xref: /linux/mm/slub.c (revision c5aec4c76af1a2d89ee2f2d4d5463b2ad2d85de5)
1 /*
2  * SLUB: A slab allocator that limits cache line use instead of queuing
3  * objects in per cpu and per node lists.
4  *
5  * The allocator synchronizes using per slab locks or atomic operatios
6  * and only uses a centralized lock to manage a pool of partial slabs.
7  *
8  * (C) 2007 SGI, Christoph Lameter
9  * (C) 2011 Linux Foundation, Christoph Lameter
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 
37 #include <trace/events/kmem.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Lock order:
43  *   1. slab_mutex (Global Mutex)
44  *   2. node->list_lock
45  *   3. slab_lock(page) (Only on some arches and for debugging)
46  *
47  *   slab_mutex
48  *
49  *   The role of the slab_mutex is to protect the list of all the slabs
50  *   and to synchronize major metadata changes to slab cache structures.
51  *
52  *   The slab_lock is only used for debugging and on arches that do not
53  *   have the ability to do a cmpxchg_double. It only protects the second
54  *   double word in the page struct. Meaning
55  *	A. page->freelist	-> List of object free in a page
56  *	B. page->counters	-> Counters of objects
57  *	C. page->frozen		-> frozen state
58  *
59  *   If a slab is frozen then it is exempt from list management. It is not
60  *   on any list. The processor that froze the slab is the one who can
61  *   perform list operations on the page. Other processors may put objects
62  *   onto the freelist but the processor that froze the slab is the only
63  *   one that can retrieve the objects from the page's freelist.
64  *
65  *   The list_lock protects the partial and full list on each node and
66  *   the partial slab counter. If taken then no new slabs may be added or
67  *   removed from the lists nor make the number of partial slabs be modified.
68  *   (Note that the total number of slabs is an atomic value that may be
69  *   modified without taking the list lock).
70  *
71  *   The list_lock is a centralized lock and thus we avoid taking it as
72  *   much as possible. As long as SLUB does not have to handle partial
73  *   slabs, operations can continue without any centralized lock. F.e.
74  *   allocating a long series of objects that fill up slabs does not require
75  *   the list lock.
76  *   Interrupts are disabled during allocation and deallocation in order to
77  *   make the slab allocator safe to use in the context of an irq. In addition
78  *   interrupts are disabled to ensure that the processor does not change
79  *   while handling per_cpu slabs, due to kernel preemption.
80  *
81  * SLUB assigns one slab for allocation to each processor.
82  * Allocations only occur from these slabs called cpu slabs.
83  *
84  * Slabs with free elements are kept on a partial list and during regular
85  * operations no list for full slabs is used. If an object in a full slab is
86  * freed then the slab will show up again on the partial lists.
87  * We track full slabs for debugging purposes though because otherwise we
88  * cannot scan all objects.
89  *
90  * Slabs are freed when they become empty. Teardown and setup is
91  * minimal so we rely on the page allocators per cpu caches for
92  * fast frees and allocs.
93  *
94  * Overloading of page flags that are otherwise used for LRU management.
95  *
96  * PageActive 		The slab is frozen and exempt from list processing.
97  * 			This means that the slab is dedicated to a purpose
98  * 			such as satisfying allocations for a specific
99  * 			processor. Objects may be freed in the slab while
100  * 			it is frozen but slab_free will then skip the usual
101  * 			list operations. It is up to the processor holding
102  * 			the slab to integrate the slab into the slab lists
103  * 			when the slab is no longer needed.
104  *
105  * 			One use of this flag is to mark slabs that are
106  * 			used for allocations. Then such a slab becomes a cpu
107  * 			slab. The cpu slab may be equipped with an additional
108  * 			freelist that allows lockless access to
109  * 			free objects in addition to the regular freelist
110  * 			that requires the slab lock.
111  *
112  * PageError		Slab requires special handling due to debug
113  * 			options set. This moves	slab handling out of
114  * 			the fast path and disables lockless freelists.
115  */
116 
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 	return 0;
123 #endif
124 }
125 
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 	return !kmem_cache_debug(s);
130 #else
131 	return false;
132 #endif
133 }
134 
135 /*
136  * Issues still to be resolved:
137  *
138  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139  *
140  * - Variable sizing of the per node arrays
141  */
142 
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145 
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148 
149 /*
150  * Mininum number of partial slabs. These will be left on the partial
151  * lists even if they are empty. kmem_cache_shrink may reclaim them.
152  */
153 #define MIN_PARTIAL 5
154 
155 /*
156  * Maximum number of desirable partial slabs.
157  * The existence of more partial slabs makes kmem_cache_shrink
158  * sort the partial list by the number of objects in use.
159  */
160 #define MAX_PARTIAL 10
161 
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 				SLAB_POISON | SLAB_STORE_USER)
164 
165 /*
166  * Debugging flags that require metadata to be stored in the slab.  These get
167  * disabled when slub_debug=O is used and a cache's min order increases with
168  * metadata.
169  */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171 
172 /*
173  * Set of flags that will prevent slab merging
174  */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 		SLAB_FAILSLAB)
178 
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 		SLAB_CACHE_DMA | SLAB_NOTRACK)
181 
182 #define OO_SHIFT	16
183 #define OO_MASK		((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185 
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON		0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
189 
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193 
194 /*
195  * Tracking user of a slab.
196  */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 	unsigned long addr;	/* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
202 #endif
203 	int cpu;		/* Was running on cpu */
204 	int pid;		/* Pid context */
205 	unsigned long when;	/* When did the operation occur */
206 };
207 
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209 
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
214 #else
215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 							{ return 0; }
218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
219 #endif
220 
221 static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 {
223 #ifdef CONFIG_SLUB_STATS
224 	/*
225 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 	 * avoid this_cpu_add()'s irq-disable overhead.
227 	 */
228 	raw_cpu_inc(s->cpu_slab->stat[si]);
229 #endif
230 }
231 
232 /********************************************************************
233  * 			Core slab cache functions
234  *******************************************************************/
235 
236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237 {
238 	return s->node[node];
239 }
240 
241 /* Verify that a pointer has an address that is valid within a slab page */
242 static inline int check_valid_pointer(struct kmem_cache *s,
243 				struct page *page, const void *object)
244 {
245 	void *base;
246 
247 	if (!object)
248 		return 1;
249 
250 	base = page_address(page);
251 	if (object < base || object >= base + page->objects * s->size ||
252 		(object - base) % s->size) {
253 		return 0;
254 	}
255 
256 	return 1;
257 }
258 
259 static inline void *get_freepointer(struct kmem_cache *s, void *object)
260 {
261 	return *(void **)(object + s->offset);
262 }
263 
264 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
265 {
266 	prefetch(object + s->offset);
267 }
268 
269 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270 {
271 	void *p;
272 
273 #ifdef CONFIG_DEBUG_PAGEALLOC
274 	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275 #else
276 	p = get_freepointer(s, object);
277 #endif
278 	return p;
279 }
280 
281 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282 {
283 	*(void **)(object + s->offset) = fp;
284 }
285 
286 /* Loop over all objects in a slab */
287 #define for_each_object(__p, __s, __addr, __objects) \
288 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
289 			__p += (__s)->size)
290 
291 /* Determine object index from a given position */
292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293 {
294 	return (p - addr) / s->size;
295 }
296 
297 static inline size_t slab_ksize(const struct kmem_cache *s)
298 {
299 #ifdef CONFIG_SLUB_DEBUG
300 	/*
301 	 * Debugging requires use of the padding between object
302 	 * and whatever may come after it.
303 	 */
304 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305 		return s->object_size;
306 
307 #endif
308 	/*
309 	 * If we have the need to store the freelist pointer
310 	 * back there or track user information then we can
311 	 * only use the space before that information.
312 	 */
313 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 		return s->inuse;
315 	/*
316 	 * Else we can use all the padding etc for the allocation
317 	 */
318 	return s->size;
319 }
320 
321 static inline int order_objects(int order, unsigned long size, int reserved)
322 {
323 	return ((PAGE_SIZE << order) - reserved) / size;
324 }
325 
326 static inline struct kmem_cache_order_objects oo_make(int order,
327 		unsigned long size, int reserved)
328 {
329 	struct kmem_cache_order_objects x = {
330 		(order << OO_SHIFT) + order_objects(order, size, reserved)
331 	};
332 
333 	return x;
334 }
335 
336 static inline int oo_order(struct kmem_cache_order_objects x)
337 {
338 	return x.x >> OO_SHIFT;
339 }
340 
341 static inline int oo_objects(struct kmem_cache_order_objects x)
342 {
343 	return x.x & OO_MASK;
344 }
345 
346 /*
347  * Per slab locking using the pagelock
348  */
349 static __always_inline void slab_lock(struct page *page)
350 {
351 	bit_spin_lock(PG_locked, &page->flags);
352 }
353 
354 static __always_inline void slab_unlock(struct page *page)
355 {
356 	__bit_spin_unlock(PG_locked, &page->flags);
357 }
358 
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 {
361 	struct page tmp;
362 	tmp.counters = counters_new;
363 	/*
364 	 * page->counters can cover frozen/inuse/objects as well
365 	 * as page->_count.  If we assign to ->counters directly
366 	 * we run the risk of losing updates to page->_count, so
367 	 * be careful and only assign to the fields we need.
368 	 */
369 	page->frozen  = tmp.frozen;
370 	page->inuse   = tmp.inuse;
371 	page->objects = tmp.objects;
372 }
373 
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 		void *freelist_old, unsigned long counters_old,
377 		void *freelist_new, unsigned long counters_new,
378 		const char *n)
379 {
380 	VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 	if (s->flags & __CMPXCHG_DOUBLE) {
384 		if (cmpxchg_double(&page->freelist, &page->counters,
385 			freelist_old, counters_old,
386 			freelist_new, counters_new))
387 		return 1;
388 	} else
389 #endif
390 	{
391 		slab_lock(page);
392 		if (page->freelist == freelist_old &&
393 					page->counters == counters_old) {
394 			page->freelist = freelist_new;
395 			set_page_slub_counters(page, counters_new);
396 			slab_unlock(page);
397 			return 1;
398 		}
399 		slab_unlock(page);
400 	}
401 
402 	cpu_relax();
403 	stat(s, CMPXCHG_DOUBLE_FAIL);
404 
405 #ifdef SLUB_DEBUG_CMPXCHG
406 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408 
409 	return 0;
410 }
411 
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 		void *freelist_old, unsigned long counters_old,
414 		void *freelist_new, unsigned long counters_new,
415 		const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 	if (s->flags & __CMPXCHG_DOUBLE) {
420 		if (cmpxchg_double(&page->freelist, &page->counters,
421 			freelist_old, counters_old,
422 			freelist_new, counters_new))
423 		return 1;
424 	} else
425 #endif
426 	{
427 		unsigned long flags;
428 
429 		local_irq_save(flags);
430 		slab_lock(page);
431 		if (page->freelist == freelist_old &&
432 					page->counters == counters_old) {
433 			page->freelist = freelist_new;
434 			set_page_slub_counters(page, counters_new);
435 			slab_unlock(page);
436 			local_irq_restore(flags);
437 			return 1;
438 		}
439 		slab_unlock(page);
440 		local_irq_restore(flags);
441 	}
442 
443 	cpu_relax();
444 	stat(s, CMPXCHG_DOUBLE_FAIL);
445 
446 #ifdef SLUB_DEBUG_CMPXCHG
447 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449 
450 	return 0;
451 }
452 
453 #ifdef CONFIG_SLUB_DEBUG
454 /*
455  * Determine a map of object in use on a page.
456  *
457  * Node listlock must be held to guarantee that the page does
458  * not vanish from under us.
459  */
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 {
462 	void *p;
463 	void *addr = page_address(page);
464 
465 	for (p = page->freelist; p; p = get_freepointer(s, p))
466 		set_bit(slab_index(p, s, addr), map);
467 }
468 
469 /*
470  * Debug settings:
471  */
472 #ifdef CONFIG_SLUB_DEBUG_ON
473 static int slub_debug = DEBUG_DEFAULT_FLAGS;
474 #else
475 static int slub_debug;
476 #endif
477 
478 static char *slub_debug_slabs;
479 static int disable_higher_order_debug;
480 
481 /*
482  * Object debugging
483  */
484 static void print_section(char *text, u8 *addr, unsigned int length)
485 {
486 	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
487 			length, 1);
488 }
489 
490 static struct track *get_track(struct kmem_cache *s, void *object,
491 	enum track_item alloc)
492 {
493 	struct track *p;
494 
495 	if (s->offset)
496 		p = object + s->offset + sizeof(void *);
497 	else
498 		p = object + s->inuse;
499 
500 	return p + alloc;
501 }
502 
503 static void set_track(struct kmem_cache *s, void *object,
504 			enum track_item alloc, unsigned long addr)
505 {
506 	struct track *p = get_track(s, object, alloc);
507 
508 	if (addr) {
509 #ifdef CONFIG_STACKTRACE
510 		struct stack_trace trace;
511 		int i;
512 
513 		trace.nr_entries = 0;
514 		trace.max_entries = TRACK_ADDRS_COUNT;
515 		trace.entries = p->addrs;
516 		trace.skip = 3;
517 		save_stack_trace(&trace);
518 
519 		/* See rant in lockdep.c */
520 		if (trace.nr_entries != 0 &&
521 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
522 			trace.nr_entries--;
523 
524 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
525 			p->addrs[i] = 0;
526 #endif
527 		p->addr = addr;
528 		p->cpu = smp_processor_id();
529 		p->pid = current->pid;
530 		p->when = jiffies;
531 	} else
532 		memset(p, 0, sizeof(struct track));
533 }
534 
535 static void init_tracking(struct kmem_cache *s, void *object)
536 {
537 	if (!(s->flags & SLAB_STORE_USER))
538 		return;
539 
540 	set_track(s, object, TRACK_FREE, 0UL);
541 	set_track(s, object, TRACK_ALLOC, 0UL);
542 }
543 
544 static void print_track(const char *s, struct track *t)
545 {
546 	if (!t->addr)
547 		return;
548 
549 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550 	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
551 #ifdef CONFIG_STACKTRACE
552 	{
553 		int i;
554 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
555 			if (t->addrs[i])
556 				pr_err("\t%pS\n", (void *)t->addrs[i]);
557 			else
558 				break;
559 	}
560 #endif
561 }
562 
563 static void print_tracking(struct kmem_cache *s, void *object)
564 {
565 	if (!(s->flags & SLAB_STORE_USER))
566 		return;
567 
568 	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
569 	print_track("Freed", get_track(s, object, TRACK_FREE));
570 }
571 
572 static void print_page_info(struct page *page)
573 {
574 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 	       page, page->objects, page->inuse, page->freelist, page->flags);
576 
577 }
578 
579 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580 {
581 	struct va_format vaf;
582 	va_list args;
583 
584 	va_start(args, fmt);
585 	vaf.fmt = fmt;
586 	vaf.va = &args;
587 	pr_err("=============================================================================\n");
588 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
589 	pr_err("-----------------------------------------------------------------------------\n\n");
590 
591 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
592 	va_end(args);
593 }
594 
595 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
596 {
597 	struct va_format vaf;
598 	va_list args;
599 
600 	va_start(args, fmt);
601 	vaf.fmt = fmt;
602 	vaf.va = &args;
603 	pr_err("FIX %s: %pV\n", s->name, &vaf);
604 	va_end(args);
605 }
606 
607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
608 {
609 	unsigned int off;	/* Offset of last byte */
610 	u8 *addr = page_address(page);
611 
612 	print_tracking(s, p);
613 
614 	print_page_info(page);
615 
616 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 	       p, p - addr, get_freepointer(s, p));
618 
619 	if (p > addr + 16)
620 		print_section("Bytes b4 ", p - 16, 16);
621 
622 	print_section("Object ", p, min_t(unsigned long, s->object_size,
623 				PAGE_SIZE));
624 	if (s->flags & SLAB_RED_ZONE)
625 		print_section("Redzone ", p + s->object_size,
626 			s->inuse - s->object_size);
627 
628 	if (s->offset)
629 		off = s->offset + sizeof(void *);
630 	else
631 		off = s->inuse;
632 
633 	if (s->flags & SLAB_STORE_USER)
634 		off += 2 * sizeof(struct track);
635 
636 	if (off != s->size)
637 		/* Beginning of the filler is the free pointer */
638 		print_section("Padding ", p + off, s->size - off);
639 
640 	dump_stack();
641 }
642 
643 static void object_err(struct kmem_cache *s, struct page *page,
644 			u8 *object, char *reason)
645 {
646 	slab_bug(s, "%s", reason);
647 	print_trailer(s, page, object);
648 }
649 
650 static void slab_err(struct kmem_cache *s, struct page *page,
651 			const char *fmt, ...)
652 {
653 	va_list args;
654 	char buf[100];
655 
656 	va_start(args, fmt);
657 	vsnprintf(buf, sizeof(buf), fmt, args);
658 	va_end(args);
659 	slab_bug(s, "%s", buf);
660 	print_page_info(page);
661 	dump_stack();
662 }
663 
664 static void init_object(struct kmem_cache *s, void *object, u8 val)
665 {
666 	u8 *p = object;
667 
668 	if (s->flags & __OBJECT_POISON) {
669 		memset(p, POISON_FREE, s->object_size - 1);
670 		p[s->object_size - 1] = POISON_END;
671 	}
672 
673 	if (s->flags & SLAB_RED_ZONE)
674 		memset(p + s->object_size, val, s->inuse - s->object_size);
675 }
676 
677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 						void *from, void *to)
679 {
680 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 	memset(from, data, to - from);
682 }
683 
684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 			u8 *object, char *what,
686 			u8 *start, unsigned int value, unsigned int bytes)
687 {
688 	u8 *fault;
689 	u8 *end;
690 
691 	fault = memchr_inv(start, value, bytes);
692 	if (!fault)
693 		return 1;
694 
695 	end = start + bytes;
696 	while (end > fault && end[-1] == value)
697 		end--;
698 
699 	slab_bug(s, "%s overwritten", what);
700 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 					fault, end - 1, fault[0], value);
702 	print_trailer(s, page, object);
703 
704 	restore_bytes(s, what, value, fault, end);
705 	return 0;
706 }
707 
708 /*
709  * Object layout:
710  *
711  * object address
712  * 	Bytes of the object to be managed.
