIG_PRINTK 4310 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 4311 { 4312 void *base; 4313 int __maybe_unused i; 4314 unsigned int objnr; 4315 void *objp; 4316 void *objp0; 4317 struct kmem_cache *s = slab->slab_cache; 4318 struct track __maybe_unused *trackp; 4319 4320 kpp->kp_ptr = object; 4321 kpp->kp_slab = slab; 4322 kpp->kp_slab_cache = s; 4323 base = slab_address(slab); 4324 objp0 = kasan_reset_tag(object); 4325 #ifdef CONFIG_SLUB_DEBUG 4326 objp = restore_red_left(s, objp0); 4327 #else 4328 objp = objp0; 4329 #endif 4330 objnr = obj_to_index(s, slab, objp); 4331 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 4332 objp = base + s->size * objnr; 4333 kpp->kp_objp = objp; 4334 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 4335 || (objp - base) % s->size) || 4336 !(s->flags & SLAB_STORE_USER)) 4337 return; 4338 #ifdef CONFIG_SLUB_DEBUG 4339 objp = fixup_red_left(s, objp); 4340 trackp = get_track(s, objp, TRACK_ALLOC); 4341 kpp->kp_ret = (void *)trackp->addr; 4342 #ifdef CONFIG_STACKDEPOT 4343 { 4344 depot_stack_handle_t handle; 4345 unsigned long *entries; 4346 unsigned int nr_entries; 4347 4348 handle = READ_ONCE(trackp->handle); 4349 if (handle) { 4350 nr_entries = stack_depot_fetch(handle, &entries); 4351 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4352 kpp->kp_stack[i] = (void *)entries[i]; 4353 } 4354 4355 trackp = get_track(s, objp, TRACK_FREE); 4356 handle = READ_ONCE(trackp->handle); 4357 if (handle) { 4358 nr_entries = stack_depot_fetch(handle, &entries); 4359 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 4360 kpp->kp_free_stack[i] = (void *)entries[i]; 4361 } 4362 } 4363 #endif 4364 #endif 4365 } 4366 #endif 4367 4368 /******************************************************************** 4369 * Kmalloc subsystem 4370 *******************************************************************/ 4371 4372 static int __init setup_slub_min_order(char *str) 4373 { 4374 get_option(&str, (int *)&slub_min_order); 4375 4376 return 1; 4377 } 4378 4379 __setup("slub_min_order=", setup_slub_min_order); 4380 4381 static int __init setup_slub_max_order(char *str) 4382 { 4383 get_option(&str, (int *)&slub_max_order); 4384 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 4385 4386 return 1; 4387 } 4388 4389 __setup("slub_max_order=", setup_slub_max_order); 4390 4391 static int __init setup_slub_min_objects(char *str) 4392 { 4393 get_option(&str, (int *)&slub_min_objects); 4394 4395 return 1; 4396 } 4397 4398 __setup("slub_min_objects=", setup_slub_min_objects); 4399 4400 void *__kmalloc(size_t size, gfp_t flags) 4401 { 4402 struct kmem_cache *s; 4403 void *ret; 4404 4405 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4406 return kmalloc_large(size, flags); 4407 4408 s = kmalloc_slab(size, flags); 4409 4410 if (unlikely(ZERO_OR_NULL_PTR(s))) 4411 return s; 4412 4413 ret = slab_alloc(s, NULL, flags, _RET_IP_, size); 4414 4415 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 4416 4417 ret = kasan_kmalloc(s, ret, size, flags); 4418 4419 return ret; 4420 } 4421 EXPORT_SYMBOL(__kmalloc); 4422 4423 #ifdef CONFIG_NUMA 4424 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 4425 { 4426 struct page *page; 4427 void *ptr = NULL; 4428 unsigned int order = get_order(size); 4429 4430 flags |= __GFP_COMP; 4431 page = alloc_pages_node(node, flags, order); 4432 if (page) { 4433 ptr = page_address(page); 4434 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 4435 PAGE_SIZE << order); 4436 } 4437 4438 return kmalloc_large_node_hook(ptr, size, flags); 4439 } 4440 4441 void *__kmalloc_node(size_t size, gfp_t flags, int node) 4442 { 4443 struct kmem_cache *s; 4444 void *ret; 4445 4446 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4447 ret = kmalloc_large_node(size, flags, node); 4448 4449 trace_kmalloc_node(_RET_IP_, ret, 4450 size, PAGE_SIZE << get_order(size), 4451 flags, node); 4452 4453 return ret; 4454 } 4455 4456 s = kmalloc_slab(size, flags); 4457 4458 if (unlikely(ZERO_OR_NULL_PTR(s))) 4459 return s; 4460 4461 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size); 4462 4463 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 4464 4465 ret = kasan_kmalloc(s, ret, size, flags); 4466 4467 return ret; 4468 } 4469 EXPORT_SYMBOL(__kmalloc_node); 4470 #endif /* CONFIG_NUMA */ 4471 4472 #ifdef CONFIG_HARDENED_USERCOPY 4473 /* 4474 * Rejects incorrectly sized objects and objects that are to be copied 4475 * to/from userspace but do not fall entirely within the containing slab 4476 * cache's usercopy region. 4477 * 4478 * Returns NULL if check passes, otherwise const char * to name of cache 4479 * to indicate an error. 4480 */ 4481 void __check_heap_object(const void *ptr, unsigned long n, 4482 const struct slab *slab, bool to_user) 4483 { 4484 struct kmem_cache *s; 4485 unsigned int offset; 4486 bool is_kfence = is_kfence_address(ptr); 4487 4488 ptr = kasan_reset_tag(ptr); 4489 4490 /* Find object and usable object size. */ 4491 s = slab->slab_cache; 4492 4493 /* Reject impossible pointers. */ 4494 if (ptr < slab_address(slab)) 4495 usercopy_abort("SLUB object not in SLUB page?!", NULL, 4496 to_user, 0, n); 4497 4498 /* Find offset within object. */ 4499 if (is_kfence) 4500 offset = ptr - kfence_object_start(ptr); 4501 else 4502 offset = (ptr - slab_address(slab)) % s->size; 4503 4504 /* Adjust for redzone and reject if within the redzone. */ 4505 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 4506 if (offset < s->red_left_pad) 4507 usercopy_abort("SLUB object in left red zone", 4508 s->name, to_user, offset, n); 4509 offset -= s->red_left_pad; 4510 } 4511 4512 /* Allow address range falling entirely within usercopy region. */ 4513 if (offset >= s->useroffset && 4514 offset - s->useroffset <= s->usersize && 4515 n <= s->useroffset - offset + s->usersize) 4516 return; 4517 4518 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4519 } 4520 #endif /* CONFIG_HARDENED_USERCOPY */ 4521 4522 size_t __ksize(const void *object) 4523 { 4524 struct folio *folio; 4525 4526 if (unlikely(object == ZERO_SIZE_PTR)) 4527 return 0; 4528 4529 folio = virt_to_folio(object); 4530 4531 if (unlikely(!folio_test_slab(folio))) 4532 return folio_size(folio); 4533 4534 return slab_ksize(folio_slab(folio)->slab_cache); 4535 } 4536 EXPORT_SYMBOL(__ksize); 4537 4538 void kfree(const void *x) 4539 { 4540 struct folio *folio; 4541 struct slab *slab; 4542 void *object = (void *)x; 4543 4544 trace_kfree(_RET_IP_, x); 4545 4546 if (unlikely(ZERO_OR_NULL_PTR(x))) 4547 return; 4548 4549 folio = virt_to_folio(x); 4550 if (unlikely(!folio_test_slab(folio))) { 4551 free_large_kmalloc(folio, object); 4552 return; 4553 } 4554 slab = folio_slab(folio); 4555 slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_); 4556 } 4557 EXPORT_SYMBOL(kfree); 4558 4559 #define SHRINK_PROMOTE_MAX 32 4560 4561 /* 4562 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4563 * up most to the head of the partial lists. New allocations will then 4564 * fill those up and thus they can be removed from the partial lists. 