1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operatios 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* struct reclaim_state */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/bitops.h> 19 #include <linux/slab.h> 20 #include "slab.h" 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 #include <linux/random.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects: 55 * A. page->freelist -> List of object free in a page 56 * B. page->inuse -> Number of objects in use 57 * C. page->objects -> Number of objects in page 58 * D. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list except per cpu partial list. The processor that froze the 62 * slab is the one who can perform list operations on the page. Other 63 * processors may put objects onto the freelist but the processor that 64 * froze the slab is the only one that can retrieve the objects from the 65 * page's freelist. 66 * 67 * The list_lock protects the partial and full list on each node and 68 * the partial slab counter. If taken then no new slabs may be added or 69 * removed from the lists nor make the number of partial slabs be modified. 70 * (Note that the total number of slabs is an atomic value that may be 71 * modified without taking the list lock). 72 * 73 * The list_lock is a centralized lock and thus we avoid taking it as 74 * much as possible. As long as SLUB does not have to handle partial 75 * slabs, operations can continue without any centralized lock. F.e. 76 * allocating a long series of objects that fill up slabs does not require 77 * the list lock. 78 * Interrupts are disabled during allocation and deallocation in order to 79 * make the slab allocator safe to use in the context of an irq. In addition 80 * interrupts are disabled to ensure that the processor does not change 81 * while handling per_cpu slabs, due to kernel preemption. 82 * 83 * SLUB assigns one slab for allocation to each processor. 84 * Allocations only occur from these slabs called cpu slabs. 85 * 86 * Slabs with free elements are kept on a partial list and during regular 87 * operations no list for full slabs is used. If an object in a full slab is 88 * freed then the slab will show up again on the partial lists. 89 * We track full slabs for debugging purposes though because otherwise we 90 * cannot scan all objects. 91 * 92 * Slabs are freed when they become empty. Teardown and setup is 93 * minimal so we rely on the page allocators per cpu caches for 94 * fast frees and allocs. 95 * 96 * page->frozen The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 void *fixup_red_left(struct kmem_cache *s, void *p) 127 { 128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 129 p += s->red_left_pad; 130 131 return p; 132 } 133 134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 135 { 136 #ifdef CONFIG_SLUB_CPU_PARTIAL 137 return !kmem_cache_debug(s); 138 #else 139 return false; 140 #endif 141 } 142 143 /* 144 * Issues still to be resolved: 145 * 146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 147 * 148 * - Variable sizing of the per node arrays 149 */ 150 151 /* Enable to test recovery from slab corruption on boot */ 152 #undef SLUB_RESILIENCY_TEST 153 154 /* Enable to log cmpxchg failures */ 155 #undef SLUB_DEBUG_CMPXCHG 156 157 /* 158 * Mininum number of partial slabs. These will be left on the partial 159 * lists even if they are empty. kmem_cache_shrink may reclaim them. 160 */ 161 #define MIN_PARTIAL 5 162 163 /* 164 * Maximum number of desirable partial slabs. 165 * The existence of more partial slabs makes kmem_cache_shrink 166 * sort the partial list by the number of objects in use. 167 */ 168 #define MAX_PARTIAL 10 169 170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 171 SLAB_POISON | SLAB_STORE_USER) 172 173 /* 174 * These debug flags cannot use CMPXCHG because there might be consistency 175 * issues when checking or reading debug information 176 */ 177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 178 SLAB_TRACE) 179 180 181 /* 182 * Debugging flags that require metadata to be stored in the slab. These get 183 * disabled when slub_debug=O is used and a cache's min order increases with 184 * metadata. 185 */ 186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 187 188 #define OO_SHIFT 16 189 #define OO_MASK ((1 << OO_SHIFT) - 1) 190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 191 192 /* Internal SLUB flags */ 193 /* Poison object */ 194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U) 195 /* Use cmpxchg_double */ 196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U) 197 198 /* 199 * Tracking user of a slab. 200 */ 201 #define TRACK_ADDRS_COUNT 16 202 struct track { 203 unsigned long addr; /* Called from address */ 204 #ifdef CONFIG_STACKTRACE 205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 206 #endif 207 int cpu; /* Was running on cpu */ 208 int pid; /* Pid context */ 209 unsigned long when; /* When did the operation occur */ 210 }; 211 212 enum track_item { TRACK_ALLOC, TRACK_FREE }; 213 214 #ifdef CONFIG_SYSFS 215 static int sysfs_slab_add(struct kmem_cache *); 216 static int sysfs_slab_alias(struct kmem_cache *, const char *); 217 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 218 static void sysfs_slab_remove(struct kmem_cache *s); 219 #else 220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 222 { return 0; } 223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 224 static inline void sysfs_slab_remove(struct kmem_cache *s) { } 225 #endif 226 227 static inline void stat(const struct kmem_cache *s, enum stat_item si) 228 { 229 #ifdef CONFIG_SLUB_STATS 230 /* 231 * The rmw is racy on a preemptible kernel but this is acceptable, so 232 * avoid this_cpu_add()'s irq-disable overhead. 233 */ 234 raw_cpu_inc(s->cpu_slab->stat[si]); 235 #endif 236 } 237 238 /******************************************************************** 239 * Core slab cache functions 240 *******************************************************************/ 241 242 /* 243 * Returns freelist pointer (ptr). With hardening, this is obfuscated 244 * with an XOR of the address where the pointer is held and a per-cache 245 * random number. 246 */ 247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, 248 unsigned long ptr_addr) 249 { 250 #ifdef CONFIG_SLAB_FREELIST_HARDENED 251 /* 252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. 253 * Normally, this doesn't cause any issues, as both set_freepointer() 254 * and get_freepointer() are called with a pointer with the same tag. 255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For 256 * example, when __free_slub() iterates over objects in a cache, it 257 * passes untagged pointers to check_object(). check_object() in turns 258 * calls get_freepointer() with an untagged pointer, which causes the 259 * freepointer to be restored incorrectly. 260 */ 261 return (void *)((unsigned long)ptr ^ s->random ^ 262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr))); 263 #else 264 return ptr; 265 #endif 266 } 267 268 /* Returns the freelist pointer recorded at location ptr_addr. */ 269 static inline void *freelist_dereference(const struct kmem_cache *s, 270 void *ptr_addr) 271 { 272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), 273 (unsigned long)ptr_addr); 274 } 275 276 static inline void *get_freepointer(struct kmem_cache *s, void *object) 277 { 278 return freelist_dereference(s, object + s->offset); 279 } 280 281 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 282 { 283 prefetch(object + s->offset); 284 } 285 286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 287 { 288 unsigned long freepointer_addr; 289 void *p; 290 291 if (!debug_pagealloc_enabled_static()) 292 return get_freepointer(s, object); 293 294 freepointer_addr = (unsigned long)object + s->offset; 295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); 296 return freelist_ptr(s, p, freepointer_addr); 297 } 298 299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 300 { 301 unsigned long freeptr_addr = (unsigned long)object + s->offset; 302 303 #ifdef CONFIG_SLAB_FREELIST_HARDENED 304 BUG_ON(object == fp); /* naive detection of double free or corruption */ 305 #endif 306 307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); 308 } 309 310 /* Loop over all objects in a slab */ 311 #define for_each_object(__p, __s, __addr, __objects) \ 312 for (__p = fixup_red_left(__s, __addr); \ 313 __p < (__addr) + (__objects) * (__s)->size; \ 314 __p += (__s)->size) 315 316 /* Determine object index from a given position */ 317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) 318 { 319 return (kasan_reset_tag(p) - addr) / s->size; 320 } 321 322 static inline unsigned int order_objects(unsigned int order, unsigned int size) 323 { 324 return ((unsigned int)PAGE_SIZE << order) / size; 325 } 326 327 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 328 unsigned int size) 329 { 330 struct kmem_cache_order_objects x = { 331 (order << OO_SHIFT) + order_objects(order, size) 332 }; 333 334 return x; 335 } 336 337 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 338 { 339 return x.x >> OO_SHIFT; 340 } 341 342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 343 { 344 return x.x & OO_MASK; 345 } 346 347 /* 348 * Per slab locking using the pagelock 349 */ 350 static __always_inline void slab_lock(struct page *page) 351 { 352 VM_BUG_ON_PAGE(PageTail(page), page); 353 bit_spin_lock(PG_locked, &page->flags); 354 } 355 356 static __always_inline void slab_unlock(struct page *page) 357 { 358 VM_BUG_ON_PAGE(PageTail(page), page); 359 __bit_spin_unlock(PG_locked, &page->flags); 360 } 361 362 /* Interrupts must be disabled (for the fallback code to work right) */ 363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 364 void *freelist_old, unsigned long counters_old, 365 void *freelist_new, unsigned long counters_new, 366 const char *n) 367 { 368 VM_BUG_ON(!irqs_disabled()); 369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 371 if (s->flags & __CMPXCHG_DOUBLE) { 372 if (cmpxchg_double(&page->freelist, &page->counters, 373 freelist_old, counters_old, 374 freelist_new, counters_new)) 375 return true; 376 } else 377 #endif 378 { 379 slab_lock(page); 380 if (page->freelist == freelist_old && 381 page->counters == counters_old) { 382 page->freelist = freelist_new; 383 page->counters = counters_new; 384 slab_unlock(page); 385 return true; 386 } 387 slab_unlock(page); 388 } 389 390 cpu_relax(); 391 stat(s, CMPXCHG_DOUBLE_FAIL); 392 393 #ifdef SLUB_DEBUG_CMPXCHG 394 pr_info("%s %s: cmpxchg double redo ", n, s->name); 395 #endif 396 397 return false; 398 } 399 400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 401 void *freelist_old, unsigned long counters_old, 402 void *freelist_new, unsigned long counters_new, 403 const char *n) 404 { 405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 407 if (s->flags & __CMPXCHG_DOUBLE) { 408 if (cmpxchg_double(&page->freelist, &page->counters, 409 freelist_old, counters_old, 410 freelist_new, counters_new)) 411 return true; 412 } else 413 #endif 414 { 415 unsigned long flags; 416 417 local_irq_save(flags); 418 slab_lock(page); 419 if (page->freelist == freelist_old && 420 page->counters == counters_old) { 421 page->freelist = freelist_new; 422 page->counters = counters_new; 423 slab_unlock(page); 424 local_irq_restore(flags); 425 return true; 426 } 427 slab_unlock(page); 428 local_irq_restore(flags); 429 } 430 431 cpu_relax(); 432 stat(s, CMPXCHG_DOUBLE_FAIL); 433 434 #ifdef SLUB_DEBUG_CMPXCHG 435 pr_info("%s %s: cmpxchg double redo ", n, s->name); 436 #endif 437 438 return false; 439 } 440 441 #ifdef CONFIG_SLUB_DEBUG 442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 443 static DEFINE_SPINLOCK(object_map_lock); 444 445 /* 446 * Determine a map of object in use on a page. 447 * 448 * Node listlock must be held to guarantee that the page does 449 * not vanish from under us. 450 */ 451 static unsigned long *get_map(struct kmem_cache *s, struct page *page) 452 __acquires(&object_map_lock) 453 { 454 void *p; 455 void *addr = page_address(page); 456 457 VM_BUG_ON(!irqs_disabled()); 458 459 spin_lock(&object_map_lock); 460 461 bitmap_zero(object_map, page->objects); 462 463 for (p = page->freelist; p; p = get_freepointer(s, p)) 464 set_bit(slab_index(p, s, addr), object_map); 465 466 return object_map; 467 } 468 469 static void put_map(unsigned long *map) __releases(&object_map_lock) 470 { 471 VM_BUG_ON(map != object_map); 472 lockdep_assert_held(&object_map_lock); 473 474 spin_unlock(&object_map_lock); 475 } 476 477 static inline unsigned int size_from_object(struct kmem_cache *s) 478 { 479 if (s->flags & SLAB_RED_ZONE) 480 return s->size - s->red_left_pad; 481 482 return s->size; 483 } 484 485 static inline void *restore_red_left(struct kmem_cache *s, void *p) 486 { 487 if (s->flags & SLAB_RED_ZONE) 488 p -= s->red_left_pad; 489 490 return p; 491 } 492 493 /* 494 * Debug settings: 495 */ 496 #if defined(CONFIG_SLUB_DEBUG_ON) 497 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 498 #else 499 static slab_flags_t slub_debug; 500 #endif 501 502 static char *slub_debug_slabs; 503 static int disable_higher_order_debug; 504 505 /* 506 * slub is about to manipulate internal object metadata. This memory lies 507 * outside the range of the allocated object, so accessing it would normally 508 * be reported by kasan as a bounds error. metadata_access_enable() is used 509 * to tell kasan that these accesses are OK. 510 */ 511 static inline void metadata_access_enable(void) 512 { 513 kasan_disable_current(); 514 } 515 516 static inline void metadata_access_disable(void) 517 { 518 kasan_enable_current(); 519 } 520 521 /* 522 * Object debugging 523 */ 524 525 /* Verify that a pointer has an address that is valid within a slab page */ 526 static inline int check_valid_pointer(struct kmem_cache *s, 527 struct page *page, void *object) 528 { 529 void *base; 530 531 if (!object) 532 return 1; 533 534 base = page_address(page); 535 object = kasan_reset_tag(object); 536 object = restore_red_left(s, object); 537 if (object < base || object >= base + page->objects * s->size || 538 (object - base) % s->size) { 539 return 0; 540 } 541 542 return 1; 543 } 544 545 static void print_section(char *level, char *text, u8 *addr, 546 unsigned int length) 547 { 548 metadata_access_enable(); 549 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 550 length, 1); 551 metadata_access_disable(); 552 } 553 554 /* 555 * See comment in calculate_sizes(). 556 */ 557 static inline bool freeptr_outside_object(struct kmem_cache *s) 558 { 559 return s->offset >= s->inuse; 560 } 561 562 /* 563 * Return offset of the end of info block which is inuse + free pointer if 564 * not overlapping with object. 565 */ 566 static inline unsigned int get_info_end(struct kmem_cache *s) 567 { 568 if (freeptr_outside_object(s)) 569 return s->inuse + sizeof(void *); 570 else 571 return s->inuse; 572 } 573 574 static struct track *get_track(struct kmem_cache *s, void *object, 575 enum track_item alloc) 576 { 577 struct track *p; 578 579 p = object + get_info_end(s); 580 581 return p + alloc; 582 } 583 584 static void set_track(struct kmem_cache *s, void *object, 585 enum track_item alloc, unsigned long addr) 586 { 587 struct track *p = get_track(s, object, alloc); 588 589 if (addr) { 590 #ifdef CONFIG_STACKTRACE 591 unsigned int nr_entries; 592 593 metadata_access_enable(); 594 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3); 595 metadata_access_disable(); 596 597 if (nr_entries < TRACK_ADDRS_COUNT) 598 p->addrs[nr_entries] = 0; 599 #endif 600 p->addr = addr; 601 p->cpu = smp_processor_id(); 602 p->pid = current->pid; 603 p->when = jiffies; 604 } else { 605 memset(p, 0, sizeof(struct track)); 606 } 607 } 608 609 static void init_tracking(struct kmem_cache *s, void *object) 610 { 611 if (!(s->flags & SLAB_STORE_USER)) 612 return; 613 614 set_track(s, object, TRACK_FREE, 0UL); 615 set_track(s, object, TRACK_ALLOC, 0UL); 616 } 617 618 static void print_track(const char *s, struct track *t, unsigned long pr_time) 619 { 620 if (!t->addr) 621 return; 622 623 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 624 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 625 #ifdef CONFIG_STACKTRACE 626 { 627 int i; 628 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 629 if (t->addrs[i]) 630 pr_err("\t%pS\n", (void *)t->addrs[i]); 631 else 632 break; 633 } 634 #endif 635 } 636 637 static void print_tracking(struct kmem_cache *s, void *object) 638 { 639 unsigned long pr_time = jiffies; 640 if (!(s->flags & SLAB_STORE_USER)) 641 return; 642 643 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 644 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 645 } 646 647 static void print_page_info(struct page *page) 648 { 649 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 650 page, page->objects, page->inuse, page->freelist, page->flags); 651 652 } 653 654 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 655 { 656 struct va_format vaf; 657 va_list args; 658 659 va_start(args, fmt); 660 vaf.fmt = fmt; 661 vaf.va = &args; 662 pr_err("=============================================================================\n"); 663 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 664 pr_err("-----------------------------------------------------------------------------\n\n"); 665 666 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 667 va_end(args); 668 } 669 670 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 671 { 672 struct va_format vaf; 673 va_list args; 674 675 va_start(args, fmt); 676 vaf.fmt = fmt; 677 vaf.va = &args; 678 pr_err("FIX %s: %pV\n", s->name, &vaf); 679 va_end(args); 680 } 681 682 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 683 void *freelist, void *nextfree) 684 { 685 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 686 !check_valid_pointer(s, page, nextfree)) { 687 object_err(s, page, freelist, "Freechain corrupt"); 688 freelist = NULL; 689 slab_fix(s, "Isolate corrupted freechain"); 690 return true; 691 } 692 693 return false; 694 } 695 696 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 697 { 698 unsigned int off; /* Offset of last byte */ 699 u8 *addr = page_address(page); 700 701 print_tracking(s, p); 702 703 print_page_info(page); 704 705 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 706 p, p - addr, get_freepointer(s, p)); 707 708 if (s->flags & SLAB_RED_ZONE) 709 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 710 s->red_left_pad); 711 else if (p > addr + 16) 712 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 713 714 print_section(KERN_ERR, "Object ", p, 715 min_t(unsigned int, s->object_size, PAGE_SIZE)); 716 if (s->flags & SLAB_RED_ZONE) 717 print_section(KERN_ERR, "Redzone ", p + s->object_size, 718 s->inuse - s->object_size); 719 720 off = get_info_end(s); 721 722 if (s->flags & SLAB_STORE_USER) 723 off += 2 * sizeof(struct track); 724 725 off += kasan_metadata_size(s); 726 727 if (off != size_from_object(s)) 728 /* Beginning of the filler is the free pointer */ 729 print_section(KERN_ERR, "Padding ", p + off, 730 size_from_object(s) - off); 731 732 dump_stack(); 733 } 734 735 void object_err(struct kmem_cache *s, struct page *page, 736 u8 *object, char *reason) 737 { 738 slab_bug(s, "%s", reason); 739 print_trailer(s, page, object); 740 } 741 742 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, 743 const char *fmt, ...) 744 { 745 va_list args; 746 char buf[100]; 747 748 va_start(args, fmt); 749 vsnprintf(buf, sizeof(buf), fmt, args); 750 va_end(args); 751 slab_bug(s, "%s", buf); 752 print_page_info(page); 753 dump_stack(); 754 } 755 756 static void init_object(struct kmem_cache *s, void *object, u8 val) 757 { 758 u8 *p = object; 759 760 if (s->flags & SLAB_RED_ZONE) 761 memset(p - s->red_left_pad, val, s->red_left_pad); 762 763 if (s->flags & __OBJECT_POISON) { 764 memset(p, POISON_FREE, s->object_size - 1); 765 p[s->object_size - 1] = POISON_END; 766 } 767 768 if (s->flags & SLAB_RED_ZONE) 769 memset(p + s->object_size, val, s->inuse - s->object_size); 770 } 771 772 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 773 void *from, void *to) 774 { 775 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 776 memset(from, data, to - from); 777 } 778 779 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 780 u8 *object, char *what, 781 u8 *start, unsigned int value, unsigned int bytes) 782 { 783 u8 *fault; 784 u8 *end; 785 u8 *addr = page_address(page); 786 787 metadata_access_enable(); 788 fault = memchr_inv(start, value, bytes); 789 metadata_access_disable(); 790 if (!fault) 791 return 1; 792 793 end = start + bytes; 794 while (end > fault && end[-1] == value) 795 end--; 796 797 slab_bug(s, "%s overwritten", what); 798 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 799 fault, end - 1, fault - addr, 800 fault[0], value); 801 print_trailer(s, page, object); 802 803 restore_bytes(s, what, value, fault, end); 804 return 0; 805 } 806 807 /* 808 * Object layout: 809 * 810 * object address 811 * Bytes of the object to be managed. 