713  * 	If the freepointer may overlay the object then the free
714  * 	pointer is the first word of the object.
715  *
716  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
717  * 	0xa5 (POISON_END)
718  *
719  * object + s->object_size
720  * 	Padding to reach word boundary. This is also used for Redzoning.
721  * 	Padding is extended by another word if Redzoning is enabled and
722  * 	object_size == inuse.
723  *
724  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725  * 	0xcc (RED_ACTIVE) for objects in use.
726  *
727  * object + s->inuse
728  * 	Meta data starts here.
729  *
730  * 	A. Free pointer (if we cannot overwrite object on free)
731  * 	B. Tracking data for SLAB_STORE_USER
732  * 	C. Padding to reach required alignment boundary or at mininum
733  * 		one word if debugging is on to be able to detect writes
734  * 		before the word boundary.
735  *
736  *	Padding is done using 0x5a (POISON_INUSE)
737  *
738  * object + s->size
739  * 	Nothing is used beyond s->size.
740  *
741  * If slabcaches are merged then the object_size and inuse boundaries are mostly
742  * ignored. And therefore no slab options that rely on these boundaries
743  * may be used with merged slabcaches.
744  */
745 
746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747 {
748 	unsigned long off = s->inuse;	/* The end of info */
749 
750 	if (s->offset)
751 		/* Freepointer is placed after the object. */
752 		off += sizeof(void *);
753 
754 	if (s->flags & SLAB_STORE_USER)
755 		/* We also have user information there */
756 		off += 2 * sizeof(struct track);
757 
758 	if (s->size == off)
759 		return 1;
760 
761 	return check_bytes_and_report(s, page, p, "Object padding",
762 				p + off, POISON_INUSE, s->size - off);
763 }
764 
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache *s, struct page *page)
767 {
768 	u8 *start;
769 	u8 *fault;
770 	u8 *end;
771 	int length;
772 	int remainder;
773 
774 	if (!(s->flags & SLAB_POISON))
775 		return 1;
776 
777 	start = page_address(page);
778 	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 	end = start + length;
780 	remainder = length % s->size;
781 	if (!remainder)
782 		return 1;
783 
784 	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 	if (!fault)
786 		return 1;
787 	while (end > fault && end[-1] == POISON_INUSE)
788 		end--;
789 
790 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791 	print_section("Padding ", end - remainder, remainder);
792 
793 	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794 	return 0;
795 }
796 
797 static int check_object(struct kmem_cache *s, struct page *page,
798 					void *object, u8 val)
799 {
800 	u8 *p = object;
801 	u8 *endobject = object + s->object_size;
802 
803 	if (s->flags & SLAB_RED_ZONE) {
804 		if (!check_bytes_and_report(s, page, object, "Redzone",
805 			endobject, val, s->inuse - s->object_size))
806 			return 0;
807 	} else {
808 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
809 			check_bytes_and_report(s, page, p, "Alignment padding",
810 				endobject, POISON_INUSE,
811 				s->inuse - s->object_size);
812 		}
813 	}
814 
815 	if (s->flags & SLAB_POISON) {
816 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817 			(!check_bytes_and_report(s, page, p, "Poison", p,
818 					POISON_FREE, s->object_size - 1) ||
819 			 !check_bytes_and_report(s, page, p, "Poison",
820 				p + s->object_size - 1, POISON_END, 1)))
821 			return 0;
822 		/*
823 		 * check_pad_bytes cleans up on its own.
824 		 */
825 		check_pad_bytes(s, page, p);
826 	}
827 
828 	if (!s->offset && val == SLUB_RED_ACTIVE)
829 		/*
830 		 * Object and freepointer overlap. Cannot check
831 		 * freepointer while object is allocated.
832 		 */
833 		return 1;
834 
835 	/* Check free pointer validity */
836 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 		object_err(s, page, p, "Freepointer corrupt");
838 		/*
839 		 * No choice but to zap it and thus lose the remainder
840 		 * of the free objects in this slab. May cause
841 		 * another error because the object count is now wrong.
842 		 */
843 		set_freepointer(s, p, NULL);
844 		return 0;
845 	}
846 	return 1;
847 }
848 
849 static int check_slab(struct kmem_cache *s, struct page *page)
850 {
851 	int maxobj;
852 
853 	VM_BUG_ON(!irqs_disabled());
854 
855 	if (!PageSlab(page)) {
856 		slab_err(s, page, "Not a valid slab page");
857 		return 0;
858 	}
859 
860 	maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 	if (page->objects > maxobj) {
862 		slab_err(s, page, "objects %u > max %u",
863 			s->name, page->objects, maxobj);
864 		return 0;
865 	}
866 	if (page->inuse > page->objects) {
867 		slab_err(s, page, "inuse %u > max %u",
868 			s->name, page->inuse, page->objects);
869 		return 0;
870 	}
871 	/* Slab_pad_check fixes things up after itself */
872 	slab_pad_check(s, page);
873 	return 1;
874 }
875 
876 /*
877  * Determine if a certain object on a page is on the freelist. Must hold the
878  * slab lock to guarantee that the chains are in a consistent state.
879  */
880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881 {
882 	int nr = 0;
883 	void *fp;
884 	void *object = NULL;
885 	unsigned long max_objects;
886 
887 	fp = page->freelist;
888 	while (fp && nr <= page->objects) {
889 		if (fp == search)
890 			return 1;
891 		if (!check_valid_pointer(s, page, fp)) {
892 			if (object) {
893 				object_err(s, page, object,
894 					"Freechain corrupt");
895 				set_freepointer(s, object, NULL);
896 			} else {
897 				slab_err(s, page, "Freepointer corrupt");
898 				page->freelist = NULL;
899 				page->inuse = page->objects;
900 				slab_fix(s, "Freelist cleared");
901 				return 0;
902 			}
903 			break;
904 		}
905 		object = fp;
906 		fp = get_freepointer(s, object);
907 		nr++;
908 	}
909 
910 	max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 	if (max_objects > MAX_OBJS_PER_PAGE)
912 		max_objects = MAX_OBJS_PER_PAGE;
913 
914 	if (page->objects != max_objects) {
915 		slab_err(s, page, "Wrong number of objects. Found %d but "
916 			"should be %d", page->objects, max_objects);
917 		page->objects = max_objects;
918 		slab_fix(s, "Number of objects adjusted.");
919 	}
920 	if (page->inuse != page->objects - nr) {
921 		slab_err(s, page, "Wrong object count. Counter is %d but "
922 			"counted were %d", page->inuse, page->objects - nr);
923 		page->inuse = page->objects - nr;
924 		slab_fix(s, "Object count adjusted.");
925 	}
926 	return search == NULL;
927 }
928 
929 static void trace(struct kmem_cache *s, struct page *page, void *object,
930 								int alloc)
931 {
932 	if (s->flags & SLAB_TRACE) {
933 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 			s->name,
935 			alloc ? "alloc" : "free",
936 			object, page->inuse,
937 			page->freelist);
938 
939 		if (!alloc)
940 			print_section("Object ", (void *)object,
941 					s->object_size);
942 
943 		dump_stack();
944 	}
945 }
946 
947 /*
948  * Hooks for other subsystems that check memory allocations. In a typical
949  * production configuration these hooks all should produce no code at all.
950  */
951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952 {
953 	kmemleak_alloc(ptr, size, 1, flags);
954 }
955 
956 static inline void kfree_hook(const void *x)
957 {
958 	kmemleak_free(x);
959 }
960 
961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962 {
963 	flags &= gfp_allowed_mask;
964 	lockdep_trace_alloc(flags);
965 	might_sleep_if(flags & __GFP_WAIT);
966 
967 	return should_failslab(s->object_size, flags, s->flags);
968 }
969 
970 static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 					gfp_t flags, void *object)
972 {
973 	flags &= gfp_allowed_mask;
974 	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 }
977 
978 static inline void slab_free_hook(struct kmem_cache *s, void *x)
979 {
980 	kmemleak_free_recursive(x, s->flags);
981 
982 	/*
983 	 * Trouble is that we may no longer disable interrupts in the fast path
984 	 * So in order to make the debug calls that expect irqs to be
985 	 * disabled we need to disable interrupts temporarily.
986 	 */
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 	{
989 		unsigned long flags;
990 
991 		local_irq_save(flags);
992 		kmemcheck_slab_free(s, x, s->object_size);
993 		debug_check_no_locks_freed(x, s->object_size);
994 		local_irq_restore(flags);
995 	}
996 #endif
997 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
998 		debug_check_no_obj_freed(x, s->object_size);
999 }
1000 
1001 /*
1002  * Tracking of fully allocated slabs for debugging purposes.
1003  */
1004 static void add_full(struct kmem_cache *s,
1005 	struct kmem_cache_node *n, struct page *page)
1006 {
1007 	if (!(s->flags & SLAB_STORE_USER))
1008 		return;
1009 
1010 	lockdep_assert_held(&n->list_lock);
1011 	list_add(&page->lru, &n->full);
1012 }
1013 
1014 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1015 {
1016 	if (!(s->flags & SLAB_STORE_USER))
1017 		return;
1018 
1019 	lockdep_assert_held(&n->list_lock);
1020 	list_del(&page->lru);
1021 }
1022 
1023 /* Tracking of the number of slabs for debugging purposes */
1024 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025 {
1026 	struct kmem_cache_node *n = get_node(s, node);
1027 
1028 	return atomic_long_read(&n->nr_slabs);
1029 }
1030 
1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032 {
1033 	return atomic_long_read(&n->nr_slabs);
1034 }
1035 
1036 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1037 {
1038 	struct kmem_cache_node *n = get_node(s, node);
1039 
1040 	/*
1041 	 * May be called early in order to allocate a slab for the
1042 	 * kmem_cache_node structure. Solve the chicken-egg
1043 	 * dilemma by deferring the increment of the count during
1044 	 * bootstrap (see early_kmem_cache_node_alloc).
1045 	 */
1046 	if (likely(n)) {
1047 		atomic_long_inc(&n->nr_slabs);
1048 		atomic_long_add(objects, &n->total_objects);
1049 	}
1050 }
1051 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1052 {
1053 	struct kmem_cache_node *n = get_node(s, node);
1054 
1055 	atomic_long_dec(&n->nr_slabs);
1056 	atomic_long_sub(objects, &n->total_objects);
1057 }
1058 
1059 /* Object debug checks for alloc/free paths */
1060 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 								void *object)
1062 {
1063 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 		return;
1065 
1066 	init_object(s, object, SLUB_RED_INACTIVE);
1067 	init_tracking(s, object);
1068 }
1069 
1070 static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 					struct page *page,
1072 					void *object, unsigned long addr)
1073 {
1074 	if (!check_slab(s, page))
1075 		goto bad;
1076 
1077 	if (!check_valid_pointer(s, page, object)) {
1078 		object_err(s, page, object, "Freelist Pointer check fails");
1079 		goto bad;
1080 	}
1081 
1082 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1083 		goto bad;
1084 
1085 	/* Success perform special debug activities for allocs */
1086 	if (s->flags & SLAB_STORE_USER)
1087 		set_track(s, object, TRACK_ALLOC, addr);
1088 	trace(s, page, object, 1);
1089 	init_object(s, object, SLUB_RED_ACTIVE);
1090 	return 1;
1091 
1092 bad:
1093 	if (PageSlab(page)) {
1094 		/*
1095 		 * If this is a slab page then lets do the best we can
1096 		 * to avoid issues in the future. Marking all objects
1097 		 * as used avoids touching the remaining objects.
1098 		 */
1099 		slab_fix(s, "Marking all objects used");
1100 		page->inuse = page->objects;
1101 		page->freelist = NULL;
1102 	}
1103 	return 0;
1104 }
1105 
1106 static noinline struct kmem_cache_node *free_debug_processing(
1107 	struct kmem_cache *s, struct page *page, void *object,
1108 	unsigned long addr, unsigned long *flags)
1109 {
1110 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1111 
1112 	spin_lock_irqsave(&n->list_lock, *flags);
1113 	slab_lock(page);
1114 
1115 	if (!check_slab(s, page))
1116 		goto fail;
1117 
1118 	if (!check_valid_pointer(s, page, object)) {
1119 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1120 		goto fail;
1121 	}
1122 
1123 	if (on_freelist(s, page, object)) {
1124 		object_err(s, page, object, "Object already free");
1125 		goto fail;
1126 	}
1127 
1128 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1129 		goto out;
1130 
1131 	if (unlikely(s != page->slab_cache)) {
1132 		if (!PageSlab(page)) {
1133 			slab_err(s, page, "Attempt to free object(0x%p) "
1134 				"outside of slab", object);
1135 		} else if (!page->slab_cache) {
1136 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1137 			       object);
1138 			dump_stack();
1139 		} else
1140 			object_err(s, page, object,
1141 					"page slab pointer corrupt.");
1142 		goto fail;
1143 	}
1144 
1145 	if (s->flags & SLAB_STORE_USER)
1146 		set_track(s, object, TRACK_FREE, addr);
1147 	trace(s, page, object, 0);
1148 	init_object(s, object, SLUB_RED_INACTIVE);
1149 out:
1150 	slab_unlock(page);
1151 	/*
1152 	 * Keep node_lock to preserve integrity
1153 	 * until the object is actually freed
1154 	 */
1155 	return n;
1156 
1157 fail:
1158 	slab_unlock(page);
1159 	spin_unlock_irqrestore(&n->list_lock, *flags);
1160 	slab_fix(s, "Object at 0x%p not freed", object);
1161 	return NULL;
1162 }
1163 
1164 static int __init setup_slub_debug(char *str)
1165 {
1166 	slub_debug = DEBUG_DEFAULT_FLAGS;
1167 	if (*str++ != '=' || !*str)
1168 		/*
1169 		 * No options specified. Switch on full debugging.
1170 		 */
1171 		goto out;
1172 
1173 	if (*str == ',')
1174 		/*
1175 		 * No options but restriction on slabs. This means full
1176 		 * debugging for slabs matching a pattern.
1177 		 */
1178 		goto check_slabs;
1179 
1180 	if (tolower(*str) == 'o') {
1181 		/*
1182 		 * Avoid enabling debugging on caches if its minimum order
1183 		 * would increase as a result.
1184 		 */
1185 		disable_higher_order_debug = 1;
1186 		goto out;
1187 	}
1188 
1189 	slub_debug = 0;
1190 	if (*str == '-')
1191 		/*
1192 		 * Switch off all debugging measures.
1193 		 */
1194 		goto out;
1195 
1196 	/*
1197 	 * Determine which debug features should be switched on
1198 	 */
1199 	for (; *str && *str != ','; str++) {
1200 		switch (tolower(*str)) {
1201 		case 'f':
1202 			slub_debug |= SLAB_DEBUG_FREE;
1203 			break;
1204 		case 'z':
1205 			slub_debug |= SLAB_RED_ZONE;
1206 			break;
1207 		case 'p':
1208 			slub_debug |= SLAB_POISON;
1209 			break;
1210 		case 'u':
1211 			slub_debug |= SLAB_STORE_USER;
1212 			break;
1213 		case 't':
1214 			slub_debug |= SLAB_TRACE;
1215 			break;
1216 		case 'a':
1217 			slub_debug |= SLAB_FAILSLAB;
1218 			break;
1219 		default:
1220 			pr_err("slub_debug option '%c' unknown. skipped\n",
1221 			       *str);
1222 		}
1223 	}
1224 
1225 check_slabs:
1226 	if (*str == ',')
1227 		slub_debug_slabs = str + 1;
1228 out:
1229 	return 1;
1230 }
1231 
1232 __setup("slub_debug", setup_slub_debug);
1233 
1234 static unsigned long kmem_cache_flags(unsigned long object_size,
1235 	unsigned long flags, const char *name,
1236 	void (*ctor)(void *))
1237 {
1238 	/*
1239 	 * Enable debugging if selected on the kernel commandline.
1240 	 */
1241 	if (slub_debug && (!slub_debug_slabs || (name &&
1242 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1243 		flags |= slub_debug;
1244 
1245 	return flags;
1246 }
1247 #else
1248 static inline void setup_object_debug(struct kmem_cache *s,
1249 			struct page *page, void *object) {}
1250 
1251 static inline int alloc_debug_processing(struct kmem_cache *s,
1252 	struct page *page, void *object, unsigned long addr) { return 0; }
1253 
1254 static inline struct kmem_cache_node *free_debug_processing(
1255 	struct kmem_cache *s, struct page *page, void *object,
1256 	unsigned long addr, unsigned long *flags) { return NULL; }
1257 
1258 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1259 			{ return 1; }
1260 static inline int check_object(struct kmem_cache *s, struct page *page,
1261 			void *object, u8 val) { return 1; }
1262 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1263 					struct page *page) {}
1264 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265 					struct page *page) {}
1266 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1267 	unsigned long flags, const char *name,
1268 	void (*ctor)(void *))
1269 {
1270 	return flags;
1271 }
1272 #define slub_debug 0
1273 
1274 #define disable_higher_order_debug 0
1275 
1276 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1277 							{ return 0; }
1278 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1279 							{ return 0; }
1280 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1281 							int objects) {}
1282 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1283 							int objects) {}
1284 
1285 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1286 {
1287 	kmemleak_alloc(ptr, size, 1, flags);
1288 }
1289 
1290 static inline void kfree_hook(const void *x)
1291 {
1292 	kmemleak_free(x);
1293 }
1294 
1295 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1296 							{ return 0; }
1297 
1298 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1299 		void *object)
1300 {
1301 	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1302 		flags & gfp_allowed_mask);
1303 }
1304 
1305 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1306 {
1307 	kmemleak_free_recursive(x, s->flags);
1308 }
1309 
1310 #endif /* CONFIG_SLUB_DEBUG */
1311 
1312 /*
1313  * Slab allocation and freeing
1314  */
1315 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1316 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1317 {
1318 	struct page *page;
1319 	int order = oo_order(oo);
1320 
1321 	flags |= __GFP_NOTRACK;
1322 
1323 	if (memcg_charge_slab(s, flags, order))
1324 		return NULL;
1325 
1326 	if (node == NUMA_NO_NODE)
1327 		page = alloc_pages(flags, order);
1328 	else
1329 		page = alloc_pages_exact_node(node, flags, order);
1330 
1331 	if (!page)
1332 		memcg_uncharge_slab(s, order);
1333 
1334 	return page;
1335 }
1336 
1337 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1338 {
1339 	struct page *page;
1340 	struct kmem_cache_order_objects oo = s->oo;
1341 	gfp_t alloc_gfp;
1342 
1343 	flags &= gfp_allowed_mask;
1344 
1345 	if (flags & __GFP_WAIT)
1346 		local_irq_enable();
1347 
1348 	flags |= s->allocflags;
1349 
1350 	/*
1351 	 * Let the initial higher-order allocation fail under memory pressure
1352 	 * so we fall-back to the minimum order allocation.
