1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/kmemcheck.h> 22 #include <linux/cpu.h> 23 #include <linux/cpuset.h> 24 #include <linux/mempolicy.h> 25 #include <linux/ctype.h> 26 #include <linux/debugobjects.h> 27 #include <linux/kallsyms.h> 28 #include <linux/memory.h> 29 #include <linux/math64.h> 30 #include <linux/fault-inject.h> 31 #include <linux/stacktrace.h> 32 33 #include <trace/events/kmem.h> 34 35 /* 36 * Lock order: 37 * 1. slub_lock (Global Semaphore) 38 * 2. node->list_lock 39 * 3. slab_lock(page) (Only on some arches and for debugging) 40 * 41 * slub_lock 42 * 43 * The role of the slub_lock is to protect the list of all the slabs 44 * and to synchronize major metadata changes to slab cache structures. 45 * 46 * The slab_lock is only used for debugging and on arches that do not 47 * have the ability to do a cmpxchg_double. It only protects the second 48 * double word in the page struct. Meaning 49 * A. page->freelist -> List of object free in a page 50 * B. page->counters -> Counters of objects 51 * C. page->frozen -> frozen state 52 * 53 * If a slab is frozen then it is exempt from list management. It is not 54 * on any list. The processor that froze the slab is the one who can 55 * perform list operations on the page. Other processors may put objects 56 * onto the freelist but the processor that froze the slab is the only 57 * one that can retrieve the objects from the page's freelist. 58 * 59 * The list_lock protects the partial and full list on each node and 60 * the partial slab counter. If taken then no new slabs may be added or 61 * removed from the lists nor make the number of partial slabs be modified. 62 * (Note that the total number of slabs is an atomic value that may be 63 * modified without taking the list lock). 64 * 65 * The list_lock is a centralized lock and thus we avoid taking it as 66 * much as possible. As long as SLUB does not have to handle partial 67 * slabs, operations can continue without any centralized lock. F.e. 68 * allocating a long series of objects that fill up slabs does not require 69 * the list lock. 70 * Interrupts are disabled during allocation and deallocation in order to 71 * make the slab allocator safe to use in the context of an irq. In addition 72 * interrupts are disabled to ensure that the processor does not change 73 * while handling per_cpu slabs, due to kernel preemption. 74 * 75 * SLUB assigns one slab for allocation to each processor. 76 * Allocations only occur from these slabs called cpu slabs. 77 * 78 * Slabs with free elements are kept on a partial list and during regular 79 * operations no list for full slabs is used. If an object in a full slab is 80 * freed then the slab will show up again on the partial lists. 81 * We track full slabs for debugging purposes though because otherwise we 82 * cannot scan all objects. 83 * 84 * Slabs are freed when they become empty. Teardown and setup is 85 * minimal so we rely on the page allocators per cpu caches for 86 * fast frees and allocs. 87 * 88 * Overloading of page flags that are otherwise used for LRU management. 89 * 90 * PageActive The slab is frozen and exempt from list processing. 91 * This means that the slab is dedicated to a purpose 92 * such as satisfying allocations for a specific 93 * processor. Objects may be freed in the slab while 94 * it is frozen but slab_free will then skip the usual 95 * list operations. It is up to the processor holding 96 * the slab to integrate the slab into the slab lists 97 * when the slab is no longer needed. 98 * 99 * One use of this flag is to mark slabs that are 100 * used for allocations. Then such a slab becomes a cpu 101 * slab. The cpu slab may be equipped with an additional 102 * freelist that allows lockless access to 103 * free objects in addition to the regular freelist 104 * that requires the slab lock. 105 * 106 * PageError Slab requires special handling due to debug 107 * options set. This moves slab handling out of 108 * the fast path and disables lockless freelists. 109 */ 110 111 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 112 SLAB_TRACE | SLAB_DEBUG_FREE) 113 114 static inline int kmem_cache_debug(struct kmem_cache *s) 115 { 116 #ifdef CONFIG_SLUB_DEBUG 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 118 #else 119 return 0; 120 #endif 121 } 122 123 /* 124 * Issues still to be resolved: 125 * 126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 127 * 128 * - Variable sizing of the per node arrays 129 */ 130 131 /* Enable to test recovery from slab corruption on boot */ 132 #undef SLUB_RESILIENCY_TEST 133 134 /* Enable to log cmpxchg failures */ 135 #undef SLUB_DEBUG_CMPXCHG 136 137 /* 138 * Mininum number of partial slabs. These will be left on the partial 139 * lists even if they are empty. kmem_cache_shrink may reclaim them. 140 */ 141 #define MIN_PARTIAL 5 142 143 /* 144 * Maximum number of desirable partial slabs. 145 * The existence of more partial slabs makes kmem_cache_shrink 146 * sort the partial list by the number of objects in the. 147 */ 148 #define MAX_PARTIAL 10 149 150 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 151 SLAB_POISON | SLAB_STORE_USER) 152 153 /* 154 * Debugging flags that require metadata to be stored in the slab. These get 155 * disabled when slub_debug=O is used and a cache's min order increases with 156 * metadata. 157 */ 158 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 159 160 /* 161 * Set of flags that will prevent slab merging 162 */ 163 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 165 SLAB_FAILSLAB) 166 167 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 168 SLAB_CACHE_DMA | SLAB_NOTRACK) 169 170 #define OO_SHIFT 16 171 #define OO_MASK ((1 << OO_SHIFT) - 1) 172 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 173 174 /* Internal SLUB flags */ 175 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 176 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 177 178 static int kmem_size = sizeof(struct kmem_cache); 179 180 #ifdef CONFIG_SMP 181 static struct notifier_block slab_notifier; 182 #endif 183 184 static enum { 185 DOWN, /* No slab functionality available */ 186 PARTIAL, /* Kmem_cache_node works */ 187 UP, /* Everything works but does not show up in sysfs */ 188 SYSFS /* Sysfs up */ 189 } slab_state = DOWN; 190 191 /* A list of all slab caches on the system */ 192 static DECLARE_RWSEM(slub_lock); 193 static LIST_HEAD(slab_caches); 194 195 /* 196 * Tracking user of a slab. 197 */ 198 #define TRACK_ADDRS_COUNT 16 199 struct track { 200 unsigned long addr; /* Called from address */ 201 #ifdef CONFIG_STACKTRACE 202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 203 #endif 204 int cpu; /* Was running on cpu */ 205 int pid; /* Pid context */ 206 unsigned long when; /* When did the operation occur */ 207 }; 208 209 enum track_item { TRACK_ALLOC, TRACK_FREE }; 210 211 #ifdef CONFIG_SYSFS 212 static int sysfs_slab_add(struct kmem_cache *); 213 static int sysfs_slab_alias(struct kmem_cache *, const char *); 214 static void sysfs_slab_remove(struct kmem_cache *); 215 216 #else 217 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 218 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 219 { return 0; } 220 static inline void sysfs_slab_remove(struct kmem_cache *s) 221 { 222 kfree(s->name); 223 kfree(s); 224 } 225 226 #endif 227 228 static inline void stat(const struct kmem_cache *s, enum stat_item si) 229 { 230 #ifdef CONFIG_SLUB_STATS 231 __this_cpu_inc(s->cpu_slab->stat[si]); 232 #endif 233 } 234 235 /******************************************************************** 236 * Core slab cache functions 237 *******************************************************************/ 238 239 int slab_is_available(void) 240 { 241 return slab_state >= UP; 242 } 243 244 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 245 { 246 return s->node[node]; 247 } 248 249 /* Verify that a pointer has an address that is valid within a slab page */ 250 static inline int check_valid_pointer(struct kmem_cache *s, 251 struct page *page, const void *object) 252 { 253 void *base; 254 255 if (!object) 256 return 1; 257 258 base = page_address(page); 259 if (object < base || object >= base + page->objects * s->size || 260 (object - base) % s->size) { 261 return 0; 262 } 263 264 return 1; 265 } 266 267 static inline void *get_freepointer(struct kmem_cache *s, void *object) 268 { 269 return *(void **)(object + s->offset); 270 } 271 272 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 273 { 274 void *p; 275 276 #ifdef CONFIG_DEBUG_PAGEALLOC 277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 278 #else 279 p = get_freepointer(s, object); 280 #endif 281 return p; 282 } 283 284 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 285 { 286 *(void **)(object + s->offset) = fp; 287 } 288 289 /* Loop over all objects in a slab */ 290 #define for_each_object(__p, __s, __addr, __objects) \ 291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 292 __p += (__s)->size) 293 294 /* Determine object index from a given position */ 295 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 296 { 297 return (p - addr) / s->size; 298 } 299 300 static inline size_t slab_ksize(const struct kmem_cache *s) 301 { 302 #ifdef CONFIG_SLUB_DEBUG 303 /* 304 * Debugging requires use of the padding between object 305 * and whatever may come after it. 306 */ 307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 308 return s->objsize; 309 310 #endif 311 /* 312 * If we have the need to store the freelist pointer 313 * back there or track user information then we can 314 * only use the space before that information. 315 */ 316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 317 return s->inuse; 318 /* 319 * Else we can use all the padding etc for the allocation 320 */ 321 return s->size; 322 } 323 324 static inline int order_objects(int order, unsigned long size, int reserved) 325 { 326 return ((PAGE_SIZE << order) - reserved) / size; 327 } 328 329 static inline struct kmem_cache_order_objects oo_make(int order, 330 unsigned long size, int reserved) 331 { 332 struct kmem_cache_order_objects x = { 333 (order << OO_SHIFT) + order_objects(order, size, reserved) 334 }; 335 336 return x; 337 } 338 339 static inline int oo_order(struct kmem_cache_order_objects x) 340 { 341 return x.x >> OO_SHIFT; 342 } 343 344 static inline int oo_objects(struct kmem_cache_order_objects x) 345 { 346 return x.x & OO_MASK; 347 } 348 349 /* 350 * Per slab locking using the pagelock 351 */ 352 static __always_inline void slab_lock(struct page *page) 353 { 354 bit_spin_lock(PG_locked, &page->flags); 355 } 356 357 static __always_inline void slab_unlock(struct page *page) 358 { 359 __bit_spin_unlock(PG_locked, &page->flags); 360 } 361 362 /* Interrupts must be disabled (for the fallback code to work right) */ 363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 364 void *freelist_old, unsigned long counters_old, 365 void *freelist_new, unsigned long counters_new, 366 const char *n) 367 { 368 VM_BUG_ON(!irqs_disabled()); 369 #ifdef CONFIG_CMPXCHG_DOUBLE 370 if (s->flags & __CMPXCHG_DOUBLE) { 371 if (cmpxchg_double(&page->freelist, &page->counters, 372 freelist_old, counters_old, 373 freelist_new, counters_new)) 374 return 1; 375 } else 376 #endif 377 { 378 slab_lock(page); 379 if (page->freelist == freelist_old && page->counters == counters_old) { 380 page->freelist = freelist_new; 381 page->counters = counters_new; 382 slab_unlock(page); 383 return 1; 384 } 385 slab_unlock(page); 386 } 387 388 cpu_relax(); 389 stat(s, CMPXCHG_DOUBLE_FAIL); 390 391 #ifdef SLUB_DEBUG_CMPXCHG 392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 393 #endif 394 395 return 0; 396 } 397 398 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 399 void *freelist_old, unsigned long counters_old, 400 void *freelist_new, unsigned long counters_new, 401 const char *n) 402 { 403 #ifdef CONFIG_CMPXCHG_DOUBLE 404 if (s->flags & __CMPXCHG_DOUBLE) { 405 if (cmpxchg_double(&page->freelist, &page->counters, 406 freelist_old, counters_old, 407 freelist_new, counters_new)) 408 return 1; 409 } else 410 #endif 411 { 412 unsigned long flags; 413 414 local_irq_save(flags); 415 slab_lock(page); 416 if (page->freelist == freelist_old && page->counters == counters_old) { 417 page->freelist = freelist_new; 418 page->counters = counters_new; 419 slab_unlock(page); 420 local_irq_restore(flags); 421 return 1; 422 } 423 slab_unlock(page); 424 local_irq_restore(flags); 425 } 426 427 cpu_relax(); 428 stat(s, CMPXCHG_DOUBLE_FAIL); 429 430 #ifdef SLUB_DEBUG_CMPXCHG 431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name); 432 #endif 433 434 return 0; 435 } 436 437 #ifdef CONFIG_SLUB_DEBUG 438 /* 439 * Determine a map of object in use on a page. 440 * 441 * Node listlock must be held to guarantee that the page does 442 * not vanish from under us. 443 */ 444 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 445 { 446 void *p; 447 void *addr = page_address(page); 448 449 for (p = page->freelist; p; p = get_freepointer(s, p)) 450 set_bit(slab_index(p, s, addr), map); 451 } 452 453 /* 454 * Debug settings: 455 */ 456 #ifdef CONFIG_SLUB_DEBUG_ON 457 static int slub_debug = DEBUG_DEFAULT_FLAGS; 458 #else 459 static int slub_debug; 460 #endif 461 462 static char *slub_debug_slabs; 463 static int disable_higher_order_debug; 464 465 /* 466 * Object debugging 467 */ 468 static void print_section(char *text, u8 *addr, unsigned int length) 469 { 470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 471 length, 1); 472 } 473 474 static struct track *get_track(struct kmem_cache *s, void *object, 475 enum track_item alloc) 476 { 477 struct track *p; 478 479 if (s->offset) 480 p = object + s->offset + sizeof(void *); 481 else 482 p = object + s->inuse; 483 484 return p + alloc; 485 } 486 487 static void set_track(struct kmem_cache *s, void *object, 488 enum track_item alloc, unsigned long addr) 489 { 490 struct track *p = get_track(s, object, alloc); 491 492 if (addr) { 493 #ifdef CONFIG_STACKTRACE 494 struct stack_trace trace; 495 int i; 496 497 trace.nr_entries = 0; 498 trace.max_entries = TRACK_ADDRS_COUNT; 499 trace.entries = p->addrs; 500 trace.skip = 3; 501 save_stack_trace(&trace); 502 503 /* See rant in lockdep.c */ 504 if (trace.nr_entries != 0 && 505 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 506 trace.nr_entries--; 507 508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 509 p->addrs[i] = 0; 510 #endif 511 p->addr = addr; 512 p->cpu = smp_processor_id(); 513 p->pid = current->pid; 514 p->when = jiffies; 515 } else 516 memset(p, 0, sizeof(struct track)); 517 } 518 519 static void init_tracking(struct kmem_cache *s, void *object) 520 { 521 if (!(s->flags & SLAB_STORE_USER)) 522 return; 523 524 set_track(s, object, TRACK_FREE, 0UL); 525 set_track(s, object, TRACK_ALLOC, 0UL); 526 } 527 528 static void print_track(const char *s, struct track *t) 529 { 530 if (!t->addr) 531 return; 532 533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 535 #ifdef CONFIG_STACKTRACE 536 { 537 int i; 538 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 539 if (t->addrs[i]) 540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]); 541 else 542 break; 543 } 544 #endif 545 } 546 547 static void print_tracking(struct kmem_cache *s, void *object) 548 { 549 if (!(s->flags & SLAB_STORE_USER)) 550 return; 551 552 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 553 print_track("Freed", get_track(s, object, TRACK_FREE)); 554 } 555 556 static void print_page_info(struct page *page) 557 { 558 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 559 page, page->objects, page->inuse, page->freelist, page->flags); 560 561 } 562 563 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 564 { 565 va_list args; 566 char buf[100]; 567 568 va_start(args, fmt); 569 vsnprintf(buf, sizeof(buf), fmt, args); 570 va_end(args); 571 printk(KERN_ERR "========================================" 572 "=====================================\n"); 573 printk(KERN_ERR "BUG %s: %s\n", s->name, buf); 574 printk(KERN_ERR "----------------------------------------" 575 "-------------------------------------\n\n"); 576 } 577 578 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 579 { 580 va_list args; 581 char buf[100]; 582 583 va_start(args, fmt); 584 vsnprintf(buf, sizeof(buf), fmt, args); 585 va_end(args); 586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf); 587 } 588 589 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 590 { 591 unsigned int off; /* Offset of last byte */ 592 u8 *addr = page_address(page); 593 594 print_tracking(s, p); 595 596 print_page_info(page); 597 598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 599 p, p - addr, get_freepointer(s, p)); 600 601 if (p > addr + 16) 602 print_section("Bytes b4 ", p - 16, 16); 603 604 print_section("Object ", p, min_t(unsigned long, s->objsize, 605 PAGE_SIZE)); 606 if (s->flags & SLAB_RED_ZONE) 607 print_section("Redzone ", p + s->objsize, 608 s->inuse - s->objsize); 609 610 if (s->offset) 611 off = s->offset + sizeof(void *); 612 else 613 off = s->inuse; 614 615 if (s->flags & SLAB_STORE_USER) 616 off += 2 * sizeof(struct track); 617 618 if (off != s->size) 619 /* Beginning of the filler is the free pointer */ 620 print_section("Padding ", p + off, s->size - off); 621 622 dump_stack(); 623 } 624 625 static void object_err(struct kmem_cache *s, struct page *page, 626 u8 *object, char *reason) 627 { 628 slab_bug(s, "%s", reason); 629 print_trailer(s, page, object); 630 } 631 632 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) 633 { 634 va_list args; 635 char buf[100]; 636 637 va_start(args, fmt); 638 vsnprintf(buf, sizeof(buf), fmt, args); 639 va_end(args); 640 slab_bug(s, "%s", buf); 641 print_page_info(page); 642 dump_stack(); 643 } 644 645 static void init_object(struct kmem_cache *s, void *object, u8 val) 646 { 647 u8 *p = object; 648 649 if (s->flags & __OBJECT_POISON) { 650 memset(p, POISON_FREE, s->objsize - 1); 651 p[s->objsize - 1] = POISON_END; 652 } 653 654 if (s->flags & SLAB_RED_ZONE) 655 memset(p + s->objsize, val, s->inuse - s->objsize); 656 } 657 658 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 659 void *from, void *to) 660 { 661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 662 memset(from, data, to - from); 663 } 664 665 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 666 u8 *object, char *what, 667 u8 *start, unsigned int value, unsigned int bytes) 668 { 669 u8 *fault; 670 u8 *end; 671 672 fault = memchr_inv(start, value, bytes); 673 if (!fault) 674 return 1; 675 676 end = start + bytes; 677 while (end > fault && end[-1] == value) 678 end--; 679 680 slab_bug(s, "%s overwritten", what); 681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 682 fault, end - 1, fault[0], value); 683 print_trailer(s, page, object); 684 685 restore_bytes(s, what, value, fault, end); 686 return 0; 687 } 688 689 /* 690 * Object layout: 691 * 692 * object address 693 * Bytes of the object to be managed. 