1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SLUB: A slab allocator that limits cache line use instead of queuing 4 * objects in per cpu and per node lists. 5 * 6 * The allocator synchronizes using per slab locks or atomic operations 7 * and only uses a centralized lock to manage a pool of partial slabs. 8 * 9 * (C) 2007 SGI, Christoph Lameter 10 * (C) 2011 Linux Foundation, Christoph Lameter 11 */ 12 13 #include <linux/mm.h> 14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */ 15 #include <linux/module.h> 16 #include <linux/bit_spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/swab.h> 19 #include <linux/bitops.h> 20 #include <linux/slab.h> 21 #include "slab.h" 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/kasan.h> 25 #include <linux/kmsan.h> 26 #include <linux/cpu.h> 27 #include <linux/cpuset.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ctype.h> 30 #include <linux/stackdepot.h> 31 #include <linux/debugobjects.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kfence.h> 34 #include <linux/memory.h> 35 #include <linux/math64.h> 36 #include <linux/fault-inject.h> 37 #include <linux/kmemleak.h> 38 #include <linux/stacktrace.h> 39 #include <linux/prefetch.h> 40 #include <linux/memcontrol.h> 41 #include <linux/random.h> 42 #include <kunit/test.h> 43 #include <kunit/test-bug.h> 44 #include <linux/sort.h> 45 46 #include <linux/debugfs.h> 47 #include <trace/events/kmem.h> 48 49 #include "internal.h" 50 51 /* 52 * Lock order: 53 * 1. slab_mutex (Global Mutex) 54 * 2. node->list_lock (Spinlock) 55 * 3. kmem_cache->cpu_slab->lock (Local lock) 56 * 4. slab_lock(slab) (Only on some arches) 57 * 5. object_map_lock (Only for debugging) 58 * 59 * slab_mutex 60 * 61 * The role of the slab_mutex is to protect the list of all the slabs 62 * and to synchronize major metadata changes to slab cache structures. 63 * Also synchronizes memory hotplug callbacks. 64 * 65 * slab_lock 66 * 67 * The slab_lock is a wrapper around the page lock, thus it is a bit 68 * spinlock. 69 * 70 * The slab_lock is only used on arches that do not have the ability 71 * to do a cmpxchg_double. It only protects: 72 * 73 * A. slab->freelist -> List of free objects in a slab 74 * B. slab->inuse -> Number of objects in use 75 * C. slab->objects -> Number of objects in slab 76 * D. slab->frozen -> frozen state 77 * 78 * Frozen slabs 79 * 80 * If a slab is frozen then it is exempt from list management. It is 81 * the cpu slab which is actively allocated from by the processor that 82 * froze it and it is not on any list. The processor that froze the 83 * slab is the one who can perform list operations on the slab. Other 84 * processors may put objects onto the freelist but the processor that 85 * froze the slab is the only one that can retrieve the objects from the 86 * slab's freelist. 87 * 88 * CPU partial slabs 89 * 90 * The partially empty slabs cached on the CPU partial list are used 91 * for performance reasons, which speeds up the allocation process. 92 * These slabs are not frozen, but are also exempt from list management, 93 * by clearing the PG_workingset flag when moving out of the node 94 * partial list. Please see __slab_free() for more details. 95 * 96 * To sum up, the current scheme is: 97 * - node partial slab: PG_Workingset && !frozen 98 * - cpu partial slab: !PG_Workingset && !frozen 99 * - cpu slab: !PG_Workingset && frozen 100 * - full slab: !PG_Workingset && !frozen 101 * 102 * list_lock 103 * 104 * The list_lock protects the partial and full list on each node and 105 * the partial slab counter. If taken then no new slabs may be added or 106 * removed from the lists nor make the number of partial slabs be modified. 107 * (Note that the total number of slabs is an atomic value that may be 108 * modified without taking the list lock). 109 * 110 * The list_lock is a centralized lock and thus we avoid taking it as 111 * much as possible. As long as SLUB does not have to handle partial 112 * slabs, operations can continue without any centralized lock. F.e. 113 * allocating a long series of objects that fill up slabs does not require 114 * the list lock. 115 * 116 * For debug caches, all allocations are forced to go through a list_lock 117 * protected region to serialize against concurrent validation. 118 * 119 * cpu_slab->lock local lock 120 * 121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields 122 * except the stat counters. This is a percpu structure manipulated only by 123 * the local cpu, so the lock protects against being preempted or interrupted 124 * by an irq. Fast path operations rely on lockless operations instead. 125 * 126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption 127 * which means the lockless fastpath cannot be used as it might interfere with 128 * an in-progress slow path operations. In this case the local lock is always 129 * taken but it still utilizes the freelist for the common operations. 130 * 131 * lockless fastpaths 132 * 133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free()) 134 * are fully lockless when satisfied from the percpu slab (and when 135 * cmpxchg_double is possible to use, otherwise slab_lock is taken). 136 * They also don't disable preemption or migration or irqs. They rely on 137 * the transaction id (tid) field to detect being preempted or moved to 138 * another cpu. 139 * 140 * irq, preemption, migration considerations 141 * 142 * Interrupts are disabled as part of list_lock or local_lock operations, or 143 * around the slab_lock operation, in order to make the slab allocator safe 144 * to use in the context of an irq. 145 * 146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the 147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the 148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer 149 * doesn't have to be revalidated in each section protected by the local lock. 150 * 151 * SLUB assigns one slab for allocation to each processor. 152 * Allocations only occur from these slabs called cpu slabs. 153 * 154 * Slabs with free elements are kept on a partial list and during regular 155 * operations no list for full slabs is used. If an object in a full slab is 156 * freed then the slab will show up again on the partial lists. 157 * We track full slabs for debugging purposes though because otherwise we 158 * cannot scan all objects. 159 * 160 * Slabs are freed when they become empty. Teardown and setup is 161 * minimal so we rely on the page allocators per cpu caches for 162 * fast frees and allocs. 163 * 164 * slab->frozen The slab is frozen and exempt from list processing. 165 * This means that the slab is dedicated to a purpose 166 * such as satisfying allocations for a specific 167 * processor. Objects may be freed in the slab while 168 * it is frozen but slab_free will then skip the usual 169 * list operations. It is up to the processor holding 170 * the slab to integrate the slab into the slab lists 171 * when the slab is no longer needed. 172 * 173 * One use of this flag is to mark slabs that are 174 * used for allocations. Then such a slab becomes a cpu 175 * slab. The cpu slab may be equipped with an additional 176 * freelist that allows lockless access to 177 * free objects in addition to the regular freelist 178 * that requires the slab lock. 179 * 180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug 181 * options set. This moves slab handling out of 182 * the fast path and disables lockless freelists. 183 */ 184 185 /* 186 * We could simply use migrate_disable()/enable() but as long as it's a 187 * function call even on !PREEMPT_RT, use inline preempt_disable() there. 188 */ 189 #ifndef CONFIG_PREEMPT_RT 190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var) 191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var) 192 #define USE_LOCKLESS_FAST_PATH() (true) 193 #else 194 #define slub_get_cpu_ptr(var) \ 195 ({ \ 196 migrate_disable(); \ 197 this_cpu_ptr(var); \ 198 }) 199 #define slub_put_cpu_ptr(var) \ 200 do { \ 201 (void)(var); \ 202 migrate_enable(); \ 203 } while (0) 204 #define USE_LOCKLESS_FAST_PATH() (false) 205 #endif 206 207 #ifndef CONFIG_SLUB_TINY 208 #define __fastpath_inline __always_inline 209 #else 210 #define __fastpath_inline 211 #endif 212 213 #ifdef CONFIG_SLUB_DEBUG 214 #ifdef CONFIG_SLUB_DEBUG_ON 215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled); 216 #else 217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled); 218 #endif 219 #endif /* CONFIG_SLUB_DEBUG */ 220 221 #ifdef CONFIG_NUMA 222 static DEFINE_STATIC_KEY_FALSE(strict_numa); 223 #endif 224 225 /* Structure holding parameters for get_partial() call chain */ 226 struct partial_context { 227 gfp_t flags; 228 unsigned int orig_size; 229 void *object; 230 }; 231 232 static inline bool kmem_cache_debug(struct kmem_cache *s) 233 { 234 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS); 235 } 236 237 void *fixup_red_left(struct kmem_cache *s, void *p) 238 { 239 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE)) 240 p += s->red_left_pad; 241 242 return p; 243 } 244 245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 246 { 247 #ifdef CONFIG_SLUB_CPU_PARTIAL 248 return !kmem_cache_debug(s); 249 #else 250 return false; 251 #endif 252 } 253 254 /* 255 * Issues still to be resolved: 256 * 257 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 258 * 259 * - Variable sizing of the per node arrays 260 */ 261 262 /* Enable to log cmpxchg failures */ 263 #undef SLUB_DEBUG_CMPXCHG 264 265 #ifndef CONFIG_SLUB_TINY 266 /* 267 * Minimum number of partial slabs. These will be left on the partial 268 * lists even if they are empty. kmem_cache_shrink may reclaim them. 269 */ 270 #define MIN_PARTIAL 5 271 272 /* 273 * Maximum number of desirable partial slabs. 274 * The existence of more partial slabs makes kmem_cache_shrink 275 * sort the partial list by the number of objects in use. 276 */ 277 #define MAX_PARTIAL 10 278 #else 279 #define MIN_PARTIAL 0 280 #define MAX_PARTIAL 0 281 #endif 282 283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 284 SLAB_POISON | SLAB_STORE_USER) 285 286 /* 287 * These debug flags cannot use CMPXCHG because there might be consistency 288 * issues when checking or reading debug information 289 */ 290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 291 SLAB_TRACE) 292 293 294 /* 295 * Debugging flags that require metadata to be stored in the slab. These get 296 * disabled when slab_debug=O is used and a cache's min order increases with 297 * metadata. 298 */ 299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 300 301 #define OO_SHIFT 16 302 #define OO_MASK ((1 << OO_SHIFT) - 1) 303 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */ 304 305 /* Internal SLUB flags */ 306 /* Poison object */ 307 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON) 308 /* Use cmpxchg_double */ 309 310 #ifdef system_has_freelist_aba 311 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE) 312 #else 313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED 314 #endif 315 316 /* 317 * Tracking user of a slab. 318 */ 319 #define TRACK_ADDRS_COUNT 16 320 struct track { 321 unsigned long addr; /* Called from address */ 322 #ifdef CONFIG_STACKDEPOT 323 depot_stack_handle_t handle; 324 #endif 325 int cpu; /* Was running on cpu */ 326 int pid; /* Pid context */ 327 unsigned long when; /* When did the operation occur */ 328 }; 329 330 enum track_item { TRACK_ALLOC, TRACK_FREE }; 331 332 #ifdef SLAB_SUPPORTS_SYSFS 333 static int sysfs_slab_add(struct kmem_cache *); 334 static int sysfs_slab_alias(struct kmem_cache *, const char *); 335 #else 336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 338 { return 0; } 339 #endif 340 341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG) 342 static void debugfs_slab_add(struct kmem_cache *); 343 #else 344 static inline void debugfs_slab_add(struct kmem_cache *s) { } 345 #endif 346 347 enum stat_item { 348 ALLOC_FASTPATH, /* Allocation from cpu slab */ 349 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ 350 FREE_FASTPATH, /* Free to cpu slab */ 351 FREE_SLOWPATH, /* Freeing not to cpu slab */ 352 FREE_FROZEN, /* Freeing to frozen slab */ 353 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */ 354 FREE_REMOVE_PARTIAL, /* Freeing removes last object */ 355 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */ 356 ALLOC_SLAB, /* Cpu slab acquired from page allocator */ 357 ALLOC_REFILL, /* Refill cpu slab from slab freelist */ 358 ALLOC_NODE_MISMATCH, /* Switching cpu slab */ 359 FREE_SLAB, /* Slab freed to the page allocator */ 360 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */ 361 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */ 362 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */ 363 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */ 364 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */ 365 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */ 366 DEACTIVATE_BYPASS, /* Implicit deactivation */ 367 ORDER_FALLBACK, /* Number of times fallback was necessary */ 368 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */ 369 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */ 370 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */ 371 CPU_PARTIAL_FREE, /* Refill cpu partial on free */ 372 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */ 373 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */ 374 NR_SLUB_STAT_ITEMS 375 }; 376 377 #ifndef CONFIG_SLUB_TINY 378 /* 379 * When changing the layout, make sure freelist and tid are still compatible 380 * with this_cpu_cmpxchg_double() alignment requirements. 381 */ 382 struct kmem_cache_cpu { 383 union { 384 struct { 385 void **freelist; /* Pointer to next available object */ 386 unsigned long tid; /* Globally unique transaction id */ 387 }; 388 freelist_aba_t freelist_tid; 389 }; 390 struct slab *slab; /* The slab from which we are allocating */ 391 #ifdef CONFIG_SLUB_CPU_PARTIAL 392 struct slab *partial; /* Partially allocated slabs */ 393 #endif 394 local_lock_t lock; /* Protects the fields above */ 395 #ifdef CONFIG_SLUB_STATS 396 unsigned int stat[NR_SLUB_STAT_ITEMS]; 397 #endif 398 }; 399 #endif /* CONFIG_SLUB_TINY */ 400 401 static inline void stat(const struct kmem_cache *s, enum stat_item si) 402 { 403 #ifdef CONFIG_SLUB_STATS 404 /* 405 * The rmw is racy on a preemptible kernel but this is acceptable, so 406 * avoid this_cpu_add()'s irq-disable overhead. 407 */ 408 raw_cpu_inc(s->cpu_slab->stat[si]); 409 #endif 410 } 411 412 static inline 413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v) 414 { 415 #ifdef CONFIG_SLUB_STATS 416 raw_cpu_add(s->cpu_slab->stat[si], v); 417 #endif 418 } 419 420 /* 421 * The slab lists for all objects. 422 */ 423 struct kmem_cache_node { 424 spinlock_t list_lock; 425 unsigned long nr_partial; 426 struct list_head partial; 427 #ifdef CONFIG_SLUB_DEBUG 428 atomic_long_t nr_slabs; 429 atomic_long_t total_objects; 430 struct list_head full; 431 #endif 432 }; 433 434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 435 { 436 return s->node[node]; 437 } 438 439 /* 440 * Iterator over all nodes. The body will be executed for each node that has 441 * a kmem_cache_node structure allocated (which is true for all online nodes) 442 */ 443 #define for_each_kmem_cache_node(__s, __node, __n) \ 444 for (__node = 0; __node < nr_node_ids; __node++) \ 445 if ((__n = get_node(__s, __node))) 446 447 /* 448 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated. 449 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily 450 * differ during memory hotplug/hotremove operations. 451 * Protected by slab_mutex. 452 */ 453 static nodemask_t slab_nodes; 454 455 #ifndef CONFIG_SLUB_TINY 456 /* 457 * Workqueue used for flush_cpu_slab(). 458 */ 459 static struct workqueue_struct *flushwq; 460 #endif 461 462 /******************************************************************** 463 * Core slab cache functions 464 *******************************************************************/ 465 466 /* 467 * Returns freelist pointer (ptr). With hardening, this is obfuscated 468 * with an XOR of the address where the pointer is held and a per-cache 469 * random number. 470 */ 471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s, 472 void *ptr, unsigned long ptr_addr) 473 { 474 unsigned long encoded; 475 476 #ifdef CONFIG_SLAB_FREELIST_HARDENED 477 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr); 478 #else 479 encoded = (unsigned long)ptr; 480 #endif 481 return (freeptr_t){.v = encoded}; 482 } 483 484 static inline void *freelist_ptr_decode(const struct kmem_cache *s, 485 freeptr_t ptr, unsigned long ptr_addr) 486 { 487 void *decoded; 488 489 #ifdef CONFIG_SLAB_FREELIST_HARDENED 490 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr)); 491 #else 492 decoded = (void *)ptr.v; 493 #endif 494 return decoded; 495 } 496 497 static inline void *get_freepointer(struct kmem_cache *s, void *object) 498 { 499 unsigned long ptr_addr; 500 freeptr_t p; 501 502 object = kasan_reset_tag(object); 503 ptr_addr = (unsigned long)object + s->offset; 504 p = *(freeptr_t *)(ptr_addr); 505 return freelist_ptr_decode(s, p, ptr_addr); 506 } 507 508 #ifndef CONFIG_SLUB_TINY 509 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 510 { 511 prefetchw(object + s->offset); 512 } 513 #endif 514 515 /* 516 * When running under KMSAN, get_freepointer_safe() may return an uninitialized 517 * pointer value in the case the current thread loses the race for the next 518 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in 519 * slab_alloc_node() will fail, so the uninitialized value won't be used, but 520 * KMSAN will still check all arguments of cmpxchg because of imperfect 521 * handling of inline assembly. 522 * To work around this problem, we apply __no_kmsan_checks to ensure that 523 * get_freepointer_safe() returns initialized memory. 524 */ 525 __no_kmsan_checks 526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 527 { 528 unsigned long freepointer_addr; 529 freeptr_t p; 530 531 if (!debug_pagealloc_enabled_static()) 532 return get_freepointer(s, object); 533 534 object = kasan_reset_tag(object); 535 freepointer_addr = (unsigned long)object + s->offset; 536 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p)); 537 return freelist_ptr_decode(s, p, freepointer_addr); 538 } 539 540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 541 { 542 unsigned long freeptr_addr = (unsigned long)object + s->offset; 543 544 #ifdef CONFIG_SLAB_FREELIST_HARDENED 545 BUG_ON(object == fp); /* naive detection of double free or corruption */ 546 #endif 547 548 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr); 549 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr); 550 } 551 552 /* 553 * See comment in calculate_sizes(). 554 */ 555 static inline bool freeptr_outside_object(struct kmem_cache *s) 556 { 557 return s->offset >= s->inuse; 558 } 559 560 /* 561 * Return offset of the end of info block which is inuse + free pointer if 562 * not overlapping with object. 563 */ 564 static inline unsigned int get_info_end(struct kmem_cache *s) 565 { 566 if (freeptr_outside_object(s)) 567 return s->inuse + sizeof(void *); 568 else 569 return s->inuse; 570 } 571 572 /* Loop over all objects in a slab */ 573 #define for_each_object(__p, __s, __addr, __objects) \ 574 for (__p = fixup_red_left(__s, __addr); \ 575 __p < (__addr) + (__objects) * (__s)->size; \ 576 __p += (__s)->size) 577 578 static inline unsigned int order_objects(unsigned int order, unsigned int size) 579 { 580 return ((unsigned int)PAGE_SIZE << order) / size; 581 } 582 583 static inline struct kmem_cache_order_objects oo_make(unsigned int order, 584 unsigned int size) 585 { 586 struct kmem_cache_order_objects x = { 587 (order << OO_SHIFT) + order_objects(order, size) 588 }; 589 590 return x; 591 } 592 593 static inline unsigned int oo_order(struct kmem_cache_order_objects x) 594 { 595 return x.x >> OO_SHIFT; 596 } 597 598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x) 599 { 600 return x.x & OO_MASK; 601 } 602 603 #ifdef CONFIG_SLUB_CPU_PARTIAL 604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 605 { 606 unsigned int nr_slabs; 607 608 s->cpu_partial = nr_objects; 609 610 /* 611 * We take the number of objects but actually limit the number of 612 * slabs on the per cpu partial list, in order to limit excessive 613 * growth of the list. For simplicity we assume that the slabs will 614 * be half-full. 615 */ 616 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo)); 617 s->cpu_partial_slabs = nr_slabs; 618 } 619 620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 621 { 622 return s->cpu_partial_slabs; 623 } 624 #else 625 static inline void 626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects) 627 { 628 } 629 630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s) 631 { 632 return 0; 633 } 634 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 635 636 /* 637 * Per slab locking using the pagelock 638 */ 639 static __always_inline void slab_lock(struct slab *slab) 640 { 641 bit_spin_lock(PG_locked, &slab->__page_flags); 642 } 643 644 static __always_inline void slab_unlock(struct slab *slab) 645 { 646 bit_spin_unlock(PG_locked, &slab->__page_flags); 647 } 648 649 static inline bool 650 __update_freelist_fast(struct slab *slab, 651 void *freelist_old, unsigned long counters_old, 652 void *freelist_new, unsigned long counters_new) 653 { 654 #ifdef system_has_freelist_aba 655 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old }; 656 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new }; 657 658 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full); 659 #else 660 return false; 661 #endif 662 } 663 664 static inline bool 665 __update_freelist_slow(struct slab *slab, 666 void *freelist_old, unsigned long counters_old, 667 void *freelist_new, unsigned long counters_new) 668 { 669 bool ret = false; 670 671 slab_lock(slab); 672 if (slab->freelist == freelist_old && 673 slab->counters == counters_old) { 674 slab->freelist = freelist_new; 675 slab->counters = counters_new; 676 ret = true; 677 } 678 slab_unlock(slab); 679 680 return ret; 681 } 682 683 /* 684 * Interrupts must be disabled (for the fallback code to work right), typically 685 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is 686 * part of bit_spin_lock(), is sufficient because the policy is not to allow any 687 * allocation/ free operation in hardirq context. Therefore nothing can 688 * interrupt the operation. 689 */ 690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab, 691 void *freelist_old, unsigned long counters_old, 692 void *freelist_new, unsigned long counters_new, 693 const char *n) 694 { 695 bool ret; 696 697 if (USE_LOCKLESS_FAST_PATH()) 698 lockdep_assert_irqs_disabled(); 699 700 if (s->flags & __CMPXCHG_DOUBLE) { 701 ret = __update_freelist_fast(slab, freelist_old, counters_old, 702 freelist_new, counters_new); 703 } else { 704 ret = __update_freelist_slow(slab, freelist_old, counters_old, 705 freelist_new, counters_new); 706 } 707 if (likely(ret)) 708 return true; 709 710 cpu_relax(); 711 stat(s, CMPXCHG_DOUBLE_FAIL); 712 713 #ifdef SLUB_DEBUG_CMPXCHG 714 pr_info("%s %s: cmpxchg double redo ", n, s->name); 715 #endif 716 717 return false; 718 } 719 720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab, 721 void *freelist_old, unsigned long counters_old, 722 void *freelist_new, unsigned long counters_new, 723 const char *n) 724 { 725 bool ret; 726 727 if (s->flags & __CMPXCHG_DOUBLE) { 728 ret = __update_freelist_fast(slab, freelist_old, counters_old, 729 freelist_new, counters_new); 730 } else { 731 unsigned long flags; 732 733 local_irq_save(flags); 734 ret = __update_freelist_slow(slab, freelist_old, counters_old, 735 freelist_new, counters_new); 736 local_irq_restore(flags); 737 } 738 if (likely(ret)) 739 return true; 740 741 cpu_relax(); 742 stat(s, CMPXCHG_DOUBLE_FAIL); 743 744 #ifdef SLUB_DEBUG_CMPXCHG 745 pr_info("%s %s: cmpxchg double redo ", n, s->name); 746 #endif 747 748 return false; 749 } 750 751 /* 752 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API 753 * family will round up the real request size to these fixed ones, so 754 * there could be an extra area than what is requested. Save the original 755 * request size in the meta data area, for better debug and sanity check. 756 */ 757 static inline void set_orig_size(struct kmem_cache *s, 758 void *object, unsigned int orig_size) 759 { 760 void *p = kasan_reset_tag(object); 761 762 if (!slub_debug_orig_size(s)) 763 return; 764 765 p += get_info_end(s); 766 p += sizeof(struct track) * 2; 767 768 *(unsigned int *)p = orig_size; 769 } 770 771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object) 772 { 773 void *p = kasan_reset_tag(object); 774 775 if (is_kfence_address(object)) 776 return kfence_ksize(object); 777 778 if (!slub_debug_orig_size(s)) 779 return s->object_size; 780 781 p += get_info_end(s); 782 p += sizeof(struct track) * 2; 783 784 return *(unsigned int *)p; 785 } 786 787 #ifdef CONFIG_SLUB_DEBUG 788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)]; 789 static DEFINE_SPINLOCK(object_map_lock); 790 791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s, 792 struct slab *slab) 793 { 794 void *addr = slab_address(slab); 795 void *p; 796 797 bitmap_zero(obj_map, slab->objects); 798 799 for (p = slab->freelist; p; p = get_freepointer(s, p)) 800 set_bit(__obj_to_index(s, addr, p), obj_map); 801 } 802 803 #if IS_ENABLED(CONFIG_KUNIT) 804 static bool slab_add_kunit_errors(void) 805 { 806 struct kunit_resource *resource; 807 808 if (!kunit_get_current_test()) 809 return false; 810 811 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 812 if (!resource) 813 return false; 814 815 (*(int *)resource->data)++; 816 kunit_put_resource(resource); 817 return true; 818 } 819 820 bool slab_in_kunit_test(void) 821 { 822 struct kunit_resource *resource; 823 824 if (!kunit_get_current_test()) 825 return false; 826 827 resource = kunit_find_named_resource(current->kunit_test, "slab_errors"); 828 if (!resource) 829 return false; 830 831 kunit_put_resource(resource); 832 return true; 833 } 834 #else 835 static inline bool slab_add_kunit_errors(void) { return false; } 836 #endif 837 838 static inline unsigned int size_from_object(struct kmem_cache *s) 839 { 840 if (s->flags & SLAB_RED_ZONE) 841 return s->size - s->red_left_pad; 842 843 return s->size; 844 } 845 846 static inline void *restore_red_left(struct kmem_cache *s, void *p) 847 { 848 if (s->flags & SLAB_RED_ZONE) 849 p -= s->red_left_pad; 850 851 return p; 852 } 853 854 /* 855 * Debug settings: 856 */ 857 #if defined(CONFIG_SLUB_DEBUG_ON) 858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; 859 #else 860 static slab_flags_t slub_debug; 861 #endif 862 863 static char *slub_debug_string; 864 static int disable_higher_order_debug; 865 866 /* 867 * slub is about to manipulate internal object metadata. This memory lies 868 * outside the range of the allocated object, so accessing it would normally 869 * be reported by kasan as a bounds error. metadata_access_enable() is used 870 * to tell kasan that these accesses are OK. 871 */ 872 static inline void metadata_access_enable(void) 873 { 874 kasan_disable_current(); 875 kmsan_disable_current(); 876 } 877 878 static inline void metadata_access_disable(void) 879 { 880 kmsan_enable_current(); 881 kasan_enable_current(); 882 } 883 884 /* 885 * Object debugging 886 */ 887 888 /* Verify that a pointer has an address that is valid within a slab page */ 889 static inline int check_valid_pointer(struct kmem_cache *s, 890 struct slab *slab, void *object) 891 { 892 void *base; 893 894 if (!object) 895 return 1; 896 897 base = slab_address(slab); 898 object = kasan_reset_tag(object); 899 object = restore_red_left(s, object); 900 if (object < base || object >= base + slab->objects * s->size || 901 (object - base) % s->size) { 902 return 0; 903 } 904 905 return 1; 906 } 907 908 static void print_section(char *level, char *text, u8 *addr, 909 unsigned int length) 910 { 911 metadata_access_enable(); 912 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 913 16, 1, kasan_reset_tag((void *)addr), length, 1); 914 metadata_access_disable(); 915 } 916 917 static struct track *get_track(struct kmem_cache *s, void *object, 918 enum track_item alloc) 919 { 920 struct track *p; 921 922 p = object + get_info_end(s); 923 924 return kasan_reset_tag(p + alloc); 925 } 926 927 #ifdef CONFIG_STACKDEPOT 928 static noinline depot_stack_handle_t set_track_prepare(void) 929 { 930 depot_stack_handle_t handle; 931 unsigned long entries[TRACK_ADDRS_COUNT]; 932 unsigned int nr_entries; 933 934 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 935 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 936 937 return handle; 938 } 939 #else 940 static inline depot_stack_handle_t set_track_prepare(void) 941 { 942 return 0; 943 } 944 #endif 945 946 static void set_track_update(struct kmem_cache *s, void *object, 947 enum track_item alloc, unsigned long addr, 948 depot_stack_handle_t handle) 949 { 950 struct track *p = get_track(s, object, alloc); 951 952 #ifdef CONFIG_STACKDEPOT 953 p->handle = handle; 954 #endif 955 p->addr = addr; 956 p->cpu = smp_processor_id(); 957 p->pid = current->pid; 958 p->when = jiffies; 959 } 960 961 static __always_inline void set_track(struct kmem_cache *s, void *object, 962 enum track_item alloc, unsigned long addr) 963 { 964 depot_stack_handle_t handle = set_track_prepare(); 965 966 set_track_update(s, object, alloc, addr, handle); 967 } 968 969 static void init_tracking(struct kmem_cache *s, void *object) 970 { 971 struct track *p; 972 973 if (!