1353 	 */
1354 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1355 
1356 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1357 	if (unlikely(!page)) {
1358 		oo = s->min;
1359 		alloc_gfp = flags;
1360 		/*
1361 		 * Allocation may have failed due to fragmentation.
1362 		 * Try a lower order alloc if possible
1363 		 */
1364 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1365 
1366 		if (page)
1367 			stat(s, ORDER_FALLBACK);
1368 	}
1369 
1370 	if (kmemcheck_enabled && page
1371 		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1372 		int pages = 1 << oo_order(oo);
1373 
1374 		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1375 
1376 		/*
1377 		 * Objects from caches that have a constructor don't get
1378 		 * cleared when they're allocated, so we need to do it here.
1379 		 */
1380 		if (s->ctor)
1381 			kmemcheck_mark_uninitialized_pages(page, pages);
1382 		else
1383 			kmemcheck_mark_unallocated_pages(page, pages);
1384 	}
1385 
1386 	if (flags & __GFP_WAIT)
1387 		local_irq_disable();
1388 	if (!page)
1389 		return NULL;
1390 
1391 	page->objects = oo_objects(oo);
1392 	mod_zone_page_state(page_zone(page),
1393 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1394 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1395 		1 << oo_order(oo));
1396 
1397 	return page;
1398 }
1399 
1400 static void setup_object(struct kmem_cache *s, struct page *page,
1401 				void *object)
1402 {
1403 	setup_object_debug(s, page, object);
1404 	if (unlikely(s->ctor))
1405 		s->ctor(object);
1406 }
1407 
1408 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409 {
1410 	struct page *page;
1411 	void *start;
1412 	void *last;
1413 	void *p;
1414 	int order;
1415 
1416 	BUG_ON(flags & GFP_SLAB_BUG_MASK);
1417 
1418 	page = allocate_slab(s,
1419 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1420 	if (!page)
1421 		goto out;
1422 
1423 	order = compound_order(page);
1424 	inc_slabs_node(s, page_to_nid(page), page->objects);
1425 	page->slab_cache = s;
1426 	__SetPageSlab(page);
1427 	if (page->pfmemalloc)
1428 		SetPageSlabPfmemalloc(page);
1429 
1430 	start = page_address(page);
1431 
1432 	if (unlikely(s->flags & SLAB_POISON))
1433 		memset(start, POISON_INUSE, PAGE_SIZE << order);
1434 
1435 	last = start;
1436 	for_each_object(p, s, start, page->objects) {
1437 		setup_object(s, page, last);
1438 		set_freepointer(s, last, p);
1439 		last = p;
1440 	}
1441 	setup_object(s, page, last);
1442 	set_freepointer(s, last, NULL);
1443 
1444 	page->freelist = start;
1445 	page->inuse = page->objects;
1446 	page->frozen = 1;
1447 out:
1448 	return page;
1449 }
1450 
1451 static void __free_slab(struct kmem_cache *s, struct page *page)
1452 {
1453 	int order = compound_order(page);
1454 	int pages = 1 << order;
1455 
1456 	if (kmem_cache_debug(s)) {
1457 		void *p;
1458 
1459 		slab_pad_check(s, page);
1460 		for_each_object(p, s, page_address(page),
1461 						page->objects)
1462 			check_object(s, page, p, SLUB_RED_INACTIVE);
1463 	}
1464 
1465 	kmemcheck_free_shadow(page, compound_order(page));
1466 
1467 	mod_zone_page_state(page_zone(page),
1468 		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
1469 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1470 		-pages);
1471 
1472 	__ClearPageSlabPfmemalloc(page);
1473 	__ClearPageSlab(page);
1474 
1475 	page_mapcount_reset(page);
1476 	if (current->reclaim_state)
1477 		current->reclaim_state->reclaimed_slab += pages;
1478 	__free_pages(page, order);
1479 	memcg_uncharge_slab(s, order);
1480 }
1481 
1482 #define need_reserve_slab_rcu						\
1483 	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1484 
1485 static void rcu_free_slab(struct rcu_head *h)
1486 {
1487 	struct page *page;
1488 
1489 	if (need_reserve_slab_rcu)
1490 		page = virt_to_head_page(h);
1491 	else
1492 		page = container_of((struct list_head *)h, struct page, lru);
1493 
1494 	__free_slab(page->slab_cache, page);
1495 }
1496 
1497 static void free_slab(struct kmem_cache *s, struct page *page)
1498 {
1499 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1500 		struct rcu_head *head;
1501 
1502 		if (need_reserve_slab_rcu) {
1503 			int order = compound_order(page);
1504 			int offset = (PAGE_SIZE << order) - s->reserved;
1505 
1506 			VM_BUG_ON(s->reserved != sizeof(*head));
1507 			head = page_address(page) + offset;
1508 		} else {
1509 			/*
1510 			 * RCU free overloads the RCU head over the LRU
1511 			 */
1512 			head = (void *)&page->lru;
1513 		}
1514 
1515 		call_rcu(head, rcu_free_slab);
1516 	} else
1517 		__free_slab(s, page);
1518 }
1519 
1520 static void discard_slab(struct kmem_cache *s, struct page *page)
1521 {
1522 	dec_slabs_node(s, page_to_nid(page), page->objects);
1523 	free_slab(s, page);
1524 }
1525 
1526 /*
1527  * Management of partially allocated slabs.
1528  */
1529 static inline void
1530 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1531 {
1532 	n->nr_partial++;
1533 	if (tail == DEACTIVATE_TO_TAIL)
1534 		list_add_tail(&page->lru, &n->partial);
1535 	else
1536 		list_add(&page->lru, &n->partial);
1537 }
1538 
1539 static inline void add_partial(struct kmem_cache_node *n,
1540 				struct page *page, int tail)
1541 {
1542 	lockdep_assert_held(&n->list_lock);
1543 	__add_partial(n, page, tail);
1544 }
1545 
1546 static inline void
1547 __remove_partial(struct kmem_cache_node *n, struct page *page)
1548 {
1549 	list_del(&page->lru);
1550 	n->nr_partial--;
1551 }
1552 
1553 static inline void remove_partial(struct kmem_cache_node *n,
1554 					struct page *page)
1555 {
1556 	lockdep_assert_held(&n->list_lock);
1557 	__remove_partial(n, page);
1558 }
1559 
1560 /*
1561  * Remove slab from the partial list, freeze it and
1562  * return the pointer to the freelist.
1563  *
1564  * Returns a list of objects or NULL if it fails.
1565  */
1566 static inline void *acquire_slab(struct kmem_cache *s,
1567 		struct kmem_cache_node *n, struct page *page,
1568 		int mode, int *objects)
1569 {
1570 	void *freelist;
1571 	unsigned long counters;
1572 	struct page new;
1573 
1574 	lockdep_assert_held(&n->list_lock);
1575 
1576 	/*
1577 	 * Zap the freelist and set the frozen bit.
1578 	 * The old freelist is the list of objects for the
1579 	 * per cpu allocation list.
1580 	 */
1581 	freelist = page->freelist;
1582 	counters = page->counters;
1583 	new.counters = counters;
1584 	*objects = new.objects - new.inuse;
1585 	if (mode) {
1586 		new.inuse = page->objects;
1587 		new.freelist = NULL;
1588 	} else {
1589 		new.freelist = freelist;
1590 	}
1591 
1592 	VM_BUG_ON(new.frozen);
1593 	new.frozen = 1;
1594 
1595 	if (!__cmpxchg_double_slab(s, page,
1596 			freelist, counters,
1597 			new.freelist, new.counters,
1598 			"acquire_slab"))
1599 		return NULL;
1600 
1601 	remove_partial(n, page);
1602 	WARN_ON(!freelist);
1603 	return freelist;
1604 }
1605 
1606 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1607 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1608 
1609 /*
1610  * Try to allocate a partial slab from a specific node.
1611  */
1612 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1613 				struct kmem_cache_cpu *c, gfp_t flags)
1614 {
1615 	struct page *page, *page2;
1616 	void *object = NULL;
1617 	int available = 0;
1618 	int objects;
1619 
1620 	/*
1621 	 * Racy check. If we mistakenly see no partial slabs then we
1622 	 * just allocate an empty slab. If we mistakenly try to get a
1623 	 * partial slab and there is none available then get_partials()
1624 	 * will return NULL.
1625 	 */
1626 	if (!n || !n->nr_partial)
1627 		return NULL;
1628 
1629 	spin_lock(&n->list_lock);
1630 	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1631 		void *t;
1632 
1633 		if (!pfmemalloc_match(page, flags))
1634 			continue;
1635 
1636 		t = acquire_slab(s, n, page, object == NULL, &objects);
1637 		if (!t)
1638 			break;
1639 
1640 		available += objects;
1641 		if (!object) {
1642 			c->page = page;
1643 			stat(s, ALLOC_FROM_PARTIAL);
1644 			object = t;
1645 		} else {
1646 			put_cpu_partial(s, page, 0);
1647 			stat(s, CPU_PARTIAL_NODE);
1648 		}
1649 		if (!kmem_cache_has_cpu_partial(s)
1650 			|| available > s->cpu_partial / 2)
1651 			break;
1652 
1653 	}
1654 	spin_unlock(&n->list_lock);
1655 	return object;
1656 }
1657 
1658 /*
1659  * Get a page from somewhere. Search in increasing NUMA distances.
1660  */
1661 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1662 		struct kmem_cache_cpu *c)
1663 {
1664 #ifdef CONFIG_NUMA
1665 	struct zonelist *zonelist;
1666 	struct zoneref *z;
1667 	struct zone *zone;
1668 	enum zone_type high_zoneidx = gfp_zone(flags);
1669 	void *object;
1670 	unsigned int cpuset_mems_cookie;
1671 
1672 	/*
1673 	 * The defrag ratio allows a configuration of the tradeoffs between
1674 	 * inter node defragmentation and node local allocations. A lower
1675 	 * defrag_ratio increases the tendency to do local allocations
1676 	 * instead of attempting to obtain partial slabs from other nodes.
1677 	 *
1678 	 * If the defrag_ratio is set to 0 then kmalloc() always
1679 	 * returns node local objects. If the ratio is higher then kmalloc()
1680 	 * may return off node objects because partial slabs are obtained
1681 	 * from other nodes and filled up.
1682 	 *
1683 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1684 	 * defrag_ratio = 1000) then every (well almost) allocation will
1685 	 * first attempt to defrag slab caches on other nodes. This means
1686 	 * scanning over all nodes to look for partial slabs which may be
1687 	 * expensive if we do it every time we are trying to find a slab
1688 	 * with available objects.
1689 	 */
1690 	if (!s->remote_node_defrag_ratio ||
1691 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
1692 		return NULL;
1693 
1694 	do {
1695 		cpuset_mems_cookie = read_mems_allowed_begin();
1696 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1697 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1698 			struct kmem_cache_node *n;
1699 
1700 			n = get_node(s, zone_to_nid(zone));
1701 
1702 			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1703 					n->nr_partial > s->min_partial) {
1704 				object = get_partial_node(s, n, c, flags);
1705 				if (object) {
1706 					/*
1707 					 * Don't check read_mems_allowed_retry()
1708 					 * here - if mems_allowed was updated in
1709 					 * parallel, that was a harmless race
1710 					 * between allocation and the cpuset
1711 					 * update
1712 					 */
1713 					return object;
1714 				}
1715 			}
1716 		}
1717 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1718 #endif
1719 	return NULL;
1720 }
1721 
1722 /*
1723  * Get a partial page, lock it and return it.
1724  */
1725 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1726 		struct kmem_cache_cpu *c)
1727 {
1728 	void *object;
1729 	int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
1730 
1731 	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1732 	if (object || node != NUMA_NO_NODE)
1733 		return object;
1734 
1735 	return get_any_partial(s, flags, c);
1736 }
1737 
1738 #ifdef CONFIG_PREEMPT
1739 /*
1740  * Calculate the next globally unique transaction for disambiguiation
1741  * during cmpxchg. The transactions start with the cpu number and are then
1742  * incremented by CONFIG_NR_CPUS.
1743  */
1744 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
1745 #else
1746 /*
1747  * No preemption supported therefore also no need to check for
1748  * different cpus.
1749  */
1750 #define TID_STEP 1
1751 #endif
1752 
1753 static inline unsigned long next_tid(unsigned long tid)
1754 {
1755 	return tid + TID_STEP;
1756 }
1757 
1758 static inline unsigned int tid_to_cpu(unsigned long tid)
1759 {
1760 	return tid % TID_STEP;
1761 }
1762 
1763 static inline unsigned long tid_to_event(unsigned long tid)
1764 {
1765 	return tid / TID_STEP;
1766 }
1767 
1768 static inline unsigned int init_tid(int cpu)
1769 {
1770 	return cpu;
1771 }
1772 
1773 static inline void note_cmpxchg_failure(const char *n,
1774 		const struct kmem_cache *s, unsigned long tid)
1775 {
1776 #ifdef SLUB_DEBUG_CMPXCHG
1777 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1778 
1779 	pr_info("%s %s: cmpxchg redo ", n, s->name);
1780 
1781 #ifdef CONFIG_PREEMPT
1782 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1783 		pr_warn("due to cpu change %d -> %d\n",
1784 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
1785 	else
1786 #endif
1787 	if (tid_to_event(tid) != tid_to_event(actual_tid))
1788 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1789 			tid_to_event(tid), tid_to_event(actual_tid));
1790 	else
1791 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1792 			actual_tid, tid, next_tid(tid));
1793 #endif
1794 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1795 }
1796 
1797 static void init_kmem_cache_cpus(struct kmem_cache *s)
1798 {
1799 	int cpu;
1800 
1801 	for_each_possible_cpu(cpu)
1802 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1803 }
1804 
1805 /*
1806  * Remove the cpu slab
1807  */
1808 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1809 				void *freelist)
1810 {
1811 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1812 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1813 	int lock = 0;
1814 	enum slab_modes l = M_NONE, m = M_NONE;
1815 	void *nextfree;
1816 	int tail = DEACTIVATE_TO_HEAD;
1817 	struct page new;
1818 	struct page old;
1819 
1820 	if (page->freelist) {
1821 		stat(s, DEACTIVATE_REMOTE_FREES);
1822 		tail = DEACTIVATE_TO_TAIL;
1823 	}
1824 
1825 	/*
1826 	 * Stage one: Free all available per cpu objects back
1827 	 * to the page freelist while it is still frozen. Leave the
1828 	 * last one.
1829 	 *
1830 	 * There is no need to take the list->lock because the page
1831 	 * is still frozen.
1832 	 */
1833 	while (freelist && (nextfree = get_freepointer(s, freelist))) {
1834 		void *prior;
1835 		unsigned long counters;
1836 
1837 		do {
1838 			prior = page->freelist;
1839 			counters = page->counters;
1840 			set_freepointer(s, freelist, prior);
1841 			new.counters = counters;
1842 			new.inuse--;
1843 			VM_BUG_ON(!new.frozen);
1844 
1845 		} while (!__cmpxchg_double_slab(s, page,
1846 			prior, counters,
1847 			freelist, new.counters,
1848 			"drain percpu freelist"));
1849 
1850 		freelist = nextfree;
1851 	}
1852 
1853 	/*
1854 	 * Stage two: Ensure that the page is unfrozen while the
1855 	 * list presence reflects the actual number of objects
1856 	 * during unfreeze.
1857 	 *
1858 	 * We setup the list membership and then perform a cmpxchg
1859 	 * with the count. If there is a mismatch then the page
1860 	 * is not unfrozen but the page is on the wrong list.
1861 	 *
1862 	 * Then we restart the process which may have to remove
1863 	 * the page from the list that we just put it on again
1864 	 * because the number of objects in the slab may have
1865 	 * changed.
1866 	 */
1867 redo:
1868 
1869 	old.freelist = page->freelist;
1870 	old.counters = page->counters;
1871 	VM_BUG_ON(!old.frozen);
1872 
1873 	/* Determine target state of the slab */
1874 	new.counters = old.counters;
1875 	if (freelist) {
1876 		new.inuse--;
1877 		set_freepointer(s, freelist, old.freelist);
1878 		new.freelist = freelist;
1879 	} else
1880 		new.freelist = old.freelist;
1881 
1882 	new.frozen = 0;
1883 
1884 	if (!new.inuse && n->nr_partial > s->min_partial)
1885 		m = M_FREE;
1886 	else if (new.freelist) {
1887 		m = M_PARTIAL;
1888 		if (!lock) {
1889 			lock = 1;
1890 			/*
1891 			 * Taking the spinlock removes the possiblity
1892 			 * that acquire_slab() will see a slab page that
1893 			 * is frozen
1894 			 */
1895 			spin_lock(&n->list_lock);
1896 		}
1897 	} else {
1898 		m = M_FULL;
1899 		if (kmem_cache_debug(s) && !lock) {
1900 			lock = 1;
1901 			/*
1902 			 * This also ensures that the scanning of full
1903 			 * slabs from diagnostic functions will not see
1904 			 * any frozen slabs.