4565 * 4566 * The slabs with the least items are placed last. This results in them 4567 * being allocated from last increasing the chance that the last objects 4568 * are freed in them. 4569 */ 4570 static int __kmem_cache_do_shrink(struct kmem_cache *s) 4571 { 4572 int node; 4573 int i; 4574 struct kmem_cache_node *n; 4575 struct slab *slab; 4576 struct slab *t; 4577 struct list_head discard; 4578 struct list_head promote[SHRINK_PROMOTE_MAX]; 4579 unsigned long flags; 4580 int ret = 0; 4581 4582 for_each_kmem_cache_node(s, node, n) { 4583 INIT_LIST_HEAD(&discard); 4584 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4585 INIT_LIST_HEAD(promote + i); 4586 4587 spin_lock_irqsave(&n->list_lock, flags); 4588 4589 /* 4590 * Build lists of slabs to discard or promote. 4591 * 4592 * Note that concurrent frees may occur while we hold the 4593 * list_lock. slab->inuse here is the upper limit. 4594 */ 4595 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 4596 int free = slab->objects - slab->inuse; 4597 4598 /* Do not reread slab->inuse */ 4599 barrier(); 4600 4601 /* We do not keep full slabs on the list */ 4602 BUG_ON(free <= 0); 4603 4604 if (free == slab->objects) { 4605 list_move(&slab->slab_list, &discard); 4606 n->nr_partial--; 4607 } else if (free <= SHRINK_PROMOTE_MAX) 4608 list_move(&slab->slab_list, promote + free - 1); 4609 } 4610 4611 /* 4612 * Promote the slabs filled up most to the head of the 4613 * partial list. 4614 */ 4615 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4616 list_splice(promote + i, &n->partial); 4617 4618 spin_unlock_irqrestore(&n->list_lock, flags); 4619 4620 /* Release empty slabs */ 4621 list_for_each_entry_safe(slab, t, &discard, slab_list) 4622 discard_slab(s, slab); 4623 4624 if (slabs_node(s, node)) 4625 ret = 1; 4626 } 4627 4628 return ret; 4629 } 4630 4631 int __kmem_cache_shrink(struct kmem_cache *s) 4632 { 4633 flush_all(s); 4634 return __kmem_cache_do_shrink(s); 4635 } 4636 4637 static int slab_mem_going_offline_callback(void *arg) 4638 { 4639 struct kmem_cache *s; 4640 4641 mutex_lock(&slab_mutex); 4642 list_for_each_entry(s, &slab_caches, list) { 4643 flush_all_cpus_locked(s); 4644 __kmem_cache_do_shrink(s); 4645 } 4646 mutex_unlock(&slab_mutex); 4647 4648 return 0; 4649 } 4650 4651 static void slab_mem_offline_callback(void *arg) 4652 { 4653 struct memory_notify *marg = arg; 4654 int offline_node; 4655 4656 offline_node = marg->status_change_nid_normal; 4657 4658 /* 4659 * If the node still has available memory. we need kmem_cache_node 4660 * for it yet. 4661 */ 4662 if (offline_node < 0) 4663 return; 4664 4665 mutex_lock(&slab_mutex); 4666 node_clear(offline_node, slab_nodes); 4667 /* 4668 * We no longer free kmem_cache_node structures here, as it would be 4669 * racy with all get_node() users, and infeasible to protect them with 4670 * slab_mutex. 4671 */ 4672 mutex_unlock(&slab_mutex); 4673 } 4674 4675 static int slab_mem_going_online_callback(void *arg) 4676 { 4677 struct kmem_cache_node *n; 4678 struct kmem_cache *s; 4679 struct memory_notify *marg = arg; 4680 int nid = marg->status_change_nid_normal; 4681 int ret = 0; 4682 4683 /* 4684 * If the node's memory is already available, then kmem_cache_node is 4685 * already created. Nothing to do. 4686 */ 4687 if (nid < 0) 4688 return 0; 4689 4690 /* 4691 * We are bringing a node online. No memory is available yet. We must 4692 * allocate a kmem_cache_node structure in order to bring the node 4693 * online. 4694 */ 4695 mutex_lock(&slab_mutex); 4696 list_for_each_entry(s, &slab_caches, list) { 4697 /* 4698 * The structure may already exist if the node was previously 4699 * onlined and offlined. 4700 */ 4701 if (get_node(s, nid)) 4702 continue; 4703 /* 4704 * XXX: kmem_cache_alloc_node will fallback to other nodes 4705 * since memory is not yet available from the node that 4706 * is brought up. 4707 */ 4708 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4709 if (!n) { 4710 ret = -ENOMEM; 4711 goto out; 4712 } 4713 init_kmem_cache_node(n); 4714 s->node[nid] = n; 4715 } 4716 /* 4717 * Any cache created after this point will also have kmem_cache_node 4718 * initialized for the new node. 4719 */ 4720 node_set(nid, slab_nodes); 4721 out: 4722 mutex_unlock(&slab_mutex); 4723 return ret; 4724 } 4725 4726 static int slab_memory_callback(struct notifier_block *self, 4727 unsigned long action, void *arg) 4728 { 4729 int ret = 0; 4730 4731 switch (action) { 4732 case MEM_GOING_ONLINE: 4733 ret = slab_mem_going_online_callback(arg); 4734 break; 4735 case MEM_GOING_OFFLINE: 4736 ret = slab_mem_going_offline_callback(arg); 4737 break; 4738 case MEM_OFFLINE: 4739 case MEM_CANCEL_ONLINE: 4740 slab_mem_offline_callback(arg); 4741 break; 4742 case MEM_ONLINE: 4743 case MEM_CANCEL_OFFLINE: 4744 break; 4745 } 4746 if (ret) 4747 ret = notifier_from_errno(ret); 4748 else 4749 ret = NOTIFY_OK; 4750 return ret; 4751 } 4752 4753 static struct notifier_block slab_memory_callback_nb = { 4754 .notifier_call = slab_memory_callback, 4755 .priority = SLAB_CALLBACK_PRI, 4756 }; 4757 4758 /******************************************************************** 4759 * Basic setup of slabs 4760 *******************************************************************/ 4761 4762 /* 4763 * Used for early kmem_cache structures that were allocated using 4764 * the page allocator. Allocate them properly then fix up the pointers 4765 * that may be pointing to the wrong kmem_cache structure. 4766 */ 4767 4768 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4769 { 4770 int node; 4771 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4772 struct kmem_cache_node *n; 4773 4774 memcpy(s, static_cache, kmem_cache->object_size); 4775 4776 /* 4777 * This runs very early, and only the boot processor is supposed to be 4778 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4779 * IPIs around. 