(s->flags & SLAB_STORE_USER)) 974 return; 975 976 p = get_track(s, object, TRACK_ALLOC); 977 memset(p, 0, 2*sizeof(struct track)); 978 } 979 980 static void print_track(const char *s, struct track *t, unsigned long pr_time) 981 { 982 depot_stack_handle_t handle __maybe_unused; 983 984 if (!t->addr) 985 return; 986 987 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n", 988 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); 989 #ifdef CONFIG_STACKDEPOT 990 handle = READ_ONCE(t->handle); 991 if (handle) 992 stack_depot_print(handle); 993 else 994 pr_err("object allocation/free stack trace missing\n"); 995 #endif 996 } 997 998 void print_tracking(struct kmem_cache *s, void *object) 999 { 1000 unsigned long pr_time = jiffies; 1001 if (!(s->flags & SLAB_STORE_USER)) 1002 return; 1003 1004 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); 1005 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); 1006 } 1007 1008 static void print_slab_info(const struct slab *slab) 1009 { 1010 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n", 1011 slab, slab->objects, slab->inuse, slab->freelist, 1012 &slab->__page_flags); 1013 } 1014 1015 void skip_orig_size_check(struct kmem_cache *s, const void *object) 1016 { 1017 set_orig_size(s, (void *)object, s->object_size); 1018 } 1019 1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 1021 { 1022 struct va_format vaf; 1023 va_list args; 1024 1025 va_start(args, fmt); 1026 vaf.fmt = fmt; 1027 vaf.va = &args; 1028 pr_err("=============================================================================\n"); 1029 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 1030 pr_err("-----------------------------------------------------------------------------\n\n"); 1031 va_end(args); 1032 } 1033 1034 __printf(2, 3) 1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 1036 { 1037 struct va_format vaf; 1038 va_list args; 1039 1040 if (slab_add_kunit_errors()) 1041 return; 1042 1043 va_start(args, fmt); 1044 vaf.fmt = fmt; 1045 vaf.va = &args; 1046 pr_err("FIX %s: %pV\n", s->name, &vaf); 1047 va_end(args); 1048 } 1049 1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p) 1051 { 1052 unsigned int off; /* Offset of last byte */ 1053 u8 *addr = slab_address(slab); 1054 1055 print_tracking(s, p); 1056 1057 print_slab_info(slab); 1058 1059 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n", 1060 p, p - addr, get_freepointer(s, p)); 1061 1062 if (s->flags & SLAB_RED_ZONE) 1063 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 1064 s->red_left_pad); 1065 else if (p > addr + 16) 1066 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 1067 1068 print_section(KERN_ERR, "Object ", p, 1069 min_t(unsigned int, s->object_size, PAGE_SIZE)); 1070 if (s->flags & SLAB_RED_ZONE) 1071 print_section(KERN_ERR, "Redzone ", p + s->object_size, 1072 s->inuse - s->object_size); 1073 1074 off = get_info_end(s); 1075 1076 if (s->flags & SLAB_STORE_USER) 1077 off += 2 * sizeof(struct track); 1078 1079 if (slub_debug_orig_size(s)) 1080 off += sizeof(unsigned int); 1081 1082 off += kasan_metadata_size(s, false); 1083 1084 if (off != size_from_object(s)) 1085 /* Beginning of the filler is the free pointer */ 1086 print_section(KERN_ERR, "Padding ", p + off, 1087 size_from_object(s) - off); 1088 1089 dump_stack(); 1090 } 1091 1092 static void object_err(struct kmem_cache *s, struct slab *slab, 1093 u8 *object, char *reason) 1094 { 1095 if (slab_add_kunit_errors()) 1096 return; 1097 1098 slab_bug(s, "%s", reason); 1099 print_trailer(s, slab, object); 1100 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1101 } 1102 1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1104 void **freelist, void *nextfree) 1105 { 1106 if ((s->flags & SLAB_CONSISTENCY_CHECKS) && 1107 !check_valid_pointer(s, slab, nextfree) && freelist) { 1108 object_err(s, slab, *freelist, "Freechain corrupt"); 1109 *freelist = NULL; 1110 slab_fix(s, "Isolate corrupted freechain"); 1111 return true; 1112 } 1113 1114 return false; 1115 } 1116 1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab, 1118 const char *fmt, ...) 1119 { 1120 va_list args; 1121 char buf[100]; 1122 1123 if (slab_add_kunit_errors()) 1124 return; 1125 1126 va_start(args, fmt); 1127 vsnprintf(buf, sizeof(buf), fmt, args); 1128 va_end(args); 1129 slab_bug(s, "%s", buf); 1130 print_slab_info(slab); 1131 dump_stack(); 1132 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1133 } 1134 1135 static void init_object(struct kmem_cache *s, void *object, u8 val) 1136 { 1137 u8 *p = kasan_reset_tag(object); 1138 unsigned int poison_size = s->object_size; 1139 1140 if (s->flags & SLAB_RED_ZONE) { 1141 /* 1142 * Here and below, avoid overwriting the KMSAN shadow. Keeping 1143 * the shadow makes it possible to distinguish uninit-value 1144 * from use-after-free. 1145 */ 1146 memset_no_sanitize_memory(p - s->red_left_pad, val, 1147 s->red_left_pad); 1148 1149 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1150 /* 1151 * Redzone the extra allocated space by kmalloc than 1152 * requested, and the poison size will be limited to 1153 * the original request size accordingly. 1154 */ 1155 poison_size = get_orig_size(s, object); 1156 } 1157 } 1158 1159 if (s->flags & __OBJECT_POISON) { 1160 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1); 1161 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1); 1162 } 1163 1164 if (s->flags & SLAB_RED_ZONE) 1165 memset_no_sanitize_memory(p + poison_size, val, 1166 s->inuse - poison_size); 1167 } 1168 1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 1170 void *from, void *to) 1171 { 1172 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data); 1173 memset(from, data, to - from); 1174 } 1175 1176 #ifdef CONFIG_KMSAN 1177 #define pad_check_attributes noinline __no_kmsan_checks 1178 #else 1179 #define pad_check_attributes 1180 #endif 1181 1182 static pad_check_attributes int 1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab, 1184 u8 *object, char *what, 1185 u8 *start, unsigned int value, unsigned int bytes) 1186 { 1187 u8 *fault; 1188 u8 *end; 1189 u8 *addr = slab_address(slab); 1190 1191 metadata_access_enable(); 1192 fault = memchr_inv(kasan_reset_tag(start), value, bytes); 1193 metadata_access_disable(); 1194 if (!fault) 1195 return 1; 1196 1197 end = start + bytes; 1198 while (end > fault && end[-1] == value) 1199 end--; 1200 1201 if (slab_add_kunit_errors()) 1202 goto skip_bug_print; 1203 1204 slab_bug(s, "%s overwritten", what); 1205 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n", 1206 fault, end - 1, fault - addr, 1207 fault[0], value); 1208 1209 skip_bug_print: 1210 restore_bytes(s, what, value, fault, end); 1211 return 0; 1212 } 1213 1214 /* 1215 * Object layout: 1216 * 1217 * object address 1218 * Bytes of the object to be managed. 1219 * If the freepointer may overlay the object then the free 1220 * pointer is at the middle of the object. 1221 * 1222 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 1223 * 0xa5 (POISON_END) 1224 * 1225 * object + s->object_size 1226 * Padding to reach word boundary. This is also used for Redzoning. 1227 * Padding is extended by another word if Redzoning is enabled and 1228 * object_size == inuse. 1229 * 1230 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with 1231 * 0xcc (SLUB_RED_ACTIVE) for objects in use. 1232 * 1233 * object + s->inuse 1234 * Meta data starts here. 1235 * 1236 * A. Free pointer (if we cannot overwrite object on free) 1237 * B. Tracking data for SLAB_STORE_USER 1238 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled) 1239 * D. Padding to reach required alignment boundary or at minimum 1240 * one word if debugging is on to be able to detect writes 1241 * before the word boundary. 1242 * 1243 * Padding is done using 0x5a (POISON_INUSE) 1244 * 1245 * object + s->size 1246 * Nothing is used beyond s->size. 1247 * 1248 * If slabcaches are merged then the object_size and inuse boundaries are mostly 1249 * ignored. And therefore no slab options that rely on these boundaries 1250 * may be used with merged slabcaches. 1251 */ 1252 1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p) 1254 { 1255 unsigned long off = get_info_end(s); /* The end of info */ 1256 1257 if (s->flags & SLAB_STORE_USER) { 1258 /* We also have user information there */ 1259 off += 2 * sizeof(struct track); 1260 1261 if (s->flags & SLAB_KMALLOC) 1262 off += sizeof(unsigned int); 1263 } 1264 1265 off += kasan_metadata_size(s, false); 1266 1267 if (size_from_object(s) == off) 1268 return 1; 1269 1270 return check_bytes_and_report(s, slab, p, "Object padding", 1271 p + off, POISON_INUSE, size_from_object(s) - off); 1272 } 1273 1274 /* Check the pad bytes at the end of a slab page */ 1275 static pad_check_attributes void 1276 slab_pad_check(struct kmem_cache *s, struct slab *slab) 1277 { 1278 u8 *start; 1279 u8 *fault; 1280 u8 *end; 1281 u8 *pad; 1282 int length; 1283 int remainder; 1284 1285 if (!(s->flags & SLAB_POISON)) 1286 return; 1287 1288 start = slab_address(slab); 1289 length = slab_size(slab); 1290 end = start + length; 1291 remainder = length % s->size; 1292 if (!remainder) 1293 return; 1294 1295 pad = end - remainder; 1296 metadata_access_enable(); 1297 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder); 1298 metadata_access_disable(); 1299 if (!fault) 1300 return; 1301 while (end > fault && end[-1] == POISON_INUSE) 1302 end--; 1303 1304 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu", 1305 fault, end - 1, fault - start); 1306 print_section(KERN_ERR, "Padding ", pad, remainder); 1307 1308 restore_bytes(s, "slab padding", POISON_INUSE, fault, end); 1309 } 1310 1311 static int check_object(struct kmem_cache *s, struct slab *slab, 1312 void *object, u8 val) 1313 { 1314 u8 *p = object; 1315 u8 *endobject = object + s->object_size; 1316 unsigned int orig_size, kasan_meta_size; 1317 int ret = 1; 1318 1319 if (s->flags & SLAB_RED_ZONE) { 1320 if (!check_bytes_and_report(s, slab, object, "Left Redzone", 1321 object - s->red_left_pad, val, s->red_left_pad)) 1322 ret = 0; 1323 1324 if (!check_bytes_and_report(s, slab, object, "Right Redzone", 1325 endobject, val, s->inuse - s->object_size)) 1326 ret = 0; 1327 1328 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) { 1329 orig_size = get_orig_size(s, object); 1330 1331 if (s->object_size > orig_size && 1332 !check_bytes_and_report(s, slab, object, 1333 "kmalloc Redzone", p + orig_size, 1334 val, s->object_size - orig_size)) { 1335 ret = 0; 1336 } 1337 } 1338 } else { 1339 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 1340 if (!check_bytes_and_report(s, slab, p, "Alignment padding", 1341 endobject, POISON_INUSE, 1342 s->inuse - s->object_size)) 1343 ret = 0; 1344 } 1345 } 1346 1347 if (s->flags & SLAB_POISON) { 1348 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) { 1349 /* 1350 * KASAN can save its free meta data inside of the 1351 * object at offset 0. Thus, skip checking the part of 1352 * the redzone that overlaps with the meta data. 1353 */ 1354 kasan_meta_size = kasan_metadata_size(s, true); 1355 if (kasan_meta_size < s->object_size - 1 && 1356 !check_bytes_and_report(s, slab, p, "Poison", 1357 p + kasan_meta_size, POISON_FREE, 1358 s->object_size - kasan_meta_size - 1)) 1359 ret = 0; 1360 if (kasan_meta_size < s->object_size && 1361 !check_bytes_and_report(s, slab, p, "End Poison", 1362 p + s->object_size - 1, POISON_END, 1)) 1363 ret = 0; 1364 } 1365 /* 1366 * check_pad_bytes cleans up on its own. 1367 */ 1368 if (!check_pad_bytes(s, slab, p)) 1369 ret = 0; 1370 } 1371 1372 /* 1373 * Cannot check freepointer while object is allocated if 1374 * object and freepointer overlap. 1375 */ 1376 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) && 1377 !check_valid_pointer(s, slab, get_freepointer(s, p))) { 1378 object_err(s, slab, p, "Freepointer corrupt"); 1379 /* 1380 * No choice but to zap it and thus lose the remainder 1381 * of the free objects in this slab. May cause 1382 * another error because the object count is now wrong. 1383 */ 1384 set_freepointer(s, p, NULL); 1385 ret = 0; 1386 } 1387 1388 if (!ret && !slab_in_kunit_test()) { 1389 print_trailer(s, slab, object); 1390 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 1391 } 1392 1393 return ret; 1394 } 1395 1396 static int check_slab(struct kmem_cache *s, struct slab *slab) 1397 { 1398 int maxobj; 1399 1400 if (!folio_test_slab(slab_folio(slab))) { 1401 slab_err(s, slab, "Not a valid slab page"); 1402 return 0; 1403 } 1404 1405 maxobj = order_objects(slab_order(slab), s->size); 1406 if (slab->objects > maxobj) { 1407 slab_err(s, slab, "objects %u > max %u", 1408 slab->objects, maxobj); 1409 return 0; 1410 } 1411 if (slab->inuse > slab->objects) { 1412 slab_err(s, slab, "inuse %u > max %u", 1413 slab->inuse, slab->objects); 1414 return 0; 1415 } 1416 if (slab->frozen) { 1417 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed"); 1418 return 0; 1419 } 1420 1421 /* Slab_pad_check fixes things up after itself */ 1422 slab_pad_check(s, slab); 1423 return 1; 1424 } 1425 1426 /* 1427 * Determine if a certain object in a slab is on the freelist. Must hold the 1428 * slab lock to guarantee that the chains are in a consistent state. 1429 */ 1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search) 1431 { 1432 int nr = 0; 1433 void *fp; 1434 void *object = NULL; 1435 int max_objects; 1436 1437 fp = slab->freelist; 1438 while (fp && nr <= slab->objects) { 1439 if (fp == search) 1440 return 1; 1441 if (!check_valid_pointer(s, slab, fp)) { 1442 if (object) { 1443 object_err(s, slab, object, 1444 "Freechain corrupt"); 1445 set_freepointer(s, object, NULL); 1446 } else { 1447 slab_err(s, slab, "Freepointer corrupt"); 1448 slab->freelist = NULL; 1449 slab->inuse = slab->objects; 1450 slab_fix(s, "Freelist cleared"); 1451 return 0; 1452 } 1453 break; 1454 } 1455 object = fp; 1456 fp = get_freepointer(s, object); 1457 nr++; 1458 } 1459 1460 max_objects = order_objects(slab_order(slab), s->size); 1461 if (max_objects > MAX_OBJS_PER_PAGE) 1462 max_objects = MAX_OBJS_PER_PAGE; 1463 1464 if (slab->objects != max_objects) { 1465 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d", 1466 slab->objects, max_objects); 1467 slab->objects = max_objects; 1468 slab_fix(s, "Number of objects adjusted"); 1469 } 1470 if (slab->inuse != slab->objects - nr) { 1471 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d", 1472 slab->inuse, slab->objects - nr); 1473 slab->inuse = slab->objects - nr; 1474 slab_fix(s, "Object count adjusted"); 1475 } 1476 return search == NULL; 1477 } 1478 1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object, 1480 int alloc) 1481 { 1482 if (s->flags & SLAB_TRACE) { 1483 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 1484 s->name, 1485 alloc ? "alloc" : "free", 1486 object, slab->inuse, 1487 slab->freelist); 1488 1489 if (!alloc) 1490 print_section(KERN_INFO, "Object ", (void *)object, 1491 s->object_size); 1492 1493 dump_stack(); 1494 } 1495 } 1496 1497 /* 1498 * Tracking of fully allocated slabs for debugging purposes. 1499 */ 1500 static void add_full(struct kmem_cache *s, 1501 struct kmem_cache_node *n, struct slab *slab) 1502 { 1503 if (!(s->flags & SLAB_STORE_USER)) 1504 return; 1505 1506 lockdep_assert_held(&n->list_lock); 1507 list_add(&slab->slab_list, &n->full); 1508 } 1509 1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab) 1511 { 1512 if (!(s->flags & SLAB_STORE_USER)) 1513 return; 1514 1515 lockdep_assert_held(&n->list_lock); 1516 list_del(&slab->slab_list); 1517 } 1518 1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1520 { 1521 return atomic_long_read(&n->nr_slabs); 1522 } 1523 1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1525 { 1526 struct kmem_cache_node *n = get_node(s, node); 1527 1528 atomic_long_inc(&n->nr_slabs); 1529 atomic_long_add(objects, &n->total_objects); 1530 } 1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1532 { 1533 struct kmem_cache_node *n = get_node(s, node); 1534 1535 atomic_long_dec(&n->nr_slabs); 1536 atomic_long_sub(objects, &n->total_objects); 1537 } 1538 1539 /* Object debug checks for alloc/free paths */ 1540 static void setup_object_debug(struct kmem_cache *s, void *object) 1541 { 1542 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)) 1543 return; 1544 1545 init_object(s, object, SLUB_RED_INACTIVE); 1546 init_tracking(s, object); 1547 } 1548 1549 static 1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) 1551 { 1552 if (!kmem_cache_debug_flags(s, SLAB_POISON)) 1553 return; 1554 1555 metadata_access_enable(); 1556 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab)); 1557 metadata_access_disable(); 1558 } 1559 1560 static inline int alloc_consistency_checks(struct kmem_cache *s, 1561 struct slab *slab, void *object) 1562 { 1563 if (!check_slab(s, slab)) 1564 return 0; 1565 1566 if (!check_valid_pointer(s, slab, object)) { 1567 object_err(s, slab, object, "Freelist Pointer check fails"); 1568 return 0; 1569 } 1570 1571 if (!check_object(s, slab, object, SLUB_RED_INACTIVE)) 1572 return 0; 1573 1574 return 1; 1575 } 1576 1577 static noinline bool alloc_debug_processing(struct kmem_cache *s, 1578 struct slab *slab, void *object, int orig_size) 1579 { 1580 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1581 if (!alloc_consistency_checks(s, slab, object)) 1582 goto bad; 1583 } 1584 1585 /* Success. Perform special debug activities for allocs */ 1586 trace(s, slab, object, 1); 1587 set_orig_size(s, object, orig_size); 1588 init_object(s, object, SLUB_RED_ACTIVE); 1589 return true; 1590 1591 bad: 1592 if (folio_test_slab(slab_folio(slab))) { 1593 /* 1594 * If this is a slab page then lets do the best we can 1595 * to avoid issues in the future. Marking all objects 1596 * as used avoids touching the remaining objects. 1597 */ 1598 slab_fix(s, "Marking all objects used"); 1599 slab->inuse = slab->objects; 1600 slab->freelist = NULL; 1601 slab->frozen = 1; /* mark consistency-failed slab as frozen */ 1602 } 1603 return false; 1604 } 1605 1606 static inline int free_consistency_checks(struct kmem_cache *s, 1607 struct slab *slab, void *object, unsigned long addr) 1608 { 1609 if (!check_valid_pointer(s, slab, object)) { 1610 slab_err(s, slab, "Invalid object pointer 0x%p", object); 1611 return 0; 1612 } 1613 1614 if (on_freelist(s, slab, object)) { 1615 object_err(s, slab, object, "Object already free"); 1616 return 0; 1617 } 1618 1619 if (!check_object(s, slab, object, SLUB_RED_ACTIVE)) 1620 return 0; 1621 1622 if (unlikely(s != slab->slab_cache)) { 1623 if (!folio_test_slab(slab_folio(slab))) { 1624 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab", 1625 object); 1626 } else if (!slab->slab_cache) { 1627 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1628 object); 1629 dump_stack(); 1630 } else 1631 object_err(s, slab, object, 1632 "page slab pointer corrupt."); 1633 return 0; 1634 } 1635 return 1; 1636 } 1637 1638 /* 1639 * Parse a block of slab_debug options. Blocks are delimited by ';' 1640 * 1641 * @str: start of block 1642 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified 1643 * @slabs: return start of list of slabs, or NULL when there's no list 1644 * @init: assume this is initial parsing and not per-kmem-create parsing 1645 * 1646 * returns the start of next block if there's any, or NULL 1647 */ 1648 static char * 1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init) 1650 { 1651 bool higher_order_disable = false; 1652 1653 /* Skip any completely empty blocks */ 1654 while (*str && *str == ';') 1655 str++; 1656 1657 if (*str == ',') { 1658 /* 1659 * No options but restriction on slabs. This means full 1660 * debugging for slabs matching a pattern. 1661 */ 1662 *flags = DEBUG_DEFAULT_FLAGS; 1663 goto check_slabs; 1664 } 1665 *flags = 0; 1666 1667 /* Determine which debug features should be switched on */ 1668 for (; *str && *str != ',' && *str != ';'; str++) { 1669 switch (tolower(*str)) { 1670 case '-': 1671 *flags = 0; 1672 break; 1673 case 'f': 1674 *flags |= SLAB_CONSISTENCY_CHECKS; 1675 break; 1676 case 'z': 1677 *flags |= SLAB_RED_ZONE; 1678 break; 1679 case 'p': 1680 *flags |= SLAB_POISON; 1681 break; 1682 case 'u': 1683 *flags |= SLAB_STORE_USER; 1684 break; 1685 case 't': 1686 *flags |= SLAB_TRACE; 1687 break; 1688 case 'a': 1689 *flags |= SLAB_FAILSLAB; 1690 break; 1691 case 'o': 1692 /* 1693 * Avoid enabling debugging on caches if its minimum 1694 * order would increase as a result. 1695 */ 1696 higher_order_disable = true; 1697 break; 1698 default: 1699 if (init) 1700 pr_err("slab_debug option '%c' unknown. skipped\n", *str); 1701 } 1702 } 1703 check_slabs: 1704 if (*str == ',') 1705 *slabs = ++str; 1706 else 1707 *slabs = NULL; 1708 1709 /* Skip over the slab list */ 1710 while (*str && *str != ';') 1711 str++; 1712 1713 /* Skip any completely empty blocks */ 1714 while (*str && *str == ';') 1715 str++; 1716 1717 if (init && higher_order_disable) 1718 disable_higher_order_debug = 1; 1719 1720 if (*str) 1721 return str; 1722 else 1723 return NULL; 1724 } 1725 1726 static int __init setup_slub_debug(char *str) 1727 { 1728 slab_flags_t flags; 1729 slab_flags_t global_flags; 1730 char *saved_str; 1731 char *slab_list; 1732 bool global_slub_debug_changed = false; 1733 bool slab_list_specified = false; 1734 1735 global_flags = DEBUG_DEFAULT_FLAGS; 1736 if (*str++ != '=' || !*str) 1737 /* 1738 * No options specified. Switch on full debugging. 1739 */ 1740 goto out; 1741 1742 saved_str = str; 1743 while (str) { 1744 str = parse_slub_debug_flags(str, &flags, &slab_list, true); 1745 1746 if (!slab_list) { 1747 global_flags = flags; 1748 global_slub_debug_changed = true; 1749 } else { 1750 slab_list_specified = true; 1751 if (flags & SLAB_STORE_USER) 1752 stack_depot_request_early_init(); 1753 } 1754 } 1755 1756 /* 1757 * For backwards compatibility, a single list of flags with list of 1758 * slabs means debugging is only changed for those slabs, so the global 1759 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending 1760 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as 1761 * long as there is no option specifying flags without a slab list. 1762 */ 1763 if (slab_list_specified) { 1764 if (!global_slub_debug_changed) 1765 global_flags = slub_debug; 1766 slub_debug_string = saved_str; 1767 } 1768 out: 1769 slub_debug = global_flags; 1770 if (slub_debug & SLAB_STORE_USER) 1771 stack_depot_request_early_init(); 1772 if (slub_debug != 0 || slub_debug_string) 1773 static_branch_enable(&slub_debug_enabled); 1774 else 1775 static_branch_disable(&slub_debug_enabled); 1776 if ((static_branch_unlikely(&init_on_alloc) || 1777 static_branch_unlikely(&init_on_free)) && 1778 (slub_debug & SLAB_POISON)) 1779 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); 1780 return 1; 1781 } 1782 1783 __setup("slab_debug", setup_slub_debug); 1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0); 1785 1786 /* 1787 * kmem_cache_flags - apply debugging options to the cache 1788 * @flags: flags to set 1789 * @name: name of the cache 1790 * 1791 * Debug option(s) are applied to @flags. In addition to the debug 1792 * option(s), if a slab name (or multiple) is specified i.e. 1793 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ... 1794 * then only the select slabs will receive the debug option(s). 1795 */ 1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1797 { 1798 char *iter; 1799 size_t len; 1800 char *next_block; 1801 slab_flags_t block_flags; 1802 slab_flags_t slub_debug_local = slub_debug; 1803 1804 if (flags & SLAB_NO_USER_FLAGS) 1805 return flags; 1806 1807 /* 1808 * If the slab cache is for debugging (e.g. kmemleak) then 1809 * don't store user (stack trace) information by default, 1810 * but let the user enable it via the command line below. 1811 */ 1812 if (flags & SLAB_NOLEAKTRACE) 1813 slub_debug_local &= ~SLAB_STORE_USER; 1814 1815 len = strlen(name); 1816 next_block = slub_debug_string; 1817 /* Go through all blocks of debug options, see if any matches our slab's name */ 1818 while (next_block) { 1819 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false); 1820 if (!iter) 1821 continue; 1822 /* Found a block that has a slab list, search it */ 1823 while (*iter) { 1824 char *end, *glob; 1825 size_t cmplen; 1826 1827 end = strchrnul(iter, ','); 1828 if (next_block && next_block < end) 1829 end = next_block - 1; 1830 1831 glob = strnchr(iter, end - iter, '*'); 1832 if (glob) 1833 cmplen = glob - iter; 1834 else 1835 cmplen = max_t(size_t, len, (end - iter)); 1836 1837 if (!strncmp(name, iter, cmplen)) { 1838 flags |= block_flags; 1839 return flags; 1840 } 1841 1842 if (!