1905 			 */
1906 			spin_lock(&n->list_lock);
1907 		}
1908 	}
1909 
1910 	if (l != m) {
1911 
1912 		if (l == M_PARTIAL)
1913 
1914 			remove_partial(n, page);
1915 
1916 		else if (l == M_FULL)
1917 
1918 			remove_full(s, n, page);
1919 
1920 		if (m == M_PARTIAL) {
1921 
1922 			add_partial(n, page, tail);
1923 			stat(s, tail);
1924 
1925 		} else if (m == M_FULL) {
1926 
1927 			stat(s, DEACTIVATE_FULL);
1928 			add_full(s, n, page);
1929 
1930 		}
1931 	}
1932 
1933 	l = m;
1934 	if (!__cmpxchg_double_slab(s, page,
1935 				old.freelist, old.counters,
1936 				new.freelist, new.counters,
1937 				"unfreezing slab"))
1938 		goto redo;
1939 
1940 	if (lock)
1941 		spin_unlock(&n->list_lock);
1942 
1943 	if (m == M_FREE) {
1944 		stat(s, DEACTIVATE_EMPTY);
1945 		discard_slab(s, page);
1946 		stat(s, FREE_SLAB);
1947 	}
1948 }
1949 
1950 /*
1951  * Unfreeze all the cpu partial slabs.
1952  *
1953  * This function must be called with interrupts disabled
1954  * for the cpu using c (or some other guarantee must be there
1955  * to guarantee no concurrent accesses).
1956  */
1957 static void unfreeze_partials(struct kmem_cache *s,
1958 		struct kmem_cache_cpu *c)
1959 {
1960 #ifdef CONFIG_SLUB_CPU_PARTIAL
1961 	struct kmem_cache_node *n = NULL, *n2 = NULL;
1962 	struct page *page, *discard_page = NULL;
1963 
1964 	while ((page = c->partial)) {
1965 		struct page new;
1966 		struct page old;
1967 
1968 		c->partial = page->next;
1969 
1970 		n2 = get_node(s, page_to_nid(page));
1971 		if (n != n2) {
1972 			if (n)
1973 				spin_unlock(&n->list_lock);
1974 
1975 			n = n2;
1976 			spin_lock(&n->list_lock);
1977 		}
1978 
1979 		do {
1980 
1981 			old.freelist = page->freelist;
1982 			old.counters = page->counters;
1983 			VM_BUG_ON(!old.frozen);
1984 
1985 			new.counters = old.counters;
1986 			new.freelist = old.freelist;
1987 
1988 			new.frozen = 0;
1989 
1990 		} while (!__cmpxchg_double_slab(s, page,
1991 				old.freelist, old.counters,
1992 				new.freelist, new.counters,
1993 				"unfreezing slab"));
1994 
1995 		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1996 			page->next = discard_page;
1997 			discard_page = page;
1998 		} else {
1999 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2000 			stat(s, FREE_ADD_PARTIAL);
2001 		}
2002 	}
2003 
2004 	if (n)
2005 		spin_unlock(&n->list_lock);
2006 
2007 	while (discard_page) {
2008 		page = discard_page;
2009 		discard_page = discard_page->next;
2010 
2011 		stat(s, DEACTIVATE_EMPTY);
2012 		discard_slab(s, page);
2013 		stat(s, FREE_SLAB);
2014 	}
2015 #endif
2016 }
2017 
2018 /*
2019  * Put a page that was just frozen (in __slab_free) into a partial page
2020  * slot if available. This is done without interrupts disabled and without
2021  * preemption disabled. The cmpxchg is racy and may put the partial page
2022  * onto a random cpus partial slot.
2023  *
2024  * If we did not find a slot then simply move all the partials to the
2025  * per node partial list.
2026  */
2027 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2028 {
2029 #ifdef CONFIG_SLUB_CPU_PARTIAL
2030 	struct page *oldpage;
2031 	int pages;
2032 	int pobjects;
2033 
2034 	do {
2035 		pages = 0;
2036 		pobjects = 0;
2037 		oldpage = this_cpu_read(s->cpu_slab->partial);
2038 
2039 		if (oldpage) {
2040 			pobjects = oldpage->pobjects;
2041 			pages = oldpage->pages;
2042 			if (drain && pobjects > s->cpu_partial) {
2043 				unsigned long flags;
2044 				/*
2045 				 * partial array is full. Move the existing
2046 				 * set to the per node partial list.
2047 				 */
2048 				local_irq_save(flags);
2049 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2050 				local_irq_restore(flags);
2051 				oldpage = NULL;
2052 				pobjects = 0;
2053 				pages = 0;
2054 				stat(s, CPU_PARTIAL_DRAIN);
2055 			}
2056 		}
2057 
2058 		pages++;
2059 		pobjects += page->objects - page->inuse;
2060 
2061 		page->pages = pages;
2062 		page->pobjects = pobjects;
2063 		page->next = oldpage;
2064 
2065 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2066 								!= oldpage);
2067 #endif
2068 }
2069 
2070 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2071 {
2072 	stat(s, CPUSLAB_FLUSH);
2073 	deactivate_slab(s, c->page, c->freelist);
2074 
2075 	c->tid = next_tid(c->tid);
2076 	c->page = NULL;
2077 	c->freelist = NULL;
2078 }
2079 
2080 /*
2081  * Flush cpu slab.
2082  *
2083  * Called from IPI handler with interrupts disabled.
2084  */
2085 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2086 {
2087 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2088 
2089 	if (likely(c)) {
2090 		if (c->page)
2091 			flush_slab(s, c);
2092 
2093 		unfreeze_partials(s, c);
2094 	}
2095 }
2096 
2097 static void flush_cpu_slab(void *d)
2098 {
2099 	struct kmem_cache *s = d;
2100 
2101 	__flush_cpu_slab(s, smp_processor_id());
2102 }
2103 
2104 static bool has_cpu_slab(int cpu, void *info)
2105 {
2106 	struct kmem_cache *s = info;
2107 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2108 
2109 	return c->page || c->partial;
2110 }
2111 
2112 static void flush_all(struct kmem_cache *s)
2113 {
2114 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2115 }
2116 
2117 /*
2118  * Check if the objects in a per cpu structure fit numa
2119  * locality expectations.
2120  */
2121 static inline int node_match(struct page *page, int node)
2122 {
2123 #ifdef CONFIG_NUMA
2124 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2125 		return 0;
2126 #endif
2127 	return 1;
2128 }
2129 
2130 #ifdef CONFIG_SLUB_DEBUG
2131 static int count_free(struct page *page)
2132 {
2133 	return page->objects - page->inuse;
2134 }
2135 
2136 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2137 {
2138 	return atomic_long_read(&n->total_objects);
2139 }
2140 #endif /* CONFIG_SLUB_DEBUG */
2141 
2142 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2143 static unsigned long count_partial(struct kmem_cache_node *n,
2144 					int (*get_count)(struct page *))
2145 {
2146 	unsigned long flags;
2147 	unsigned long x = 0;
2148 	struct page *page;
2149 
2150 	spin_lock_irqsave(&n->list_lock, flags);
2151 	list_for_each_entry(page, &n->partial, lru)
2152 		x += get_count(page);
2153 	spin_unlock_irqrestore(&n->list_lock, flags);
2154 	return x;
2155 }
2156 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2157 
2158 static noinline void
2159 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2160 {
2161 #ifdef CONFIG_SLUB_DEBUG
2162 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2163 				      DEFAULT_RATELIMIT_BURST);
2164 	int node;
2165 
2166 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2167 		return;
2168 
2169 	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2170 		nid, gfpflags);
2171 	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2172 		s->name, s->object_size, s->size, oo_order(s->oo),
2173 		oo_order(s->min));
2174 
2175 	if (oo_order(s->min) > get_order(s->object_size))
2176 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2177 			s->name);
2178 
2179 	for_each_online_node(node) {
2180 		struct kmem_cache_node *n = get_node(s, node);
2181 		unsigned long nr_slabs;
2182 		unsigned long nr_objs;
2183 		unsigned long nr_free;
2184 
2185 		if (!n)
2186 			continue;
2187 
2188 		nr_free  = count_partial(n, count_free);
2189 		nr_slabs = node_nr_slabs(n);
2190 		nr_objs  = node_nr_objs(n);
2191 
2192 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2193 			node, nr_slabs, nr_objs, nr_free);
2194 	}
2195 #endif
2196 }
2197 
2198 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2199 			int node, struct kmem_cache_cpu **pc)
2200 {
2201 	void *freelist;
2202 	struct kmem_cache_cpu *c = *pc;
2203 	struct page *page;
2204 
2205 	freelist = get_partial(s, flags, node, c);
2206 
2207 	if (freelist)
2208 		return freelist;
2209 
2210 	page = new_slab(s, flags, node);
2211 	if (page) {
2212 		c = raw_cpu_ptr(s->cpu_slab);
2213 		if (c->page)
2214 			flush_slab(s, c);
2215 
2216 		/*
2217 		 * No other reference to the page yet so we can
2218 		 * muck around with it freely without cmpxchg
2219 		 */
2220 		freelist = page->freelist;
2221 		page->freelist = NULL;
2222 
2223 		stat(s, ALLOC_SLAB);
2224 		c->page = page;
2225 		*pc = c;
2226 	} else
2227 		freelist = NULL;
2228 
2229 	return freelist;
2230 }
2231 
2232 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2233 {
2234 	if (unlikely(PageSlabPfmemalloc(page)))
2235 		return gfp_pfmemalloc_allowed(gfpflags);
2236 
2237 	return true;
2238 }
2239 
2240 /*
2241  * Check the page->freelist of a page and either transfer the freelist to the
2242  * per cpu freelist or deactivate the page.
2243  *
2244  * The page is still frozen if the return value is not NULL.
2245  *
2246  * If this function returns NULL then the page has been unfrozen.
2247  *
2248  * This function must be called with interrupt disabled.
2249  */
2250 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2251 {
2252 	struct page new;
2253 	unsigned long counters;
2254 	void *freelist;
2255 
2256 	do {
2257 		freelist = page->freelist;
2258 		counters = page->counters;
2259 
2260 		new.counters = counters;
2261 		VM_BUG_ON(!new.frozen);
2262 
2263 		new.inuse = page->objects;
2264 		new.frozen = freelist != NULL;
2265 
2266 	} while (!__cmpxchg_double_slab(s, page,
2267 		freelist, counters,
2268 		NULL, new.counters,
2269 		"get_freelist"));
2270 
2271 	return freelist;
2272 }
2273 
2274 /*
2275  * Slow path. The lockless freelist is empty or we need to perform
2276  * debugging duties.
2277  *
2278  * Processing is still very fast if new objects have been freed to the
2279  * regular freelist. In that case we simply take over the regular freelist
2280  * as the lockless freelist and zap the regular freelist.
2281  *
2282  * If that is not working then we fall back to the partial lists. We take the
2283  * first element of the freelist as the object to allocate now and move the
2284  * rest of the freelist to the lockless freelist.
2285  *
2286  * And if we were unable to get a new slab from the partial slab lists then
2287  * we need to allocate a new slab. This is the slowest path since it involves
2288  * a call to the page allocator and the setup of a new slab.
2289  */
2290 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2291 			  unsigned long addr, struct kmem_cache_cpu *c)
2292 {
2293 	void *freelist;
2294 	struct page *page;
2295 	unsigned long flags;
2296 
2297 	local_irq_save(flags);
2298 #ifdef CONFIG_PREEMPT
2299 	/*
2300 	 * We may have been preempted and rescheduled on a different
2301 	 * cpu before disabling interrupts. Need to reload cpu area
2302 	 * pointer.
2303 	 */
2304 	c = this_cpu_ptr(s->cpu_slab);
2305 #endif
2306 
2307 	page = c->page;
2308 	if (!page)
2309 		goto new_slab;
2310 redo:
2311 
2312 	if (unlikely(!node_match(page, node))) {
2313 		stat(s, ALLOC_NODE_MISMATCH);
2314 		deactivate_slab(s, page, c->freelist);
2315 		c->page = NULL;
2316 		c->freelist = NULL;
2317 		goto new_slab;
2318 	}
2319 
2320 	/*
2321 	 * By rights, we should be searching for a slab page that was
2322 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2323 	 * information when the page leaves the per-cpu allocator
2324 	 */
2325 	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2326 		deactivate_slab(s, page, c->freelist);
2327 		c->page = NULL;
2328 		c->freelist = NULL;
2329 		goto new_slab;
2330 	}
2331 
2332 	/* must check again c->freelist in case of cpu migration or IRQ */
2333 	freelist = c->freelist;
2334 	if (freelist)
2335 		goto load_freelist;
2336 
2337 	freelist = get_freelist(s, page);
2338 
2339 	if (!freelist) {
2340 		c->page = NULL;
2341 		stat(s, DEACTIVATE_BYPASS);
2342 		goto new_slab;
2343 	}
2344 
2345 	stat(s, ALLOC_REFILL);
2346 
2347 load_freelist:
2348 	/*
2349 	 * freelist is pointing to the list of objects to be used.
2350 	 * page is pointing to the page from which the objects are obtained.
2351 	 * That page must be frozen for per cpu allocations to work.
2352 	 */
2353 	VM_BUG_ON(!c->page->frozen);
2354 	c->freelist = get_freepointer(s, freelist);
2355 	c->tid = next_tid(c->tid);
2356 	local_irq_restore(flags);
2357 	return freelist;
2358 
2359 new_slab:
2360 
2361 	if (c->partial) {
2362 		page = c->page = c->partial;
2363 		c->partial = page->next;
2364 		stat(s, CPU_PARTIAL_ALLOC);
2365 		c->freelist = NULL;
2366 		goto redo;
2367 	}
2368 
2369 	freelist = new_slab_objects(s, gfpflags, node, &c);
2370 
2371 	if (unlikely(!freelist)) {
2372 		slab_out_of_memory(s, gfpflags, node);
2373 		local_irq_restore(flags);
2374 		return NULL;
2375 	}
2376 
2377 	page = c->page;
2378 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2379 		goto load_freelist;
2380 
2381 	/* Only entered in the debug case */
2382 	if (kmem_cache_debug(s) &&
2383 			!alloc_debug_processing(s, page, freelist, addr))
2384 		goto new_slab;	/* Slab failed checks. Next slab needed */
2385 
2386 	deactivate_slab(s, page, get_freepointer(s, freelist));
2387 	c->page = NULL;
2388 	c->freelist = NULL;
2389 	local_irq_restore(flags);
2390 	return freelist;
2391 }
2392 
2393 /*
2394  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2395  * have the fastpath folded into their functions. So no function call
2396  * overhead for requests that can be satisfied on the fastpath.
2397  *
2398  * The fastpath works by first checking if the lockless freelist can be used.
2399  * If not then __slab_alloc is called for slow processing.
2400  *
2401  * Otherwise we can simply pick the next object from the lockless free list.
2402  */
2403 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2404 		gfp_t gfpflags, int node, unsigned long addr)
2405 {
2406 	void **object;
2407 	struct kmem_cache_cpu *c;
2408 	struct page *page;
2409 	unsigned long tid;
2410 
2411 	if (slab_pre_alloc_hook(s, gfpflags))
2412 		return NULL;
2413 
2414 	s = memcg_kmem_get_cache(s, gfpflags);
2415 redo:
2416 	/*
2417 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2418 	 * enabled. We may switch back and forth between cpus while
2419 	 * reading from one cpu area. That does not matter as long
2420 	 * as we end up on the original cpu again when doing the cmpxchg.
2421 	 *
2422 	 * Preemption is disabled for the retrieval of the tid because that
2423 	 * must occur from the current processor. We cannot allow rescheduling
2424 	 * on a different processor between the determination of the pointer
2425 	 * and the retrieval of the tid.
2426 	 */
2427 	preempt_disable();
2428 	c = this_cpu_ptr(s->cpu_slab);
2429 
2430 	/*
2431 	 * The transaction ids are globally unique per cpu and per operation on
2432 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2433 	 * occurs on the right processor and that there was no operation on the
2434 	 * linked list in between.
2435 	 */
2436 	tid = c->tid;
2437 	preempt_enable();
2438 
2439 	object = c->freelist;
2440 	page = c->page;
2441 	if (unlikely(!object || !node_match(page, node))) {
2442 		object = __slab_alloc(s, gfpflags, node, addr, c);
2443 		stat(s, ALLOC_SLOWPATH);
2444 	} else {
2445 		void *next_object = get_freepointer_safe(s, object);
2446 
2447 		/*
2448 		 * The cmpxchg will only match if there was no additional
2449 		 * operation and if we are on the right processor.
2450 		 *
2451 		 * The cmpxchg does the following atomically (without lock
2452 		 * semantics!)
2453 		 * 1. Relocate first pointer to the current per cpu area.
2454 		 * 2. Verify that tid and freelist have not been changed
2455 		 * 3. If they were not changed replace tid and freelist
2456 		 *
2457 		 * Since this is without lock semantics the protection is only
2458 		 * against code executing on this cpu *not* from access by
2459 		 * other cpus.
2460 		 */
2461 		if (unlikely(!this_cpu_cmpxchg_double(
2462 				s->cpu_slab->freelist, s->cpu_slab->tid,
2463 				object, tid,
2464 				next_object, next_tid(tid)))) {
2465 
2466 			note_cmpxchg_failure("slab_alloc", s, tid);
2467 			goto redo;
2468 		}
2469 		prefetch_freepointer(s, next_object);
2470 		stat(s, ALLOC_FASTPATH);
2471 	}
2472 
2473 	if (unlikely(gfpflags & __GFP_ZERO) && object)
2474 		memset(object, 0, s->object_size);
2475 
2476 	slab_post_alloc_hook(s, gfpflags, object);
2477 
2478 	return object;
2479 }
2480 
2481 static __always_inline void *slab_alloc(struct kmem_cache *s,
2482 		gfp_t gfpflags, unsigned long addr)
2483 {
2484 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2485 }
2486 
2487 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2488 {
2489 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2490 
2491 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2492 				s->size, gfpflags);
2493 
2494 	return ret;
2495 }
2496 EXPORT_SYMBOL(kmem_cache_alloc);
2497 
2498 #ifdef CONFIG_TRACING
2499 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2500 {
2501 	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2502 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2503 	return ret;
2504 }
2505 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2506 #endif
2507 
2508 #ifdef CONFIG_NUMA
2509 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2510 {
2511 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2512 
2513 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2514 				    s->object_size, s->size, gfpflags, node);
2515 
2516 	return ret;
2517 }
2518 EXPORT_SYMBOL(kmem_cache_alloc_node);
2519 
2520 #ifdef CONFIG_TRACING
2521 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2522 				    gfp_t gfpflags,
2523 				    int node, size_t size)
2524 {
2525 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2526 
2527 	trace_kmalloc_node(_RET_IP_, ret,
2528 			   size, s->size, gfpflags, node);
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2532 #endif
2533 #endif
2534 
2535 /*
2536  * Slow patch handling. This may still be called frequently since objects
2537  * have a longer lifetime than the cpu slabs in most processing loads.