694 * If the freepointer may overlay the object then the free 695 * pointer is the first word of the object. 696 * 697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 698 * 0xa5 (POISON_END) 699 * 700 * object + s->objsize 701 * Padding to reach word boundary. This is also used for Redzoning. 702 * Padding is extended by another word if Redzoning is enabled and 703 * objsize == inuse. 704 * 705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 706 * 0xcc (RED_ACTIVE) for objects in use. 707 * 708 * object + s->inuse 709 * Meta data starts here. 710 * 711 * A. Free pointer (if we cannot overwrite object on free) 712 * B. Tracking data for SLAB_STORE_USER 713 * C. Padding to reach required alignment boundary or at mininum 714 * one word if debugging is on to be able to detect writes 715 * before the word boundary. 716 * 717 * Padding is done using 0x5a (POISON_INUSE) 718 * 719 * object + s->size 720 * Nothing is used beyond s->size. 721 * 722 * If slabcaches are merged then the objsize and inuse boundaries are mostly 723 * ignored. And therefore no slab options that rely on these boundaries 724 * may be used with merged slabcaches. 725 */ 726 727 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 728 { 729 unsigned long off = s->inuse; /* The end of info */ 730 731 if (s->offset) 732 /* Freepointer is placed after the object. */ 733 off += sizeof(void *); 734 735 if (s->flags & SLAB_STORE_USER) 736 /* We also have user information there */ 737 off += 2 * sizeof(struct track); 738 739 if (s->size == off) 740 return 1; 741 742 return check_bytes_and_report(s, page, p, "Object padding", 743 p + off, POISON_INUSE, s->size - off); 744 } 745 746 /* Check the pad bytes at the end of a slab page */ 747 static int slab_pad_check(struct kmem_cache *s, struct page *page) 748 { 749 u8 *start; 750 u8 *fault; 751 u8 *end; 752 int length; 753 int remainder; 754 755 if (!(s->flags & SLAB_POISON)) 756 return 1; 757 758 start = page_address(page); 759 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 760 end = start + length; 761 remainder = length % s->size; 762 if (!remainder) 763 return 1; 764 765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 766 if (!fault) 767 return 1; 768 while (end > fault && end[-1] == POISON_INUSE) 769 end--; 770 771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 772 print_section("Padding ", end - remainder, remainder); 773 774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 775 return 0; 776 } 777 778 static int check_object(struct kmem_cache *s, struct page *page, 779 void *object, u8 val) 780 { 781 u8 *p = object; 782 u8 *endobject = object + s->objsize; 783 784 if (s->flags & SLAB_RED_ZONE) { 785 if (!check_bytes_and_report(s, page, object, "Redzone", 786 endobject, val, s->inuse - s->objsize)) 787 return 0; 788 } else { 789 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { 790 check_bytes_and_report(s, page, p, "Alignment padding", 791 endobject, POISON_INUSE, s->inuse - s->objsize); 792 } 793 } 794 795 if (s->flags & SLAB_POISON) { 796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 797 (!check_bytes_and_report(s, page, p, "Poison", p, 798 POISON_FREE, s->objsize - 1) || 799 !check_bytes_and_report(s, page, p, "Poison", 800 p + s->objsize - 1, POISON_END, 1))) 801 return 0; 802 /* 803 * check_pad_bytes cleans up on its own. 804 */ 805 check_pad_bytes(s, page, p); 806 } 807 808 if (!s->offset && val == SLUB_RED_ACTIVE) 809 /* 810 * Object and freepointer overlap. Cannot check 811 * freepointer while object is allocated. 812 */ 813 return 1; 814 815 /* Check free pointer validity */ 816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 817 object_err(s, page, p, "Freepointer corrupt"); 818 /* 819 * No choice but to zap it and thus lose the remainder 820 * of the free objects in this slab. May cause 821 * another error because the object count is now wrong. 822 */ 823 set_freepointer(s, p, NULL); 824 return 0; 825 } 826 return 1; 827 } 828 829 static int check_slab(struct kmem_cache *s, struct page *page) 830 { 831 int maxobj; 832 833 VM_BUG_ON(!irqs_disabled()); 834 835 if (!PageSlab(page)) { 836 slab_err(s, page, "Not a valid slab page"); 837 return 0; 838 } 839 840 maxobj = order_objects(compound_order(page), s->size, s->reserved); 841 if (page->objects > maxobj) { 842 slab_err(s, page, "objects %u > max %u", 843 s->name, page->objects, maxobj); 844 return 0; 845 } 846 if (page->inuse > page->objects) { 847 slab_err(s, page, "inuse %u > max %u", 848 s->name, page->inuse, page->objects); 849 return 0; 850 } 851 /* Slab_pad_check fixes things up after itself */ 852 slab_pad_check(s, page); 853 return 1; 854 } 855 856 /* 857 * Determine if a certain object on a page is on the freelist. Must hold the 858 * slab lock to guarantee that the chains are in a consistent state. 859 */ 860 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 861 { 862 int nr = 0; 863 void *fp; 864 void *object = NULL; 865 unsigned long max_objects; 866 867 fp = page->freelist; 868 while (fp && nr <= page->objects) { 869 if (fp == search) 870 return 1; 871 if (!check_valid_pointer(s, page, fp)) { 872 if (object) { 873 object_err(s, page, object, 874 "Freechain corrupt"); 875 set_freepointer(s, object, NULL); 876 break; 877 } else { 878 slab_err(s, page, "Freepointer corrupt"); 879 page->freelist = NULL; 880 page->inuse = page->objects; 881 slab_fix(s, "Freelist cleared"); 882 return 0; 883 } 884 break; 885 } 886 object = fp; 887 fp = get_freepointer(s, object); 888 nr++; 889 } 890 891 max_objects = order_objects(compound_order(page), s->size, s->reserved); 892 if (max_objects > MAX_OBJS_PER_PAGE) 893 max_objects = MAX_OBJS_PER_PAGE; 894 895 if (page->objects != max_objects) { 896 slab_err(s, page, "Wrong number of objects. Found %d but " 897 "should be %d", page->objects, max_objects); 898 page->objects = max_objects; 899 slab_fix(s, "Number of objects adjusted."); 900 } 901 if (page->inuse != page->objects - nr) { 902 slab_err(s, page, "Wrong object count. Counter is %d but " 903 "counted were %d", page->inuse, page->objects - nr); 904 page->inuse = page->objects - nr; 905 slab_fix(s, "Object count adjusted."); 906 } 907 return search == NULL; 908 } 909 910 static void trace(struct kmem_cache *s, struct page *page, void *object, 911 int alloc) 912 { 913 if (s->flags & SLAB_TRACE) { 914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 915 s->name, 916 alloc ? "alloc" : "free", 917 object, page->inuse, 918 page->freelist); 919 920 if (!alloc) 921 print_section("Object ", (void *)object, s->objsize); 922 923 dump_stack(); 924 } 925 } 926 927 /* 928 * Hooks for other subsystems that check memory allocations. In a typical 929 * production configuration these hooks all should produce no code at all. 930 */ 931 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 932 { 933 flags &= gfp_allowed_mask; 934 lockdep_trace_alloc(flags); 935 might_sleep_if(flags & __GFP_WAIT); 936 937 return should_failslab(s->objsize, flags, s->flags); 938 } 939 940 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) 941 { 942 flags &= gfp_allowed_mask; 943 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 944 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); 945 } 946 947 static inline void slab_free_hook(struct kmem_cache *s, void *x) 948 { 949 kmemleak_free_recursive(x, s->flags); 950 951 /* 952 * Trouble is that we may no longer disable interupts in the fast path 953 * So in order to make the debug calls that expect irqs to be 954 * disabled we need to disable interrupts temporarily. 955 */ 956 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 957 { 958 unsigned long flags; 959 960 local_irq_save(flags); 961 kmemcheck_slab_free(s, x, s->objsize); 962 debug_check_no_locks_freed(x, s->objsize); 963 local_irq_restore(flags); 964 } 965 #endif 966 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 967 debug_check_no_obj_freed(x, s->objsize); 968 } 969 970 /* 971 * Tracking of fully allocated slabs for debugging purposes. 972 * 973 * list_lock must be held. 974 */ 975 static void add_full(struct kmem_cache *s, 976 struct kmem_cache_node *n, struct page *page) 977 { 978 if (!(s->flags & SLAB_STORE_USER)) 979 return; 980 981 list_add(&page->lru, &n->full); 982 } 983 984 /* 985 * list_lock must be held. 986 */ 987 static void remove_full(struct kmem_cache *s, struct page *page) 988 { 989 if (!(s->flags & SLAB_STORE_USER)) 990 return; 991 992 list_del(&page->lru); 993 } 994 995 /* Tracking of the number of slabs for debugging purposes */ 996 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 997 { 998 struct kmem_cache_node *n = get_node(s, node); 999 1000 return atomic_long_read(&n->nr_slabs); 1001 } 1002 1003 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1004 { 1005 return atomic_long_read(&n->nr_slabs); 1006 } 1007 1008 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1009 { 1010 struct kmem_cache_node *n = get_node(s, node); 1011 1012 /* 1013 * May be called early in order to allocate a slab for the 1014 * kmem_cache_node structure. Solve the chicken-egg 1015 * dilemma by deferring the increment of the count during 1016 * bootstrap (see early_kmem_cache_node_alloc). 1017 */ 1018 if (n) { 1019 atomic_long_inc(&n->nr_slabs); 1020 atomic_long_add(objects, &n->total_objects); 1021 } 1022 } 1023 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1024 { 1025 struct kmem_cache_node *n = get_node(s, node); 1026 1027 atomic_long_dec(&n->nr_slabs); 1028 atomic_long_sub(objects, &n->total_objects); 1029 } 1030 1031 /* Object debug checks for alloc/free paths */ 1032 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1033 void *object) 1034 { 1035 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1036 return; 1037 1038 init_object(s, object, SLUB_RED_INACTIVE); 1039 init_tracking(s, object); 1040 } 1041 1042 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page, 1043 void *object, unsigned long addr) 1044 { 1045 if (!check_slab(s, page)) 1046 goto bad; 1047 1048 if (!check_valid_pointer(s, page, object)) { 1049 object_err(s, page, object, "Freelist Pointer check fails"); 1050 goto bad; 1051 } 1052 1053 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1054 goto bad; 1055 1056 /* Success perform special debug activities for allocs */ 1057 if (s->flags & SLAB_STORE_USER) 1058 set_track(s, object, TRACK_ALLOC, addr); 1059 trace(s, page, object, 1); 1060 init_object(s, object, SLUB_RED_ACTIVE); 1061 return 1; 1062 1063 bad: 1064 if (PageSlab(page)) { 1065 /* 1066 * If this is a slab page then lets do the best we can 1067 * to avoid issues in the future. Marking all objects 1068 * as used avoids touching the remaining objects. 1069 */ 1070 slab_fix(s, "Marking all objects used"); 1071 page->inuse = page->objects; 1072 page->freelist = NULL; 1073 } 1074 return 0; 1075 } 1076 1077 static noinline int free_debug_processing(struct kmem_cache *s, 1078 struct page *page, void *object, unsigned long addr) 1079 { 1080 unsigned long flags; 1081 int rc = 0; 1082 1083 local_irq_save(flags); 1084 slab_lock(page); 1085 1086 if (!check_slab(s, page)) 1087 goto fail; 1088 1089 if (!check_valid_pointer(s, page, object)) { 1090 slab_err(s, page, "Invalid object pointer 0x%p", object); 1091 goto fail; 1092 } 1093 1094 if (on_freelist(s, page, object)) { 1095 object_err(s, page, object, "Object already free"); 1096 goto fail; 1097 } 1098 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1100 goto out; 1101 1102 if (unlikely(s != page->slab)) { 1103 if (!PageSlab(page)) { 1104 slab_err(s, page, "Attempt to free object(0x%p) " 1105 "outside of slab", object); 1106 } else if (!page->slab) { 1107 printk(KERN_ERR 1108 "SLUB <none>: no slab for object 0x%p.\n", 1109 object); 1110 dump_stack(); 1111 } else 1112 object_err(s, page, object, 1113 "page slab pointer corrupt."); 1114 goto fail; 1115 } 1116 1117 if (s->flags & SLAB_STORE_USER) 1118 set_track(s, object, TRACK_FREE, addr); 1119 trace(s, page, object, 0); 1120 init_object(s, object, SLUB_RED_INACTIVE); 1121 rc = 1; 1122 out: 1123 slab_unlock(page); 1124 local_irq_restore(flags); 1125 return rc; 1126 1127 fail: 1128 slab_fix(s, "Object at 0x%p not freed", object); 1129 goto out; 1130 } 1131 1132 static int __init setup_slub_debug(char *str) 1133 { 1134 slub_debug = DEBUG_DEFAULT_FLAGS; 1135 if (*str++ != '=' || !*str) 1136 /* 1137 * No options specified. Switch on full debugging. 1138 */ 1139 goto out; 1140 1141 if (*str == ',') 1142 /* 1143 * No options but restriction on slabs. This means full 1144 * debugging for slabs matching a pattern. 1145 */ 1146 goto check_slabs; 1147 1148 if (tolower(*str) == 'o') { 1149 /* 1150 * Avoid enabling debugging on caches if its minimum order 1151 * would increase as a result. 1152 */ 1153 disable_higher_order_debug = 1; 1154 goto out; 1155 } 1156 1157 slub_debug = 0; 1158 if (*str == '-') 1159 /* 1160 * Switch off all debugging measures. 1161 */ 1162 goto out; 1163 1164 /* 1165 * Determine which debug features should be switched on 1166 */ 1167 for (; *str && *str != ','; str++) { 1168 switch (tolower(*str)) { 1169 case 'f': 1170 slub_debug |= SLAB_DEBUG_FREE; 1171 break; 1172 case 'z': 1173 slub_debug |= SLAB_RED_ZONE; 1174 break; 1175 case 'p': 1176 slub_debug |= SLAB_POISON; 1177 break; 1178 case 'u': 1179 slub_debug |= SLAB_STORE_USER; 1180 break; 1181 case 't': 1182 slub_debug |= SLAB_TRACE; 1183 break; 1184 case 'a': 1185 slub_debug |= SLAB_FAILSLAB; 1186 break; 1187 default: 1188 printk(KERN_ERR "slub_debug option '%c' " 1189 "unknown. skipped\n", *str); 1190 } 1191 } 1192 1193 check_slabs: 1194 if (*str == ',') 1195 slub_debug_slabs = str + 1; 1196 out: 1197 return 1; 1198 } 1199 1200 __setup("slub_debug", setup_slub_debug); 1201 1202 static unsigned long kmem_cache_flags(unsigned long objsize, 1203 unsigned long flags, const char *name, 1204 void (*ctor)(void *)) 1205 { 1206 /* 1207 * Enable debugging if selected on the kernel commandline. 1208 */ 1209 if (slub_debug && (!slub_debug_slabs || 1210 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))) 1211 flags |= slub_debug; 1212 1213 return flags; 1214 } 1215 #else 1216 static inline void setup_object_debug(struct kmem_cache *s, 1217 struct page *page, void *object) {} 1218 1219 static inline int alloc_debug_processing(struct kmem_cache *s, 1220 struct page *page, void *object, unsigned long addr) { return 0; } 1221 1222 static inline int free_debug_processing(struct kmem_cache *s, 1223 struct page *page, void *object, unsigned long addr) { return 0; } 1224 1225 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1226 { return 1; } 1227 static inline int check_object(struct kmem_cache *s, struct page *page, 1228 void *object, u8 val) { return 1; } 1229 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1230 struct page *page) {} 1231 static inline void remove_full(struct kmem_cache *s, struct page *page) {} 1232 static inline unsigned long kmem_cache_flags(unsigned long objsize, 1233 unsigned long flags, const char *name, 1234 void (*ctor)(void *)) 1235 { 1236 return flags; 1237 } 1238 #define slub_debug 0 1239 1240 #define disable_higher_order_debug 0 1241 1242 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1243 { return 0; } 1244 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1245 { return 0; } 1246 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1247 int objects) {} 1248 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1249 int objects) {} 1250 1251 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1252 { return 0; } 1253 1254 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1255 void *object) {} 1256 1257 static inline void slab_free_hook(struct kmem_cache *s, void *x) {} 1258 1259 #endif /* CONFIG_SLUB_DEBUG */ 1260 1261 /* 1262 * Slab allocation and freeing 1263 */ 1264 static inline struct page *alloc_slab_page(gfp_t flags, int node, 1265 struct kmem_cache_order_objects oo) 1266 { 1267 int order = oo_order(oo); 1268 1269 flags |= __GFP_NOTRACK; 1270 1271 if (node == NUMA_NO_NODE) 1272 return alloc_pages(flags, order); 1273 else 1274 return alloc_pages_exact_node(node, flags, order); 1275 } 1276 1277 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1278 { 1279 struct page *page; 1280 struct kmem_cache_order_objects oo = s->oo; 1281 gfp_t alloc_gfp; 1282 1283 flags &= gfp_allowed_mask; 1284 1285 if (flags & __GFP_WAIT) 1286 local_irq_enable(); 1287 1288 flags |= s->allocflags; 1289 1290 /* 1291 * Let the initial higher-order allocation fail under memory pressure 1292 * so we fall-back to the minimum order allocation. 1293 */ 1294 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1295 1296 page = alloc_slab_page(alloc_gfp, node, oo); 1297 if (unlikely(!page)) { 1298 oo = s->min; 1299 /* 1300 * Allocation may have failed due to fragmentation. 