812 * If the freepointer may overlay the object then the free 813 * pointer is at the middle of the object. 814 * 815 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 816 * 0xa5 (POISON_END) 817 * 818 * object + s->object_size 819 * Padding to reach word boundary. This is also used for Redzoning. 820 * Padding is extended by another word if Redzoning is enabled and 821 * object_size == inuse. 822 * 823 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 824 * 0xcc (RED_ACTIVE) for objects in use. 825 * 826 * object + s->inuse 827 * Meta data starts here. 828 * 829 * A. Free pointer (if we cannot overwrite object on free) 830 * B. Tracking data for SLAB_STORE_USER 831 * C. Padding to reach required alignment boundary or at mininum 832 * one word if debugging is on to be able to detect writes 833 * before the word boundary. 834 * 835 * Padding is done using 0x5a (POISON_INUSE) 836 * 837 * object + s->size 838 * Nothing is used beyond s->size. 839 * 840 * If slabcaches are merged then the object_size and inuse boundaries are mostly 841 * ignored. And therefore no slab options that rely on these boundaries 842 * may be used with merged slabcaches. 843 */ 844 845 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 846 { 847 unsigned long off = get_info_end(s); /* The end of info */ 848 849 if (s->flags & SLAB_STORE_USER) 850 /* We also have user information there */ 851 off += 2 * sizeof(struct track); 852 853 off += kasan_metadata_size(s); 854 855 if (size_from_object(s) == off) 856 return 1; 857 858 return check_bytes_and_report(s, page, p, "Object padding", 859 p + off, POISON_INUSE, size_from_object(s) - off); 860 } 861 862 /* Check the pad bytes at the end of a slab page */ 863 static int slab_pad_check(struct kmem_cache *s, struct page *page) 864 { 865 u8 *start; 866 u8 *fault; 867 u8 *end; 868 u8 *pad; 869 int length; 870 int remainder; 871 872 if (!(s->flags & SLAB_POISON)) 873 return 1; 874 875 start = page_address(page); 876 length = page_size(page); 877 end = start + length; 878 remainder = length % s->size; 879 if (!remainder) 880 return 1; 881 882 pad = end - remainder; 883 metadata_access_enable(); 884 fault = memchr_inv(pad, POISON_INUSE, remainder); 885 metadata_access_disable(); 886 if (!fault) 887 return 1; 888 while (end > fault && end[-1] == POISON_INUSE) 889 end--; 890 891 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu", 892 fault, end - 1, fault - start); 893 print_section(KERN_ERR, "Padding ", pad, remainder); 894 895 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 896 return 0; 897 } 898 899 static int check_object(struct kmem_cache *s, struct page *page, 900 void *object, u8 val) 901 { 902 u8 *p = object; 903 u8 *endobject = object + s->object_size; 904 905 if (s->flags & SLAB_RED_ZONE) { 906 if (!check_bytes_and_report(s, page, object, "Redzone", 907 object - s->red_left_pad, val, s->red_left_pad)) 908 return 0; 909 910 if (!check_bytes_and_report(s, page, object, "Redzone", 911 endobject, val, s->inuse - s->object_size)) 912 return 0; 913 } else { 914 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 915 check_bytes_and_report(s, page, p, "Alignment padding", 916 endobject, POISON_INUSE, 917 s->inuse - s->object_size); 918 } 919 } 920 921 if (s->flags & SLAB_POISON) { 922 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 923 (!check_bytes_and_report(s, page, p, "Poison", p, 924 POISON_FREE, s->object_size - 1) || 925 !check_bytes_and_report(s, page, p, "Poison", 926 p + s->object_size - 1, POISON_END, 1))) 927 return 0; 928 /* 929 * check_pad_bytes cleans up on its own. 930 */ 931 check_pad_bytes(s, page, p); 932 } 933 934 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE) 935 /* 936 * Object and freepointer overlap. Cannot check 937 * freepointer while object is allocated. 938 */ 939 return 1; 940 941 /* Check free pointer validity */ 942 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 943 object_err(s, page, p, "Freepointer corrupt"); 944 /* 945 * No choice but to zap it and thus lose the remainder 946 * of the free objects in this slab. May cause 947 * another error because the object count is now wrong. 948 */ 949 set_freepointer(s, p, NULL); 950 return 0; 951 } 952 return 1; 953 } 954 955 static int check_slab(struct kmem_cache *s, struct page *page) 956 { 957 int maxobj; 958 959 VM_BUG_ON(!irqs_disabled()); 960 961 if (!PageSlab(page)) { 962 slab_err(s, page, "Not a valid slab page"); 963 return 0; 964 } 965 966 maxobj = order_objects(compound_order(page), s->size); 967 if (page->objects > maxobj) { 968 slab_err(s, page, "objects %u > max %u", 969 page->objects, maxobj); 970 return 0; 971 } 972 if (page->inuse > page->objects) { 973 slab_err(s, page, "inuse %u > max %u", 974 page->inuse, page->objects); 975 return 0; 976 } 977 /* Slab_pad_check fixes things up after itself */ 978 slab_pad_check(s, page); 979 return 1; 980 } 981 982 /* 983 * Determine if a certain object on a page is on the freelist. Must hold the 984 * slab lock to guarantee that the chains are in a consistent state. 985 */ 986 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 987 { 988 int nr = 0; 989 void *fp; 990 void *object = NULL; 991 int max_objects; 992 993 fp = page->freelist; 994 while (fp && nr <= page->objects) { 995 if (fp == search) 996 return 1; 997 if (!check_valid_pointer(s, page, fp)) { 998 if (object) { 999 object_err(s, page, object, 1000 "Freechain corrupt"); 1001 set_freepointer(s, object, NULL); 1002 } else { 1003 slab_err(s, page, "Freepointer corrupt"); 1004 page->freelist = NULL; 1005 page->inuse = page->objects; 1006 slab_fix(s, "Freelist cleared"); 1007 return 0; 1008 } 1009 break; 1010 } 1011 object = fp; 1012 fp = get_freepointer(s, object); 1013 nr++; 1014 } 1015 1016 max_objects = order_objects(compound_order(page), s->size); 1017 if (max_objects > MAX_OBJS_PER_PAGE) 1018 max_objects = MAX_OBJS_PER_PAGE; 1019 1020 if (page->objects != max_objects) { 1021 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 1022 page->objects, max_objects); 1023 page->objects = max_objects; 1024 slab_fix(s, "Number of objects adjusted."); 1025 } 1026 if (page->inuse != page->objects - nr) { 1027 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 1028 page->inuse, page->objects - nr); 1029 page->inuse = page->objects - nr; 1030 slab_fix(s, "Object count adjusted."); 1031 } 1032 return search == NULL; 1033 } 1034 1035 static void trace(struct kmem_cache *s, struct page *page, void *object, 1036 int alloc) 1037 { 1038 if (s->flags & SLAB_TRACE) { 1039 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1040 s->name, 1041 alloc ? "alloc" : "free", 1042 object, page->inuse, 1043 page->freelist); 1044 1045 if (!alloc) 1046 print_section(KERN_INFO, "Object ", (void *)object, 1047 s->object_size); 1048 1049 dump_stack(); 1050 } 1051 } 1052 1053 /* 1054 * Tracking of fully allocated slabs for debugging purposes. 1055 */ 1056 static void add_full(struct kmem_cache *s, 1057 struct kmem_cache_node *n, struct page *page) 1058 { 1059 if (!(s->flags & SLAB_STORE_USER)) 1060 return; 1061 1062 lockdep_assert_held(&n->list_lock); 1063 list_add(&page->slab_list, &n->full); 1064 } 1065 1066 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1067 { 1068 if (!(s->flags & SLAB_STORE_USER)) 1069 return; 1070 1071 lockdep_assert_held(&n->list_lock); 1072 list_del(&page->slab_list); 1073 } 1074 1075 /* Tracking of the number of slabs for debugging purposes */ 1076 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1077 { 1078 struct kmem_cache_node *n = get_node(s, node); 1079 1080 return atomic_long_read(&n->nr_slabs); 1081 } 1082 1083 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1084 { 1085 return atomic_long_read(&n->nr_slabs); 1086 } 1087 1088 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1089 { 1090 struct kmem_cache_node *n = get_node(s, node); 1091 1092 /* 1093 * May be called early in order to allocate a slab for the 1094 * kmem_cache_node structure. Solve the chicken-egg 1095 * dilemma by deferring the increment of the count during 1096 * bootstrap (see early_kmem_cache_node_alloc). 1097 */ 1098 if (likely(n)) { 1099 atomic_long_inc(&n->nr_slabs); 1100 atomic_long_add(objects, &n->total_objects); 1101 } 1102 } 1103 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1104 { 1105 struct kmem_cache_node *n = get_node(s, node); 1106 1107 atomic_long_dec(&n->nr_slabs); 1108 atomic_long_sub(objects, &n->total_objects); 1109 } 1110 1111 /* Object debug checks for alloc/free paths */ 1112 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1113 void *object) 1114 { 1115 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1116 return; 1117 1118 init_object(s, object, SLUB_RED_INACTIVE); 1119 init_tracking(s, object); 1120 } 1121 1122 static 1123 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) 1124 { 1125 if (!(s->flags & SLAB_POISON)) 1126 return; 1127 1128 metadata_access_enable(); 1129 memset(addr, POISON_INUSE, page_size(page)); 1130 metadata_access_disable(); 1131 } 1132 1133 static inline int alloc_consistency_checks(struct kmem_cache *s, 1134 struct page *page, void *object) 1135 { 1136 if (!check_slab(s, page)) 1137 return 0; 1138 1139 if (!check_valid_pointer(s, page, object)) { 1140 object_err(s, page, object, "Freelist Pointer check fails"); 1141 return 0; 1142 } 1143 1144 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1145 return 0; 1146 1147 return 1; 1148 } 1149 1150 static noinline int alloc_debug_processing(struct kmem_cache *s, 1151 struct page *page, 1152 void *object, unsigned long addr) 1153 { 1154 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1155 if (!alloc_consistency_checks(s, page, object)) 1156 goto bad; 1157 } 1158 1159 /* Success perform special debug activities for allocs */ 1160 if (s->flags & SLAB_STORE_USER) 1161 set_track(s, object, TRACK_ALLOC, addr); 1162 trace(s, page, object, 1); 1163 init_object(s, object, SLUB_RED_ACTIVE); 1164 return 1; 1165 1166 bad: 1167 if (PageSlab(page)) { 1168 /* 1169 * If this is a slab page then lets do the best we can 1170 * to avoid issues in the future. Marking all objects 1171 * as used avoids touching the remaining objects. 1172 */ 1173 slab_fix(s, "Marking all objects used"); 1174 page->inuse = page->objects; 1175 page->freelist = NULL; 1176 } 1177 return 0; 1178 } 1179 1180 static inline int free_consistency_checks(struct kmem_cache *s, 1181 struct page *page, void *object, unsigned long addr) 1182 { 1183 if (!check_valid_pointer(s, page, object)) { 1184 slab_err(s, page, "Invalid object pointer 0x%p", object); 1185 return 0; 1186 } 1187 1188 if (on_freelist(s, page, object)) { 1189 object_err(s, page, object, "Object already free"); 1190 return 0; 1191 } 1192 1193 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1194 return 0; 1195 1196 if (unlikely(s != page->slab_cache)) { 1197 if (!PageSlab(page)) { 1198 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1199 object); 1200 } else if (!page->slab_cache) { 1201 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1202 object); 1203 dump_stack(); 1204 } else 1205 object_err(s, page, object, 1206 "page slab pointer corrupt."); 1207 return 0; 1208 } 1209 return 1; 1210 } 1211 1212 /* Supports checking bulk free of a constructed freelist */ 1213 static noinline int free_debug_processing( 1214 struct kmem_cache *s, struct page *page, 1215 void *head, void *tail, int bulk_cnt, 1216 unsigned long addr) 1217 { 1218 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1219 void *object = head; 1220 int cnt = 0; 1221 unsigned long uninitialized_var(flags); 1222 int ret = 0; 1223 1224 spin_lock_irqsave(&n->list_lock, flags); 1225 slab_lock(page); 1226 1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1228 if (!check_slab(s, page)) 1229 goto out; 1230 } 1231 1232 next_object: 1233 cnt++; 1234 1235 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1236 if (!free_consistency_checks(s, page, object, addr)) 1237 goto out; 1238 } 1239 1240 if (s->flags & SLAB_STORE_USER) 1241 set_track(s, object, TRACK_FREE, addr); 1242 trace(s, page, object, 0); 1243 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1244 init_object(s, object, SLUB_RED_INACTIVE); 1245 1246 /* Reached end of constructed freelist yet? */ 1247 if (object != tail) { 1248 object = get_freepointer(s, object); 1249 goto next_object; 1250 } 1251 ret = 1; 1252 1253 out: 1254 if (cnt != bulk_cnt) 1255 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1256 bulk_cnt, cnt); 1257 1258 slab_unlock(page); 1259 spin_unlock_irqrestore(&n->list_lock, flags); 1260 if (!ret) 1261 slab_fix(s, "Object at 0x%p not freed", object); 1262 return ret; 1263 } 1264 1265 static int __init setup_slub_debug(char *str) 1266 { 1267 slub_debug = DEBUG_DEFAULT_FLAGS; 1268 if (*str++ != '=' || !*str) 1269 /* 1270 * No options specified. Switch on full debugging. 1271 */ 1272 goto out; 1273 1274 if (*str == ',') 1275 /* 1276 * No options but restriction on slabs. This means full 1277 * debugging for slabs matching a pattern. 1278 */ 1279 goto check_slabs; 1280 1281 slub_debug = 0; 1282 if (*str == '-') 1283 /* 1284 * Switch off all debugging measures. 1285 */ 1286 goto out; 1287 1288 /* 1289 * Determine which debug features should be switched on 1290 */ 1291 for (; *str && *str != ','; str++) { 1292 switch (tolower(*str)) { 1293 case 'f': 1294 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1295 break; 1296 case 'z': 1297 slub_debug |= SLAB_RED_ZONE; 1298 break; 1299 case 'p': 1300 slub_debug |= SLAB_POISON; 1301 break; 1302 case 'u': 1303 slub_debug |= SLAB_STORE_USER; 1304 break; 1305 case 't': 1306 slub_debug |= SLAB_TRACE; 1307 break; 1308 case 'a': 1309 slub_debug |= SLAB_FAILSLAB; 1310 break; 1311 case 'o': 1312 /* 1313 * Avoid enabling debugging on caches if its minimum 1314 * order would increase as a result. 1315 */ 1316 disable_higher_order_debug = 1; 1317 break; 1318 default: 1319 pr_err("slub_debug option '%c' unknown. skipped\n", 1320 *str); 1321 } 1322 } 1323 1324 check_slabs: 1325 if (*str == ',') 1326 slub_debug_slabs = str + 1; 1327 out: 1328 if ((static_branch_unlikely(&init_on_alloc) || 1329 static_branch_unlikely(&init_on_free)) && 1330 (slub_debug & SLAB_POISON)) 1331 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1332 return 1; 1333 } 1334 1335 __setup("slub_debug", setup_slub_debug); 1336 1337 /* 1338 * kmem_cache_flags - apply debugging options to the cache 1339 * @object_size: the size of an object without meta data 1340 * @flags: flags to set 1341 * @name: name of the cache 1342 * @ctor: constructor function 1343 * 1344 * Debug option(s) are applied to @flags. In addition to the debug 1345 * option(s), if a slab name (or multiple) is specified i.e. 1346 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1347 * then only the select slabs will receive the debug option(s). 1348 */ 1349 slab_flags_t kmem_cache_flags(unsigned int object_size, 1350 slab_flags_t flags, const char *name, 1351 void (*ctor)(void *)) 1352 { 1353 char *iter; 1354 size_t len; 1355 1356 /* If slub_debug = 0, it folds into the if conditional. */ 1357 if (!slub_debug_slabs) 1358 return flags | slub_debug; 1359 1360 len = strlen(name); 1361 iter = slub_debug_slabs; 1362 while (*iter) { 1363 char *end, *glob; 1364 size_t cmplen; 1365 1366 end = strchrnul(iter, ','); 1367 1368 glob = strnchr(iter, end - iter, '*'); 1369 if (glob) 1370 cmplen = glob - iter; 1371 else 1372 cmplen = max_t(size_t, len, (end - iter)); 1373 1374 if (!strncmp(name, iter, cmplen)) { 1375 flags |= slub_debug; 1376 break; 1377 } 1378 1379 if (!*end) 1380 break; 1381 iter = end + 1; 1382 } 1383 1384 return flags; 1385 } 1386 #else /* !CONFIG_SLUB_DEBUG */ 1387 static inline void setup_object_debug(struct kmem_cache *s, 1388 struct page *page, void *object) {} 1389 static inline 1390 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {} 1391 1392 static inline int alloc_debug_processing(struct kmem_cache *s, 1393 struct page *page, void *object, unsigned long addr) { return 0; } 1394 1395 static inline int free_debug_processing( 1396 struct kmem_cache *s, struct page *page, 1397 void *head, void *tail, int bulk_cnt, 1398 unsigned long addr) { return 0; } 1399 1400 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1401 { return 1; } 1402 static inline int check_object(struct kmem_cache *s, struct page *page, 1403 void *object, u8 val) { return 1; } 1404 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1405 struct page *page) {} 1406 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1407 struct page *page) {} 1408 slab_flags_t kmem_cache_flags(unsigned int object_size, 1409 slab_flags_t flags, const char *name, 1410 void (*ctor)(void *)) 1411 { 1412 return flags; 1413 } 1414 #define slub_debug 0 1415 1416 #define disable_higher_order_debug 0 1417 1418 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1419 { return 0; } 1420 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1421 { return 0; } 1422 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1423 int objects) {} 1424 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1425 int objects) {} 1426 1427 static bool freelist_corrupted(struct kmem_cache *s, struct page *page, 1428 void *freelist, void *nextfree) 1429 { 1430 return false; 1431 } 1432 #endif /* CONFIG_SLUB_DEBUG */ 1433 1434 /* 1435 * Hooks for other subsystems that check memory allocations. In a typical 1436 * production configuration these hooks all should produce no code at all. 1437 */ 1438 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1439 { 1440 ptr = kasan_kmalloc_large(ptr, size, flags); 1441 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 1442 kmemleak_alloc(ptr, size, 1, flags); 1443 return ptr; 1444 } 1445 1446 static __always_inline void kfree_hook(void *x) 1447 { 1448 kmemleak_free(x); 1449 kasan_kfree_large(x, _RET_IP_); 1450 } 1451 1452 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) 1453 { 1454 kmemleak_free_recursive(x, s->flags); 1455 1456 /* 1457 * Trouble is that we may no longer disable interrupts in the fast path 1458 * So in order to make the debug calls that expect irqs to be 1459 * disabled we need to disable interrupts temporarily. 1460 */ 1461 #ifdef CONFIG_LOCKDEP 1462 { 1463 unsigned long flags; 1464 1465 local_irq_save(flags); 1466 debug_check_no_locks_freed(x, s->object_size); 1467 local_irq_restore(flags); 1468 } 1469 #endif 1470 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1471 debug_check_no_obj_freed(x, s->object_size); 1472 1473 /* KASAN might put x into memory quarantine, delaying its reuse */ 1474 return kasan_slab_free(s, x, _RET_IP_); 1475 } 1476 1477 static inline bool slab_free_freelist_hook(struct kmem_cache *s, 1478 void **head, void **tail) 1479 { 1480 1481 void *object; 1482 void *next = *head; 1483 void *old_tail = *tail ? *tail : *head; 1484 int rsize; 1485 1486 /* Head and tail of the reconstructed freelist */ 1487 *head = NULL; 1488 *tail = NULL; 1489 1490 do { 1491 object = next; 1492 next = get_freepointer(s, object); 1493 1494 if (slab_want_init_on_free(s)) { 1495 /* 1496 * Clear the object and the metadata, but don't touch 1497 * the redzone. 1498 */ 1499 memset(object, 0, s->object_size); 1500 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad 1501 : 0; 1502 memset((char *)object + s->inuse, 0, 1503 s->size - s->inuse - rsize); 1504 1505 } 1506 /* If object's reuse doesn't have to be delayed */ 1507 if (!slab_free_hook(s, object)) { 1508 /* Move object to the new freelist */ 1509 set_freepointer(s, object, *head); 1510 *head = object; 1511 if (!