2538  *
2539  * So we still attempt to reduce cache line usage. Just take the slab
2540  * lock and free the item. If there is no additional partial page
2541  * handling required then we can return immediately.
2542  */
2543 static void __slab_free(struct kmem_cache *s, struct page *page,
2544 			void *x, unsigned long addr)
2545 {
2546 	void *prior;
2547 	void **object = (void *)x;
2548 	int was_frozen;
2549 	struct page new;
2550 	unsigned long counters;
2551 	struct kmem_cache_node *n = NULL;
2552 	unsigned long uninitialized_var(flags);
2553 
2554 	stat(s, FREE_SLOWPATH);
2555 
2556 	if (kmem_cache_debug(s) &&
2557 		!(n = free_debug_processing(s, page, x, addr, &flags)))
2558 		return;
2559 
2560 	do {
2561 		if (unlikely(n)) {
2562 			spin_unlock_irqrestore(&n->list_lock, flags);
2563 			n = NULL;
2564 		}
2565 		prior = page->freelist;
2566 		counters = page->counters;
2567 		set_freepointer(s, object, prior);
2568 		new.counters = counters;
2569 		was_frozen = new.frozen;
2570 		new.inuse--;
2571 		if ((!new.inuse || !prior) && !was_frozen) {
2572 
2573 			if (kmem_cache_has_cpu_partial(s) && !prior) {
2574 
2575 				/*
2576 				 * Slab was on no list before and will be
2577 				 * partially empty
2578 				 * We can defer the list move and instead
2579 				 * freeze it.
2580 				 */
2581 				new.frozen = 1;
2582 
2583 			} else { /* Needs to be taken off a list */
2584 
2585 	                        n = get_node(s, page_to_nid(page));
2586 				/*
2587 				 * Speculatively acquire the list_lock.
2588 				 * If the cmpxchg does not succeed then we may
2589 				 * drop the list_lock without any processing.
2590 				 *
2591 				 * Otherwise the list_lock will synchronize with
2592 				 * other processors updating the list of slabs.
2593 				 */
2594 				spin_lock_irqsave(&n->list_lock, flags);
2595 
2596 			}
2597 		}
2598 
2599 	} while (!cmpxchg_double_slab(s, page,
2600 		prior, counters,
2601 		object, new.counters,
2602 		"__slab_free"));
2603 
2604 	if (likely(!n)) {
2605 
2606 		/*
2607 		 * If we just froze the page then put it onto the
2608 		 * per cpu partial list.
2609 		 */
2610 		if (new.frozen && !was_frozen) {
2611 			put_cpu_partial(s, page, 1);
2612 			stat(s, CPU_PARTIAL_FREE);
2613 		}
2614 		/*
2615 		 * The list lock was not taken therefore no list
2616 		 * activity can be necessary.
2617 		 */
2618                 if (was_frozen)
2619                         stat(s, FREE_FROZEN);
2620                 return;
2621         }
2622 
2623 	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2624 		goto slab_empty;
2625 
2626 	/*
2627 	 * Objects left in the slab. If it was not on the partial list before
2628 	 * then add it.
2629 	 */
2630 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2631 		if (kmem_cache_debug(s))
2632 			remove_full(s, n, page);
2633 		add_partial(n, page, DEACTIVATE_TO_TAIL);
2634 		stat(s, FREE_ADD_PARTIAL);
2635 	}
2636 	spin_unlock_irqrestore(&n->list_lock, flags);
2637 	return;
2638 
2639 slab_empty:
2640 	if (prior) {
2641 		/*
2642 		 * Slab on the partial list.
2643 		 */
2644 		remove_partial(n, page);
2645 		stat(s, FREE_REMOVE_PARTIAL);
2646 	} else {
2647 		/* Slab must be on the full list */
2648 		remove_full(s, n, page);
2649 	}
2650 
2651 	spin_unlock_irqrestore(&n->list_lock, flags);
2652 	stat(s, FREE_SLAB);
2653 	discard_slab(s, page);
2654 }
2655 
2656 /*
2657  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2658  * can perform fastpath freeing without additional function calls.
2659  *
2660  * The fastpath is only possible if we are freeing to the current cpu slab
2661  * of this processor. This typically the case if we have just allocated
2662  * the item before.
2663  *
2664  * If fastpath is not possible then fall back to __slab_free where we deal
2665  * with all sorts of special processing.
2666  */
2667 static __always_inline void slab_free(struct kmem_cache *s,
2668 			struct page *page, void *x, unsigned long addr)
2669 {
2670 	void **object = (void *)x;
2671 	struct kmem_cache_cpu *c;
2672 	unsigned long tid;
2673 
2674 	slab_free_hook(s, x);
2675 
2676 redo:
2677 	/*
2678 	 * Determine the currently cpus per cpu slab.
2679 	 * The cpu may change afterward. However that does not matter since
2680 	 * data is retrieved via this pointer. If we are on the same cpu
2681 	 * during the cmpxchg then the free will succedd.
2682 	 */
2683 	preempt_disable();
2684 	c = this_cpu_ptr(s->cpu_slab);
2685 
2686 	tid = c->tid;
2687 	preempt_enable();
2688 
2689 	if (likely(page == c->page)) {
2690 		set_freepointer(s, object, c->freelist);
2691 
2692 		if (unlikely(!this_cpu_cmpxchg_double(
2693 				s->cpu_slab->freelist, s->cpu_slab->tid,
2694 				c->freelist, tid,
2695 				object, next_tid(tid)))) {
2696 
2697 			note_cmpxchg_failure("slab_free", s, tid);
2698 			goto redo;
2699 		}
2700 		stat(s, FREE_FASTPATH);
2701 	} else
2702 		__slab_free(s, page, x, addr);
2703 
2704 }
2705 
2706 void kmem_cache_free(struct kmem_cache *s, void *x)
2707 {
2708 	s = cache_from_obj(s, x);
2709 	if (!s)
2710 		return;
2711 	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2712 	trace_kmem_cache_free(_RET_IP_, x);
2713 }
2714 EXPORT_SYMBOL(kmem_cache_free);
2715 
2716 /*
2717  * Object placement in a slab is made very easy because we always start at
2718  * offset 0. If we tune the size of the object to the alignment then we can
2719  * get the required alignment by putting one properly sized object after
2720  * another.
2721  *
2722  * Notice that the allocation order determines the sizes of the per cpu
2723  * caches. Each processor has always one slab available for allocations.
2724  * Increasing the allocation order reduces the number of times that slabs
2725  * must be moved on and off the partial lists and is therefore a factor in
2726  * locking overhead.
2727  */
2728 
2729 /*
2730  * Mininum / Maximum order of slab pages. This influences locking overhead
2731  * and slab fragmentation. A higher order reduces the number of partial slabs
2732  * and increases the number of allocations possible without having to
2733  * take the list_lock.
2734  */
2735 static int slub_min_order;
2736 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2737 static int slub_min_objects;
2738 
2739 /*
2740  * Merge control. If this is set then no merging of slab caches will occur.
2741  * (Could be removed. This was introduced to pacify the merge skeptics.)
2742  */
2743 static int slub_nomerge;
2744 
2745 /*
2746  * Calculate the order of allocation given an slab object size.
2747  *
2748  * The order of allocation has significant impact on performance and other
2749  * system components. Generally order 0 allocations should be preferred since
2750  * order 0 does not cause fragmentation in the page allocator. Larger objects
2751  * be problematic to put into order 0 slabs because there may be too much
2752  * unused space left. We go to a higher order if more than 1/16th of the slab
2753  * would be wasted.
2754  *
2755  * In order to reach satisfactory performance we must ensure that a minimum
2756  * number of objects is in one slab. Otherwise we may generate too much
2757  * activity on the partial lists which requires taking the list_lock. This is
2758  * less a concern for large slabs though which are rarely used.
2759  *
2760  * slub_max_order specifies the order where we begin to stop considering the
2761  * number of objects in a slab as critical. If we reach slub_max_order then
2762  * we try to keep the page order as low as possible. So we accept more waste
2763  * of space in favor of a small page order.
2764  *
2765  * Higher order allocations also allow the placement of more objects in a
2766  * slab and thereby reduce object handling overhead. If the user has
2767  * requested a higher mininum order then we start with that one instead of
2768  * the smallest order which will fit the object.
2769  */
2770 static inline int slab_order(int size, int min_objects,
2771 				int max_order, int fract_leftover, int reserved)
2772 {
2773 	int order;
2774 	int rem;
2775 	int min_order = slub_min_order;
2776 
2777 	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2778 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2779 
2780 	for (order = max(min_order,
2781 				fls(min_objects * size - 1) - PAGE_SHIFT);
2782 			order <= max_order; order++) {
2783 
2784 		unsigned long slab_size = PAGE_SIZE << order;
2785 
2786 		if (slab_size < min_objects * size + reserved)
2787 			continue;
2788 
2789 		rem = (slab_size - reserved) % size;
2790 
2791 		if (rem <= slab_size / fract_leftover)
2792 			break;
2793 
2794 	}
2795 
2796 	return order;
2797 }
2798 
2799 static inline int calculate_order(int size, int reserved)
2800 {
2801 	int order;
2802 	int min_objects;
2803 	int fraction;
2804 	int max_objects;
2805 
2806 	/*
2807 	 * Attempt to find best configuration for a slab. This
2808 	 * works by first attempting to generate a layout with
2809 	 * the best configuration and backing off gradually.
2810 	 *
2811 	 * First we reduce the acceptable waste in a slab. Then
2812 	 * we reduce the minimum objects required in a slab.
2813 	 */
2814 	min_objects = slub_min_objects;
2815 	if (!min_objects)
2816 		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2817 	max_objects = order_objects(slub_max_order, size, reserved);
2818 	min_objects = min(min_objects, max_objects);
2819 
2820 	while (min_objects > 1) {
2821 		fraction = 16;
2822 		while (fraction >= 4) {
2823 			order = slab_order(size, min_objects,
2824 					slub_max_order, fraction, reserved);
2825 			if (order <= slub_max_order)
2826 				return order;
2827 			fraction /= 2;
2828 		}
2829 		min_objects--;
2830 	}
2831 
2832 	/*
2833 	 * We were unable to place multiple objects in a slab. Now
2834 	 * lets see if we can place a single object there.
2835 	 */
2836 	order = slab_order(size, 1, slub_max_order, 1, reserved);
2837 	if (order <= slub_max_order)
2838 		return order;
2839 
2840 	/*
2841 	 * Doh this slab cannot be placed using slub_max_order.
2842 	 */
2843 	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2844 	if (order < MAX_ORDER)
2845 		return order;
2846 	return -ENOSYS;
2847 }
2848 
2849 static void
2850 init_kmem_cache_node(struct kmem_cache_node *n)
2851 {
2852 	n->nr_partial = 0;
2853 	spin_lock_init(&n->list_lock);
2854 	INIT_LIST_HEAD(&n->partial);
2855 #ifdef CONFIG_SLUB_DEBUG
2856 	atomic_long_set(&n->nr_slabs, 0);
2857 	atomic_long_set(&n->total_objects, 0);
2858 	INIT_LIST_HEAD(&n->full);
2859 #endif
2860 }
2861 
2862 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2863 {
2864 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2865 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2866 
2867 	/*
2868 	 * Must align to double word boundary for the double cmpxchg
2869 	 * instructions to work; see __pcpu_double_call_return_bool().
2870 	 */
2871 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2872 				     2 * sizeof(void *));
2873 
2874 	if (!s->cpu_slab)
2875 		return 0;
2876 
2877 	init_kmem_cache_cpus(s);
2878 
2879 	return 1;
2880 }
2881 
2882 static struct kmem_cache *kmem_cache_node;
2883 
2884 /*
2885  * No kmalloc_node yet so do it by hand. We know that this is the first
2886  * slab on the node for this slabcache. There are no concurrent accesses
2887  * possible.
2888  *
2889  * Note that this function only works on the kmem_cache_node
2890  * when allocating for the kmem_cache_node. This is used for bootstrapping
2891  * memory on a fresh node that has no slab structures yet.
2892  */
2893 static void early_kmem_cache_node_alloc(int node)
2894 {
2895 	struct page *page;
2896 	struct kmem_cache_node *n;
2897 
2898 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2899 
2900 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2901 
2902 	BUG_ON(!page);
2903 	if (page_to_nid(page) != node) {
2904 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2905 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2906 	}
2907 
2908 	n = page->freelist;
2909 	BUG_ON(!n);
2910 	page->freelist = get_freepointer(kmem_cache_node, n);
2911 	page->inuse = 1;
2912 	page->frozen = 0;
2913 	kmem_cache_node->node[node] = n;
2914 #ifdef CONFIG_SLUB_DEBUG
2915 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2916 	init_tracking(kmem_cache_node, n);
2917 #endif
2918 	init_kmem_cache_node(n);
2919 	inc_slabs_node(kmem_cache_node, node, page->objects);
2920 
2921 	/*
2922 	 * No locks need to be taken here as it has just been
2923 	 * initialized and there is no concurrent access.
2924 	 */
2925 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
2926 }
2927 
2928 static void free_kmem_cache_nodes(struct kmem_cache *s)
2929 {
2930 	int node;
2931 
2932 	for_each_node_state(node, N_NORMAL_MEMORY) {
2933 		struct kmem_cache_node *n = s->node[node];
2934 
2935 		if (n)
2936 			kmem_cache_free(kmem_cache_node, n);
2937 
2938 		s->node[node] = NULL;
2939 	}
2940 }
2941 
2942 static int init_kmem_cache_nodes(struct kmem_cache *s)
2943 {
2944 	int node;
2945 
2946 	for_each_node_state(node, N_NORMAL_MEMORY) {
2947 		struct kmem_cache_node *n;
2948 
2949 		if (slab_state == DOWN) {
2950 			early_kmem_cache_node_alloc(node);
2951 			continue;
2952 		}
2953 		n = kmem_cache_alloc_node(kmem_cache_node,
2954 						GFP_KERNEL, node);
2955 
2956 		if (!n) {
2957 			free_kmem_cache_nodes(s);
2958 			return 0;
2959 		}
2960 
2961 		s->node[node] = n;
2962 		init_kmem_cache_node(n);
2963 	}
2964 	return 1;
2965 }
2966 
2967 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2968 {
2969 	if (min < MIN_PARTIAL)
2970 		min = MIN_PARTIAL;
2971 	else if (min > MAX_PARTIAL)
2972 		min = MAX_PARTIAL;
2973 	s->min_partial = min;
2974 }
2975 
2976 /*
2977  * calculate_sizes() determines the order and the distribution of data within
2978  * a slab object.
2979  */
2980 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2981 {
2982 	unsigned long flags = s->flags;
2983 	unsigned long size = s->object_size;
2984 	int order;
2985 
2986 	/*
2987 	 * Round up object size to the next word boundary. We can only
2988 	 * place the free pointer at word boundaries and this determines
2989 	 * the possible location of the free pointer.
2990 	 */
2991 	size = ALIGN(size, sizeof(void *));
2992 
2993 #ifdef CONFIG_SLUB_DEBUG
2994 	/*
2995 	 * Determine if we can poison the object itself. If the user of
2996 	 * the slab may touch the object after free or before allocation
2997 	 * then we should never poison the object itself.
2998 	 */
2999 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3000 			!s->ctor)
3001 		s->flags |= __OBJECT_POISON;
3002 	else
3003 		s->flags &= ~__OBJECT_POISON;
3004 
3005 
3006 	/*
3007 	 * If we are Redzoning then check if there is some space between the
3008 	 * end of the object and the free pointer. If not then add an
3009 	 * additional word to have some bytes to store Redzone information.
3010 	 */
3011 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3012 		size += sizeof(void *);
3013 #endif
3014 
3015 	/*
3016 	 * With that we have determined the number of bytes in actual use
3017 	 * by the object. This is the potential offset to the free pointer.
3018 	 */
3019 	s->inuse = size;
3020 
3021 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3022 		s->ctor)) {
3023 		/*
3024 		 * Relocate free pointer after the object if it is not
3025 		 * permitted to overwrite the first word of the object on
3026 		 * kmem_cache_free.
3027 		 *
3028 		 * This is the case if we do RCU, have a constructor or
3029 		 * destructor or are poisoning the objects.
3030 		 */
3031 		s->offset = size;
3032 		size += sizeof(void *);
3033 	}
3034 
3035 #ifdef CONFIG_SLUB_DEBUG
3036 	if (flags & SLAB_STORE_USER)
3037 		/*
3038 		 * Need to store information about allocs and frees after
3039 		 * the object.
3040 		 */
3041 		size += 2 * sizeof(struct track);
3042 
3043 	if (flags & SLAB_RED_ZONE)
3044 		/*
3045 		 * Add some empty padding so that we can catch
3046 		 * overwrites from earlier objects rather than let
3047 		 * tracking information or the free pointer be
3048 		 * corrupted if a user writes before the start
3049 		 * of the object.
3050 		 */
3051 		size += sizeof(void *);
3052 #endif
3053 
3054 	/*
3055 	 * SLUB stores one object immediately after another beginning from
3056 	 * offset 0. In order to align the objects we have to simply size
3057 	 * each object to conform to the alignment.