1301 * Try a lower order alloc if possible 1302 */ 1303 page = alloc_slab_page(flags, node, oo); 1304 1305 if (page) 1306 stat(s, ORDER_FALLBACK); 1307 } 1308 1309 if (flags & __GFP_WAIT) 1310 local_irq_disable(); 1311 1312 if (!page) 1313 return NULL; 1314 1315 if (kmemcheck_enabled 1316 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1317 int pages = 1 << oo_order(oo); 1318 1319 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node); 1320 1321 /* 1322 * Objects from caches that have a constructor don't get 1323 * cleared when they're allocated, so we need to do it here. 1324 */ 1325 if (s->ctor) 1326 kmemcheck_mark_uninitialized_pages(page, pages); 1327 else 1328 kmemcheck_mark_unallocated_pages(page, pages); 1329 } 1330 1331 page->objects = oo_objects(oo); 1332 mod_zone_page_state(page_zone(page), 1333 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1334 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1335 1 << oo_order(oo)); 1336 1337 return page; 1338 } 1339 1340 static void setup_object(struct kmem_cache *s, struct page *page, 1341 void *object) 1342 { 1343 setup_object_debug(s, page, object); 1344 if (unlikely(s->ctor)) 1345 s->ctor(object); 1346 } 1347 1348 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1349 { 1350 struct page *page; 1351 void *start; 1352 void *last; 1353 void *p; 1354 1355 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1356 1357 page = allocate_slab(s, 1358 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1359 if (!page) 1360 goto out; 1361 1362 inc_slabs_node(s, page_to_nid(page), page->objects); 1363 page->slab = s; 1364 page->flags |= 1 << PG_slab; 1365 1366 start = page_address(page); 1367 1368 if (unlikely(s->flags & SLAB_POISON)) 1369 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); 1370 1371 last = start; 1372 for_each_object(p, s, start, page->objects) { 1373 setup_object(s, page, last); 1374 set_freepointer(s, last, p); 1375 last = p; 1376 } 1377 setup_object(s, page, last); 1378 set_freepointer(s, last, NULL); 1379 1380 page->freelist = start; 1381 page->inuse = page->objects; 1382 page->frozen = 1; 1383 out: 1384 return page; 1385 } 1386 1387 static void __free_slab(struct kmem_cache *s, struct page *page) 1388 { 1389 int order = compound_order(page); 1390 int pages = 1 << order; 1391 1392 if (kmem_cache_debug(s)) { 1393 void *p; 1394 1395 slab_pad_check(s, page); 1396 for_each_object(p, s, page_address(page), 1397 page->objects) 1398 check_object(s, page, p, SLUB_RED_INACTIVE); 1399 } 1400 1401 kmemcheck_free_shadow(page, compound_order(page)); 1402 1403 mod_zone_page_state(page_zone(page), 1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1406 -pages); 1407 1408 __ClearPageSlab(page); 1409 reset_page_mapcount(page); 1410 if (current->reclaim_state) 1411 current->reclaim_state->reclaimed_slab += pages; 1412 __free_pages(page, order); 1413 } 1414 1415 #define need_reserve_slab_rcu \ 1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1417 1418 static void rcu_free_slab(struct rcu_head *h) 1419 { 1420 struct page *page; 1421 1422 if (need_reserve_slab_rcu) 1423 page = virt_to_head_page(h); 1424 else 1425 page = container_of((struct list_head *)h, struct page, lru); 1426 1427 __free_slab(page->slab, page); 1428 } 1429 1430 static void free_slab(struct kmem_cache *s, struct page *page) 1431 { 1432 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1433 struct rcu_head *head; 1434 1435 if (need_reserve_slab_rcu) { 1436 int order = compound_order(page); 1437 int offset = (PAGE_SIZE << order) - s->reserved; 1438 1439 VM_BUG_ON(s->reserved != sizeof(*head)); 1440 head = page_address(page) + offset; 1441 } else { 1442 /* 1443 * RCU free overloads the RCU head over the LRU 1444 */ 1445 head = (void *)&page->lru; 1446 } 1447 1448 call_rcu(head, rcu_free_slab); 1449 } else 1450 __free_slab(s, page); 1451 } 1452 1453 static void discard_slab(struct kmem_cache *s, struct page *page) 1454 { 1455 dec_slabs_node(s, page_to_nid(page), page->objects); 1456 free_slab(s, page); 1457 } 1458 1459 /* 1460 * Management of partially allocated slabs. 1461 * 1462 * list_lock must be held. 1463 */ 1464 static inline void add_partial(struct kmem_cache_node *n, 1465 struct page *page, int tail) 1466 { 1467 n->nr_partial++; 1468 if (tail == DEACTIVATE_TO_TAIL) 1469 list_add_tail(&page->lru, &n->partial); 1470 else 1471 list_add(&page->lru, &n->partial); 1472 } 1473 1474 /* 1475 * list_lock must be held. 1476 */ 1477 static inline void remove_partial(struct kmem_cache_node *n, 1478 struct page *page) 1479 { 1480 list_del(&page->lru); 1481 n->nr_partial--; 1482 } 1483 1484 /* 1485 * Lock slab, remove from the partial list and put the object into the 1486 * per cpu freelist. 1487 * 1488 * Returns a list of objects or NULL if it fails. 1489 * 1490 * Must hold list_lock. 1491 */ 1492 static inline void *acquire_slab(struct kmem_cache *s, 1493 struct kmem_cache_node *n, struct page *page, 1494 int mode) 1495 { 1496 void *freelist; 1497 unsigned long counters; 1498 struct page new; 1499 1500 /* 1501 * Zap the freelist and set the frozen bit. 1502 * The old freelist is the list of objects for the 1503 * per cpu allocation list. 1504 */ 1505 do { 1506 freelist = page->freelist; 1507 counters = page->counters; 1508 new.counters = counters; 1509 if (mode) 1510 new.inuse = page->objects; 1511 1512 VM_BUG_ON(new.frozen); 1513 new.frozen = 1; 1514 1515 } while (!__cmpxchg_double_slab(s, page, 1516 freelist, counters, 1517 NULL, new.counters, 1518 "lock and freeze")); 1519 1520 remove_partial(n, page); 1521 return freelist; 1522 } 1523 1524 static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1525 1526 /* 1527 * Try to allocate a partial slab from a specific node. 1528 */ 1529 static void *get_partial_node(struct kmem_cache *s, 1530 struct kmem_cache_node *n, struct kmem_cache_cpu *c) 1531 { 1532 struct page *page, *page2; 1533 void *object = NULL; 1534 1535 /* 1536 * Racy check. If we mistakenly see no partial slabs then we 1537 * just allocate an empty slab. If we mistakenly try to get a 1538 * partial slab and there is none available then get_partials() 1539 * will return NULL. 1540 */ 1541 if (!n || !n->nr_partial) 1542 return NULL; 1543 1544 spin_lock(&n->list_lock); 1545 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1546 void *t = acquire_slab(s, n, page, object == NULL); 1547 int available; 1548 1549 if (!t) 1550 break; 1551 1552 if (!object) { 1553 c->page = page; 1554 c->node = page_to_nid(page); 1555 stat(s, ALLOC_FROM_PARTIAL); 1556 object = t; 1557 available = page->objects - page->inuse; 1558 } else { 1559 page->freelist = t; 1560 available = put_cpu_partial(s, page, 0); 1561 } 1562 if (kmem_cache_debug(s) || available > s->cpu_partial / 2) 1563 break; 1564 1565 } 1566 spin_unlock(&n->list_lock); 1567 return object; 1568 } 1569 1570 /* 1571 * Get a page from somewhere. Search in increasing NUMA distances. 1572 */ 1573 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags, 1574 struct kmem_cache_cpu *c) 1575 { 1576 #ifdef CONFIG_NUMA 1577 struct zonelist *zonelist; 1578 struct zoneref *z; 1579 struct zone *zone; 1580 enum zone_type high_zoneidx = gfp_zone(flags); 1581 void *object; 1582 1583 /* 1584 * The defrag ratio allows a configuration of the tradeoffs between 1585 * inter node defragmentation and node local allocations. A lower 1586 * defrag_ratio increases the tendency to do local allocations 1587 * instead of attempting to obtain partial slabs from other nodes. 1588 * 1589 * If the defrag_ratio is set to 0 then kmalloc() always 1590 * returns node local objects. If the ratio is higher then kmalloc() 1591 * may return off node objects because partial slabs are obtained 1592 * from other nodes and filled up. 1593 * 1594 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1595 * defrag_ratio = 1000) then every (well almost) allocation will 1596 * first attempt to defrag slab caches on other nodes. This means 1597 * scanning over all nodes to look for partial slabs which may be 1598 * expensive if we do it every time we are trying to find a slab 1599 * with available objects. 1600 */ 1601 if (!s->remote_node_defrag_ratio || 1602 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1603 return NULL; 1604 1605 get_mems_allowed(); 1606 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1607 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1608 struct kmem_cache_node *n; 1609 1610 n = get_node(s, zone_to_nid(zone)); 1611 1612 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1613 n->nr_partial > s->min_partial) { 1614 object = get_partial_node(s, n, c); 1615 if (object) { 1616 put_mems_allowed(); 1617 return object; 1618 } 1619 } 1620 } 1621 put_mems_allowed(); 1622 #endif 1623 return NULL; 1624 } 1625 1626 /* 1627 * Get a partial page, lock it and return it. 1628 */ 1629 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1630 struct kmem_cache_cpu *c) 1631 { 1632 void *object; 1633 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; 1634 1635 object = get_partial_node(s, get_node(s, searchnode), c); 1636 if (object || node != NUMA_NO_NODE) 1637 return object; 1638 1639 return get_any_partial(s, flags, c); 1640 } 1641 1642 #ifdef CONFIG_PREEMPT 1643 /* 1644 * Calculate the next globally unique transaction for disambiguiation 1645 * during cmpxchg. The transactions start with the cpu number and are then 1646 * incremented by CONFIG_NR_CPUS. 1647 */ 1648 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1649 #else 1650 /* 1651 * No preemption supported therefore also no need to check for 1652 * different cpus. 1653 */ 1654 #define TID_STEP 1 1655 #endif 1656 1657 static inline unsigned long next_tid(unsigned long tid) 1658 { 1659 return tid + TID_STEP; 1660 } 1661 1662 static inline unsigned int tid_to_cpu(unsigned long tid) 1663 { 1664 return tid % TID_STEP; 1665 } 1666 1667 static inline unsigned long tid_to_event(unsigned long tid) 1668 { 1669 return tid / TID_STEP; 1670 } 1671 1672 static inline unsigned int init_tid(int cpu) 1673 { 1674 return cpu; 1675 } 1676 1677 static inline void note_cmpxchg_failure(const char *n, 1678 const struct kmem_cache *s, unsigned long tid) 1679 { 1680 #ifdef SLUB_DEBUG_CMPXCHG 1681 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1682 1683 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); 1684 1685 #ifdef CONFIG_PREEMPT 1686 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1687 printk("due to cpu change %d -> %d\n", 1688 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1689 else 1690 #endif 1691 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1692 printk("due to cpu running other code. Event %ld->%ld\n", 1693 tid_to_event(tid), tid_to_event(actual_tid)); 1694 else 1695 printk("for unknown reason: actual=%lx was=%lx target=%lx\n", 1696 actual_tid, tid, next_tid(tid)); 1697 #endif 1698 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1699 } 1700 1701 void init_kmem_cache_cpus(struct kmem_cache *s) 1702 { 1703 int cpu; 1704 1705 for_each_possible_cpu(cpu) 1706 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1707 } 1708 1709 /* 1710 * Remove the cpu slab 1711 */ 1712 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1713 { 1714 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1715 struct page *page = c->page; 1716 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1717 int lock = 0; 1718 enum slab_modes l = M_NONE, m = M_NONE; 1719 void *freelist; 1720 void *nextfree; 1721 int tail = DEACTIVATE_TO_HEAD; 1722 struct page new; 1723 struct page old; 1724 1725 if (page->freelist) { 1726 stat(s, DEACTIVATE_REMOTE_FREES); 1727 tail = DEACTIVATE_TO_TAIL; 1728 } 1729 1730 c->tid = next_tid(c->tid); 1731 c->page = NULL; 1732 freelist = c->freelist; 1733 c->freelist = NULL; 1734 1735 /* 1736 * Stage one: Free all available per cpu objects back 1737 * to the page freelist while it is still frozen. Leave the 1738 * last one. 1739 * 1740 * There is no need to take the list->lock because the page 1741 * is still frozen. 1742 */ 1743 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1744 void *prior; 1745 unsigned long counters; 1746 1747 do { 1748 prior = page->freelist; 1749 counters = page->counters; 1750 set_freepointer(s, freelist, prior); 1751 new.counters = counters; 1752 new.inuse--; 1753 VM_BUG_ON(!new.frozen); 1754 1755 } while (!__cmpxchg_double_slab(s, page, 1756 prior, counters, 1757 freelist, new.counters, 1758 "drain percpu freelist")); 1759 1760 freelist = nextfree; 1761 } 1762 1763 /* 1764 * Stage two: Ensure that the page is unfrozen while the 1765 * list presence reflects the actual number of objects 1766 * during unfreeze. 1767 * 1768 * We setup the list membership and then perform a cmpxchg 1769 * with the count. If there is a mismatch then the page 1770 * is not unfrozen but the page is on the wrong list. 1771 * 1772 * Then we restart the process which may have to remove 1773 * the page from the list that we just put it on again 1774 * because the number of objects in the slab may have 1775 * changed. 1776 */ 1777 redo: 1778 1779 old.freelist = page->freelist; 1780 old.counters = page->counters; 1781 VM_BUG_ON(!old.frozen); 1782 1783 /* Determine target state of the slab */ 1784 new.counters = old.counters; 1785 if (freelist) { 1786 new.inuse--; 1787 set_freepointer(s, freelist, old.freelist); 1788 new.freelist = freelist; 1789 } else 1790 new.freelist = old.freelist; 1791 1792 new.frozen = 0; 1793 1794 if (!new.inuse && n->nr_partial > s->min_partial) 1795 m = M_FREE; 1796 else if (new.freelist) { 1797 m = M_PARTIAL; 1798 if (!lock) { 1799 lock = 1; 1800 /* 1801 * Taking the spinlock removes the possiblity 1802 * that acquire_slab() will see a slab page that 1803 * is frozen 1804 */ 1805 spin_lock(&n->list_lock); 1806 } 1807 } else { 1808 m = M_FULL; 1809 if (kmem_cache_debug(s) && !lock) { 1810 lock = 1; 1811 /* 1812 * This also ensures that the scanning of full 1813 * slabs from diagnostic functions will not see 1814 * any frozen slabs. 1815 */ 1816 spin_lock(&n->list_lock); 1817 } 1818 } 1819 1820 if (l != m) { 1821 1822 if (l == M_PARTIAL) 1823 1824 remove_partial(n, page); 1825 1826 else if (l == M_FULL) 1827 1828 remove_full(s, page); 1829 1830 if (m == M_PARTIAL) { 1831 1832 add_partial(n, page, tail); 1833 stat(s, tail); 1834 1835 } else if (m == M_FULL) { 1836 1837 stat(s, DEACTIVATE_FULL); 1838 add_full(s, n, page); 1839 1840 } 1841 } 1842 1843 l = m; 1844 if (!__cmpxchg_double_slab(s, page, 1845 old.freelist, old.counters, 1846 new.freelist, new.counters, 1847 "unfreezing slab")) 1848 goto redo; 1849 1850 if (lock) 1851 spin_unlock(&n->list_lock); 1852 1853 if (m == M_FREE) { 1854 stat(s, DEACTIVATE_EMPTY); 1855 discard_slab(s, page); 1856 stat(s, FREE_SLAB); 1857 } 1858 } 1859 1860 /* Unfreeze all the cpu partial slabs */ 1861 static void unfreeze_partials(struct kmem_cache *s) 1862 { 1863 struct kmem_cache_node *n = NULL; 1864 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); 1865 struct page *page, *discard_page = NULL; 1866 1867 while ((page = c->partial)) { 1868 enum slab_modes { M_PARTIAL, M_FREE }; 1869 enum slab_modes l, m; 1870 struct page new; 1871 struct page old; 1872 1873 c->partial = page->next; 1874 l = M_FREE; 1875 1876 do { 1877 1878 old.freelist = page->freelist; 1879 old.counters = page->counters; 1880 VM_BUG_ON(!old.frozen); 1881 1882 new.counters = old.counters; 1883 new.freelist = old.freelist; 1884 1885 new.frozen = 0; 1886 1887 if (!new.inuse && (!n || n->nr_partial > s->min_partial)) 1888 m = M_FREE; 1889 else { 1890 struct kmem_cache_node *n2 = get_node(s, 1891 page_to_nid(page)); 1892 1893 m = M_PARTIAL; 1894 if (n != n2) { 1895 if (n) 1896 spin_unlock(&n->list_lock); 1897 1898 n = n2; 1899 spin_lock(&n->list_lock); 1900 } 1901 } 1902 1903 if (l != m) { 1904 if (l == M_PARTIAL) 1905 remove_partial(n, page); 1906 else 1907 add_partial(n, page, 1908 DEACTIVATE_TO_TAIL); 1909 1910 l = m; 1911 } 1912 1913 } while (!cmpxchg_double_slab(s, page, 1914 old.freelist, old.counters, 1915 new.freelist, new.counters, 1916 "unfreezing slab")); 1917 1918 if (m == M_FREE) { 1919 page->next = discard_page; 1920 discard_page = page; 1921 } 1922 } 1923 1924 if (n) 1925 spin_unlock(&n->list_lock); 1926 1927 while (discard_page) { 1928 page = discard_page; 1929 discard_page = discard_page->next; 1930 1931 stat(s, DEACTIVATE_EMPTY); 1932 discard_slab(s, page); 1933 stat(s, FREE_SLAB); 1934 } 1935 } 1936 1937 /* 1938 * Put a page that was just frozen (in __slab_free) into a partial page 1939 * slot if available. This is done without interrupts disabled and without 1940 * preemption disabled. The cmpxchg is racy and may put the partial page 1941 * onto a random cpus partial slot. 1942 * 1943 * If we did not find a slot then simply move all the partials to the 1944 * per node partial list. 1945 */ 1946 int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 1947 { 1948 struct page *oldpage; 1949 int pages; 1950 int pobjects; 1951 1952 do { 1953 pages = 0; 1954 pobjects = 0; 1955 oldpage = this_cpu_read(s->cpu_slab->partial); 1956 1957 if (oldpage) { 1958 pobjects = oldpage->pobjects; 1959 pages = oldpage->pages; 1960 if (drain && pobjects > s->cpu_partial) { 1961 unsigned long flags; 1962 /* 1963 * partial array is full. Move the existing 1964 * set to the per node partial list. 1965 */ 1966 local_irq_save(flags); 1967 unfreeze_partials(s); 1968 local_irq_restore(flags); 1969 pobjects = 0; 1970 pages = 0; 1971 } 1972 } 1973 1974 pages++; 1975 pobjects += page->objects - page->inuse; 1976 1977 page->pages = pages; 1978 page->pobjects = pobjects; 1979 page->next = oldpage; 1980 1981 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage); 1982 stat(s, CPU_PARTIAL_FREE); 1983 return pobjects; 1984 } 1985 1986 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 1987 { 1988 stat(s, CPUSLAB_FLUSH); 1989 deactivate_slab(s, c); 1990 } 1991 1992 /* 1993 * Flush cpu slab. 1994 * 1995 * Called from IPI handler with interrupts disabled. 1996 */ 1997 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 1998 { 1999 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2000 2001 if (likely(c)) { 2002 if (c->page) 2003 flush_slab(s, c); 2004 2005 unfreeze_partials(s); 2006 } 2007 } 2008 2009 static void flush_cpu_slab(void *d) 2010 { 2011 struct kmem_cache *s = d; 2012 2013 __flush_cpu_slab(s, smp_processor_id()); 2014 } 2015 2016 static void flush_all(struct kmem_cache *s) 2017 { 2018 on_each_cpu(flush_cpu_slab, s, 1); 2019 } 2020 2021 /* 2022 * Check if the objects in a per cpu structure fit numa 2023 * locality expectations. 