*end || *end == ';') 1843 break; 1844 iter = end + 1; 1845 } 1846 } 1847 1848 return flags | slub_debug_local; 1849 } 1850 #else /* !CONFIG_SLUB_DEBUG */ 1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {} 1852 static inline 1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {} 1854 1855 static inline bool alloc_debug_processing(struct kmem_cache *s, 1856 struct slab *slab, void *object, int orig_size) { return true; } 1857 1858 static inline bool free_debug_processing(struct kmem_cache *s, 1859 struct slab *slab, void *head, void *tail, int *bulk_cnt, 1860 unsigned long addr, depot_stack_handle_t handle) { return true; } 1861 1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {} 1863 static inline int check_object(struct kmem_cache *s, struct slab *slab, 1864 void *object, u8 val) { return 1; } 1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; } 1866 static inline void set_track(struct kmem_cache *s, void *object, 1867 enum track_item alloc, unsigned long addr) {} 1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1869 struct slab *slab) {} 1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1871 struct slab *slab) {} 1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name) 1873 { 1874 return flags; 1875 } 1876 #define slub_debug 0 1877 1878 #define disable_higher_order_debug 0 1879 1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1881 { return 0; } 1882 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1883 int objects) {} 1884 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1885 int objects) {} 1886 #ifndef CONFIG_SLUB_TINY 1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab, 1888 void **freelist, void *nextfree) 1889 { 1890 return false; 1891 } 1892 #endif 1893 #endif /* CONFIG_SLUB_DEBUG */ 1894 1895 #ifdef CONFIG_SLAB_OBJ_EXT 1896 1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 1898 1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) 1900 { 1901 struct slabobj_ext *slab_exts; 1902 struct slab *obj_exts_slab; 1903 1904 obj_exts_slab = virt_to_slab(obj_exts); 1905 slab_exts = slab_obj_exts(obj_exts_slab); 1906 if (slab_exts) { 1907 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache, 1908 obj_exts_slab, obj_exts); 1909 /* codetag should be NULL */ 1910 WARN_ON(slab_exts[offs].ref.ct); 1911 set_codetag_empty(&slab_exts[offs].ref); 1912 } 1913 } 1914 1915 static inline void mark_failed_objexts_alloc(struct slab *slab) 1916 { 1917 slab->obj_exts = OBJEXTS_ALLOC_FAIL; 1918 } 1919 1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1921 struct slabobj_ext *vec, unsigned int objects) 1922 { 1923 /* 1924 * If vector previously failed to allocate then we have live 1925 * objects with no tag reference. Mark all references in this 1926 * vector as empty to avoid warnings later on. 1927 */ 1928 if (obj_exts & OBJEXTS_ALLOC_FAIL) { 1929 unsigned int i; 1930 1931 for (i = 0; i < objects; i++) 1932 set_codetag_empty(&vec[i].ref); 1933 } 1934 } 1935 1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1937 1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {} 1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {} 1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts, 1941 struct slabobj_ext *vec, unsigned int objects) {} 1942 1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */ 1944 1945 /* 1946 * The allocated objcg pointers array is not accounted directly. 1947 * Moreover, it should not come from DMA buffer and is not readily 1948 * reclaimable. So those GFP bits should be masked off. 1949 */ 1950 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \ 1951 __GFP_ACCOUNT | __GFP_NOFAIL) 1952 1953 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 1954 gfp_t gfp, bool new_slab) 1955 { 1956 unsigned int objects = objs_per_slab(s, slab); 1957 unsigned long new_exts; 1958 unsigned long old_exts; 1959 struct slabobj_ext *vec; 1960 1961 gfp &= ~OBJCGS_CLEAR_MASK; 1962 /* Prevent recursive extension vector allocation */ 1963 gfp |= __GFP_NO_OBJ_EXT; 1964 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp, 1965 slab_nid(slab)); 1966 if (!vec) { 1967 /* Mark vectors which failed to allocate */ 1968 if (new_slab) 1969 mark_failed_objexts_alloc(slab); 1970 1971 return -ENOMEM; 1972 } 1973 1974 new_exts = (unsigned long)vec; 1975 #ifdef CONFIG_MEMCG 1976 new_exts |= MEMCG_DATA_OBJEXTS; 1977 #endif 1978 old_exts = READ_ONCE(slab->obj_exts); 1979 handle_failed_objexts_alloc(old_exts, vec, objects); 1980 if (new_slab) { 1981 /* 1982 * If the slab is brand new and nobody can yet access its 1983 * obj_exts, no synchronization is required and obj_exts can 1984 * be simply assigned. 1985 */ 1986 slab->obj_exts = new_exts; 1987 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) || 1988 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) { 1989 /* 1990 * If the slab is already in use, somebody can allocate and 1991 * assign slabobj_exts in parallel. In this case the existing 1992 * objcg vector should be reused. 1993 */ 1994 mark_objexts_empty(vec); 1995 kfree(vec); 1996 return 0; 1997 } 1998 1999 kmemleak_not_leak(vec); 2000 return 0; 2001 } 2002 2003 static inline void free_slab_obj_exts(struct slab *slab) 2004 { 2005 struct slabobj_ext *obj_exts; 2006 2007 obj_exts = slab_obj_exts(slab); 2008 if (!obj_exts) 2009 return; 2010 2011 /* 2012 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its 2013 * corresponding extension will be NULL. alloc_tag_sub() will throw a 2014 * warning if slab has extensions but the extension of an object is 2015 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that 2016 * the extension for obj_exts is expected to be NULL. 2017 */ 2018 mark_objexts_empty(obj_exts); 2019 kfree(obj_exts); 2020 slab->obj_exts = 0; 2021 } 2022 2023 static inline bool need_slab_obj_ext(void) 2024 { 2025 if (mem_alloc_profiling_enabled()) 2026 return true; 2027 2028 /* 2029 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally 2030 * inside memcg_slab_post_alloc_hook. No other users for now. 2031 */ 2032 return false; 2033 } 2034 2035 #else /* CONFIG_SLAB_OBJ_EXT */ 2036 2037 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s, 2038 gfp_t gfp, bool new_slab) 2039 { 2040 return 0; 2041 } 2042 2043 static inline void free_slab_obj_exts(struct slab *slab) 2044 { 2045 } 2046 2047 static inline bool need_slab_obj_ext(void) 2048 { 2049 return false; 2050 } 2051 2052 #endif /* CONFIG_SLAB_OBJ_EXT */ 2053 2054 #ifdef CONFIG_MEM_ALLOC_PROFILING 2055 2056 static inline struct slabobj_ext * 2057 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p) 2058 { 2059 struct slab *slab; 2060 2061 if (!p) 2062 return NULL; 2063 2064 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2065 return NULL; 2066 2067 if (flags & __GFP_NO_OBJ_EXT) 2068 return NULL; 2069 2070 slab = virt_to_slab(p); 2071 if (!slab_obj_exts(slab) && 2072 WARN(alloc_slab_obj_exts(slab, s, flags, false), 2073 "%s, %s: Failed to create slab extension vector!\n", 2074 __func__, s->name)) 2075 return NULL; 2076 2077 return slab_obj_exts(slab) + obj_to_index(s, slab, p); 2078 } 2079 2080 static inline void 2081 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2082 { 2083 if (need_slab_obj_ext()) { 2084 struct slabobj_ext *obj_exts; 2085 2086 obj_exts = prepare_slab_obj_exts_hook(s, flags, object); 2087 /* 2088 * Currently obj_exts is used only for allocation profiling. 2089 * If other users appear then mem_alloc_profiling_enabled() 2090 * check should be added before alloc_tag_add(). 2091 */ 2092 if (likely(obj_exts)) 2093 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size); 2094 } 2095 } 2096 2097 static inline void 2098 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2099 int objects) 2100 { 2101 struct slabobj_ext *obj_exts; 2102 int i; 2103 2104 if (!mem_alloc_profiling_enabled()) 2105 return; 2106 2107 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */ 2108 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE)) 2109 return; 2110 2111 obj_exts = slab_obj_exts(slab); 2112 if (!obj_exts) 2113 return; 2114 2115 for (i = 0; i < objects; i++) { 2116 unsigned int off = obj_to_index(s, slab, p[i]); 2117 2118 alloc_tag_sub(&obj_exts[off].ref, s->size); 2119 } 2120 } 2121 2122 #else /* CONFIG_MEM_ALLOC_PROFILING */ 2123 2124 static inline void 2125 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags) 2126 { 2127 } 2128 2129 static inline void 2130 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2131 int objects) 2132 { 2133 } 2134 2135 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 2136 2137 2138 #ifdef CONFIG_MEMCG 2139 2140 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object); 2141 2142 static __fastpath_inline 2143 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 2144 gfp_t flags, size_t size, void **p) 2145 { 2146 if (likely(!memcg_kmem_online())) 2147 return true; 2148 2149 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))) 2150 return true; 2151 2152 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p))) 2153 return true; 2154 2155 if (likely(size == 1)) { 2156 memcg_alloc_abort_single(s, *p); 2157 *p = NULL; 2158 } else { 2159 kmem_cache_free_bulk(s, size, p); 2160 } 2161 2162 return false; 2163 } 2164 2165 static __fastpath_inline 2166 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p, 2167 int objects) 2168 { 2169 struct slabobj_ext *obj_exts; 2170 2171 if (!memcg_kmem_online()) 2172 return; 2173 2174 obj_exts = slab_obj_exts(slab); 2175 if (likely(!obj_exts)) 2176 return; 2177 2178 __memcg_slab_free_hook(s, slab, p, objects, obj_exts); 2179 } 2180 2181 static __fastpath_inline 2182 bool memcg_slab_post_charge(void *p, gfp_t flags) 2183 { 2184 struct slabobj_ext *slab_exts; 2185 struct kmem_cache *s; 2186 struct folio *folio; 2187 struct slab *slab; 2188 unsigned long off; 2189 2190 folio = virt_to_folio(p); 2191 if (!folio_test_slab(folio)) { 2192 return folio_memcg_kmem(folio) || 2193 (__memcg_kmem_charge_page(folio_page(folio, 0), flags, 2194 folio_order(folio)) == 0); 2195 } 2196 2197 slab = folio_slab(folio); 2198 s = slab->slab_cache; 2199 2200 /* 2201 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency 2202 * of slab_obj_exts being allocated from the same slab and thus the slab 2203 * becoming effectively unfreeable. 2204 */ 2205 if (is_kmalloc_normal(s)) 2206 return true; 2207 2208 /* Ignore already charged objects. */ 2209 slab_exts = slab_obj_exts(slab); 2210 if (slab_exts) { 2211 off = obj_to_index(s, slab, p); 2212 if (unlikely(slab_exts[off].objcg)) 2213 return true; 2214 } 2215 2216 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p); 2217 } 2218 2219 #else /* CONFIG_MEMCG */ 2220 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s, 2221 struct list_lru *lru, 2222 gfp_t flags, size_t size, 2223 void **p) 2224 { 2225 return true; 2226 } 2227 2228 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, 2229 void **p, int objects) 2230 { 2231 } 2232 2233 static inline bool memcg_slab_post_charge(void *p, gfp_t flags) 2234 { 2235 return true; 2236 } 2237 #endif /* CONFIG_MEMCG */ 2238 2239 #ifdef CONFIG_SLUB_RCU_DEBUG 2240 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head); 2241 2242 struct rcu_delayed_free { 2243 struct rcu_head head; 2244 void *object; 2245 }; 2246 #endif 2247 2248 /* 2249 * Hooks for other subsystems that check memory allocations. In a typical 2250 * production configuration these hooks all should produce no code at all. 2251 * 2252 * Returns true if freeing of the object can proceed, false if its reuse 2253 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned 2254 * to KFENCE. 2255 */ 2256 static __always_inline 2257 bool slab_free_hook(struct kmem_cache *s, void *x, bool init, 2258 bool after_rcu_delay) 2259 { 2260 /* Are the object contents still accessible? */ 2261 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay; 2262 2263 kmemleak_free_recursive(x, s->flags); 2264 kmsan_slab_free(s, x); 2265 2266 debug_check_no_locks_freed(x, s->object_size); 2267 2268 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 2269 debug_check_no_obj_freed(x, s->object_size); 2270 2271 /* Use KCSAN to help debug racy use-after-free. */ 2272 if (!still_accessible) 2273 __kcsan_check_access(x, s->object_size, 2274 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT); 2275 2276 if (kfence_free(x)) 2277 return false; 2278 2279 /* 2280 * Give KASAN a chance to notice an invalid free operation before we 2281 * modify the object. 2282 */ 2283 if (kasan_slab_pre_free(s, x)) 2284 return false; 2285 2286 #ifdef CONFIG_SLUB_RCU_DEBUG 2287 if (still_accessible) { 2288 struct rcu_delayed_free *delayed_free; 2289 2290 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT); 2291 if (delayed_free) { 2292 /* 2293 * Let KASAN track our call stack as a "related work 2294 * creation", just like if the object had been freed 2295 * normally via kfree_rcu(). 2296 * We have to do this manually because the rcu_head is 2297 * not located inside the object. 2298 */ 2299 kasan_record_aux_stack_noalloc(x); 2300 2301 delayed_free->object = x; 2302 call_rcu(&delayed_free->head, slab_free_after_rcu_debug); 2303 return false; 2304 } 2305 } 2306 #endif /* CONFIG_SLUB_RCU_DEBUG */ 2307 2308 /* 2309 * As memory initialization might be integrated into KASAN, 2310 * kasan_slab_free and initialization memset's must be 2311 * kept together to avoid discrepancies in behavior. 2312 * 2313 * The initialization memset's clear the object and the metadata, 2314 * but don't touch the SLAB redzone. 2315 * 2316 * The object's freepointer is also avoided if stored outside the 2317 * object. 2318 */ 2319 if (unlikely(init)) { 2320 int rsize; 2321 unsigned int inuse, orig_size; 2322 2323 inuse = get_info_end(s); 2324 orig_size = get_orig_size(s, x); 2325 if (!kasan_has_integrated_init()) 2326 memset(kasan_reset_tag(x), 0, orig_size); 2327 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0; 2328 memset((char *)kasan_reset_tag(x) + inuse, 0, 2329 s->size - inuse - rsize); 2330 /* 2331 * Restore orig_size, otherwize kmalloc redzone overwritten 2332 * would be reported 2333 */ 2334 set_orig_size(s, x, orig_size); 2335 2336 } 2337 /* KASAN might put x into memory quarantine, delaying its reuse. */ 2338 return !kasan_slab_free(s, x, init, still_accessible); 2339 } 2340 2341 static __fastpath_inline 2342 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail, 2343 int *cnt) 2344 { 2345 2346 void *object; 2347 void *next = *head; 2348 void *old_tail = *tail; 2349 bool init; 2350 2351 if (is_kfence_address(next)) { 2352 slab_free_hook(s, next, false, false); 2353 return false; 2354 } 2355 2356 /* Head and tail of the reconstructed freelist */ 2357 *head = NULL; 2358 *tail = NULL; 2359 2360 init = slab_want_init_on_free(s); 2361 2362 do { 2363 object = next; 2364 next = get_freepointer(s, object); 2365 2366 /* If object's reuse doesn't have to be delayed */ 2367 if (likely(slab_free_hook(s, object, init, false))) { 2368 /* Move object to the new freelist */ 2369 set_freepointer(s, object, *head); 2370 *head = object; 2371 if (!*tail) 2372 *tail = object; 2373 } else { 2374 /* 2375 * Adjust the reconstructed freelist depth 2376 * accordingly if object's reuse is delayed. 2377 */ 2378 --(*cnt); 2379 } 2380 } while (object != old_tail); 2381 2382 return *head != NULL; 2383 } 2384 2385 static void *setup_object(struct kmem_cache *s, void *object) 2386 { 2387 setup_object_debug(s, object); 2388 object = kasan_init_slab_obj(s, object); 2389 if (unlikely(s->ctor)) { 2390 kasan_unpoison_new_object(s, object); 2391 s->ctor(object); 2392 kasan_poison_new_object(s, object); 2393 } 2394 return object; 2395 } 2396 2397 /* 2398 * Slab allocation and freeing 2399 */ 2400 static inline struct slab *alloc_slab_page(gfp_t flags, int node, 2401 struct kmem_cache_order_objects oo) 2402 { 2403 struct folio *folio; 2404 struct slab *slab; 2405 unsigned int order = oo_order(oo); 2406 2407 if (node == NUMA_NO_NODE) 2408 folio = (struct folio *)alloc_pages(flags, order); 2409 else 2410 folio = (struct folio *)__alloc_pages_node(node, flags, order); 2411 2412 if (!folio) 2413 return NULL; 2414 2415 slab = folio_slab(folio); 2416 __folio_set_slab(folio); 2417 /* Make the flag visible before any changes to folio->mapping */ 2418 smp_wmb(); 2419 if (folio_is_pfmemalloc(folio)) 2420 slab_set_pfmemalloc(slab); 2421 2422 return slab; 2423 } 2424 2425 #ifdef CONFIG_SLAB_FREELIST_RANDOM 2426 /* Pre-initialize the random sequence cache */ 2427 static int init_cache_random_seq(struct kmem_cache *s) 2428 { 2429 unsigned int count = oo_objects(s->oo); 2430 int err; 2431 2432 /* Bailout if already initialised */ 2433 if (s->random_seq) 2434 return 0; 2435 2436 err = cache_random_seq_create(s, count, GFP_KERNEL); 2437 if (err) { 2438 pr_err("SLUB: Unable to initialize free list for %s\n", 2439 s->name); 2440 return err; 2441 } 2442 2443 /* Transform to an offset on the set of pages */ 2444 if (s->random_seq) { 2445 unsigned int i; 2446 2447 for (i = 0; i < count; i++) 2448 s->random_seq[i] *= s->size; 2449 } 2450 return 0; 2451 } 2452 2453 /* Initialize each random sequence freelist per cache */ 2454 static void __init init_freelist_randomization(void) 2455 { 2456 struct kmem_cache *s; 2457 2458 mutex_lock(&slab_mutex); 2459 2460 list_for_each_entry(s, &slab_caches, list) 2461 init_cache_random_seq(s); 2462 2463 mutex_unlock(&slab_mutex); 2464 } 2465 2466 /* Get the next entry on the pre-computed freelist randomized */ 2467 static void *next_freelist_entry(struct kmem_cache *s, 2468 unsigned long *pos, void *start, 2469 unsigned long page_limit, 2470 unsigned long freelist_count) 2471 { 2472 unsigned int idx; 2473 2474 /* 2475 * If the target page allocation failed, the number of objects on the 2476 * page might be smaller than the usual size defined by the cache. 2477 */ 2478 do { 2479 idx = s->random_seq[*pos]; 2480 *pos += 1; 2481 if (*pos >= freelist_count) 2482 *pos = 0; 2483 } while (unlikely(idx >= page_limit)); 2484 2485 return (char *)start + idx; 2486 } 2487 2488 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 2489 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2490 { 2491 void *start; 2492 void *cur; 2493 void *next; 2494 unsigned long idx, pos, page_limit, freelist_count; 2495 2496 if (slab->objects < 2 || !s->random_seq) 2497 return false; 2498 2499 freelist_count = oo_objects(s->oo); 2500 pos = get_random_u32_below(freelist_count); 2501 2502 page_limit = slab->objects * s->size; 2503 start = fixup_red_left(s, slab_address(slab)); 2504 2505 /* First entry is used as the base of the freelist */ 2506 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count); 2507 cur = setup_object(s, cur); 2508 slab->freelist = cur; 2509 2510 for (idx = 1; idx < slab->objects; idx++) { 2511 next = next_freelist_entry(s, &pos, start, page_limit, 2512 freelist_count); 2513 next = setup_object(s, next); 2514 set_freepointer(s, cur, next); 2515 cur = next; 2516 } 2517 set_freepointer(s, cur, NULL); 2518 2519 return true; 2520 } 2521 #else 2522 static inline int init_cache_random_seq(struct kmem_cache *s) 2523 { 2524 return 0; 2525 } 2526 static inline void init_freelist_randomization(void) { } 2527 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab) 2528 { 2529 return false; 2530 } 2531 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 2532 2533 static __always_inline void account_slab(struct slab *slab, int order, 2534 struct kmem_cache *s, gfp_t gfp) 2535 { 2536 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT)) 2537 alloc_slab_obj_exts(slab, s, gfp, true); 2538 2539 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2540 PAGE_SIZE << order); 2541 } 2542 2543 static __always_inline void unaccount_slab(struct slab *slab, int order, 2544 struct kmem_cache *s) 2545 { 2546 if (memcg_kmem_online() || need_slab_obj_ext()) 2547 free_slab_obj_exts(slab); 2548 2549 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s), 2550 -(PAGE_SIZE << order)); 2551 } 2552 2553 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 2554 { 2555 struct slab *slab; 2556 struct kmem_cache_order_objects oo = s->oo; 2557 gfp_t alloc_gfp; 2558 void *start, *p, *next; 2559 int idx; 2560 bool shuffle; 2561 2562 flags &= gfp_allowed_mask; 2563 2564 flags |= s->allocflags; 2565 2566 /* 2567 * Let the initial higher-order allocation fail under memory pressure 2568 * so we fall-back to the minimum order allocation. 2569 */ 2570 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 2571 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 2572 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM; 2573 2574 slab = alloc_slab_page(alloc_gfp, node, oo); 2575 if (unlikely(!slab)) { 2576 oo = s->min; 2577 alloc_gfp = flags; 2578 /* 2579 * Allocation may have failed due to fragmentation. 2580 * Try a lower order alloc if possible 2581 */ 2582 slab = alloc_slab_page(alloc_gfp, node, oo); 2583 if (unlikely(!slab)) 2584 return NULL; 2585 stat(s, ORDER_FALLBACK); 2586 } 2587 2588 slab->objects = oo_objects(oo); 2589 slab->inuse = 0; 2590 slab->frozen = 0; 2591 2592 account_slab(slab, oo_order(oo), s, flags); 2593 2594 slab->slab_cache = s; 2595 2596 kasan_poison_slab(slab); 2597 2598 start = slab_address(slab); 2599 2600 setup_slab_debug(s, slab, start); 2601 2602 shuffle = shuffle_freelist(s, slab); 2603 2604 if (!shuffle) { 2605 start = fixup_red_left(s, start); 2606 start = setup_object(s, start); 2607 slab->freelist = start; 2608 for (idx = 0, p = start; idx < slab->objects - 1; idx++) { 2609 next = p + s->size; 2610 next = setup_object(s, next); 2611 set_freepointer(s, p, next); 2612 p = next; 2613 } 2614 set_freepointer(s, p, NULL); 2615 } 2616 2617 return slab; 2618 } 2619 2620 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node) 2621 { 2622 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 2623 flags = kmalloc_fix_flags(flags); 2624 2625 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); 2626 2627 return allocate_slab(s, 2628 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 2629 } 2630 2631 static void __free_slab(struct kmem_cache *s, struct slab *slab) 2632 { 2633 struct folio *folio = slab_folio(slab); 2634 int order = folio_order(folio); 2635 int pages = 1 << order; 2636 2637 __slab_clear_pfmemalloc(slab); 2638 folio->mapping = NULL; 2639 /* Make the mapping reset visible before clearing the flag */ 2640 smp_wmb(); 2641 __folio_clear_slab(folio); 2642 mm_account_reclaimed_pages(pages); 2643 unaccount_slab(slab, order, s); 2644 __free_pages(&folio->page, order); 2645 } 2646 2647 static void rcu_free_slab(struct rcu_head *h) 2648 { 2649 struct slab *slab = container_of(h, struct slab, rcu_head); 2650 2651 __free_slab(slab->slab_cache, slab); 2652 } 2653 2654 static void free_slab(struct kmem_cache *s, struct slab *slab) 2655 { 2656 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) { 2657 void *p; 2658 2659 slab_pad_check(s, slab); 2660 for_each_object(p, s, slab_address(slab), slab->objects) 2661 check_object(s, slab, p, SLUB_RED_INACTIVE); 2662 } 2663 2664 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) 2665 call_rcu(&slab->rcu_head, rcu_free_slab); 2666 else 2667 __free_slab(s, slab); 2668 } 2669 2670 static void discard_slab(struct kmem_cache *s, struct slab *slab) 2671 { 2672 dec_slabs_node(s, slab_nid(slab), slab->objects); 2673 free_slab(s, slab); 2674 } 2675 2676 /* 2677 * SLUB reuses PG_workingset bit to keep track of whether it's on 2678 * the per-node partial list. 2679 */ 2680 static inline bool slab_test_node_partial(const struct slab *slab) 2681 { 2682 return folio_test_workingset(slab_folio(slab)); 2683 } 2684 2685 static inline void slab_set_node_partial(struct slab *slab) 2686 { 2687 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2688 } 2689 2690 static inline void slab_clear_node_partial(struct slab *slab) 2691 { 2692 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0)); 2693 } 2694 2695 /* 2696 * Management of partially allocated slabs. 2697 */ 2698 static inline void 2699 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail) 2700 { 2701 n->nr_partial++; 2702 if (tail == DEACTIVATE_TO_TAIL) 2703 list_add_tail(&slab->slab_list, &n->partial); 2704 else 2705 list_add(&slab->slab_list, &n->partial); 2706 slab_set_node_partial(slab); 2707 } 2708 2709 static inline void add_partial(struct kmem_cache_node *n, 2710 struct slab *slab, int tail) 2711 { 2712 lockdep_assert_held(&n->list_lock); 2713 __add_partial(n, slab, tail); 2714 } 2715 2716 static inline void remove_partial(struct kmem_cache_node *n, 2717 struct slab *slab) 2718 { 2719 lockdep_assert_held(&n->list_lock); 2720 list_del(&slab->slab_list); 2721 slab_clear_node_partial(slab); 2722 n->nr_partial--; 2723 } 2724 2725 /* 2726 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a 2727 * slab from the n->partial list. Remove only a single object from the slab, do 2728 * the alloc_debug_processing() checks and leave the slab on the list, or move 2729 * it to full list if it was the last free object. 2730 */ 2731 static void *alloc_single_from_partial(struct kmem_cache *s, 2732 struct kmem_cache_node *n, struct slab *slab, int orig_size) 2733 { 2734 void *object; 2735 2736 lockdep_assert_held(&n->list_lock); 2737 2738 object = slab->freelist; 2739 slab->freelist = get_freepointer(s, object); 2740 slab->inuse++; 2741 2742 if (!alloc_debug_processing(s, slab, object, orig_size)) { 2743 if (folio_test_slab(slab_folio(slab))) 2744 remove_partial(n, slab); 2745 return NULL; 2746 } 2747 2748 if (slab->inuse == slab->objects) { 2749 remove_partial(n, slab); 2750 add_full(s, n, slab); 2751 } 2752 2753 return object; 2754 } 2755 2756 /* 2757 * Called only for kmem_cache_debug() caches to allocate from a freshly 2758 * allocated slab. Allocate a single object instead of whole freelist 2759 * and put the slab to the partial (or full) list. 2760 */ 2761 static void *alloc_single_from_new_slab(struct kmem_cache *s, 2762 struct slab *slab, int orig_size) 2763 { 2764 int nid = slab_nid(slab); 2765 struct kmem_cache_node *n = get_node(s, nid); 2766 unsigned long flags; 2767 void *object; 2768 2769 2770 object = slab->freelist; 2771 slab->freelist = get_freepointer(s, object); 2772 slab->inuse = 1; 2773 2774 if (!alloc_debug_processing(s, slab, object, orig_size)) 2775 /* 2776 * It's not really expected that this would fail on a 2777 * freshly allocated slab, but a concurrent memory 2778 * corruption in theory could cause that. 2779 */ 2780 return NULL; 2781 2782 spin_lock_irqsave(&n->list_lock, flags); 2783 2784 if (slab->inuse == slab->objects) 2785 add_full(s, n, slab); 2786 else 2787 add_partial(n, slab, DEACTIVATE_TO_HEAD); 2788 2789 inc_slabs_node(s, nid, slab->objects); 2790 spin_unlock_irqrestore(&n->list_lock, flags); 2791 2792 return object; 2793 } 2794 2795 #ifdef CONFIG_SLUB_CPU_PARTIAL 2796 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain); 2797 #else 2798 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab, 2799 int drain) { } 2800 #endif 2801 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags); 2802 2803 /* 2804 * Try to allocate a partial slab from a specific node. 2805 */ 2806 static struct slab *get_partial_node(struct kmem_cache *s, 2807 struct kmem_cache_node *n, 2808 struct partial_context *pc) 2809 { 2810 struct slab *slab, *slab2, *partial = NULL; 2811 unsigned long flags; 2812 unsigned int partial_slabs = 0; 2813 2814 /* 2815 * Racy check. If we mistakenly see no partial slabs then we 2816 * just allocate an empty slab. If we mistakenly try to get a 2817 * partial slab and there is none available then get_partial() 2818 * will return NULL. 2819 */ 2820 if (!n || !n->nr_partial) 2821 return NULL; 2822 2823 spin_lock_irqsave(&n->list_lock, flags); 2824 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) { 2825 if (!pfmemalloc_match(slab, pc->flags)) 2826 continue; 2827 2828 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 2829 void *object = alloc_single_from_partial(s, n, slab, 2830 pc->orig_size); 2831 if (object) { 2832 partial = slab; 2833 pc->object = object; 2834 break; 2835 } 2836 continue; 2837 } 2838 2839 remove_partial(n, slab); 2840 2841 if (!partial) { 2842 partial = slab; 2843 stat(s, ALLOC_FROM_PARTIAL); 2844 2845 if ((slub_get_cpu_partial(s) == 0)) { 2846 break; 2847 } 2848 } else { 2849 put_cpu_partial(s, slab, 0); 2850 stat(s, CPU_PARTIAL_NODE); 2851 2852 if (++partial_slabs > slub_get_cpu_partial(s) / 2) { 2853 break; 2854 } 2855 } 2856 } 2857 spin_unlock_irqrestore(&n->list_lock, flags); 2858 return partial; 2859 } 2860 2861 /* 2862 * Get a slab from somewhere. Search in increasing NUMA distances. 