3058 	 */
3059 	size = ALIGN(size, s->align);
3060 	s->size = size;
3061 	if (forced_order >= 0)
3062 		order = forced_order;
3063 	else
3064 		order = calculate_order(size, s->reserved);
3065 
3066 	if (order < 0)
3067 		return 0;
3068 
3069 	s->allocflags = 0;
3070 	if (order)
3071 		s->allocflags |= __GFP_COMP;
3072 
3073 	if (s->flags & SLAB_CACHE_DMA)
3074 		s->allocflags |= GFP_DMA;
3075 
3076 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
3077 		s->allocflags |= __GFP_RECLAIMABLE;
3078 
3079 	/*
3080 	 * Determine the number of objects per slab
3081 	 */
3082 	s->oo = oo_make(order, size, s->reserved);
3083 	s->min = oo_make(get_order(size), size, s->reserved);
3084 	if (oo_objects(s->oo) > oo_objects(s->max))
3085 		s->max = s->oo;
3086 
3087 	return !!oo_objects(s->oo);
3088 }
3089 
3090 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3091 {
3092 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3093 	s->reserved = 0;
3094 
3095 	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3096 		s->reserved = sizeof(struct rcu_head);
3097 
3098 	if (!calculate_sizes(s, -1))
3099 		goto error;
3100 	if (disable_higher_order_debug) {
3101 		/*
3102 		 * Disable debugging flags that store metadata if the min slab
3103 		 * order increased.
3104 		 */
3105 		if (get_order(s->size) > get_order(s->object_size)) {
3106 			s->flags &= ~DEBUG_METADATA_FLAGS;
3107 			s->offset = 0;
3108 			if (!calculate_sizes(s, -1))
3109 				goto error;
3110 		}
3111 	}
3112 
3113 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3114     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3115 	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3116 		/* Enable fast mode */
3117 		s->flags |= __CMPXCHG_DOUBLE;
3118 #endif
3119 
3120 	/*
3121 	 * The larger the object size is, the more pages we want on the partial
3122 	 * list to avoid pounding the page allocator excessively.
3123 	 */
3124 	set_min_partial(s, ilog2(s->size) / 2);
3125 
3126 	/*
3127 	 * cpu_partial determined the maximum number of objects kept in the
3128 	 * per cpu partial lists of a processor.
3129 	 *
3130 	 * Per cpu partial lists mainly contain slabs that just have one
3131 	 * object freed. If they are used for allocation then they can be
3132 	 * filled up again with minimal effort. The slab will never hit the
3133 	 * per node partial lists and therefore no locking will be required.
3134 	 *
3135 	 * This setting also determines
3136 	 *
3137 	 * A) The number of objects from per cpu partial slabs dumped to the
3138 	 *    per node list when we reach the limit.
3139 	 * B) The number of objects in cpu partial slabs to extract from the
3140 	 *    per node list when we run out of per cpu objects. We only fetch
3141 	 *    50% to keep some capacity around for frees.
3142 	 */
3143 	if (!kmem_cache_has_cpu_partial(s))
3144 		s->cpu_partial = 0;
3145 	else if (s->size >= PAGE_SIZE)
3146 		s->cpu_partial = 2;
3147 	else if (s->size >= 1024)
3148 		s->cpu_partial = 6;
3149 	else if (s->size >= 256)
3150 		s->cpu_partial = 13;
3151 	else
3152 		s->cpu_partial = 30;
3153 
3154 #ifdef CONFIG_NUMA
3155 	s->remote_node_defrag_ratio = 1000;
3156 #endif
3157 	if (!init_kmem_cache_nodes(s))
3158 		goto error;
3159 
3160 	if (alloc_kmem_cache_cpus(s))
3161 		return 0;
3162 
3163 	free_kmem_cache_nodes(s);
3164 error:
3165 	if (flags & SLAB_PANIC)
3166 		panic("Cannot create slab %s size=%lu realsize=%u "
3167 			"order=%u offset=%u flags=%lx\n",
3168 			s->name, (unsigned long)s->size, s->size,
3169 			oo_order(s->oo), s->offset, flags);
3170 	return -EINVAL;
3171 }
3172 
3173 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3174 							const char *text)
3175 {
3176 #ifdef CONFIG_SLUB_DEBUG
3177 	void *addr = page_address(page);
3178 	void *p;
3179 	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3180 				     sizeof(long), GFP_ATOMIC);
3181 	if (!map)
3182 		return;
3183 	slab_err(s, page, text, s->name);
3184 	slab_lock(page);
3185 
3186 	get_map(s, page, map);
3187 	for_each_object(p, s, addr, page->objects) {
3188 
3189 		if (!test_bit(slab_index(p, s, addr), map)) {
3190 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3191 			print_tracking(s, p);
3192 		}
3193 	}
3194 	slab_unlock(page);
3195 	kfree(map);
3196 #endif
3197 }
3198 
3199 /*
3200  * Attempt to free all partial slabs on a node.
3201  * This is called from kmem_cache_close(). We must be the last thread
3202  * using the cache and therefore we do not need to lock anymore.
3203  */
3204 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3205 {
3206 	struct page *page, *h;
3207 
3208 	list_for_each_entry_safe(page, h, &n->partial, lru) {
3209 		if (!page->inuse) {
3210 			__remove_partial(n, page);
3211 			discard_slab(s, page);
3212 		} else {
3213 			list_slab_objects(s, page,
3214 			"Objects remaining in %s on kmem_cache_close()");
3215 		}
3216 	}
3217 }
3218 
3219 /*
3220  * Release all resources used by a slab cache.
3221  */
3222 static inline int kmem_cache_close(struct kmem_cache *s)
3223 {
3224 	int node;
3225 
3226 	flush_all(s);
3227 	/* Attempt to free all objects */
3228 	for_each_node_state(node, N_NORMAL_MEMORY) {
3229 		struct kmem_cache_node *n = get_node(s, node);
3230 
3231 		free_partial(s, n);
3232 		if (n->nr_partial || slabs_node(s, node))
3233 			return 1;
3234 	}
3235 	free_percpu(s->cpu_slab);
3236 	free_kmem_cache_nodes(s);
3237 	return 0;
3238 }
3239 
3240 int __kmem_cache_shutdown(struct kmem_cache *s)
3241 {
3242 	return kmem_cache_close(s);
3243 }
3244 
3245 /********************************************************************
3246  *		Kmalloc subsystem
3247  *******************************************************************/
3248 
3249 static int __init setup_slub_min_order(char *str)
3250 {
3251 	get_option(&str, &slub_min_order);
3252 
3253 	return 1;
3254 }
3255 
3256 __setup("slub_min_order=", setup_slub_min_order);
3257 
3258 static int __init setup_slub_max_order(char *str)
3259 {
3260 	get_option(&str, &slub_max_order);
3261 	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3262 
3263 	return 1;
3264 }
3265 
3266 __setup("slub_max_order=", setup_slub_max_order);
3267 
3268 static int __init setup_slub_min_objects(char *str)
3269 {
3270 	get_option(&str, &slub_min_objects);
3271 
3272 	return 1;
3273 }
3274 
3275 __setup("slub_min_objects=", setup_slub_min_objects);
3276 
3277 static int __init setup_slub_nomerge(char *str)
3278 {
3279 	slub_nomerge = 1;
3280 	return 1;
3281 }
3282 
3283 __setup("slub_nomerge", setup_slub_nomerge);
3284 
3285 void *__kmalloc(size_t size, gfp_t flags)
3286 {
3287 	struct kmem_cache *s;
3288 	void *ret;
3289 
3290 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3291 		return kmalloc_large(size, flags);
3292 
3293 	s = kmalloc_slab(size, flags);
3294 
3295 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3296 		return s;
3297 
3298 	ret = slab_alloc(s, flags, _RET_IP_);
3299 
3300 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3301 
3302 	return ret;
3303 }
3304 EXPORT_SYMBOL(__kmalloc);
3305 
3306 #ifdef CONFIG_NUMA
3307 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3308 {
3309 	struct page *page;
3310 	void *ptr = NULL;
3311 
3312 	flags |= __GFP_COMP | __GFP_NOTRACK;
3313 	page = alloc_kmem_pages_node(node, flags, get_order(size));
3314 	if (page)
3315 		ptr = page_address(page);
3316 
3317 	kmalloc_large_node_hook(ptr, size, flags);
3318 	return ptr;
3319 }
3320 
3321 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3322 {
3323 	struct kmem_cache *s;
3324 	void *ret;
3325 
3326 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3327 		ret = kmalloc_large_node(size, flags, node);
3328 
3329 		trace_kmalloc_node(_RET_IP_, ret,
3330 				   size, PAGE_SIZE << get_order(size),
3331 				   flags, node);
3332 
3333 		return ret;
3334 	}
3335 
3336 	s = kmalloc_slab(size, flags);
3337 
3338 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3339 		return s;
3340 
3341 	ret = slab_alloc_node(s, flags, node, _RET_IP_);
3342 
3343 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3344 
3345 	return ret;
3346 }
3347 EXPORT_SYMBOL(__kmalloc_node);
3348 #endif
3349 
3350 size_t ksize(const void *object)
3351 {
3352 	struct page *page;
3353 
3354 	if (unlikely(object == ZERO_SIZE_PTR))
3355 		return 0;
3356 
3357 	page = virt_to_head_page(object);
3358 
3359 	if (unlikely(!PageSlab(page))) {
3360 		WARN_ON(!PageCompound(page));
3361 		return PAGE_SIZE << compound_order(page);
3362 	}
3363 
3364 	return slab_ksize(page->slab_cache);
3365 }
3366 EXPORT_SYMBOL(ksize);
3367 
3368 void kfree(const void *x)
3369 {
3370 	struct page *page;
3371 	void *object = (void *)x;
3372 
3373 	trace_kfree(_RET_IP_, x);
3374 
3375 	if (unlikely(ZERO_OR_NULL_PTR(x)))
3376 		return;
3377 
3378 	page = virt_to_head_page(x);
3379 	if (unlikely(!PageSlab(page))) {
3380 		BUG_ON(!PageCompound(page));
3381 		kfree_hook(x);
3382 		__free_kmem_pages(page, compound_order(page));
3383 		return;
3384 	}
3385 	slab_free(page->slab_cache, page, object, _RET_IP_);
3386 }
3387 EXPORT_SYMBOL(kfree);
3388 
3389 /*
3390  * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3391  * the remaining slabs by the number of items in use. The slabs with the
3392  * most items in use come first. New allocations will then fill those up
3393  * and thus they can be removed from the partial lists.
3394  *
3395  * The slabs with the least items are placed last. This results in them
3396  * being allocated from last increasing the chance that the last objects
3397  * are freed in them.
3398  */
3399 int __kmem_cache_shrink(struct kmem_cache *s)
3400 {
3401 	int node;
3402 	int i;
3403 	struct kmem_cache_node *n;
3404 	struct page *page;
3405 	struct page *t;
3406 	int objects = oo_objects(s->max);
3407 	struct list_head *slabs_by_inuse =
3408 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3409 	unsigned long flags;
3410 
3411 	if (!slabs_by_inuse)
3412 		return -ENOMEM;
3413 
3414 	flush_all(s);
3415 	for_each_node_state(node, N_NORMAL_MEMORY) {
3416 		n = get_node(s, node);
3417 
3418 		if (!n->nr_partial)
3419 			continue;
3420 
3421 		for (i = 0; i < objects; i++)
3422 			INIT_LIST_HEAD(slabs_by_inuse + i);
3423 
3424 		spin_lock_irqsave(&n->list_lock, flags);
3425 
3426 		/*
3427 		 * Build lists indexed by the items in use in each slab.
3428 		 *
3429 		 * Note that concurrent frees may occur while we hold the
3430 		 * list_lock. page->inuse here is the upper limit.
3431 		 */
3432 		list_for_each_entry_safe(page, t, &n->partial, lru) {
3433 			list_move(&page->lru, slabs_by_inuse + page->inuse);
3434 			if (!page->inuse)
3435 				n->nr_partial--;
3436 		}
3437 
3438 		/*
3439 		 * Rebuild the partial list with the slabs filled up most
3440 		 * first and the least used slabs at the end.
3441 		 */
3442 		for (i = objects - 1; i > 0; i--)
3443 			list_splice(slabs_by_inuse + i, n->partial.prev);
3444 
3445 		spin_unlock_irqrestore(&n->list_lock, flags);
3446 
3447 		/* Release empty slabs */
3448 		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3449 			discard_slab(s, page);
3450 	}
3451 
3452 	kfree(slabs_by_inuse);
3453 	return 0;
3454 }
3455 
3456 static int slab_mem_going_offline_callback(void *arg)
3457 {
3458 	struct kmem_cache *s;
3459 
3460 	mutex_lock(&slab_mutex);
3461 	list_for_each_entry(s, &slab_caches, list)
3462 		__kmem_cache_shrink(s);
3463 	mutex_unlock(&slab_mutex);
3464 
3465 	return 0;
3466 }
3467 
3468 static void slab_mem_offline_callback(void *arg)
3469 {
3470 	struct kmem_cache_node *n;
3471 	struct kmem_cache *s;
3472 	struct memory_notify *marg = arg;
3473 	int offline_node;
3474 
3475 	offline_node = marg->status_change_nid_normal;
3476 
3477 	/*
3478 	 * If the node still has available memory. we need kmem_cache_node
3479 	 * for it yet.
3480 	 */
3481 	if (offline_node < 0)
3482 		return;
3483 
3484 	mutex_lock(&slab_mutex);
3485 	list_for_each_entry(s, &slab_caches, list) {
3486 		n = get_node(s, offline_node);
3487 		if (n) {
3488 			/*
3489 			 * if n->nr_slabs > 0, slabs still exist on the node
3490 			 * that is going down. We were unable to free them,
3491 			 * and offline_pages() function shouldn't call this
3492 			 * callback. So, we must fail.
3493 			 */
3494 			BUG_ON(slabs_node(s, offline_node));
3495 
3496 			s->node[offline_node] = NULL;
3497 			kmem_cache_free(kmem_cache_node, n);
3498 		}
3499 	}
3500 	mutex_unlock(&slab_mutex);
3501 }
3502 
3503 static int slab_mem_going_online_callback(void *arg)
3504 {
3505 	struct kmem_cache_node *n;
3506 	struct kmem_cache *s;
3507 	struct memory_notify *marg = arg;
3508 	int nid = marg->status_change_nid_normal;
3509 	int ret = 0;
3510 
3511 	/*
3512 	 * If the node's memory is already available, then kmem_cache_node is
3513 	 * already created. Nothing to do.
3514 	 */
3515 	if (nid < 0)
3516 		return 0;
3517 
3518 	/*
3519 	 * We are bringing a node online. No memory is available yet. We must
3520 	 * allocate a kmem_cache_node structure in order to bring the node
3521 	 * online.
3522 	 */
3523 	mutex_lock(&slab_mutex);
3524 	list_for_each_entry(s, &slab_caches, list) {
3525 		/*
3526 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
3527 		 *      since memory is not yet available from the node that
3528 		 *      is brought up.
3529 		 */
3530 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3531 		if (!n) {
3532 			ret = -ENOMEM;
3533 			goto out;
3534 		}
3535 		init_kmem_cache_node(n);
3536 		s->node[nid] = n;
3537 	}
3538 out:
3539 	mutex_unlock(&slab_mutex);
3540 	return ret;
3541 }
3542 
3543 static int slab_memory_callback(struct notifier_block *self,
3544 				unsigned long action, void *arg)
3545 {
3546 	int ret = 0;
3547 
3548 	switch (action) {
3549 	case MEM_GOING_ONLINE:
3550 		ret = slab_mem_going_online_callback(arg);
3551 		break;
3552 	case MEM_GOING_OFFLINE:
3553 		ret = slab_mem_going_offline_callback(arg);
3554 		break;
3555 	case MEM_OFFLINE:
3556 	case MEM_CANCEL_ONLINE:
3557 		slab_mem_offline_callback(arg);
3558 		break;
3559 	case MEM_ONLINE:
3560 	case MEM_CANCEL_OFFLINE:
3561 		break;
3562 	}
3563 	if (ret)
3564 		ret = notifier_from_errno(ret);
3565 	else
3566 		ret = NOTIFY_OK;
3567 	return ret;
3568 }
3569 
3570 static struct notifier_block slab_memory_callback_nb = {
3571 	.notifier_call = slab_memory_callback,
3572 	.priority = SLAB_CALLBACK_PRI,
3573 };
3574 
3575 /********************************************************************
3576  *			Basic setup of slabs
3577  *******************************************************************/
3578 
3579 /*
3580  * Used for early kmem_cache structures that were allocated using
3581  * the page allocator. Allocate them properly then fix up the pointers
3582  * that may be pointing to the wrong kmem_cache structure.
3583  */
3584 
3585 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3586 {
3587 	int node;
3588 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3589 
3590 	memcpy(s, static_cache, kmem_cache->object_size);
3591 
3592 	/*
3593 	 * This runs very early, and only the boot processor is supposed to be
3594 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
3595 	 * IPIs around.
3596 	 */
3597 	__flush_cpu_slab(s, smp_processor_id());
3598 	for_each_node_state(node, N_NORMAL_MEMORY) {
3599 		struct kmem_cache_node *n = get_node(s, node);
3600 		struct page *p;
3601 
3602 		if (n) {
3603 			list_for_each_entry(p, &n->partial, lru)
3604 				p->slab_cache = s;
3605 
3606 #ifdef CONFIG_SLUB_DEBUG
3607 			list_for_each_entry(p, &n->full, lru)
3608 				p->slab_cache = s;
3609 #endif
3610 		}
3611 	}
3612 	list_add(&s->list, &slab_caches);
3613 	return s;
3614 }
3615 
3616 void __init kmem_cache_init(void)
3617 {
3618 	static __initdata struct kmem_cache boot_kmem_cache,
3619 		boot_kmem_cache_node;
3620 
3621 	if (debug_guardpage_minorder())
3622 		slub_max_order = 0;
3623 
3624 	kmem_cache_node = &boot_kmem_cache_node;
3625 	kmem_cache = &boot_kmem_cache;
3626 
3627 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
3628 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3629 
3630 	register_hotmemory_notifier(&slab_memory_callback_nb);
3631 
3632 	/* Able to allocate the per node structures */
3633 	slab_state = PARTIAL;
3634 
3635 	create_boot_cache(kmem_cache, "kmem_cache",
3636 			offsetof(struct kmem_cache, node) +
3637 				nr_node_ids * sizeof(struct kmem_cache_node *),
3638 		       SLAB_HWCACHE_ALIGN);
3639 
3640 	kmem_cache = bootstrap(&boot_kmem_cache);
3641 
3642 	/*
3643 	 * Allocate kmem_cache_node properly from the kmem_cache slab.