2024 */ 2025 static inline int node_match(struct kmem_cache_cpu *c, int node) 2026 { 2027 #ifdef CONFIG_NUMA 2028 if (node != NUMA_NO_NODE && c->node != node) 2029 return 0; 2030 #endif 2031 return 1; 2032 } 2033 2034 static int count_free(struct page *page) 2035 { 2036 return page->objects - page->inuse; 2037 } 2038 2039 static unsigned long count_partial(struct kmem_cache_node *n, 2040 int (*get_count)(struct page *)) 2041 { 2042 unsigned long flags; 2043 unsigned long x = 0; 2044 struct page *page; 2045 2046 spin_lock_irqsave(&n->list_lock, flags); 2047 list_for_each_entry(page, &n->partial, lru) 2048 x += get_count(page); 2049 spin_unlock_irqrestore(&n->list_lock, flags); 2050 return x; 2051 } 2052 2053 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2054 { 2055 #ifdef CONFIG_SLUB_DEBUG 2056 return atomic_long_read(&n->total_objects); 2057 #else 2058 return 0; 2059 #endif 2060 } 2061 2062 static noinline void 2063 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2064 { 2065 int node; 2066 2067 printk(KERN_WARNING 2068 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2069 nid, gfpflags); 2070 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, " 2071 "default order: %d, min order: %d\n", s->name, s->objsize, 2072 s->size, oo_order(s->oo), oo_order(s->min)); 2073 2074 if (oo_order(s->min) > get_order(s->objsize)) 2075 printk(KERN_WARNING " %s debugging increased min order, use " 2076 "slub_debug=O to disable.\n", s->name); 2077 2078 for_each_online_node(node) { 2079 struct kmem_cache_node *n = get_node(s, node); 2080 unsigned long nr_slabs; 2081 unsigned long nr_objs; 2082 unsigned long nr_free; 2083 2084 if (!n) 2085 continue; 2086 2087 nr_free = count_partial(n, count_free); 2088 nr_slabs = node_nr_slabs(n); 2089 nr_objs = node_nr_objs(n); 2090 2091 printk(KERN_WARNING 2092 " node %d: slabs: %ld, objs: %ld, free: %ld\n", 2093 node, nr_slabs, nr_objs, nr_free); 2094 } 2095 } 2096 2097 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2098 int node, struct kmem_cache_cpu **pc) 2099 { 2100 void *object; 2101 struct kmem_cache_cpu *c; 2102 struct page *page = new_slab(s, flags, node); 2103 2104 if (page) { 2105 c = __this_cpu_ptr(s->cpu_slab); 2106 if (c->page) 2107 flush_slab(s, c); 2108 2109 /* 2110 * No other reference to the page yet so we can 2111 * muck around with it freely without cmpxchg 2112 */ 2113 object = page->freelist; 2114 page->freelist = NULL; 2115 2116 stat(s, ALLOC_SLAB); 2117 c->node = page_to_nid(page); 2118 c->page = page; 2119 *pc = c; 2120 } else 2121 object = NULL; 2122 2123 return object; 2124 } 2125 2126 /* 2127 * Slow path. The lockless freelist is empty or we need to perform 2128 * debugging duties. 2129 * 2130 * Processing is still very fast if new objects have been freed to the 2131 * regular freelist. In that case we simply take over the regular freelist 2132 * as the lockless freelist and zap the regular freelist. 2133 * 2134 * If that is not working then we fall back to the partial lists. We take the 2135 * first element of the freelist as the object to allocate now and move the 2136 * rest of the freelist to the lockless freelist. 2137 * 2138 * And if we were unable to get a new slab from the partial slab lists then 2139 * we need to allocate a new slab. This is the slowest path since it involves 2140 * a call to the page allocator and the setup of a new slab. 2141 */ 2142 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2143 unsigned long addr, struct kmem_cache_cpu *c) 2144 { 2145 void **object; 2146 unsigned long flags; 2147 struct page new; 2148 unsigned long counters; 2149 2150 local_irq_save(flags); 2151 #ifdef CONFIG_PREEMPT 2152 /* 2153 * We may have been preempted and rescheduled on a different 2154 * cpu before disabling interrupts. Need to reload cpu area 2155 * pointer. 2156 */ 2157 c = this_cpu_ptr(s->cpu_slab); 2158 #endif 2159 2160 if (!c->page) 2161 goto new_slab; 2162 redo: 2163 if (unlikely(!node_match(c, node))) { 2164 stat(s, ALLOC_NODE_MISMATCH); 2165 deactivate_slab(s, c); 2166 goto new_slab; 2167 } 2168 2169 stat(s, ALLOC_SLOWPATH); 2170 2171 do { 2172 object = c->page->freelist; 2173 counters = c->page->counters; 2174 new.counters = counters; 2175 VM_BUG_ON(!new.frozen); 2176 2177 /* 2178 * If there is no object left then we use this loop to 2179 * deactivate the slab which is simple since no objects 2180 * are left in the slab and therefore we do not need to 2181 * put the page back onto the partial list. 2182 * 2183 * If there are objects left then we retrieve them 2184 * and use them to refill the per cpu queue. 2185 */ 2186 2187 new.inuse = c->page->objects; 2188 new.frozen = object != NULL; 2189 2190 } while (!__cmpxchg_double_slab(s, c->page, 2191 object, counters, 2192 NULL, new.counters, 2193 "__slab_alloc")); 2194 2195 if (!object) { 2196 c->page = NULL; 2197 stat(s, DEACTIVATE_BYPASS); 2198 goto new_slab; 2199 } 2200 2201 stat(s, ALLOC_REFILL); 2202 2203 load_freelist: 2204 c->freelist = get_freepointer(s, object); 2205 c->tid = next_tid(c->tid); 2206 local_irq_restore(flags); 2207 return object; 2208 2209 new_slab: 2210 2211 if (c->partial) { 2212 c->page = c->partial; 2213 c->partial = c->page->next; 2214 c->node = page_to_nid(c->page); 2215 stat(s, CPU_PARTIAL_ALLOC); 2216 c->freelist = NULL; 2217 goto redo; 2218 } 2219 2220 /* Then do expensive stuff like retrieving pages from the partial lists */ 2221 object = get_partial(s, gfpflags, node, c); 2222 2223 if (unlikely(!object)) { 2224 2225 object = new_slab_objects(s, gfpflags, node, &c); 2226 2227 if (unlikely(!object)) { 2228 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) 2229 slab_out_of_memory(s, gfpflags, node); 2230 2231 local_irq_restore(flags); 2232 return NULL; 2233 } 2234 } 2235 2236 if (likely(!kmem_cache_debug(s))) 2237 goto load_freelist; 2238 2239 /* Only entered in the debug case */ 2240 if (!alloc_debug_processing(s, c->page, object, addr)) 2241 goto new_slab; /* Slab failed checks. Next slab needed */ 2242 2243 c->freelist = get_freepointer(s, object); 2244 deactivate_slab(s, c); 2245 c->node = NUMA_NO_NODE; 2246 local_irq_restore(flags); 2247 return object; 2248 } 2249 2250 /* 2251 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2252 * have the fastpath folded into their functions. So no function call 2253 * overhead for requests that can be satisfied on the fastpath. 2254 * 2255 * The fastpath works by first checking if the lockless freelist can be used. 2256 * If not then __slab_alloc is called for slow processing. 2257 * 2258 * Otherwise we can simply pick the next object from the lockless free list. 2259 */ 2260 static __always_inline void *slab_alloc(struct kmem_cache *s, 2261 gfp_t gfpflags, int node, unsigned long addr) 2262 { 2263 void **object; 2264 struct kmem_cache_cpu *c; 2265 unsigned long tid; 2266 2267 if (slab_pre_alloc_hook(s, gfpflags)) 2268 return NULL; 2269 2270 redo: 2271 2272 /* 2273 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2274 * enabled. We may switch back and forth between cpus while 2275 * reading from one cpu area. That does not matter as long 2276 * as we end up on the original cpu again when doing the cmpxchg. 2277 */ 2278 c = __this_cpu_ptr(s->cpu_slab); 2279 2280 /* 2281 * The transaction ids are globally unique per cpu and per operation on 2282 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2283 * occurs on the right processor and that there was no operation on the 2284 * linked list in between. 2285 */ 2286 tid = c->tid; 2287 barrier(); 2288 2289 object = c->freelist; 2290 if (unlikely(!object || !node_match(c, node))) 2291 2292 object = __slab_alloc(s, gfpflags, node, addr, c); 2293 2294 else { 2295 /* 2296 * The cmpxchg will only match if there was no additional 2297 * operation and if we are on the right processor. 2298 * 2299 * The cmpxchg does the following atomically (without lock semantics!) 2300 * 1. Relocate first pointer to the current per cpu area. 2301 * 2. Verify that tid and freelist have not been changed 2302 * 3. If they were not changed replace tid and freelist 2303 * 2304 * Since this is without lock semantics the protection is only against 2305 * code executing on this cpu *not* from access by other cpus. 2306 */ 2307 if (unlikely(!this_cpu_cmpxchg_double( 2308 s->cpu_slab->freelist, s->cpu_slab->tid, 2309 object, tid, 2310 get_freepointer_safe(s, object), next_tid(tid)))) { 2311 2312 note_cmpxchg_failure("slab_alloc", s, tid); 2313 goto redo; 2314 } 2315 stat(s, ALLOC_FASTPATH); 2316 } 2317 2318 if (unlikely(gfpflags & __GFP_ZERO) && object) 2319 memset(object, 0, s->objsize); 2320 2321 slab_post_alloc_hook(s, gfpflags, object); 2322 2323 return object; 2324 } 2325 2326 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2327 { 2328 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2329 2330 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); 2331 2332 return ret; 2333 } 2334 EXPORT_SYMBOL(kmem_cache_alloc); 2335 2336 #ifdef CONFIG_TRACING 2337 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2338 { 2339 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); 2340 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2341 return ret; 2342 } 2343 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2344 2345 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 2346 { 2347 void *ret = kmalloc_order(size, flags, order); 2348 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); 2349 return ret; 2350 } 2351 EXPORT_SYMBOL(kmalloc_order_trace); 2352 #endif 2353 2354 #ifdef CONFIG_NUMA 2355 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2356 { 2357 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2358 2359 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2360 s->objsize, s->size, gfpflags, node); 2361 2362 return ret; 2363 } 2364 EXPORT_SYMBOL(kmem_cache_alloc_node); 2365 2366 #ifdef CONFIG_TRACING 2367 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2368 gfp_t gfpflags, 2369 int node, size_t size) 2370 { 2371 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_); 2372 2373 trace_kmalloc_node(_RET_IP_, ret, 2374 size, s->size, gfpflags, node); 2375 return ret; 2376 } 2377 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2378 #endif 2379 #endif 2380 2381 /* 2382 * Slow patch handling. This may still be called frequently since objects 2383 * have a longer lifetime than the cpu slabs in most processing loads. 2384 * 2385 * So we still attempt to reduce cache line usage. Just take the slab 2386 * lock and free the item. If there is no additional partial page 2387 * handling required then we can return immediately. 2388 */ 2389 static void __slab_free(struct kmem_cache *s, struct page *page, 2390 void *x, unsigned long addr) 2391 { 2392 void *prior; 2393 void **object = (void *)x; 2394 int was_frozen; 2395 int inuse; 2396 struct page new; 2397 unsigned long counters; 2398 struct kmem_cache_node *n = NULL; 2399 unsigned long uninitialized_var(flags); 2400 2401 stat(s, FREE_SLOWPATH); 2402 2403 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr)) 2404 return; 2405 2406 do { 2407 prior = page->freelist; 2408 counters = page->counters; 2409 set_freepointer(s, object, prior); 2410 new.counters = counters; 2411 was_frozen = new.frozen; 2412 new.inuse--; 2413 if ((!new.inuse || !prior) && !was_frozen && !n) { 2414 2415 if (!kmem_cache_debug(s) && !prior) 2416 2417 /* 2418 * Slab was on no list before and will be partially empty 2419 * We can defer the list move and instead freeze it. 2420 */ 2421 new.frozen = 1; 2422 2423 else { /* Needs to be taken off a list */ 2424 2425 n = get_node(s, page_to_nid(page)); 2426 /* 2427 * Speculatively acquire the list_lock. 2428 * If the cmpxchg does not succeed then we may 2429 * drop the list_lock without any processing. 2430 * 2431 * Otherwise the list_lock will synchronize with 2432 * other processors updating the list of slabs. 2433 */ 2434 spin_lock_irqsave(&n->list_lock, flags); 2435 2436 } 2437 } 2438 inuse = new.inuse; 2439 2440 } while (!cmpxchg_double_slab(s, page, 2441 prior, counters, 2442 object, new.counters, 2443 "__slab_free")); 2444 2445 if (likely(!n)) { 2446 2447 /* 2448 * If we just froze the page then put it onto the 2449 * per cpu partial list. 2450 */ 2451 if (new.frozen && !was_frozen) 2452 put_cpu_partial(s, page, 1); 2453 2454 /* 2455 * The list lock was not taken therefore no list 2456 * activity can be necessary. 2457 */ 2458 if (was_frozen) 2459 stat(s, FREE_FROZEN); 2460 return; 2461 } 2462 2463 /* 2464 * was_frozen may have been set after we acquired the list_lock in 2465 * an earlier loop. So we need to check it here again. 2466 */ 2467 if (was_frozen) 2468 stat(s, FREE_FROZEN); 2469 else { 2470 if (unlikely(!inuse && n->nr_partial > s->min_partial)) 2471 goto slab_empty; 2472 2473 /* 2474 * Objects left in the slab. If it was not on the partial list before 2475 * then add it. 2476 */ 2477 if (unlikely(!prior)) { 2478 remove_full(s, page); 2479 add_partial(n, page, DEACTIVATE_TO_TAIL); 2480 stat(s, FREE_ADD_PARTIAL); 2481 } 2482 } 2483 spin_unlock_irqrestore(&n->list_lock, flags); 2484 return; 2485 2486 slab_empty: 2487 if (prior) { 2488 /* 2489 * Slab on the partial list. 2490 */ 2491 remove_partial(n, page); 2492 stat(s, FREE_REMOVE_PARTIAL); 2493 } else 2494 /* Slab must be on the full list */ 2495 remove_full(s, page); 2496 2497 spin_unlock_irqrestore(&n->list_lock, flags); 2498 stat(s, FREE_SLAB); 2499 discard_slab(s, page); 2500 } 2501 2502 /* 2503 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2504 * can perform fastpath freeing without additional function calls. 2505 * 2506 * The fastpath is only possible if we are freeing to the current cpu slab 2507 * of this processor. This typically the case if we have just allocated 2508 * the item before. 2509 * 2510 * If fastpath is not possible then fall back to __slab_free where we deal 2511 * with all sorts of special processing. 2512 */ 2513 static __always_inline void slab_free(struct kmem_cache *s, 2514 struct page *page, void *x, unsigned long addr) 2515 { 2516 void **object = (void *)x; 2517 struct kmem_cache_cpu *c; 2518 unsigned long tid; 2519 2520 slab_free_hook(s, x); 2521 2522 redo: 2523 /* 2524 * Determine the currently cpus per cpu slab. 2525 * The cpu may change afterward. However that does not matter since 2526 * data is retrieved via this pointer. If we are on the same cpu 2527 * during the cmpxchg then the free will succedd. 2528 */ 2529 c = __this_cpu_ptr(s->cpu_slab); 2530 2531 tid = c->tid; 2532 barrier(); 2533 2534 if (likely(page == c->page)) { 2535 set_freepointer(s, object, c->freelist); 2536 2537 if (unlikely(!this_cpu_cmpxchg_double( 2538 s->cpu_slab->freelist, s->cpu_slab->tid, 2539 c->freelist, tid, 2540 object, next_tid(tid)))) { 2541 2542 note_cmpxchg_failure("slab_free", s, tid); 2543 goto redo; 2544 } 2545 stat(s, FREE_FASTPATH); 2546 } else 2547 __slab_free(s, page, x, addr); 2548 2549 } 2550 2551 void kmem_cache_free(struct kmem_cache *s, void *x) 2552 { 2553 struct page *page; 2554 2555 page = virt_to_head_page(x); 2556 2557 slab_free(s, page, x, _RET_IP_); 2558 2559 trace_kmem_cache_free(_RET_IP_, x); 2560 } 2561 EXPORT_SYMBOL(kmem_cache_free); 2562 2563 /* 2564 * Object placement in a slab is made very easy because we always start at 2565 * offset 0. If we tune the size of the object to the alignment then we can 2566 * get the required alignment by putting one properly sized object after 2567 * another. 2568 * 2569 * Notice that the allocation order determines the sizes of the per cpu 2570 * caches. Each processor has always one slab available for allocations. 2571 * Increasing the allocation order reduces the number of times that slabs 2572 * must be moved on and off the partial lists and is therefore a factor in 2573 * locking overhead. 2574 */ 2575 2576 /* 2577 * Mininum / Maximum order of slab pages. This influences locking overhead 2578 * and slab fragmentation. A higher order reduces the number of partial slabs 2579 * and increases the number of allocations possible without having to 2580 * take the list_lock. 2581 */ 2582 static int slub_min_order; 2583 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2584 static int slub_min_objects; 2585 2586 /* 2587 * Merge control. If this is set then no merging of slab caches will occur. 2588 * (Could be removed. This was introduced to pacify the merge skeptics.) 2589 */ 2590 static int slub_nomerge; 2591 2592 /* 2593 * Calculate the order of allocation given an slab object size. 2594 * 2595 * The order of allocation has significant impact on performance and other 2596 * system components. Generally order 0 allocations should be preferred since 2597 * order 0 does not cause fragmentation in the page allocator. Larger objects 2598 * be problematic to put into order 0 slabs because there may be too much 2599 * unused space left. We go to a higher order if more than 1/16th of the slab 2600 * would be wasted. 2601 * 2602 * In order to reach satisfactory performance we must ensure that a minimum 2603 * number of objects is in one slab. Otherwise we may generate too much 2604 * activity on the partial lists which requires taking the list_lock. This is 2605 * less a concern for large slabs though which are rarely used. 2606 * 2607 * slub_max_order specifies the order where we begin to stop considering the 2608 * number of objects in a slab as critical. If we reach slub_max_order then 2609 * we try to keep the page order as low as possible. So we accept more waste 2610 * of space in favor of a small page order. 2611 * 2612 * Higher order allocations also allow the placement of more objects in a 2613 * slab and thereby reduce object handling overhead. If the user has 2614 * requested a higher mininum order then we start with that one instead of 2615 * the smallest order which will fit the object. 2616 */ 2617 static inline int slab_order(int size, int min_objects, 2618 int max_order, int fract_leftover, int reserved) 2619 { 2620 int order; 2621 int rem; 2622 int min_order = slub_min_order; 2623 2624 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2625 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2626 2627 for (order = max(min_order, 2628 fls(min_objects * size - 1) - PAGE_SHIFT); 2629 order <= max_order; order++) { 2630 2631 unsigned long slab_size = PAGE_SIZE << order; 2632 2633 if (slab_size < min_objects * size + reserved) 2634 continue; 2635 2636 rem = (slab_size - reserved) % size; 2637 2638 if (rem <= slab_size / fract_leftover) 2639 break; 2640 2641 } 2642 2643 return order; 2644 } 2645 2646 static inline int calculate_order(int size, int reserved) 2647 { 2648 int order; 2649 int min_objects; 2650 int fraction; 2651 int max_objects; 2652 2653 /* 2654 * Attempt to find best configuration for a slab. This 2655 * works by first attempting to generate a layout with 2656 * the best configuration and backing off gradually. 