4780 */ 4781 __flush_cpu_slab(s, smp_processor_id()); 4782 for_each_kmem_cache_node(s, node, n) { 4783 struct slab *p; 4784 4785 list_for_each_entry(p, &n->partial, slab_list) 4786 p->slab_cache = s; 4787 4788 #ifdef CONFIG_SLUB_DEBUG 4789 list_for_each_entry(p, &n->full, slab_list) 4790 p->slab_cache = s; 4791 #endif 4792 } 4793 list_add(&s->list, &slab_caches); 4794 return s; 4795 } 4796 4797 void __init kmem_cache_init(void) 4798 { 4799 static __initdata struct kmem_cache boot_kmem_cache, 4800 boot_kmem_cache_node; 4801 int node; 4802 4803 if (debug_guardpage_minorder()) 4804 slub_max_order = 0; 4805 4806 /* Print slub debugging pointers without hashing */ 4807 if (__slub_debug_enabled()) 4808 no_hash_pointers_enable(NULL); 4809 4810 kmem_cache_node = &boot_kmem_cache_node; 4811 kmem_cache = &boot_kmem_cache; 4812 4813 /* 4814 * Initialize the nodemask for which we will allocate per node 4815 * structures. Here we don't need taking slab_mutex yet. 4816 */ 4817 for_each_node_state(node, N_NORMAL_MEMORY) 4818 node_set(node, slab_nodes); 4819 4820 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4821 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4822 4823 register_hotmemory_notifier(&slab_memory_callback_nb); 4824 4825 /* Able to allocate the per node structures */ 4826 slab_state = PARTIAL; 4827 4828 create_boot_cache(kmem_cache, "kmem_cache", 4829 offsetof(struct kmem_cache, node) + 4830 nr_node_ids * sizeof(struct kmem_cache_node *), 4831 SLAB_HWCACHE_ALIGN, 0, 0); 4832 4833 kmem_cache = bootstrap(&boot_kmem_cache); 4834 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4835 4836 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4837 setup_kmalloc_cache_index_table(); 4838 create_kmalloc_caches(0); 4839 4840 /* Setup random freelists for each cache */ 4841 init_freelist_randomization(); 4842 4843 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4844 slub_cpu_dead); 4845 4846 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4847 cache_line_size(), 4848 slub_min_order, slub_max_order, slub_min_objects, 4849 nr_cpu_ids, nr_node_ids); 4850 } 4851 4852 void __init kmem_cache_init_late(void) 4853 { 4854 } 4855 4856 struct kmem_cache * 4857 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4858 slab_flags_t flags, void (*ctor)(void *)) 4859 { 4860 struct kmem_cache *s; 4861 4862 s = find_mergeable(size, align, flags, name, ctor); 4863 if (s) { 4864 s->refcount++; 4865 4866 /* 4867 * Adjust the object sizes so that we clear 4868 * the complete object on kzalloc. 4869 */ 4870 s->object_size = max(s->object_size, size); 4871 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4872 4873 if (sysfs_slab_alias(s, name)) { 4874 s->refcount--; 4875 s = NULL; 4876 } 4877 } 4878 4879 return s; 4880 } 4881 4882 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4883 { 4884 int err; 4885 4886 err = kmem_cache_open(s, flags); 4887 if (err) 4888 return err; 4889 4890 /* Mutex is not taken during early boot */ 4891 if (slab_state <= UP) 4892 return 0; 4893 4894 err = sysfs_slab_add(s); 4895 if (err) { 4896 __kmem_cache_release(s); 4897 return err; 4898 } 4899 4900 if (s->flags & SLAB_STORE_USER) 4901 debugfs_slab_add(s); 4902 4903 return 0; 4904 } 4905 4906 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4907 { 4908 struct kmem_cache *s; 4909 void *ret; 4910 4911 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4912 return kmalloc_large(size, gfpflags); 4913 4914 s = kmalloc_slab(size, gfpflags); 4915 4916 if (unlikely(ZERO_OR_NULL_PTR(s))) 4917 return s; 4918 4919 ret = slab_alloc(s, NULL, gfpflags, caller, size); 4920 4921 /* Honor the call site pointer we received. */ 4922 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4923 4924 return ret; 4925 } 4926 EXPORT_SYMBOL(__kmalloc_track_caller); 4927 4928 #ifdef CONFIG_NUMA 4929 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4930 int node, unsigned long caller) 4931 { 4932 struct kmem_cache *s; 4933 void *ret; 4934 4935 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4936 ret = kmalloc_large_node(size, gfpflags, node); 4937 4938 trace_kmalloc_node(caller, ret, 4939 size, PAGE_SIZE << get_order(size), 4940 gfpflags, node); 4941 4942 return ret; 4943 } 4944 4945 s = kmalloc_slab(size, gfpflags); 4946 4947 if (unlikely(ZERO_OR_NULL_PTR(s))) 4948 return s; 4949 4950 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size); 4951 4952 /* Honor the call site pointer we received. */ 4953 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4954 4955 return ret; 4956 } 4957 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4958 #endif 4959 4960 #ifdef CONFIG_SYSFS 4961 static int count_inuse(struct slab *slab) 4962 { 4963 return slab->inuse; 4964 } 4965 4966 static int count_total(struct slab *slab) 4967 { 4968 return slab->objects; 4969 } 4970 #endif 4971 4972 #ifdef CONFIG_SLUB_DEBUG 4973 static void validate_slab(struct kmem_cache *s, struct slab *slab, 4974 unsigned long *obj_map) 4975 { 4976 void *p; 4977 void *addr = slab_address(slab); 4978 unsigned long flags; 4979 4980 slab_lock(slab, &flags); 4981 4982 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 4983 goto unlock; 4984 4985 /* Now we know that a valid freelist exists */ 4986 __fill_map(obj_map, s, slab); 4987 for_each_object(p, s, addr, slab->objects) { 4988 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 4989 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4990 4991 if (!check_object(s, slab, p, val)) 4992 break; 4993 } 4994 unlock: 4995 slab_unlock(slab, &flags); 4996 } 4997 4998 static int validate_slab_node(struct kmem_cache *s, 4999 struct kmem_cache_node *n, unsigned long *obj_map) 5000 { 5001 unsigned long count = 0; 5002 struct slab *slab; 5003 unsigned long flags; 5004 5005 spin_lock_irqsave(&n->list_lock, flags); 5006 5007 list_for_each_entry(slab, &n->partial, slab_list) { 5008 validate_slab(s, slab, obj_map); 5009 count++; 5010 } 5011 if (count != n->nr_partial) { 5012 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 5013 s->name, count, n->nr_partial); 5014 slab_add_kunit_errors(); 5015 } 5016 5017 if (!