*tail) 1512 *tail = object; 1513 } 1514 } while (object != old_tail); 1515 1516 if (*head == *tail) 1517 *tail = NULL; 1518 1519 return *head != NULL; 1520 } 1521 1522 static void *setup_object(struct kmem_cache *s, struct page *page, 1523 void *object) 1524 { 1525 setup_object_debug(s, page, object); 1526 object = kasan_init_slab_obj(s, object); 1527 if (unlikely(s->ctor)) { 1528 kasan_unpoison_object_data(s, object); 1529 s->ctor(object); 1530 kasan_poison_object_data(s, object); 1531 } 1532 return object; 1533 } 1534 1535 /* 1536 * Slab allocation and freeing 1537 */ 1538 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1539 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1540 { 1541 struct page *page; 1542 unsigned int order = oo_order(oo); 1543 1544 if (node == NUMA_NO_NODE) 1545 page = alloc_pages(flags, order); 1546 else 1547 page = __alloc_pages_node(node, flags, order); 1548 1549 if (page && charge_slab_page(page, flags, order, s)) { 1550 __free_pages(page, order); 1551 page = NULL; 1552 } 1553 1554 return page; 1555 } 1556 1557 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1558 /* Pre-initialize the random sequence cache */ 1559 static int init_cache_random_seq(struct kmem_cache *s) 1560 { 1561 unsigned int count = oo_objects(s->oo); 1562 int err; 1563 1564 /* Bailout if already initialised */ 1565 if (s->random_seq) 1566 return 0; 1567 1568 err = cache_random_seq_create(s, count, GFP_KERNEL); 1569 if (err) { 1570 pr_err("SLUB: Unable to initialize free list for %s\n", 1571 s->name); 1572 return err; 1573 } 1574 1575 /* Transform to an offset on the set of pages */ 1576 if (s->random_seq) { 1577 unsigned int i; 1578 1579 for (i = 0; i < count; i++) 1580 s->random_seq[i] *= s->size; 1581 } 1582 return 0; 1583 } 1584 1585 /* Initialize each random sequence freelist per cache */ 1586 static void __init init_freelist_randomization(void) 1587 { 1588 struct kmem_cache *s; 1589 1590 mutex_lock(&slab_mutex); 1591 1592 list_for_each_entry(s, &slab_caches, list) 1593 init_cache_random_seq(s); 1594 1595 mutex_unlock(&slab_mutex); 1596 } 1597 1598 /* Get the next entry on the pre-computed freelist randomized */ 1599 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1600 unsigned long *pos, void *start, 1601 unsigned long page_limit, 1602 unsigned long freelist_count) 1603 { 1604 unsigned int idx; 1605 1606 /* 1607 * If the target page allocation failed, the number of objects on the 1608 * page might be smaller than the usual size defined by the cache. 1609 */ 1610 do { 1611 idx = s->random_seq[*pos]; 1612 *pos += 1; 1613 if (*pos >= freelist_count) 1614 *pos = 0; 1615 } while (unlikely(idx >= page_limit)); 1616 1617 return (char *)start + idx; 1618 } 1619 1620 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1621 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1622 { 1623 void *start; 1624 void *cur; 1625 void *next; 1626 unsigned long idx, pos, page_limit, freelist_count; 1627 1628 if (page->objects < 2 || !s->random_seq) 1629 return false; 1630 1631 freelist_count = oo_objects(s->oo); 1632 pos = get_random_int() % freelist_count; 1633 1634 page_limit = page->objects * s->size; 1635 start = fixup_red_left(s, page_address(page)); 1636 1637 /* First entry is used as the base of the freelist */ 1638 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1639 freelist_count); 1640 cur = setup_object(s, page, cur); 1641 page->freelist = cur; 1642 1643 for (idx = 1; idx < page->objects; idx++) { 1644 next = next_freelist_entry(s, page, &pos, start, page_limit, 1645 freelist_count); 1646 next = setup_object(s, page, next); 1647 set_freepointer(s, cur, next); 1648 cur = next; 1649 } 1650 set_freepointer(s, cur, NULL); 1651 1652 return true; 1653 } 1654 #else 1655 static inline int init_cache_random_seq(struct kmem_cache *s) 1656 { 1657 return 0; 1658 } 1659 static inline void init_freelist_randomization(void) { } 1660 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1661 { 1662 return false; 1663 } 1664 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1665 1666 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1667 { 1668 struct page *page; 1669 struct kmem_cache_order_objects oo = s->oo; 1670 gfp_t alloc_gfp; 1671 void *start, *p, *next; 1672 int idx; 1673 bool shuffle; 1674 1675 flags &= gfp_allowed_mask; 1676 1677 if (gfpflags_allow_blocking(flags)) 1678 local_irq_enable(); 1679 1680 flags |= s->allocflags; 1681 1682 /* 1683 * Let the initial higher-order allocation fail under memory pressure 1684 * so we fall-back to the minimum order allocation. 1685 */ 1686 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1687 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1688 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1689 1690 page = alloc_slab_page(s, alloc_gfp, node, oo); 1691 if (unlikely(!page)) { 1692 oo = s->min; 1693 alloc_gfp = flags; 1694 /* 1695 * Allocation may have failed due to fragmentation. 1696 * Try a lower order alloc if possible 1697 */ 1698 page = alloc_slab_page(s, alloc_gfp, node, oo); 1699 if (unlikely(!page)) 1700 goto out; 1701 stat(s, ORDER_FALLBACK); 1702 } 1703 1704 page->objects = oo_objects(oo); 1705 1706 page->slab_cache = s; 1707 __SetPageSlab(page); 1708 if (page_is_pfmemalloc(page)) 1709 SetPageSlabPfmemalloc(page); 1710 1711 kasan_poison_slab(page); 1712 1713 start = page_address(page); 1714 1715 setup_page_debug(s, page, start); 1716 1717 shuffle = shuffle_freelist(s, page); 1718 1719 if (!shuffle) { 1720 start = fixup_red_left(s, start); 1721 start = setup_object(s, page, start); 1722 page->freelist = start; 1723 for (idx = 0, p = start; idx < page->objects - 1; idx++) { 1724 next = p + s->size; 1725 next = setup_object(s, page, next); 1726 set_freepointer(s, p, next); 1727 p = next; 1728 } 1729 set_freepointer(s, p, NULL); 1730 } 1731 1732 page->inuse = page->objects; 1733 page->frozen = 1; 1734 1735 out: 1736 if (gfpflags_allow_blocking(flags)) 1737 local_irq_disable(); 1738 if (!page) 1739 return NULL; 1740 1741 inc_slabs_node(s, page_to_nid(page), page->objects); 1742 1743 return page; 1744 } 1745 1746 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1747 { 1748 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1749 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1750 flags &= ~GFP_SLAB_BUG_MASK; 1751 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1752 invalid_mask, &invalid_mask, flags, &flags); 1753 dump_stack(); 1754 } 1755 1756 return allocate_slab(s, 1757 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1758 } 1759 1760 static void __free_slab(struct kmem_cache *s, struct page *page) 1761 { 1762 int order = compound_order(page); 1763 int pages = 1 << order; 1764 1765 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1766 void *p; 1767 1768 slab_pad_check(s, page); 1769 for_each_object(p, s, page_address(page), 1770 page->objects) 1771 check_object(s, page, p, SLUB_RED_INACTIVE); 1772 } 1773 1774 __ClearPageSlabPfmemalloc(page); 1775 __ClearPageSlab(page); 1776 1777 page->mapping = NULL; 1778 if (current->reclaim_state) 1779 current->reclaim_state->reclaimed_slab += pages; 1780 uncharge_slab_page(page, order, s); 1781 __free_pages(page, order); 1782 } 1783 1784 static void rcu_free_slab(struct rcu_head *h) 1785 { 1786 struct page *page = container_of(h, struct page, rcu_head); 1787 1788 __free_slab(page->slab_cache, page); 1789 } 1790 1791 static void free_slab(struct kmem_cache *s, struct page *page) 1792 { 1793 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { 1794 call_rcu(&page->rcu_head, rcu_free_slab); 1795 } else 1796 __free_slab(s, page); 1797 } 1798 1799 static void discard_slab(struct kmem_cache *s, struct page *page) 1800 { 1801 dec_slabs_node(s, page_to_nid(page), page->objects); 1802 free_slab(s, page); 1803 } 1804 1805 /* 1806 * Management of partially allocated slabs. 1807 */ 1808 static inline void 1809 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1810 { 1811 n->nr_partial++; 1812 if (tail == DEACTIVATE_TO_TAIL) 1813 list_add_tail(&page->slab_list, &n->partial); 1814 else 1815 list_add(&page->slab_list, &n->partial); 1816 } 1817 1818 static inline void add_partial(struct kmem_cache_node *n, 1819 struct page *page, int tail) 1820 { 1821 lockdep_assert_held(&n->list_lock); 1822 __add_partial(n, page, tail); 1823 } 1824 1825 static inline void remove_partial(struct kmem_cache_node *n, 1826 struct page *page) 1827 { 1828 lockdep_assert_held(&n->list_lock); 1829 list_del(&page->slab_list); 1830 n->nr_partial--; 1831 } 1832 1833 /* 1834 * Remove slab from the partial list, freeze it and 1835 * return the pointer to the freelist. 1836 * 1837 * Returns a list of objects or NULL if it fails. 1838 */ 1839 static inline void *acquire_slab(struct kmem_cache *s, 1840 struct kmem_cache_node *n, struct page *page, 1841 int mode, int *objects) 1842 { 1843 void *freelist; 1844 unsigned long counters; 1845 struct page new; 1846 1847 lockdep_assert_held(&n->list_lock); 1848 1849 /* 1850 * Zap the freelist and set the frozen bit. 1851 * The old freelist is the list of objects for the 1852 * per cpu allocation list. 1853 */ 1854 freelist = page->freelist; 1855 counters = page->counters; 1856 new.counters = counters; 1857 *objects = new.objects - new.inuse; 1858 if (mode) { 1859 new.inuse = page->objects; 1860 new.freelist = NULL; 1861 } else { 1862 new.freelist = freelist; 1863 } 1864 1865 VM_BUG_ON(new.frozen); 1866 new.frozen = 1; 1867 1868 if (!__cmpxchg_double_slab(s, page, 1869 freelist, counters, 1870 new.freelist, new.counters, 1871 "acquire_slab")) 1872 return NULL; 1873 1874 remove_partial(n, page); 1875 WARN_ON(!freelist); 1876 return freelist; 1877 } 1878 1879 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1880 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1881 1882 /* 1883 * Try to allocate a partial slab from a specific node. 1884 */ 1885 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1886 struct kmem_cache_cpu *c, gfp_t flags) 1887 { 1888 struct page *page, *page2; 1889 void *object = NULL; 1890 unsigned int available = 0; 1891 int objects; 1892 1893 /* 1894 * Racy check. If we mistakenly see no partial slabs then we 1895 * just allocate an empty slab. If we mistakenly try to get a 1896 * partial slab and there is none available then get_partials() 1897 * will return NULL. 1898 */ 1899 if (!n || !n->nr_partial) 1900 return NULL; 1901 1902 spin_lock(&n->list_lock); 1903 list_for_each_entry_safe(page, page2, &n->partial, slab_list) { 1904 void *t; 1905 1906 if (!pfmemalloc_match(page, flags)) 1907 continue; 1908 1909 t = acquire_slab(s, n, page, object == NULL, &objects); 1910 if (!t) 1911 break; 1912 1913 available += objects; 1914 if (!object) { 1915 c->page = page; 1916 stat(s, ALLOC_FROM_PARTIAL); 1917 object = t; 1918 } else { 1919 put_cpu_partial(s, page, 0); 1920 stat(s, CPU_PARTIAL_NODE); 1921 } 1922 if (!kmem_cache_has_cpu_partial(s) 1923 || available > slub_cpu_partial(s) / 2) 1924 break; 1925 1926 } 1927 spin_unlock(&n->list_lock); 1928 return object; 1929 } 1930 1931 /* 1932 * Get a page from somewhere. Search in increasing NUMA distances. 1933 */ 1934 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1935 struct kmem_cache_cpu *c) 1936 { 1937 #ifdef CONFIG_NUMA 1938 struct zonelist *zonelist; 1939 struct zoneref *z; 1940 struct zone *zone; 1941 enum zone_type highest_zoneidx = gfp_zone(flags); 1942 void *object; 1943 unsigned int cpuset_mems_cookie; 1944 1945 /* 1946 * The defrag ratio allows a configuration of the tradeoffs between 1947 * inter node defragmentation and node local allocations. A lower 1948 * defrag_ratio increases the tendency to do local allocations 1949 * instead of attempting to obtain partial slabs from other nodes. 1950 * 1951 * If the defrag_ratio is set to 0 then kmalloc() always 1952 * returns node local objects. If the ratio is higher then kmalloc() 1953 * may return off node objects because partial slabs are obtained 1954 * from other nodes and filled up. 1955 * 1956 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1957 * (which makes defrag_ratio = 1000) then every (well almost) 1958 * allocation will first attempt to defrag slab caches on other nodes. 1959 * This means scanning over all nodes to look for partial slabs which 1960 * may be expensive if we do it every time we are trying to find a slab 1961 * with available objects. 1962 */ 1963 if (!s->remote_node_defrag_ratio || 1964 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1965 return NULL; 1966 1967 do { 1968 cpuset_mems_cookie = read_mems_allowed_begin(); 1969 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1970 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 1971 struct kmem_cache_node *n; 1972 1973 n = get_node(s, zone_to_nid(zone)); 1974 1975 if (n && cpuset_zone_allowed(zone, flags) && 1976 n->nr_partial > s->min_partial) { 1977 object = get_partial_node(s, n, c, flags); 1978 if (object) { 1979 /* 1980 * Don't check read_mems_allowed_retry() 1981 * here - if mems_allowed was updated in 1982 * parallel, that was a harmless race 1983 * between allocation and the cpuset 1984 * update 1985 */ 1986 return object; 1987 } 1988 } 1989 } 1990 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1991 #endif /* CONFIG_NUMA */ 1992 return NULL; 1993 } 1994 1995 /* 1996 * Get a partial page, lock it and return it. 1997 */ 1998 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1999 struct kmem_cache_cpu *c) 2000 { 2001 void *object; 2002 int searchnode = node; 2003 2004 if (node == NUMA_NO_NODE) 2005 searchnode = numa_mem_id(); 2006 2007 object = get_partial_node(s, get_node(s, searchnode), c, flags); 2008 if (object || node != NUMA_NO_NODE) 2009 return object; 2010 2011 return get_any_partial(s, flags, c); 2012 } 2013 2014 #ifdef CONFIG_PREEMPTION 2015 /* 2016 * Calculate the next globally unique transaction for disambiguation 2017 * during cmpxchg. The transactions start with the cpu number and are then 2018 * incremented by CONFIG_NR_CPUS. 2019 */ 2020 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2021 #else 2022 /* 2023 * No preemption supported therefore also no need to check for 2024 * different cpus. 2025 */ 2026 #define TID_STEP 1 2027 #endif 2028 2029 static inline unsigned long next_tid(unsigned long tid) 2030 { 2031 return tid + TID_STEP; 2032 } 2033 2034 #ifdef SLUB_DEBUG_CMPXCHG 2035 static inline unsigned int tid_to_cpu(unsigned long tid) 2036 { 2037 return tid % TID_STEP; 2038 } 2039 2040 static inline unsigned long tid_to_event(unsigned long tid) 2041 { 2042 return tid / TID_STEP; 2043 } 2044 #endif 2045 2046 static inline unsigned int init_tid(int cpu) 2047 { 2048 return cpu; 2049 } 2050 2051 static inline void note_cmpxchg_failure(const char *n, 2052 const struct kmem_cache *s, unsigned long tid) 2053 { 2054 #ifdef SLUB_DEBUG_CMPXCHG 2055 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2056 2057 pr_info("%s %s: cmpxchg redo ", n, s->name); 2058 2059 #ifdef CONFIG_PREEMPTION 2060 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2061 pr_warn("due to cpu change %d -> %d\n", 2062 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2063 else 2064 #endif 2065 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2066 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2067 tid_to_event(tid), tid_to_event(actual_tid)); 2068 else 2069 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 2070 actual_tid, tid, next_tid(tid)); 2071 #endif 2072 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 2073 } 2074 2075 static void init_kmem_cache_cpus(struct kmem_cache *s) 2076 { 2077 int cpu; 2078 2079 for_each_possible_cpu(cpu) 2080 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 2081 } 2082 2083 /* 2084 * Remove the cpu slab 2085 */ 2086 static void deactivate_slab(struct kmem_cache *s, struct page *page, 2087 void *freelist, struct kmem_cache_cpu *c) 2088 { 2089 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 2090 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 2091 int lock = 0; 2092 enum slab_modes l = M_NONE, m = M_NONE; 2093 void *nextfree; 2094 int tail = DEACTIVATE_TO_HEAD; 2095 struct page new; 2096 struct page old; 2097 2098 if (page->freelist) { 2099 stat(s, DEACTIVATE_REMOTE_FREES); 2100 tail = DEACTIVATE_TO_TAIL; 2101 } 2102 2103 /* 2104 * Stage one: Free all available per cpu objects back 2105 * to the page freelist while it is still frozen. Leave the 2106 * last one. 2107 * 2108 * There is no need to take the list->lock because the page 2109 * is still frozen. 2110 */ 2111 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2112 void *prior; 2113 unsigned long counters; 2114 2115 /* 2116 * If 'nextfree' is invalid, it is possible that the object at 2117 * 'freelist' is already corrupted. So isolate all objects 2118 * starting at 'freelist'. 2119 */ 2120 if (freelist_corrupted(s, page, freelist, nextfree)) 2121 break; 2122 2123 do { 2124 prior = page->freelist; 2125 counters = page->counters; 2126 set_freepointer(s, freelist, prior); 2127 new.counters = counters; 2128 new.inuse--; 2129 VM_BUG_ON(!new.frozen); 2130 2131 } while (!__cmpxchg_double_slab(s, page, 2132 prior, counters, 2133 freelist, new.counters, 2134 "drain percpu freelist")); 2135 2136 freelist = nextfree; 2137 } 2138 2139 /* 2140 * Stage two: Ensure that the page is unfrozen while the 2141 * list presence reflects the actual number of objects 2142 * during unfreeze. 2143 * 2144 * We setup the list membership and then perform a cmpxchg 2145 * with the count. If there is a mismatch then the page 2146 * is not unfrozen but the page is on the wrong list. 2147 * 2148 * Then we restart the process which may have to remove 2149 * the page from the list that we just put it on again 2150 * because the number of objects in the slab may have 2151 * changed. 2152 */ 2153 redo: 2154 2155 old.freelist = page->freelist; 2156 old.counters = page->counters; 2157 VM_BUG_ON(!old.frozen); 2158 2159 /* Determine target state of the slab */ 2160 new.counters = old.counters; 2161 if (freelist) { 2162 new.inuse--; 2163 set_freepointer(s, freelist, old.freelist); 2164 new.freelist = freelist; 2165 } else 2166 new.freelist = old.freelist; 2167 2168 new.frozen = 0; 2169 2170 if (!new.inuse && n->nr_partial >= s->min_partial) 2171 m = M_FREE; 2172 else if (new.freelist) { 2173 m = M_PARTIAL; 2174 if (!lock) { 2175 lock = 1; 2176 /* 2177 * Taking the spinlock removes the possibility 2178 * that acquire_slab() will see a slab page that 2179 * is frozen 2180 */ 2181 spin_lock(&n->list_lock); 2182 } 2183 } else { 2184 m = M_FULL; 2185 if (kmem_cache_debug(s) && !lock) { 2186 lock = 1; 2187 /* 2188 * This also ensures that the scanning of full 2189 * slabs from diagnostic functions will not see 2190 * any frozen slabs. 2191 */ 2192 spin_lock(&n->list_lock); 2193 } 2194 } 2195 2196 if (l != m) { 2197 if (l == M_PARTIAL) 2198 remove_partial(n, page); 2199 else if (l == M_FULL) 2200 remove_full(s, n, page); 2201 2202 if (m == M_PARTIAL) 2203 add_partial(n, page, tail); 2204 else if (m == M_FULL) 2205 add_full(s, n, page); 2206 } 2207 2208 l = m; 2209 if (!__cmpxchg_double_slab(s, page, 2210 old.freelist, old.counters, 2211 new.freelist, new.counters, 2212 "unfreezing slab")) 2213 goto redo; 2214 2215 if (lock) 2216 spin_unlock(&n->list_lock); 2217 2218 if (m == M_PARTIAL) 2219 stat(s, tail); 2220 else if (m == M_FULL) 2221 stat(s, DEACTIVATE_FULL); 2222 else if (m == M_FREE) { 2223 stat(s, DEACTIVATE_EMPTY); 2224 discard_slab(s, page); 2225 stat(s, FREE_SLAB); 2226 } 2227 2228 c->page = NULL; 2229 c->freelist = NULL; 2230 } 2231 2232 /* 2233 * Unfreeze all the cpu partial slabs. 2234 * 2235 * This function must be called with interrupts disabled 2236 * for the cpu using c (or some other guarantee must be there 2237 * to guarantee no concurrent accesses). 2238 */ 2239 static void unfreeze_partials(struct kmem_cache *s, 2240 struct kmem_cache_cpu *c) 2241 { 2242 #ifdef CONFIG_SLUB_CPU_PARTIAL 2243 struct kmem_cache_node *n = NULL, *n2 = NULL; 2244 struct page *page, *discard_page = NULL; 2245 2246 while ((page = slub_percpu_partial(c))) { 2247 struct page new; 2248 struct page old; 2249 2250 slub_set_percpu_partial(c, page); 2251 2252 n2 = get_node(s, page_to_nid(page)); 2253 if (n != n2) { 2254 if (n) 2255 spin_unlock(&n->list_lock); 2256 2257 n = n2; 2258 spin_lock(&n->list_lock); 2259 } 2260 2261 do { 2262 2263 old.freelist = page->freelist; 2264 old.counters = page->counters; 2265 VM_BUG_ON(!old.frozen); 2266 2267 new.counters = old.counters; 2268 new.freelist = old.freelist; 2269 2270 new.frozen = 0; 2271 2272 } while (!