2863 */ 2864 static struct slab *get_any_partial(struct kmem_cache *s, 2865 struct partial_context *pc) 2866 { 2867 #ifdef CONFIG_NUMA 2868 struct zonelist *zonelist; 2869 struct zoneref *z; 2870 struct zone *zone; 2871 enum zone_type highest_zoneidx = gfp_zone(pc->flags); 2872 struct slab *slab; 2873 unsigned int cpuset_mems_cookie; 2874 2875 /* 2876 * The defrag ratio allows a configuration of the tradeoffs between 2877 * inter node defragmentation and node local allocations. A lower 2878 * defrag_ratio increases the tendency to do local allocations 2879 * instead of attempting to obtain partial slabs from other nodes. 2880 * 2881 * If the defrag_ratio is set to 0 then kmalloc() always 2882 * returns node local objects. If the ratio is higher then kmalloc() 2883 * may return off node objects because partial slabs are obtained 2884 * from other nodes and filled up. 2885 * 2886 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 2887 * (which makes defrag_ratio = 1000) then every (well almost) 2888 * allocation will first attempt to defrag slab caches on other nodes. 2889 * This means scanning over all nodes to look for partial slabs which 2890 * may be expensive if we do it every time we are trying to find a slab 2891 * with available objects. 2892 */ 2893 if (!s->remote_node_defrag_ratio || 2894 get_cycles() % 1024 > s->remote_node_defrag_ratio) 2895 return NULL; 2896 2897 do { 2898 cpuset_mems_cookie = read_mems_allowed_begin(); 2899 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags); 2900 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) { 2901 struct kmem_cache_node *n; 2902 2903 n = get_node(s, zone_to_nid(zone)); 2904 2905 if (n && cpuset_zone_allowed(zone, pc->flags) && 2906 n->nr_partial > s->min_partial) { 2907 slab = get_partial_node(s, n, pc); 2908 if (slab) { 2909 /* 2910 * Don't check read_mems_allowed_retry() 2911 * here - if mems_allowed was updated in 2912 * parallel, that was a harmless race 2913 * between allocation and the cpuset 2914 * update 2915 */ 2916 return slab; 2917 } 2918 } 2919 } 2920 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 2921 #endif /* CONFIG_NUMA */ 2922 return NULL; 2923 } 2924 2925 /* 2926 * Get a partial slab, lock it and return it. 2927 */ 2928 static struct slab *get_partial(struct kmem_cache *s, int node, 2929 struct partial_context *pc) 2930 { 2931 struct slab *slab; 2932 int searchnode = node; 2933 2934 if (node == NUMA_NO_NODE) 2935 searchnode = numa_mem_id(); 2936 2937 slab = get_partial_node(s, get_node(s, searchnode), pc); 2938 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE))) 2939 return slab; 2940 2941 return get_any_partial(s, pc); 2942 } 2943 2944 #ifndef CONFIG_SLUB_TINY 2945 2946 #ifdef CONFIG_PREEMPTION 2947 /* 2948 * Calculate the next globally unique transaction for disambiguation 2949 * during cmpxchg. The transactions start with the cpu number and are then 2950 * incremented by CONFIG_NR_CPUS. 2951 */ 2952 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 2953 #else 2954 /* 2955 * No preemption supported therefore also no need to check for 2956 * different cpus. 2957 */ 2958 #define TID_STEP 1 2959 #endif /* CONFIG_PREEMPTION */ 2960 2961 static inline unsigned long next_tid(unsigned long tid) 2962 { 2963 return tid + TID_STEP; 2964 } 2965 2966 #ifdef SLUB_DEBUG_CMPXCHG 2967 static inline unsigned int tid_to_cpu(unsigned long tid) 2968 { 2969 return tid % TID_STEP; 2970 } 2971 2972 static inline unsigned long tid_to_event(unsigned long tid) 2973 { 2974 return tid / TID_STEP; 2975 } 2976 #endif 2977 2978 static inline unsigned int init_tid(int cpu) 2979 { 2980 return cpu; 2981 } 2982 2983 static inline void note_cmpxchg_failure(const char *n, 2984 const struct kmem_cache *s, unsigned long tid) 2985 { 2986 #ifdef SLUB_DEBUG_CMPXCHG 2987 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 2988 2989 pr_info("%s %s: cmpxchg redo ", n, s->name); 2990 2991 #ifdef CONFIG_PREEMPTION 2992 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 2993 pr_warn("due to cpu change %d -> %d\n", 2994 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 2995 else 2996 #endif 2997 if (tid_to_event(tid) != tid_to_event(actual_tid)) 2998 pr_warn("due to cpu running other code. Event %ld->%ld\n", 2999 tid_to_event(tid), tid_to_event(actual_tid)); 3000 else 3001 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 3002 actual_tid, tid, next_tid(tid)); 3003 #endif 3004 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 3005 } 3006 3007 static void init_kmem_cache_cpus(struct kmem_cache *s) 3008 { 3009 int cpu; 3010 struct kmem_cache_cpu *c; 3011 3012 for_each_possible_cpu(cpu) { 3013 c = per_cpu_ptr(s->cpu_slab, cpu); 3014 local_lock_init(&c->lock); 3015 c->tid = init_tid(cpu); 3016 } 3017 } 3018 3019 /* 3020 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist, 3021 * unfreezes the slabs and puts it on the proper list. 3022 * Assumes the slab has been already safely taken away from kmem_cache_cpu 3023 * by the caller. 3024 */ 3025 static void deactivate_slab(struct kmem_cache *s, struct slab *slab, 3026 void *freelist) 3027 { 3028 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 3029 int free_delta = 0; 3030 void *nextfree, *freelist_iter, *freelist_tail; 3031 int tail = DEACTIVATE_TO_HEAD; 3032 unsigned long flags = 0; 3033 struct slab new; 3034 struct slab old; 3035 3036 if (READ_ONCE(slab->freelist)) { 3037 stat(s, DEACTIVATE_REMOTE_FREES); 3038 tail = DEACTIVATE_TO_TAIL; 3039 } 3040 3041 /* 3042 * Stage one: Count the objects on cpu's freelist as free_delta and 3043 * remember the last object in freelist_tail for later splicing. 3044 */ 3045 freelist_tail = NULL; 3046 freelist_iter = freelist; 3047 while (freelist_iter) { 3048 nextfree = get_freepointer(s, freelist_iter); 3049 3050 /* 3051 * If 'nextfree' is invalid, it is possible that the object at 3052 * 'freelist_iter' is already corrupted. So isolate all objects 3053 * starting at 'freelist_iter' by skipping them. 3054 */ 3055 if (freelist_corrupted(s, slab, &freelist_iter, nextfree)) 3056 break; 3057 3058 freelist_tail = freelist_iter; 3059 free_delta++; 3060 3061 freelist_iter = nextfree; 3062 } 3063 3064 /* 3065 * Stage two: Unfreeze the slab while splicing the per-cpu 3066 * freelist to the head of slab's freelist. 3067 */ 3068 do { 3069 old.freelist = READ_ONCE(slab->freelist); 3070 old.counters = READ_ONCE(slab->counters); 3071 VM_BUG_ON(!old.frozen); 3072 3073 /* Determine target state of the slab */ 3074 new.counters = old.counters; 3075 new.frozen = 0; 3076 if (freelist_tail) { 3077 new.inuse -= free_delta; 3078 set_freepointer(s, freelist_tail, old.freelist); 3079 new.freelist = freelist; 3080 } else { 3081 new.freelist = old.freelist; 3082 } 3083 } while (!slab_update_freelist(s, slab, 3084 old.freelist, old.counters, 3085 new.freelist, new.counters, 3086 "unfreezing slab")); 3087 3088 /* 3089 * Stage three: Manipulate the slab list based on the updated state. 3090 */ 3091 if (!new.inuse && n->nr_partial >= s->min_partial) { 3092 stat(s, DEACTIVATE_EMPTY); 3093 discard_slab(s, slab); 3094 stat(s, FREE_SLAB); 3095 } else if (new.freelist) { 3096 spin_lock_irqsave(&n->list_lock, flags); 3097 add_partial(n, slab, tail); 3098 spin_unlock_irqrestore(&n->list_lock, flags); 3099 stat(s, tail); 3100 } else { 3101 stat(s, DEACTIVATE_FULL); 3102 } 3103 } 3104 3105 #ifdef CONFIG_SLUB_CPU_PARTIAL 3106 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab) 3107 { 3108 struct kmem_cache_node *n = NULL, *n2 = NULL; 3109 struct slab *slab, *slab_to_discard = NULL; 3110 unsigned long flags = 0; 3111 3112 while (partial_slab) { 3113 slab = partial_slab; 3114 partial_slab = slab->next; 3115 3116 n2 = get_node(s, slab_nid(slab)); 3117 if (n != n2) { 3118 if (n) 3119 spin_unlock_irqrestore(&n->list_lock, flags); 3120 3121 n = n2; 3122 spin_lock_irqsave(&n->list_lock, flags); 3123 } 3124 3125 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) { 3126 slab->next = slab_to_discard; 3127 slab_to_discard = slab; 3128 } else { 3129 add_partial(n, slab, DEACTIVATE_TO_TAIL); 3130 stat(s, FREE_ADD_PARTIAL); 3131 } 3132 } 3133 3134 if (n) 3135 spin_unlock_irqrestore(&n->list_lock, flags); 3136 3137 while (slab_to_discard) { 3138 slab = slab_to_discard; 3139 slab_to_discard = slab_to_discard->next; 3140 3141 stat(s, DEACTIVATE_EMPTY); 3142 discard_slab(s, slab); 3143 stat(s, FREE_SLAB); 3144 } 3145 } 3146 3147 /* 3148 * Put all the cpu partial slabs to the node partial list. 3149 */ 3150 static void put_partials(struct kmem_cache *s) 3151 { 3152 struct slab *partial_slab; 3153 unsigned long flags; 3154 3155 local_lock_irqsave(&s->cpu_slab->lock, flags); 3156 partial_slab = this_cpu_read(s->cpu_slab->partial); 3157 this_cpu_write(s->cpu_slab->partial, NULL); 3158 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3159 3160 if (partial_slab) 3161 __put_partials(s, partial_slab); 3162 } 3163 3164 static void put_partials_cpu(struct kmem_cache *s, 3165 struct kmem_cache_cpu *c) 3166 { 3167 struct slab *partial_slab; 3168 3169 partial_slab = slub_percpu_partial(c); 3170 c->partial = NULL; 3171 3172 if (partial_slab) 3173 __put_partials(s, partial_slab); 3174 } 3175 3176 /* 3177 * Put a slab into a partial slab slot if available. 3178 * 3179 * If we did not find a slot then simply move all the partials to the 3180 * per node partial list. 3181 */ 3182 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain) 3183 { 3184 struct slab *oldslab; 3185 struct slab *slab_to_put = NULL; 3186 unsigned long flags; 3187 int slabs = 0; 3188 3189 local_lock_irqsave(&s->cpu_slab->lock, flags); 3190 3191 oldslab = this_cpu_read(s->cpu_slab->partial); 3192 3193 if (oldslab) { 3194 if (drain && oldslab->slabs >= s->cpu_partial_slabs) { 3195 /* 3196 * Partial array is full. Move the existing set to the 3197 * per node partial list. Postpone the actual unfreezing 3198 * outside of the critical section. 3199 */ 3200 slab_to_put = oldslab; 3201 oldslab = NULL; 3202 } else { 3203 slabs = oldslab->slabs; 3204 } 3205 } 3206 3207 slabs++; 3208 3209 slab->slabs = slabs; 3210 slab->next = oldslab; 3211 3212 this_cpu_write(s->cpu_slab->partial, slab); 3213 3214 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3215 3216 if (slab_to_put) { 3217 __put_partials(s, slab_to_put); 3218 stat(s, CPU_PARTIAL_DRAIN); 3219 } 3220 } 3221 3222 #else /* CONFIG_SLUB_CPU_PARTIAL */ 3223 3224 static inline void put_partials(struct kmem_cache *s) { } 3225 static inline void put_partials_cpu(struct kmem_cache *s, 3226 struct kmem_cache_cpu *c) { } 3227 3228 #endif /* CONFIG_SLUB_CPU_PARTIAL */ 3229 3230 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 3231 { 3232 unsigned long flags; 3233 struct slab *slab; 3234 void *freelist; 3235 3236 local_lock_irqsave(&s->cpu_slab->lock, flags); 3237 3238 slab = c->slab; 3239 freelist = c->freelist; 3240 3241 c->slab = NULL; 3242 c->freelist = NULL; 3243 c->tid = next_tid(c->tid); 3244 3245 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3246 3247 if (slab) { 3248 deactivate_slab(s, slab, freelist); 3249 stat(s, CPUSLAB_FLUSH); 3250 } 3251 } 3252 3253 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 3254 { 3255 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3256 void *freelist = c->freelist; 3257 struct slab *slab = c->slab; 3258 3259 c->slab = NULL; 3260 c->freelist = NULL; 3261 c->tid = next_tid(c->tid); 3262 3263 if (slab) { 3264 deactivate_slab(s, slab, freelist); 3265 stat(s, CPUSLAB_FLUSH); 3266 } 3267 3268 put_partials_cpu(s, c); 3269 } 3270 3271 struct slub_flush_work { 3272 struct work_struct work; 3273 struct kmem_cache *s; 3274 bool skip; 3275 }; 3276 3277 /* 3278 * Flush cpu slab. 3279 * 3280 * Called from CPU work handler with migration disabled. 3281 */ 3282 static void flush_cpu_slab(struct work_struct *w) 3283 { 3284 struct kmem_cache *s; 3285 struct kmem_cache_cpu *c; 3286 struct slub_flush_work *sfw; 3287 3288 sfw = container_of(w, struct slub_flush_work, work); 3289 3290 s = sfw->s; 3291 c = this_cpu_ptr(s->cpu_slab); 3292 3293 if (c->slab) 3294 flush_slab(s, c); 3295 3296 put_partials(s); 3297 } 3298 3299 static bool has_cpu_slab(int cpu, struct kmem_cache *s) 3300 { 3301 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 3302 3303 return c->slab || slub_percpu_partial(c); 3304 } 3305 3306 static DEFINE_MUTEX(flush_lock); 3307 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); 3308 3309 static void flush_all_cpus_locked(struct kmem_cache *s) 3310 { 3311 struct slub_flush_work *sfw; 3312 unsigned int cpu; 3313 3314 lockdep_assert_cpus_held(); 3315 mutex_lock(&flush_lock); 3316 3317 for_each_online_cpu(cpu) { 3318 sfw = &per_cpu(slub_flush, cpu); 3319 if (!has_cpu_slab(cpu, s)) { 3320 sfw->skip = true; 3321 continue; 3322 } 3323 INIT_WORK(&sfw->work, flush_cpu_slab); 3324 sfw->skip = false; 3325 sfw->s = s; 3326 queue_work_on(cpu, flushwq, &sfw->work); 3327 } 3328 3329 for_each_online_cpu(cpu) { 3330 sfw = &per_cpu(slub_flush, cpu); 3331 if (sfw->skip) 3332 continue; 3333 flush_work(&sfw->work); 3334 } 3335 3336 mutex_unlock(&flush_lock); 3337 } 3338 3339 static void flush_all(struct kmem_cache *s) 3340 { 3341 cpus_read_lock(); 3342 flush_all_cpus_locked(s); 3343 cpus_read_unlock(); 3344 } 3345 3346 /* 3347 * Use the cpu notifier to insure that the cpu slabs are flushed when 3348 * necessary. 3349 */ 3350 static int slub_cpu_dead(unsigned int cpu) 3351 { 3352 struct kmem_cache *s; 3353 3354 mutex_lock(&slab_mutex); 3355 list_for_each_entry(s, &slab_caches, list) 3356 __flush_cpu_slab(s, cpu); 3357 mutex_unlock(&slab_mutex); 3358 return 0; 3359 } 3360 3361 #else /* CONFIG_SLUB_TINY */ 3362 static inline void flush_all_cpus_locked(struct kmem_cache *s) { } 3363 static inline void flush_all(struct kmem_cache *s) { } 3364 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { } 3365 static inline int slub_cpu_dead(unsigned int cpu) { return 0; } 3366 #endif /* CONFIG_SLUB_TINY */ 3367 3368 /* 3369 * Check if the objects in a per cpu structure fit numa 3370 * locality expectations. 3371 */ 3372 static inline int node_match(struct slab *slab, int node) 3373 { 3374 #ifdef CONFIG_NUMA 3375 if (node != NUMA_NO_NODE && slab_nid(slab) != node) 3376 return 0; 3377 #endif 3378 return 1; 3379 } 3380 3381 #ifdef CONFIG_SLUB_DEBUG 3382 static int count_free(struct slab *slab) 3383 { 3384 return slab->objects - slab->inuse; 3385 } 3386 3387 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 3388 { 3389 return atomic_long_read(&n->total_objects); 3390 } 3391 3392 /* Supports checking bulk free of a constructed freelist */ 3393 static inline bool free_debug_processing(struct kmem_cache *s, 3394 struct slab *slab, void *head, void *tail, int *bulk_cnt, 3395 unsigned long addr, depot_stack_handle_t handle) 3396 { 3397 bool checks_ok = false; 3398 void *object = head; 3399 int cnt = 0; 3400 3401 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3402 if (!check_slab(s, slab)) 3403 goto out; 3404 } 3405 3406 if (slab->inuse < *bulk_cnt) { 3407 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n", 3408 slab->inuse, *bulk_cnt); 3409 goto out; 3410 } 3411 3412 next_object: 3413 3414 if (++cnt > *bulk_cnt) 3415 goto out_cnt; 3416 3417 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 3418 if (!free_consistency_checks(s, slab, object, addr)) 3419 goto out; 3420 } 3421 3422 if (s->flags & SLAB_STORE_USER) 3423 set_track_update(s, object, TRACK_FREE, addr, handle); 3424 trace(s, slab, object, 0); 3425 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 3426 init_object(s, object, SLUB_RED_INACTIVE); 3427 3428 /* Reached end of constructed freelist yet? */ 3429 if (object != tail) { 3430 object = get_freepointer(s, object); 3431 goto next_object; 3432 } 3433 checks_ok = true; 3434 3435 out_cnt: 3436 if (cnt != *bulk_cnt) { 3437 slab_err(s, slab, "Bulk free expected %d objects but found %d\n", 3438 *bulk_cnt, cnt); 3439 *bulk_cnt = cnt; 3440 } 3441 3442 out: 3443 3444 if (!checks_ok) 3445 slab_fix(s, "Object at 0x%p not freed", object); 3446 3447 return checks_ok; 3448 } 3449 #endif /* CONFIG_SLUB_DEBUG */ 3450 3451 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS) 3452 static unsigned long count_partial(struct kmem_cache_node *n, 3453 int (*get_count)(struct slab *)) 3454 { 3455 unsigned long flags; 3456 unsigned long x = 0; 3457 struct slab *slab; 3458 3459 spin_lock_irqsave(&n->list_lock, flags); 3460 list_for_each_entry(slab, &n->partial, slab_list) 3461 x += get_count(slab); 3462 spin_unlock_irqrestore(&n->list_lock, flags); 3463 return x; 3464 } 3465 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */ 3466 3467 #ifdef CONFIG_SLUB_DEBUG 3468 #define MAX_PARTIAL_TO_SCAN 10000 3469 3470 static unsigned long count_partial_free_approx(struct kmem_cache_node *n) 3471 { 3472 unsigned long flags; 3473 unsigned long x = 0; 3474 struct slab *slab; 3475 3476 spin_lock_irqsave(&n->list_lock, flags); 3477 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) { 3478 list_for_each_entry(slab, &n->partial, slab_list) 3479 x += slab->objects - slab->inuse; 3480 } else { 3481 /* 3482 * For a long list, approximate the total count of objects in 3483 * it to meet the limit on the number of slabs to scan. 3484 * Scan from both the list's head and tail for better accuracy. 3485 */ 3486 unsigned long scanned = 0; 3487 3488 list_for_each_entry(slab, &n->partial, slab_list) { 3489 x += slab->objects - slab->inuse; 3490 if (++scanned == MAX_PARTIAL_TO_SCAN / 2) 3491 break; 3492 } 3493 list_for_each_entry_reverse(slab, &n->partial, slab_list) { 3494 x += slab->objects - slab->inuse; 3495 if (++scanned == MAX_PARTIAL_TO_SCAN) 3496 break; 3497 } 3498 x = mult_frac(x, n->nr_partial, scanned); 3499 x = min(x, node_nr_objs(n)); 3500 } 3501 spin_unlock_irqrestore(&n->list_lock, flags); 3502 return x; 3503 } 3504 3505 static noinline void 3506 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 3507 { 3508 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 3509 DEFAULT_RATELIMIT_BURST); 3510 int cpu = raw_smp_processor_id(); 3511 int node; 3512 struct kmem_cache_node *n; 3513 3514 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 3515 return; 3516 3517 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n", 3518 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags); 3519 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", 3520 s->name, s->object_size, s->size, oo_order(s->oo), 3521 oo_order(s->min)); 3522 3523 if (oo_order(s->min) > get_order(s->object_size)) 3524 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n", 3525 s->name); 3526 3527 for_each_kmem_cache_node(s, node, n) { 3528 unsigned long nr_slabs; 3529 unsigned long nr_objs; 3530 unsigned long nr_free; 3531 3532 nr_free = count_partial_free_approx(n); 3533 nr_slabs = node_nr_slabs(n); 3534 nr_objs = node_nr_objs(n); 3535 3536 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 3537 node, nr_slabs, nr_objs, nr_free); 3538 } 3539 } 3540 #else /* CONFIG_SLUB_DEBUG */ 3541 static inline void 3542 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { } 3543 #endif 3544 3545 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags) 3546 { 3547 if (unlikely(slab_test_pfmemalloc(slab))) 3548 return gfp_pfmemalloc_allowed(gfpflags); 3549 3550 return true; 3551 } 3552 3553 #ifndef CONFIG_SLUB_TINY 3554 static inline bool 3555 __update_cpu_freelist_fast(struct kmem_cache *s, 3556 void *freelist_old, void *freelist_new, 3557 unsigned long tid) 3558 { 3559 freelist_aba_t old = { .freelist = freelist_old, .counter = tid }; 3560 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) }; 3561 3562 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full, 3563 &old.full, new.full); 3564 } 3565 3566 /* 3567 * Check the slab->freelist and either transfer the freelist to the 3568 * per cpu freelist or deactivate the slab. 3569 * 3570 * The slab is still frozen if the return value is not NULL. 3571 * 3572 * If this function returns NULL then the slab has been unfrozen. 3573 */ 3574 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab) 3575 { 3576 struct slab new; 3577 unsigned long counters; 3578 void *freelist; 3579 3580 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3581 3582 do { 3583 freelist = slab->freelist; 3584 counters = slab->counters; 3585 3586 new.counters = counters; 3587 3588 new.inuse = slab->objects; 3589 new.frozen = freelist != NULL; 3590 3591 } while (!__slab_update_freelist(s, slab, 3592 freelist, counters, 3593 NULL, new.counters, 3594 "get_freelist")); 3595 3596 return freelist; 3597 } 3598 3599 /* 3600 * Freeze the partial slab and return the pointer to the freelist. 3601 */ 3602 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab) 3603 { 3604 struct slab new; 3605 unsigned long counters; 3606 void *freelist; 3607 3608 do { 3609 freelist = slab->freelist; 3610 counters = slab->counters; 3611 3612 new.counters = counters; 3613 VM_BUG_ON(new.frozen); 3614 3615 new.inuse = slab->objects; 3616 new.frozen = 1; 3617 3618 } while (!slab_update_freelist(s, slab, 3619 freelist, counters, 3620 NULL, new.counters, 3621 "freeze_slab")); 3622 3623 return freelist; 3624 } 3625 3626 /* 3627 * Slow path. The lockless freelist is empty or we need to perform 3628 * debugging duties. 3629 * 3630 * Processing is still very fast if new objects have been freed to the 3631 * regular freelist. In that case we simply take over the regular freelist 3632 * as the lockless freelist and zap the regular freelist. 3633 * 3634 * If that is not working then we fall back to the partial lists. We take the 3635 * first element of the freelist as the object to allocate now and move the 3636 * rest of the freelist to the lockless freelist. 3637 * 3638 * And if we were unable to get a new slab from the partial slab lists then 3639 * we need to allocate a new slab. This is the slowest path since it involves 3640 * a call to the page allocator and the setup of a new slab. 3641 * 3642 * Version of __slab_alloc to use when we know that preemption is 3643 * already disabled (which is the case for bulk allocation). 3644 */ 3645 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3646 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3647 { 3648 void *freelist; 3649 struct slab *slab; 3650 unsigned long flags; 3651 struct partial_context pc; 3652 bool try_thisnode = true; 3653 3654 stat(s, ALLOC_SLOWPATH); 3655 3656 reread_slab: 3657 3658 slab = READ_ONCE(c->slab); 3659 if (!slab) { 3660 /* 3661 * if the node is not online or has no normal memory, just 3662 * ignore the node constraint 3663 */ 3664 if (unlikely(node != NUMA_NO_NODE && 3665 !node_isset(node, slab_nodes))) 3666 node = NUMA_NO_NODE; 3667 goto new_slab; 3668 } 3669 3670 if (unlikely(!node_match(slab, node))) { 3671 /* 3672 * same as above but node_match() being false already 3673 * implies node != NUMA_NO_NODE 3674 */ 3675 if (!node_isset(node, slab_nodes)) { 3676 node = NUMA_NO_NODE; 3677 } else { 3678 stat(s, ALLOC_NODE_MISMATCH); 3679 goto deactivate_slab; 3680 } 3681 } 3682 3683 /* 3684 * By rights, we should be searching for a slab page that was 3685 * PFMEMALLOC but right now, we are losing the pfmemalloc 3686 * information when the page leaves the per-cpu allocator 3687 */ 3688 if (unlikely(!pfmemalloc_match(slab, gfpflags))) 3689 goto deactivate_slab; 3690 3691 /* must check again c->slab in case we got preempted and it changed */ 3692 local_lock_irqsave(&s->cpu_slab->lock, flags); 3693 if (unlikely(slab != c->slab)) { 3694 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3695 goto reread_slab; 3696 } 3697 freelist = c->freelist; 3698 if (freelist) 3699 goto load_freelist; 3700 3701 freelist = get_freelist(s, slab); 3702 3703 if (!freelist) { 3704 c->slab = NULL; 3705 c->tid = next_tid(c->tid); 3706 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3707 stat(s, DEACTIVATE_BYPASS); 3708 goto new_slab; 3709 } 3710 3711 stat(s, ALLOC_REFILL); 3712 3713 load_freelist: 3714 3715 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock)); 3716 3717 /* 3718 * freelist is pointing to the list of objects to be used. 3719 * slab is pointing to the slab from which the objects are obtained. 3720 * That slab must be frozen for per cpu allocations to work. 3721 */ 3722 VM_BUG_ON(!c->slab->frozen); 3723 c->freelist = get_freepointer(s, freelist); 3724 c->tid = next_tid(c->tid); 3725 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3726 return freelist; 3727 3728 deactivate_slab: 3729 3730 local_lock_irqsave(&s->cpu_slab->lock, flags); 3731 if (slab != c->slab) { 3732 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3733 goto reread_slab; 3734 } 3735 freelist = c->freelist; 3736 c->slab = NULL; 3737 c->freelist = NULL; 3738 c->tid = next_tid(c->tid); 3739 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3740 deactivate_slab(s, slab, freelist); 3741 3742 new_slab: 3743 3744 #ifdef CONFIG_SLUB_CPU_PARTIAL 3745 while (slub_percpu_partial(c)) { 3746 local_lock_irqsave(&s->cpu_slab->lock, flags); 3747 if (unlikely(c->slab)) { 3748 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3749 goto reread_slab; 3750 } 3751 if (unlikely(!slub_percpu_partial(c))) { 3752 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3753 /* we were preempted and partial list got empty */ 3754 goto new_objects; 3755 } 3756 3757 slab = slub_percpu_partial(c); 3758 slub_set_percpu_partial(c, slab); 3759 3760 if (likely(node_match(slab, node) && 3761 pfmemalloc_match(slab, gfpflags))) { 3762 c->slab = slab; 3763 freelist = get_freelist(s, slab); 3764 VM_BUG_ON(!freelist); 3765 stat(s, CPU_PARTIAL_ALLOC); 3766 goto load_freelist; 3767 } 3768 3769 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3770 3771 slab->next = NULL; 3772 __put_partials(s, slab); 3773 } 3774 #endif 3775 3776 new_objects: 3777 3778 pc.flags = gfpflags; 3779 /* 3780 * When a preferred node is indicated but no __GFP_THISNODE 3781 * 3782 * 1) try to get a partial slab from target node only by having 3783 * __GFP_THISNODE in pc.flags for get_partial() 3784 * 2) if 1) failed, try to allocate a new slab from target node with 3785 * GPF_NOWAIT | __GFP_THISNODE opportunistically 3786 * 3) if 2) failed, retry with original gfpflags which will allow 3787 * get_partial() try partial lists of other nodes before potentially 3788 * allocating new page from other nodes 3789 */ 3790 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3791 && try_thisnode)) 3792 pc.flags = GFP_NOWAIT | __GFP_THISNODE; 3793 3794 pc.orig_size = orig_size; 3795 slab = get_partial(s, node, &pc); 3796 if (slab) { 3797 if (kmem_cache_debug(s)) { 3798 freelist = pc.object; 3799 /* 3800 * For debug caches here we had to go through 3801 * alloc_single_from_partial() so just store the 3802 * tracking info and return the object. 