2657 * 2658 * First we reduce the acceptable waste in a slab. Then 2659 * we reduce the minimum objects required in a slab. 2660 */ 2661 min_objects = slub_min_objects; 2662 if (!min_objects) 2663 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2664 max_objects = order_objects(slub_max_order, size, reserved); 2665 min_objects = min(min_objects, max_objects); 2666 2667 while (min_objects > 1) { 2668 fraction = 16; 2669 while (fraction >= 4) { 2670 order = slab_order(size, min_objects, 2671 slub_max_order, fraction, reserved); 2672 if (order <= slub_max_order) 2673 return order; 2674 fraction /= 2; 2675 } 2676 min_objects--; 2677 } 2678 2679 /* 2680 * We were unable to place multiple objects in a slab. Now 2681 * lets see if we can place a single object there. 2682 */ 2683 order = slab_order(size, 1, slub_max_order, 1, reserved); 2684 if (order <= slub_max_order) 2685 return order; 2686 2687 /* 2688 * Doh this slab cannot be placed using slub_max_order. 2689 */ 2690 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2691 if (order < MAX_ORDER) 2692 return order; 2693 return -ENOSYS; 2694 } 2695 2696 /* 2697 * Figure out what the alignment of the objects will be. 2698 */ 2699 static unsigned long calculate_alignment(unsigned long flags, 2700 unsigned long align, unsigned long size) 2701 { 2702 /* 2703 * If the user wants hardware cache aligned objects then follow that 2704 * suggestion if the object is sufficiently large. 2705 * 2706 * The hardware cache alignment cannot override the specified 2707 * alignment though. If that is greater then use it. 2708 */ 2709 if (flags & SLAB_HWCACHE_ALIGN) { 2710 unsigned long ralign = cache_line_size(); 2711 while (size <= ralign / 2) 2712 ralign /= 2; 2713 align = max(align, ralign); 2714 } 2715 2716 if (align < ARCH_SLAB_MINALIGN) 2717 align = ARCH_SLAB_MINALIGN; 2718 2719 return ALIGN(align, sizeof(void *)); 2720 } 2721 2722 static void 2723 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) 2724 { 2725 n->nr_partial = 0; 2726 spin_lock_init(&n->list_lock); 2727 INIT_LIST_HEAD(&n->partial); 2728 #ifdef CONFIG_SLUB_DEBUG 2729 atomic_long_set(&n->nr_slabs, 0); 2730 atomic_long_set(&n->total_objects, 0); 2731 INIT_LIST_HEAD(&n->full); 2732 #endif 2733 } 2734 2735 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2736 { 2737 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2738 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); 2739 2740 /* 2741 * Must align to double word boundary for the double cmpxchg 2742 * instructions to work; see __pcpu_double_call_return_bool(). 2743 */ 2744 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2745 2 * sizeof(void *)); 2746 2747 if (!s->cpu_slab) 2748 return 0; 2749 2750 init_kmem_cache_cpus(s); 2751 2752 return 1; 2753 } 2754 2755 static struct kmem_cache *kmem_cache_node; 2756 2757 /* 2758 * No kmalloc_node yet so do it by hand. We know that this is the first 2759 * slab on the node for this slabcache. There are no concurrent accesses 2760 * possible. 2761 * 2762 * Note that this function only works on the kmalloc_node_cache 2763 * when allocating for the kmalloc_node_cache. This is used for bootstrapping 2764 * memory on a fresh node that has no slab structures yet. 2765 */ 2766 static void early_kmem_cache_node_alloc(int node) 2767 { 2768 struct page *page; 2769 struct kmem_cache_node *n; 2770 2771 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2772 2773 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2774 2775 BUG_ON(!page); 2776 if (page_to_nid(page) != node) { 2777 printk(KERN_ERR "SLUB: Unable to allocate memory from " 2778 "node %d\n", node); 2779 printk(KERN_ERR "SLUB: Allocating a useless per node structure " 2780 "in order to be able to continue\n"); 2781 } 2782 2783 n = page->freelist; 2784 BUG_ON(!n); 2785 page->freelist = get_freepointer(kmem_cache_node, n); 2786 page->inuse = 1; 2787 page->frozen = 0; 2788 kmem_cache_node->node[node] = n; 2789 #ifdef CONFIG_SLUB_DEBUG 2790 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2791 init_tracking(kmem_cache_node, n); 2792 #endif 2793 init_kmem_cache_node(n, kmem_cache_node); 2794 inc_slabs_node(kmem_cache_node, node, page->objects); 2795 2796 add_partial(n, page, DEACTIVATE_TO_HEAD); 2797 } 2798 2799 static void free_kmem_cache_nodes(struct kmem_cache *s) 2800 { 2801 int node; 2802 2803 for_each_node_state(node, N_NORMAL_MEMORY) { 2804 struct kmem_cache_node *n = s->node[node]; 2805 2806 if (n) 2807 kmem_cache_free(kmem_cache_node, n); 2808 2809 s->node[node] = NULL; 2810 } 2811 } 2812 2813 static int init_kmem_cache_nodes(struct kmem_cache *s) 2814 { 2815 int node; 2816 2817 for_each_node_state(node, N_NORMAL_MEMORY) { 2818 struct kmem_cache_node *n; 2819 2820 if (slab_state == DOWN) { 2821 early_kmem_cache_node_alloc(node); 2822 continue; 2823 } 2824 n = kmem_cache_alloc_node(kmem_cache_node, 2825 GFP_KERNEL, node); 2826 2827 if (!n) { 2828 free_kmem_cache_nodes(s); 2829 return 0; 2830 } 2831 2832 s->node[node] = n; 2833 init_kmem_cache_node(n, s); 2834 } 2835 return 1; 2836 } 2837 2838 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2839 { 2840 if (min < MIN_PARTIAL) 2841 min = MIN_PARTIAL; 2842 else if (min > MAX_PARTIAL) 2843 min = MAX_PARTIAL; 2844 s->min_partial = min; 2845 } 2846 2847 /* 2848 * calculate_sizes() determines the order and the distribution of data within 2849 * a slab object. 2850 */ 2851 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2852 { 2853 unsigned long flags = s->flags; 2854 unsigned long size = s->objsize; 2855 unsigned long align = s->align; 2856 int order; 2857 2858 /* 2859 * Round up object size to the next word boundary. We can only 2860 * place the free pointer at word boundaries and this determines 2861 * the possible location of the free pointer. 2862 */ 2863 size = ALIGN(size, sizeof(void *)); 2864 2865 #ifdef CONFIG_SLUB_DEBUG 2866 /* 2867 * Determine if we can poison the object itself. If the user of 2868 * the slab may touch the object after free or before allocation 2869 * then we should never poison the object itself. 2870 */ 2871 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 2872 !s->ctor) 2873 s->flags |= __OBJECT_POISON; 2874 else 2875 s->flags &= ~__OBJECT_POISON; 2876 2877 2878 /* 2879 * If we are Redzoning then check if there is some space between the 2880 * end of the object and the free pointer. If not then add an 2881 * additional word to have some bytes to store Redzone information. 2882 */ 2883 if ((flags & SLAB_RED_ZONE) && size == s->objsize) 2884 size += sizeof(void *); 2885 #endif 2886 2887 /* 2888 * With that we have determined the number of bytes in actual use 2889 * by the object. This is the potential offset to the free pointer. 2890 */ 2891 s->inuse = size; 2892 2893 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 2894 s->ctor)) { 2895 /* 2896 * Relocate free pointer after the object if it is not 2897 * permitted to overwrite the first word of the object on 2898 * kmem_cache_free. 2899 * 2900 * This is the case if we do RCU, have a constructor or 2901 * destructor or are poisoning the objects. 2902 */ 2903 s->offset = size; 2904 size += sizeof(void *); 2905 } 2906 2907 #ifdef CONFIG_SLUB_DEBUG 2908 if (flags & SLAB_STORE_USER) 2909 /* 2910 * Need to store information about allocs and frees after 2911 * the object. 2912 */ 2913 size += 2 * sizeof(struct track); 2914 2915 if (flags & SLAB_RED_ZONE) 2916 /* 2917 * Add some empty padding so that we can catch 2918 * overwrites from earlier objects rather than let 2919 * tracking information or the free pointer be 2920 * corrupted if a user writes before the start 2921 * of the object. 2922 */ 2923 size += sizeof(void *); 2924 #endif 2925 2926 /* 2927 * Determine the alignment based on various parameters that the 2928 * user specified and the dynamic determination of cache line size 2929 * on bootup. 2930 */ 2931 align = calculate_alignment(flags, align, s->objsize); 2932 s->align = align; 2933 2934 /* 2935 * SLUB stores one object immediately after another beginning from 2936 * offset 0. In order to align the objects we have to simply size 2937 * each object to conform to the alignment. 2938 */ 2939 size = ALIGN(size, align); 2940 s->size = size; 2941 if (forced_order >= 0) 2942 order = forced_order; 2943 else 2944 order = calculate_order(size, s->reserved); 2945 2946 if (order < 0) 2947 return 0; 2948 2949 s->allocflags = 0; 2950 if (order) 2951 s->allocflags |= __GFP_COMP; 2952 2953 if (s->flags & SLAB_CACHE_DMA) 2954 s->allocflags |= SLUB_DMA; 2955 2956 if (s->flags & SLAB_RECLAIM_ACCOUNT) 2957 s->allocflags |= __GFP_RECLAIMABLE; 2958 2959 /* 2960 * Determine the number of objects per slab 2961 */ 2962 s->oo = oo_make(order, size, s->reserved); 2963 s->min = oo_make(get_order(size), size, s->reserved); 2964 if (oo_objects(s->oo) > oo_objects(s->max)) 2965 s->max = s->oo; 2966 2967 return !!oo_objects(s->oo); 2968 2969 } 2970 2971 static int kmem_cache_open(struct kmem_cache *s, 2972 const char *name, size_t size, 2973 size_t align, unsigned long flags, 2974 void (*ctor)(void *)) 2975 { 2976 memset(s, 0, kmem_size); 2977 s->name = name; 2978 s->ctor = ctor; 2979 s->objsize = size; 2980 s->align = align; 2981 s->flags = kmem_cache_flags(size, flags, name, ctor); 2982 s->reserved = 0; 2983 2984 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 2985 s->reserved = sizeof(struct rcu_head); 2986 2987 if (!calculate_sizes(s, -1)) 2988 goto error; 2989 if (disable_higher_order_debug) { 2990 /* 2991 * Disable debugging flags that store metadata if the min slab 2992 * order increased. 2993 */ 2994 if (get_order(s->size) > get_order(s->objsize)) { 2995 s->flags &= ~DEBUG_METADATA_FLAGS; 2996 s->offset = 0; 2997 if (!calculate_sizes(s, -1)) 2998 goto error; 2999 } 3000 } 3001 3002 #ifdef CONFIG_CMPXCHG_DOUBLE 3003 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3004 /* Enable fast mode */ 3005 s->flags |= __CMPXCHG_DOUBLE; 3006 #endif 3007 3008 /* 3009 * The larger the object size is, the more pages we want on the partial 3010 * list to avoid pounding the page allocator excessively. 3011 */ 3012 set_min_partial(s, ilog2(s->size) / 2); 3013 3014 /* 3015 * cpu_partial determined the maximum number of objects kept in the 3016 * per cpu partial lists of a processor. 3017 * 3018 * Per cpu partial lists mainly contain slabs that just have one 3019 * object freed. If they are used for allocation then they can be 3020 * filled up again with minimal effort. The slab will never hit the 3021 * per node partial lists and therefore no locking will be required. 3022 * 3023 * This setting also determines 3024 * 3025 * A) The number of objects from per cpu partial slabs dumped to the 3026 * per node list when we reach the limit. 3027 * B) The number of objects in cpu partial slabs to extract from the 3028 * per node list when we run out of per cpu objects. We only fetch 50% 3029 * to keep some capacity around for frees. 3030 */ 3031 if (s->size >= PAGE_SIZE) 3032 s->cpu_partial = 2; 3033 else if (s->size >= 1024) 3034 s->cpu_partial = 6; 3035 else if (s->size >= 256) 3036 s->cpu_partial = 13; 3037 else 3038 s->cpu_partial = 30; 3039 3040 s->refcount = 1; 3041 #ifdef CONFIG_NUMA 3042 s->remote_node_defrag_ratio = 1000; 3043 #endif 3044 if (!init_kmem_cache_nodes(s)) 3045 goto error; 3046 3047 if (alloc_kmem_cache_cpus(s)) 3048 return 1; 3049 3050 free_kmem_cache_nodes(s); 3051 error: 3052 if (flags & SLAB_PANIC) 3053 panic("Cannot create slab %s size=%lu realsize=%u " 3054 "order=%u offset=%u flags=%lx\n", 3055 s->name, (unsigned long)size, s->size, oo_order(s->oo), 3056 s->offset, flags); 3057 return 0; 3058 } 3059 3060 /* 3061 * Determine the size of a slab object 3062 */ 3063 unsigned int kmem_cache_size(struct kmem_cache *s) 3064 { 3065 return s->objsize; 3066 } 3067 EXPORT_SYMBOL(kmem_cache_size); 3068 3069 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3070 const char *text) 3071 { 3072 #ifdef CONFIG_SLUB_DEBUG 3073 void *addr = page_address(page); 3074 void *p; 3075 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3076 sizeof(long), GFP_ATOMIC); 3077 if (!map) 3078 return; 3079 slab_err(s, page, "%s", text); 3080 slab_lock(page); 3081 3082 get_map(s, page, map); 3083 for_each_object(p, s, addr, page->objects) { 3084 3085 if (!test_bit(slab_index(p, s, addr), map)) { 3086 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", 3087 p, p - addr); 3088 print_tracking(s, p); 3089 } 3090 } 3091 slab_unlock(page); 3092 kfree(map); 3093 #endif 3094 } 3095 3096 /* 3097 * Attempt to free all partial slabs on a node. 3098 * This is called from kmem_cache_close(). We must be the last thread 3099 * using the cache and therefore we do not need to lock anymore. 3100 */ 3101 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3102 { 3103 struct page *page, *h; 3104 3105 list_for_each_entry_safe(page, h, &n->partial, lru) { 3106 if (!page->inuse) { 3107 remove_partial(n, page); 3108 discard_slab(s, page); 3109 } else { 3110 list_slab_objects(s, page, 3111 "Objects remaining on kmem_cache_close()"); 3112 } 3113 } 3114 } 3115 3116 /* 3117 * Release all resources used by a slab cache. 3118 */ 3119 static inline int kmem_cache_close(struct kmem_cache *s) 3120 { 3121 int node; 3122 3123 flush_all(s); 3124 free_percpu(s->cpu_slab); 3125 /* Attempt to free all objects */ 3126 for_each_node_state(node, N_NORMAL_MEMORY) { 3127 struct kmem_cache_node *n = get_node(s, node); 3128 3129 free_partial(s, n); 3130 if (n->nr_partial || slabs_node(s, node)) 3131 return 1; 3132 } 3133 free_kmem_cache_nodes(s); 3134 return 0; 3135 } 3136 3137 /* 3138 * Close a cache and release the kmem_cache structure 3139 * (must be used for caches created using kmem_cache_create) 3140 */ 3141 void kmem_cache_destroy(struct kmem_cache *s) 3142 { 3143 down_write(&slub_lock); 3144 s->refcount--; 3145 if (!s->refcount) { 3146 list_del(&s->list); 3147 up_write(&slub_lock); 3148 if (kmem_cache_close(s)) { 3149 printk(KERN_ERR "SLUB %s: %s called for cache that " 3150 "still has objects.\n", s->name, __func__); 3151 dump_stack(); 3152 } 3153 if (s->flags & SLAB_DESTROY_BY_RCU) 3154 rcu_barrier(); 3155 sysfs_slab_remove(s); 3156 } else 3157 up_write(&slub_lock); 3158 } 3159 EXPORT_SYMBOL(kmem_cache_destroy); 3160 3161 /******************************************************************** 3162 * Kmalloc subsystem 3163 *******************************************************************/ 3164 3165 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT]; 3166 EXPORT_SYMBOL(kmalloc_caches); 3167 3168 static struct kmem_cache *kmem_cache; 3169 3170 #ifdef CONFIG_ZONE_DMA 3171 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT]; 3172 #endif 3173 3174 static int __init setup_slub_min_order(char *str) 3175 { 3176 get_option(&str, &slub_min_order); 3177 3178 return 1; 3179 } 3180 3181 __setup("slub_min_order=", setup_slub_min_order); 3182 3183 static int __init setup_slub_max_order(char *str) 3184 { 3185 get_option(&str, &slub_max_order); 3186 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3187 3188 return 1; 3189 } 3190 3191 __setup("slub_max_order=", setup_slub_max_order); 3192 3193 static int __init setup_slub_min_objects(char *str) 3194 { 3195 get_option(&str, &slub_min_objects); 3196 3197 return 1; 3198 } 3199 3200 __setup("slub_min_objects=", setup_slub_min_objects); 3201 3202 static int __init setup_slub_nomerge(char *str) 3203 { 3204 slub_nomerge = 1; 3205 return 1; 3206 } 3207 3208 __setup("slub_nomerge", setup_slub_nomerge); 3209 3210 static struct kmem_cache *__init create_kmalloc_cache(const char *name, 3211 int size, unsigned int flags) 3212 { 3213 struct kmem_cache *s; 3214 3215 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3216 3217 /* 3218 * This function is called with IRQs disabled during early-boot on 3219 * single CPU so there's no need to take slub_lock here. 3220 */ 3221 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN, 3222 flags, NULL)) 3223 goto panic; 3224 3225 list_add(&s->list, &slab_caches); 3226 return s; 3227 3228 panic: 3229 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); 3230 return NULL; 3231 } 3232 3233 /* 3234 * Conversion table for small slabs sizes / 8 to the index in the 3235 * kmalloc array. This is necessary for slabs < 192 since we have non power 3236 * of two cache sizes there. The size of larger slabs can be determined using 3237 * fls. 3238 */ 3239 static s8 size_index[24] = { 3240 3, /* 8 */ 3241 4, /* 16 */ 3242 5, /* 24 */ 3243 5, /* 32 */ 3244 6, /* 40 */ 3245 6, /* 48 */ 3246 6, /* 56 */ 3247 6, /* 64 */ 3248 1, /* 72 */ 3249 1, /* 80 */ 3250 1, /* 88 */ 3251 1, /* 96 */ 3252 7, /* 104 */ 3253 7, /* 112 */ 3254 7, /* 120 */ 3255 7, /* 128 */ 3256 2, /* 136 */ 3257 2, /* 144 */ 3258 2, /* 152 */ 3259 2, /* 160 */ 3260 2, /* 168 */ 3261 2, /* 176 */ 3262 2, /* 184 */ 3263 2 /* 192 */ 3264 }; 3265 3266 static inline int size_index_elem(size_t bytes) 3267 { 3268 return (bytes - 1) / 8; 3269 } 3270 3271 static struct kmem_cache *get_slab(size_t size, gfp_t flags) 3272 { 3273 int index; 3274 3275 if (size <= 192) { 3276 if (!size) 3277 return ZERO_SIZE_PTR; 3278 3279 index = size_index[size_index_elem(size)]; 3280 } else 3281 index = fls(size - 1); 3282 3283 #ifdef CONFIG_ZONE_DMA 3284 if (unlikely((flags & SLUB_DMA))) 3285 return kmalloc_dma_caches[index]; 3286 3287 #endif 3288 return kmalloc_caches[index]; 3289 } 3290 3291 void *__kmalloc(size_t size, gfp_t flags) 3292 { 3293 struct kmem_cache *s; 3294 void *ret; 3295 3296 if (unlikely(size > SLUB_MAX_SIZE)) 3297 return kmalloc_large(size, flags); 3298 3299 s = get_slab(size, flags); 3300 3301 if (unlikely(ZERO_OR_NULL_PTR(s))) 3302 return s; 3303 3304 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); 3305 3306 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3307 3308 return ret; 3309 } 3310 EXPORT_SYMBOL(__kmalloc); 3311 3312 #ifdef CONFIG_NUMA 3313 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3314 { 3315 struct page *page; 3316 void *ptr = NULL; 3317 3318 flags |= __GFP_COMP | __GFP_NOTRACK; 3319 page = alloc_pages_node(node, flags, get_order(size)); 3320 if (page) 3321 ptr = page_address(page); 3322 3323 kmemleak_alloc(ptr, size, 1, flags); 3324 return ptr; 3325 } 3326 3327 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3328 { 3329 struct kmem_cache *s; 3330 void *ret; 3331 3332 if (unlikely(size > SLUB_MAX_SIZE)) { 3333 ret = kmalloc_large_node(size, flags, node); 3334 3335 trace_kmalloc_node(_RET_IP_, ret, 3336 size, PAGE_SIZE << get_order(size), 3337 flags, node); 3338 3339 return ret; 3340 } 3341 3342 s = get_slab(size, flags); 3343 3344 if (unlikely(ZERO_OR_NULL_PTR(s))) 3345 return s; 3346 3347 ret = slab_alloc(s, flags, node, _RET_IP_); 3348 3349 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3350 3351 return ret; 3352 } 3353 EXPORT_SYMBOL(__kmalloc_node); 3354 #endif 3355 3356 size_t ksize(const void *object) 3357 { 3358 struct page *page; 3359 3360 if (unlikely(object == ZERO_SIZE_PTR)) 3361 return 0; 3362 3363 page = virt_to_head_page(object); 3364 3365 if (unlikely(!PageSlab(page))) { 3366 WARN_ON(!PageCompound(page)); 3367 return PAGE_SIZE << compound_order(page); 3368 } 3369 3370 return slab_ksize(page->slab); 3371 } 3372 EXPORT_SYMBOL(ksize); 3373 3374 #ifdef CONFIG_SLUB_DEBUG 3375 bool verify_mem_not_deleted(const void *x) 3376 { 3377 struct page *page; 3378 void *object = (void *)x; 3379 unsigned long flags; 3380 bool rv; 3381 3382 if (unlikely(ZERO_OR_NULL_PTR(x))) 3383 return false; 3384 3385 local_irq_save(flags); 3386 3387 page = virt_to_head_page(x); 3388 if (unlikely(!PageSlab(page))) { 3389 /* maybe it was from stack? */ 3390 rv = true; 3391 goto out_unlock; 3392 } 3393 3394 slab_lock(page); 3395 if (on_freelist(page->slab, page, object)) { 3396 object_err(page->slab, page, object, "Object is on free-list"); 3397 rv = false; 3398 } else { 3399 rv = true; 3400 } 3401 slab_unlock(page); 3402 3403 out_unlock: 3404 local_irq_restore(flags); 3405 return rv; 3406 } 3407 EXPORT_SYMBOL(verify_mem_not_deleted); 3408 #endif 3409 3410 void kfree(const void *x) 3411 { 3412 struct page *page; 3413 void *object = (void *)x; 3414 3415 trace_kfree(_RET_IP_, x); 3416 3417 if (unlikely(ZERO_OR_NULL_PTR(x))) 3418 return; 3419 3420 page = virt_to_head_page(x); 3421 if (unlikely(!PageSlab(page))) { 3422 BUG_ON(!PageCompound(page)); 3423 kmemleak_free(x); 3424 put_page(page); 3425 return; 3426 } 3427 slab_free(page->slab, page, object, _RET_IP_); 3428 } 3429 EXPORT_SYMBOL(kfree); 3430 3431 /* 3432 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3433 * the remaining slabs by the number of items in use. The slabs with the 3434 * most items in use come first. New allocations will then fill those up 3435 * and thus they can be removed from the partial lists. 