__cmpxchg_double_slab(s, page, 2273 old.freelist, old.counters, 2274 new.freelist, new.counters, 2275 "unfreezing slab")); 2276 2277 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2278 page->next = discard_page; 2279 discard_page = page; 2280 } else { 2281 add_partial(n, page, DEACTIVATE_TO_TAIL); 2282 stat(s, FREE_ADD_PARTIAL); 2283 } 2284 } 2285 2286 if (n) 2287 spin_unlock(&n->list_lock); 2288 2289 while (discard_page) { 2290 page = discard_page; 2291 discard_page = discard_page->next; 2292 2293 stat(s, DEACTIVATE_EMPTY); 2294 discard_slab(s, page); 2295 stat(s, FREE_SLAB); 2296 } 2297 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2298 } 2299 2300 /* 2301 * Put a page that was just frozen (in __slab_free|get_partial_node) into a 2302 * partial page slot if available. 2303 * 2304 * If we did not find a slot then simply move all the partials to the 2305 * per node partial list. 2306 */ 2307 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2308 { 2309 #ifdef CONFIG_SLUB_CPU_PARTIAL 2310 struct page *oldpage; 2311 int pages; 2312 int pobjects; 2313 2314 preempt_disable(); 2315 do { 2316 pages = 0; 2317 pobjects = 0; 2318 oldpage = this_cpu_read(s->cpu_slab->partial); 2319 2320 if (oldpage) { 2321 pobjects = oldpage->pobjects; 2322 pages = oldpage->pages; 2323 if (drain && pobjects > slub_cpu_partial(s)) { 2324 unsigned long flags; 2325 /* 2326 * partial array is full. Move the existing 2327 * set to the per node partial list. 2328 */ 2329 local_irq_save(flags); 2330 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2331 local_irq_restore(flags); 2332 oldpage = NULL; 2333 pobjects = 0; 2334 pages = 0; 2335 stat(s, CPU_PARTIAL_DRAIN); 2336 } 2337 } 2338 2339 pages++; 2340 pobjects += page->objects - page->inuse; 2341 2342 page->pages = pages; 2343 page->pobjects = pobjects; 2344 page->next = oldpage; 2345 2346 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2347 != oldpage); 2348 if (unlikely(!slub_cpu_partial(s))) { 2349 unsigned long flags; 2350 2351 local_irq_save(flags); 2352 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2353 local_irq_restore(flags); 2354 } 2355 preempt_enable(); 2356 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 2357 } 2358 2359 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2360 { 2361 stat(s, CPUSLAB_FLUSH); 2362 deactivate_slab(s, c->page, c->freelist, c); 2363 2364 c->tid = next_tid(c->tid); 2365 } 2366 2367 /* 2368 * Flush cpu slab. 2369 * 2370 * Called from IPI handler with interrupts disabled. 2371 */ 2372 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2373 { 2374 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2375 2376 if (c->page) 2377 flush_slab(s, c); 2378 2379 unfreeze_partials(s, c); 2380 } 2381 2382 static void flush_cpu_slab(void *d) 2383 { 2384 struct kmem_cache *s = d; 2385 2386 __flush_cpu_slab(s, smp_processor_id()); 2387 } 2388 2389 static bool has_cpu_slab(int cpu, void *info) 2390 { 2391 struct kmem_cache *s = info; 2392 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2393 2394 return c->page || slub_percpu_partial(c); 2395 } 2396 2397 static void flush_all(struct kmem_cache *s) 2398 { 2399 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); 2400 } 2401 2402 /* 2403 * Use the cpu notifier to insure that the cpu slabs are flushed when 2404 * necessary. 2405 */ 2406 static int slub_cpu_dead(unsigned int cpu) 2407 { 2408 struct kmem_cache *s; 2409 unsigned long flags; 2410 2411 mutex_lock(&slab_mutex); 2412 list_for_each_entry(s, &slab_caches, list) { 2413 local_irq_save(flags); 2414 __flush_cpu_slab(s, cpu); 2415 local_irq_restore(flags); 2416 } 2417 mutex_unlock(&slab_mutex); 2418 return 0; 2419 } 2420 2421 /* 2422 * Check if the objects in a per cpu structure fit numa 2423 * locality expectations. 2424 */ 2425 static inline int node_match(struct page *page, int node) 2426 { 2427 #ifdef CONFIG_NUMA 2428 if (node != NUMA_NO_NODE && page_to_nid(page) != node) 2429 return 0; 2430 #endif 2431 return 1; 2432 } 2433 2434 #ifdef CONFIG_SLUB_DEBUG 2435 static int count_free(struct page *page) 2436 { 2437 return page->objects - page->inuse; 2438 } 2439 2440 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2441 { 2442 return atomic_long_read(&n->total_objects); 2443 } 2444 #endif /* CONFIG_SLUB_DEBUG */ 2445 2446 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2447 static unsigned long count_partial(struct kmem_cache_node *n, 2448 int (*get_count)(struct page *)) 2449 { 2450 unsigned long flags; 2451 unsigned long x = 0; 2452 struct page *page; 2453 2454 spin_lock_irqsave(&n->list_lock, flags); 2455 list_for_each_entry(page, &n->partial, slab_list) 2456 x += get_count(page); 2457 spin_unlock_irqrestore(&n->list_lock, flags); 2458 return x; 2459 } 2460 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2461 2462 static noinline void 2463 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2464 { 2465 #ifdef CONFIG_SLUB_DEBUG 2466 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2467 DEFAULT_RATELIMIT_BURST); 2468 int node; 2469 struct kmem_cache_node *n; 2470 2471 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2472 return; 2473 2474 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2475 nid, gfpflags, &gfpflags); 2476 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 2477 s->name, s->object_size, s->size, oo_order(s->oo), 2478 oo_order(s->min)); 2479 2480 if (oo_order(s->min) > get_order(s->object_size)) 2481 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2482 s->name); 2483 2484 for_each_kmem_cache_node(s, node, n) { 2485 unsigned long nr_slabs; 2486 unsigned long nr_objs; 2487 unsigned long nr_free; 2488 2489 nr_free = count_partial(n, count_free); 2490 nr_slabs = node_nr_slabs(n); 2491 nr_objs = node_nr_objs(n); 2492 2493 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2494 node, nr_slabs, nr_objs, nr_free); 2495 } 2496 #endif 2497 } 2498 2499 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2500 int node, struct kmem_cache_cpu **pc) 2501 { 2502 void *freelist; 2503 struct kmem_cache_cpu *c = *pc; 2504 struct page *page; 2505 2506 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2507 2508 freelist = get_partial(s, flags, node, c); 2509 2510 if (freelist) 2511 return freelist; 2512 2513 page = new_slab(s, flags, node); 2514 if (page) { 2515 c = raw_cpu_ptr(s->cpu_slab); 2516 if (c->page) 2517 flush_slab(s, c); 2518 2519 /* 2520 * No other reference to the page yet so we can 2521 * muck around with it freely without cmpxchg 2522 */ 2523 freelist = page->freelist; 2524 page->freelist = NULL; 2525 2526 stat(s, ALLOC_SLAB); 2527 c->page = page; 2528 *pc = c; 2529 } 2530 2531 return freelist; 2532 } 2533 2534 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2535 { 2536 if (unlikely(PageSlabPfmemalloc(page))) 2537 return gfp_pfmemalloc_allowed(gfpflags); 2538 2539 return true; 2540 } 2541 2542 /* 2543 * Check the page->freelist of a page and either transfer the freelist to the 2544 * per cpu freelist or deactivate the page. 2545 * 2546 * The page is still frozen if the return value is not NULL. 2547 * 2548 * If this function returns NULL then the page has been unfrozen. 2549 * 2550 * This function must be called with interrupt disabled. 2551 */ 2552 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2553 { 2554 struct page new; 2555 unsigned long counters; 2556 void *freelist; 2557 2558 do { 2559 freelist = page->freelist; 2560 counters = page->counters; 2561 2562 new.counters = counters; 2563 VM_BUG_ON(!new.frozen); 2564 2565 new.inuse = page->objects; 2566 new.frozen = freelist != NULL; 2567 2568 } while (!__cmpxchg_double_slab(s, page, 2569 freelist, counters, 2570 NULL, new.counters, 2571 "get_freelist")); 2572 2573 return freelist; 2574 } 2575 2576 /* 2577 * Slow path. The lockless freelist is empty or we need to perform 2578 * debugging duties. 2579 * 2580 * Processing is still very fast if new objects have been freed to the 2581 * regular freelist. In that case we simply take over the regular freelist 2582 * as the lockless freelist and zap the regular freelist. 2583 * 2584 * If that is not working then we fall back to the partial lists. We take the 2585 * first element of the freelist as the object to allocate now and move the 2586 * rest of the freelist to the lockless freelist. 2587 * 2588 * And if we were unable to get a new slab from the partial slab lists then 2589 * we need to allocate a new slab. This is the slowest path since it involves 2590 * a call to the page allocator and the setup of a new slab. 2591 * 2592 * Version of __slab_alloc to use when we know that interrupts are 2593 * already disabled (which is the case for bulk allocation). 2594 */ 2595 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2596 unsigned long addr, struct kmem_cache_cpu *c) 2597 { 2598 void *freelist; 2599 struct page *page; 2600 2601 page = c->page; 2602 if (!page) { 2603 /* 2604 * if the node is not online or has no normal memory, just 2605 * ignore the node constraint 2606 */ 2607 if (unlikely(node != NUMA_NO_NODE && 2608 !node_state(node, N_NORMAL_MEMORY))) 2609 node = NUMA_NO_NODE; 2610 goto new_slab; 2611 } 2612 redo: 2613 2614 if (unlikely(!node_match(page, node))) { 2615 /* 2616 * same as above but node_match() being false already 2617 * implies node != NUMA_NO_NODE 2618 */ 2619 if (!node_state(node, N_NORMAL_MEMORY)) { 2620 node = NUMA_NO_NODE; 2621 goto redo; 2622 } else { 2623 stat(s, ALLOC_NODE_MISMATCH); 2624 deactivate_slab(s, page, c->freelist, c); 2625 goto new_slab; 2626 } 2627 } 2628 2629 /* 2630 * By rights, we should be searching for a slab page that was 2631 * PFMEMALLOC but right now, we are losing the pfmemalloc 2632 * information when the page leaves the per-cpu allocator 2633 */ 2634 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2635 deactivate_slab(s, page, c->freelist, c); 2636 goto new_slab; 2637 } 2638 2639 /* must check again c->freelist in case of cpu migration or IRQ */ 2640 freelist = c->freelist; 2641 if (freelist) 2642 goto load_freelist; 2643 2644 freelist = get_freelist(s, page); 2645 2646 if (!freelist) { 2647 c->page = NULL; 2648 stat(s, DEACTIVATE_BYPASS); 2649 goto new_slab; 2650 } 2651 2652 stat(s, ALLOC_REFILL); 2653 2654 load_freelist: 2655 /* 2656 * freelist is pointing to the list of objects to be used. 2657 * page is pointing to the page from which the objects are obtained. 2658 * That page must be frozen for per cpu allocations to work. 2659 */ 2660 VM_BUG_ON(!c->page->frozen); 2661 c->freelist = get_freepointer(s, freelist); 2662 c->tid = next_tid(c->tid); 2663 return freelist; 2664 2665 new_slab: 2666 2667 if (slub_percpu_partial(c)) { 2668 page = c->page = slub_percpu_partial(c); 2669 slub_set_percpu_partial(c, page); 2670 stat(s, CPU_PARTIAL_ALLOC); 2671 goto redo; 2672 } 2673 2674 freelist = new_slab_objects(s, gfpflags, node, &c); 2675 2676 if (unlikely(!freelist)) { 2677 slab_out_of_memory(s, gfpflags, node); 2678 return NULL; 2679 } 2680 2681 page = c->page; 2682 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2683 goto load_freelist; 2684 2685 /* Only entered in the debug case */ 2686 if (kmem_cache_debug(s) && 2687 !alloc_debug_processing(s, page, freelist, addr)) 2688 goto new_slab; /* Slab failed checks. Next slab needed */ 2689 2690 deactivate_slab(s, page, get_freepointer(s, freelist), c); 2691 return freelist; 2692 } 2693 2694 /* 2695 * Another one that disabled interrupt and compensates for possible 2696 * cpu changes by refetching the per cpu area pointer. 2697 */ 2698 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2699 unsigned long addr, struct kmem_cache_cpu *c) 2700 { 2701 void *p; 2702 unsigned long flags; 2703 2704 local_irq_save(flags); 2705 #ifdef CONFIG_PREEMPTION 2706 /* 2707 * We may have been preempted and rescheduled on a different 2708 * cpu before disabling interrupts. Need to reload cpu area 2709 * pointer. 2710 */ 2711 c = this_cpu_ptr(s->cpu_slab); 2712 #endif 2713 2714 p = ___slab_alloc(s, gfpflags, node, addr, c); 2715 local_irq_restore(flags); 2716 return p; 2717 } 2718 2719 /* 2720 * If the object has been wiped upon free, make sure it's fully initialized by 2721 * zeroing out freelist pointer. 2722 */ 2723 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 2724 void *obj) 2725 { 2726 if (unlikely(slab_want_init_on_free(s)) && obj) 2727 memset((void *)((char *)obj + s->offset), 0, sizeof(void *)); 2728 } 2729 2730 /* 2731 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2732 * have the fastpath folded into their functions. So no function call 2733 * overhead for requests that can be satisfied on the fastpath. 2734 * 2735 * The fastpath works by first checking if the lockless freelist can be used. 2736 * If not then __slab_alloc is called for slow processing. 2737 * 2738 * Otherwise we can simply pick the next object from the lockless free list. 2739 */ 2740 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2741 gfp_t gfpflags, int node, unsigned long addr) 2742 { 2743 void *object; 2744 struct kmem_cache_cpu *c; 2745 struct page *page; 2746 unsigned long tid; 2747 2748 s = slab_pre_alloc_hook(s, gfpflags); 2749 if (!s) 2750 return NULL; 2751 redo: 2752 /* 2753 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2754 * enabled. We may switch back and forth between cpus while 2755 * reading from one cpu area. That does not matter as long 2756 * as we end up on the original cpu again when doing the cmpxchg. 2757 * 2758 * We should guarantee that tid and kmem_cache are retrieved on 2759 * the same cpu. It could be different if CONFIG_PREEMPTION so we need 2760 * to check if it is matched or not. 2761 */ 2762 do { 2763 tid = this_cpu_read(s->cpu_slab->tid); 2764 c = raw_cpu_ptr(s->cpu_slab); 2765 } while (IS_ENABLED(CONFIG_PREEMPTION) && 2766 unlikely(tid != READ_ONCE(c->tid))); 2767 2768 /* 2769 * Irqless object alloc/free algorithm used here depends on sequence 2770 * of fetching cpu_slab's data. tid should be fetched before anything 2771 * on c to guarantee that object and page associated with previous tid 2772 * won't be used with current tid. If we fetch tid first, object and 2773 * page could be one associated with next tid and our alloc/free 2774 * request will be failed. In this case, we will retry. So, no problem. 2775 */ 2776 barrier(); 2777 2778 /* 2779 * The transaction ids are globally unique per cpu and per operation on 2780 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2781 * occurs on the right processor and that there was no operation on the 2782 * linked list in between. 2783 */ 2784 2785 object = c->freelist; 2786 page = c->page; 2787 if (unlikely(!object || !node_match(page, node))) { 2788 object = __slab_alloc(s, gfpflags, node, addr, c); 2789 stat(s, ALLOC_SLOWPATH); 2790 } else { 2791 void *next_object = get_freepointer_safe(s, object); 2792 2793 /* 2794 * The cmpxchg will only match if there was no additional 2795 * operation and if we are on the right processor. 2796 * 2797 * The cmpxchg does the following atomically (without lock 2798 * semantics!) 2799 * 1. Relocate first pointer to the current per cpu area. 2800 * 2. Verify that tid and freelist have not been changed 2801 * 3. If they were not changed replace tid and freelist 2802 * 2803 * Since this is without lock semantics the protection is only 2804 * against code executing on this cpu *not* from access by 2805 * other cpus. 2806 */ 2807 if (unlikely(!this_cpu_cmpxchg_double( 2808 s->cpu_slab->freelist, s->cpu_slab->tid, 2809 object, tid, 2810 next_object, next_tid(tid)))) { 2811 2812 note_cmpxchg_failure("slab_alloc", s, tid); 2813 goto redo; 2814 } 2815 prefetch_freepointer(s, next_object); 2816 stat(s, ALLOC_FASTPATH); 2817 } 2818 2819 maybe_wipe_obj_freeptr(s, object); 2820 2821 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) 2822 memset(object, 0, s->object_size); 2823 2824 slab_post_alloc_hook(s, gfpflags, 1, &object); 2825 2826 return object; 2827 } 2828 2829 static __always_inline void *slab_alloc(struct kmem_cache *s, 2830 gfp_t gfpflags, unsigned long addr) 2831 { 2832 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2833 } 2834 2835 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2836 { 2837 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2838 2839 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2840 s->size, gfpflags); 2841 2842 return ret; 2843 } 2844 EXPORT_SYMBOL(kmem_cache_alloc); 2845 2846 #ifdef CONFIG_TRACING 2847 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2848 { 2849 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2850 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2851 ret = kasan_kmalloc(s, ret, size, gfpflags); 2852 return ret; 2853 } 2854 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2855 #endif 2856 2857 #ifdef CONFIG_NUMA 2858 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2859 { 2860 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2861 2862 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2863 s->object_size, s->size, gfpflags, node); 2864 2865 return ret; 2866 } 2867 EXPORT_SYMBOL(kmem_cache_alloc_node); 2868 2869 #ifdef CONFIG_TRACING 2870 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2871 gfp_t gfpflags, 2872 int node, size_t size) 2873 { 2874 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2875 2876 trace_kmalloc_node(_RET_IP_, ret, 2877 size, s->size, gfpflags, node); 2878 2879 ret = kasan_kmalloc(s, ret, size, gfpflags); 2880 return ret; 2881 } 2882 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2883 #endif 2884 #endif /* CONFIG_NUMA */ 2885 2886 /* 2887 * Slow path handling. This may still be called frequently since objects 2888 * have a longer lifetime than the cpu slabs in most processing loads. 2889 * 2890 * So we still attempt to reduce cache line usage. Just take the slab 2891 * lock and free the item. If there is no additional partial page 2892 * handling required then we can return immediately. 2893 */ 2894 static void __slab_free(struct kmem_cache *s, struct page *page, 2895 void *head, void *tail, int cnt, 2896 unsigned long addr) 2897 2898 { 2899 void *prior; 2900 int was_frozen; 2901 struct page new; 2902 unsigned long counters; 2903 struct kmem_cache_node *n = NULL; 2904 unsigned long uninitialized_var(flags); 2905 2906 stat(s, FREE_SLOWPATH); 2907 2908 if (kmem_cache_debug(s) && 2909 !free_debug_processing(s, page, head, tail, cnt, addr)) 2910 return; 2911 2912 do { 2913 if (unlikely(n)) { 2914 spin_unlock_irqrestore(&n->list_lock, flags); 2915 n = NULL; 2916 } 2917 prior = page->freelist; 2918 counters = page->counters; 2919 set_freepointer(s, tail, prior); 2920 new.counters = counters; 2921 was_frozen = new.frozen; 2922 new.inuse -= cnt; 2923 if ((!new.inuse || !prior) && !was_frozen) { 2924 2925 if (kmem_cache_has_cpu_partial(s) && !prior) { 2926 2927 /* 2928 * Slab was on no list before and will be 2929 * partially empty 2930 * We can defer the list move and instead 2931 * freeze it. 2932 */ 2933 new.frozen = 1; 2934 2935 } else { /* Needs to be taken off a list */ 2936 2937 n = get_node(s, page_to_nid(page)); 2938 /* 2939 * Speculatively acquire the list_lock. 2940 * If the cmpxchg does not succeed then we may 2941 * drop the list_lock without any processing. 2942 * 2943 * Otherwise the list_lock will synchronize with 2944 * other processors updating the list of slabs. 2945 */ 2946 spin_lock_irqsave(&n->list_lock, flags); 2947 2948 } 2949 } 2950 2951 } while (!cmpxchg_double_slab(s, page, 2952 prior, counters, 2953 head, new.counters, 2954 "__slab_free")); 2955 2956 if (likely(!n)) { 2957 2958 /* 2959 * If we just froze the page then put it onto the 2960 * per cpu partial list. 2961 */ 2962 if (new.frozen && !was_frozen) { 2963 put_cpu_partial(s, page, 1); 2964 stat(s, CPU_PARTIAL_FREE); 2965 } 2966 /* 2967 * The list lock was not taken therefore no list 2968 * activity can be necessary. 2969 */ 2970 if (was_frozen) 2971 stat(s, FREE_FROZEN); 2972 return; 2973 } 2974 2975 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2976 goto slab_empty; 2977 2978 /* 2979 * Objects left in the slab. If it was not on the partial list before 2980 * then add it. 2981 */ 2982 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2983 remove_full(s, n, page); 2984 add_partial(n, page, DEACTIVATE_TO_TAIL); 2985 stat(s, FREE_ADD_PARTIAL); 2986 } 2987 spin_unlock_irqrestore(&n->list_lock, flags); 2988 return; 2989 2990 slab_empty: 2991 if (prior) { 2992 /* 2993 * Slab on the partial list. 2994 */ 2995 remove_partial(n, page); 2996 stat(s, FREE_REMOVE_PARTIAL); 2997 } else { 2998 /* Slab must be on the full list */ 2999 remove_full(s, n, page); 3000 } 3001 3002 spin_unlock_irqrestore(&n->list_lock, flags); 3003 stat(s, FREE_SLAB); 3004 discard_slab(s, page); 3005 } 3006 3007 /* 3008 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 3009 * can perform fastpath freeing without additional function calls. 