3803 */ 3804 if (s->flags & SLAB_STORE_USER) 3805 set_track(s, freelist, TRACK_ALLOC, addr); 3806 3807 return freelist; 3808 } 3809 3810 freelist = freeze_slab(s, slab); 3811 goto retry_load_slab; 3812 } 3813 3814 slub_put_cpu_ptr(s->cpu_slab); 3815 slab = new_slab(s, pc.flags, node); 3816 c = slub_get_cpu_ptr(s->cpu_slab); 3817 3818 if (unlikely(!slab)) { 3819 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE) 3820 && try_thisnode) { 3821 try_thisnode = false; 3822 goto new_objects; 3823 } 3824 slab_out_of_memory(s, gfpflags, node); 3825 return NULL; 3826 } 3827 3828 stat(s, ALLOC_SLAB); 3829 3830 if (kmem_cache_debug(s)) { 3831 freelist = alloc_single_from_new_slab(s, slab, orig_size); 3832 3833 if (unlikely(!freelist)) 3834 goto new_objects; 3835 3836 if (s->flags & SLAB_STORE_USER) 3837 set_track(s, freelist, TRACK_ALLOC, addr); 3838 3839 return freelist; 3840 } 3841 3842 /* 3843 * No other reference to the slab yet so we can 3844 * muck around with it freely without cmpxchg 3845 */ 3846 freelist = slab->freelist; 3847 slab->freelist = NULL; 3848 slab->inuse = slab->objects; 3849 slab->frozen = 1; 3850 3851 inc_slabs_node(s, slab_nid(slab), slab->objects); 3852 3853 if (unlikely(!pfmemalloc_match(slab, gfpflags))) { 3854 /* 3855 * For !pfmemalloc_match() case we don't load freelist so that 3856 * we don't make further mismatched allocations easier. 3857 */ 3858 deactivate_slab(s, slab, get_freepointer(s, freelist)); 3859 return freelist; 3860 } 3861 3862 retry_load_slab: 3863 3864 local_lock_irqsave(&s->cpu_slab->lock, flags); 3865 if (unlikely(c->slab)) { 3866 void *flush_freelist = c->freelist; 3867 struct slab *flush_slab = c->slab; 3868 3869 c->slab = NULL; 3870 c->freelist = NULL; 3871 c->tid = next_tid(c->tid); 3872 3873 local_unlock_irqrestore(&s->cpu_slab->lock, flags); 3874 3875 deactivate_slab(s, flush_slab, flush_freelist); 3876 3877 stat(s, CPUSLAB_FLUSH); 3878 3879 goto retry_load_slab; 3880 } 3881 c->slab = slab; 3882 3883 goto load_freelist; 3884 } 3885 3886 /* 3887 * A wrapper for ___slab_alloc() for contexts where preemption is not yet 3888 * disabled. Compensates for possible cpu changes by refetching the per cpu area 3889 * pointer. 3890 */ 3891 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 3892 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size) 3893 { 3894 void *p; 3895 3896 #ifdef CONFIG_PREEMPT_COUNT 3897 /* 3898 * We may have been preempted and rescheduled on a different 3899 * cpu before disabling preemption. Need to reload cpu area 3900 * pointer. 3901 */ 3902 c = slub_get_cpu_ptr(s->cpu_slab); 3903 #endif 3904 3905 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size); 3906 #ifdef CONFIG_PREEMPT_COUNT 3907 slub_put_cpu_ptr(s->cpu_slab); 3908 #endif 3909 return p; 3910 } 3911 3912 static __always_inline void *__slab_alloc_node(struct kmem_cache *s, 3913 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 3914 { 3915 struct kmem_cache_cpu *c; 3916 struct slab *slab; 3917 unsigned long tid; 3918 void *object; 3919 3920 redo: 3921 /* 3922 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 3923 * enabled. We may switch back and forth between cpus while 3924 * reading from one cpu area. That does not matter as long 3925 * as we end up on the original cpu again when doing the cmpxchg. 3926 * 3927 * We must guarantee that tid and kmem_cache_cpu are retrieved on the 3928 * same cpu. We read first the kmem_cache_cpu pointer and use it to read 3929 * the tid. If we are preempted and switched to another cpu between the 3930 * two reads, it's OK as the two are still associated with the same cpu 3931 * and cmpxchg later will validate the cpu. 3932 */ 3933 c = raw_cpu_ptr(s->cpu_slab); 3934 tid = READ_ONCE(c->tid); 3935 3936 /* 3937 * Irqless object alloc/free algorithm used here depends on sequence 3938 * of fetching cpu_slab's data. tid should be fetched before anything 3939 * on c to guarantee that object and slab associated with previous tid 3940 * won't be used with current tid. If we fetch tid first, object and 3941 * slab could be one associated with next tid and our alloc/free 3942 * request will be failed. In this case, we will retry. So, no problem. 3943 */ 3944 barrier(); 3945 3946 /* 3947 * The transaction ids are globally unique per cpu and per operation on 3948 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 3949 * occurs on the right processor and that there was no operation on the 3950 * linked list in between. 3951 */ 3952 3953 object = c->freelist; 3954 slab = c->slab; 3955 3956 #ifdef CONFIG_NUMA 3957 if (static_branch_unlikely(&strict_numa) && 3958 node == NUMA_NO_NODE) { 3959 3960 struct mempolicy *mpol = current->mempolicy; 3961 3962 if (mpol) { 3963 /* 3964 * Special BIND rule support. If existing slab 3965 * is in permitted set then do not redirect 3966 * to a particular node. 3967 * Otherwise we apply the memory policy to get 3968 * the node we need to allocate on. 3969 */ 3970 if (mpol->mode != MPOL_BIND || !slab || 3971 !node_isset(slab_nid(slab), mpol->nodes)) 3972 3973 node = mempolicy_slab_node(); 3974 } 3975 } 3976 #endif 3977 3978 if (!USE_LOCKLESS_FAST_PATH() || 3979 unlikely(!object || !slab || !node_match(slab, node))) { 3980 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size); 3981 } else { 3982 void *next_object = get_freepointer_safe(s, object); 3983 3984 /* 3985 * The cmpxchg will only match if there was no additional 3986 * operation and if we are on the right processor. 3987 * 3988 * The cmpxchg does the following atomically (without lock 3989 * semantics!) 3990 * 1. Relocate first pointer to the current per cpu area. 3991 * 2. Verify that tid and freelist have not been changed 3992 * 3. If they were not changed replace tid and freelist 3993 * 3994 * Since this is without lock semantics the protection is only 3995 * against code executing on this cpu *not* from access by 3996 * other cpus. 3997 */ 3998 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) { 3999 note_cmpxchg_failure("slab_alloc", s, tid); 4000 goto redo; 4001 } 4002 prefetch_freepointer(s, next_object); 4003 stat(s, ALLOC_FASTPATH); 4004 } 4005 4006 return object; 4007 } 4008 #else /* CONFIG_SLUB_TINY */ 4009 static void *__slab_alloc_node(struct kmem_cache *s, 4010 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4011 { 4012 struct partial_context pc; 4013 struct slab *slab; 4014 void *object; 4015 4016 pc.flags = gfpflags; 4017 pc.orig_size = orig_size; 4018 slab = get_partial(s, node, &pc); 4019 4020 if (slab) 4021 return pc.object; 4022 4023 slab = new_slab(s, gfpflags, node); 4024 if (unlikely(!slab)) { 4025 slab_out_of_memory(s, gfpflags, node); 4026 return NULL; 4027 } 4028 4029 object = alloc_single_from_new_slab(s, slab, orig_size); 4030 4031 return object; 4032 } 4033 #endif /* CONFIG_SLUB_TINY */ 4034 4035 /* 4036 * If the object has been wiped upon free, make sure it's fully initialized by 4037 * zeroing out freelist pointer. 4038 * 4039 * Note that we also wipe custom freelist pointers. 4040 */ 4041 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s, 4042 void *obj) 4043 { 4044 if (unlikely(slab_want_init_on_free(s)) && obj && 4045 !freeptr_outside_object(s)) 4046 memset((void *)((char *)kasan_reset_tag(obj) + s->offset), 4047 0, sizeof(void *)); 4048 } 4049 4050 static __fastpath_inline 4051 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 4052 { 4053 flags &= gfp_allowed_mask; 4054 4055 might_alloc(flags); 4056 4057 if (unlikely(should_failslab(s, flags))) 4058 return NULL; 4059 4060 return s; 4061 } 4062 4063 static __fastpath_inline 4064 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru, 4065 gfp_t flags, size_t size, void **p, bool init, 4066 unsigned int orig_size) 4067 { 4068 unsigned int zero_size = s->object_size; 4069 bool kasan_init = init; 4070 size_t i; 4071 gfp_t init_flags = flags & gfp_allowed_mask; 4072 4073 /* 4074 * For kmalloc object, the allocated memory size(object_size) is likely 4075 * larger than the requested size(orig_size). If redzone check is 4076 * enabled for the extra space, don't zero it, as it will be redzoned 4077 * soon. The redzone operation for this extra space could be seen as a 4078 * replacement of current poisoning under certain debug option, and 4079 * won't break other sanity checks. 4080 */ 4081 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) && 4082 (s->flags & SLAB_KMALLOC)) 4083 zero_size = orig_size; 4084 4085 /* 4086 * When slab_debug is enabled, avoid memory initialization integrated 4087 * into KASAN and instead zero out the memory via the memset below with 4088 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and 4089 * cause false-positive reports. This does not lead to a performance 4090 * penalty on production builds, as slab_debug is not intended to be 4091 * enabled there. 4092 */ 4093 if (__slub_debug_enabled()) 4094 kasan_init = false; 4095 4096 /* 4097 * As memory initialization might be integrated into KASAN, 4098 * kasan_slab_alloc and initialization memset must be 4099 * kept together to avoid discrepancies in behavior. 4100 * 4101 * As p[i] might get tagged, memset and kmemleak hook come after KASAN. 4102 */ 4103 for (i = 0; i < size; i++) { 4104 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init); 4105 if (p[i] && init && (!kasan_init || 4106 !kasan_has_integrated_init())) 4107 memset(p[i], 0, zero_size); 4108 kmemleak_alloc_recursive(p[i], s->object_size, 1, 4109 s->flags, init_flags); 4110 kmsan_slab_alloc(s, p[i], init_flags); 4111 alloc_tagging_slab_alloc_hook(s, p[i], flags); 4112 } 4113 4114 return memcg_slab_post_alloc_hook(s, lru, flags, size, p); 4115 } 4116 4117 /* 4118 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 4119 * have the fastpath folded into their functions. So no function call 4120 * overhead for requests that can be satisfied on the fastpath. 4121 * 4122 * The fastpath works by first checking if the lockless freelist can be used. 4123 * If not then __slab_alloc is called for slow processing. 4124 * 4125 * Otherwise we can simply pick the next object from the lockless free list. 4126 */ 4127 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru, 4128 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size) 4129 { 4130 void *object; 4131 bool init = false; 4132 4133 s = slab_pre_alloc_hook(s, gfpflags); 4134 if (unlikely(!s)) 4135 return NULL; 4136 4137 object = kfence_alloc(s, orig_size, gfpflags); 4138 if (unlikely(object)) 4139 goto out; 4140 4141 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size); 4142 4143 maybe_wipe_obj_freeptr(s, object); 4144 init = slab_want_init_on_alloc(gfpflags, s); 4145 4146 out: 4147 /* 4148 * When init equals 'true', like for kzalloc() family, only 4149 * @orig_size bytes might be zeroed instead of s->object_size 4150 * In case this fails due to memcg_slab_post_alloc_hook(), 4151 * object is set to NULL 4152 */ 4153 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size); 4154 4155 return object; 4156 } 4157 4158 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags) 4159 { 4160 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_, 4161 s->object_size); 4162 4163 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4164 4165 return ret; 4166 } 4167 EXPORT_SYMBOL(kmem_cache_alloc_noprof); 4168 4169 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru, 4170 gfp_t gfpflags) 4171 { 4172 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_, 4173 s->object_size); 4174 4175 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE); 4176 4177 return ret; 4178 } 4179 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof); 4180 4181 bool kmem_cache_charge(void *objp, gfp_t gfpflags) 4182 { 4183 if (!memcg_kmem_online()) 4184 return true; 4185 4186 return memcg_slab_post_charge(objp, gfpflags); 4187 } 4188 EXPORT_SYMBOL(kmem_cache_charge); 4189 4190 /** 4191 * kmem_cache_alloc_node - Allocate an object on the specified node 4192 * @s: The cache to allocate from. 4193 * @gfpflags: See kmalloc(). 4194 * @node: node number of the target node. 4195 * 4196 * Identical to kmem_cache_alloc but it will allocate memory on the given 4197 * node, which can improve the performance for cpu bound structures. 4198 * 4199 * Fallback to other node is possible if __GFP_THISNODE is not set. 4200 * 4201 * Return: pointer to the new object or %NULL in case of error 4202 */ 4203 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node) 4204 { 4205 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size); 4206 4207 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node); 4208 4209 return ret; 4210 } 4211 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof); 4212 4213 /* 4214 * To avoid unnecessary overhead, we pass through large allocation requests 4215 * directly to the page allocator. We use __GFP_COMP, because we will need to 4216 * know the allocation order to free the pages properly in kfree. 4217 */ 4218 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node) 4219 { 4220 struct folio *folio; 4221 void *ptr = NULL; 4222 unsigned int order = get_order(size); 4223 4224 if (unlikely(flags & GFP_SLAB_BUG_MASK)) 4225 flags = kmalloc_fix_flags(flags); 4226 4227 flags |= __GFP_COMP; 4228 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order); 4229 if (folio) { 4230 ptr = folio_address(folio); 4231 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4232 PAGE_SIZE << order); 4233 } 4234 4235 ptr = kasan_kmalloc_large(ptr, size, flags); 4236 /* As ptr might get tagged, call kmemleak hook after KASAN. */ 4237 kmemleak_alloc(ptr, size, 1, flags); 4238 kmsan_kmalloc_large(ptr, size, flags); 4239 4240 return ptr; 4241 } 4242 4243 void *__kmalloc_large_noprof(size_t size, gfp_t flags) 4244 { 4245 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE); 4246 4247 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4248 flags, NUMA_NO_NODE); 4249 return ret; 4250 } 4251 EXPORT_SYMBOL(__kmalloc_large_noprof); 4252 4253 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node) 4254 { 4255 void *ret = ___kmalloc_large_node(size, flags, node); 4256 4257 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 4258 flags, node); 4259 return ret; 4260 } 4261 EXPORT_SYMBOL(__kmalloc_large_node_noprof); 4262 4263 static __always_inline 4264 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node, 4265 unsigned long caller) 4266 { 4267 struct kmem_cache *s; 4268 void *ret; 4269 4270 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4271 ret = __kmalloc_large_node_noprof(size, flags, node); 4272 trace_kmalloc(caller, ret, size, 4273 PAGE_SIZE << get_order(size), flags, node); 4274 return ret; 4275 } 4276 4277 if (unlikely(!size)) 4278 return ZERO_SIZE_PTR; 4279 4280 s = kmalloc_slab(size, b, flags, caller); 4281 4282 ret = slab_alloc_node(s, NULL, flags, node, caller, size); 4283 ret = kasan_kmalloc(s, ret, size, flags); 4284 trace_kmalloc(caller, ret, size, s->size, flags, node); 4285 return ret; 4286 } 4287 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) 4288 { 4289 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_); 4290 } 4291 EXPORT_SYMBOL(__kmalloc_node_noprof); 4292 4293 void *__kmalloc_noprof(size_t size, gfp_t flags) 4294 { 4295 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_); 4296 } 4297 EXPORT_SYMBOL(__kmalloc_noprof); 4298 4299 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, 4300 int node, unsigned long caller) 4301 { 4302 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller); 4303 4304 } 4305 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof); 4306 4307 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size) 4308 { 4309 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, 4310 _RET_IP_, size); 4311 4312 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 4313 4314 ret = kasan_kmalloc(s, ret, size, gfpflags); 4315 return ret; 4316 } 4317 EXPORT_SYMBOL(__kmalloc_cache_noprof); 4318 4319 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags, 4320 int node, size_t size) 4321 { 4322 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size); 4323 4324 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 4325 4326 ret = kasan_kmalloc(s, ret, size, gfpflags); 4327 return ret; 4328 } 4329 EXPORT_SYMBOL(__kmalloc_cache_node_noprof); 4330 4331 static noinline void free_to_partial_list( 4332 struct kmem_cache *s, struct slab *slab, 4333 void *head, void *tail, int bulk_cnt, 4334 unsigned long addr) 4335 { 4336 struct kmem_cache_node *n = get_node(s, slab_nid(slab)); 4337 struct slab *slab_free = NULL; 4338 int cnt = bulk_cnt; 4339 unsigned long flags; 4340 depot_stack_handle_t handle = 0; 4341 4342 if (s->flags & SLAB_STORE_USER) 4343 handle = set_track_prepare(); 4344 4345 spin_lock_irqsave(&n->list_lock, flags); 4346 4347 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) { 4348 void *prior = slab->freelist; 4349 4350 /* Perform the actual freeing while we still hold the locks */ 4351 slab->inuse -= cnt; 4352 set_freepointer(s, tail, prior); 4353 slab->freelist = head; 4354 4355 /* 4356 * If the slab is empty, and node's partial list is full, 4357 * it should be discarded anyway no matter it's on full or 4358 * partial list. 4359 */ 4360 if (slab->inuse == 0 && n->nr_partial >= s->min_partial) 4361 slab_free = slab; 4362 4363 if (!prior) { 4364 /* was on full list */ 4365 remove_full(s, n, slab); 4366 if (!slab_free) { 4367 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4368 stat(s, FREE_ADD_PARTIAL); 4369 } 4370 } else if (slab_free) { 4371 remove_partial(n, slab); 4372 stat(s, FREE_REMOVE_PARTIAL); 4373 } 4374 } 4375 4376 if (slab_free) { 4377 /* 4378 * Update the counters while still holding n->list_lock to 4379 * prevent spurious validation warnings 4380 */ 4381 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects); 4382 } 4383 4384 spin_unlock_irqrestore(&n->list_lock, flags); 4385 4386 if (slab_free) { 4387 stat(s, FREE_SLAB); 4388 free_slab(s, slab_free); 4389 } 4390 } 4391 4392 /* 4393 * Slow path handling. This may still be called frequently since objects 4394 * have a longer lifetime than the cpu slabs in most processing loads. 4395 * 4396 * So we still attempt to reduce cache line usage. Just take the slab 4397 * lock and free the item. If there is no additional partial slab 4398 * handling required then we can return immediately. 4399 */ 4400 static void __slab_free(struct kmem_cache *s, struct slab *slab, 4401 void *head, void *tail, int cnt, 4402 unsigned long addr) 4403 4404 { 4405 void *prior; 4406 int was_frozen; 4407 struct slab new; 4408 unsigned long counters; 4409 struct kmem_cache_node *n = NULL; 4410 unsigned long flags; 4411 bool on_node_partial; 4412 4413 stat(s, FREE_SLOWPATH); 4414 4415 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) { 4416 free_to_partial_list(s, slab, head, tail, cnt, addr); 4417 return; 4418 } 4419 4420 do { 4421 if (unlikely(n)) { 4422 spin_unlock_irqrestore(&n->list_lock, flags); 4423 n = NULL; 4424 } 4425 prior = slab->freelist; 4426 counters = slab->counters; 4427 set_freepointer(s, tail, prior); 4428 new.counters = counters; 4429 was_frozen = new.frozen; 4430 new.inuse -= cnt; 4431 if ((!new.inuse || !prior) && !was_frozen) { 4432 /* Needs to be taken off a list */ 4433 if (!kmem_cache_has_cpu_partial(s) || prior) { 4434 4435 n = get_node(s, slab_nid(slab)); 4436 /* 4437 * Speculatively acquire the list_lock. 4438 * If the cmpxchg does not succeed then we may 4439 * drop the list_lock without any processing. 4440 * 4441 * Otherwise the list_lock will synchronize with 4442 * other processors updating the list of slabs. 4443 */ 4444 spin_lock_irqsave(&n->list_lock, flags); 4445 4446 on_node_partial = slab_test_node_partial(slab); 4447 } 4448 } 4449 4450 } while (!slab_update_freelist(s, slab, 4451 prior, counters, 4452 head, new.counters, 4453 "__slab_free")); 4454 4455 if (likely(!n)) { 4456 4457 if (likely(was_frozen)) { 4458 /* 4459 * The list lock was not taken therefore no list 4460 * activity can be necessary. 4461 */ 4462 stat(s, FREE_FROZEN); 4463 } else if (kmem_cache_has_cpu_partial(s) && !prior) { 4464 /* 4465 * If we started with a full slab then put it onto the 4466 * per cpu partial list. 4467 */ 4468 put_cpu_partial(s, slab, 1); 4469 stat(s, CPU_PARTIAL_FREE); 4470 } 4471 4472 return; 4473 } 4474 4475 /* 4476 * This slab was partially empty but not on the per-node partial list, 4477 * in which case we shouldn't manipulate its list, just return. 4478 */ 4479 if (prior && !on_node_partial) { 4480 spin_unlock_irqrestore(&n->list_lock, flags); 4481 return; 4482 } 4483 4484 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 4485 goto slab_empty; 4486 4487 /* 4488 * Objects left in the slab. If it was not on the partial list before 4489 * then add it. 4490 */ 4491 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 4492 add_partial(n, slab, DEACTIVATE_TO_TAIL); 4493 stat(s, FREE_ADD_PARTIAL); 4494 } 4495 spin_unlock_irqrestore(&n->list_lock, flags); 4496 return; 4497 4498 slab_empty: 4499 if (prior) { 4500 /* 4501 * Slab on the partial list. 4502 */ 4503 remove_partial(n, slab); 4504 stat(s, FREE_REMOVE_PARTIAL); 4505 } 4506 4507 spin_unlock_irqrestore(&n->list_lock, flags); 4508 stat(s, FREE_SLAB); 4509 discard_slab(s, slab); 4510 } 4511 4512 #ifndef CONFIG_SLUB_TINY 4513 /* 4514 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 4515 * can perform fastpath freeing without additional function calls. 4516 * 4517 * The fastpath is only possible if we are freeing to the current cpu slab 4518 * of this processor. This typically the case if we have just allocated 4519 * the item before. 4520 * 4521 * If fastpath is not possible then fall back to __slab_free where we deal 4522 * with all sorts of special processing. 4523 * 4524 * Bulk free of a freelist with several objects (all pointing to the 4525 * same slab) possible by specifying head and tail ptr, plus objects 4526 * count (cnt). Bulk free indicated by tail pointer being set. 4527 */ 4528 static __always_inline void do_slab_free(struct kmem_cache *s, 4529 struct slab *slab, void *head, void *tail, 4530 int cnt, unsigned long addr) 4531 { 4532 struct kmem_cache_cpu *c; 4533 unsigned long tid; 4534 void **freelist; 4535 4536 redo: 4537 /* 4538 * Determine the currently cpus per cpu slab. 4539 * The cpu may change afterward. However that does not matter since 4540 * data is retrieved via this pointer. If we are on the same cpu 4541 * during the cmpxchg then the free will succeed. 4542 */ 4543 c = raw_cpu_ptr(s->cpu_slab); 4544 tid = READ_ONCE(c->tid); 4545 4546 /* Same with comment on barrier() in __slab_alloc_node() */ 4547 barrier(); 4548 4549 if (unlikely(slab != c->slab)) { 4550 __slab_free(s, slab, head, tail, cnt, addr); 4551 return; 4552 } 4553 4554 if (USE_LOCKLESS_FAST_PATH()) { 4555 freelist = READ_ONCE(c->freelist); 4556 4557 set_freepointer(s, tail, freelist); 4558 4559 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) { 4560 note_cmpxchg_failure("slab_free", s, tid); 4561 goto redo; 4562 } 4563 } else { 4564 /* Update the free list under the local lock */ 4565 local_lock(&s->cpu_slab->lock); 4566 c = this_cpu_ptr(s->cpu_slab); 4567 if (unlikely(slab != c->slab)) { 4568 local_unlock(&s->cpu_slab->lock); 4569 goto redo; 4570 } 4571 tid = c->tid; 4572 freelist = c->freelist; 4573 4574 set_freepointer(s, tail, freelist); 4575 c->freelist = head; 4576 c->tid = next_tid(tid); 4577 4578 local_unlock(&s->cpu_slab->lock); 4579 } 4580 stat_add(s, FREE_FASTPATH, cnt); 4581 } 4582 #else /* CONFIG_SLUB_TINY */ 4583 static void do_slab_free(struct kmem_cache *s, 4584 struct slab *slab, void *head, void *tail, 4585 int cnt, unsigned long addr) 4586 { 4587 __slab_free(s, slab, head, tail, cnt, addr); 4588 } 4589 #endif /* CONFIG_SLUB_TINY */ 4590 4591 static __fastpath_inline 4592 void slab_free(struct kmem_cache *s, struct slab *slab, void *object, 4593 unsigned long addr) 4594 { 4595 memcg_slab_free_hook(s, slab, &object, 1); 4596 alloc_tagging_slab_free_hook(s, slab, &object, 1); 4597 4598 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4599 do_slab_free(s, slab, object, object, 1, addr); 4600 } 4601 4602 #ifdef CONFIG_MEMCG 4603 /* Do not inline the rare memcg charging failed path into the allocation path */ 4604 static noinline 4605 void memcg_alloc_abort_single(struct kmem_cache *s, void *object) 4606 { 4607 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false))) 4608 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_); 4609 } 4610 #endif 4611 4612 static __fastpath_inline 4613 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head, 4614 void *tail, void **p, int cnt, unsigned long addr) 4615 { 4616 memcg_slab_free_hook(s, slab, p, cnt); 4617 alloc_tagging_slab_free_hook(s, slab, p, cnt); 4618 /* 4619 * With KASAN enabled slab_free_freelist_hook modifies the freelist 4620 * to remove objects, whose reuse must be delayed. 4621 */ 4622 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt))) 4623 do_slab_free(s, slab, head, tail, cnt, addr); 4624 } 4625 4626 #ifdef CONFIG_SLUB_RCU_DEBUG 4627 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head) 4628 { 4629 struct rcu_delayed_free *delayed_free = 4630 container_of(rcu_head, struct rcu_delayed_free, head); 4631 void *object = delayed_free->object; 4632 struct slab *slab = virt_to_slab(object); 4633 struct kmem_cache *s; 4634 4635 kfree(delayed_free); 4636 4637 if (WARN_ON(is_kfence_address(object))) 4638 return; 4639 4640 /* find the object and the cache again */ 4641 if (WARN_ON(!slab)) 4642 return; 4643 s = slab->slab_cache; 4644 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU))) 4645 return; 4646 4647 /* resume freeing */ 4648 if (slab_free_hook(s, object, slab_want_init_on_free(s), true)) 4649 do_slab_free(s, slab, object, object, 1, _THIS_IP_); 4650 } 4651 #endif /* CONFIG_SLUB_RCU_DEBUG */ 4652 4653 #ifdef CONFIG_KASAN_GENERIC 4654 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 4655 { 4656 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr); 4657 } 4658 #endif 4659 4660 static inline struct kmem_cache *virt_to_cache(const void *obj) 4661 { 4662 struct slab *slab; 4663 4664 slab = virt_to_slab(obj); 4665 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__)) 4666 return NULL; 4667 return slab->slab_cache; 4668 } 4669 4670 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) 4671 { 4672 struct kmem_cache *cachep; 4673 4674 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) && 4675 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) 4676 return s; 4677 4678 cachep = virt_to_cache(x); 4679 if (WARN(cachep && cachep != s, 4680 "%s: Wrong slab cache. %s but object is from %s\n", 4681 __func__, s->name, cachep->name)) 4682 print_tracking(cachep, x); 4683 return cachep; 4684 } 4685 4686 /** 4687 * kmem_cache_free - Deallocate an object 4688 * @s: The cache the allocation was from. 4689 * @x: The previously allocated object. 