3436 * 3437 * The slabs with the least items are placed last. This results in them 3438 * being allocated from last increasing the chance that the last objects 3439 * are freed in them. 3440 */ 3441 int kmem_cache_shrink(struct kmem_cache *s) 3442 { 3443 int node; 3444 int i; 3445 struct kmem_cache_node *n; 3446 struct page *page; 3447 struct page *t; 3448 int objects = oo_objects(s->max); 3449 struct list_head *slabs_by_inuse = 3450 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3451 unsigned long flags; 3452 3453 if (!slabs_by_inuse) 3454 return -ENOMEM; 3455 3456 flush_all(s); 3457 for_each_node_state(node, N_NORMAL_MEMORY) { 3458 n = get_node(s, node); 3459 3460 if (!n->nr_partial) 3461 continue; 3462 3463 for (i = 0; i < objects; i++) 3464 INIT_LIST_HEAD(slabs_by_inuse + i); 3465 3466 spin_lock_irqsave(&n->list_lock, flags); 3467 3468 /* 3469 * Build lists indexed by the items in use in each slab. 3470 * 3471 * Note that concurrent frees may occur while we hold the 3472 * list_lock. page->inuse here is the upper limit. 3473 */ 3474 list_for_each_entry_safe(page, t, &n->partial, lru) { 3475 list_move(&page->lru, slabs_by_inuse + page->inuse); 3476 if (!page->inuse) 3477 n->nr_partial--; 3478 } 3479 3480 /* 3481 * Rebuild the partial list with the slabs filled up most 3482 * first and the least used slabs at the end. 3483 */ 3484 for (i = objects - 1; i > 0; i--) 3485 list_splice(slabs_by_inuse + i, n->partial.prev); 3486 3487 spin_unlock_irqrestore(&n->list_lock, flags); 3488 3489 /* Release empty slabs */ 3490 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3491 discard_slab(s, page); 3492 } 3493 3494 kfree(slabs_by_inuse); 3495 return 0; 3496 } 3497 EXPORT_SYMBOL(kmem_cache_shrink); 3498 3499 #if defined(CONFIG_MEMORY_HOTPLUG) 3500 static int slab_mem_going_offline_callback(void *arg) 3501 { 3502 struct kmem_cache *s; 3503 3504 down_read(&slub_lock); 3505 list_for_each_entry(s, &slab_caches, list) 3506 kmem_cache_shrink(s); 3507 up_read(&slub_lock); 3508 3509 return 0; 3510 } 3511 3512 static void slab_mem_offline_callback(void *arg) 3513 { 3514 struct kmem_cache_node *n; 3515 struct kmem_cache *s; 3516 struct memory_notify *marg = arg; 3517 int offline_node; 3518 3519 offline_node = marg->status_change_nid; 3520 3521 /* 3522 * If the node still has available memory. we need kmem_cache_node 3523 * for it yet. 3524 */ 3525 if (offline_node < 0) 3526 return; 3527 3528 down_read(&slub_lock); 3529 list_for_each_entry(s, &slab_caches, list) { 3530 n = get_node(s, offline_node); 3531 if (n) { 3532 /* 3533 * if n->nr_slabs > 0, slabs still exist on the node 3534 * that is going down. We were unable to free them, 3535 * and offline_pages() function shouldn't call this 3536 * callback. So, we must fail. 3537 */ 3538 BUG_ON(slabs_node(s, offline_node)); 3539 3540 s->node[offline_node] = NULL; 3541 kmem_cache_free(kmem_cache_node, n); 3542 } 3543 } 3544 up_read(&slub_lock); 3545 } 3546 3547 static int slab_mem_going_online_callback(void *arg) 3548 { 3549 struct kmem_cache_node *n; 3550 struct kmem_cache *s; 3551 struct memory_notify *marg = arg; 3552 int nid = marg->status_change_nid; 3553 int ret = 0; 3554 3555 /* 3556 * If the node's memory is already available, then kmem_cache_node is 3557 * already created. Nothing to do. 3558 */ 3559 if (nid < 0) 3560 return 0; 3561 3562 /* 3563 * We are bringing a node online. No memory is available yet. We must 3564 * allocate a kmem_cache_node structure in order to bring the node 3565 * online. 3566 */ 3567 down_read(&slub_lock); 3568 list_for_each_entry(s, &slab_caches, list) { 3569 /* 3570 * XXX: kmem_cache_alloc_node will fallback to other nodes 3571 * since memory is not yet available from the node that 3572 * is brought up. 3573 */ 3574 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3575 if (!n) { 3576 ret = -ENOMEM; 3577 goto out; 3578 } 3579 init_kmem_cache_node(n, s); 3580 s->node[nid] = n; 3581 } 3582 out: 3583 up_read(&slub_lock); 3584 return ret; 3585 } 3586 3587 static int slab_memory_callback(struct notifier_block *self, 3588 unsigned long action, void *arg) 3589 { 3590 int ret = 0; 3591 3592 switch (action) { 3593 case MEM_GOING_ONLINE: 3594 ret = slab_mem_going_online_callback(arg); 3595 break; 3596 case MEM_GOING_OFFLINE: 3597 ret = slab_mem_going_offline_callback(arg); 3598 break; 3599 case MEM_OFFLINE: 3600 case MEM_CANCEL_ONLINE: 3601 slab_mem_offline_callback(arg); 3602 break; 3603 case MEM_ONLINE: 3604 case MEM_CANCEL_OFFLINE: 3605 break; 3606 } 3607 if (ret) 3608 ret = notifier_from_errno(ret); 3609 else 3610 ret = NOTIFY_OK; 3611 return ret; 3612 } 3613 3614 #endif /* CONFIG_MEMORY_HOTPLUG */ 3615 3616 /******************************************************************** 3617 * Basic setup of slabs 3618 *******************************************************************/ 3619 3620 /* 3621 * Used for early kmem_cache structures that were allocated using 3622 * the page allocator 3623 */ 3624 3625 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s) 3626 { 3627 int node; 3628 3629 list_add(&s->list, &slab_caches); 3630 s->refcount = -1; 3631 3632 for_each_node_state(node, N_NORMAL_MEMORY) { 3633 struct kmem_cache_node *n = get_node(s, node); 3634 struct page *p; 3635 3636 if (n) { 3637 list_for_each_entry(p, &n->partial, lru) 3638 p->slab = s; 3639 3640 #ifdef CONFIG_SLUB_DEBUG 3641 list_for_each_entry(p, &n->full, lru) 3642 p->slab = s; 3643 #endif 3644 } 3645 } 3646 } 3647 3648 void __init kmem_cache_init(void) 3649 { 3650 int i; 3651 int caches = 0; 3652 struct kmem_cache *temp_kmem_cache; 3653 int order; 3654 struct kmem_cache *temp_kmem_cache_node; 3655 unsigned long kmalloc_size; 3656 3657 kmem_size = offsetof(struct kmem_cache, node) + 3658 nr_node_ids * sizeof(struct kmem_cache_node *); 3659 3660 /* Allocate two kmem_caches from the page allocator */ 3661 kmalloc_size = ALIGN(kmem_size, cache_line_size()); 3662 order = get_order(2 * kmalloc_size); 3663 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order); 3664 3665 /* 3666 * Must first have the slab cache available for the allocations of the 3667 * struct kmem_cache_node's. There is special bootstrap code in 3668 * kmem_cache_open for slab_state == DOWN. 3669 */ 3670 kmem_cache_node = (void *)kmem_cache + kmalloc_size; 3671 3672 kmem_cache_open(kmem_cache_node, "kmem_cache_node", 3673 sizeof(struct kmem_cache_node), 3674 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3675 3676 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 3677 3678 /* Able to allocate the per node structures */ 3679 slab_state = PARTIAL; 3680 3681 temp_kmem_cache = kmem_cache; 3682 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size, 3683 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3684 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3685 memcpy(kmem_cache, temp_kmem_cache, kmem_size); 3686 3687 /* 3688 * Allocate kmem_cache_node properly from the kmem_cache slab. 3689 * kmem_cache_node is separately allocated so no need to 3690 * update any list pointers. 3691 */ 3692 temp_kmem_cache_node = kmem_cache_node; 3693 3694 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT); 3695 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size); 3696 3697 kmem_cache_bootstrap_fixup(kmem_cache_node); 3698 3699 caches++; 3700 kmem_cache_bootstrap_fixup(kmem_cache); 3701 caches++; 3702 /* Free temporary boot structure */ 3703 free_pages((unsigned long)temp_kmem_cache, order); 3704 3705 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3706 3707 /* 3708 * Patch up the size_index table if we have strange large alignment 3709 * requirements for the kmalloc array. This is only the case for 3710 * MIPS it seems. The standard arches will not generate any code here. 3711 * 3712 * Largest permitted alignment is 256 bytes due to the way we 3713 * handle the index determination for the smaller caches. 3714 * 3715 * Make sure that nothing crazy happens if someone starts tinkering 3716 * around with ARCH_KMALLOC_MINALIGN 3717 */ 3718 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 3719 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); 3720 3721 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 3722 int elem = size_index_elem(i); 3723 if (elem >= ARRAY_SIZE(size_index)) 3724 break; 3725 size_index[elem] = KMALLOC_SHIFT_LOW; 3726 } 3727 3728 if (KMALLOC_MIN_SIZE == 64) { 3729 /* 3730 * The 96 byte size cache is not used if the alignment 3731 * is 64 byte. 3732 */ 3733 for (i = 64 + 8; i <= 96; i += 8) 3734 size_index[size_index_elem(i)] = 7; 3735 } else if (KMALLOC_MIN_SIZE == 128) { 3736 /* 3737 * The 192 byte sized cache is not used if the alignment 3738 * is 128 byte. Redirect kmalloc to use the 256 byte cache 3739 * instead. 3740 */ 3741 for (i = 128 + 8; i <= 192; i += 8) 3742 size_index[size_index_elem(i)] = 8; 3743 } 3744 3745 /* Caches that are not of the two-to-the-power-of size */ 3746 if (KMALLOC_MIN_SIZE <= 32) { 3747 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0); 3748 caches++; 3749 } 3750 3751 if (KMALLOC_MIN_SIZE <= 64) { 3752 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0); 3753 caches++; 3754 } 3755 3756 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3757 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0); 3758 caches++; 3759 } 3760 3761 slab_state = UP; 3762 3763 /* Provide the correct kmalloc names now that the caches are up */ 3764 if (KMALLOC_MIN_SIZE <= 32) { 3765 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT); 3766 BUG_ON(!kmalloc_caches[1]->name); 3767 } 3768 3769 if (KMALLOC_MIN_SIZE <= 64) { 3770 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT); 3771 BUG_ON(!kmalloc_caches[2]->name); 3772 } 3773 3774 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { 3775 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); 3776 3777 BUG_ON(!s); 3778 kmalloc_caches[i]->name = s; 3779 } 3780 3781 #ifdef CONFIG_SMP 3782 register_cpu_notifier(&slab_notifier); 3783 #endif 3784 3785 #ifdef CONFIG_ZONE_DMA 3786 for (i = 0; i < SLUB_PAGE_SHIFT; i++) { 3787 struct kmem_cache *s = kmalloc_caches[i]; 3788 3789 if (s && s->size) { 3790 char *name = kasprintf(GFP_NOWAIT, 3791 "dma-kmalloc-%d", s->objsize); 3792 3793 BUG_ON(!name); 3794 kmalloc_dma_caches[i] = create_kmalloc_cache(name, 3795 s->objsize, SLAB_CACHE_DMA); 3796 } 3797 } 3798 #endif 3799 printk(KERN_INFO 3800 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," 3801 " CPUs=%d, Nodes=%d\n", 3802 caches, cache_line_size(), 3803 slub_min_order, slub_max_order, slub_min_objects, 3804 nr_cpu_ids, nr_node_ids); 3805 } 3806 3807 void __init kmem_cache_init_late(void) 3808 { 3809 } 3810 3811 /* 3812 * Find a mergeable slab cache 3813 */ 3814 static int slab_unmergeable(struct kmem_cache *s) 3815 { 3816 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3817 return 1; 3818 3819 if (s->ctor) 3820 return 1; 3821 3822 /* 3823 * We may have set a slab to be unmergeable during bootstrap. 3824 */ 3825 if (s->refcount < 0) 3826 return 1; 3827 3828 return 0; 3829 } 3830 3831 static struct kmem_cache *find_mergeable(size_t size, 3832 size_t align, unsigned long flags, const char *name, 3833 void (*ctor)(void *)) 3834 { 3835 struct kmem_cache *s; 3836 3837 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3838 return NULL; 3839 3840 if (ctor) 3841 return NULL; 3842 3843 size = ALIGN(size, sizeof(void *)); 3844 align = calculate_alignment(flags, align, size); 3845 size = ALIGN(size, align); 3846 flags = kmem_cache_flags(size, flags, name, NULL); 3847 3848 list_for_each_entry(s, &slab_caches, list) { 3849 if (slab_unmergeable(s)) 3850 continue; 3851 3852 if (size > s->size) 3853 continue; 3854 3855 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3856 continue; 3857 /* 3858 * Check if alignment is compatible. 3859 * Courtesy of Adrian Drzewiecki 3860 */ 3861 if ((s->size & ~(align - 1)) != s->size) 3862 continue; 3863 3864 if (s->size - size >= sizeof(void *)) 3865 continue; 3866 3867 return s; 3868 } 3869 return NULL; 3870 } 3871 3872 struct kmem_cache *kmem_cache_create(const char *name, size_t size, 3873 size_t align, unsigned long flags, void (*ctor)(void *)) 3874 { 3875 struct kmem_cache *s; 3876 char *n; 3877 3878 if (WARN_ON(!name)) 3879 return NULL; 3880 3881 down_write(&slub_lock); 3882 s = find_mergeable(size, align, flags, name, ctor); 3883 if (s) { 3884 s->refcount++; 3885 /* 3886 * Adjust the object sizes so that we clear 3887 * the complete object on kzalloc. 3888 */ 3889 s->objsize = max(s->objsize, (int)size); 3890 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3891 3892 if (sysfs_slab_alias(s, name)) { 3893 s->refcount--; 3894 goto err; 3895 } 3896 up_write(&slub_lock); 3897 return s; 3898 } 3899 3900 n = kstrdup(name, GFP_KERNEL); 3901 if (!n) 3902 goto err; 3903 3904 s = kmalloc(kmem_size, GFP_KERNEL); 3905 if (s) { 3906 if (kmem_cache_open(s, n, 3907 size, align, flags, ctor)) { 3908 list_add(&s->list, &slab_caches); 3909 if (sysfs_slab_add(s)) { 3910 list_del(&s->list); 3911 kfree(n); 3912 kfree(s); 3913 goto err; 3914 } 3915 up_write(&slub_lock); 3916 return s; 3917 } 3918 kfree(n); 3919 kfree(s); 3920 } 3921 err: 3922 up_write(&slub_lock); 3923 3924 if (flags & SLAB_PANIC) 3925 panic("Cannot create slabcache %s\n", name); 3926 else 3927 s = NULL; 3928 return s; 3929 } 3930 EXPORT_SYMBOL(kmem_cache_create); 3931 3932 #ifdef CONFIG_SMP 3933 /* 3934 * Use the cpu notifier to insure that the cpu slabs are flushed when 3935 * necessary. 3936 */ 3937 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, 3938 unsigned long action, void *hcpu) 3939 { 3940 long cpu = (long)hcpu; 3941 struct kmem_cache *s; 3942 unsigned long flags; 3943 3944 switch (action) { 3945 case CPU_UP_CANCELED: 3946 case CPU_UP_CANCELED_FROZEN: 3947 case CPU_DEAD: 3948 case CPU_DEAD_FROZEN: 3949 down_read(&slub_lock); 3950 list_for_each_entry(s, &slab_caches, list) { 3951 local_irq_save(flags); 3952 __flush_cpu_slab(s, cpu); 3953 local_irq_restore(flags); 3954 } 3955 up_read(&slub_lock); 3956 break; 3957 default: 3958 break; 3959 } 3960 return NOTIFY_OK; 3961 } 3962 3963 static struct notifier_block __cpuinitdata slab_notifier = { 3964 .notifier_call = slab_cpuup_callback 3965 }; 3966 3967 #endif 3968 3969 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3970 { 3971 struct kmem_cache *s; 3972 void *ret; 3973 3974 if (unlikely(size > SLUB_MAX_SIZE)) 3975 return kmalloc_large(size, gfpflags); 3976 3977 s = get_slab(size, gfpflags); 3978 3979 if (unlikely(ZERO_OR_NULL_PTR(s))) 3980 return s; 3981 3982 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); 3983 3984 /* Honor the call site pointer we received. */ 3985 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3986 3987 return ret; 3988 } 3989 3990 #ifdef CONFIG_NUMA 3991 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3992 int node, unsigned long caller) 3993 { 3994 struct kmem_cache *s; 3995 void *ret; 3996 3997 if (unlikely(size > SLUB_MAX_SIZE)) { 3998 ret = kmalloc_large_node(size, gfpflags, node); 3999 4000 trace_kmalloc_node(caller, ret, 4001 size, PAGE_SIZE << get_order(size), 4002 gfpflags, node); 4003 4004 return ret; 4005 } 4006 4007 s = get_slab(size, gfpflags); 4008 4009 if (unlikely(ZERO_OR_NULL_PTR(s))) 4010 return s; 4011 4012 ret = slab_alloc(s, gfpflags, node, caller); 4013 4014 /* Honor the call site pointer we received. */ 4015 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4016 4017 return ret; 4018 } 4019 #endif 4020 4021 #ifdef CONFIG_SYSFS 4022 static int count_inuse(struct page *page) 4023 { 4024 return page->inuse; 4025 } 4026 4027 static int count_total(struct page *page) 4028 { 4029 return page->objects; 4030 } 4031 #endif 4032 4033 #ifdef CONFIG_SLUB_DEBUG 4034 static int validate_slab(struct kmem_cache *s, struct page *page, 4035 unsigned long *map) 4036 { 4037 void *p; 4038 void *addr = page_address(page); 4039 4040 if (!check_slab(s, page) || 4041 !on_freelist(s, page, NULL)) 4042 return 0; 4043 4044 /* Now we know that a valid freelist exists */ 4045 bitmap_zero(map, page->objects); 4046 4047 get_map(s, page, map); 4048 for_each_object(p, s, addr, page->objects) { 4049 if (test_bit(slab_index(p, s, addr), map)) 4050 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4051 return 0; 4052 } 4053 4054 for_each_object(p, s, addr, page->objects) 4055 if (!test_bit(slab_index(p, s, addr), map)) 4056 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4057 return 0; 4058 return 1; 4059 } 4060 4061 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4062 unsigned long *map) 4063 { 4064 slab_lock(page); 4065 validate_slab(s, page, map); 4066 slab_unlock(page); 4067 } 4068 4069 static int validate_slab_node(struct kmem_cache *s, 4070 struct kmem_cache_node *n, unsigned long *map) 4071 { 4072 unsigned long count = 0; 4073 struct page *page; 4074 unsigned long flags; 4075 4076 spin_lock_irqsave(&n->list_lock, flags); 4077 4078 list_for_each_entry(page, &n->partial, lru) { 4079 validate_slab_slab(s, page, map); 4080 count++; 4081 } 4082 if (count != n->nr_partial) 4083 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " 4084 "counter=%ld\n", s->name, count, n->nr_partial); 4085 4086 if (!