(s->flags & SLAB_STORE_USER)) 5018 goto out; 5019 5020 list_for_each_entry(slab, &n->full, slab_list) { 5021 validate_slab(s, slab, obj_map); 5022 count++; 5023 } 5024 if (count != atomic_long_read(&n->nr_slabs)) { 5025 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 5026 s->name, count, atomic_long_read(&n->nr_slabs)); 5027 slab_add_kunit_errors(); 5028 } 5029 5030 out: 5031 spin_unlock_irqrestore(&n->list_lock, flags); 5032 return count; 5033 } 5034 5035 long validate_slab_cache(struct kmem_cache *s) 5036 { 5037 int node; 5038 unsigned long count = 0; 5039 struct kmem_cache_node *n; 5040 unsigned long *obj_map; 5041 5042 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 5043 if (!obj_map) 5044 return -ENOMEM; 5045 5046 flush_all(s); 5047 for_each_kmem_cache_node(s, node, n) 5048 count += validate_slab_node(s, n, obj_map); 5049 5050 bitmap_free(obj_map); 5051 5052 return count; 5053 } 5054 EXPORT_SYMBOL(validate_slab_cache); 5055 5056 #ifdef CONFIG_DEBUG_FS 5057 /* 5058 * Generate lists of code addresses where slabcache objects are allocated 5059 * and freed. 5060 */ 5061 5062 struct location { 5063 depot_stack_handle_t handle; 5064 unsigned long count; 5065 unsigned long addr; 5066 long long sum_time; 5067 long min_time; 5068 long max_time; 5069 long min_pid; 5070 long max_pid; 5071 DECLARE_BITMAP(cpus, NR_CPUS); 5072 nodemask_t nodes; 5073 }; 5074 5075 struct loc_track { 5076 unsigned long max; 5077 unsigned long count; 5078 struct location *loc; 5079 loff_t idx; 5080 }; 5081 5082 static struct dentry *slab_debugfs_root; 5083 5084 static void free_loc_track(struct loc_track *t) 5085 { 5086 if (t->max) 5087 free_pages((unsigned long)t->loc, 5088 get_order(sizeof(struct location) * t->max)); 5089 } 5090 5091 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 5092 { 5093 struct location *l; 5094 int order; 5095 5096 order = get_order(sizeof(struct location) * max); 5097 5098 l = (void *)__get_free_pages(flags, order); 5099 if (!l) 5100 return 0; 5101 5102 if (t->count) { 5103 memcpy(l, t->loc, sizeof(struct location) * t->count); 5104 free_loc_track(t); 5105 } 5106 t->max = max; 5107 t->loc = l; 5108 return 1; 5109 } 5110 5111 static int add_location(struct loc_track *t, struct kmem_cache *s, 5112 const struct track *track) 5113 { 5114 long start, end, pos; 5115 struct location *l; 5116 unsigned long caddr, chandle; 5117 unsigned long age = jiffies - track->when; 5118 depot_stack_handle_t handle = 0; 5119 5120 #ifdef CONFIG_STACKDEPOT 5121 handle = READ_ONCE(track->handle); 5122 #endif 5123 start = -1; 5124 end = t->count; 5125 5126 for ( ; ; ) { 5127 pos = start + (end - start + 1) / 2; 5128 5129 /* 5130 * There is nothing at "end". If we end up there 5131 * we need to add something to before end. 5132 */ 5133 if (pos == end) 5134 break; 5135 5136 caddr = t->loc[pos].addr; 5137 chandle = t->loc[pos].handle; 5138 if ((track->addr == caddr) && (handle == chandle)) { 5139 5140 l = &t->loc[pos]; 5141 l->count++; 5142 if (track->when) { 5143 l->sum_time += age; 5144 if (age < l->min_time) 5145 l->min_time = age; 5146 if (age > l->max_time) 5147 l->max_time = age; 5148 5149 if (track->pid < l->min_pid) 5150 l->min_pid = track->pid; 5151 if (track->pid > l->max_pid) 5152 l->max_pid = track->pid; 5153 5154 cpumask_set_cpu(track->cpu, 5155 to_cpumask(l->cpus)); 5156 } 5157 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5158 return 1; 5159 } 5160 5161 if (track->addr < caddr) 5162 end = pos; 5163 else if (track->addr == caddr && handle < chandle) 5164 end = pos; 5165 else 5166 start = pos; 5167 } 5168 5169 /* 5170 * Not found. Insert new tracking element. 5171 */ 5172 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 5173 return 0; 5174 5175 l = t->loc + pos; 5176 if (pos < t->count) 5177 memmove(l + 1, l, 5178 (t->count - pos) * sizeof(struct location)); 5179 t->count++; 5180 l->count = 1; 5181 l->addr = track->addr; 5182 l->sum_time = age; 5183 l->min_time = age; 5184 l->max_time = age; 5185 l->min_pid = track->pid; 5186 l->max_pid = track->pid; 5187 l->handle = handle; 5188 cpumask_clear(to_cpumask(l->cpus)); 5189 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 5190 nodes_clear(l->nodes); 5191 node_set(page_to_nid(virt_to_page(track)), l->nodes); 5192 return 1; 5193 } 5194 5195 static void process_slab(struct loc_track *t, struct kmem_cache *s, 5196 struct slab *slab, enum track_item alloc, 5197 unsigned long *obj_map) 5198 { 5199 void *addr = slab_address(slab); 5200 void *p; 5201 5202 __fill_map(obj_map, s, slab); 5203 5204 for_each_object(p, s, addr, slab->objects) 5205 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 5206 add_location(t, s, get_track(s, p, alloc)); 5207 } 5208 #endif /* CONFIG_DEBUG_FS */ 5209 #endif /* CONFIG_SLUB_DEBUG */ 5210 5211 #ifdef CONFIG_SYSFS 5212 enum slab_stat_type { 5213 SL_ALL, /* All slabs */ 5214 SL_PARTIAL, /* Only partially allocated slabs */ 5215 SL_CPU, /* Only slabs used for cpu caches */ 5216 SL_OBJECTS, /* Determine allocated objects not slabs */ 5217 SL_TOTAL /* Determine object capacity not slabs */ 5218 }; 5219 5220 #define SO_ALL (1 << SL_ALL) 5221 #define SO_PARTIAL (1 << SL_PARTIAL) 5222 #define SO_CPU (1 << SL_CPU) 5223 #define SO_OBJECTS (1 << SL_OBJECTS) 5224 #define SO_TOTAL (1 << SL_TOTAL) 5225 5226 static ssize_t show_slab_objects(struct kmem_cache *s, 5227 char *buf, unsigned long flags) 5228 { 5229 unsigned long total = 0; 5230 int node; 5231 int x; 5232 unsigned long *nodes; 5233 int len = 0; 5234 5235 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 5236 if (!nodes) 5237 return -ENOMEM; 5238 5239 if (flags & SO_CPU) { 5240 int cpu; 5241 5242 for_each_possible_cpu(cpu) { 5243 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 5244 cpu); 5245 int node; 5246 struct slab *slab; 5247 5248 slab = READ_ONCE(c->slab); 5249 if (!slab) 5250 continue; 5251 5252 node = slab_nid(slab); 5253 if (flags & SO_TOTAL) 5254 x = slab->objects; 5255 else if (flags & SO_OBJECTS) 5256 x = slab->inuse; 5257 else 5258 x = 1; 5259 5260 total += x; 5261 nodes[node] += x; 5262 5263 #ifdef CONFIG_SLUB_CPU_PARTIAL 5264 slab = slub_percpu_partial_read_once(c); 5265 if (slab) { 5266 node = slab_nid(slab); 5267 if (flags & SO_TOTAL) 5268 WARN_ON_ONCE(1); 5269 else if (flags & SO_OBJECTS) 5270 WARN_ON_ONCE(1); 5271 else 5272 x = slab->slabs; 5273 total += x; 5274 nodes[node] += x; 5275 } 5276 #endif 5277 } 5278 } 5279 5280 /* 5281 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 5282 * already held which will conflict with an existing lock order: 5283 * 5284 * mem_hotplug_lock->slab_mutex->kernfs_mutex 5285 * 5286 * We don't really need mem_hotplug_lock (to hold off 5287 * slab_mem_going_offline_callback) here because slab's memory hot 5288 * unplug code doesn't destroy the kmem_cache->node[] data. 5289 */ 5290 5291 #ifdef CONFIG_SLUB_DEBUG 5292 if (flags & SO_ALL) { 5293 struct kmem_cache_node *n; 5294 5295 for_each_kmem_cache_node(s, node, n) { 5296 