4690 * 4691 * Free an object which was previously allocated from this 4692 * cache. 4693 */ 4694 void kmem_cache_free(struct kmem_cache *s, void *x) 4695 { 4696 s = cache_from_obj(s, x); 4697 if (!s) 4698 return; 4699 trace_kmem_cache_free(_RET_IP_, x, s); 4700 slab_free(s, virt_to_slab(x), x, _RET_IP_); 4701 } 4702 EXPORT_SYMBOL(kmem_cache_free); 4703 4704 static void free_large_kmalloc(struct folio *folio, void *object) 4705 { 4706 unsigned int order = folio_order(folio); 4707 4708 if (WARN_ON_ONCE(order == 0)) 4709 pr_warn_once("object pointer: 0x%p\n", object); 4710 4711 kmemleak_free(object); 4712 kasan_kfree_large(object); 4713 kmsan_kfree_large(object); 4714 4715 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, 4716 -(PAGE_SIZE << order)); 4717 folio_put(folio); 4718 } 4719 4720 /** 4721 * kfree - free previously allocated memory 4722 * @object: pointer returned by kmalloc() or kmem_cache_alloc() 4723 * 4724 * If @object is NULL, no operation is performed. 4725 */ 4726 void kfree(const void *object) 4727 { 4728 struct folio *folio; 4729 struct slab *slab; 4730 struct kmem_cache *s; 4731 void *x = (void *)object; 4732 4733 trace_kfree(_RET_IP_, object); 4734 4735 if (unlikely(ZERO_OR_NULL_PTR(object))) 4736 return; 4737 4738 folio = virt_to_folio(object); 4739 if (unlikely(!folio_test_slab(folio))) { 4740 free_large_kmalloc(folio, (void *)object); 4741 return; 4742 } 4743 4744 slab = folio_slab(folio); 4745 s = slab->slab_cache; 4746 slab_free(s, slab, x, _RET_IP_); 4747 } 4748 EXPORT_SYMBOL(kfree); 4749 4750 static __always_inline __realloc_size(2) void * 4751 __do_krealloc(const void *p, size_t new_size, gfp_t flags) 4752 { 4753 void *ret; 4754 size_t ks = 0; 4755 int orig_size = 0; 4756 struct kmem_cache *s = NULL; 4757 4758 if (unlikely(ZERO_OR_NULL_PTR(p))) 4759 goto alloc_new; 4760 4761 /* Check for double-free. */ 4762 if (!kasan_check_byte(p)) 4763 return NULL; 4764 4765 if (is_kfence_address(p)) { 4766 ks = orig_size = kfence_ksize(p); 4767 } else { 4768 struct folio *folio; 4769 4770 folio = virt_to_folio(p); 4771 if (unlikely(!folio_test_slab(folio))) { 4772 /* Big kmalloc object */ 4773 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE); 4774 WARN_ON(p != folio_address(folio)); 4775 ks = folio_size(folio); 4776 } else { 4777 s = folio_slab(folio)->slab_cache; 4778 orig_size = get_orig_size(s, (void *)p); 4779 ks = s->object_size; 4780 } 4781 } 4782 4783 /* If the old object doesn't fit, allocate a bigger one */ 4784 if (new_size > ks) 4785 goto alloc_new; 4786 4787 /* Zero out spare memory. */ 4788 if (want_init_on_alloc(flags)) { 4789 kasan_disable_current(); 4790 if (orig_size && orig_size < new_size) 4791 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size); 4792 else 4793 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size); 4794 kasan_enable_current(); 4795 } 4796 4797 /* Setup kmalloc redzone when needed */ 4798 if (s && slub_debug_orig_size(s)) { 4799 set_orig_size(s, (void *)p, new_size); 4800 if (s->flags & SLAB_RED_ZONE && new_size < ks) 4801 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size, 4802 SLUB_RED_ACTIVE, ks - new_size); 4803 } 4804 4805 p = kasan_krealloc(p, new_size, flags); 4806 return (void *)p; 4807 4808 alloc_new: 4809 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_); 4810 if (ret && p) { 4811 /* Disable KASAN checks as the object's redzone is accessed. */ 4812 kasan_disable_current(); 4813 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks); 4814 kasan_enable_current(); 4815 } 4816 4817 return ret; 4818 } 4819 4820 /** 4821 * krealloc - reallocate memory. The contents will remain unchanged. 4822 * @p: object to reallocate memory for. 4823 * @new_size: how many bytes of memory are required. 4824 * @flags: the type of memory to allocate. 4825 * 4826 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 4827 * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 4828 * 4829 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the 4830 * initial memory allocation, every subsequent call to this API for the same 4831 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that 4832 * __GFP_ZERO is not fully honored by this API. 4833 * 4834 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket 4835 * size of an allocation (but not the exact size it was allocated with) and 4836 * hence implements the following semantics for shrinking and growing buffers 4837 * with __GFP_ZERO. 4838 * 4839 * new bucket 4840 * 0 size size 4841 * |--------|----------------| 4842 * | keep | zero | 4843 * 4844 * Otherwise, the original allocation size 'orig_size' could be used to 4845 * precisely clear the requested size, and the new size will also be stored 4846 * as the new 'orig_size'. 4847 * 4848 * In any case, the contents of the object pointed to are preserved up to the 4849 * lesser of the new and old sizes. 4850 * 4851 * Return: pointer to the allocated memory or %NULL in case of error 4852 */ 4853 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags) 4854 { 4855 void *ret; 4856 4857 if (unlikely(!new_size)) { 4858 kfree(p); 4859 return ZERO_SIZE_PTR; 4860 } 4861 4862 ret = __do_krealloc(p, new_size, flags); 4863 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 4864 kfree(p); 4865 4866 return ret; 4867 } 4868 EXPORT_SYMBOL(krealloc_noprof); 4869 4870 struct detached_freelist { 4871 struct slab *slab; 4872 void *tail; 4873 void *freelist; 4874 int cnt; 4875 struct kmem_cache *s; 4876 }; 4877 4878 /* 4879 * This function progressively scans the array with free objects (with 4880 * a limited look ahead) and extract objects belonging to the same 4881 * slab. It builds a detached freelist directly within the given 4882 * slab/objects. This can happen without any need for 4883 * synchronization, because the objects are owned by running process. 4884 * The freelist is build up as a single linked list in the objects. 4885 * The idea is, that this detached freelist can then be bulk 4886 * transferred to the real freelist(s), but only requiring a single 4887 * synchronization primitive. Look ahead in the array is limited due 4888 * to performance reasons. 4889 */ 4890 static inline 4891 int build_detached_freelist(struct kmem_cache *s, size_t size, 4892 void **p, struct detached_freelist *df) 4893 { 4894 int lookahead = 3; 4895 void *object; 4896 struct folio *folio; 4897 size_t same; 4898 4899 object = p[--size]; 4900 folio = virt_to_folio(object); 4901 if (!s) { 4902 /* Handle kalloc'ed objects */ 4903 if (unlikely(!folio_test_slab(folio))) { 4904 free_large_kmalloc(folio, object); 4905 df->slab = NULL; 4906 return size; 4907 } 4908 /* Derive kmem_cache from object */ 4909 df->slab = folio_slab(folio); 4910 df->s = df->slab->slab_cache; 4911 } else { 4912 df->slab = folio_slab(folio); 4913 df->s = cache_from_obj(s, object); /* Support for memcg */ 4914 } 4915 4916 /* Start new detached freelist */ 4917 df->tail = object; 4918 df->freelist = object; 4919 df->cnt = 1; 4920 4921 if (is_kfence_address(object)) 4922 return size; 4923 4924 set_freepointer(df->s, object, NULL); 4925 4926 same = size; 4927 while (size) { 4928 object = p[--size]; 4929 /* df->slab is always set at this point */ 4930 if (df->slab == virt_to_slab(object)) { 4931 /* Opportunity build freelist */ 4932 set_freepointer(df->s, object, df->freelist); 4933 df->freelist = object; 4934 df->cnt++; 4935 same--; 4936 if (size != same) 4937 swap(p[size], p[same]); 4938 continue; 4939 } 4940 4941 /* Limit look ahead search */ 4942 if (!--lookahead) 4943 break; 4944 } 4945 4946 return same; 4947 } 4948 4949 /* 4950 * Internal bulk free of objects that were not initialised by the post alloc 4951 * hooks and thus should not be processed by the free hooks 4952 */ 4953 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4954 { 4955 if (!size) 4956 return; 4957 4958 do { 4959 struct detached_freelist df; 4960 4961 size = build_detached_freelist(s, size, p, &df); 4962 if (!df.slab) 4963 continue; 4964 4965 if (kfence_free(df.freelist)) 4966 continue; 4967 4968 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, 4969 _RET_IP_); 4970 } while (likely(size)); 4971 } 4972 4973 /* Note that interrupts must be enabled when calling this function. */ 4974 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 4975 { 4976 if (!size) 4977 return; 4978 4979 do { 4980 struct detached_freelist df; 4981 4982 size = build_detached_freelist(s, size, p, &df); 4983 if (!df.slab) 4984 continue; 4985 4986 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size], 4987 df.cnt, _RET_IP_); 4988 } while (likely(size)); 4989 } 4990 EXPORT_SYMBOL(kmem_cache_free_bulk); 4991 4992 #ifndef CONFIG_SLUB_TINY 4993 static inline 4994 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 4995 void **p) 4996 { 4997 struct kmem_cache_cpu *c; 4998 unsigned long irqflags; 4999 int i; 5000 5001 /* 5002 * Drain objects in the per cpu slab, while disabling local 5003 * IRQs, which protects against PREEMPT and interrupts 5004 * handlers invoking normal fastpath. 5005 */ 5006 c = slub_get_cpu_ptr(s->cpu_slab); 5007 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5008 5009 for (i = 0; i < size; i++) { 5010 void *object = kfence_alloc(s, s->object_size, flags); 5011 5012 if (unlikely(object)) { 5013 p[i] = object; 5014 continue; 5015 } 5016 5017 object = c->freelist; 5018 if (unlikely(!object)) { 5019 /* 5020 * We may have removed an object from c->freelist using 5021 * the fastpath in the previous iteration; in that case, 5022 * c->tid has not been bumped yet. 5023 * Since ___slab_alloc() may reenable interrupts while 5024 * allocating memory, we should bump c->tid now. 5025 */ 5026 c->tid = next_tid(c->tid); 5027 5028 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5029 5030 /* 5031 * Invoking slow path likely have side-effect 5032 * of re-populating per CPU c->freelist 5033 */ 5034 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 5035 _RET_IP_, c, s->object_size); 5036 if (unlikely(!p[i])) 5037 goto error; 5038 5039 c = this_cpu_ptr(s->cpu_slab); 5040 maybe_wipe_obj_freeptr(s, p[i]); 5041 5042 local_lock_irqsave(&s->cpu_slab->lock, irqflags); 5043 5044 continue; /* goto for-loop */ 5045 } 5046 c->freelist = get_freepointer(s, object); 5047 p[i] = object; 5048 maybe_wipe_obj_freeptr(s, p[i]); 5049 stat(s, ALLOC_FASTPATH); 5050 } 5051 c->tid = next_tid(c->tid); 5052 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags); 5053 slub_put_cpu_ptr(s->cpu_slab); 5054 5055 return i; 5056 5057 error: 5058 slub_put_cpu_ptr(s->cpu_slab); 5059 __kmem_cache_free_bulk(s, i, p); 5060 return 0; 5061 5062 } 5063 #else /* CONFIG_SLUB_TINY */ 5064 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, 5065 size_t size, void **p) 5066 { 5067 int i; 5068 5069 for (i = 0; i < size; i++) { 5070 void *object = kfence_alloc(s, s->object_size, flags); 5071 5072 if (unlikely(object)) { 5073 p[i] = object; 5074 continue; 5075 } 5076 5077 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE, 5078 _RET_IP_, s->object_size); 5079 if (unlikely(!p[i])) 5080 goto error; 5081 5082 maybe_wipe_obj_freeptr(s, p[i]); 5083 } 5084 5085 return i; 5086 5087 error: 5088 __kmem_cache_free_bulk(s, i, p); 5089 return 0; 5090 } 5091 #endif /* CONFIG_SLUB_TINY */ 5092 5093 /* Note that interrupts must be enabled when calling this function. */ 5094 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, 5095 void **p) 5096 { 5097 int i; 5098 5099 if (!size) 5100 return 0; 5101 5102 s = slab_pre_alloc_hook(s, flags); 5103 if (unlikely(!s)) 5104 return 0; 5105 5106 i = __kmem_cache_alloc_bulk(s, flags, size, p); 5107 if (unlikely(i == 0)) 5108 return 0; 5109 5110 /* 5111 * memcg and kmem_cache debug support and memory initialization. 5112 * Done outside of the IRQ disabled fastpath loop. 5113 */ 5114 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p, 5115 slab_want_init_on_alloc(flags, s), s->object_size))) { 5116 return 0; 5117 } 5118 return i; 5119 } 5120 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof); 5121 5122 5123 /* 5124 * Object placement in a slab is made very easy because we always start at 5125 * offset 0. If we tune the size of the object to the alignment then we can 5126 * get the required alignment by putting one properly sized object after 5127 * another. 5128 * 5129 * Notice that the allocation order determines the sizes of the per cpu 5130 * caches. Each processor has always one slab available for allocations. 5131 * Increasing the allocation order reduces the number of times that slabs 5132 * must be moved on and off the partial lists and is therefore a factor in 5133 * locking overhead. 5134 */ 5135 5136 /* 5137 * Minimum / Maximum order of slab pages. This influences locking overhead 5138 * and slab fragmentation. A higher order reduces the number of partial slabs 5139 * and increases the number of allocations possible without having to 5140 * take the list_lock. 5141 */ 5142 static unsigned int slub_min_order; 5143 static unsigned int slub_max_order = 5144 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER; 5145 static unsigned int slub_min_objects; 5146 5147 /* 5148 * Calculate the order of allocation given an slab object size. 5149 * 5150 * The order of allocation has significant impact on performance and other 5151 * system components. Generally order 0 allocations should be preferred since 5152 * order 0 does not cause fragmentation in the page allocator. Larger objects 5153 * be problematic to put into order 0 slabs because there may be too much 5154 * unused space left. We go to a higher order if more than 1/16th of the slab 5155 * would be wasted. 5156 * 5157 * In order to reach satisfactory performance we must ensure that a minimum 5158 * number of objects is in one slab. Otherwise we may generate too much 5159 * activity on the partial lists which requires taking the list_lock. This is 5160 * less a concern for large slabs though which are rarely used. 5161 * 5162 * slab_max_order specifies the order where we begin to stop considering the 5163 * number of objects in a slab as critical. If we reach slab_max_order then 5164 * we try to keep the page order as low as possible. So we accept more waste 5165 * of space in favor of a small page order. 5166 * 5167 * Higher order allocations also allow the placement of more objects in a 5168 * slab and thereby reduce object handling overhead. If the user has 5169 * requested a higher minimum order then we start with that one instead of 5170 * the smallest order which will fit the object. 5171 */ 5172 static inline unsigned int calc_slab_order(unsigned int size, 5173 unsigned int min_order, unsigned int max_order, 5174 unsigned int fract_leftover) 5175 { 5176 unsigned int order; 5177 5178 for (order = min_order; order <= max_order; order++) { 5179 5180 unsigned int slab_size = (unsigned int)PAGE_SIZE << order; 5181 unsigned int rem; 5182 5183 rem = slab_size % size; 5184 5185 if (rem <= slab_size / fract_leftover) 5186 break; 5187 } 5188 5189 return order; 5190 } 5191 5192 static inline int calculate_order(unsigned int size) 5193 { 5194 unsigned int order; 5195 unsigned int min_objects; 5196 unsigned int max_objects; 5197 unsigned int min_order; 5198 5199 min_objects = slub_min_objects; 5200 if (!min_objects) { 5201 /* 5202 * Some architectures will only update present cpus when 5203 * onlining them, so don't trust the number if it's just 1. But 5204 * we also don't want to use nr_cpu_ids always, as on some other 5205 * architectures, there can be many possible cpus, but never 5206 * onlined. Here we compromise between trying to avoid too high 5207 * order on systems that appear larger than they are, and too 5208 * low order on systems that appear smaller than they are. 5209 */ 5210 unsigned int nr_cpus = num_present_cpus(); 5211 if (nr_cpus <= 1) 5212 nr_cpus = nr_cpu_ids; 5213 min_objects = 4 * (fls(nr_cpus) + 1); 5214 } 5215 /* min_objects can't be 0 because get_order(0) is undefined */ 5216 max_objects = max(order_objects(slub_max_order, size), 1U); 5217 min_objects = min(min_objects, max_objects); 5218 5219 min_order = max_t(unsigned int, slub_min_order, 5220 get_order(min_objects * size)); 5221 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) 5222 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 5223 5224 /* 5225 * Attempt to find best configuration for a slab. This works by first 5226 * attempting to generate a layout with the best possible configuration 5227 * and backing off gradually. 5228 * 5229 * We start with accepting at most 1/16 waste and try to find the 5230 * smallest order from min_objects-derived/slab_min_order up to 5231 * slab_max_order that will satisfy the constraint. Note that increasing 5232 * the order can only result in same or less fractional waste, not more. 5233 * 5234 * If that fails, we increase the acceptable fraction of waste and try 5235 * again. The last iteration with fraction of 1/2 would effectively 5236 * accept any waste and give us the order determined by min_objects, as 5237 * long as at least single object fits within slab_max_order. 5238 */ 5239 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) { 5240 order = calc_slab_order(size, min_order, slub_max_order, 5241 fraction); 5242 if (order <= slub_max_order) 5243 return order; 5244 } 5245 5246 /* 5247 * Doh this slab cannot be placed using slab_max_order. 5248 */ 5249 order = get_order(size); 5250 if (order <= MAX_PAGE_ORDER) 5251 return order; 5252 return -ENOSYS; 5253 } 5254 5255 static void 5256 init_kmem_cache_node(struct kmem_cache_node *n) 5257 { 5258 n->nr_partial = 0; 5259 spin_lock_init(&n->list_lock); 5260 INIT_LIST_HEAD(&n->partial); 5261 #ifdef CONFIG_SLUB_DEBUG 5262 atomic_long_set(&n->nr_slabs, 0); 5263 atomic_long_set(&n->total_objects, 0); 5264 INIT_LIST_HEAD(&n->full); 5265 #endif 5266 } 5267 5268 #ifndef CONFIG_SLUB_TINY 5269 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5270 { 5271 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 5272 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH * 5273 sizeof(struct kmem_cache_cpu)); 5274 5275 /* 5276 * Must align to double word boundary for the double cmpxchg 5277 * instructions to work; see __pcpu_double_call_return_bool(). 5278 */ 5279 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 5280 2 * sizeof(void *)); 5281 5282 if (!s->cpu_slab) 5283 return 0; 5284 5285 init_kmem_cache_cpus(s); 5286 5287 return 1; 5288 } 5289 #else 5290 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 5291 { 5292 return 1; 5293 } 5294 #endif /* CONFIG_SLUB_TINY */ 5295 5296 static struct kmem_cache *kmem_cache_node; 5297 5298 /* 5299 * No kmalloc_node yet so do it by hand. We know that this is the first 5300 * slab on the node for this slabcache. There are no concurrent accesses 5301 * possible. 5302 * 5303 * Note that this function only works on the kmem_cache_node 5304 * when allocating for the kmem_cache_node. This is used for bootstrapping 5305 * memory on a fresh node that has no slab structures yet. 5306 */ 5307 static void early_kmem_cache_node_alloc(int node) 5308 { 5309 struct slab *slab; 5310 struct kmem_cache_node *n; 5311 5312 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 5313 5314 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node); 5315 5316 BUG_ON(!slab); 5317 if (slab_nid(slab) != node) { 5318 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 5319 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 5320 } 5321 5322 n = slab->freelist; 5323 BUG_ON(!n); 5324 #ifdef CONFIG_SLUB_DEBUG 5325 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 5326 #endif 5327 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false); 5328 slab->freelist = get_freepointer(kmem_cache_node, n); 5329 slab->inuse = 1; 5330 kmem_cache_node->node[node] = n; 5331 init_kmem_cache_node(n); 5332 inc_slabs_node(kmem_cache_node, node, slab->objects); 5333 5334 /* 5335 * No locks need to be taken here as it has just been 5336 * initialized and there is no concurrent access. 5337 */ 5338 __add_partial(n, slab, DEACTIVATE_TO_HEAD); 5339 } 5340 5341 static void free_kmem_cache_nodes(struct kmem_cache *s) 5342 { 5343 int node; 5344 struct kmem_cache_node *n; 5345 5346 for_each_kmem_cache_node(s, node, n) { 5347 s->node[node] = NULL; 5348 kmem_cache_free(kmem_cache_node, n); 5349 } 5350 } 5351 5352 void __kmem_cache_release(struct kmem_cache *s) 5353 { 5354 cache_random_seq_destroy(s); 5355 #ifndef CONFIG_SLUB_TINY 5356 free_percpu(s->cpu_slab); 5357 #endif 5358 free_kmem_cache_nodes(s); 5359 } 5360 5361 static int init_kmem_cache_nodes(struct kmem_cache *s) 5362 { 5363 int node; 5364 5365 for_each_node_mask(node, slab_nodes) { 5366 struct kmem_cache_node *n; 5367 5368 if (slab_state == DOWN) { 5369 early_kmem_cache_node_alloc(node); 5370 continue; 5371 } 5372 n = kmem_cache_alloc_node(kmem_cache_node, 5373 GFP_KERNEL, node); 5374 5375 if (!n) { 5376 free_kmem_cache_nodes(s); 5377 return 0; 5378 } 5379 5380 init_kmem_cache_node(n); 5381 s->node[node] = n; 5382 } 5383 return 1; 5384 } 5385 5386 static void set_cpu_partial(struct kmem_cache *s) 5387 { 5388 #ifdef CONFIG_SLUB_CPU_PARTIAL 5389 unsigned int nr_objects; 5390 5391 /* 5392 * cpu_partial determined the maximum number of objects kept in the 5393 * per cpu partial lists of a processor. 5394 * 5395 * Per cpu partial lists mainly contain slabs that just have one 5396 * object freed. If they are used for allocation then they can be 5397 * filled up again with minimal effort. The slab will never hit the 5398 * per node partial lists and therefore no locking will be required. 5399 * 5400 * For backwards compatibility reasons, this is determined as number 5401 * of objects, even though we now limit maximum number of pages, see 5402 * slub_set_cpu_partial() 5403 */ 5404 if (!kmem_cache_has_cpu_partial(s)) 5405 nr_objects = 0; 5406 else if (s->size >= PAGE_SIZE) 5407 nr_objects = 6; 5408 else if (s->size >= 1024) 5409 nr_objects = 24; 5410 else if (s->size >= 256) 5411 nr_objects = 52; 5412 else 5413 nr_objects = 120; 5414 5415 slub_set_cpu_partial(s, nr_objects); 5416 #endif 5417 } 5418 5419 /* 5420 * calculate_sizes() determines the order and the distribution of data within 5421 * a slab object. 5422 */ 5423 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s) 5424 { 5425 slab_flags_t flags = s->flags; 5426 unsigned int size = s->object_size; 5427 unsigned int order; 5428 5429 /* 5430 * Round up object size to the next word boundary. We can only 5431 * place the free pointer at word boundaries and this determines 5432 * the possible location of the free pointer. 5433 */ 5434 size = ALIGN(size, sizeof(void *)); 5435 5436 #ifdef CONFIG_SLUB_DEBUG 5437 /* 5438 * Determine if we can poison the object itself. If the user of 5439 * the slab may touch the object after free or before allocation 5440 * then we should never poison the object itself. 5441 */ 5442 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && 5443 !s->ctor) 5444 s->flags |= __OBJECT_POISON; 5445 else 5446 s->flags &= ~__OBJECT_POISON; 5447 5448 5449 /* 5450 * If we are Redzoning then check if there is some space between the 5451 * end of the object and the free pointer. If not then add an 5452 * additional word to have some bytes to store Redzone information. 5453 */ 5454 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 5455 size += sizeof(void *); 5456 #endif 5457 5458 /* 5459 * With that we have determined the number of bytes in actual use 5460 * by the object and redzoning. 5461 */ 5462 s->inuse = size; 5463 5464 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) || 5465 (flags & SLAB_POISON) || s->ctor || 5466 ((flags & SLAB_RED_ZONE) && 5467 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) { 5468 /* 5469 * Relocate free pointer after the object if it is not 5470 * permitted to overwrite the first word of the object on 5471 * kmem_cache_free. 5472 * 5473 * This is the case if we do RCU, have a constructor or 5474 * destructor, are poisoning the objects, or are 5475 * redzoning an object smaller than sizeof(void *) or are 5476 * redzoning an object with slub_debug_orig_size() enabled, 5477 * in which case the right redzone may be extended. 5478 * 5479 * The assumption that s->offset >= s->inuse means free 5480 * pointer is outside of the object is used in the 5481 * freeptr_outside_object() function. If that is no 5482 * longer true, the function needs to be modified. 5483 */ 5484 s->offset = size; 5485 size += sizeof(void *); 5486 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) { 5487 s->offset = args->freeptr_offset; 5488 } else { 5489 /* 5490 * Store freelist pointer near middle of object to keep 5491 * it away from the edges of the object to avoid small 5492 * sized over/underflows from neighboring allocations. 5493 */ 5494 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *)); 5495 } 5496 5497 #ifdef CONFIG_SLUB_DEBUG 5498 if (flags & SLAB_STORE_USER) { 5499 /* 5500 * Need to store information about allocs and frees after 5501 * the object. 5502 */ 5503 size += 2 * sizeof(struct track); 5504 5505 /* Save the original kmalloc request size */ 5506 if (flags & SLAB_KMALLOC) 5507 size += sizeof(unsigned int); 5508 } 5509 #endif 5510 5511 kasan_cache_create(s, &size, &s->flags); 5512 #ifdef CONFIG_SLUB_DEBUG 5513 if (flags & SLAB_RED_ZONE) { 5514 /* 5515 * Add some empty padding so that we can catch 5516 * overwrites from earlier objects rather than let 5517 * tracking information or the free pointer be 5518 * corrupted if a user writes before the start 5519 * of the object. 5520 */ 5521 size += sizeof(void *); 5522 5523 s->red_left_pad = sizeof(void *); 5524 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 5525 size += s->red_left_pad; 5526 } 5527 #endif 5528 5529 /* 5530 * SLUB stores one object immediately after another beginning from 5531 * offset 0. In order to align the objects we have to simply size 5532 * each object to conform to the alignment. 5533 */ 5534 size = ALIGN(size, s->align); 5535 s->size = size; 5536 s->reciprocal_size = reciprocal_value(size); 5537 order = calculate_order(size); 5538 5539 if ((int)order < 0) 5540 return 0; 5541 5542 s->allocflags = __GFP_COMP; 5543 5544 if (s->flags & SLAB_CACHE_DMA) 5545 s->allocflags |= GFP_DMA; 5546 5547 if (s->flags & SLAB_CACHE_DMA32) 5548 s->allocflags |= GFP_DMA32; 5549 5550 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5551 s->allocflags |= __GFP_RECLAIMABLE; 5552 5553 /* 5554 * Determine the number of objects per slab 5555 */ 5556 s->oo = oo_make(order, size); 5557 s->min = oo_make(get_order(size), size); 5558 5559 return !!oo_objects(s->oo); 5560 } 5561 5562 static void list_slab_objects(struct kmem_cache *s, struct slab *slab, 5563 const char *text) 5564 { 5565 #ifdef CONFIG_SLUB_DEBUG 5566 void *addr = slab_address(slab); 5567 void *p; 5568 5569 slab_err(s, slab, text, s->name); 5570 5571 spin_lock(&object_map_lock); 5572 __fill_map(object_map, s, slab); 5573 5574 for_each_object(p, s, addr, slab->objects) { 5575 5576 if (!test_bit(__obj_to_index(s, addr, p), object_map)) { 5577 if (slab_add_kunit_errors()) 5578 continue; 5579 pr_err("Object 0x%p @offset=%tu\n", p, p - addr); 5580 print_tracking(s, p); 5581 } 5582 } 5583 spin_unlock(&object_map_lock); 5584 #endif 5585 } 5586 5587 /* 5588 * Attempt to free all partial slabs on a node. 5589 * This is called from __kmem_cache_shutdown(). We must take list_lock 5590 * because sysfs file might still access partial list after the shutdowning. 