3644 	 * kmem_cache_node is separately allocated so no need to
3645 	 * update any list pointers.
3646 	 */
3647 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3648 
3649 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3650 	create_kmalloc_caches(0);
3651 
3652 #ifdef CONFIG_SMP
3653 	register_cpu_notifier(&slab_notifier);
3654 #endif
3655 
3656 	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3657 		cache_line_size(),
3658 		slub_min_order, slub_max_order, slub_min_objects,
3659 		nr_cpu_ids, nr_node_ids);
3660 }
3661 
3662 void __init kmem_cache_init_late(void)
3663 {
3664 }
3665 
3666 /*
3667  * Find a mergeable slab cache
3668  */
3669 static int slab_unmergeable(struct kmem_cache *s)
3670 {
3671 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3672 		return 1;
3673 
3674 	if (!is_root_cache(s))
3675 		return 1;
3676 
3677 	if (s->ctor)
3678 		return 1;
3679 
3680 	/*
3681 	 * We may have set a slab to be unmergeable during bootstrap.
3682 	 */
3683 	if (s->refcount < 0)
3684 		return 1;
3685 
3686 	return 0;
3687 }
3688 
3689 static struct kmem_cache *find_mergeable(size_t size, size_t align,
3690 		unsigned long flags, const char *name, void (*ctor)(void *))
3691 {
3692 	struct kmem_cache *s;
3693 
3694 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3695 		return NULL;
3696 
3697 	if (ctor)
3698 		return NULL;
3699 
3700 	size = ALIGN(size, sizeof(void *));
3701 	align = calculate_alignment(flags, align, size);
3702 	size = ALIGN(size, align);
3703 	flags = kmem_cache_flags(size, flags, name, NULL);
3704 
3705 	list_for_each_entry(s, &slab_caches, list) {
3706 		if (slab_unmergeable(s))
3707 			continue;
3708 
3709 		if (size > s->size)
3710 			continue;
3711 
3712 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3713 			continue;
3714 		/*
3715 		 * Check if alignment is compatible.
3716 		 * Courtesy of Adrian Drzewiecki
3717 		 */
3718 		if ((s->size & ~(align - 1)) != s->size)
3719 			continue;
3720 
3721 		if (s->size - size >= sizeof(void *))
3722 			continue;
3723 
3724 		return s;
3725 	}
3726 	return NULL;
3727 }
3728 
3729 struct kmem_cache *
3730 __kmem_cache_alias(const char *name, size_t size, size_t align,
3731 		   unsigned long flags, void (*ctor)(void *))
3732 {
3733 	struct kmem_cache *s;
3734 
3735 	s = find_mergeable(size, align, flags, name, ctor);
3736 	if (s) {
3737 		int i;
3738 		struct kmem_cache *c;
3739 
3740 		s->refcount++;
3741 
3742 		/*
3743 		 * Adjust the object sizes so that we clear
3744 		 * the complete object on kzalloc.
3745 		 */
3746 		s->object_size = max(s->object_size, (int)size);
3747 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3748 
3749 		for_each_memcg_cache_index(i) {
3750 			c = cache_from_memcg_idx(s, i);
3751 			if (!c)
3752 				continue;
3753 			c->object_size = s->object_size;
3754 			c->inuse = max_t(int, c->inuse,
3755 					 ALIGN(size, sizeof(void *)));
3756 		}
3757 
3758 		if (sysfs_slab_alias(s, name)) {
3759 			s->refcount--;
3760 			s = NULL;
3761 		}
3762 	}
3763 
3764 	return s;
3765 }
3766 
3767 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3768 {
3769 	int err;
3770 
3771 	err = kmem_cache_open(s, flags);
3772 	if (err)
3773 		return err;
3774 
3775 	/* Mutex is not taken during early boot */
3776 	if (slab_state <= UP)
3777 		return 0;
3778 
3779 	memcg_propagate_slab_attrs(s);
3780 	err = sysfs_slab_add(s);
3781 	if (err)
3782 		kmem_cache_close(s);
3783 
3784 	return err;
3785 }
3786 
3787 #ifdef CONFIG_SMP
3788 /*
3789  * Use the cpu notifier to insure that the cpu slabs are flushed when
3790  * necessary.
3791  */
3792 static int slab_cpuup_callback(struct notifier_block *nfb,
3793 		unsigned long action, void *hcpu)
3794 {
3795 	long cpu = (long)hcpu;
3796 	struct kmem_cache *s;
3797 	unsigned long flags;
3798 
3799 	switch (action) {
3800 	case CPU_UP_CANCELED:
3801 	case CPU_UP_CANCELED_FROZEN:
3802 	case CPU_DEAD:
3803 	case CPU_DEAD_FROZEN:
3804 		mutex_lock(&slab_mutex);
3805 		list_for_each_entry(s, &slab_caches, list) {
3806 			local_irq_save(flags);
3807 			__flush_cpu_slab(s, cpu);
3808 			local_irq_restore(flags);
3809 		}
3810 		mutex_unlock(&slab_mutex);
3811 		break;
3812 	default:
3813 		break;
3814 	}
3815 	return NOTIFY_OK;
3816 }
3817 
3818 static struct notifier_block slab_notifier = {
3819 	.notifier_call = slab_cpuup_callback
3820 };
3821 
3822 #endif
3823 
3824 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3825 {
3826 	struct kmem_cache *s;
3827 	void *ret;
3828 
3829 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830 		return kmalloc_large(size, gfpflags);
3831 
3832 	s = kmalloc_slab(size, gfpflags);
3833 
3834 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3835 		return s;
3836 
3837 	ret = slab_alloc(s, gfpflags, caller);
3838 
3839 	/* Honor the call site pointer we received. */
3840 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3841 
3842 	return ret;
3843 }
3844 
3845 #ifdef CONFIG_NUMA
3846 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3847 					int node, unsigned long caller)
3848 {
3849 	struct kmem_cache *s;
3850 	void *ret;
3851 
3852 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3853 		ret = kmalloc_large_node(size, gfpflags, node);
3854 
3855 		trace_kmalloc_node(caller, ret,
3856 				   size, PAGE_SIZE << get_order(size),
3857 				   gfpflags, node);
3858 
3859 		return ret;
3860 	}
3861 
3862 	s = kmalloc_slab(size, gfpflags);
3863 
3864 	if (unlikely(ZERO_OR_NULL_PTR(s)))
3865 		return s;
3866 
3867 	ret = slab_alloc_node(s, gfpflags, node, caller);
3868 
3869 	/* Honor the call site pointer we received. */
3870 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3871 
3872 	return ret;
3873 }
3874 #endif
3875 
3876 #ifdef CONFIG_SYSFS
3877 static int count_inuse(struct page *page)
3878 {
3879 	return page->inuse;
3880 }
3881 
3882 static int count_total(struct page *page)
3883 {
3884 	return page->objects;
3885 }
3886 #endif
3887 
3888 #ifdef CONFIG_SLUB_DEBUG
3889 static int validate_slab(struct kmem_cache *s, struct page *page,
3890 						unsigned long *map)
3891 {
3892 	void *p;
3893 	void *addr = page_address(page);
3894 
3895 	if (!check_slab(s, page) ||
3896 			!on_freelist(s, page, NULL))
3897 		return 0;
3898 
3899 	/* Now we know that a valid freelist exists */
3900 	bitmap_zero(map, page->objects);
3901 
3902 	get_map(s, page, map);
3903 	for_each_object(p, s, addr, page->objects) {
3904 		if (test_bit(slab_index(p, s, addr), map))
3905 			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3906 				return 0;
3907 	}
3908 
3909 	for_each_object(p, s, addr, page->objects)
3910 		if (!test_bit(slab_index(p, s, addr), map))
3911 			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3912 				return 0;
3913 	return 1;
3914 }
3915 
3916 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3917 						unsigned long *map)
3918 {
3919 	slab_lock(page);
3920 	validate_slab(s, page, map);
3921 	slab_unlock(page);
3922 }
3923 
3924 static int validate_slab_node(struct kmem_cache *s,
3925 		struct kmem_cache_node *n, unsigned long *map)
3926 {
3927 	unsigned long count = 0;
3928 	struct page *page;
3929 	unsigned long flags;
3930 
3931 	spin_lock_irqsave(&n->list_lock, flags);
3932 
3933 	list_for_each_entry(page, &n->partial, lru) {
3934 		validate_slab_slab(s, page, map);
3935 		count++;
3936 	}
3937 	if (count != n->nr_partial)
3938 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3939 		       s->name, count, n->nr_partial);
3940 
3941 	if (!(s->flags & SLAB_STORE_USER))
3942 		goto out;
3943 
3944 	list_for_each_entry(page, &n->full, lru) {
3945 		validate_slab_slab(s, page, map);
3946 		count++;
3947 	}
3948 	if (count != atomic_long_read(&n->nr_slabs))
3949 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3950 		       s->name, count, atomic_long_read(&n->nr_slabs));
3951 
3952 out:
3953 	spin_unlock_irqrestore(&n->list_lock, flags);
3954 	return count;
3955 }
3956 
3957 static long validate_slab_cache(struct kmem_cache *s)
3958 {
3959 	int node;
3960 	unsigned long count = 0;
3961 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3962 				sizeof(unsigned long), GFP_KERNEL);
3963 
3964 	if (!map)
3965 		return -ENOMEM;
3966 
3967 	flush_all(s);
3968 	for_each_node_state(node, N_NORMAL_MEMORY) {
3969 		struct kmem_cache_node *n = get_node(s, node);
3970 
3971 		count += validate_slab_node(s, n, map);
3972 	}
3973 	kfree(map);
3974 	return count;
3975 }
3976 /*
3977  * Generate lists of code addresses where slabcache objects are allocated
3978  * and freed.
3979  */
3980 
3981 struct location {
3982 	unsigned long count;
3983 	unsigned long addr;
3984 	long long sum_time;
3985 	long min_time;
3986 	long max_time;
3987 	long min_pid;
3988 	long max_pid;
3989 	DECLARE_BITMAP(cpus, NR_CPUS);
3990 	nodemask_t nodes;
3991 };
3992 
3993 struct loc_track {
3994 	unsigned long max;
3995 	unsigned long count;
3996 	struct location *loc;
3997 };
3998 
3999 static void free_loc_track(struct loc_track *t)
4000 {
4001 	if (t->max)
4002 		free_pages((unsigned long)t->loc,
4003 			get_order(sizeof(struct location) * t->max));
4004 }
4005 
4006 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4007 {
4008 	struct location *l;
4009 	int order;
4010 
4011 	order = get_order(sizeof(struct location) * max);
4012 
4013 	l = (void *)__get_free_pages(flags, order);
4014 	if (!l)
4015 		return 0;
4016 
4017 	if (t->count) {
4018 		memcpy(l, t->loc, sizeof(struct location) * t->count);
4019 		free_loc_track(t);
4020 	}
4021 	t->max = max;
4022 	t->loc = l;
4023 	return 1;
4024 }
4025 
4026 static int add_location(struct loc_track *t, struct kmem_cache *s,
4027 				const struct track *track)
4028 {
4029 	long start, end, pos;
4030 	struct location *l;
4031 	unsigned long caddr;
4032 	unsigned long age = jiffies - track->when;
4033 
4034 	start = -1;
4035 	end = t->count;
4036 
4037 	for ( ; ; ) {
4038 		pos = start + (end - start + 1) / 2;
4039 
4040 		/*
4041 		 * There is nothing at "end". If we end up there
4042 		 * we need to add something to before end.
4043 		 */
4044 		if (pos == end)
4045 			break;
4046 
4047 		caddr = t->loc[pos].addr;
4048 		if (track->addr == caddr) {
4049 
4050 			l = &t->loc[pos];
4051 			l->count++;
4052 			if (track->when) {
4053 				l->sum_time += age;
4054 				if (age < l->min_time)
4055 					l->min_time = age;
4056 				if (age > l->max_time)
4057 					l->max_time = age;
4058 
4059 				if (track->pid < l->min_pid)
4060 					l->min_pid = track->pid;
4061 				if (track->pid > l->max_pid)
4062 					l->max_pid = track->pid;
4063 
4064 				cpumask_set_cpu(track->cpu,
4065 						to_cpumask(l->cpus));
4066 			}
4067 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4068 			return 1;
4069 		}
4070 
4071 		if (track->addr < caddr)
4072 			end = pos;
4073 		else
4074 			start = pos;
4075 	}
4076 
4077 	/*
4078 	 * Not found. Insert new tracking element.
4079 	 */
4080 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4081 		return 0;
4082 
4083 	l = t->loc + pos;
4084 	if (pos < t->count)
4085 		memmove(l + 1, l,
4086 			(t->count - pos) * sizeof(struct location));
4087 	t->count++;
4088 	l->count = 1;
4089 	l->addr = track->addr;
4090 	l->sum_time = age;
4091 	l->min_time = age;
4092 	l->max_time = age;
4093 	l->min_pid = track->pid;
4094 	l->max_pid = track->pid;
4095 	cpumask_clear(to_cpumask(l->cpus));
4096 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4097 	nodes_clear(l->nodes);
4098 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4099 	return 1;
4100 }
4101 
4102 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4103 		struct page *page, enum track_item alloc,
4104 		unsigned long *map)
4105 {
4106 	void *addr = page_address(page);
4107 	void *p;
4108 
4109 	bitmap_zero(map, page->objects);
4110 	get_map(s, page, map);
4111 
4112 	for_each_object(p, s, addr, page->objects)
4113 		if (!test_bit(slab_index(p, s, addr), map))
4114 			add_location(t, s, get_track(s, p, alloc));
4115 }
4116 
4117 static int list_locations(struct kmem_cache *s, char *buf,
4118 					enum track_item alloc)
4119 {
4120 	int len = 0;
4121 	unsigned long i;
4122 	struct loc_track t = { 0, 0, NULL };
4123 	int node;
4124 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4125 				     sizeof(unsigned long), GFP_KERNEL);
4126 
4127 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4128 				     GFP_TEMPORARY)) {
4129 		kfree(map);
4130 		return sprintf(buf, "Out of memory\n");
4131 	}
4132 	/* Push back cpu slabs */
4133 	flush_all(s);
4134 
4135 	for_each_node_state(node, N_NORMAL_MEMORY) {
4136 		struct kmem_cache_node *n = get_node(s, node);
4137 		unsigned long flags;
4138 		struct page *page;
4139 
4140 		if (!atomic_long_read(&n->nr_slabs))
4141 			continue;
4142 
4143 		spin_lock_irqsave(&n->list_lock, flags);
4144 		list_for_each_entry(page, &n->partial, lru)
4145 			process_slab(&t, s, page, alloc, map);
4146 		list_for_each_entry(page, &n->full, lru)
4147 			process_slab(&t, s, page, alloc, map);
4148 		spin_unlock_irqrestore(&n->list_lock, flags);
4149 	}
4150 
4151 	for (i = 0; i < t.count; i++) {
4152 		struct location *l = &t.loc[i];
4153 
4154 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4155 			break;
4156 		len += sprintf(buf + len, "%7ld ", l->count);
4157 
4158 		if (l->addr)
4159 			len += sprintf(buf + len, "%pS", (void *)l->addr);
4160 		else
4161 			len += sprintf(buf + len, "<not-available>");
4162 
4163 		if (l->sum_time != l->min_time) {
4164 			len += sprintf(buf + len, " age=%ld/%ld/%ld",
4165 				l->min_time,
4166 				(long)div_u64(l->sum_time, l->count),
4167 				l->max_time);
4168 		} else
4169 			len += sprintf(buf + len, " age=%ld",
4170 				l->min_time);
4171 
4172 		if (l->min_pid != l->max_pid)
4173 			len += sprintf(buf + len, " pid=%ld-%ld",
4174 				l->min_pid, l->max_pid);
4175 		else
4176 			len += sprintf(buf + len, " pid=%ld",
4177 				l->min_pid);
4178 
4179 		if (num_online_cpus() > 1 &&
4180 				!cpumask_empty(to_cpumask(l->cpus)) &&
4181 				len < PAGE_SIZE - 60) {
4182 			len += sprintf(buf + len, " cpus=");
4183 			len += cpulist_scnprintf(buf + len,
4184 						 PAGE_SIZE - len - 50,
4185 						 to_cpumask(l->cpus));
4186 		}
4187 
4188 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4189 				len < PAGE_SIZE - 60) {
4190 			len += sprintf(buf + len, " nodes=");
4191 			len += nodelist_scnprintf(buf + len,
4192 						  PAGE_SIZE - len - 50,
4193 						  l->nodes);
4194 		}
4195 
4196 		len += sprintf(buf + len, "\n");
4197 	}
4198 
4199 	free_loc_track(&t);
4200 	kfree(map);
4201 	if (!t.count)
4202 		len += sprintf(buf, "No data\n");
4203 	return len;
4204 }
4205 #endif
4206 
4207 #ifdef SLUB_RESILIENCY_TEST
4208 static void resiliency_test(void)
4209 {
4210 	u8 *p;
4211 
4212 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4213 
4214 	pr_err("SLUB resiliency testing\n");
4215 	pr_err("-----------------------\n");
4216 	pr_err("A. Corruption after allocation\n");
4217 
4218 	p = kzalloc(16, GFP_KERNEL);
4219 	p[16] = 0x12;
4220 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4221 	       p + 16);
4222 
4223 	validate_slab_cache(kmalloc_caches[4]);
4224 
4225 	/* Hmmm... The next two are dangerous */
4226 	p = kzalloc(32, GFP_KERNEL);
4227 	p[32 + sizeof(void *)] = 0x34;
4228 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4229 	       p);
4230 	pr_err("If allocated object is overwritten then not detectable\n\n");
4231 
4232 	validate_slab_cache(kmalloc_caches[5]);
4233 	p = kzalloc(64, GFP_KERNEL);
4234 	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4235 	*p = 0x56;
4236 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4237 	       p);
4238 	pr_err("If allocated object is overwritten then not detectable\n\n");
4239 	validate_slab_cache(kmalloc_caches[6]);
4240 
4241 	pr_err("\nB. Corruption after free\n");
4242 	p = kzalloc(128, GFP_KERNEL);
4243 	kfree(p);
4244 	*p = 0x78;
4245 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4246 	validate_slab_cache(kmalloc_caches[7]);
4247 
4248 	p = kzalloc(256, GFP_KERNEL);
4249 	kfree(p);
4250 	p[50] = 0x9a;