5297 if (flags & SO_TOTAL) 5298 x = atomic_long_read(&n->total_objects); 5299 else if (flags & SO_OBJECTS) 5300 x = atomic_long_read(&n->total_objects) - 5301 count_partial(n, count_free); 5302 else 5303 x = atomic_long_read(&n->nr_slabs); 5304 total += x; 5305 nodes[node] += x; 5306 } 5307 5308 } else 5309 #endif 5310 if (flags & SO_PARTIAL) { 5311 struct kmem_cache_node *n; 5312 5313 for_each_kmem_cache_node(s, node, n) { 5314 if (flags & SO_TOTAL) 5315 x = count_partial(n, count_total); 5316 else if (flags & SO_OBJECTS) 5317 x = count_partial(n, count_inuse); 5318 else 5319 x = n->nr_partial; 5320 total += x; 5321 nodes[node] += x; 5322 } 5323 } 5324 5325 len += sysfs_emit_at(buf, len, "%lu", total); 5326 #ifdef CONFIG_NUMA 5327 for (node = 0; node < nr_node_ids; node++) { 5328 if (nodes[node]) 5329 len += sysfs_emit_at(buf, len, " N%d=%lu", 5330 node, nodes[node]); 5331 } 5332 #endif 5333 len += sysfs_emit_at(buf, len, "\n"); 5334 kfree(nodes); 5335 5336 return len; 5337 } 5338 5339 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 5340 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5341 5342 struct slab_attribute { 5343 struct attribute attr; 5344 ssize_t (*show)(struct kmem_cache *s, char *buf); 5345 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5346 }; 5347 5348 #define SLAB_ATTR_RO(_name) \ 5349 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 5350 5351 #define SLAB_ATTR(_name) \ 5352 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 5353 5354 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5355 { 5356 return sysfs_emit(buf, "%u\n", s->size); 5357 } 5358 SLAB_ATTR_RO(slab_size); 5359 5360 static ssize_t align_show(struct kmem_cache *s, char *buf) 5361 { 5362 return sysfs_emit(buf, "%u\n", s->align); 5363 } 5364 SLAB_ATTR_RO(align); 5365 5366 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5367 { 5368 return sysfs_emit(buf, "%u\n", s->object_size); 5369 } 5370 SLAB_ATTR_RO(object_size); 5371 5372 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5373 { 5374 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 5375 } 5376 SLAB_ATTR_RO(objs_per_slab); 5377 5378 static ssize_t order_show(struct kmem_cache *s, char *buf) 5379 { 5380 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 5381 } 5382 SLAB_ATTR_RO(order); 5383 5384 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5385 { 5386 return sysfs_emit(buf, "%lu\n", s->min_partial); 5387 } 5388 5389 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5390 size_t length) 5391 { 5392 unsigned long min; 5393 int err; 5394 5395 err = kstrtoul(buf, 10, &min); 5396 if (err) 5397 return err; 5398 5399 s->min_partial = min; 5400 return length; 5401 } 5402 SLAB_ATTR(min_partial); 5403 5404 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5405 { 5406 unsigned int nr_partial = 0; 5407 #ifdef CONFIG_SLUB_CPU_PARTIAL 5408 nr_partial = s->cpu_partial; 5409 #endif 5410 5411 return sysfs_emit(buf, "%u\n", nr_partial); 5412 } 5413 5414 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5415 size_t length) 5416 { 5417 unsigned int objects; 5418 int err; 5419 5420 err = kstrtouint(buf, 10, &objects); 5421 if (err) 5422 return err; 5423 if (objects && !kmem_cache_has_cpu_partial(s)) 5424 return -EINVAL; 5425 5426 slub_set_cpu_partial(s, objects); 5427 flush_all(s); 5428 return length; 5429 } 5430 SLAB_ATTR(cpu_partial); 5431 5432 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5433 { 5434 if (!s->ctor) 5435 return 0; 5436 return sysfs_emit(buf, "%pS\n", s->ctor); 5437 } 5438 SLAB_ATTR_RO(ctor); 5439 5440 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5441 { 5442 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5443 } 5444 SLAB_ATTR_RO(aliases); 5445 5446 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5447 { 5448 return show_slab_objects(s, buf, SO_PARTIAL); 5449 } 5450 SLAB_ATTR_RO(partial); 5451 5452 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5453 { 5454 return show_slab_objects(s, buf, SO_CPU); 5455 } 5456 SLAB_ATTR_RO(cpu_slabs); 5457 5458 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5459 { 5460 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5461 } 5462 SLAB_ATTR_RO(objects); 5463 5464 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5465 { 5466 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5467 } 5468 SLAB_ATTR_RO(objects_partial); 5469 5470 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5471 { 5472 int objects = 0; 5473 int slabs = 0; 5474 int cpu __maybe_unused; 5475 int len = 0; 5476 5477 #ifdef CONFIG_SLUB_CPU_PARTIAL 5478 for_each_online_cpu(cpu) { 5479 struct slab *slab; 5480 5481 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5482 5483 if (slab) 5484 slabs += slab->slabs; 5485 } 5486 #endif 5487 5488 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 5489 objects = (slabs * oo_objects(s->oo)) / 2; 5490 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 5491 5492 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP) 5493 for_each_online_cpu(cpu) { 5494 struct slab *slab; 5495 5496 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5497 if (slab) { 5498 slabs = READ_ONCE(slab->slabs); 5499 objects = (slabs * oo_objects(s->oo)) / 2; 5500 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 5501 cpu, objects, slabs); 5502 } 5503 } 5504 #endif 5505 len += sysfs_emit_at(buf, len, "\n"); 5506 5507 return len; 5508 } 5509 SLAB_ATTR_RO(slabs_cpu_partial); 5510 5511 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5512 { 5513 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5514 } 5515 SLAB_ATTR_RO(reclaim_account); 5516 5517 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5518 { 5519 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5520 } 5521 SLAB_ATTR_RO(hwcache_align); 5522 5523 #ifdef CONFIG_ZONE_DMA 5524 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5525 { 5526 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5527 } 5528 SLAB_ATTR_RO(cache_dma); 5529 #endif 5530 5531 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5532 { 5533 return sysfs_emit(buf, "%u\n", s->usersize); 5534 } 5535 SLAB_ATTR_RO(usersize); 5536 5537 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5538 { 5539 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5540 } 5541 SLAB_ATTR_RO(destroy_by_rcu); 5542 5543 #ifdef CONFIG_SLUB_DEBUG 5544 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5545 { 5546 return show_slab_objects(s, buf, SO_ALL); 5547 } 5548 SLAB_ATTR_RO(slabs); 5549 5550 