(s->flags & SLAB_STORE_USER)) 4087 goto out; 4088 4089 list_for_each_entry(page, &n->full, lru) { 4090 validate_slab_slab(s, page, map); 4091 count++; 4092 } 4093 if (count != atomic_long_read(&n->nr_slabs)) 4094 printk(KERN_ERR "SLUB: %s %ld slabs counted but " 4095 "counter=%ld\n", s->name, count, 4096 atomic_long_read(&n->nr_slabs)); 4097 4098 out: 4099 spin_unlock_irqrestore(&n->list_lock, flags); 4100 return count; 4101 } 4102 4103 static long validate_slab_cache(struct kmem_cache *s) 4104 { 4105 int node; 4106 unsigned long count = 0; 4107 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4108 sizeof(unsigned long), GFP_KERNEL); 4109 4110 if (!map) 4111 return -ENOMEM; 4112 4113 flush_all(s); 4114 for_each_node_state(node, N_NORMAL_MEMORY) { 4115 struct kmem_cache_node *n = get_node(s, node); 4116 4117 count += validate_slab_node(s, n, map); 4118 } 4119 kfree(map); 4120 return count; 4121 } 4122 /* 4123 * Generate lists of code addresses where slabcache objects are allocated 4124 * and freed. 4125 */ 4126 4127 struct location { 4128 unsigned long count; 4129 unsigned long addr; 4130 long long sum_time; 4131 long min_time; 4132 long max_time; 4133 long min_pid; 4134 long max_pid; 4135 DECLARE_BITMAP(cpus, NR_CPUS); 4136 nodemask_t nodes; 4137 }; 4138 4139 struct loc_track { 4140 unsigned long max; 4141 unsigned long count; 4142 struct location *loc; 4143 }; 4144 4145 static void free_loc_track(struct loc_track *t) 4146 { 4147 if (t->max) 4148 free_pages((unsigned long)t->loc, 4149 get_order(sizeof(struct location) * t->max)); 4150 } 4151 4152 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4153 { 4154 struct location *l; 4155 int order; 4156 4157 order = get_order(sizeof(struct location) * max); 4158 4159 l = (void *)__get_free_pages(flags, order); 4160 if (!l) 4161 return 0; 4162 4163 if (t->count) { 4164 memcpy(l, t->loc, sizeof(struct location) * t->count); 4165 free_loc_track(t); 4166 } 4167 t->max = max; 4168 t->loc = l; 4169 return 1; 4170 } 4171 4172 static int add_location(struct loc_track *t, struct kmem_cache *s, 4173 const struct track *track) 4174 { 4175 long start, end, pos; 4176 struct location *l; 4177 unsigned long caddr; 4178 unsigned long age = jiffies - track->when; 4179 4180 start = -1; 4181 end = t->count; 4182 4183 for ( ; ; ) { 4184 pos = start + (end - start + 1) / 2; 4185 4186 /* 4187 * There is nothing at "end". If we end up there 4188 * we need to add something to before end. 4189 */ 4190 if (pos == end) 4191 break; 4192 4193 caddr = t->loc[pos].addr; 4194 if (track->addr == caddr) { 4195 4196 l = &t->loc[pos]; 4197 l->count++; 4198 if (track->when) { 4199 l->sum_time += age; 4200 if (age < l->min_time) 4201 l->min_time = age; 4202 if (age > l->max_time) 4203 l->max_time = age; 4204 4205 if (track->pid < l->min_pid) 4206 l->min_pid = track->pid; 4207 if (track->pid > l->max_pid) 4208 l->max_pid = track->pid; 4209 4210 cpumask_set_cpu(track->cpu, 4211 to_cpumask(l->cpus)); 4212 } 4213 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4214 return 1; 4215 } 4216 4217 if (track->addr < caddr) 4218 end = pos; 4219 else 4220 start = pos; 4221 } 4222 4223 /* 4224 * Not found. Insert new tracking element. 4225 */ 4226 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4227 return 0; 4228 4229 l = t->loc + pos; 4230 if (pos < t->count) 4231 memmove(l + 1, l, 4232 (t->count - pos) * sizeof(struct location)); 4233 t->count++; 4234 l->count = 1; 4235 l->addr = track->addr; 4236 l->sum_time = age; 4237 l->min_time = age; 4238 l->max_time = age; 4239 l->min_pid = track->pid; 4240 l->max_pid = track->pid; 4241 cpumask_clear(to_cpumask(l->cpus)); 4242 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4243 nodes_clear(l->nodes); 4244 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4245 return 1; 4246 } 4247 4248 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4249 struct page *page, enum track_item alloc, 4250 unsigned long *map) 4251 { 4252 void *addr = page_address(page); 4253 void *p; 4254 4255 bitmap_zero(map, page->objects); 4256 get_map(s, page, map); 4257 4258 for_each_object(p, s, addr, page->objects) 4259 if (!test_bit(slab_index(p, s, addr), map)) 4260 add_location(t, s, get_track(s, p, alloc)); 4261 } 4262 4263 static int list_locations(struct kmem_cache *s, char *buf, 4264 enum track_item alloc) 4265 { 4266 int len = 0; 4267 unsigned long i; 4268 struct loc_track t = { 0, 0, NULL }; 4269 int node; 4270 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4271 sizeof(unsigned long), GFP_KERNEL); 4272 4273 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4274 GFP_TEMPORARY)) { 4275 kfree(map); 4276 return sprintf(buf, "Out of memory\n"); 4277 } 4278 /* Push back cpu slabs */ 4279 flush_all(s); 4280 4281 for_each_node_state(node, N_NORMAL_MEMORY) { 4282 struct kmem_cache_node *n = get_node(s, node); 4283 unsigned long flags; 4284 struct page *page; 4285 4286 if (!atomic_long_read(&n->nr_slabs)) 4287 continue; 4288 4289 spin_lock_irqsave(&n->list_lock, flags); 4290 list_for_each_entry(page, &n->partial, lru) 4291 process_slab(&t, s, page, alloc, map); 4292 list_for_each_entry(page, &n->full, lru) 4293 process_slab(&t, s, page, alloc, map); 4294 spin_unlock_irqrestore(&n->list_lock, flags); 4295 } 4296 4297 for (i = 0; i < t.count; i++) { 4298 struct location *l = &t.loc[i]; 4299 4300 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4301 break; 4302 len += sprintf(buf + len, "%7ld ", l->count); 4303 4304 if (l->addr) 4305 len += sprintf(buf + len, "%pS", (void *)l->addr); 4306 else 4307 len += sprintf(buf + len, "<not-available>"); 4308 4309 if (l->sum_time != l->min_time) { 4310 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4311 l->min_time, 4312 (long)div_u64(l->sum_time, l->count), 4313 l->max_time); 4314 } else 4315 len += sprintf(buf + len, " age=%ld", 4316 l->min_time); 4317 4318 if (l->min_pid != l->max_pid) 4319 len += sprintf(buf + len, " pid=%ld-%ld", 4320 l->min_pid, l->max_pid); 4321 else 4322 len += sprintf(buf + len, " pid=%ld", 4323 l->min_pid); 4324 4325 if (num_online_cpus() > 1 && 4326 !cpumask_empty(to_cpumask(l->cpus)) && 4327 len < PAGE_SIZE - 60) { 4328 len += sprintf(buf + len, " cpus="); 4329 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4330 to_cpumask(l->cpus)); 4331 } 4332 4333 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4334 len < PAGE_SIZE - 60) { 4335 len += sprintf(buf + len, " nodes="); 4336 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, 4337 l->nodes); 4338 } 4339 4340 len += sprintf(buf + len, "\n"); 4341 } 4342 4343 free_loc_track(&t); 4344 kfree(map); 4345 if (!t.count) 4346 len += sprintf(buf, "No data\n"); 4347 return len; 4348 } 4349 #endif 4350 4351 #ifdef SLUB_RESILIENCY_TEST 4352 static void resiliency_test(void) 4353 { 4354 u8 *p; 4355 4356 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10); 4357 4358 printk(KERN_ERR "SLUB resiliency testing\n"); 4359 printk(KERN_ERR "-----------------------\n"); 4360 printk(KERN_ERR "A. Corruption after allocation\n"); 4361 4362 p = kzalloc(16, GFP_KERNEL); 4363 p[16] = 0x12; 4364 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" 4365 " 0x12->0x%p\n\n", p + 16); 4366 4367 validate_slab_cache(kmalloc_caches[4]); 4368 4369 /* Hmmm... The next two are dangerous */ 4370 p = kzalloc(32, GFP_KERNEL); 4371 p[32 + sizeof(void *)] = 0x34; 4372 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" 4373 " 0x34 -> -0x%p\n", p); 4374 printk(KERN_ERR 4375 "If allocated object is overwritten then not detectable\n\n"); 4376 4377 validate_slab_cache(kmalloc_caches[5]); 4378 p = kzalloc(64, GFP_KERNEL); 4379 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4380 *p = 0x56; 4381 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4382 p); 4383 printk(KERN_ERR 4384 "If allocated object is overwritten then not detectable\n\n"); 4385 validate_slab_cache(kmalloc_caches[6]); 4386 4387 printk(KERN_ERR "\nB. Corruption after free\n"); 4388 p = kzalloc(128, GFP_KERNEL); 4389 kfree(p); 4390 *p = 0x78; 4391 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4392 validate_slab_cache(kmalloc_caches[7]); 4393 4394 p = kzalloc(256, GFP_KERNEL); 4395 kfree(p); 4396 p[50] = 0x9a; 4397 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", 4398 p); 4399 validate_slab_cache(kmalloc_caches[8]); 4400 4401 p = kzalloc(512, GFP_KERNEL); 4402 kfree(p); 4403 p[512] = 0xab; 4404 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4405 validate_slab_cache(kmalloc_caches[9]); 4406 } 4407 #else 4408 #ifdef CONFIG_SYSFS 4409 static void resiliency_test(void) {}; 4410 #endif 4411 #endif 4412 4413 #ifdef CONFIG_SYSFS 4414 enum slab_stat_type { 4415 SL_ALL, /* All slabs */ 4416 SL_PARTIAL, /* Only partially allocated slabs */ 4417 SL_CPU, /* Only slabs used for cpu caches */ 4418 SL_OBJECTS, /* Determine allocated objects not slabs */ 4419 SL_TOTAL /* Determine object capacity not slabs */ 4420 }; 4421 4422 #define SO_ALL (1 << SL_ALL) 4423 #define SO_PARTIAL (1 << SL_PARTIAL) 4424 #define SO_CPU (1 << SL_CPU) 4425 #define SO_OBJECTS (1 << SL_OBJECTS) 4426 #define SO_TOTAL (1 << SL_TOTAL) 4427 4428 static ssize_t show_slab_objects(struct kmem_cache *s, 4429 char *buf, unsigned long flags) 4430 { 4431 unsigned long total = 0; 4432 int node; 4433 int x; 4434 unsigned long *nodes; 4435 unsigned long *per_cpu; 4436 4437 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4438 if (!nodes) 4439 return -ENOMEM; 4440 per_cpu = nodes + nr_node_ids; 4441 4442 if (flags & SO_CPU) { 4443 int cpu; 4444 4445 for_each_possible_cpu(cpu) { 4446 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 4447 int node = ACCESS_ONCE(c->node); 4448 struct page *page; 4449 4450 if (node < 0) 4451 continue; 4452 page = ACCESS_ONCE(c->page); 4453 if (page) { 4454 if (flags & SO_TOTAL) 4455 x = page->objects; 4456 else if (flags & SO_OBJECTS) 4457 x = page->inuse; 4458 else 4459 x = 1; 4460 4461 total += x; 4462 nodes[node] += x; 4463 } 4464 page = c->partial; 4465 4466 if (page) { 4467 x = page->pobjects; 4468 total += x; 4469 nodes[node] += x; 4470 } 4471 per_cpu[node]++; 4472 } 4473 } 4474 4475 lock_memory_hotplug(); 4476 #ifdef CONFIG_SLUB_DEBUG 4477 if (flags & SO_ALL) { 4478 for_each_node_state(node, N_NORMAL_MEMORY) { 4479 struct kmem_cache_node *n = get_node(s, node); 4480 4481 if (flags & SO_TOTAL) 4482 x = atomic_long_read(&n->total_objects); 4483 else if (flags & SO_OBJECTS) 4484 x = atomic_long_read(&n->total_objects) - 4485 count_partial(n, count_free); 4486 4487 else 4488 x = atomic_long_read(&n->nr_slabs); 4489 total += x; 4490 nodes[node] += x; 4491 } 4492 4493 } else 4494 #endif 4495 if (flags & SO_PARTIAL) { 4496 for_each_node_state(node, N_NORMAL_MEMORY) { 4497 struct kmem_cache_node *n = get_node(s, node); 4498 4499 if (flags & SO_TOTAL) 4500 x = count_partial(n, count_total); 4501 else if (flags & SO_OBJECTS) 4502 x = count_partial(n, count_inuse); 4503 else 4504 x = n->nr_partial; 4505 total += x; 4506 nodes[node] += x; 4507 } 4508 } 4509 x = sprintf(buf, "%lu", total); 4510 #ifdef CONFIG_NUMA 4511 for_each_node_state(node, N_NORMAL_MEMORY) 4512 if (nodes[node]) 4513 x += sprintf(buf + x, " N%d=%lu", 4514 node, nodes[node]); 4515 #endif 4516 unlock_memory_hotplug(); 4517 kfree(nodes); 4518 return x + sprintf(buf + x, "\n"); 4519 } 4520 4521 #ifdef CONFIG_SLUB_DEBUG 4522 static int any_slab_objects(struct kmem_cache *s) 4523 { 4524 int node; 4525 4526 for_each_online_node(node) { 4527 struct kmem_cache_node *n = get_node(s, node); 4528 4529 if (!n) 4530 continue; 4531 4532 if (atomic_long_read(&n->total_objects)) 4533 return 1; 4534 } 4535 return 0; 4536 } 4537 #endif 4538 4539 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4540 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4541 4542 struct slab_attribute { 4543 struct attribute attr; 4544 ssize_t (*show)(struct kmem_cache *s, char *buf); 4545 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4546 }; 4547 4548 #define SLAB_ATTR_RO(_name) \ 4549 static struct slab_attribute _name##_attr = \ 4550 __ATTR(_name, 0400, _name##_show, NULL) 4551 4552 #define SLAB_ATTR(_name) \ 4553 static struct slab_attribute _name##_attr = \ 4554 __ATTR(_name, 0600, _name##_show, _name##_store) 4555 4556 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4557 { 4558 return sprintf(buf, "%d\n", s->size); 4559 } 4560 SLAB_ATTR_RO(slab_size); 4561 4562 static ssize_t align_show(struct kmem_cache *s, char *buf) 4563 { 4564 return sprintf(buf, "%d\n", s->align); 4565 } 4566 SLAB_ATTR_RO(align); 4567 4568 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4569 { 4570 return sprintf(buf, "%d\n", s->objsize); 4571 } 4572 SLAB_ATTR_RO(object_size); 4573 4574 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4575 { 4576 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4577 } 4578 SLAB_ATTR_RO(objs_per_slab); 4579 4580 static ssize_t order_store(struct kmem_cache *s, 4581 const char *buf, size_t length) 4582 { 4583 unsigned long order; 4584 int err; 4585 4586 err = strict_strtoul(buf, 10, &order); 4587 if (err) 4588 return err; 4589 4590 if (order > slub_max_order || order < slub_min_order) 4591 return -EINVAL; 4592 4593 calculate_sizes(s, order); 4594 return length; 4595 } 4596 4597 static ssize_t order_show(struct kmem_cache *s, char *buf) 4598 { 4599 return sprintf(buf, "%d\n", oo_order(s->oo)); 4600 } 4601 SLAB_ATTR(order); 4602 4603 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4604 { 4605 return sprintf(buf, "%lu\n", s->min_partial); 4606 } 4607 4608 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4609 size_t length) 4610 { 4611 unsigned long min; 4612 int err; 4613 4614 err = strict_strtoul(buf, 10, &min); 4615 if (err) 4616 return err; 4617 4618 set_min_partial(s, min); 4619 return length; 4620 } 4621 SLAB_ATTR(min_partial); 4622 4623 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4624 { 4625 return sprintf(buf, "%u\n", s->cpu_partial); 4626 } 4627 4628 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4629 size_t length) 4630 { 4631 unsigned long objects; 4632 int err; 4633 4634 err = strict_strtoul(buf, 10, &objects); 4635 if (err) 4636 return err; 4637 4638 s->cpu_partial = objects; 4639 flush_all(s); 4640 return length; 4641 } 4642 SLAB_ATTR(cpu_partial); 4643 4644 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4645 { 4646 if (!s->ctor) 4647 return 0; 4648 return sprintf(buf, "%pS\n", s->ctor); 4649 } 4650 SLAB_ATTR_RO(ctor); 4651 4652 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4653 { 4654 return sprintf(buf, "%d\n", s->refcount - 1); 4655 } 4656 SLAB_ATTR_RO(aliases); 4657 4658 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4659 { 4660 return show_slab_objects(s, buf, SO_PARTIAL); 4661 } 4662 SLAB_ATTR_RO(partial); 4663 4664 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4665 { 4666 return show_slab_objects(s, buf, SO_CPU); 4667 } 4668 SLAB_ATTR_RO(cpu_slabs); 4669 4670 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4671 { 4672 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4673 } 4674 SLAB_ATTR_RO(objects); 4675 4676 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4677 { 4678 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4679 } 4680 SLAB_ATTR_RO(objects_partial); 4681 4682 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4683 { 4684 int objects = 0; 4685 int pages = 0; 4686 int cpu; 4687 int len; 4688 4689 for_each_online_cpu(cpu) { 4690 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4691 4692 if (page) { 4693 pages += page->pages; 4694 objects += page->pobjects; 4695 } 4696 } 4697 4698 len = sprintf(buf, "%d(%d)", objects, pages); 4699 4700 #ifdef CONFIG_SMP 4701 for_each_online_cpu(cpu) { 4702 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4703 4704 if (page && len < PAGE_SIZE - 20) 4705 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4706 page->pobjects, page->pages); 4707 } 4708 #endif 4709 return len + sprintf(buf + len, "\n"); 4710 } 4711 SLAB_ATTR_RO(slabs_cpu_partial); 4712 4713 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4714 { 4715 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4716 } 4717 4718 static ssize_t reclaim_account_store(struct kmem_cache *s, 4719 const char *buf, size_t length) 4720 { 4721 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4722 if (buf[0] == '1') 4723 s->flags |= SLAB_RECLAIM_ACCOUNT; 4724 return length; 4725 } 4726 SLAB_ATTR(reclaim_account); 4727 4728 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4729 { 4730 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4731 } 4732 SLAB_ATTR_RO(hwcache_align); 4733 4734 #ifdef CONFIG_ZONE_DMA 4735 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4736 { 4737 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4738 } 4739 SLAB_ATTR_RO(cache_dma); 4740 #endif 4741 4742 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4743 { 4744 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4745 } 4746 SLAB_ATTR_RO(destroy_by_rcu); 4747 4748 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4749 { 4750 return sprintf(buf, "%d\n", s->reserved); 4751 } 4752 SLAB_ATTR_RO(reserved); 4753 4754 #ifdef CONFIG_SLUB_DEBUG 4755 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4756 { 4757 return show_slab_objects(s, buf, SO_ALL); 4758 } 4759 SLAB_ATTR_RO(slabs); 4760 4761 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4762 { 4763 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4764 } 4765 SLAB_ATTR_RO(total_objects); 4766 4767 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4768 { 4769 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4770 } 4771 4772 static ssize_t sanity_checks_store(struct kmem_cache *s, 4773 const char *buf, size_t length) 4774 { 4775 s->flags &= ~SLAB_DEBUG_FREE; 4776 if (buf[0] == '1') { 4777 s->flags &= ~__CMPXCHG_DOUBLE; 4778 s->flags |= SLAB_DEBUG_FREE; 4779 } 4780 return length; 4781 } 4782 SLAB_ATTR(sanity_checks); 4783 4784 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4785 { 4786 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4787 } 4788 4789 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4790 size_t length) 4791 { 4792 s->flags &= ~SLAB_TRACE; 4793 if (buf[0] == '1') { 4794 s->flags &= ~__CMPXCHG_DOUBLE; 4795 s->flags |= SLAB_TRACE; 4796 } 4797 return length; 4798 } 4799 SLAB_ATTR(trace); 4800 4801 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4802 { 4803 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4804 } 4805 4806 static ssize_t red_zone_store(struct kmem_cache *s, 4807 const char *buf, size_t length) 4808 { 4809 if (any_slab_objects(s)) 4810 return -EBUSY; 4811 4812 s->flags &= ~SLAB_RED_ZONE; 4813 if (buf[0] == '1') { 4814 s->flags &= ~__CMPXCHG_DOUBLE; 4815 s->flags |= SLAB_RED_ZONE; 4816 } 4817 calculate_sizes(s, -1); 4818 return length; 4819 } 4820 SLAB_ATTR(red_zone); 4821 4822 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4823 { 4824 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4825 } 4826 4827 static ssize_t poison_store(struct kmem_cache *s, 4828 const char *buf, size_t length) 4829 { 4830 if (any_slab_objects(s)) 4831 return -EBUSY; 4832 4833 s->flags &= ~SLAB_POISON; 4834 if (buf[0] == '1') { 4835 s->flags &= ~__CMPXCHG_DOUBLE; 4836 s->flags |= SLAB_POISON; 4837 } 4838 calculate_sizes(s, -1); 4839 return length; 4840 } 4841 SLAB_ATTR(poison); 4842 4843 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4844 { 4845 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4846 } 4847 4848 static ssize_t store_user_store(struct kmem_cache *s, 4849 const char *buf, size_t length) 4850 { 4851 if (any_slab_objects(s)) 4852 return -EBUSY; 4853 4854 s->flags &= ~SLAB_STORE_USER; 4855 if (buf[0] == '1') { 4856 s->flags &= ~__CMPXCHG_DOUBLE; 4857 s->flags |= SLAB_STORE_USER; 4858 } 4859 calculate_sizes(s, -1); 4860 return length; 4861 } 4862 SLAB_ATTR(store_user); 4863 4864 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4865 { 4866 return 0; 4867 } 4868 4869 static ssize_t validate_store(struct kmem_cache *s, 4870 const char *buf, size_t length) 4871 { 4872 int ret = -EINVAL; 4873 4874 if (buf[0] == '1') { 4875 ret = validate_slab_cache(s); 4876 if (ret >= 0) 4877 ret = length; 4878 } 4879 return ret; 4880 } 4881 SLAB_ATTR(validate); 4882 4883 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4884 { 4885 if (!(s->flags & SLAB_STORE_USER)) 4886 return -ENOSYS; 4887 return list_locations(s, buf, TRACK_ALLOC); 4888 } 4889 SLAB_ATTR_RO(alloc_calls); 4890 4891 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4892 { 4893 if (!(s->flags & SLAB_STORE_USER)) 4894 return -ENOSYS; 4895 return list_locations(s, buf, TRACK_FREE); 4896 } 4897 SLAB_ATTR_RO(free_calls); 4898 #endif /* CONFIG_SLUB_DEBUG */ 4899 4900 #ifdef CONFIG_FAILSLAB 4901 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4902 { 4903 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4904 } 4905 4906 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4907 size_t length) 4908 { 4909 s->flags &= ~SLAB_FAILSLAB; 4910 if (buf[0] == '1') 4911 s->flags |= SLAB_FAILSLAB; 4912 return length; 4913 } 4914 SLAB_ATTR(failslab); 4915 #endif 4916 4917 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4918 { 4919 return 0; 4920 } 4921 4922 static ssize_t shrink_store(struct kmem_cache *s, 4923 const char *buf, size_t length) 4924 { 4925 if (buf[0] == '1') { 4926 int rc = kmem_cache_shrink(s); 4927 4928 if (rc) 4929 return rc; 4930 } else 4931 return -EINVAL; 4932 return length; 4933 } 4934 SLAB_ATTR(shrink); 4935 4936 #ifdef CONFIG_NUMA 4937 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4938 { 4939 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4940 } 4941 4942 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4943 const char *buf, size_t length) 4944 { 4945 unsigned long ratio; 4946 int err; 4947 4948 err = strict_strtoul(buf, 10, &ratio); 4949 if (err) 4950 return err; 4951 4952 if (ratio <= 100) 4953 s->remote_node_defrag_ratio = ratio * 10; 4954 4955 return length; 4956 } 4957 SLAB_ATTR(remote_node_defrag_ratio); 4958 #endif 4959 4960 #ifdef CONFIG_SLUB_STATS 4961 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4962 { 4963 unsigned long sum = 0; 4964 int cpu; 4965 int len; 4966 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4967 4968 if (!data) 4969 return -ENOMEM; 4970 4971 for_each_online_cpu(cpu) { 4972 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4973 4974 data[cpu] = x; 4975 sum += x; 4976 } 4977 4978 len = sprintf(buf, "%lu", sum); 4979 4980 #ifdef CONFIG_SMP 4981 for_each_online_cpu(cpu) { 4982 if (data[cpu] && len < PAGE_SIZE - 20) 4983 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4984 } 4985 #endif 4986 kfree(data); 4987 return len + sprintf(buf + len, "\n"); 4988 } 4989 4990 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4991 { 4992 int cpu; 4993 4994 for_each_online_cpu(cpu) 4995 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4996 } 4997 4998 #define STAT_ATTR(si, text) \ 4999 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5000 { \ 5001 return show_stat(s, buf, si); \ 5002 } \ 5003 static ssize_t text##_store(struct kmem_cache *s, \ 5004 const char *buf, size_t length) \ 5005 { \ 5006 if (buf[0] != '0') \ 5007 return -EINVAL; \ 5008 clear_stat(s, si); \ 5009 return length; \ 5010 } \ 5011 SLAB_ATTR(text); \ 5012 5013 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5014 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5015 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5016 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5017 STAT_ATTR(FREE_FROZEN, free_frozen); 5018 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5019 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5020 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5021 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5022 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5023 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5024 STAT_ATTR(FREE_SLAB, free_slab); 5025 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5026 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5027 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5028 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5029 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5030 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5031 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5032 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5033 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5034 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5035 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5036 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5037 #endif 5038 5039 static struct attribute *slab_attrs[] = { 5040 &slab_size_attr.attr, 5041 &object_size_attr.attr, 5042 &objs_per_slab_attr.attr, 5043 &order_attr.attr, 5044 &min_partial_attr.attr, 5045 &cpu_partial_attr.attr, 5046 &objects_attr.attr, 5047 &objects_partial_attr.attr, 5048 &partial_attr.attr, 5049 &cpu_slabs_attr.attr, 5050 &ctor_attr.attr, 5051 &aliases_attr.attr, 5052 &align_attr.attr, 5053 &hwcache_align_attr.attr, 5054 &reclaim_account_attr.attr, 5055 &destroy_by_rcu_attr.attr, 5056 &shrink_attr.attr, 5057 &reserved_attr.attr, 5058 &slabs_cpu_partial_attr.attr, 5059 #ifdef CONFIG_SLUB_DEBUG 5060 &total_objects_attr.attr, 5061 &slabs_attr.attr, 5062 &sanity_checks_attr.attr, 5063 &trace_attr.attr, 5064 &red_zone_attr.attr, 5065 &poison_attr.attr, 5066 &store_user_attr.attr, 5067 &validate_attr.attr, 5068 &alloc_calls_attr.attr, 5069 &free_calls_attr.attr, 5070 #endif 5071 #ifdef CONFIG_ZONE_DMA 5072 &cache_dma_attr.attr, 5073 #endif 5074 #ifdef CONFIG_NUMA 5075 &remote_node_defrag_ratio_attr.attr, 5076 #endif 5077 #ifdef CONFIG_SLUB_STATS 5078 &alloc_fastpath_attr.attr, 5079 &alloc_slowpath_attr.attr, 5080 &free_fastpath_attr.attr, 5081 &free_slowpath_attr.attr, 5082 &free_frozen_attr.attr, 5083 &free_add_partial_attr.attr, 5084 &free_remove_partial_attr.attr, 5085 &alloc_from_partial_attr.attr, 5086 &alloc_slab_attr.attr, 5087 &alloc_refill_attr.attr, 5088 &alloc_node_mismatch_attr.attr, 5089 &free_slab_attr.attr, 5090 &cpuslab_flush_attr.attr, 5091 &deactivate_full_attr.attr, 5092 &deactivate_empty_attr.attr, 5093 &deactivate_to_head_attr.attr, 5094 &deactivate_to_tail_attr.attr, 5095 &deactivate_remote_frees_attr.attr, 5096 &deactivate_bypass_attr.attr, 5097 &order_fallback_attr.attr, 5098 &cmpxchg_double_fail_attr.attr, 5099 &cmpxchg_double_cpu_fail_attr.attr, 5100 &cpu_partial_alloc_attr.attr, 5101 &cpu_partial_free_attr.attr, 5102 #endif 5103 #ifdef CONFIG_FAILSLAB 5104 &failslab_attr.attr, 5105 #endif 5106 5107 NULL 5108 }; 5109 5110 static struct attribute_group slab_attr_group = { 5111 .attrs = slab_attrs, 5112 }; 5113 5114 static ssize_t slab_attr_show(struct kobject *kobj, 5115 struct attribute *attr, 5116 char *buf) 5117 { 5118 struct slab_attribute *attribute; 5119 struct kmem_cache *s; 5120 int err; 5121 5122 attribute = to_slab_attr(attr); 5123 s = to_slab(kobj); 5124 5125 if (!attribute->show) 5126 return -EIO; 5127 5128 err = attribute->show(s, buf); 5129 5130 return err; 5131 } 5132 5133 static ssize_t slab_attr_store(struct kobject *kobj, 5134 struct attribute *attr, 5135 const char *buf, size_t len) 5136 { 5137 struct slab_attribute *attribute; 5138 struct kmem_cache *s; 5139 int err; 5140 5141 attribute = to_slab_attr(attr); 5142 s = to_slab(kobj); 5143 5144 if (!attribute->store) 5145 return -EIO; 5146 5147 err = attribute->store(s, buf, len); 5148 5149 return err; 5150 } 5151 5152 static void kmem_cache_release(struct kobject *kobj) 5153 { 5154 struct kmem_cache *s = to_slab(kobj); 5155 5156 kfree(s->name); 5157 kfree(s); 5158 } 5159 5160 static const struct sysfs_ops slab_sysfs_ops = { 5161 .show = slab_attr_show, 5162 .store = slab_attr_store, 5163 }; 5164 5165 static struct kobj_type slab_ktype = { 5166 .sysfs_ops = &slab_sysfs_ops, 5167 .release = kmem_cache_release 5168 }; 5169 5170 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5171 { 5172 struct kobj_type *ktype = get_ktype(kobj); 5173 5174 if (ktype == &slab_ktype) 5175 return 1; 5176 return 0; 5177 } 5178 5179 static const struct kset_uevent_ops slab_uevent_ops = { 5180 .filter = uevent_filter, 5181 }; 5182 5183 static struct kset *slab_kset; 5184 5185 #define ID_STR_LENGTH 64 5186 5187 /* Create a unique string id for a slab cache: 5188 * 5189 * Format :[flags-]size 5190 */ 5191 static char *create_unique_id(struct kmem_cache *s) 5192 { 5193 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5194 char *p = name; 5195 5196 BUG_ON(!name); 5197 5198 *p++ = ':'; 5199 /* 5200 * First flags affecting slabcache operations. We will only 5201 * get here for aliasable slabs so we do not need to support 5202 * too many flags. The flags here must cover all flags that 5203 * are matched during merging to guarantee that the id is 5204 * unique. 5205 */ 5206 if (s->flags & SLAB_CACHE_DMA) 5207 *p++ = 'd'; 5208 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5209 *p++ = 'a'; 5210 if (s->flags & SLAB_DEBUG_FREE) 5211 *p++ = 'F'; 5212 if (!(s->flags & SLAB_NOTRACK)) 5213 *p++ = 't'; 5214 if (p != name + 1) 5215 *p++ = '-'; 5216 p += sprintf(p, "%07d", s->size); 5217 BUG_ON(p > name + ID_STR_LENGTH - 1); 5218 return name; 5219 } 5220 5221 static int sysfs_slab_add(struct kmem_cache *s) 5222 { 5223 int err; 5224 const char *name; 5225 int unmergeable; 5226 5227 if (slab_state < SYSFS) 5228 /* Defer until later */ 5229 return 0; 5230 5231 unmergeable = slab_unmergeable(s); 5232 if (unmergeable) { 5233 /* 5234 * Slabcache can never be merged so we can use the name proper. 5235 * This is typically the case for debug situations. In that 5236 * case we can catch duplicate names easily. 5237 */ 5238 sysfs_remove_link(&slab_kset->kobj, s->name); 5239 name = s->name; 5240 } else { 5241 /* 5242 * Create a unique name for the slab as a target 5243 * for the symlinks. 5244 */ 5245 name = create_unique_id(s); 5246 } 5247 5248 s->kobj.kset = slab_kset; 5249 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); 5250 if (err) { 5251 kobject_put(&s->kobj); 5252 return err; 5253 } 5254 5255 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5256 if (err) { 5257 kobject_del(&s->kobj); 5258 kobject_put(&s->kobj); 5259 return err; 5260 } 5261 kobject_uevent(&s->kobj, KOBJ_ADD); 5262 if (!unmergeable) { 5263 /* Setup first alias */ 5264 sysfs_slab_alias(s, s->name); 5265 kfree(name); 5266 } 5267 return 0; 5268 } 5269 5270 static void sysfs_slab_remove(struct kmem_cache *s) 5271 { 5272 if (slab_state < SYSFS) 5273 /* 5274 * Sysfs has not been setup yet so no need to remove the 5275 * cache from sysfs. 5276 */ 5277 return; 5278 5279 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5280 kobject_del(&s->kobj); 5281 kobject_put(&s->kobj); 5282 } 5283 5284 /* 5285 * Need to buffer aliases during bootup until sysfs becomes 5286 * available lest we lose that information. 5287 */ 5288 struct saved_alias { 5289 struct kmem_cache *s; 5290 const char *name; 5291 struct saved_alias *next; 5292 }; 5293 5294 static struct saved_alias *alias_list; 5295 5296 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5297 { 5298 struct saved_alias *al; 5299 5300 if (slab_state == SYSFS) { 5301 /* 5302 * If we have a leftover link then remove it. 5303 */ 5304 sysfs_remove_link(&slab_kset->kobj, name); 5305 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5306 } 5307 5308 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5309 if (!al) 5310 return -ENOMEM; 5311 5312 al->s = s; 5313 al->name = name; 5314 al->next = alias_list; 5315 alias_list = al; 5316 return 0; 5317 } 5318 5319 static int __init slab_sysfs_init(void) 5320 { 5321 struct kmem_cache *s; 5322 int err; 5323 5324 down_write(&slub_lock); 5325 5326 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5327 if (!slab_kset) { 5328 up_write(&slub_lock); 5329 printk(KERN_ERR "Cannot register slab subsystem.\n"); 5330 return -ENOSYS; 5331 } 5332 5333 slab_state = SYSFS; 5334 5335 list_for_each_entry(s, &slab_caches, list) { 5336 err = sysfs_slab_add(s); 5337 if (err) 5338 printk(KERN_ERR "SLUB: Unable to add boot slab %s" 5339 " to sysfs\n", s->name); 5340 } 5341 5342 while (alias_list) { 5343 struct saved_alias *al = alias_list; 5344 5345 alias_list = alias_list->next; 5346 err = sysfs_slab_alias(al->s, al->name); 5347 if (err) 5348 printk(KERN_ERR "SLUB: Unable to add boot slab alias" 5349 " %s to sysfs\n", s->name); 5350 kfree(al); 5351 } 5352 5353 up_write(&slub_lock); 5354 resiliency_test(); 5355 return 0; 5356 } 5357 5358 __initcall(slab_sysfs_init); 5359 #endif /* CONFIG_SYSFS */ 5360 5361 /* 5362 * The /proc/slabinfo ABI 5363 */ 5364 #ifdef CONFIG_SLABINFO 5365 static void print_slabinfo_header(struct seq_file *m) 5366 { 5367 seq_puts(m, "slabinfo - version: 2.1\n"); 5368 seq_puts(m, "# name <active_objs> <num_objs> <objsize> " 5369 "<objperslab> <pagesperslab>"); 5370 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 5371 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 5372 seq_putc(m, '\n'); 5373 } 5374 5375 static void *s_start(struct seq_file *m, loff_t *pos) 5376 { 5377 loff_t n = *pos; 5378 5379 down_read(&slub_lock); 5380 if (!n) 5381 print_slabinfo_header(m); 5382 5383 return seq_list_start(&slab_caches, *pos); 5384 } 5385 5386 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 5387 { 5388 return seq_list_next(p, &slab_caches, pos); 5389 } 5390 5391 static void s_stop(struct seq_file *m, void *p) 5392 { 5393 up_read(&slub_lock); 5394 } 5395 5396 static int s_show(struct seq_file *m, void *p) 5397 { 5398 unsigned long nr_partials = 0; 5399 unsigned long nr_slabs = 0; 5400 unsigned long nr_inuse = 0; 5401 unsigned long nr_objs = 0; 5402 unsigned long nr_free = 0; 5403 struct kmem_cache *s; 5404 int node; 5405 5406 s = list_entry(p, struct kmem_cache, list); 5407 5408 for_each_online_node(node) { 5409 struct kmem_cache_node *n = get_node(s, node); 5410 5411 if (!n) 5412 continue; 5413 5414 nr_partials += n->nr_partial; 5415 nr_slabs += atomic_long_read(&n->nr_slabs); 5416 nr_objs += atomic_long_read(&n->total_objects); 5417 nr_free += count_partial(n, count_free); 5418 } 5419 5420 nr_inuse = nr_objs - nr_free; 5421 5422 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, 5423 nr_objs, s->size, oo_objects(s->oo), 5424 (1 << oo_order(s->oo))); 5425 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); 5426 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, 5427 0UL); 5428 seq_putc(m, '\n'); 5429 return 0; 5430 } 5431 5432 static const struct seq_operations slabinfo_op = { 5433 .start = s_start, 5434 .next = s_next, 5435 .stop = s_stop, 5436 .show = s_show, 5437 }; 5438 5439 static int slabinfo_open(struct inode *inode, struct file *file) 5440 { 5441 return seq_open(file, &slabinfo_op); 5442 } 5443 5444 static const struct file_operations proc_slabinfo_operations = { 5445 .open = slabinfo_open, 5446 .read = seq_read, 5447 .llseek = seq_lseek, 5448 .release = seq_release, 5449 }; 5450 5451 static int __init slab_proc_init(void) 5452 { 5453 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations); 5454 return 0; 5455 } 5456 module_init(slab_proc_init); 5457 #endif /* CONFIG_SLABINFO */ 5458