3010 * 3011 * The fastpath is only possible if we are freeing to the current cpu slab 3012 * of this processor. This typically the case if we have just allocated 3013 * the item before. 3014 * 3015 * If fastpath is not possible then fall back to __slab_free where we deal 3016 * with all sorts of special processing. 3017 * 3018 * Bulk free of a freelist with several objects (all pointing to the 3019 * same page) possible by specifying head and tail ptr, plus objects 3020 * count (cnt). Bulk free indicated by tail pointer being set. 3021 */ 3022 static __always_inline void do_slab_free(struct kmem_cache *s, 3023 struct page *page, void *head, void *tail, 3024 int cnt, unsigned long addr) 3025 { 3026 void *tail_obj = tail ? : head; 3027 struct kmem_cache_cpu *c; 3028 unsigned long tid; 3029 redo: 3030 /* 3031 * Determine the currently cpus per cpu slab. 3032 * The cpu may change afterward. However that does not matter since 3033 * data is retrieved via this pointer. If we are on the same cpu 3034 * during the cmpxchg then the free will succeed. 3035 */ 3036 do { 3037 tid = this_cpu_read(s->cpu_slab->tid); 3038 c = raw_cpu_ptr(s->cpu_slab); 3039 } while (IS_ENABLED(CONFIG_PREEMPTION) && 3040 unlikely(tid != READ_ONCE(c->tid))); 3041 3042 /* Same with comment on barrier() in slab_alloc_node() */ 3043 barrier(); 3044 3045 if (likely(page == c->page)) { 3046 void **freelist = READ_ONCE(c->freelist); 3047 3048 set_freepointer(s, tail_obj, freelist); 3049 3050 if (unlikely(!this_cpu_cmpxchg_double( 3051 s->cpu_slab->freelist, s->cpu_slab->tid, 3052 freelist, tid, 3053 head, next_tid(tid)))) { 3054 3055 note_cmpxchg_failure("slab_free", s, tid); 3056 goto redo; 3057 } 3058 stat(s, FREE_FASTPATH); 3059 } else 3060 __slab_free(s, page, head, tail_obj, cnt, addr); 3061 3062 } 3063 3064 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 3065 void *head, void *tail, int cnt, 3066 unsigned long addr) 3067 { 3068 /* 3069 * With KASAN enabled slab_free_freelist_hook modifies the freelist 3070 * to remove objects, whose reuse must be delayed. 3071 */ 3072 if (slab_free_freelist_hook(s, &head, &tail)) 3073 do_slab_free(s, page, head, tail, cnt, addr); 3074 } 3075 3076 #ifdef CONFIG_KASAN_GENERIC 3077 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 3078 { 3079 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 3080 } 3081 #endif 3082 3083 void kmem_cache_free(struct kmem_cache *s, void *x) 3084 { 3085 s = cache_from_obj(s, x); 3086 if (!s) 3087 return; 3088 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 3089 trace_kmem_cache_free(_RET_IP_, x); 3090 } 3091 EXPORT_SYMBOL(kmem_cache_free); 3092 3093 struct detached_freelist { 3094 struct page *page; 3095 void *tail; 3096 void *freelist; 3097 int cnt; 3098 struct kmem_cache *s; 3099 }; 3100 3101 /* 3102 * This function progressively scans the array with free objects (with 3103 * a limited look ahead) and extract objects belonging to the same 3104 * page. It builds a detached freelist directly within the given 3105 * page/objects. This can happen without any need for 3106 * synchronization, because the objects are owned by running process. 3107 * The freelist is build up as a single linked list in the objects. 3108 * The idea is, that this detached freelist can then be bulk 3109 * transferred to the real freelist(s), but only requiring a single 3110 * synchronization primitive. Look ahead in the array is limited due 3111 * to performance reasons. 3112 */ 3113 static inline 3114 int build_detached_freelist(struct kmem_cache *s, size_t size, 3115 void **p, struct detached_freelist *df) 3116 { 3117 size_t first_skipped_index = 0; 3118 int lookahead = 3; 3119 void *object; 3120 struct page *page; 3121 3122 /* Always re-init detached_freelist */ 3123 df->page = NULL; 3124 3125 do { 3126 object = p[--size]; 3127 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3128 } while (!object && size); 3129 3130 if (!object) 3131 return 0; 3132 3133 page = virt_to_head_page(object); 3134 if (!s) { 3135 /* Handle kalloc'ed objects */ 3136 if (unlikely(!PageSlab(page))) { 3137 BUG_ON(!PageCompound(page)); 3138 kfree_hook(object); 3139 __free_pages(page, compound_order(page)); 3140 p[size] = NULL; /* mark object processed */ 3141 return size; 3142 } 3143 /* Derive kmem_cache from object */ 3144 df->s = page->slab_cache; 3145 } else { 3146 df->s = cache_from_obj(s, object); /* Support for memcg */ 3147 } 3148 3149 /* Start new detached freelist */ 3150 df->page = page; 3151 set_freepointer(df->s, object, NULL); 3152 df->tail = object; 3153 df->freelist = object; 3154 p[size] = NULL; /* mark object processed */ 3155 df->cnt = 1; 3156 3157 while (size) { 3158 object = p[--size]; 3159 if (!object) 3160 continue; /* Skip processed objects */ 3161 3162 /* df->page is always set at this point */ 3163 if (df->page == virt_to_head_page(object)) { 3164 /* Opportunity build freelist */ 3165 set_freepointer(df->s, object, df->freelist); 3166 df->freelist = object; 3167 df->cnt++; 3168 p[size] = NULL; /* mark object processed */ 3169 3170 continue; 3171 } 3172 3173 /* Limit look ahead search */ 3174 if (!--lookahead) 3175 break; 3176 3177 if (!first_skipped_index) 3178 first_skipped_index = size + 1; 3179 } 3180 3181 return first_skipped_index; 3182 } 3183 3184 /* Note that interrupts must be enabled when calling this function. */ 3185 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3186 { 3187 if (WARN_ON(!size)) 3188 return; 3189 3190 do { 3191 struct detached_freelist df; 3192 3193 size = build_detached_freelist(s, size, p, &df); 3194 if (!df.page) 3195 continue; 3196 3197 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3198 } while (likely(size)); 3199 } 3200 EXPORT_SYMBOL(kmem_cache_free_bulk); 3201 3202 /* Note that interrupts must be enabled when calling this function. */ 3203 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3204 void **p) 3205 { 3206 struct kmem_cache_cpu *c; 3207 int i; 3208 3209 /* memcg and kmem_cache debug support */ 3210 s = slab_pre_alloc_hook(s, flags); 3211 if (unlikely(!s)) 3212 return false; 3213 /* 3214 * Drain objects in the per cpu slab, while disabling local 3215 * IRQs, which protects against PREEMPT and interrupts 3216 * handlers invoking normal fastpath. 3217 */ 3218 local_irq_disable(); 3219 c = this_cpu_ptr(s->cpu_slab); 3220 3221 for (i = 0; i < size; i++) { 3222 void *object = c->freelist; 3223 3224 if (unlikely(!object)) { 3225 /* 3226 * We may have removed an object from c->freelist using 3227 * the fastpath in the previous iteration; in that case, 3228 * c->tid has not been bumped yet. 3229 * Since ___slab_alloc() may reenable interrupts while 3230 * allocating memory, we should bump c->tid now. 3231 */ 3232 c->tid = next_tid(c->tid); 3233 3234 /* 3235 * Invoking slow path likely have side-effect 3236 * of re-populating per CPU c->freelist 3237 */ 3238 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3239 _RET_IP_, c); 3240 if (unlikely(!p[i])) 3241 goto error; 3242 3243 c = this_cpu_ptr(s->cpu_slab); 3244 maybe_wipe_obj_freeptr(s, p[i]); 3245 3246 continue; /* goto for-loop */ 3247 } 3248 c->freelist = get_freepointer(s, object); 3249 p[i] = object; 3250 maybe_wipe_obj_freeptr(s, p[i]); 3251 } 3252 c->tid = next_tid(c->tid); 3253 local_irq_enable(); 3254 3255 /* Clear memory outside IRQ disabled fastpath loop */ 3256 if (unlikely(slab_want_init_on_alloc(flags, s))) { 3257 int j; 3258 3259 for (j = 0; j < i; j++) 3260 memset(p[j], 0, s->object_size); 3261 } 3262 3263 /* memcg and kmem_cache debug support */ 3264 slab_post_alloc_hook(s, flags, size, p); 3265 return i; 3266 error: 3267 local_irq_enable(); 3268 slab_post_alloc_hook(s, flags, i, p); 3269 __kmem_cache_free_bulk(s, i, p); 3270 return 0; 3271 } 3272 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3273 3274 3275 /* 3276 * Object placement in a slab is made very easy because we always start at 3277 * offset 0. If we tune the size of the object to the alignment then we can 3278 * get the required alignment by putting one properly sized object after 3279 * another. 3280 * 3281 * Notice that the allocation order determines the sizes of the per cpu 3282 * caches. Each processor has always one slab available for allocations. 3283 * Increasing the allocation order reduces the number of times that slabs 3284 * must be moved on and off the partial lists and is therefore a factor in 3285 * locking overhead. 3286 */ 3287 3288 /* 3289 * Mininum / Maximum order of slab pages. This influences locking overhead 3290 * and slab fragmentation. A higher order reduces the number of partial slabs 3291 * and increases the number of allocations possible without having to 3292 * take the list_lock. 3293 */ 3294 static unsigned int slub_min_order; 3295 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3296 static unsigned int slub_min_objects; 3297 3298 /* 3299 * Calculate the order of allocation given an slab object size. 3300 * 3301 * The order of allocation has significant impact on performance and other 3302 * system components. Generally order 0 allocations should be preferred since 3303 * order 0 does not cause fragmentation in the page allocator. Larger objects 3304 * be problematic to put into order 0 slabs because there may be too much 3305 * unused space left. We go to a higher order if more than 1/16th of the slab 3306 * would be wasted. 3307 * 3308 * In order to reach satisfactory performance we must ensure that a minimum 3309 * number of objects is in one slab. Otherwise we may generate too much 3310 * activity on the partial lists which requires taking the list_lock. This is 3311 * less a concern for large slabs though which are rarely used. 3312 * 3313 * slub_max_order specifies the order where we begin to stop considering the 3314 * number of objects in a slab as critical. If we reach slub_max_order then 3315 * we try to keep the page order as low as possible. So we accept more waste 3316 * of space in favor of a small page order. 3317 * 3318 * Higher order allocations also allow the placement of more objects in a 3319 * slab and thereby reduce object handling overhead. If the user has 3320 * requested a higher mininum order then we start with that one instead of 3321 * the smallest order which will fit the object. 3322 */ 3323 static inline unsigned int slab_order(unsigned int size, 3324 unsigned int min_objects, unsigned int max_order, 3325 unsigned int fract_leftover) 3326 { 3327 unsigned int min_order = slub_min_order; 3328 unsigned int order; 3329 3330 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 3331 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3332 3333 for (order = max(min_order, (unsigned int)get_order(min_objects * size)); 3334 order <= max_order; order++) { 3335 3336 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 3337 unsigned int rem; 3338 3339 rem = slab_size % size; 3340 3341 if (rem <= slab_size / fract_leftover) 3342 break; 3343 } 3344 3345 return order; 3346 } 3347 3348 static inline int calculate_order(unsigned int size) 3349 { 3350 unsigned int order; 3351 unsigned int min_objects; 3352 unsigned int max_objects; 3353 3354 /* 3355 * Attempt to find best configuration for a slab. This 3356 * works by first attempting to generate a layout with 3357 * the best configuration and backing off gradually. 3358 * 3359 * First we increase the acceptable waste in a slab. Then 3360 * we reduce the minimum objects required in a slab. 3361 */ 3362 min_objects = slub_min_objects; 3363 if (!min_objects) 3364 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3365 max_objects = order_objects(slub_max_order, size); 3366 min_objects = min(min_objects, max_objects); 3367 3368 while (min_objects > 1) { 3369 unsigned int fraction; 3370 3371 fraction = 16; 3372 while (fraction >= 4) { 3373 order = slab_order(size, min_objects, 3374 slub_max_order, fraction); 3375 if (order <= slub_max_order) 3376 return order; 3377 fraction /= 2; 3378 } 3379 min_objects--; 3380 } 3381 3382 /* 3383 * We were unable to place multiple objects in a slab. Now 3384 * lets see if we can place a single object there. 3385 */ 3386 order = slab_order(size, 1, slub_max_order, 1); 3387 if (order <= slub_max_order) 3388 return order; 3389 3390 /* 3391 * Doh this slab cannot be placed using slub_max_order. 3392 */ 3393 order = slab_order(size, 1, MAX_ORDER, 1); 3394 if (order < MAX_ORDER) 3395 return order; 3396 return -ENOSYS; 3397 } 3398 3399 static void 3400 init_kmem_cache_node(struct kmem_cache_node *n) 3401 { 3402 n->nr_partial = 0; 3403 spin_lock_init(&n->list_lock); 3404 INIT_LIST_HEAD(&n->partial); 3405 #ifdef CONFIG_SLUB_DEBUG 3406 atomic_long_set(&n->nr_slabs, 0); 3407 atomic_long_set(&n->total_objects, 0); 3408 INIT_LIST_HEAD(&n->full); 3409 #endif 3410 } 3411 3412 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3413 { 3414 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3415 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3416 3417 /* 3418 * Must align to double word boundary for the double cmpxchg 3419 * instructions to work; see __pcpu_double_call_return_bool(). 3420 */ 3421 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3422 2 * sizeof(void *)); 3423 3424 if (!s->cpu_slab) 3425 return 0; 3426 3427 init_kmem_cache_cpus(s); 3428 3429 return 1; 3430 } 3431 3432 static struct kmem_cache *kmem_cache_node; 3433 3434 /* 3435 * No kmalloc_node yet so do it by hand. We know that this is the first 3436 * slab on the node for this slabcache. There are no concurrent accesses 3437 * possible. 3438 * 3439 * Note that this function only works on the kmem_cache_node 3440 * when allocating for the kmem_cache_node. This is used for bootstrapping 3441 * memory on a fresh node that has no slab structures yet. 3442 */ 3443 static void early_kmem_cache_node_alloc(int node) 3444 { 3445 struct page *page; 3446 struct kmem_cache_node *n; 3447 3448 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3449 3450 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3451 3452 BUG_ON(!page); 3453 if (page_to_nid(page) != node) { 3454 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3455 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3456 } 3457 3458 n = page->freelist; 3459 BUG_ON(!n); 3460 #ifdef CONFIG_SLUB_DEBUG 3461 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3462 init_tracking(kmem_cache_node, n); 3463 #endif 3464 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3465 GFP_KERNEL); 3466 page->freelist = get_freepointer(kmem_cache_node, n); 3467 page->inuse = 1; 3468 page->frozen = 0; 3469 kmem_cache_node->node[node] = n; 3470 init_kmem_cache_node(n); 3471 inc_slabs_node(kmem_cache_node, node, page->objects); 3472 3473 /* 3474 * No locks need to be taken here as it has just been 3475 * initialized and there is no concurrent access. 3476 */ 3477 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3478 } 3479 3480 static void free_kmem_cache_nodes(struct kmem_cache *s) 3481 { 3482 int node; 3483 struct kmem_cache_node *n; 3484 3485 for_each_kmem_cache_node(s, node, n) { 3486 s->node[node] = NULL; 3487 kmem_cache_free(kmem_cache_node, n); 3488 } 3489 } 3490 3491 void __kmem_cache_release(struct kmem_cache *s) 3492 { 3493 cache_random_seq_destroy(s); 3494 free_percpu(s->cpu_slab); 3495 free_kmem_cache_nodes(s); 3496 } 3497 3498 static int init_kmem_cache_nodes(struct kmem_cache *s) 3499 { 3500 int node; 3501 3502 for_each_node_state(node, N_NORMAL_MEMORY) { 3503 struct kmem_cache_node *n; 3504 3505 if (slab_state == DOWN) { 3506 early_kmem_cache_node_alloc(node); 3507 continue; 3508 } 3509 n = kmem_cache_alloc_node(kmem_cache_node, 3510 GFP_KERNEL, node); 3511 3512 if (!n) { 3513 free_kmem_cache_nodes(s); 3514 return 0; 3515 } 3516 3517 init_kmem_cache_node(n); 3518 s->node[node] = n; 3519 } 3520 return 1; 3521 } 3522 3523 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3524 { 3525 if (min < MIN_PARTIAL) 3526 min = MIN_PARTIAL; 3527 else if (min > MAX_PARTIAL) 3528 min = MAX_PARTIAL; 3529 s->min_partial = min; 3530 } 3531 3532 static void set_cpu_partial(struct kmem_cache *s) 3533 { 3534 #ifdef CONFIG_SLUB_CPU_PARTIAL 3535 /* 3536 * cpu_partial determined the maximum number of objects kept in the 3537 * per cpu partial lists of a processor. 3538 * 3539 * Per cpu partial lists mainly contain slabs that just have one 3540 * object freed. If they are used for allocation then they can be 3541 * filled up again with minimal effort. The slab will never hit the 3542 * per node partial lists and therefore no locking will be required. 3543 * 3544 * This setting also determines 3545 * 3546 * A) The number of objects from per cpu partial slabs dumped to the 3547 * per node list when we reach the limit. 3548 * B) The number of objects in cpu partial slabs to extract from the 3549 * per node list when we run out of per cpu objects. We only fetch 3550 * 50% to keep some capacity around for frees. 3551 */ 3552 if (!kmem_cache_has_cpu_partial(s)) 3553 slub_set_cpu_partial(s, 0); 3554 else if (s->size >= PAGE_SIZE) 3555 slub_set_cpu_partial(s, 2); 3556 else if (s->size >= 1024) 3557 slub_set_cpu_partial(s, 6); 3558 else if (s->size >= 256) 3559 slub_set_cpu_partial(s, 13); 3560 else 3561 slub_set_cpu_partial(s, 30); 3562 #endif 3563 } 3564 3565 /* 3566 * calculate_sizes() determines the order and the distribution of data within 3567 * a slab object. 3568 */ 3569 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3570 { 3571 slab_flags_t flags = s->flags; 3572 unsigned int size = s->object_size; 3573 unsigned int freepointer_area; 3574 unsigned int order; 3575 3576 /* 3577 * Round up object size to the next word boundary. We can only 3578 * place the free pointer at word boundaries and this determines 3579 * the possible location of the free pointer. 3580 */ 3581 size = ALIGN(size, sizeof(void *)); 3582 /* 3583 * This is the area of the object where a freepointer can be 3584 * safely written. If redzoning adds more to the inuse size, we 3585 * can't use that portion for writing the freepointer, so 3586 * s->offset must be limited within this for the general case. 3587 */ 3588 freepointer_area = size; 3589 3590 #ifdef CONFIG_SLUB_DEBUG 3591 /* 3592 * Determine if we can poison the object itself. If the user of 3593 * the slab may touch the object after free or before allocation 3594 * then we should never poison the object itself. 3595 */ 3596 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 3597 !s->ctor) 3598 s->flags |= __OBJECT_POISON; 3599 else 3600 s->flags &= ~__OBJECT_POISON; 3601 3602 3603 /* 3604 * If we are Redzoning then check if there is some space between the 3605 * end of the object and the free pointer. If not then add an 3606 * additional word to have some bytes to store Redzone information. 3607 */ 3608 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3609 size += sizeof(void *); 3610 #endif 3611 3612 /* 3613 * With that we have determined the number of bytes in actual use 3614 * by the object. This is the potential offset to the free pointer. 3615 */ 3616 s->inuse = size; 3617 3618 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || 3619 s->ctor)) { 3620 /* 3621 * Relocate free pointer after the object if it is not 3622 * permitted to overwrite the first word of the object on 3623 * kmem_cache_free. 3624 * 3625 * This is the case if we do RCU, have a constructor or 3626 * destructor or are poisoning the objects. 3627 * 3628 * The assumption that s->offset >= s->inuse means free 3629 * pointer is outside of the object is used in the 3630 * freeptr_outside_object() function. If that is no 3631 * longer true, the function needs to be modified. 3632 */ 3633 s->offset = size; 3634 size += sizeof(void *); 3635 } else if (freepointer_area > sizeof(void *)) { 3636 /* 3637 * Store freelist pointer near middle of object to keep 3638 * it away from the edges of the object to avoid small 3639 * sized over/underflows from neighboring allocations. 3640 */ 3641 s->offset = ALIGN(freepointer_area / 2, sizeof(void *)); 3642 } 3643 3644 #ifdef CONFIG_SLUB_DEBUG 3645 if (flags & SLAB_STORE_USER) 3646 /* 3647 * Need to store information about allocs and frees after 3648 * the object. 3649 */ 3650 size += 2 * sizeof(struct track); 3651 #endif 3652 3653 kasan_cache_create(s, &size, &s->flags); 3654 #ifdef CONFIG_SLUB_DEBUG 3655 if (flags & SLAB_RED_ZONE) { 3656 /* 3657 * Add some empty padding so that we can catch 3658 * overwrites from earlier objects rather than let 3659 * tracking information or the free pointer be 3660 * corrupted if a user writes before the start 3661 * of the object. 