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5551 { 5552 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5553 } 5554 SLAB_ATTR_RO(total_objects); 5555 5556 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5557 { 5558 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5559 } 5560 SLAB_ATTR_RO(sanity_checks); 5561 5562 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5563 { 5564 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5565 } 5566 SLAB_ATTR_RO(trace); 5567 5568 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5569 { 5570 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5571 } 5572 5573 SLAB_ATTR_RO(red_zone); 5574 5575 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5576 { 5577 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5578 } 5579 5580 SLAB_ATTR_RO(poison); 5581 5582 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5583 { 5584 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5585 } 5586 5587 SLAB_ATTR_RO(store_user); 5588 5589 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5590 { 5591 return 0; 5592 } 5593 5594 static ssize_t validate_store(struct kmem_cache *s, 5595 const char *buf, size_t length) 5596 { 5597 int ret = -EINVAL; 5598 5599 if (buf[0] == '1') { 5600 ret = validate_slab_cache(s); 5601 if (ret >= 0) 5602 ret = length; 5603 } 5604 return ret; 5605 } 5606 SLAB_ATTR(validate); 5607 5608 #endif /* CONFIG_SLUB_DEBUG */ 5609 5610 #ifdef CONFIG_FAILSLAB 5611 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5612 { 5613 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5614 } 5615 SLAB_ATTR_RO(failslab); 5616 #endif 5617 5618 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5619 { 5620 return 0; 5621 } 5622 5623 static ssize_t shrink_store(struct kmem_cache *s, 5624 const char *buf, size_t length) 5625 { 5626 if (buf[0] == '1') 5627 kmem_cache_shrink(s); 5628 else 5629 return -EINVAL; 5630 return length; 5631 } 5632 SLAB_ATTR(shrink); 5633 5634 #ifdef CONFIG_NUMA 5635 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5636 { 5637 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5638 } 5639 5640 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5641 const char *buf, size_t length) 5642 { 5643 unsigned int ratio; 5644 int err; 5645 5646 err = kstrtouint(buf, 10, &ratio); 5647 if (err) 5648 return err; 5649 if (ratio > 100) 5650 return -ERANGE; 5651 5652 s->remote_node_defrag_ratio = ratio * 10; 5653 5654 return length; 5655 } 5656 SLAB_ATTR(remote_node_defrag_ratio); 5657 #endif 5658 5659 #ifdef CONFIG_SLUB_STATS 5660 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5661 { 5662 unsigned long sum = 0; 5663 int cpu; 5664 int len = 0; 5665 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5666 5667 if (!data) 5668 return -ENOMEM; 5669 5670 for_each_online_cpu(cpu) { 5671 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5672 5673 data[cpu] = x; 5674 sum += x; 5675 } 5676 5677 len += sysfs_emit_at(buf, len, "%lu", sum); 5678 5679 #ifdef CONFIG_SMP 5680 for_each_online_cpu(cpu) { 5681 if (data[cpu]) 5682 len += sysfs_emit_at(buf, len, " C%d=%u", 5683 cpu, data[cpu]); 5684 } 5685 #endif 5686 kfree(data); 5687 len += sysfs_emit_at(buf, len, "\n"); 5688 5689 return len; 5690 } 5691 5692 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5693 { 5694 int cpu; 5695 5696 for_each_online_cpu(cpu) 5697 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5698 } 5699 5700 #define STAT_ATTR(si, text) \ 5701 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5702 { \ 5703 return show_stat(s, buf, si); \ 5704 } \ 5705 static ssize_t text##_store(struct kmem_cache *s, \ 5706 const char *buf, size_t length) \ 5707 { \ 5708 if (buf[0] != '0') \ 5709 return -EINVAL; \ 5710 clear_stat(s, si); \ 5711 return length; \ 5712 } \ 5713 SLAB_ATTR(text); \ 5714 5715 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5716 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5717 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5718 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5719 STAT_ATTR(FREE_FROZEN, free_frozen); 5720 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5721 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5722 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5723 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5724 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5725 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5726 STAT_ATTR(FREE_SLAB, free_slab); 5727 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5728 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5729 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5730 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5731 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5732 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5733 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5734 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5735 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5736 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5737 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5738 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5739 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5740 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5741 #endif /* CONFIG_SLUB_STATS */ 5742 5743 static struct attribute *slab_attrs[] = { 5744 &slab_size_attr.attr, 5745 &object_size_attr.attr, 5746 &objs_per_slab_attr.attr, 5747 &order_attr.attr, 5748 &min_partial_attr.attr, 5749 &cpu_partial_attr.attr, 5750 &objects_attr.attr, 5751 &objects_partial_attr.attr, 5752 &partial_attr.attr, 5753 &cpu_slabs_attr.attr, 5754 &ctor_attr.attr, 5755 &aliases_attr.attr, 5756 &align_attr.attr, 5757 &hwcache_align_attr.attr, 5758 &reclaim_account_attr.attr, 5759 &destroy_by_rcu_attr.attr, 5760 &shrink_attr.attr, 5761 &slabs_cpu_partial_attr.attr, 5762 #ifdef CONFIG_SLUB_DEBUG 5763 &total_objects_attr.attr, 5764 &slabs_attr.attr, 5765 &sanity_checks_attr.attr, 5766 &trace_attr.attr, 5767 &red_zone_attr.attr, 5768 &poison_attr.attr, 5769 &store_user_attr.attr, 5770 &validate_attr.attr, 5771 #endif 5772 #ifdef CONFIG_ZONE_DMA 5773 &cache_dma_attr.attr, 5774 #endif 5775 #ifdef CONFIG_NUMA 5776 &remote_node_defrag_ratio_attr.attr, 5777 #endif 5778 #ifdef CONFIG_SLUB_STATS 5779 &alloc_fastpath_attr.attr, 5780 &alloc_slowpath_attr.attr, 5781 &free_fastpath_attr.attr, 5782 &free_slowpath_attr.attr, 5783 &free_frozen_attr.attr, 5784 &free_add_partial_attr.attr, 5785 &free_remove_partial_attr.attr, 5786 &alloc_from_partial_attr.attr, 5787 &alloc_slab_attr.attr, 5788 &alloc_refill_attr.attr, 5789 &alloc_node_mismatch_attr.attr, 5790 &free_slab_attr.attr, 5791 &cpuslab_flush_attr.attr, 5792 &deactivate_full_attr.attr, 5793 &deactivate_empty_attr.attr, 5794 &deactivate_to_head_attr.attr, 5795 &deactivate_to_tail_attr.attr, 5796 &deactivate_remote_frees_attr.attr, 5797 &deactivate_bypass_attr.attr, 5798 &order_fallback_attr.attr, 5799 &cmpxchg_double_fail_attr.attr, 5800 &cmpxchg_double_cpu_fail_attr.attr, 5801 &cpu_partial_alloc_attr.attr, 5802 &cpu_partial_free_attr.attr, 5803 &cpu_partial_node_attr.attr, 5804 &cpu_partial_drain_attr.attr, 5805 #endif 5806 #ifdef CONFIG_FAILSLAB 5807 &failslab_attr.attr, 5808 #endif 5809 &usersize_attr.attr, 5810 5811 NULL 5812 }; 5813 5814 static const struct attribute_group slab_attr_group = { 5815 .attrs = slab_attrs, 5816 }; 5817 5818 static ssize_t slab_attr_show(struct kobject *kobj, 5819 struct attribute *attr, 5820 char *buf) 5821 { 5822 struct slab_attribute *attribute; 5823 struct kmem_cache *s; 5824 int err; 5825 5826 attribute = to_slab_attr(attr); 5827 s = to_slab(kobj); 5828 5829 if (!attribute->show) 5830 return -EIO; 5831 5832 err = attribute->show(s, buf); 5833 5834 return err; 5835 } 5836 5837 static ssize_t slab_attr_store(struct kobject *kobj, 5838 struct attribute *attr, 5839 const char *buf, size_t len) 5840 { 5841 struct slab_attribute *attribute; 5842 struct kmem_cache *s; 5843 int err; 5844 5845 attribute = to_slab_attr(attr); 5846 s = to_slab(kobj); 5847 5848 if (!attribute->store) 5849 return -EIO; 5850 5851 err = attribute->store(s, buf, len); 5852 return err; 5853 } 5854 5855 static void kmem_cache_release(struct kobject *k) 5856 { 5857 slab_kmem_cache_release(to_slab(k)); 5858 } 5859 5860 static const struct sysfs_ops slab_sysfs_ops = { 5861 .show = slab_attr_show, 5862 .store = slab_attr_store, 5863 }; 5864 5865 static struct kobj_type slab_ktype = { 5866 .sysfs_ops = &slab_sysfs_ops, 5867 .release = kmem_cache_release, 5868 }; 5869 5870 static struct kset *slab_kset; 5871 5872 static inline struct kset *cache_kset(struct kmem_cache *s) 5873 { 5874 return slab_kset; 5875 } 5876 5877 #define ID_STR_LENGTH 64 5878 5879 /* Create a unique string id for a slab cache: 5880 * 5881 * Format :[flags-]size 5882 */ 5883 static char *create_unique_id(struct kmem_cache *s) 5884 { 5885 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5886 char *p = name; 5887 5888 BUG_ON(!name); 5889 5890 *p++ = ':'; 5891 /* 5892 * First flags affecting slabcache operations. We will only 5893 * get here for aliasable slabs so we do not need to support 5894 * too many flags. The flags here must cover all flags that 5895 * are matched during merging to guarantee that the id is 5896 * unique. 5897 */ 5898 if (s->flags & SLAB_CACHE_DMA) 5899 *p++ = 'd'; 5900 if (s->flags & SLAB_CACHE_DMA32) 5901 *p++ = 'D'; 5902 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5903 *p++ = 'a'; 5904 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5905 *p++ = 'F'; 5906 if (s->flags & SLAB_ACCOUNT) 5907 *p++ = 'A'; 5908 if (p != name + 1) 5909 *p++ = '-'; 5910 p += sprintf(p, "%07u", s->size); 5911 5912 BUG_ON(p > name + ID_STR_LENGTH - 1); 5913 return name; 5914 } 5915 5916 static int sysfs_slab_add(struct kmem_cache *s) 5917 { 5918 int err; 5919 const char *name; 5920 struct kset *kset = cache_kset(s); 5921 int unmergeable = slab_unmergeable(s); 5922 5923 if (!kset) { 5924 kobject_init(&s->kobj, &slab_ktype); 5925 return 0; 5926 } 5927 5928 if (!unmergeable && disable_higher_order_debug && 5929 (slub_debug & DEBUG_METADATA_FLAGS)) 5930 unmergeable = 1; 5931 5932 if (unmergeable) { 5933 /* 5934 * Slabcache can never be merged so we can use the name proper. 5935 * This is typically the case for debug situations. In that 5936 * case we can catch duplicate names easily. 5937 */ 5938 sysfs_remove_link(&slab_kset->kobj, s->name); 5939 name = s->name; 5940 } else { 5941 /* 5942 * Create a unique name for the slab as a target 5943 * for the symlinks. 5944 */ 5945 name = create_unique_id(s); 5946 } 5947 5948 s->kobj.kset = kset; 5949 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5950 if (err) 5951 goto out; 5952 5953 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5954 if (err) 5955 goto out_del_kobj; 5956 5957 if (!unmergeable) { 5958 /* Setup first alias */ 5959 sysfs_slab_alias(s, s->name); 5960 } 5961 out: 5962 if (!unmergeable) 5963 kfree(name); 5964 return err; 5965 out_del_kobj: 5966 kobject_del(&s->kobj); 5967 goto out; 5968 } 5969 5970 void sysfs_slab_unlink(struct kmem_cache *s) 5971 { 5972 if (slab_state >= FULL) 5973 kobject_del(&s->kobj); 5974 } 5975 5976 void sysfs_slab_release(struct kmem_cache *s) 5977 { 5978 if (slab_state >= FULL) 5979 kobject_put(&s->kobj); 5980 } 5981 5982 /* 5983 * Need to buffer aliases during bootup until sysfs becomes 5984 * available lest we lose that information. 5985 */ 5986 struct saved_alias { 5987 struct kmem_cache *s; 5988 const char *name; 5989 struct saved_alias *next; 5990 }; 5991 5992 static struct saved_alias *alias_list; 5993 5994 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5995 { 5996 struct saved_alias *al; 5997 5998 if (slab_state == FULL) { 5999 /* 6000 * If we have a leftover link then remove it. 6001 */ 6002 sysfs_remove_link(&slab_kset->kobj, name); 6003 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 6004 } 6005 6006 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 6007 if (!al) 6008 return -ENOMEM; 6009 6010 al->s = s; 6011 al->name = name; 6012 al->next = alias_list; 6013 alias_list = al; 6014 return 0; 6015 } 6016 6017 static int __init slab_sysfs_init(void) 6018 { 6019 struct kmem_cache *s; 6020 int err; 6021 6022 mutex_lock(&slab_mutex); 6023 6024 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 6025 if (!slab_kset) { 6026 mutex_unlock(&slab_mutex); 6027 pr_err("Cannot register slab subsystem.