5591 */ 5592 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 5593 { 5594 LIST_HEAD(discard); 5595 struct slab *slab, *h; 5596 5597 BUG_ON(irqs_disabled()); 5598 spin_lock_irq(&n->list_lock); 5599 list_for_each_entry_safe(slab, h, &n->partial, slab_list) { 5600 if (!slab->inuse) { 5601 remove_partial(n, slab); 5602 list_add(&slab->slab_list, &discard); 5603 } else { 5604 list_slab_objects(s, slab, 5605 "Objects remaining in %s on __kmem_cache_shutdown()"); 5606 } 5607 } 5608 spin_unlock_irq(&n->list_lock); 5609 5610 list_for_each_entry_safe(slab, h, &discard, slab_list) 5611 discard_slab(s, slab); 5612 } 5613 5614 bool __kmem_cache_empty(struct kmem_cache *s) 5615 { 5616 int node; 5617 struct kmem_cache_node *n; 5618 5619 for_each_kmem_cache_node(s, node, n) 5620 if (n->nr_partial || node_nr_slabs(n)) 5621 return false; 5622 return true; 5623 } 5624 5625 /* 5626 * Release all resources used by a slab cache. 5627 */ 5628 int __kmem_cache_shutdown(struct kmem_cache *s) 5629 { 5630 int node; 5631 struct kmem_cache_node *n; 5632 5633 flush_all_cpus_locked(s); 5634 /* Attempt to free all objects */ 5635 for_each_kmem_cache_node(s, node, n) { 5636 free_partial(s, n); 5637 if (n->nr_partial || node_nr_slabs(n)) 5638 return 1; 5639 } 5640 return 0; 5641 } 5642 5643 #ifdef CONFIG_PRINTK 5644 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 5645 { 5646 void *base; 5647 int __maybe_unused i; 5648 unsigned int objnr; 5649 void *objp; 5650 void *objp0; 5651 struct kmem_cache *s = slab->slab_cache; 5652 struct track __maybe_unused *trackp; 5653 5654 kpp->kp_ptr = object; 5655 kpp->kp_slab = slab; 5656 kpp->kp_slab_cache = s; 5657 base = slab_address(slab); 5658 objp0 = kasan_reset_tag(object); 5659 #ifdef CONFIG_SLUB_DEBUG 5660 objp = restore_red_left(s, objp0); 5661 #else 5662 objp = objp0; 5663 #endif 5664 objnr = obj_to_index(s, slab, objp); 5665 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp); 5666 objp = base + s->size * objnr; 5667 kpp->kp_objp = objp; 5668 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size 5669 || (objp - base) % s->size) || 5670 !(s->flags & SLAB_STORE_USER)) 5671 return; 5672 #ifdef CONFIG_SLUB_DEBUG 5673 objp = fixup_red_left(s, objp); 5674 trackp = get_track(s, objp, TRACK_ALLOC); 5675 kpp->kp_ret = (void *)trackp->addr; 5676 #ifdef CONFIG_STACKDEPOT 5677 { 5678 depot_stack_handle_t handle; 5679 unsigned long *entries; 5680 unsigned int nr_entries; 5681 5682 handle = READ_ONCE(trackp->handle); 5683 if (handle) { 5684 nr_entries = stack_depot_fetch(handle, &entries); 5685 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5686 kpp->kp_stack[i] = (void *)entries[i]; 5687 } 5688 5689 trackp = get_track(s, objp, TRACK_FREE); 5690 handle = READ_ONCE(trackp->handle); 5691 if (handle) { 5692 nr_entries = stack_depot_fetch(handle, &entries); 5693 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++) 5694 kpp->kp_free_stack[i] = (void *)entries[i]; 5695 } 5696 } 5697 #endif 5698 #endif 5699 } 5700 #endif 5701 5702 /******************************************************************** 5703 * Kmalloc subsystem 5704 *******************************************************************/ 5705 5706 static int __init setup_slub_min_order(char *str) 5707 { 5708 get_option(&str, (int *)&slub_min_order); 5709 5710 if (slub_min_order > slub_max_order) 5711 slub_max_order = slub_min_order; 5712 5713 return 1; 5714 } 5715 5716 __setup("slab_min_order=", setup_slub_min_order); 5717 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0); 5718 5719 5720 static int __init setup_slub_max_order(char *str) 5721 { 5722 get_option(&str, (int *)&slub_max_order); 5723 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER); 5724 5725 if (slub_min_order > slub_max_order) 5726 slub_min_order = slub_max_order; 5727 5728 return 1; 5729 } 5730 5731 __setup("slab_max_order=", setup_slub_max_order); 5732 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0); 5733 5734 static int __init setup_slub_min_objects(char *str) 5735 { 5736 get_option(&str, (int *)&slub_min_objects); 5737 5738 return 1; 5739 } 5740 5741 __setup("slab_min_objects=", setup_slub_min_objects); 5742 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0); 5743 5744 #ifdef CONFIG_NUMA 5745 static int __init setup_slab_strict_numa(char *str) 5746 { 5747 if (nr_node_ids > 1) { 5748 static_branch_enable(&strict_numa); 5749 pr_info("SLUB: Strict NUMA enabled.\n"); 5750 } else { 5751 pr_warn("slab_strict_numa parameter set on non NUMA system.\n"); 5752 } 5753 5754 return 1; 5755 } 5756 5757 __setup("slab_strict_numa", setup_slab_strict_numa); 5758 #endif 5759 5760 5761 #ifdef CONFIG_HARDENED_USERCOPY 5762 /* 5763 * Rejects incorrectly sized objects and objects that are to be copied 5764 * to/from userspace but do not fall entirely within the containing slab 5765 * cache's usercopy region. 5766 * 5767 * Returns NULL if check passes, otherwise const char * to name of cache 5768 * to indicate an error. 5769 */ 5770 void __check_heap_object(const void *ptr, unsigned long n, 5771 const struct slab *slab, bool to_user) 5772 { 5773 struct kmem_cache *s; 5774 unsigned int offset; 5775 bool is_kfence = is_kfence_address(ptr); 5776 5777 ptr = kasan_reset_tag(ptr); 5778 5779 /* Find object and usable object size. */ 5780 s = slab->slab_cache; 5781 5782 /* Reject impossible pointers. */ 5783 if (ptr < slab_address(slab)) 5784 usercopy_abort("SLUB object not in SLUB page?!", NULL, 5785 to_user, 0, n); 5786 5787 /* Find offset within object. */ 5788 if (is_kfence) 5789 offset = ptr - kfence_object_start(ptr); 5790 else 5791 offset = (ptr - slab_address(slab)) % s->size; 5792 5793 /* Adjust for redzone and reject if within the redzone. */ 5794 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) { 5795 if (offset < s->red_left_pad) 5796 usercopy_abort("SLUB object in left red zone", 5797 s->name, to_user, offset, n); 5798 offset -= s->red_left_pad; 5799 } 5800 5801 /* Allow address range falling entirely within usercopy region. */ 5802 if (offset >= s->useroffset && 5803 offset - s->useroffset <= s->usersize && 5804 n <= s->useroffset - offset + s->usersize) 5805 return; 5806 5807 usercopy_abort("SLUB object", s->name, to_user, offset, n); 5808 } 5809 #endif /* CONFIG_HARDENED_USERCOPY */ 5810 5811 #define SHRINK_PROMOTE_MAX 32 5812 5813 /* 5814 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 5815 * up most to the head of the partial lists. New allocations will then 5816 * fill those up and thus they can be removed from the partial lists. 5817 * 5818 * The slabs with the least items are placed last. This results in them 5819 * being allocated from last increasing the chance that the last objects 5820 * are freed in them. 5821 */ 5822 static int __kmem_cache_do_shrink(struct kmem_cache *s) 5823 { 5824 int node; 5825 int i; 5826 struct kmem_cache_node *n; 5827 struct slab *slab; 5828 struct slab *t; 5829 struct list_head discard; 5830 struct list_head promote[SHRINK_PROMOTE_MAX]; 5831 unsigned long flags; 5832 int ret = 0; 5833 5834 for_each_kmem_cache_node(s, node, n) { 5835 INIT_LIST_HEAD(&discard); 5836 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 5837 INIT_LIST_HEAD(promote + i); 5838 5839 spin_lock_irqsave(&n->list_lock, flags); 5840 5841 /* 5842 * Build lists of slabs to discard or promote. 5843 * 5844 * Note that concurrent frees may occur while we hold the 5845 * list_lock. slab->inuse here is the upper limit. 5846 */ 5847 list_for_each_entry_safe(slab, t, &n->partial, slab_list) { 5848 int free = slab->objects - slab->inuse; 5849 5850 /* Do not reread slab->inuse */ 5851 barrier(); 5852 5853 /* We do not keep full slabs on the list */ 5854 BUG_ON(free <= 0); 5855 5856 if (free == slab->objects) { 5857 list_move(&slab->slab_list, &discard); 5858 slab_clear_node_partial(slab); 5859 n->nr_partial--; 5860 dec_slabs_node(s, node, slab->objects); 5861 } else if (free <= SHRINK_PROMOTE_MAX) 5862 list_move(&slab->slab_list, promote + free - 1); 5863 } 5864 5865 /* 5866 * Promote the slabs filled up most to the head of the 5867 * partial list. 5868 */ 5869 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 5870 list_splice(promote + i, &n->partial); 5871 5872 spin_unlock_irqrestore(&n->list_lock, flags); 5873 5874 /* Release empty slabs */ 5875 list_for_each_entry_safe(slab, t, &discard, slab_list) 5876 free_slab(s, slab); 5877 5878 if (node_nr_slabs(n)) 5879 ret = 1; 5880 } 5881 5882 return ret; 5883 } 5884 5885 int __kmem_cache_shrink(struct kmem_cache *s) 5886 { 5887 flush_all(s); 5888 return __kmem_cache_do_shrink(s); 5889 } 5890 5891 static int slab_mem_going_offline_callback(void *arg) 5892 { 5893 struct kmem_cache *s; 5894 5895 mutex_lock(&slab_mutex); 5896 list_for_each_entry(s, &slab_caches, list) { 5897 flush_all_cpus_locked(s); 5898 __kmem_cache_do_shrink(s); 5899 } 5900 mutex_unlock(&slab_mutex); 5901 5902 return 0; 5903 } 5904 5905 static void slab_mem_offline_callback(void *arg) 5906 { 5907 struct memory_notify *marg = arg; 5908 int offline_node; 5909 5910 offline_node = marg->status_change_nid_normal; 5911 5912 /* 5913 * If the node still has available memory. we need kmem_cache_node 5914 * for it yet. 5915 */ 5916 if (offline_node < 0) 5917 return; 5918 5919 mutex_lock(&slab_mutex); 5920 node_clear(offline_node, slab_nodes); 5921 /* 5922 * We no longer free kmem_cache_node structures here, as it would be 5923 * racy with all get_node() users, and infeasible to protect them with 5924 * slab_mutex. 5925 */ 5926 mutex_unlock(&slab_mutex); 5927 } 5928 5929 static int slab_mem_going_online_callback(void *arg) 5930 { 5931 struct kmem_cache_node *n; 5932 struct kmem_cache *s; 5933 struct memory_notify *marg = arg; 5934 int nid = marg->status_change_nid_normal; 5935 int ret = 0; 5936 5937 /* 5938 * If the node's memory is already available, then kmem_cache_node is 5939 * already created. Nothing to do. 5940 */ 5941 if (nid < 0) 5942 return 0; 5943 5944 /* 5945 * We are bringing a node online. No memory is available yet. We must 5946 * allocate a kmem_cache_node structure in order to bring the node 5947 * online. 5948 */ 5949 mutex_lock(&slab_mutex); 5950 list_for_each_entry(s, &slab_caches, list) { 5951 /* 5952 * The structure may already exist if the node was previously 5953 * onlined and offlined. 5954 */ 5955 if (get_node(s, nid)) 5956 continue; 5957 /* 5958 * XXX: kmem_cache_alloc_node will fallback to other nodes 5959 * since memory is not yet available from the node that 5960 * is brought up. 5961 */ 5962 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 5963 if (!n) { 5964 ret = -ENOMEM; 5965 goto out; 5966 } 5967 init_kmem_cache_node(n); 5968 s->node[nid] = n; 5969 } 5970 /* 5971 * Any cache created after this point will also have kmem_cache_node 5972 * initialized for the new node. 5973 */ 5974 node_set(nid, slab_nodes); 5975 out: 5976 mutex_unlock(&slab_mutex); 5977 return ret; 5978 } 5979 5980 static int slab_memory_callback(struct notifier_block *self, 5981 unsigned long action, void *arg) 5982 { 5983 int ret = 0; 5984 5985 switch (action) { 5986 case MEM_GOING_ONLINE: 5987 ret = slab_mem_going_online_callback(arg); 5988 break; 5989 case MEM_GOING_OFFLINE: 5990 ret = slab_mem_going_offline_callback(arg); 5991 break; 5992 case MEM_OFFLINE: 5993 case MEM_CANCEL_ONLINE: 5994 slab_mem_offline_callback(arg); 5995 break; 5996 case MEM_ONLINE: 5997 case MEM_CANCEL_OFFLINE: 5998 break; 5999 } 6000 if (ret) 6001 ret = notifier_from_errno(ret); 6002 else 6003 ret = NOTIFY_OK; 6004 return ret; 6005 } 6006 6007 /******************************************************************** 6008 * Basic setup of slabs 6009 *******************************************************************/ 6010 6011 /* 6012 * Used for early kmem_cache structures that were allocated using 6013 * the page allocator. Allocate them properly then fix up the pointers 6014 * that may be pointing to the wrong kmem_cache structure. 6015 */ 6016 6017 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 6018 { 6019 int node; 6020 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 6021 struct kmem_cache_node *n; 6022 6023 memcpy(s, static_cache, kmem_cache->object_size); 6024 6025 /* 6026 * This runs very early, and only the boot processor is supposed to be 6027 * up. Even if it weren't true, IRQs are not up so we couldn't fire 6028 * IPIs around. 6029 */ 6030 __flush_cpu_slab(s, smp_processor_id()); 6031 for_each_kmem_cache_node(s, node, n) { 6032 struct slab *p; 6033 6034 list_for_each_entry(p, &n->partial, slab_list) 6035 p->slab_cache = s; 6036 6037 #ifdef CONFIG_SLUB_DEBUG 6038 list_for_each_entry(p, &n->full, slab_list) 6039 p->slab_cache = s; 6040 #endif 6041 } 6042 list_add(&s->list, &slab_caches); 6043 return s; 6044 } 6045 6046 void __init kmem_cache_init(void) 6047 { 6048 static __initdata struct kmem_cache boot_kmem_cache, 6049 boot_kmem_cache_node; 6050 int node; 6051 6052 if (debug_guardpage_minorder()) 6053 slub_max_order = 0; 6054 6055 /* Print slub debugging pointers without hashing */ 6056 if (__slub_debug_enabled()) 6057 no_hash_pointers_enable(NULL); 6058 6059 kmem_cache_node = &boot_kmem_cache_node; 6060 kmem_cache = &boot_kmem_cache; 6061 6062 /* 6063 * Initialize the nodemask for which we will allocate per node 6064 * structures. Here we don't need taking slab_mutex yet. 6065 */ 6066 for_each_node_state(node, N_NORMAL_MEMORY) 6067 node_set(node, slab_nodes); 6068 6069 create_boot_cache(kmem_cache_node, "kmem_cache_node", 6070 sizeof(struct kmem_cache_node), 6071 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6072 6073 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); 6074 6075 /* Able to allocate the per node structures */ 6076 slab_state = PARTIAL; 6077 6078 create_boot_cache(kmem_cache, "kmem_cache", 6079 offsetof(struct kmem_cache, node) + 6080 nr_node_ids * sizeof(struct kmem_cache_node *), 6081 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0); 6082 6083 kmem_cache = bootstrap(&boot_kmem_cache); 6084 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 6085 6086 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 6087 setup_kmalloc_cache_index_table(); 6088 create_kmalloc_caches(); 6089 6090 /* Setup random freelists for each cache */ 6091 init_freelist_randomization(); 6092 6093 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 6094 slub_cpu_dead); 6095 6096 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n", 6097 cache_line_size(), 6098 slub_min_order, slub_max_order, slub_min_objects, 6099 nr_cpu_ids, nr_node_ids); 6100 } 6101 6102 void __init kmem_cache_init_late(void) 6103 { 6104 #ifndef CONFIG_SLUB_TINY 6105 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0); 6106 WARN_ON(!flushwq); 6107 #endif 6108 } 6109 6110 struct kmem_cache * 6111 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, 6112 slab_flags_t flags, void (*ctor)(void *)) 6113 { 6114 struct kmem_cache *s; 6115 6116 s = find_mergeable(size, align, flags, name, ctor); 6117 if (s) { 6118 if (sysfs_slab_alias(s, name)) 6119 pr_err("SLUB: Unable to add cache alias %s to sysfs\n", 6120 name); 6121 6122 s->refcount++; 6123 6124 /* 6125 * Adjust the object sizes so that we clear 6126 * the complete object on kzalloc. 6127 */ 6128 s->object_size = max(s->object_size, size); 6129 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); 6130 } 6131 6132 return s; 6133 } 6134 6135 int do_kmem_cache_create(struct kmem_cache *s, const char *name, 6136 unsigned int size, struct kmem_cache_args *args, 6137 slab_flags_t flags) 6138 { 6139 int err = -EINVAL; 6140 6141 s->name = name; 6142 s->size = s->object_size = size; 6143 6144 s->flags = kmem_cache_flags(flags, s->name); 6145 #ifdef CONFIG_SLAB_FREELIST_HARDENED 6146 s->random = get_random_long(); 6147 #endif 6148 s->align = args->align; 6149 s->ctor = args->ctor; 6150 #ifdef CONFIG_HARDENED_USERCOPY 6151 s->useroffset = args->useroffset; 6152 s->usersize = args->usersize; 6153 #endif 6154 6155 if (!calculate_sizes(args, s)) 6156 goto out; 6157 if (disable_higher_order_debug) { 6158 /* 6159 * Disable debugging flags that store metadata if the min slab 6160 * order increased. 6161 */ 6162 if (get_order(s->size) > get_order(s->object_size)) { 6163 s->flags &= ~DEBUG_METADATA_FLAGS; 6164 s->offset = 0; 6165 if (!calculate_sizes(args, s)) 6166 goto out; 6167 } 6168 } 6169 6170 #ifdef system_has_freelist_aba 6171 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) { 6172 /* Enable fast mode */ 6173 s->flags |= __CMPXCHG_DOUBLE; 6174 } 6175 #endif 6176 6177 /* 6178 * The larger the object size is, the more slabs we want on the partial 6179 * list to avoid pounding the page allocator excessively. 6180 */ 6181 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2); 6182 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial); 6183 6184 set_cpu_partial(s); 6185 6186 #ifdef CONFIG_NUMA 6187 s->remote_node_defrag_ratio = 1000; 6188 #endif 6189 6190 /* Initialize the pre-computed randomized freelist if slab is up */ 6191 if (slab_state >= UP) { 6192 if (init_cache_random_seq(s)) 6193 goto out; 6194 } 6195 6196 if (!init_kmem_cache_nodes(s)) 6197 goto out; 6198 6199 if (!alloc_kmem_cache_cpus(s)) 6200 goto out; 6201 6202 err = 0; 6203 6204 /* Mutex is not taken during early boot */ 6205 if (slab_state <= UP) 6206 goto out; 6207 6208 /* 6209 * Failing to create sysfs files is not critical to SLUB functionality. 6210 * If it fails, proceed with cache creation without these files. 6211 */ 6212 if (sysfs_slab_add(s)) 6213 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name); 6214 6215 if (s->flags & SLAB_STORE_USER) 6216 debugfs_slab_add(s); 6217 6218 out: 6219 if (err) 6220 __kmem_cache_release(s); 6221 return err; 6222 } 6223 6224 #ifdef SLAB_SUPPORTS_SYSFS 6225 static int count_inuse(struct slab *slab) 6226 { 6227 return slab->inuse; 6228 } 6229 6230 static int count_total(struct slab *slab) 6231 { 6232 return slab->objects; 6233 } 6234 #endif 6235 6236 #ifdef CONFIG_SLUB_DEBUG 6237 static void validate_slab(struct kmem_cache *s, struct slab *slab, 6238 unsigned long *obj_map) 6239 { 6240 void *p; 6241 void *addr = slab_address(slab); 6242 6243 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL)) 6244 return; 6245 6246 /* Now we know that a valid freelist exists */ 6247 __fill_map(obj_map, s, slab); 6248 for_each_object(p, s, addr, slab->objects) { 6249 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ? 6250 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE; 6251 6252 if (!check_object(s, slab, p, val)) 6253 break; 6254 } 6255 } 6256 6257 static int validate_slab_node(struct kmem_cache *s, 6258 struct kmem_cache_node *n, unsigned long *obj_map) 6259 { 6260 unsigned long count = 0; 6261 struct slab *slab; 6262 unsigned long flags; 6263 6264 spin_lock_irqsave(&n->list_lock, flags); 6265 6266 list_for_each_entry(slab, &n->partial, slab_list) { 6267 validate_slab(s, slab, obj_map); 6268 count++; 6269 } 6270 if (count != n->nr_partial) { 6271 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 6272 s->name, count, n->nr_partial); 6273 slab_add_kunit_errors(); 6274 } 6275 6276 if (!(s->flags & SLAB_STORE_USER)) 6277 goto out; 6278 6279 list_for_each_entry(slab, &n->full, slab_list) { 6280 validate_slab(s, slab, obj_map); 6281 count++; 6282 } 6283 if (count != node_nr_slabs(n)) { 6284 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 6285 s->name, count, node_nr_slabs(n)); 6286 slab_add_kunit_errors(); 6287 } 6288 6289 out: 6290 spin_unlock_irqrestore(&n->list_lock, flags); 6291 return count; 6292 } 6293 6294 long validate_slab_cache(struct kmem_cache *s) 6295 { 6296 int node; 6297 unsigned long count = 0; 6298 struct kmem_cache_node *n; 6299 unsigned long *obj_map; 6300 6301 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 6302 if (!obj_map) 6303 return -ENOMEM; 6304 6305 flush_all(s); 6306 for_each_kmem_cache_node(s, node, n) 6307 count += validate_slab_node(s, n, obj_map); 6308 6309 bitmap_free(obj_map); 6310 6311 return count; 6312 } 6313 EXPORT_SYMBOL(validate_slab_cache); 6314 6315 #ifdef CONFIG_DEBUG_FS 6316 /* 6317 * Generate lists of code addresses where slabcache objects are allocated 6318 * and freed. 6319 */ 6320 6321 struct location { 6322 depot_stack_handle_t handle; 6323 unsigned long count; 6324 unsigned long addr; 6325 unsigned long waste; 6326 long long sum_time; 6327 long min_time; 6328 long max_time; 6329 long min_pid; 6330 long max_pid; 6331 DECLARE_BITMAP(cpus, NR_CPUS); 6332 nodemask_t nodes; 6333 }; 6334 6335 struct loc_track { 6336 unsigned long max; 6337 unsigned long count; 6338 struct location *loc; 6339 loff_t idx; 6340 }; 6341 6342 static struct dentry *slab_debugfs_root; 6343 6344 static void free_loc_track(struct loc_track *t) 6345 { 6346 if (t->max) 6347 free_pages((unsigned long)t->loc, 6348 get_order(sizeof(struct location) * t->max)); 6349 } 6350 6351 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 6352 { 6353 struct location *l; 6354 int order; 6355 6356 order = get_order(sizeof(struct location) * max); 6357 6358 l = (void *)__get_free_pages(flags, order); 6359 if (!l) 6360 return 0; 6361 6362 if (t->count) { 6363 memcpy(l, t->loc, sizeof(struct location) * t->count); 6364 free_loc_track(t); 6365 } 6366 t->max = max; 6367 t->loc = l; 6368 return 1; 6369 } 6370 6371 static int add_location(struct loc_track *t, struct kmem_cache *s, 6372 const struct track *track, 6373 unsigned int orig_size) 6374 { 6375 long start, end, pos; 6376 struct location *l; 6377 unsigned long caddr, chandle, cwaste; 6378 unsigned long age = jiffies - track->when; 6379 depot_stack_handle_t handle = 0; 6380 unsigned int waste = s->object_size - orig_size; 6381 6382 #ifdef CONFIG_STACKDEPOT 6383 handle = READ_ONCE(track->handle); 6384 #endif 6385 start = -1; 6386 end = t->count; 6387 6388 for ( ; ; ) { 6389 pos = start + (end - start + 1) / 2; 6390 6391 /* 6392 * There is nothing at "end". If we end up there 6393 * we need to add something to before end. 6394 */ 6395 if (pos == end) 6396 break; 6397 6398 l = &t->loc[pos]; 6399 caddr = l->addr; 6400 chandle = l->handle; 6401 cwaste = l->waste; 6402 if ((track->addr == caddr) && (handle == chandle) && 6403 (waste == cwaste)) { 6404 6405 l->count++; 6406 if (track->when) { 6407 l->sum_time += age; 6408 if (age < l->min_time) 6409 l->min_time = age; 6410 if (age > l->max_time) 6411 l->max_time = age; 6412 6413 if (track->pid < l->min_pid) 6414 l->min_pid = track->pid; 6415 if (track->pid > l->max_pid) 6416 l->max_pid = track->pid; 6417 6418 cpumask_set_cpu(track->cpu, 6419 to_cpumask(l->cpus)); 6420 } 6421 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6422 return 1; 6423 } 6424 6425 if (track->addr < caddr) 6426 end = pos; 6427 else if (track->addr == caddr && handle < chandle) 6428 end = pos; 6429 else if (track->addr == caddr && handle == chandle && 6430 waste < cwaste) 6431 end = pos; 6432 else 6433 start = pos; 6434 } 6435 6436 /* 6437 * Not found. Insert new tracking element. 