3662 */ 3663 size += sizeof(void *); 3664 3665 s->red_left_pad = sizeof(void *); 3666 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3667 size += s->red_left_pad; 3668 } 3669 #endif 3670 3671 /* 3672 * SLUB stores one object immediately after another beginning from 3673 * offset 0. In order to align the objects we have to simply size 3674 * each object to conform to the alignment. 3675 */ 3676 size = ALIGN(size, s->align); 3677 s->size = size; 3678 if (forced_order >= 0) 3679 order = forced_order; 3680 else 3681 order = calculate_order(size); 3682 3683 if ((int)order < 0) 3684 return 0; 3685 3686 s->allocflags = 0; 3687 if (order) 3688 s->allocflags |= __GFP_COMP; 3689 3690 if (s->flags & SLAB_CACHE_DMA) 3691 s->allocflags |= GFP_DMA; 3692 3693 if (s->flags & SLAB_CACHE_DMA32) 3694 s->allocflags |= GFP_DMA32; 3695 3696 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3697 s->allocflags |= __GFP_RECLAIMABLE; 3698 3699 /* 3700 * Determine the number of objects per slab 3701 */ 3702 s->oo = oo_make(order, size); 3703 s->min = oo_make(get_order(size), size); 3704 if (oo_objects(s->oo) > oo_objects(s->max)) 3705 s->max = s->oo; 3706 3707 return !!oo_objects(s->oo); 3708 } 3709 3710 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) 3711 { 3712 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3713 #ifdef CONFIG_SLAB_FREELIST_HARDENED 3714 s->random = get_random_long(); 3715 #endif 3716 3717 if (!calculate_sizes(s, -1)) 3718 goto error; 3719 if (disable_higher_order_debug) { 3720 /* 3721 * Disable debugging flags that store metadata if the min slab 3722 * order increased. 3723 */ 3724 if (get_order(s->size) > get_order(s->object_size)) { 3725 s->flags &= ~DEBUG_METADATA_FLAGS; 3726 s->offset = 0; 3727 if (!calculate_sizes(s, -1)) 3728 goto error; 3729 } 3730 } 3731 3732 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3733 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3734 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3735 /* Enable fast mode */ 3736 s->flags |= __CMPXCHG_DOUBLE; 3737 #endif 3738 3739 /* 3740 * The larger the object size is, the more pages we want on the partial 3741 * list to avoid pounding the page allocator excessively. 3742 */ 3743 set_min_partial(s, ilog2(s->size) / 2); 3744 3745 set_cpu_partial(s); 3746 3747 #ifdef CONFIG_NUMA 3748 s->remote_node_defrag_ratio = 1000; 3749 #endif 3750 3751 /* Initialize the pre-computed randomized freelist if slab is up */ 3752 if (slab_state >= UP) { 3753 if (init_cache_random_seq(s)) 3754 goto error; 3755 } 3756 3757 if (!init_kmem_cache_nodes(s)) 3758 goto error; 3759 3760 if (alloc_kmem_cache_cpus(s)) 3761 return 0; 3762 3763 free_kmem_cache_nodes(s); 3764 error: 3765 return -EINVAL; 3766 } 3767 3768 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3769 const char *text, unsigned long *map) 3770 { 3771 #ifdef CONFIG_SLUB_DEBUG 3772 void *addr = page_address(page); 3773 void *p; 3774 3775 if (!map) 3776 return; 3777 3778 slab_err(s, page, text, s->name); 3779 slab_lock(page); 3780 3781 map = get_map(s, page); 3782 for_each_object(p, s, addr, page->objects) { 3783 3784 if (!test_bit(slab_index(p, s, addr), map)) { 3785 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3786 print_tracking(s, p); 3787 } 3788 } 3789 slab_unlock(page); 3790 #endif 3791 } 3792 3793 /* 3794 * Attempt to free all partial slabs on a node. 3795 * This is called from __kmem_cache_shutdown(). We must take list_lock 3796 * because sysfs file might still access partial list after the shutdowning. 3797 */ 3798 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3799 { 3800 LIST_HEAD(discard); 3801 struct page *page, *h; 3802 unsigned long *map = NULL; 3803 3804 #ifdef CONFIG_SLUB_DEBUG 3805 map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL); 3806 #endif 3807 3808 BUG_ON(irqs_disabled()); 3809 spin_lock_irq(&n->list_lock); 3810 list_for_each_entry_safe(page, h, &n->partial, slab_list) { 3811 if (!page->inuse) { 3812 remove_partial(n, page); 3813 list_add(&page->slab_list, &discard); 3814 } else { 3815 list_slab_objects(s, page, 3816 "Objects remaining in %s on __kmem_cache_shutdown()", 3817 map); 3818 } 3819 } 3820 spin_unlock_irq(&n->list_lock); 3821 3822 #ifdef CONFIG_SLUB_DEBUG 3823 bitmap_free(map); 3824 #endif 3825 3826 list_for_each_entry_safe(page, h, &discard, slab_list) 3827 discard_slab(s, page); 3828 } 3829 3830 bool __kmem_cache_empty(struct kmem_cache *s) 3831 { 3832 int node; 3833 struct kmem_cache_node *n; 3834 3835 for_each_kmem_cache_node(s, node, n) 3836 if (n->nr_partial || slabs_node(s, node)) 3837 return false; 3838 return true; 3839 } 3840 3841 /* 3842 * Release all resources used by a slab cache. 3843 */ 3844 int __kmem_cache_shutdown(struct kmem_cache *s) 3845 { 3846 int node; 3847 struct kmem_cache_node *n; 3848 3849 flush_all(s); 3850 /* Attempt to free all objects */ 3851 for_each_kmem_cache_node(s, node, n) { 3852 free_partial(s, n); 3853 if (n->nr_partial || slabs_node(s, node)) 3854 return 1; 3855 } 3856 sysfs_slab_remove(s); 3857 return 0; 3858 } 3859 3860 /******************************************************************** 3861 * Kmalloc subsystem 3862 *******************************************************************/ 3863 3864 static int __init setup_slub_min_order(char *str) 3865 { 3866 get_option(&str, (int *)&slub_min_order); 3867 3868 return 1; 3869 } 3870 3871 __setup("slub_min_order=", setup_slub_min_order); 3872 3873 static int __init setup_slub_max_order(char *str) 3874 { 3875 get_option(&str, (int *)&slub_max_order); 3876 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); 3877 3878 return 1; 3879 } 3880 3881 __setup("slub_max_order=", setup_slub_max_order); 3882 3883 static int __init setup_slub_min_objects(char *str) 3884 { 3885 get_option(&str, (int *)&slub_min_objects); 3886 3887 return 1; 3888 } 3889 3890 __setup("slub_min_objects=", setup_slub_min_objects); 3891 3892 void *__kmalloc(size_t size, gfp_t flags) 3893 { 3894 struct kmem_cache *s; 3895 void *ret; 3896 3897 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3898 return kmalloc_large(size, flags); 3899 3900 s = kmalloc_slab(size, flags); 3901 3902 if (unlikely(ZERO_OR_NULL_PTR(s))) 3903 return s; 3904 3905 ret = slab_alloc(s, flags, _RET_IP_); 3906 3907 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3908 3909 ret = kasan_kmalloc(s, ret, size, flags); 3910 3911 return ret; 3912 } 3913 EXPORT_SYMBOL(__kmalloc); 3914 3915 #ifdef CONFIG_NUMA 3916 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3917 { 3918 struct page *page; 3919 void *ptr = NULL; 3920 unsigned int order = get_order(size); 3921 3922 flags |= __GFP_COMP; 3923 page = alloc_pages_node(node, flags, order); 3924 if (page) { 3925 ptr = page_address(page); 3926 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 3927 1 << order); 3928 } 3929 3930 return kmalloc_large_node_hook(ptr, size, flags); 3931 } 3932 3933 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3934 { 3935 struct kmem_cache *s; 3936 void *ret; 3937 3938 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3939 ret = kmalloc_large_node(size, flags, node); 3940 3941 trace_kmalloc_node(_RET_IP_, ret, 3942 size, PAGE_SIZE << get_order(size), 3943 flags, node); 3944 3945 return ret; 3946 } 3947 3948 s = kmalloc_slab(size, flags); 3949 3950 if (unlikely(ZERO_OR_NULL_PTR(s))) 3951 return s; 3952 3953 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3954 3955 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3956 3957 ret = kasan_kmalloc(s, ret, size, flags); 3958 3959 return ret; 3960 } 3961 EXPORT_SYMBOL(__kmalloc_node); 3962 #endif /* CONFIG_NUMA */ 3963 3964 #ifdef CONFIG_HARDENED_USERCOPY 3965 /* 3966 * Rejects incorrectly sized objects and objects that are to be copied 3967 * to/from userspace but do not fall entirely within the containing slab 3968 * cache's usercopy region. 3969 * 3970 * Returns NULL if check passes, otherwise const char * to name of cache 3971 * to indicate an error. 3972 */ 3973 void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 3974 bool to_user) 3975 { 3976 struct kmem_cache *s; 3977 unsigned int offset; 3978 size_t object_size; 3979 3980 ptr = kasan_reset_tag(ptr); 3981 3982 /* Find object and usable object size. */ 3983 s = page->slab_cache; 3984 3985 /* Reject impossible pointers. */ 3986 if (ptr < page_address(page)) 3987 usercopy_abort("SLUB object not in SLUB page?!", NULL, 3988 to_user, 0, n); 3989 3990 /* Find offset within object. */ 3991 offset = (ptr - page_address(page)) % s->size; 3992 3993 /* Adjust for redzone and reject if within the redzone. */ 3994 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3995 if (offset < s->red_left_pad) 3996 usercopy_abort("SLUB object in left red zone", 3997 s->name, to_user, offset, n); 3998 offset -= s->red_left_pad; 3999 } 4000 4001 /* Allow address range falling entirely within usercopy region. */ 4002 if (offset >= s->useroffset && 4003 offset - s->useroffset <= s->usersize && 4004 n <= s->useroffset - offset + s->usersize) 4005 return; 4006 4007 /* 4008 * If the copy is still within the allocated object, produce 4009 * a warning instead of rejecting the copy. This is intended 4010 * to be a temporary method to find any missing usercopy 4011 * whitelists. 4012 */ 4013 object_size = slab_ksize(s); 4014 if (usercopy_fallback && 4015 offset <= object_size && n <= object_size - offset) { 4016 usercopy_warn("SLUB object", s->name, to_user, offset, n); 4017 return; 4018 } 4019 4020 usercopy_abort("SLUB object", s->name, to_user, offset, n); 4021 } 4022 #endif /* CONFIG_HARDENED_USERCOPY */ 4023 4024 size_t __ksize(const void *object) 4025 { 4026 struct page *page; 4027 4028 if (unlikely(object == ZERO_SIZE_PTR)) 4029 return 0; 4030 4031 page = virt_to_head_page(object); 4032 4033 if (unlikely(!PageSlab(page))) { 4034 WARN_ON(!PageCompound(page)); 4035 return page_size(page); 4036 } 4037 4038 return slab_ksize(page->slab_cache); 4039 } 4040 EXPORT_SYMBOL(__ksize); 4041 4042 void kfree(const void *x) 4043 { 4044 struct page *page; 4045 void *object = (void *)x; 4046 4047 trace_kfree(_RET_IP_, x); 4048 4049 if (unlikely(ZERO_OR_NULL_PTR(x))) 4050 return; 4051 4052 page = virt_to_head_page(x); 4053 if (unlikely(!PageSlab(page))) { 4054 unsigned int order = compound_order(page); 4055 4056 BUG_ON(!PageCompound(page)); 4057 kfree_hook(object); 4058 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE, 4059 -(1 << order)); 4060 __free_pages(page, order); 4061 return; 4062 } 4063 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 4064 } 4065 EXPORT_SYMBOL(kfree); 4066 4067 #define SHRINK_PROMOTE_MAX 32 4068 4069 /* 4070 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 4071 * up most to the head of the partial lists. New allocations will then 4072 * fill those up and thus they can be removed from the partial lists. 4073 * 4074 * The slabs with the least items are placed last. This results in them 4075 * being allocated from last increasing the chance that the last objects 4076 * are freed in them. 4077 */ 4078 int __kmem_cache_shrink(struct kmem_cache *s) 4079 { 4080 int node; 4081 int i; 4082 struct kmem_cache_node *n; 4083 struct page *page; 4084 struct page *t; 4085 struct list_head discard; 4086 struct list_head promote[SHRINK_PROMOTE_MAX]; 4087 unsigned long flags; 4088 int ret = 0; 4089 4090 flush_all(s); 4091 for_each_kmem_cache_node(s, node, n) { 4092 INIT_LIST_HEAD(&discard); 4093 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 4094 INIT_LIST_HEAD(promote + i); 4095 4096 spin_lock_irqsave(&n->list_lock, flags); 4097 4098 /* 4099 * Build lists of slabs to discard or promote. 4100 * 4101 * Note that concurrent frees may occur while we hold the 4102 * list_lock. page->inuse here is the upper limit. 4103 */ 4104 list_for_each_entry_safe(page, t, &n->partial, slab_list) { 4105 int free = page->objects - page->inuse; 4106 4107 /* Do not reread page->inuse */ 4108 barrier(); 4109 4110 /* We do not keep full slabs on the list */ 4111 BUG_ON(free <= 0); 4112 4113 if (free == page->objects) { 4114 list_move(&page->slab_list, &discard); 4115 n->nr_partial--; 4116 } else if (free <= SHRINK_PROMOTE_MAX) 4117 list_move(&page->slab_list, promote + free - 1); 4118 } 4119 4120 /* 4121 * Promote the slabs filled up most to the head of the 4122 * partial list. 4123 */ 4124 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 4125 list_splice(promote + i, &n->partial); 4126 4127 spin_unlock_irqrestore(&n->list_lock, flags); 4128 4129 /* Release empty slabs */ 4130 list_for_each_entry_safe(page, t, &discard, slab_list) 4131 discard_slab(s, page); 4132 4133 if (slabs_node(s, node)) 4134 ret = 1; 4135 } 4136 4137 return ret; 4138 } 4139 4140 #ifdef CONFIG_MEMCG 4141 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s) 4142 { 4143 /* 4144 * Called with all the locks held after a sched RCU grace period. 4145 * Even if @s becomes empty after shrinking, we can't know that @s 4146 * doesn't have allocations already in-flight and thus can't 4147 * destroy @s until the associated memcg is released. 4148 * 4149 * However, let's remove the sysfs files for empty caches here. 4150 * Each cache has a lot of interface files which aren't 4151 * particularly useful for empty draining caches; otherwise, we can 4152 * easily end up with millions of unnecessary sysfs files on 4153 * systems which have a lot of memory and transient cgroups. 4154 */ 4155 if (!__kmem_cache_shrink(s)) 4156 sysfs_slab_remove(s); 4157 } 4158 4159 void __kmemcg_cache_deactivate(struct kmem_cache *s) 4160 { 4161 /* 4162 * Disable empty slabs caching. Used to avoid pinning offline 4163 * memory cgroups by kmem pages that can be freed. 4164 */ 4165 slub_set_cpu_partial(s, 0); 4166 s->min_partial = 0; 4167 } 4168 #endif /* CONFIG_MEMCG */ 4169 4170 static int slab_mem_going_offline_callback(void *arg) 4171 { 4172 struct kmem_cache *s; 4173 4174 mutex_lock(&slab_mutex); 4175 list_for_each_entry(s, &slab_caches, list) 4176 __kmem_cache_shrink(s); 4177 mutex_unlock(&slab_mutex); 4178 4179 return 0; 4180 } 4181 4182 static void slab_mem_offline_callback(void *arg) 4183 { 4184 struct kmem_cache_node *n; 4185 struct kmem_cache *s; 4186 struct memory_notify *marg = arg; 4187 int offline_node; 4188 4189 offline_node = marg->status_change_nid_normal; 4190 4191 /* 4192 * If the node still has available memory. we need kmem_cache_node 4193 * for it yet. 4194 */ 4195 if (offline_node < 0) 4196 return; 4197 4198 mutex_lock(&slab_mutex); 4199 list_for_each_entry(s, &slab_caches, list) { 4200 n = get_node(s, offline_node); 4201 if (n) { 4202 /* 4203 * if n->nr_slabs > 0, slabs still exist on the node 4204 * that is going down. We were unable to free them, 4205 * and offline_pages() function shouldn't call this 4206 * callback. So, we must fail. 4207 */ 4208 BUG_ON(slabs_node(s, offline_node)); 4209 4210 s->node[offline_node] = NULL; 4211 kmem_cache_free(kmem_cache_node, n); 4212 } 4213 } 4214 mutex_unlock(&slab_mutex); 4215 } 4216 4217 static int slab_mem_going_online_callback(void *arg) 4218 { 4219 struct kmem_cache_node *n; 4220 struct kmem_cache *s; 4221 struct memory_notify *marg = arg; 4222 int nid = marg->status_change_nid_normal; 4223 int ret = 0; 4224 4225 /* 4226 * If the node's memory is already available, then kmem_cache_node is 4227 * already created. Nothing to do. 4228 */ 4229 if (nid < 0) 4230 return 0; 4231 4232 /* 4233 * We are bringing a node online. No memory is available yet. We must 4234 * allocate a kmem_cache_node structure in order to bring the node 4235 * online. 4236 */ 4237 mutex_lock(&slab_mutex); 4238 list_for_each_entry(s, &slab_caches, list) { 4239 /* 4240 * XXX: kmem_cache_alloc_node will fallback to other nodes 4241 * since memory is not yet available from the node that 4242 * is brought up. 4243 */ 4244 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4245 if (!n) { 4246 ret = -ENOMEM; 4247 goto out; 4248 } 4249 init_kmem_cache_node(n); 4250 s->node[nid] = n; 4251 } 4252 out: 4253 mutex_unlock(&slab_mutex); 4254 return ret; 4255 } 4256 4257 static int slab_memory_callback(struct notifier_block *self, 4258 unsigned long action, void *arg) 4259 { 4260 int ret = 0; 4261 4262 switch (action) { 4263 case MEM_GOING_ONLINE: 4264 ret = slab_mem_going_online_callback(arg); 4265 break; 4266 case MEM_GOING_OFFLINE: 4267 ret = slab_mem_going_offline_callback(arg); 4268 break; 4269 case MEM_OFFLINE: 4270 case MEM_CANCEL_ONLINE: 4271 slab_mem_offline_callback(arg); 4272 break; 4273 case MEM_ONLINE: 4274 case MEM_CANCEL_OFFLINE: 4275 break; 4276 } 4277 if (ret) 4278 ret = notifier_from_errno(ret); 4279 else 4280 ret = NOTIFY_OK; 4281 return ret; 4282 } 4283 4284 static struct notifier_block slab_memory_callback_nb = { 4285 .notifier_call = slab_memory_callback, 4286 .priority = SLAB_CALLBACK_PRI, 4287 }; 4288 4289 /******************************************************************** 4290 * Basic setup of slabs 4291 *******************************************************************/ 4292 4293 /* 4294 * Used for early kmem_cache structures that were allocated using 4295 * the page allocator. Allocate them properly then fix up the pointers 4296 * that may be pointing to the wrong kmem_cache structure. 4297 */ 4298 4299 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4300 { 4301 int node; 4302 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4303 struct kmem_cache_node *n; 4304 4305 memcpy(s, static_cache, kmem_cache->object_size); 4306 4307 /* 4308 * This runs very early, and only the boot processor is supposed to be 4309 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4310 * IPIs around. 4311 */ 4312 __flush_cpu_slab(s, smp_processor_id()); 4313 for_each_kmem_cache_node(s, node, n) { 4314 struct page *p; 4315 4316 list_for_each_entry(p, &n->partial, slab_list) 4317 p->slab_cache = s; 4318 4319 #ifdef CONFIG_SLUB_DEBUG 4320 list_for_each_entry(p, &n->full, slab_list) 4321 p->slab_cache = s; 4322 #endif 4323 } 4324 slab_init_memcg_params(s); 4325 list_add(&s->list, &slab_caches); 4326 memcg_link_cache(s, NULL); 4327 return s; 4328 } 4329 4330 void __init kmem_cache_init(void) 4331 { 4332 static __initdata struct kmem_cache boot_kmem_cache, 4333 boot_kmem_cache_node; 4334 4335 if (debug_guardpage_minorder()) 4336 slub_max_order = 0; 4337 4338 kmem_cache_node = &boot_kmem_cache_node; 4339 kmem_cache = &boot_kmem_cache; 4340 4341 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4342 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); 4343 4344 register_hotmemory_notifier(&slab_memory_callback_nb); 4345 4346 /* Able to allocate the per node structures */ 4347 slab_state = PARTIAL; 4348 4349 create_boot_cache(kmem_cache, "kmem_cache", 4350 offsetof(struct kmem_cache, node) + 4351 nr_node_ids * sizeof(struct kmem_cache_node *), 4352 SLAB_HWCACHE_ALIGN, 0, 0); 4353 4354 kmem_cache = bootstrap(&boot_kmem_cache); 4355 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4356 4357 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4358 setup_kmalloc_cache_index_table(); 4359 create_kmalloc_caches(0); 4360 4361 /* Setup random freelists for each cache */ 4362 init_freelist_randomization(); 4363 4364 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4365 slub_cpu_dead); 4366 4367 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 4368 cache_line_size(), 4369 slub_min_order, slub_max_order, slub_min_objects, 4370 nr_cpu_ids, nr_node_ids); 4371 } 4372 4373 void __init kmem_cache_init_late(void) 4374 { 4375 } 4376 4377 struct kmem_cache * 4378 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 4379 slab_flags_t flags, void (*ctor)(void *)) 4380 { 4381 struct kmem_cache *s, *c; 4382 4383 s = find_mergeable(size, align, flags, name, ctor); 4384 if (s) { 4385 s->refcount++; 4386 4387 /* 4388 * Adjust the object sizes so that we clear 4389 * the complete object on kzalloc. 