\n"); 6028 return -ENOSYS; 6029 } 6030 6031 slab_state = FULL; 6032 6033 list_for_each_entry(s, &slab_caches, list) { 6034 err = sysfs_slab_add(s); 6035 if (err) 6036 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 6037 s->name); 6038 } 6039 6040 while (alias_list) { 6041 struct saved_alias *al = alias_list; 6042 6043 alias_list = alias_list->next; 6044 err = sysfs_slab_alias(al->s, al->name); 6045 if (err) 6046 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 6047 al->name); 6048 kfree(al); 6049 } 6050 6051 mutex_unlock(&slab_mutex); 6052 return 0; 6053 } 6054 6055 __initcall(slab_sysfs_init); 6056 #endif /* CONFIG_SYSFS */ 6057 6058 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 6059 static int slab_debugfs_show(struct seq_file *seq, void *v) 6060 { 6061 struct loc_track *t = seq->private; 6062 struct location *l; 6063 unsigned long idx; 6064 6065 idx = (unsigned long) t->idx; 6066 if (idx < t->count) { 6067 l = &t->loc[idx]; 6068 6069 seq_printf(seq, "%7ld ", l->count); 6070 6071 if (l->addr) 6072 seq_printf(seq, "%pS", (void *)l->addr); 6073 else 6074 seq_puts(seq, "<not-available>"); 6075 6076 if (l->sum_time != l->min_time) { 6077 seq_printf(seq, " age=%ld/%llu/%ld", 6078 l->min_time, div_u64(l->sum_time, l->count), 6079 l->max_time); 6080 } else 6081 seq_printf(seq, " age=%ld", l->min_time); 6082 6083 if (l->min_pid != l->max_pid) 6084 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 6085 else 6086 seq_printf(seq, " pid=%ld", 6087 l->min_pid); 6088 6089 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 6090 seq_printf(seq, " cpus=%*pbl", 6091 cpumask_pr_args(to_cpumask(l->cpus))); 6092 6093 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 6094 seq_printf(seq, " nodes=%*pbl", 6095 nodemask_pr_args(&l->nodes)); 6096 6097 #ifdef CONFIG_STACKDEPOT 6098 { 6099 depot_stack_handle_t handle; 6100 unsigned long *entries; 6101 unsigned int nr_entries, j; 6102 6103 handle = READ_ONCE(l->handle); 6104 if (handle) { 6105 nr_entries = stack_depot_fetch(handle, &entries); 6106 seq_puts(seq, "\n"); 6107 for (j = 0; j < nr_entries; j++) 6108 seq_printf(seq, " %pS\n", (void *)entries[j]); 6109 } 6110 } 6111 #endif 6112 seq_puts(seq, "\n"); 6113 } 6114 6115 if (!idx && !t->count) 6116 seq_puts(seq, "No data\n"); 6117 6118 return 0; 6119 } 6120 6121 static void slab_debugfs_stop(struct seq_file *seq, void *v) 6122 { 6123 } 6124 6125 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 6126 { 6127 struct loc_track *t = seq->private; 6128 6129 t->idx = ++(*ppos); 6130 if (*ppos <= t->count) 6131 return ppos; 6132 6133 return NULL; 6134 } 6135 6136 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 6137 { 6138 struct location *loc1 = (struct location *)a; 6139 struct location *loc2 = (struct location *)b; 6140 6141 if (loc1->count > loc2->count) 6142 return -1; 6143 else 6144 return 1; 6145 } 6146 6147 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 6148 { 6149 struct loc_track *t = seq->private; 6150 6151 t->idx = *ppos; 6152 return ppos; 6153 } 6154 6155 static const struct seq_operations slab_debugfs_sops = { 6156 .start = slab_debugfs_start, 6157 .next = slab_debugfs_next, 6158 .stop = slab_debugfs_stop, 6159 .show = slab_debugfs_show, 6160 }; 6161 6162 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 6163 { 6164 6165 struct kmem_cache_node *n; 6166 enum track_item alloc; 6167 int node; 6168 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 6169 sizeof(struct loc_track)); 6170 struct kmem_cache *s = file_inode(filep)->i_private; 6171 unsigned long *obj_map; 6172 6173 if (!t) 6174 return -ENOMEM; 6175 6176 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6177 if (!obj_map) { 6178 seq_release_private(inode, filep); 6179 return -ENOMEM; 6180 } 6181 6182 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 6183 alloc = TRACK_ALLOC; 6184 else 6185 alloc = TRACK_FREE; 6186 6187 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 6188 bitmap_free(obj_map); 6189 seq_release_private(inode, filep); 6190 return -ENOMEM; 6191 } 6192 6193 for_each_kmem_cache_node(s, node, n) { 6194 unsigned long flags; 6195 struct slab *slab; 6196 6197 if (!atomic_long_read(&n->nr_slabs)) 6198 continue; 6199 6200 spin_lock_irqsave(&n->list_lock, flags); 6201 list_for_each_entry(slab, &n->partial, slab_list) 6202 process_slab(t, s, slab, alloc, obj_map); 6203 list_for_each_entry(slab, &n->full, slab_list) 6204 process_slab(t, s, slab, alloc, obj_map); 6205 spin_unlock_irqrestore(&n->list_lock, flags); 6206 } 6207 6208 /* Sort locations by count */ 6209 sort_r(t->loc, t->count, sizeof(struct location), 6210 cmp_loc_by_count, NULL, NULL); 6211 6212 bitmap_free(obj_map); 6213 return 0; 6214 } 6215 6216 static int slab_debug_trace_release(struct inode *inode, struct file *file) 6217 { 6218 struct seq_file *seq = file->private_data; 6219 struct loc_track *t = seq->private; 6220 6221 free_loc_track(t); 6222 return seq_release_private(inode, file); 6223 } 6224 6225 static const struct file_operations slab_debugfs_fops = { 6226 .open = slab_debug_trace_open, 6227 .read = seq_read, 6228 .llseek = seq_lseek, 6229 .release = slab_debug_trace_release, 6230 }; 6231 6232 static void debugfs_slab_add(struct kmem_cache *s) 6233 { 6234 struct dentry *slab_cache_dir; 6235 6236 if (unlikely(!slab_debugfs_root)) 6237 return; 6238 6239 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 6240 6241 debugfs_create_file("alloc_traces", 0400, 6242 slab_cache_dir, s, &slab_debugfs_fops); 6243 6244 debugfs_create_file("free_traces", 0400, 6245 slab_cache_dir, s, &slab_debugfs_fops); 6246 } 6247 6248 void debugfs_slab_release(struct kmem_cache *s) 6249 { 6250 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root)); 6251 } 6252 6253 static int __init slab_debugfs_init(void) 6254 { 6255 struct kmem_cache *s; 6256 6257 slab_debugfs_root = debugfs_create_dir("slab", NULL); 6258 6259 list_for_each_entry(s, &slab_caches, list) 6260 if (s->flags & SLAB_STORE_USER) 6261 debugfs_slab_add(s); 6262 6263 return 0; 6264 6265 } 6266 __initcall(slab_debugfs_init); 6267 #endif 6268 /* 6269 * The /proc/slabinfo ABI 6270 */ 6271 #ifdef CONFIG_SLUB_DEBUG 6272 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 6273 { 6274 unsigned long nr_slabs = 0; 6275 unsigned long nr_objs = 0; 6276 unsigned long nr_free = 0; 6277 int node; 6278 struct kmem_cache_node *n; 6279 6280 for_each_kmem_cache_node(s, node, n) { 6281 nr_slabs += node_nr_slabs(n); 6282 nr_objs += node_nr_objs(n); 6283 nr_free += count_partial(n, count_free); 6284 } 6285 6286 sinfo->active_objs = nr_objs - nr_free; 6287 sinfo->num_objs = nr_objs; 6288 sinfo->active_slabs = nr_slabs; 6289 sinfo->num_slabs = nr_slabs; 6290 sinfo->objects_per_slab = oo_objects(s->oo); 6291 sinfo->cache_order = oo_order(s->oo); 6292 } 6293 6294 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 6295 { 6296 } 6297 6298 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6299 size_t count, loff_t *ppos) 6300 { 6301 return -EIO; 6302 } 6303 #endif /* CONFIG_SLUB_DEBUG */ 6304