6438 */ 6439 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 6440 return 0; 6441 6442 l = t->loc + pos; 6443 if (pos < t->count) 6444 memmove(l + 1, l, 6445 (t->count - pos) * sizeof(struct location)); 6446 t->count++; 6447 l->count = 1; 6448 l->addr = track->addr; 6449 l->sum_time = age; 6450 l->min_time = age; 6451 l->max_time = age; 6452 l->min_pid = track->pid; 6453 l->max_pid = track->pid; 6454 l->handle = handle; 6455 l->waste = waste; 6456 cpumask_clear(to_cpumask(l->cpus)); 6457 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 6458 nodes_clear(l->nodes); 6459 node_set(page_to_nid(virt_to_page(track)), l->nodes); 6460 return 1; 6461 } 6462 6463 static void process_slab(struct loc_track *t, struct kmem_cache *s, 6464 struct slab *slab, enum track_item alloc, 6465 unsigned long *obj_map) 6466 { 6467 void *addr = slab_address(slab); 6468 bool is_alloc = (alloc == TRACK_ALLOC); 6469 void *p; 6470 6471 __fill_map(obj_map, s, slab); 6472 6473 for_each_object(p, s, addr, slab->objects) 6474 if (!test_bit(__obj_to_index(s, addr, p), obj_map)) 6475 add_location(t, s, get_track(s, p, alloc), 6476 is_alloc ? get_orig_size(s, p) : 6477 s->object_size); 6478 } 6479 #endif /* CONFIG_DEBUG_FS */ 6480 #endif /* CONFIG_SLUB_DEBUG */ 6481 6482 #ifdef SLAB_SUPPORTS_SYSFS 6483 enum slab_stat_type { 6484 SL_ALL, /* All slabs */ 6485 SL_PARTIAL, /* Only partially allocated slabs */ 6486 SL_CPU, /* Only slabs used for cpu caches */ 6487 SL_OBJECTS, /* Determine allocated objects not slabs */ 6488 SL_TOTAL /* Determine object capacity not slabs */ 6489 }; 6490 6491 #define SO_ALL (1 << SL_ALL) 6492 #define SO_PARTIAL (1 << SL_PARTIAL) 6493 #define SO_CPU (1 << SL_CPU) 6494 #define SO_OBJECTS (1 << SL_OBJECTS) 6495 #define SO_TOTAL (1 << SL_TOTAL) 6496 6497 static ssize_t show_slab_objects(struct kmem_cache *s, 6498 char *buf, unsigned long flags) 6499 { 6500 unsigned long total = 0; 6501 int node; 6502 int x; 6503 unsigned long *nodes; 6504 int len = 0; 6505 6506 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); 6507 if (!nodes) 6508 return -ENOMEM; 6509 6510 if (flags & SO_CPU) { 6511 int cpu; 6512 6513 for_each_possible_cpu(cpu) { 6514 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 6515 cpu); 6516 int node; 6517 struct slab *slab; 6518 6519 slab = READ_ONCE(c->slab); 6520 if (!slab) 6521 continue; 6522 6523 node = slab_nid(slab); 6524 if (flags & SO_TOTAL) 6525 x = slab->objects; 6526 else if (flags & SO_OBJECTS) 6527 x = slab->inuse; 6528 else 6529 x = 1; 6530 6531 total += x; 6532 nodes[node] += x; 6533 6534 #ifdef CONFIG_SLUB_CPU_PARTIAL 6535 slab = slub_percpu_partial_read_once(c); 6536 if (slab) { 6537 node = slab_nid(slab); 6538 if (flags & SO_TOTAL) 6539 WARN_ON_ONCE(1); 6540 else if (flags & SO_OBJECTS) 6541 WARN_ON_ONCE(1); 6542 else 6543 x = data_race(slab->slabs); 6544 total += x; 6545 nodes[node] += x; 6546 } 6547 #endif 6548 } 6549 } 6550 6551 /* 6552 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" 6553 * already held which will conflict with an existing lock order: 6554 * 6555 * mem_hotplug_lock->slab_mutex->kernfs_mutex 6556 * 6557 * We don't really need mem_hotplug_lock (to hold off 6558 * slab_mem_going_offline_callback) here because slab's memory hot 6559 * unplug code doesn't destroy the kmem_cache->node[] data. 6560 */ 6561 6562 #ifdef CONFIG_SLUB_DEBUG 6563 if (flags & SO_ALL) { 6564 struct kmem_cache_node *n; 6565 6566 for_each_kmem_cache_node(s, node, n) { 6567 6568 if (flags & SO_TOTAL) 6569 x = node_nr_objs(n); 6570 else if (flags & SO_OBJECTS) 6571 x = node_nr_objs(n) - count_partial(n, count_free); 6572 else 6573 x = node_nr_slabs(n); 6574 total += x; 6575 nodes[node] += x; 6576 } 6577 6578 } else 6579 #endif 6580 if (flags & SO_PARTIAL) { 6581 struct kmem_cache_node *n; 6582 6583 for_each_kmem_cache_node(s, node, n) { 6584 if (flags & SO_TOTAL) 6585 x = count_partial(n, count_total); 6586 else if (flags & SO_OBJECTS) 6587 x = count_partial(n, count_inuse); 6588 else 6589 x = n->nr_partial; 6590 total += x; 6591 nodes[node] += x; 6592 } 6593 } 6594 6595 len += sysfs_emit_at(buf, len, "%lu", total); 6596 #ifdef CONFIG_NUMA 6597 for (node = 0; node < nr_node_ids; node++) { 6598 if (nodes[node]) 6599 len += sysfs_emit_at(buf, len, " N%d=%lu", 6600 node, nodes[node]); 6601 } 6602 #endif 6603 len += sysfs_emit_at(buf, len, "\n"); 6604 kfree(nodes); 6605 6606 return len; 6607 } 6608 6609 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 6610 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 6611 6612 struct slab_attribute { 6613 struct attribute attr; 6614 ssize_t (*show)(struct kmem_cache *s, char *buf); 6615 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 6616 }; 6617 6618 #define SLAB_ATTR_RO(_name) \ 6619 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400) 6620 6621 #define SLAB_ATTR(_name) \ 6622 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600) 6623 6624 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 6625 { 6626 return sysfs_emit(buf, "%u\n", s->size); 6627 } 6628 SLAB_ATTR_RO(slab_size); 6629 6630 static ssize_t align_show(struct kmem_cache *s, char *buf) 6631 { 6632 return sysfs_emit(buf, "%u\n", s->align); 6633 } 6634 SLAB_ATTR_RO(align); 6635 6636 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 6637 { 6638 return sysfs_emit(buf, "%u\n", s->object_size); 6639 } 6640 SLAB_ATTR_RO(object_size); 6641 6642 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 6643 { 6644 return sysfs_emit(buf, "%u\n", oo_objects(s->oo)); 6645 } 6646 SLAB_ATTR_RO(objs_per_slab); 6647 6648 static ssize_t order_show(struct kmem_cache *s, char *buf) 6649 { 6650 return sysfs_emit(buf, "%u\n", oo_order(s->oo)); 6651 } 6652 SLAB_ATTR_RO(order); 6653 6654 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 6655 { 6656 return sysfs_emit(buf, "%lu\n", s->min_partial); 6657 } 6658 6659 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 6660 size_t length) 6661 { 6662 unsigned long min; 6663 int err; 6664 6665 err = kstrtoul(buf, 10, &min); 6666 if (err) 6667 return err; 6668 6669 s->min_partial = min; 6670 return length; 6671 } 6672 SLAB_ATTR(min_partial); 6673 6674 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 6675 { 6676 unsigned int nr_partial = 0; 6677 #ifdef CONFIG_SLUB_CPU_PARTIAL 6678 nr_partial = s->cpu_partial; 6679 #endif 6680 6681 return sysfs_emit(buf, "%u\n", nr_partial); 6682 } 6683 6684 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 6685 size_t length) 6686 { 6687 unsigned int objects; 6688 int err; 6689 6690 err = kstrtouint(buf, 10, &objects); 6691 if (err) 6692 return err; 6693 if (objects && !kmem_cache_has_cpu_partial(s)) 6694 return -EINVAL; 6695 6696 slub_set_cpu_partial(s, objects); 6697 flush_all(s); 6698 return length; 6699 } 6700 SLAB_ATTR(cpu_partial); 6701 6702 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 6703 { 6704 if (!s->ctor) 6705 return 0; 6706 return sysfs_emit(buf, "%pS\n", s->ctor); 6707 } 6708 SLAB_ATTR_RO(ctor); 6709 6710 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 6711 { 6712 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 6713 } 6714 SLAB_ATTR_RO(aliases); 6715 6716 static ssize_t partial_show(struct kmem_cache *s, char *buf) 6717 { 6718 return show_slab_objects(s, buf, SO_PARTIAL); 6719 } 6720 SLAB_ATTR_RO(partial); 6721 6722 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 6723 { 6724 return show_slab_objects(s, buf, SO_CPU); 6725 } 6726 SLAB_ATTR_RO(cpu_slabs); 6727 6728 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 6729 { 6730 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 6731 } 6732 SLAB_ATTR_RO(objects_partial); 6733 6734 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 6735 { 6736 int objects = 0; 6737 int slabs = 0; 6738 int cpu __maybe_unused; 6739 int len = 0; 6740 6741 #ifdef CONFIG_SLUB_CPU_PARTIAL 6742 for_each_online_cpu(cpu) { 6743 struct slab *slab; 6744 6745 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6746 6747 if (slab) 6748 slabs += data_race(slab->slabs); 6749 } 6750 #endif 6751 6752 /* Approximate half-full slabs, see slub_set_cpu_partial() */ 6753 objects = (slabs * oo_objects(s->oo)) / 2; 6754 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs); 6755 6756 #ifdef CONFIG_SLUB_CPU_PARTIAL 6757 for_each_online_cpu(cpu) { 6758 struct slab *slab; 6759 6760 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); 6761 if (slab) { 6762 slabs = data_race(slab->slabs); 6763 objects = (slabs * oo_objects(s->oo)) / 2; 6764 len += sysfs_emit_at(buf, len, " C%d=%d(%d)", 6765 cpu, objects, slabs); 6766 } 6767 } 6768 #endif 6769 len += sysfs_emit_at(buf, len, "\n"); 6770 6771 return len; 6772 } 6773 SLAB_ATTR_RO(slabs_cpu_partial); 6774 6775 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 6776 { 6777 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 6778 } 6779 SLAB_ATTR_RO(reclaim_account); 6780 6781 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 6782 { 6783 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 6784 } 6785 SLAB_ATTR_RO(hwcache_align); 6786 6787 #ifdef CONFIG_ZONE_DMA 6788 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 6789 { 6790 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 6791 } 6792 SLAB_ATTR_RO(cache_dma); 6793 #endif 6794 6795 #ifdef CONFIG_HARDENED_USERCOPY 6796 static ssize_t usersize_show(struct kmem_cache *s, char *buf) 6797 { 6798 return sysfs_emit(buf, "%u\n", s->usersize); 6799 } 6800 SLAB_ATTR_RO(usersize); 6801 #endif 6802 6803 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 6804 { 6805 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); 6806 } 6807 SLAB_ATTR_RO(destroy_by_rcu); 6808 6809 #ifdef CONFIG_SLUB_DEBUG 6810 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 6811 { 6812 return show_slab_objects(s, buf, SO_ALL); 6813 } 6814 SLAB_ATTR_RO(slabs); 6815 6816 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 6817 { 6818 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 6819 } 6820 SLAB_ATTR_RO(total_objects); 6821 6822 static ssize_t objects_show(struct kmem_cache *s, char *buf) 6823 { 6824 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 6825 } 6826 SLAB_ATTR_RO(objects); 6827 6828 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 6829 { 6830 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 6831 } 6832 SLAB_ATTR_RO(sanity_checks); 6833 6834 static ssize_t trace_show(struct kmem_cache *s, char *buf) 6835 { 6836 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 6837 } 6838 SLAB_ATTR_RO(trace); 6839 6840 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 6841 { 6842 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 6843 } 6844 6845 SLAB_ATTR_RO(red_zone); 6846 6847 static ssize_t poison_show(struct kmem_cache *s, char *buf) 6848 { 6849 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON)); 6850 } 6851 6852 SLAB_ATTR_RO(poison); 6853 6854 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 6855 { 6856 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 6857 } 6858 6859 SLAB_ATTR_RO(store_user); 6860 6861 static ssize_t validate_show(struct kmem_cache *s, char *buf) 6862 { 6863 return 0; 6864 } 6865 6866 static ssize_t validate_store(struct kmem_cache *s, 6867 const char *buf, size_t length) 6868 { 6869 int ret = -EINVAL; 6870 6871 if (buf[0] == '1' && kmem_cache_debug(s)) { 6872 ret = validate_slab_cache(s); 6873 if (ret >= 0) 6874 ret = length; 6875 } 6876 return ret; 6877 } 6878 SLAB_ATTR(validate); 6879 6880 #endif /* CONFIG_SLUB_DEBUG */ 6881 6882 #ifdef CONFIG_FAILSLAB 6883 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 6884 { 6885 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 6886 } 6887 6888 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 6889 size_t length) 6890 { 6891 if (s->refcount > 1) 6892 return -EINVAL; 6893 6894 if (buf[0] == '1') 6895 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB); 6896 else 6897 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB); 6898 6899 return length; 6900 } 6901 SLAB_ATTR(failslab); 6902 #endif 6903 6904 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 6905 { 6906 return 0; 6907 } 6908 6909 static ssize_t shrink_store(struct kmem_cache *s, 6910 const char *buf, size_t length) 6911 { 6912 if (buf[0] == '1') 6913 kmem_cache_shrink(s); 6914 else 6915 return -EINVAL; 6916 return length; 6917 } 6918 SLAB_ATTR(shrink); 6919 6920 #ifdef CONFIG_NUMA 6921 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 6922 { 6923 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10); 6924 } 6925 6926 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 6927 const char *buf, size_t length) 6928 { 6929 unsigned int ratio; 6930 int err; 6931 6932 err = kstrtouint(buf, 10, &ratio); 6933 if (err) 6934 return err; 6935 if (ratio > 100) 6936 return -ERANGE; 6937 6938 s->remote_node_defrag_ratio = ratio * 10; 6939 6940 return length; 6941 } 6942 SLAB_ATTR(remote_node_defrag_ratio); 6943 #endif 6944 6945 #ifdef CONFIG_SLUB_STATS 6946 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 6947 { 6948 unsigned long sum = 0; 6949 int cpu; 6950 int len = 0; 6951 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); 6952 6953 if (!data) 6954 return -ENOMEM; 6955 6956 for_each_online_cpu(cpu) { 6957 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 6958 6959 data[cpu] = x; 6960 sum += x; 6961 } 6962 6963 len += sysfs_emit_at(buf, len, "%lu", sum); 6964 6965 #ifdef CONFIG_SMP 6966 for_each_online_cpu(cpu) { 6967 if (data[cpu]) 6968 len += sysfs_emit_at(buf, len, " C%d=%u", 6969 cpu, data[cpu]); 6970 } 6971 #endif 6972 kfree(data); 6973 len += sysfs_emit_at(buf, len, "\n"); 6974 6975 return len; 6976 } 6977 6978 static void clear_stat(struct kmem_cache *s, enum stat_item si) 6979 { 6980 int cpu; 6981 6982 for_each_online_cpu(cpu) 6983 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 6984 } 6985 6986 #define STAT_ATTR(si, text) \ 6987 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 6988 { \ 6989 return show_stat(s, buf, si); \ 6990 } \ 6991 static ssize_t text##_store(struct kmem_cache *s, \ 6992 const char *buf, size_t length) \ 6993 { \ 6994 if (buf[0] != '0') \ 6995 return -EINVAL; \ 6996 clear_stat(s, si); \ 6997 return length; \ 6998 } \ 6999 SLAB_ATTR(text); \ 7000 7001 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 7002 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 7003 STAT_ATTR(FREE_FASTPATH, free_fastpath); 7004 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 7005 STAT_ATTR(FREE_FROZEN, free_frozen); 7006 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 7007 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 7008 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 7009 STAT_ATTR(ALLOC_SLAB, alloc_slab); 7010 STAT_ATTR(ALLOC_REFILL, alloc_refill); 7011 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 7012 STAT_ATTR(FREE_SLAB, free_slab); 7013 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 7014 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 7015 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 7016 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 7017 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 7018 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 7019 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 7020 STAT_ATTR(ORDER_FALLBACK, order_fallback); 7021 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 7022 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 7023 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 7024 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 7025 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 7026 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 7027 #endif /* CONFIG_SLUB_STATS */ 7028 7029 #ifdef CONFIG_KFENCE 7030 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf) 7031 { 7032 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE)); 7033 } 7034 7035 static ssize_t skip_kfence_store(struct kmem_cache *s, 7036 const char *buf, size_t length) 7037 { 7038 int ret = length; 7039 7040 if (buf[0] == '0') 7041 s->flags &= ~SLAB_SKIP_KFENCE; 7042 else if (buf[0] == '1') 7043 s->flags |= SLAB_SKIP_KFENCE; 7044 else 7045 ret = -EINVAL; 7046 7047 return ret; 7048 } 7049 SLAB_ATTR(skip_kfence); 7050 #endif 7051 7052 static struct attribute *slab_attrs[] = { 7053 &slab_size_attr.attr, 7054 &object_size_attr.attr, 7055 &objs_per_slab_attr.attr, 7056 &order_attr.attr, 7057 &min_partial_attr.attr, 7058 &cpu_partial_attr.attr, 7059 &objects_partial_attr.attr, 7060 &partial_attr.attr, 7061 &cpu_slabs_attr.attr, 7062 &ctor_attr.attr, 7063 &aliases_attr.attr, 7064 &align_attr.attr, 7065 &hwcache_align_attr.attr, 7066 &reclaim_account_attr.attr, 7067 &destroy_by_rcu_attr.attr, 7068 &shrink_attr.attr, 7069 &slabs_cpu_partial_attr.attr, 7070 #ifdef CONFIG_SLUB_DEBUG 7071 &total_objects_attr.attr, 7072 &objects_attr.attr, 7073 &slabs_attr.attr, 7074 &sanity_checks_attr.attr, 7075 &trace_attr.attr, 7076 &red_zone_attr.attr, 7077 &poison_attr.attr, 7078 &store_user_attr.attr, 7079 &validate_attr.attr, 7080 #endif 7081 #ifdef CONFIG_ZONE_DMA 7082 &cache_dma_attr.attr, 7083 #endif 7084 #ifdef CONFIG_NUMA 7085 &remote_node_defrag_ratio_attr.attr, 7086 #endif 7087 #ifdef CONFIG_SLUB_STATS 7088 &alloc_fastpath_attr.attr, 7089 &alloc_slowpath_attr.attr, 7090 &free_fastpath_attr.attr, 7091 &free_slowpath_attr.attr, 7092 &free_frozen_attr.attr, 7093 &free_add_partial_attr.attr, 7094 &free_remove_partial_attr.attr, 7095 &alloc_from_partial_attr.attr, 7096 &alloc_slab_attr.attr, 7097 &alloc_refill_attr.attr, 7098 &alloc_node_mismatch_attr.attr, 7099 &free_slab_attr.attr, 7100 &cpuslab_flush_attr.attr, 7101 &deactivate_full_attr.attr, 7102 &deactivate_empty_attr.attr, 7103 &deactivate_to_head_attr.attr, 7104 &deactivate_to_tail_attr.attr, 7105 &deactivate_remote_frees_attr.attr, 7106 &deactivate_bypass_attr.attr, 7107 &order_fallback_attr.attr, 7108 &cmpxchg_double_fail_attr.attr, 7109 &cmpxchg_double_cpu_fail_attr.attr, 7110 &cpu_partial_alloc_attr.attr, 7111 &cpu_partial_free_attr.attr, 7112 &cpu_partial_node_attr.attr, 7113 &cpu_partial_drain_attr.attr, 7114 #endif 7115 #ifdef CONFIG_FAILSLAB 7116 &failslab_attr.attr, 7117 #endif 7118 #ifdef CONFIG_HARDENED_USERCOPY 7119 &usersize_attr.attr, 7120 #endif 7121 #ifdef CONFIG_KFENCE 7122 &skip_kfence_attr.attr, 7123 #endif 7124 7125 NULL 7126 }; 7127 7128 static const struct attribute_group slab_attr_group = { 7129 .attrs = slab_attrs, 7130 }; 7131 7132 static ssize_t slab_attr_show(struct kobject *kobj, 7133 struct attribute *attr, 7134 char *buf) 7135 { 7136 struct slab_attribute *attribute; 7137 struct kmem_cache *s; 7138 7139 attribute = to_slab_attr(attr); 7140 s = to_slab(kobj); 7141 7142 if (!attribute->show) 7143 return -EIO; 7144 7145 return attribute->show(s, buf); 7146 } 7147 7148 static ssize_t slab_attr_store(struct kobject *kobj, 7149 struct attribute *attr, 7150 const char *buf, size_t len) 7151 { 7152 struct slab_attribute *attribute; 7153 struct kmem_cache *s; 7154 7155 attribute = to_slab_attr(attr); 7156 s = to_slab(kobj); 7157 7158 if (!attribute->store) 7159 return -EIO; 7160 7161 return attribute->store(s, buf, len); 7162 } 7163 7164 static void kmem_cache_release(struct kobject *k) 7165 { 7166 slab_kmem_cache_release(to_slab(k)); 7167 } 7168 7169 static const struct sysfs_ops slab_sysfs_ops = { 7170 .show = slab_attr_show, 7171 .store = slab_attr_store, 7172 }; 7173 7174 static const struct kobj_type slab_ktype = { 7175 .sysfs_ops = &slab_sysfs_ops, 7176 .release = kmem_cache_release, 7177 }; 7178 7179 static struct kset *slab_kset; 7180 7181 static inline struct kset *cache_kset(struct kmem_cache *s) 7182 { 7183 return slab_kset; 7184 } 7185 7186 #define ID_STR_LENGTH 32 7187 7188 /* Create a unique string id for a slab cache: 7189 * 7190 * Format :[flags-]size 7191 */ 7192 static char *create_unique_id(struct kmem_cache *s) 7193 { 7194 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 7195 char *p = name; 7196 7197 if (!name) 7198 return ERR_PTR(-ENOMEM); 7199 7200 *p++ = ':'; 7201 /* 7202 * First flags affecting slabcache operations. We will only 7203 * get here for aliasable slabs so we do not need to support 7204 * too many flags. The flags here must cover all flags that 7205 * are matched during merging to guarantee that the id is 7206 * unique. 7207 */ 7208 if (s->flags & SLAB_CACHE_DMA) 7209 *p++ = 'd'; 7210 if (s->flags & SLAB_CACHE_DMA32) 7211 *p++ = 'D'; 7212 if (s->flags & SLAB_RECLAIM_ACCOUNT) 7213 *p++ = 'a'; 7214 if (s->flags & SLAB_CONSISTENCY_CHECKS) 7215 *p++ = 'F'; 7216 if (s->flags & SLAB_ACCOUNT) 7217 *p++ = 'A'; 7218 if (p != name + 1) 7219 *p++ = '-'; 7220 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size); 7221 7222 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) { 7223 kfree(name); 7224 return ERR_PTR(-EINVAL); 7225 } 7226 kmsan_unpoison_memory(name, p - name); 7227 return name; 7228 } 7229 7230 static int sysfs_slab_add(struct kmem_cache *s) 7231 { 7232 int err; 7233 const char *name; 7234 struct kset *kset = cache_kset(s); 7235 int unmergeable = slab_unmergeable(s); 7236 7237 if (!unmergeable && disable_higher_order_debug && 7238 (slub_debug & DEBUG_METADATA_FLAGS)) 7239 unmergeable = 1; 7240 7241 if (unmergeable) { 7242 /* 7243 * Slabcache can never be merged so we can use the name proper. 7244 * This is typically the case for debug situations. In that 7245 * case we can catch duplicate names easily. 7246 */ 7247 sysfs_remove_link(&slab_kset->kobj, s->name); 7248 name = s->name; 7249 } else { 7250 /* 7251 * Create a unique name for the slab as a target 7252 * for the symlinks. 7253 */ 7254 name = create_unique_id(s); 7255 if (IS_ERR(name)) 7256 return PTR_ERR(name); 7257 } 7258 7259 s->kobj.kset = kset; 7260 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 7261 if (err) 7262 goto out; 7263 7264 err = sysfs_create_group(&s->kobj, &slab_attr_group); 7265 if (err) 7266 goto out_del_kobj; 7267 7268 if (!unmergeable) { 7269 /* Setup first alias */ 7270 sysfs_slab_alias(s, s->name); 7271 } 7272 out: 7273 if (!unmergeable) 7274 kfree(name); 7275 return err; 7276 out_del_kobj: 7277 kobject_del(&s->kobj); 7278 goto out; 7279 } 7280 7281 void sysfs_slab_unlink(struct kmem_cache *s) 7282 { 7283 if (s->kobj.state_in_sysfs) 7284 kobject_del(&s->kobj); 7285 } 7286 7287 void sysfs_slab_release(struct kmem_cache *s) 7288 { 7289 kobject_put(&s->kobj); 7290 } 7291 7292 /* 7293 * Need to buffer aliases during bootup until sysfs becomes 7294 * available lest we lose that information. 7295 */ 7296 struct saved_alias { 7297 struct kmem_cache *s; 7298 const char *name; 7299 struct saved_alias *next; 7300 }; 7301 7302 static struct saved_alias *alias_list; 7303 7304 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 7305 { 7306 struct saved_alias *al; 7307 7308 if (slab_state == FULL) { 7309 /* 7310 * If we have a leftover link then remove it. 7311 */ 7312 sysfs_remove_link(&slab_kset->kobj, name); 7313 /* 7314 * The original cache may have failed to generate sysfs file. 7315 * In that case, sysfs_create_link() returns -ENOENT and 7316 * symbolic link creation is skipped. 7317 */ 7318 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 7319 } 7320 7321 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 7322 if (!al) 7323 return -ENOMEM; 7324 7325 al->s = s; 7326 al->name = name; 7327 al->next = alias_list; 7328 alias_list = al; 7329 kmsan_unpoison_memory(al, sizeof(*al)); 7330 return 0; 7331 } 7332 7333 static int __init slab_sysfs_init(void) 7334 { 7335 struct kmem_cache *s; 7336 int err; 7337 7338 mutex_lock(&slab_mutex); 7339 7340 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj); 7341 if (!slab_kset) { 7342 mutex_unlock(&slab_mutex); 7343 pr_err("Cannot register slab subsystem.\n"); 7344 return -ENOMEM; 7345 } 7346 7347 slab_state = FULL; 7348 7349 list_for_each_entry(s, &slab_caches, list) { 7350 err = sysfs_slab_add(s); 7351 if (err) 7352 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 7353 s->name); 7354 } 7355 7356 while (alias_list) { 7357 struct saved_alias *al = alias_list; 7358 7359 alias_list = alias_list->next; 7360 err = sysfs_slab_alias(al->s, al->name); 7361 if (err) 7362 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 7363 al->name); 7364 kfree(al); 7365 } 7366 7367 mutex_unlock(&slab_mutex); 7368 return 0; 7369 } 7370 late_initcall(slab_sysfs_init); 7371 #endif /* SLAB_SUPPORTS_SYSFS */ 7372 7373 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS) 7374 static int slab_debugfs_show(struct seq_file *seq, void *v) 7375 { 7376 struct loc_track *t = seq->private; 7377 struct location *l; 7378 unsigned long idx; 7379 7380 idx = (unsigned long) t->idx; 7381 if (idx < t->count) { 7382 l = &t->loc[idx]; 7383 7384 seq_printf(seq, "%7ld ", l->count); 7385 7386 if (l->addr) 7387 seq_printf(seq, "%pS", (void *)l->addr); 7388 else 7389 seq_puts(seq, "<not-available>"); 7390 7391 if (l->waste) 7392 seq_printf(seq, " waste=%lu/%lu", 7393 l->count * l->waste, l->waste); 7394 7395 if (l->sum_time != l->min_time) { 7396 seq_printf(seq, " age=%ld/%llu/%ld", 7397 l->min_time, div_u64(l->sum_time, l->count), 7398 l->max_time); 7399 } else 7400 seq_printf(seq, " age=%ld", l->min_time); 7401 7402 if (l->min_pid != l->max_pid) 7403 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid); 7404 else 7405 seq_printf(seq, " pid=%ld", 7406 l->min_pid); 7407 7408 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus))) 7409 seq_printf(seq, " cpus=%*pbl", 7410 cpumask_pr_args(to_cpumask(l->cpus))); 7411 7412 if (nr_online_nodes > 1 && !nodes_empty(l->nodes)) 7413 seq_printf(seq, " nodes=%*pbl", 7414 nodemask_pr_args(&l->nodes)); 7415 7416 #ifdef CONFIG_STACKDEPOT 7417 { 7418 depot_stack_handle_t handle; 7419 unsigned long *entries; 7420 unsigned int nr_entries, j; 7421 7422 handle = READ_ONCE(l->handle); 7423 if (handle) { 7424 nr_entries = stack_depot_fetch(handle, &entries); 7425 seq_puts(seq, "\n"); 7426 for (j = 0; j < nr_entries; j++) 7427 seq_printf(seq, " %pS\n", (void *)entries[j]); 7428 } 7429 } 7430 #endif 7431 seq_puts(seq, "\n"); 7432 } 7433 7434 if (!idx && !t->count) 7435 seq_puts(seq, "No data\n"); 7436 7437 return 0; 7438 } 7439 7440 static void slab_debugfs_stop(struct seq_file *seq, void *v) 7441 { 7442 } 7443 7444 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos) 7445 { 7446 struct loc_track *t = seq->private; 7447 7448 t->idx = ++(*ppos); 7449 if (*ppos <= t->count) 7450 return ppos; 7451 7452 return NULL; 7453 } 7454 7455 static int cmp_loc_by_count(const void *a, const void *b, const void *data) 7456 { 7457 struct location *loc1 = (struct location *)a; 7458 struct location *loc2 = (struct location *)b; 7459 7460 if (loc1->count > loc2->count) 7461 return -1; 7462 else 7463 return 1; 7464 } 7465 7466 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos) 7467 { 7468 struct loc_track *t = seq->private; 7469 7470 t->idx = *ppos; 7471 return ppos; 7472 } 7473 7474 static const struct seq_operations slab_debugfs_sops = { 7475 .start = slab_debugfs_start, 7476 .next = slab_debugfs_next, 7477 .stop = slab_debugfs_stop, 7478 .show = slab_debugfs_show, 7479 }; 7480 7481 static int slab_debug_trace_open(struct inode *inode, struct file *filep) 7482 { 7483 7484 struct kmem_cache_node *n; 7485 enum track_item alloc; 7486 int node; 7487 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops, 7488 sizeof(struct loc_track)); 7489 struct kmem_cache *s = file_inode(filep)->i_private; 7490 unsigned long *obj_map; 7491 7492 if (!t) 7493 return -ENOMEM; 7494 7495 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL); 7496 if (!obj_map) { 7497 seq_release_private(inode, filep); 7498 return -ENOMEM; 7499 } 7500 7501 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0) 7502 alloc = TRACK_ALLOC; 7503 else 7504 alloc = TRACK_FREE; 7505 7506 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) { 7507 bitmap_free(obj_map); 7508 seq_release_private(inode, filep); 7509 return -ENOMEM; 7510 } 7511 7512 for_each_kmem_cache_node(s, node, n) { 7513 unsigned long flags; 7514 struct slab *slab; 7515 7516 if (!node_nr_slabs(n)) 7517 continue; 7518 7519 spin_lock_irqsave(&n->list_lock, flags); 7520 list_for_each_entry(slab, &n->partial, slab_list) 7521 process_slab(t, s, slab, alloc, obj_map); 7522 list_for_each_entry(slab, &n->full, slab_list) 7523 process_slab(t, s, slab, alloc, obj_map); 7524 spin_unlock_irqrestore(&n->list_lock, flags); 7525 } 7526 7527 /* Sort locations by count */ 7528 sort_r(t->loc, t->count, sizeof(struct location), 7529 cmp_loc_by_count, NULL, NULL); 7530 7531 bitmap_free(obj_map); 7532 return 0; 7533 } 7534 7535 static int slab_debug_trace_release(struct inode *inode, struct file *file) 7536 { 7537 struct seq_file *seq = file->private_data; 7538 struct loc_track *t = seq->private; 7539 7540 free_loc_track(t); 7541 return seq_release_private(inode, file); 7542 } 7543 7544 static const struct file_operations slab_debugfs_fops = { 7545 .open = slab_debug_trace_open, 7546 .read = seq_read, 7547 .llseek = seq_lseek, 7548 .release = slab_debug_trace_release, 7549 }; 7550 7551 static void debugfs_slab_add(struct kmem_cache *s) 7552 { 7553 struct dentry *slab_cache_dir; 7554 7555 if (unlikely(!slab_debugfs_root)) 7556 return; 7557 7558 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root); 7559 7560 debugfs_create_file("alloc_traces", 0400, 7561 slab_cache_dir, s, &slab_debugfs_fops); 7562 7563 debugfs_create_file("free_traces", 0400, 7564 slab_cache_dir, s, &slab_debugfs_fops); 7565 } 7566 7567 void debugfs_slab_release(struct kmem_cache *s) 7568 { 7569 debugfs_lookup_and_remove(s->name, slab_debugfs_root); 7570 } 7571 7572 static int __init slab_debugfs_init(void) 7573 { 7574 struct kmem_cache *s; 7575 7576 slab_debugfs_root = debugfs_create_dir("slab", NULL); 7577 7578 list_for_each_entry(s, &slab_caches, list) 7579 if (s->flags & SLAB_STORE_USER) 7580 debugfs_slab_add(s); 7581 7582 return 0; 7583 7584 } 7585 __initcall(slab_debugfs_init); 7586 #endif 7587 /* 7588 * The /proc/slabinfo ABI 7589 */ 7590 #ifdef CONFIG_SLUB_DEBUG 7591 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 7592 { 7593 unsigned long nr_slabs = 0; 7594 unsigned long nr_objs = 0; 7595 unsigned long nr_free = 0; 7596 int node; 7597 struct kmem_cache_node *n; 7598 7599 for_each_kmem_cache_node(s, node, n) { 7600 nr_slabs += node_nr_slabs(n); 7601 nr_objs += node_nr_objs(n); 7602 nr_free += count_partial_free_approx(n); 7603 } 7604 7605 sinfo->active_objs = nr_objs - nr_free; 7606 sinfo->num_objs = nr_objs; 7607 sinfo->active_slabs = nr_slabs; 7608 sinfo->num_slabs = nr_slabs; 7609 sinfo->objects_per_slab = oo_objects(s->oo); 7610 sinfo->cache_order = oo_order(s->oo); 7611 } 7612 #endif /* CONFIG_SLUB_DEBUG */ 7613