4390 */ 4391 s->object_size = max(s->object_size, size); 4392 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 4393 4394 for_each_memcg_cache(c, s) { 4395 c->object_size = s->object_size; 4396 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); 4397 } 4398 4399 if (sysfs_slab_alias(s, name)) { 4400 s->refcount--; 4401 s = NULL; 4402 } 4403 } 4404 4405 return s; 4406 } 4407 4408 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) 4409 { 4410 int err; 4411 4412 err = kmem_cache_open(s, flags); 4413 if (err) 4414 return err; 4415 4416 /* Mutex is not taken during early boot */ 4417 if (slab_state <= UP) 4418 return 0; 4419 4420 memcg_propagate_slab_attrs(s); 4421 err = sysfs_slab_add(s); 4422 if (err) 4423 __kmem_cache_release(s); 4424 4425 return err; 4426 } 4427 4428 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4429 { 4430 struct kmem_cache *s; 4431 void *ret; 4432 4433 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4434 return kmalloc_large(size, gfpflags); 4435 4436 s = kmalloc_slab(size, gfpflags); 4437 4438 if (unlikely(ZERO_OR_NULL_PTR(s))) 4439 return s; 4440 4441 ret = slab_alloc(s, gfpflags, caller); 4442 4443 /* Honor the call site pointer we received. */ 4444 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4445 4446 return ret; 4447 } 4448 EXPORT_SYMBOL(__kmalloc_track_caller); 4449 4450 #ifdef CONFIG_NUMA 4451 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4452 int node, unsigned long caller) 4453 { 4454 struct kmem_cache *s; 4455 void *ret; 4456 4457 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4458 ret = kmalloc_large_node(size, gfpflags, node); 4459 4460 trace_kmalloc_node(caller, ret, 4461 size, PAGE_SIZE << get_order(size), 4462 gfpflags, node); 4463 4464 return ret; 4465 } 4466 4467 s = kmalloc_slab(size, gfpflags); 4468 4469 if (unlikely(ZERO_OR_NULL_PTR(s))) 4470 return s; 4471 4472 ret = slab_alloc_node(s, gfpflags, node, caller); 4473 4474 /* Honor the call site pointer we received. */ 4475 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4476 4477 return ret; 4478 } 4479 EXPORT_SYMBOL(__kmalloc_node_track_caller); 4480 #endif 4481 4482 #ifdef CONFIG_SYSFS 4483 static int count_inuse(struct page *page) 4484 { 4485 return page->inuse; 4486 } 4487 4488 static int count_total(struct page *page) 4489 { 4490 return page->objects; 4491 } 4492 #endif 4493 4494 #ifdef CONFIG_SLUB_DEBUG 4495 static void validate_slab(struct kmem_cache *s, struct page *page) 4496 { 4497 void *p; 4498 void *addr = page_address(page); 4499 unsigned long *map; 4500 4501 slab_lock(page); 4502 4503 if (!check_slab(s, page) || !on_freelist(s, page, NULL)) 4504 goto unlock; 4505 4506 /* Now we know that a valid freelist exists */ 4507 map = get_map(s, page); 4508 for_each_object(p, s, addr, page->objects) { 4509 u8 val = test_bit(slab_index(p, s, addr), map) ? 4510 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 4511 4512 if (!check_object(s, page, p, val)) 4513 break; 4514 } 4515 put_map(map); 4516 unlock: 4517 slab_unlock(page); 4518 } 4519 4520 static int validate_slab_node(struct kmem_cache *s, 4521 struct kmem_cache_node *n) 4522 { 4523 unsigned long count = 0; 4524 struct page *page; 4525 unsigned long flags; 4526 4527 spin_lock_irqsave(&n->list_lock, flags); 4528 4529 list_for_each_entry(page, &n->partial, slab_list) { 4530 validate_slab(s, page); 4531 count++; 4532 } 4533 if (count != n->nr_partial) 4534 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4535 s->name, count, n->nr_partial); 4536 4537 if (!(s->flags & SLAB_STORE_USER)) 4538 goto out; 4539 4540 list_for_each_entry(page, &n->full, slab_list) { 4541 validate_slab(s, page); 4542 count++; 4543 } 4544 if (count != atomic_long_read(&n->nr_slabs)) 4545 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4546 s->name, count, atomic_long_read(&n->nr_slabs)); 4547 4548 out: 4549 spin_unlock_irqrestore(&n->list_lock, flags); 4550 return count; 4551 } 4552 4553 static long validate_slab_cache(struct kmem_cache *s) 4554 { 4555 int node; 4556 unsigned long count = 0; 4557 struct kmem_cache_node *n; 4558 4559 flush_all(s); 4560 for_each_kmem_cache_node(s, node, n) 4561 count += validate_slab_node(s, n); 4562 4563 return count; 4564 } 4565 /* 4566 * Generate lists of code addresses where slabcache objects are allocated 4567 * and freed. 4568 */ 4569 4570 struct location { 4571 unsigned long count; 4572 unsigned long addr; 4573 long long sum_time; 4574 long min_time; 4575 long max_time; 4576 long min_pid; 4577 long max_pid; 4578 DECLARE_BITMAP(cpus, NR_CPUS); 4579 nodemask_t nodes; 4580 }; 4581 4582 struct loc_track { 4583 unsigned long max; 4584 unsigned long count; 4585 struct location *loc; 4586 }; 4587 4588 static void free_loc_track(struct loc_track *t) 4589 { 4590 if (t->max) 4591 free_pages((unsigned long)t->loc, 4592 get_order(sizeof(struct location) * t->max)); 4593 } 4594 4595 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4596 { 4597 struct location *l; 4598 int order; 4599 4600 order = get_order(sizeof(struct location) * max); 4601 4602 l = (void *)__get_free_pages(flags, order); 4603 if (!l) 4604 return 0; 4605 4606 if (t->count) { 4607 memcpy(l, t->loc, sizeof(struct location) * t->count); 4608 free_loc_track(t); 4609 } 4610 t->max = max; 4611 t->loc = l; 4612 return 1; 4613 } 4614 4615 static int add_location(struct loc_track *t, struct kmem_cache *s, 4616 const struct track *track) 4617 { 4618 long start, end, pos; 4619 struct location *l; 4620 unsigned long caddr; 4621 unsigned long age = jiffies - track->when; 4622 4623 start = -1; 4624 end = t->count; 4625 4626 for ( ; ; ) { 4627 pos = start + (end - start + 1) / 2; 4628 4629 /* 4630 * There is nothing at "end". If we end up there 4631 * we need to add something to before end. 4632 */ 4633 if (pos == end) 4634 break; 4635 4636 caddr = t->loc[pos].addr; 4637 if (track->addr == caddr) { 4638 4639 l = &t->loc[pos]; 4640 l->count++; 4641 if (track->when) { 4642 l->sum_time += age; 4643 if (age < l->min_time) 4644 l->min_time = age; 4645 if (age > l->max_time) 4646 l->max_time = age; 4647 4648 if (track->pid < l->min_pid) 4649 l->min_pid = track->pid; 4650 if (track->pid > l->max_pid) 4651 l->max_pid = track->pid; 4652 4653 cpumask_set_cpu(track->cpu, 4654 to_cpumask(l->cpus)); 4655 } 4656 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4657 return 1; 4658 } 4659 4660 if (track->addr < caddr) 4661 end = pos; 4662 else 4663 start = pos; 4664 } 4665 4666 /* 4667 * Not found. Insert new tracking element. 4668 */ 4669 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4670 return 0; 4671 4672 l = t->loc + pos; 4673 if (pos < t->count) 4674 memmove(l + 1, l, 4675 (t->count - pos) * sizeof(struct location)); 4676 t->count++; 4677 l->count = 1; 4678 l->addr = track->addr; 4679 l->sum_time = age; 4680 l->min_time = age; 4681 l->max_time = age; 4682 l->min_pid = track->pid; 4683 l->max_pid = track->pid; 4684 cpumask_clear(to_cpumask(l->cpus)); 4685 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4686 nodes_clear(l->nodes); 4687 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4688 return 1; 4689 } 4690 4691 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4692 struct page *page, enum track_item alloc) 4693 { 4694 void *addr = page_address(page); 4695 void *p; 4696 unsigned long *map; 4697 4698 map = get_map(s, page); 4699 for_each_object(p, s, addr, page->objects) 4700 if (!test_bit(slab_index(p, s, addr), map)) 4701 add_location(t, s, get_track(s, p, alloc)); 4702 put_map(map); 4703 } 4704 4705 static int list_locations(struct kmem_cache *s, char *buf, 4706 enum track_item alloc) 4707 { 4708 int len = 0; 4709 unsigned long i; 4710 struct loc_track t = { 0, 0, NULL }; 4711 int node; 4712 struct kmem_cache_node *n; 4713 4714 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4715 GFP_KERNEL)) { 4716 return sprintf(buf, "Out of memory\n"); 4717 } 4718 /* Push back cpu slabs */ 4719 flush_all(s); 4720 4721 for_each_kmem_cache_node(s, node, n) { 4722 unsigned long flags; 4723 struct page *page; 4724 4725 if (!atomic_long_read(&n->nr_slabs)) 4726 continue; 4727 4728 spin_lock_irqsave(&n->list_lock, flags); 4729 list_for_each_entry(page, &n->partial, slab_list) 4730 process_slab(&t, s, page, alloc); 4731 list_for_each_entry(page, &n->full, slab_list) 4732 process_slab(&t, s, page, alloc); 4733 spin_unlock_irqrestore(&n->list_lock, flags); 4734 } 4735 4736 for (i = 0; i < t.count; i++) { 4737 struct location *l = &t.loc[i]; 4738 4739 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4740 break; 4741 len += sprintf(buf + len, "%7ld ", l->count); 4742 4743 if (l->addr) 4744 len += sprintf(buf + len, "%pS", (void *)l->addr); 4745 else 4746 len += sprintf(buf + len, "<not-available>"); 4747 4748 if (l->sum_time != l->min_time) { 4749 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4750 l->min_time, 4751 (long)div_u64(l->sum_time, l->count), 4752 l->max_time); 4753 } else 4754 len += sprintf(buf + len, " age=%ld", 4755 l->min_time); 4756 4757 if (l->min_pid != l->max_pid) 4758 len += sprintf(buf + len, " pid=%ld-%ld", 4759 l->min_pid, l->max_pid); 4760 else 4761 len += sprintf(buf + len, " pid=%ld", 4762 l->min_pid); 4763 4764 if (num_online_cpus() > 1 && 4765 !cpumask_empty(to_cpumask(l->cpus)) && 4766 len < PAGE_SIZE - 60) 4767 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4768 " cpus=%*pbl", 4769 cpumask_pr_args(to_cpumask(l->cpus))); 4770 4771 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4772 len < PAGE_SIZE - 60) 4773 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4774 " nodes=%*pbl", 4775 nodemask_pr_args(&l->nodes)); 4776 4777 len += sprintf(buf + len, "\n"); 4778 } 4779 4780 free_loc_track(&t); 4781 if (!t.count) 4782 len += sprintf(buf, "No data\n"); 4783 return len; 4784 } 4785 #endif /* CONFIG_SLUB_DEBUG */ 4786 4787 #ifdef SLUB_RESILIENCY_TEST 4788 static void __init resiliency_test(void) 4789 { 4790 u8 *p; 4791 int type = KMALLOC_NORMAL; 4792 4793 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4794 4795 pr_err("SLUB resiliency testing\n"); 4796 pr_err("-----------------------\n"); 4797 pr_err("A. Corruption after allocation\n"); 4798 4799 p = kzalloc(16, GFP_KERNEL); 4800 p[16] = 0x12; 4801 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4802 p + 16); 4803 4804 validate_slab_cache(kmalloc_caches[type][4]); 4805 4806 /* Hmmm... The next two are dangerous */ 4807 p = kzalloc(32, GFP_KERNEL); 4808 p[32 + sizeof(void *)] = 0x34; 4809 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4810 p); 4811 pr_err("If allocated object is overwritten then not detectable\n\n"); 4812 4813 validate_slab_cache(kmalloc_caches[type][5]); 4814 p = kzalloc(64, GFP_KERNEL); 4815 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4816 *p = 0x56; 4817 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4818 p); 4819 pr_err("If allocated object is overwritten then not detectable\n\n"); 4820 validate_slab_cache(kmalloc_caches[type][6]); 4821 4822 pr_err("\nB. Corruption after free\n"); 4823 p = kzalloc(128, GFP_KERNEL); 4824 kfree(p); 4825 *p = 0x78; 4826 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4827 validate_slab_cache(kmalloc_caches[type][7]); 4828 4829 p = kzalloc(256, GFP_KERNEL); 4830 kfree(p); 4831 p[50] = 0x9a; 4832 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4833 validate_slab_cache(kmalloc_caches[type][8]); 4834 4835 p = kzalloc(512, GFP_KERNEL); 4836 kfree(p); 4837 p[512] = 0xab; 4838 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4839 validate_slab_cache(kmalloc_caches[type][9]); 4840 } 4841 #else 4842 #ifdef CONFIG_SYSFS 4843 static void resiliency_test(void) {}; 4844 #endif 4845 #endif /* SLUB_RESILIENCY_TEST */ 4846 4847 #ifdef CONFIG_SYSFS 4848 enum slab_stat_type { 4849 SL_ALL, /* All slabs */ 4850 SL_PARTIAL, /* Only partially allocated slabs */ 4851 SL_CPU, /* Only slabs used for cpu caches */ 4852 SL_OBJECTS, /* Determine allocated objects not slabs */ 4853 SL_TOTAL /* Determine object capacity not slabs */ 4854 }; 4855 4856 #define SO_ALL (1 << SL_ALL) 4857 #define SO_PARTIAL (1 << SL_PARTIAL) 4858 #define SO_CPU (1 << SL_CPU) 4859 #define SO_OBJECTS (1 << SL_OBJECTS) 4860 #define SO_TOTAL (1 << SL_TOTAL) 4861 4862 #ifdef CONFIG_MEMCG 4863 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); 4864 4865 static int __init setup_slub_memcg_sysfs(char *str) 4866 { 4867 int v; 4868 4869 if (get_option(&str, &v) > 0) 4870 memcg_sysfs_enabled = v; 4871 4872 return 1; 4873 } 4874 4875 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); 4876 #endif 4877 4878 static ssize_t show_slab_objects(struct kmem_cache *s, 4879 char *buf, unsigned long flags) 4880 { 4881 unsigned long total = 0; 4882 int node; 4883 int x; 4884 unsigned long *nodes; 4885 4886 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 4887 if (!nodes) 4888 return -ENOMEM; 4889 4890 if (flags & SO_CPU) { 4891 int cpu; 4892 4893 for_each_possible_cpu(cpu) { 4894 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4895 cpu); 4896 int node; 4897 struct page *page; 4898 4899 page = READ_ONCE(c->page); 4900 if (!page) 4901 continue; 4902 4903 node = page_to_nid(page); 4904 if (flags & SO_TOTAL) 4905 x = page->objects; 4906 else if (flags & SO_OBJECTS) 4907 x = page->inuse; 4908 else 4909 x = 1; 4910 4911 total += x; 4912 nodes[node] += x; 4913 4914 page = slub_percpu_partial_read_once(c); 4915 if (page) { 4916 node = page_to_nid(page); 4917 if (flags & SO_TOTAL) 4918 WARN_ON_ONCE(1); 4919 else if (flags & SO_OBJECTS) 4920 WARN_ON_ONCE(1); 4921 else 4922 x = page->pages; 4923 total += x; 4924 nodes[node] += x; 4925 } 4926 } 4927 } 4928 4929 /* 4930 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 4931 * already held which will conflict with an existing lock order: 4932 * 4933 * mem_hotplug_lock->slab_mutex->kernfs_mutex 4934 * 4935 * We don't really need mem_hotplug_lock (to hold off 4936 * slab_mem_going_offline_callback) here because slab's memory hot 4937 * unplug code doesn't destroy the kmem_cache->node[] data. 4938 */ 4939 4940 #ifdef CONFIG_SLUB_DEBUG 4941 if (flags & SO_ALL) { 4942 struct kmem_cache_node *n; 4943 4944 for_each_kmem_cache_node(s, node, n) { 4945 4946 if (flags & SO_TOTAL) 4947 x = atomic_long_read(&n->total_objects); 4948 else if (flags & SO_OBJECTS) 4949 x = atomic_long_read(&n->total_objects) - 4950 count_partial(n, count_free); 4951 else 4952 x = atomic_long_read(&n->nr_slabs); 4953 total += x; 4954 nodes[node] += x; 4955 } 4956 4957 } else 4958 #endif 4959 if (flags & SO_PARTIAL) { 4960 struct kmem_cache_node *n; 4961 4962 for_each_kmem_cache_node(s, node, n) { 4963 if (flags & SO_TOTAL) 4964 x = count_partial(n, count_total); 4965 else if (flags & SO_OBJECTS) 4966 x = count_partial(n, count_inuse); 4967 else 4968 x = n->nr_partial; 4969 total += x; 4970 nodes[node] += x; 4971 } 4972 } 4973 x = sprintf(buf, "%lu", total); 4974 #ifdef CONFIG_NUMA 4975 for (node = 0; node < nr_node_ids; node++) 4976 if (nodes[node]) 4977 x += sprintf(buf + x, " N%d=%lu", 4978 node, nodes[node]); 4979 #endif 4980 kfree(nodes); 4981 return x + sprintf(buf + x, "\n"); 4982 } 4983 4984 #ifdef CONFIG_SLUB_DEBUG 4985 static int any_slab_objects(struct kmem_cache *s) 4986 { 4987 int node; 4988 struct kmem_cache_node *n; 4989 4990 for_each_kmem_cache_node(s, node, n) 4991 if (atomic_long_read(&n->total_objects)) 4992 return 1; 4993 4994 return 0; 4995 } 4996 #endif 4997 4998 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4999 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 5000 5001 struct slab_attribute { 5002 struct attribute attr; 5003 ssize_t (*show)(struct kmem_cache *s, char *buf); 5004 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 5005 }; 5006 5007 #define SLAB_ATTR_RO(_name) \ 5008 static struct slab_attribute _name##_attr = \ 5009 __ATTR(_name, 0400, _name##_show, NULL) 5010 5011 #define SLAB_ATTR(_name) \ 5012 static struct slab_attribute _name##_attr = \ 5013 __ATTR(_name, 0600, _name##_show, _name##_store) 5014 5015 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 5016 { 5017 return sprintf(buf, "%u\n", s->size); 5018 } 5019 SLAB_ATTR_RO(slab_size); 5020 5021 static ssize_t align_show(struct kmem_cache *s, char *buf) 5022 { 5023 return sprintf(buf, "%u\n", s->align); 5024 } 5025 SLAB_ATTR_RO(align); 5026 5027 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 5028 { 5029 return sprintf(buf, "%u\n", s->object_size); 5030 } 5031 SLAB_ATTR_RO(object_size); 5032 5033 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 5034 { 5035 return sprintf(buf, "%u\n", oo_objects(s->oo)); 5036 } 5037 SLAB_ATTR_RO(objs_per_slab); 5038 5039 static ssize_t order_store(struct kmem_cache *s, 5040 const char *buf, size_t length) 5041 { 5042 unsigned int order; 5043 int err; 5044 5045 err = kstrtouint(buf, 10, &order); 5046 if (err) 5047 return err; 5048 5049 if (order > slub_max_order || order < slub_min_order) 5050 return -EINVAL; 5051 5052 calculate_sizes(s, order); 5053 return length; 5054 } 5055 5056 static ssize_t order_show(struct kmem_cache *s, char *buf) 5057 { 5058 return sprintf(buf, "%u\n", oo_order(s->oo)); 5059 } 5060 SLAB_ATTR(order); 5061 5062 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 5063 { 5064 return sprintf(buf, "%lu\n", s->min_partial); 5065 } 5066 5067 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 5068 size_t length) 5069 { 5070 unsigned long min; 5071 int err; 5072 5073 err = kstrtoul(buf, 10, &min); 5074 if (err) 5075 return err; 5076 5077 set_min_partial(s, min); 5078 return length; 5079 } 5080 SLAB_ATTR(min_partial); 5081 5082 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 5083 { 5084 return sprintf(buf, "%u\n", slub_cpu_partial(s)); 5085 } 5086 5087 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 5088 size_t length) 5089 { 5090 unsigned int objects; 5091 int err; 5092 5093 err = kstrtouint(buf, 10, &objects); 5094 if (err) 5095 return err; 5096 if (objects && !kmem_cache_has_cpu_partial(s)) 5097 return -EINVAL; 5098 5099 slub_set_cpu_partial(s, objects); 5100 flush_all(s); 5101 return length; 5102 } 5103 SLAB_ATTR(cpu_partial); 5104 5105 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 5106 { 5107 if (!s->ctor) 5108 return 0; 5109 return sprintf(buf, "%pS\n", s->ctor); 5110 } 5111 SLAB_ATTR_RO(ctor); 5112 5113 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 5114 { 5115 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 5116 } 5117 SLAB_ATTR_RO(aliases); 5118 5119 static ssize_t partial_show(struct kmem_cache *s, char *buf) 5120 { 5121 return show_slab_objects(s, buf, SO_PARTIAL); 5122 } 5123 SLAB_ATTR_RO(partial); 5124 5125 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 5126 { 5127 return show_slab_objects(s, buf, SO_CPU); 5128 } 5129 SLAB_ATTR_RO(cpu_slabs); 5130 5131 static ssize_t objects_show(struct kmem_cache *s, char *buf) 5132 { 5133 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 5134 } 5135 SLAB_ATTR_RO(objects); 5136 5137 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 5138 { 5139 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 5140 } 5141 SLAB_ATTR_RO(objects_partial); 5142 5143 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 5144 { 5145 int objects = 0; 5146 int pages = 0; 5147 int cpu; 5148 int len; 5149 5150 for_each_online_cpu(cpu) { 5151 struct page *page; 5152 5153 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5154 5155 if (page) { 5156 pages += page->pages; 5157 objects += page->pobjects; 5158 } 5159 } 5160 5161 len = sprintf(buf, "%d(%d)", objects, pages); 5162 5163 #ifdef CONFIG_SMP 5164 for_each_online_cpu(cpu) { 5165 struct page *page; 5166 5167 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 5168 5169 if (page && len < PAGE_SIZE - 20) 5170 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 5171 page->pobjects, page->pages); 5172 } 5173 #endif 5174 return len + sprintf(buf + len, "\n"); 5175 } 5176 SLAB_ATTR_RO(slabs_cpu_partial); 5177 5178 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 5179 { 5180 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 5181 } 5182 5183 static ssize_t reclaim_account_store(struct kmem_cache *s, 5184 const char *buf, size_t length) 5185 { 5186 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 5187 if (buf[0] == '1') 5188 s->flags |= SLAB_RECLAIM_ACCOUNT; 5189 return length; 5190 } 5191 SLAB_ATTR(reclaim_account); 5192 5193 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 5194 { 5195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 5196 } 5197 SLAB_ATTR_RO(hwcache_align); 5198 5199 #ifdef CONFIG_ZONE_DMA 5200 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 5201 { 5202 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 5203 } 5204 SLAB_ATTR_RO(cache_dma); 5205 #endif 5206 5207 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 5208 { 5209 return sprintf(buf, "%u\n", s->usersize); 5210 } 5211 SLAB_ATTR_RO(usersize); 5212 5213 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 5214 { 5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 5216 } 5217 SLAB_ATTR_RO(destroy_by_rcu); 5218 5219 #ifdef CONFIG_SLUB_DEBUG 5220 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5221 { 5222 return show_slab_objects(s, buf, SO_ALL); 5223 } 5224 SLAB_ATTR_RO(slabs); 5225 5226 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5227 { 5228 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5229 } 5230 SLAB_ATTR_RO(total_objects); 5231 5232 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5233 { 5234 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5235 } 5236 5237 static ssize_t sanity_checks_store(struct kmem_cache *s, 5238 const char *buf, size_t length) 5239 { 5240 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5241 if (buf[0] == '1') { 5242 s->flags &= ~__CMPXCHG_DOUBLE; 5243 s->flags |= SLAB_CONSISTENCY_CHECKS; 5244 } 5245 return length; 5246 } 5247 SLAB_ATTR(sanity_checks); 5248 5249 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5250 { 5251 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5252 } 5253 5254 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5255 size_t length) 5256 { 5257 /* 5258 * Tracing a merged cache is going to give confusing results 5259 * as well as cause other issues like converting a mergeable 5260 * cache into an umergeable one. 5261 */ 5262 if (s->refcount > 1) 5263 return -EINVAL; 5264 5265 s->flags &= ~SLAB_TRACE; 5266 if (buf[0] == '1') { 5267 s->flags &= ~__CMPXCHG_DOUBLE; 5268 s->flags |= SLAB_TRACE; 5269 } 5270 return length; 5271 } 5272 SLAB_ATTR(trace); 5273 5274 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5275 { 5276 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5277 } 5278 5279 static ssize_t red_zone_store(struct kmem_cache *s, 5280 const char *buf, size_t length) 5281 { 5282 if (any_slab_objects(s)) 5283 return -EBUSY; 5284 5285 s->flags &= ~SLAB_RED_ZONE; 5286 if (buf[0] == '1') { 5287 s->flags |= SLAB_RED_ZONE; 5288 } 5289 calculate_sizes(s, -1); 5290 return length; 5291 } 5292 SLAB_ATTR(red_zone); 5293 5294 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5295 { 5296 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5297 } 5298 5299 static ssize_t poison_store(struct kmem_cache *s, 5300 const char *buf, size_t length) 5301 { 5302 if (any_slab_objects(s)) 5303 return -EBUSY; 5304 5305 s->flags &= ~SLAB_POISON; 5306 if (buf[0] == '1') { 5307 s->flags |= SLAB_POISON; 5308 } 5309 calculate_sizes(s, -1); 5310 return length; 5311 } 5312 SLAB_ATTR(poison); 5313 5314 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5315 { 5316 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5317 } 5318 5319 static ssize_t store_user_store(struct kmem_cache *s, 5320 const char *buf, size_t length) 5321 { 5322 if (any_slab_objects(s)) 5323 return -EBUSY; 5324 5325 s->flags &= ~SLAB_STORE_USER; 5326 if (buf[0] == '1') { 5327 s->flags &= ~__CMPXCHG_DOUBLE; 5328 s->flags |= SLAB_STORE_USER; 5329 } 5330 calculate_sizes(s, -1); 5331 return length; 5332 } 5333 SLAB_ATTR(store_user); 5334 5335 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5336 { 5337 return 0; 5338 } 5339 5340 static ssize_t validate_store(struct kmem_cache *s, 5341 const char *buf, size_t length) 5342 { 5343 int ret = -EINVAL; 5344 5345 if (buf[0] == '1') { 5346 ret = validate_slab_cache(s); 5347 if (ret >= 0) 5348 ret = length; 5349 } 5350 return ret; 5351 } 5352 SLAB_ATTR(validate); 5353 5354 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5355 { 5356 if (!(s->flags & SLAB_STORE_USER)) 5357 return -ENOSYS; 5358 return list_locations(s, buf, TRACK_ALLOC); 5359 } 5360 SLAB_ATTR_RO(alloc_calls); 5361 5362 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5363 { 5364 if (!(s->flags & SLAB_STORE_USER)) 5365 return -ENOSYS; 5366 return list_locations(s, buf, TRACK_FREE); 5367 } 5368 SLAB_ATTR_RO(free_calls); 5369 #endif /* CONFIG_SLUB_DEBUG */ 5370 5371 #ifdef CONFIG_FAILSLAB 5372 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5373 { 5374 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5375 } 5376 5377 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5378 size_t length) 5379 { 5380 if (s->refcount > 1) 5381 return -EINVAL; 5382 5383 s->flags &= ~SLAB_FAILSLAB; 5384 if (buf[0] == '1') 5385 s->flags |= SLAB_FAILSLAB; 5386 return length; 5387 } 5388 SLAB_ATTR(failslab); 5389 #endif 5390 5391 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5392 { 5393 return 0; 5394 } 5395 5396 static ssize_t shrink_store(struct kmem_cache *s, 5397 const char *buf, size_t length) 5398 { 5399 if (buf[0] == '1') 5400 kmem_cache_shrink_all(s); 5401 else 5402 return -EINVAL; 5403 return length; 5404 } 5405 SLAB_ATTR(shrink); 5406 5407 #ifdef CONFIG_NUMA 5408 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5409 { 5410 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); 5411 } 5412 5413 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5414 const char *buf, size_t length) 5415 { 5416 unsigned int ratio; 5417 int err; 5418 5419 err = kstrtouint(buf, 10, &ratio); 5420 if (err) 5421 return err; 5422 if (ratio > 100) 5423 return -ERANGE; 5424 5425 s->remote_node_defrag_ratio = ratio * 10; 5426 5427 return length; 5428 } 5429 SLAB_ATTR(remote_node_defrag_ratio); 5430 #endif 5431 5432 #ifdef CONFIG_SLUB_STATS 5433 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5434 { 5435 unsigned long sum = 0; 5436 int cpu; 5437 int len; 5438 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 5439 5440 if (!data) 5441 return -ENOMEM; 5442 5443 for_each_online_cpu(cpu) { 5444 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5445 5446 data[cpu] = x; 5447 sum += x; 5448 } 5449 5450 len = sprintf(buf, "%lu", sum); 5451 5452 #ifdef CONFIG_SMP 5453 for_each_online_cpu(cpu) { 5454 if (data[cpu] && len < PAGE_SIZE - 20) 5455 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5456 } 5457 #endif 5458 kfree(data); 5459 return len + sprintf(buf + len, "\n"); 5460 } 5461 5462 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5463 { 5464 int cpu; 5465 5466 for_each_online_cpu(cpu) 5467 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5468 } 5469 5470 #define STAT_ATTR(si, text) \ 5471 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5472 { \ 5473 return show_stat(s, buf, si); \ 5474 } \ 5475 static ssize_t text##_store(struct kmem_cache *s, \ 5476 const char *buf, size_t length) \ 5477 { \ 5478 if (buf[0] != '0') \ 5479 return -EINVAL; \ 5480 clear_stat(s, si); \ 5481 return length; \ 5482 } \ 5483 SLAB_ATTR(text); \ 5484 5485 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5486 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5487 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5488 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5489 STAT_ATTR(FREE_FROZEN, free_frozen); 5490 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5491 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5492 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5493 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5494 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5495 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5496 STAT_ATTR(FREE_SLAB, free_slab); 5497 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5498 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5499 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5500 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5501 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5502 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5503 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5504 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5505 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5506 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5507 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5508 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5509 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5510 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5511 #endif /* CONFIG_SLUB_STATS */ 5512 5513 static struct attribute *slab_attrs[] = { 5514 &slab_size_attr.attr, 5515 &object_size_attr.attr, 5516 &objs_per_slab_attr.attr, 5517 &order_attr.attr, 5518 &min_partial_attr.attr, 5519 &cpu_partial_attr.attr, 5520 &objects_attr.attr, 5521 &objects_partial_attr.attr, 5522 &partial_attr.attr, 5523 &cpu_slabs_attr.attr, 5524 &ctor_attr.attr, 5525 &aliases_attr.attr, 5526 &align_attr.attr, 5527 &hwcache_align_attr.attr, 5528 &reclaim_account_attr.attr, 5529 &destroy_by_rcu_attr.attr, 5530 &shrink_attr.attr, 5531 &slabs_cpu_partial_attr.attr, 5532 #ifdef CONFIG_SLUB_DEBUG 5533 &total_objects_attr.attr, 5534 &slabs_attr.attr, 5535 &sanity_checks_attr.attr, 5536 &trace_attr.attr, 5537 &red_zone_attr.attr, 5538 &poison_attr.attr, 5539 &store_user_attr.attr, 5540 &validate_attr.attr, 5541 &alloc_calls_attr.attr, 5542 &free_calls_attr.attr, 5543 #endif 5544 #ifdef CONFIG_ZONE_DMA 5545 &cache_dma_attr.attr, 5546 #endif 5547 #ifdef CONFIG_NUMA 5548 &remote_node_defrag_ratio_attr.attr, 5549 #endif 5550 #ifdef CONFIG_SLUB_STATS 5551 &alloc_fastpath_attr.attr, 5552 &alloc_slowpath_attr.attr, 5553 &free_fastpath_attr.attr, 5554 &free_slowpath_attr.attr, 5555 &free_frozen_attr.attr, 5556 &free_add_partial_attr.attr, 5557 &free_remove_partial_attr.attr, 5558 &alloc_from_partial_attr.attr, 5559 &alloc_slab_attr.attr, 5560 &alloc_refill_attr.attr, 5561 &alloc_node_mismatch_attr.attr, 5562 &free_slab_attr.attr, 5563 &cpuslab_flush_attr.attr, 5564 &deactivate_full_attr.attr, 5565 &deactivate_empty_attr.attr, 5566 &deactivate_to_head_attr.attr, 5567 &deactivate_to_tail_attr.attr, 5568 &deactivate_remote_frees_attr.attr, 5569 &deactivate_bypass_attr.attr, 5570 &order_fallback_attr.attr, 5571 &cmpxchg_double_fail_attr.attr, 5572 &cmpxchg_double_cpu_fail_attr.attr, 5573 &cpu_partial_alloc_attr.attr, 5574 &cpu_partial_free_attr.attr, 5575 &cpu_partial_node_attr.attr, 5576 &cpu_partial_drain_attr.attr, 5577 #endif 5578 #ifdef CONFIG_FAILSLAB 5579 &failslab_attr.attr, 5580 #endif 5581 &usersize_attr.attr, 5582 5583 NULL 5584 }; 5585 5586 static const struct attribute_group slab_attr_group = { 5587 .attrs = slab_attrs, 5588 }; 5589 5590 static ssize_t slab_attr_show(struct kobject *kobj, 5591 struct attribute *attr, 5592 char *buf) 5593 { 5594 struct slab_attribute *attribute; 5595 struct kmem_cache *s; 5596 int err; 5597 5598 attribute = to_slab_attr(attr); 5599 s = to_slab(kobj); 5600 5601 if (!attribute->show) 5602 return -EIO; 5603 5604 err = attribute->show(s, buf); 5605 5606 return err; 5607 } 5608 5609 static ssize_t slab_attr_store(struct kobject *kobj, 5610 struct attribute *attr, 5611 const char *buf, size_t len) 5612 { 5613 struct slab_attribute *attribute; 5614 struct kmem_cache *s; 5615 int err; 5616 5617 attribute = to_slab_attr(attr); 5618 s = to_slab(kobj); 5619 5620 if (!attribute->store) 5621 return -EIO; 5622 5623 err = attribute->store(s, buf, len); 5624 #ifdef CONFIG_MEMCG 5625 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5626 struct kmem_cache *c; 5627 5628 mutex_lock(&slab_mutex); 5629 if (s->max_attr_size < len) 5630 s->max_attr_size = len; 5631 5632 /* 5633 * This is a best effort propagation, so this function's return 5634 * value will be determined by the parent cache only. This is 5635 * basically because not all attributes will have a well 5636 * defined semantics for rollbacks - most of the actions will 5637 * have permanent effects. 5638 * 5639 * Returning the error value of any of the children that fail 5640 * is not 100 % defined, in the sense that users seeing the 5641 * error code won't be able to know anything about the state of 5642 * the cache. 5643 * 5644 * Only returning the error code for the parent cache at least 5645 * has well defined semantics. The cache being written to 5646 * directly either failed or succeeded, in which case we loop 5647 * through the descendants with best-effort propagation. 5648 */ 5649 for_each_memcg_cache(c, s) 5650 attribute->store(c, buf, len); 5651 mutex_unlock(&slab_mutex); 5652 } 5653 #endif 5654 return err; 5655 } 5656 5657 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5658 { 5659 #ifdef CONFIG_MEMCG 5660 int i; 5661 char *buffer = NULL; 5662 struct kmem_cache *root_cache; 5663 5664 if (is_root_cache(s)) 5665 return; 5666 5667 root_cache = s->memcg_params.root_cache; 5668 5669 /* 5670 * This mean this cache had no attribute written. Therefore, no point 5671 * in copying default values around 5672 */ 5673 if (!root_cache->max_attr_size) 5674 return; 5675 5676 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5677 char mbuf[64]; 5678 char *buf; 5679 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5680 ssize_t len; 5681 5682 if (!attr || !attr->store || !attr->show) 5683 continue; 5684 5685 /* 5686 * It is really bad that we have to allocate here, so we will 5687 * do it only as a fallback. If we actually allocate, though, 5688 * we can just use the allocated buffer until the end. 5689 * 5690 * Most of the slub attributes will tend to be very small in 5691 * size, but sysfs allows buffers up to a page, so they can 5692 * theoretically happen. 5693 */ 5694 if (buffer) 5695 buf = buffer; 5696 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) && 5697 !IS_ENABLED(CONFIG_SLUB_STATS)) 5698 buf = mbuf; 5699 else { 5700 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5701 if (WARN_ON(!buffer)) 5702 continue; 5703 buf = buffer; 5704 } 5705 5706 len = attr->show(root_cache, buf); 5707 if (len > 0) 5708 attr->store(s, buf, len); 5709 } 5710 5711 if (buffer) 5712 free_page((unsigned long)buffer); 5713 #endif /* CONFIG_MEMCG */ 5714 } 5715 5716 static void kmem_cache_release(struct kobject *k) 5717 { 5718 slab_kmem_cache_release(to_slab(k)); 5719 } 5720 5721 static const struct sysfs_ops slab_sysfs_ops = { 5722 .show = slab_attr_show, 5723 .store = slab_attr_store, 5724 }; 5725 5726 static struct kobj_type slab_ktype = { 5727 .sysfs_ops = &slab_sysfs_ops, 5728 .release = kmem_cache_release, 5729 }; 5730 5731 static struct kset *slab_kset; 5732 5733 static inline struct kset *cache_kset(struct kmem_cache *s) 5734 { 5735 #ifdef CONFIG_MEMCG 5736 if (!is_root_cache(s)) 5737 return s->memcg_params.root_cache->memcg_kset; 5738 #endif 5739 return slab_kset; 5740 } 5741 5742 #define ID_STR_LENGTH 64 5743 5744 /* Create a unique string id for a slab cache: 5745 * 5746 * Format :[flags-]size 5747 */ 5748 static char *create_unique_id(struct kmem_cache *s) 5749 { 5750 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5751 char *p = name; 5752 5753 BUG_ON(!name); 5754 5755 *p++ = ':'; 5756 /* 5757 * First flags affecting slabcache operations. We will only 5758 * get here for aliasable slabs so we do not need to support 5759 * too many flags. The flags here must cover all flags that 5760 * are matched during merging to guarantee that the id is 5761 * unique. 5762 */ 5763 if (s->flags & SLAB_CACHE_DMA) 5764 *p++ = 'd'; 5765 if (s->flags & SLAB_CACHE_DMA32) 5766 *p++ = 'D'; 5767 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5768 *p++ = 'a'; 5769 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5770 *p++ = 'F'; 5771 if (s->flags & SLAB_ACCOUNT) 5772 *p++ = 'A'; 5773 if (p != name + 1) 5774 *p++ = '-'; 5775 p += sprintf(p, "%07u", s->size); 5776 5777 BUG_ON(p > name + ID_STR_LENGTH - 1); 5778 return name; 5779 } 5780 5781 static void sysfs_slab_remove_workfn(struct work_struct *work) 5782 { 5783 struct kmem_cache *s = 5784 container_of(work, struct kmem_cache, kobj_remove_work); 5785 5786 if (!s->kobj.state_in_sysfs) 5787 /* 5788 * For a memcg cache, this may be called during 5789 * deactivation and again on shutdown. Remove only once. 5790 * A cache is never shut down before deactivation is 5791 * complete, so no need to worry about synchronization. 5792 */ 5793 goto out; 5794 5795 #ifdef CONFIG_MEMCG 5796 kset_unregister(s->memcg_kset); 5797 #endif 5798 out: 5799 kobject_put(&s->kobj); 5800 } 5801 5802 static int sysfs_slab_add(struct kmem_cache *s) 5803 { 5804 int err; 5805 const char *name; 5806 struct kset *kset = cache_kset(s); 5807 int unmergeable = slab_unmergeable(s); 5808 5809 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); 5810 5811 if (!kset) { 5812 kobject_init(&s->kobj, &slab_ktype); 5813 return 0; 5814 } 5815 5816 if (!unmergeable && disable_higher_order_debug && 5817 (slub_debug & DEBUG_METADATA_FLAGS)) 5818 unmergeable = 1; 5819 5820 if (unmergeable) { 5821 /* 5822 * Slabcache can never be merged so we can use the name proper. 5823 * This is typically the case for debug situations. In that 5824 * case we can catch duplicate names easily. 5825 */ 5826 sysfs_remove_link(&slab_kset->kobj, s->name); 5827 name = s->name; 5828 } else { 5829 /* 5830 * Create a unique name for the slab as a target 5831 * for the symlinks. 5832 */ 5833 name = create_unique_id(s); 5834 } 5835 5836 s->kobj.kset = kset; 5837 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5838 if (err) { 5839 kobject_put(&s->kobj); 5840 goto out; 5841 } 5842 5843 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5844 if (err) 5845 goto out_del_kobj; 5846 5847 #ifdef CONFIG_MEMCG 5848 if (is_root_cache(s) && memcg_sysfs_enabled) { 5849 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5850 if (!s->memcg_kset) { 5851 err = -ENOMEM; 5852 goto out_del_kobj; 5853 } 5854 } 5855 #endif 5856 5857 if (!unmergeable) { 5858 /* Setup first alias */ 5859 sysfs_slab_alias(s, s->name); 5860 } 5861 out: 5862 if (!unmergeable) 5863 kfree(name); 5864 return err; 5865 out_del_kobj: 5866 kobject_del(&s->kobj); 5867 goto out; 5868 } 5869 5870 static void sysfs_slab_remove(struct kmem_cache *s) 5871 { 5872 if (slab_state < FULL) 5873 /* 5874 * Sysfs has not been setup yet so no need to remove the 5875 * cache from sysfs. 5876 */ 5877 return; 5878 5879 kobject_get(&s->kobj); 5880 schedule_work(&s->kobj_remove_work); 5881 } 5882 5883 void sysfs_slab_unlink(struct kmem_cache *s) 5884 { 5885 if (slab_state >= FULL) 5886 kobject_del(&s->kobj); 5887 } 5888 5889 void sysfs_slab_release(struct kmem_cache *s) 5890 { 5891 if (slab_state >= FULL) 5892 kobject_put(&s->kobj); 5893 } 5894 5895 /* 5896 * Need to buffer aliases during bootup until sysfs becomes 5897 * available lest we lose that information. 5898 */ 5899 struct saved_alias { 5900 struct kmem_cache *s; 5901 const char *name; 5902 struct saved_alias *next; 5903 }; 5904 5905 static struct saved_alias *alias_list; 5906 5907 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5908 { 5909 struct saved_alias *al; 5910 5911 if (slab_state == FULL) { 5912 /* 5913 * If we have a leftover link then remove it. 5914 */ 5915 sysfs_remove_link(&slab_kset->kobj, name); 5916 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5917 } 5918 5919 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5920 if (!al) 5921 return -ENOMEM; 5922 5923 al->s = s; 5924 al->name = name; 5925 al->next = alias_list; 5926 alias_list = al; 5927 return 0; 5928 } 5929 5930 static int __init slab_sysfs_init(void) 5931 { 5932 struct kmem_cache *s; 5933 int err; 5934 5935 mutex_lock(&slab_mutex); 5936 5937 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 5938 if (!slab_kset) { 5939 mutex_unlock(&slab_mutex); 5940 pr_err("Cannot register slab subsystem.\n"); 5941 return -ENOSYS; 5942 } 5943 5944 slab_state = FULL; 5945 5946 list_for_each_entry(s, &slab_caches, list) { 5947 err = sysfs_slab_add(s); 5948 if (err) 5949 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5950 s->name); 5951 } 5952 5953 while (alias_list) { 5954 struct saved_alias *al = alias_list; 5955 5956 alias_list = alias_list->next; 5957 err = sysfs_slab_alias(al->s, al->name); 5958 if (err) 5959 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5960 al->name); 5961 kfree(al); 5962 } 5963 5964 mutex_unlock(&slab_mutex); 5965 resiliency_test(); 5966 return 0; 5967 } 5968 5969 __initcall(slab_sysfs_init); 5970 #endif /* CONFIG_SYSFS */ 5971 5972 /* 5973 * The /proc/slabinfo ABI 5974 */ 5975 #ifdef CONFIG_SLUB_DEBUG 5976 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5977 { 5978 unsigned long nr_slabs = 0; 5979 unsigned long nr_objs = 0; 5980 unsigned long nr_free = 0; 5981 int node; 5982 struct kmem_cache_node *n; 5983 5984 for_each_kmem_cache_node(s, node, n) { 5985 nr_slabs += node_nr_slabs(n); 5986 nr_objs += node_nr_objs(n); 5987 nr_free += count_partial(n, count_free); 5988 } 5989 5990 sinfo->active_objs = nr_objs - nr_free; 5991 sinfo->num_objs = nr_objs; 5992 sinfo->active_slabs = nr_slabs; 5993 sinfo->num_slabs = nr_slabs; 5994 sinfo->objects_per_slab = oo_objects(s->oo); 5995 sinfo->cache_order = oo_order(s->oo); 5996 } 5997 5998 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5999 { 6000 } 6001 6002 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 6003 size_t count, loff_t *ppos) 6004 { 6005 return -EIO; 6006 } 6007 #endif /* CONFIG_SLUB_DEBUG */ 6008