4251 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4252 	validate_slab_cache(kmalloc_caches[8]);
4253 
4254 	p = kzalloc(512, GFP_KERNEL);
4255 	kfree(p);
4256 	p[512] = 0xab;
4257 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4258 	validate_slab_cache(kmalloc_caches[9]);
4259 }
4260 #else
4261 #ifdef CONFIG_SYSFS
4262 static void resiliency_test(void) {};
4263 #endif
4264 #endif
4265 
4266 #ifdef CONFIG_SYSFS
4267 enum slab_stat_type {
4268 	SL_ALL,			/* All slabs */
4269 	SL_PARTIAL,		/* Only partially allocated slabs */
4270 	SL_CPU,			/* Only slabs used for cpu caches */
4271 	SL_OBJECTS,		/* Determine allocated objects not slabs */
4272 	SL_TOTAL		/* Determine object capacity not slabs */
4273 };
4274 
4275 #define SO_ALL		(1 << SL_ALL)
4276 #define SO_PARTIAL	(1 << SL_PARTIAL)
4277 #define SO_CPU		(1 << SL_CPU)
4278 #define SO_OBJECTS	(1 << SL_OBJECTS)
4279 #define SO_TOTAL	(1 << SL_TOTAL)
4280 
4281 static ssize_t show_slab_objects(struct kmem_cache *s,
4282 			    char *buf, unsigned long flags)
4283 {
4284 	unsigned long total = 0;
4285 	int node;
4286 	int x;
4287 	unsigned long *nodes;
4288 
4289 	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4290 	if (!nodes)
4291 		return -ENOMEM;
4292 
4293 	if (flags & SO_CPU) {
4294 		int cpu;
4295 
4296 		for_each_possible_cpu(cpu) {
4297 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4298 							       cpu);
4299 			int node;
4300 			struct page *page;
4301 
4302 			page = ACCESS_ONCE(c->page);
4303 			if (!page)
4304 				continue;
4305 
4306 			node = page_to_nid(page);
4307 			if (flags & SO_TOTAL)
4308 				x = page->objects;
4309 			else if (flags & SO_OBJECTS)
4310 				x = page->inuse;
4311 			else
4312 				x = 1;
4313 
4314 			total += x;
4315 			nodes[node] += x;
4316 
4317 			page = ACCESS_ONCE(c->partial);
4318 			if (page) {
4319 				node = page_to_nid(page);
4320 				if (flags & SO_TOTAL)
4321 					WARN_ON_ONCE(1);
4322 				else if (flags & SO_OBJECTS)
4323 					WARN_ON_ONCE(1);
4324 				else
4325 					x = page->pages;
4326 				total += x;
4327 				nodes[node] += x;
4328 			}
4329 		}
4330 	}
4331 
4332 	get_online_mems();
4333 #ifdef CONFIG_SLUB_DEBUG
4334 	if (flags & SO_ALL) {
4335 		for_each_node_state(node, N_NORMAL_MEMORY) {
4336 			struct kmem_cache_node *n = get_node(s, node);
4337 
4338 			if (flags & SO_TOTAL)
4339 				x = atomic_long_read(&n->total_objects);
4340 			else if (flags & SO_OBJECTS)
4341 				x = atomic_long_read(&n->total_objects) -
4342 					count_partial(n, count_free);
4343 			else
4344 				x = atomic_long_read(&n->nr_slabs);
4345 			total += x;
4346 			nodes[node] += x;
4347 		}
4348 
4349 	} else
4350 #endif
4351 	if (flags & SO_PARTIAL) {
4352 		for_each_node_state(node, N_NORMAL_MEMORY) {
4353 			struct kmem_cache_node *n = get_node(s, node);
4354 
4355 			if (flags & SO_TOTAL)
4356 				x = count_partial(n, count_total);
4357 			else if (flags & SO_OBJECTS)
4358 				x = count_partial(n, count_inuse);
4359 			else
4360 				x = n->nr_partial;
4361 			total += x;
4362 			nodes[node] += x;
4363 		}
4364 	}
4365 	x = sprintf(buf, "%lu", total);
4366 #ifdef CONFIG_NUMA
4367 	for_each_node_state(node, N_NORMAL_MEMORY)
4368 		if (nodes[node])
4369 			x += sprintf(buf + x, " N%d=%lu",
4370 					node, nodes[node]);
4371 #endif
4372 	put_online_mems();
4373 	kfree(nodes);
4374 	return x + sprintf(buf + x, "\n");
4375 }
4376 
4377 #ifdef CONFIG_SLUB_DEBUG
4378 static int any_slab_objects(struct kmem_cache *s)
4379 {
4380 	int node;
4381 
4382 	for_each_online_node(node) {
4383 		struct kmem_cache_node *n = get_node(s, node);
4384 
4385 		if (!n)
4386 			continue;
4387 
4388 		if (atomic_long_read(&n->total_objects))
4389 			return 1;
4390 	}
4391 	return 0;
4392 }
4393 #endif
4394 
4395 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4396 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4397 
4398 struct slab_attribute {
4399 	struct attribute attr;
4400 	ssize_t (*show)(struct kmem_cache *s, char *buf);
4401 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4402 };
4403 
4404 #define SLAB_ATTR_RO(_name) \
4405 	static struct slab_attribute _name##_attr = \
4406 	__ATTR(_name, 0400, _name##_show, NULL)
4407 
4408 #define SLAB_ATTR(_name) \
4409 	static struct slab_attribute _name##_attr =  \
4410 	__ATTR(_name, 0600, _name##_show, _name##_store)
4411 
4412 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4413 {
4414 	return sprintf(buf, "%d\n", s->size);
4415 }
4416 SLAB_ATTR_RO(slab_size);
4417 
4418 static ssize_t align_show(struct kmem_cache *s, char *buf)
4419 {
4420 	return sprintf(buf, "%d\n", s->align);
4421 }
4422 SLAB_ATTR_RO(align);
4423 
4424 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4425 {
4426 	return sprintf(buf, "%d\n", s->object_size);
4427 }
4428 SLAB_ATTR_RO(object_size);
4429 
4430 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4431 {
4432 	return sprintf(buf, "%d\n", oo_objects(s->oo));
4433 }
4434 SLAB_ATTR_RO(objs_per_slab);
4435 
4436 static ssize_t order_store(struct kmem_cache *s,
4437 				const char *buf, size_t length)
4438 {
4439 	unsigned long order;
4440 	int err;
4441 
4442 	err = kstrtoul(buf, 10, &order);
4443 	if (err)
4444 		return err;
4445 
4446 	if (order > slub_max_order || order < slub_min_order)
4447 		return -EINVAL;
4448 
4449 	calculate_sizes(s, order);
4450 	return length;
4451 }
4452 
4453 static ssize_t order_show(struct kmem_cache *s, char *buf)
4454 {
4455 	return sprintf(buf, "%d\n", oo_order(s->oo));
4456 }
4457 SLAB_ATTR(order);
4458 
4459 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4460 {
4461 	return sprintf(buf, "%lu\n", s->min_partial);
4462 }
4463 
4464 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4465 				 size_t length)
4466 {
4467 	unsigned long min;
4468 	int err;
4469 
4470 	err = kstrtoul(buf, 10, &min);
4471 	if (err)
4472 		return err;
4473 
4474 	set_min_partial(s, min);
4475 	return length;
4476 }
4477 SLAB_ATTR(min_partial);
4478 
4479 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4480 {
4481 	return sprintf(buf, "%u\n", s->cpu_partial);
4482 }
4483 
4484 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4485 				 size_t length)
4486 {
4487 	unsigned long objects;
4488 	int err;
4489 
4490 	err = kstrtoul(buf, 10, &objects);
4491 	if (err)
4492 		return err;
4493 	if (objects && !kmem_cache_has_cpu_partial(s))
4494 		return -EINVAL;
4495 
4496 	s->cpu_partial = objects;
4497 	flush_all(s);
4498 	return length;
4499 }
4500 SLAB_ATTR(cpu_partial);
4501 
4502 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4503 {
4504 	if (!s->ctor)
4505 		return 0;
4506 	return sprintf(buf, "%pS\n", s->ctor);
4507 }
4508 SLAB_ATTR_RO(ctor);
4509 
4510 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4511 {
4512 	return sprintf(buf, "%d\n", s->refcount - 1);
4513 }
4514 SLAB_ATTR_RO(aliases);
4515 
4516 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4517 {
4518 	return show_slab_objects(s, buf, SO_PARTIAL);
4519 }
4520 SLAB_ATTR_RO(partial);
4521 
4522 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4523 {
4524 	return show_slab_objects(s, buf, SO_CPU);
4525 }
4526 SLAB_ATTR_RO(cpu_slabs);
4527 
4528 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4529 {
4530 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4531 }
4532 SLAB_ATTR_RO(objects);
4533 
4534 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4535 {
4536 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4537 }
4538 SLAB_ATTR_RO(objects_partial);
4539 
4540 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4541 {
4542 	int objects = 0;
4543 	int pages = 0;
4544 	int cpu;
4545 	int len;
4546 
4547 	for_each_online_cpu(cpu) {
4548 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4549 
4550 		if (page) {
4551 			pages += page->pages;
4552 			objects += page->pobjects;
4553 		}
4554 	}
4555 
4556 	len = sprintf(buf, "%d(%d)", objects, pages);
4557 
4558 #ifdef CONFIG_SMP
4559 	for_each_online_cpu(cpu) {
4560 		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4561 
4562 		if (page && len < PAGE_SIZE - 20)
4563 			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4564 				page->pobjects, page->pages);
4565 	}
4566 #endif
4567 	return len + sprintf(buf + len, "\n");
4568 }
4569 SLAB_ATTR_RO(slabs_cpu_partial);
4570 
4571 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4572 {
4573 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4574 }
4575 
4576 static ssize_t reclaim_account_store(struct kmem_cache *s,
4577 				const char *buf, size_t length)
4578 {
4579 	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4580 	if (buf[0] == '1')
4581 		s->flags |= SLAB_RECLAIM_ACCOUNT;
4582 	return length;
4583 }
4584 SLAB_ATTR(reclaim_account);
4585 
4586 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4587 {
4588 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4589 }
4590 SLAB_ATTR_RO(hwcache_align);
4591 
4592 #ifdef CONFIG_ZONE_DMA
4593 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4594 {
4595 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4596 }
4597 SLAB_ATTR_RO(cache_dma);
4598 #endif
4599 
4600 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4601 {
4602 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4603 }
4604 SLAB_ATTR_RO(destroy_by_rcu);
4605 
4606 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4607 {
4608 	return sprintf(buf, "%d\n", s->reserved);
4609 }
4610 SLAB_ATTR_RO(reserved);
4611 
4612 #ifdef CONFIG_SLUB_DEBUG
4613 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4614 {
4615 	return show_slab_objects(s, buf, SO_ALL);
4616 }
4617 SLAB_ATTR_RO(slabs);
4618 
4619 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4620 {
4621 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4622 }
4623 SLAB_ATTR_RO(total_objects);
4624 
4625 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4626 {
4627 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4628 }
4629 
4630 static ssize_t sanity_checks_store(struct kmem_cache *s,
4631 				const char *buf, size_t length)
4632 {
4633 	s->flags &= ~SLAB_DEBUG_FREE;
4634 	if (buf[0] == '1') {
4635 		s->flags &= ~__CMPXCHG_DOUBLE;
4636 		s->flags |= SLAB_DEBUG_FREE;
4637 	}
4638 	return length;
4639 }
4640 SLAB_ATTR(sanity_checks);
4641 
4642 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4643 {
4644 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4645 }
4646 
4647 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4648 							size_t length)
4649 {
4650 	s->flags &= ~SLAB_TRACE;
4651 	if (buf[0] == '1') {
4652 		s->flags &= ~__CMPXCHG_DOUBLE;
4653 		s->flags |= SLAB_TRACE;
4654 	}
4655 	return length;
4656 }
4657 SLAB_ATTR(trace);
4658 
4659 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4660 {
4661 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4662 }
4663 
4664 static ssize_t red_zone_store(struct kmem_cache *s,
4665 				const char *buf, size_t length)
4666 {
4667 	if (any_slab_objects(s))
4668 		return -EBUSY;
4669 
4670 	s->flags &= ~SLAB_RED_ZONE;
4671 	if (buf[0] == '1') {
4672 		s->flags &= ~__CMPXCHG_DOUBLE;
4673 		s->flags |= SLAB_RED_ZONE;
4674 	}
4675 	calculate_sizes(s, -1);
4676 	return length;
4677 }
4678 SLAB_ATTR(red_zone);
4679 
4680 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4681 {
4682 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4683 }
4684 
4685 static ssize_t poison_store(struct kmem_cache *s,
4686 				const char *buf, size_t length)
4687 {
4688 	if (any_slab_objects(s))
4689 		return -EBUSY;
4690 
4691 	s->flags &= ~SLAB_POISON;
4692 	if (buf[0] == '1') {
4693 		s->flags &= ~__CMPXCHG_DOUBLE;
4694 		s->flags |= SLAB_POISON;
4695 	}
4696 	calculate_sizes(s, -1);
4697 	return length;
4698 }
4699 SLAB_ATTR(poison);
4700 
4701 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4702 {
4703 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4704 }
4705 
4706 static ssize_t store_user_store(struct kmem_cache *s,
4707 				const char *buf, size_t length)
4708 {
4709 	if (any_slab_objects(s))
4710 		return -EBUSY;
4711 
4712 	s->flags &= ~SLAB_STORE_USER;
4713 	if (buf[0] == '1') {
4714 		s->flags &= ~__CMPXCHG_DOUBLE;
4715 		s->flags |= SLAB_STORE_USER;
4716 	}
4717 	calculate_sizes(s, -1);
4718 	return length;
4719 }
4720 SLAB_ATTR(store_user);
4721 
4722 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4723 {
4724 	return 0;
4725 }
4726 
4727 static ssize_t validate_store(struct kmem_cache *s,
4728 			const char *buf, size_t length)
4729 {
4730 	int ret = -EINVAL;
4731 
4732 	if (buf[0] == '1') {
4733 		ret = validate_slab_cache(s);
4734 		if (ret >= 0)
4735 			ret = length;
4736 	}
4737 	return ret;
4738 }
4739 SLAB_ATTR(validate);
4740 
4741 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4742 {
4743 	if (!(s->flags & SLAB_STORE_USER))
4744 		return -ENOSYS;
4745 	return list_locations(s, buf, TRACK_ALLOC);
4746 }
4747 SLAB_ATTR_RO(alloc_calls);
4748 
4749 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4750 {
4751 	if (!(s->flags & SLAB_STORE_USER))
4752 		return -ENOSYS;
4753 	return list_locations(s, buf, TRACK_FREE);
4754 }
4755 SLAB_ATTR_RO(free_calls);
4756 #endif /* CONFIG_SLUB_DEBUG */
4757 
4758 #ifdef CONFIG_FAILSLAB
4759 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4760 {
4761 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4762 }
4763 
4764 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4765 							size_t length)
4766 {
4767 	s->flags &= ~SLAB_FAILSLAB;
4768 	if (buf[0] == '1')
4769 		s->flags |= SLAB_FAILSLAB;
4770 	return length;
4771 }
4772 SLAB_ATTR(failslab);
4773 #endif
4774 
4775 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4776 {
4777 	return 0;
4778 }
4779 
4780 static ssize_t shrink_store(struct kmem_cache *s,
4781 			const char *buf, size_t length)
4782 {
4783 	if (buf[0] == '1') {
4784 		int rc = kmem_cache_shrink(s);
4785 
4786 		if (rc)
4787 			return rc;
4788 	} else
4789 		return -EINVAL;
4790 	return length;
4791 }
4792 SLAB_ATTR(shrink);
4793 
4794 #ifdef CONFIG_NUMA
4795 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4796 {
4797 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4798 }
4799 
4800 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4801 				const char *buf, size_t length)
4802 {
4803 	unsigned long ratio;
4804 	int err;
4805 
4806 	err = kstrtoul(buf, 10, &ratio);
4807 	if (err)
4808 		return err;
4809 
4810 	if (ratio <= 100)
4811 		s->remote_node_defrag_ratio = ratio * 10;
4812 
4813 	return length;
4814 }
4815 SLAB_ATTR(remote_node_defrag_ratio);
4816 #endif
4817 
4818 #ifdef CONFIG_SLUB_STATS
4819 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4820 {
4821 	unsigned long sum  = 0;
4822 	int cpu;
4823 	int len;
4824 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4825 
4826 	if (!data)
4827 		return -ENOMEM;
4828 
4829 	for_each_online_cpu(cpu) {
4830 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4831 
4832 		data[cpu] = x;
4833 		sum += x;
4834 	}
4835 
4836 	len = sprintf(buf, "%lu", sum);
4837 
4838 #ifdef CONFIG_SMP
4839 	for_each_online_cpu(cpu) {
4840 		if (data[cpu] && len < PAGE_SIZE - 20)
4841 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4842 	}
4843 #endif
4844 	kfree(data);
4845 	return len + sprintf(buf + len, "\n");
4846 }
4847 
4848 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4849 {
4850 	int cpu;
4851 
4852 	for_each_online_cpu(cpu)
4853 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4854 }
4855 
4856 #define STAT_ATTR(si, text) 					\
4857 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
4858 {								\
4859 	return show_stat(s, buf, si);				\
4860 }								\
4861 static ssize_t text##_store(struct kmem_cache *s,		\
4862 				const char *buf, size_t length)	\
4863 {								\
4864 	if (buf[0] != '0')					\
4865 		return -EINVAL;					\
4866 	clear_stat(s, si);					\
4867 	return length;						\
4868 }								\
4869 SLAB_ATTR(text);						\
4870 
4871 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4872 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4873 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4874 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4875 STAT_ATTR(FREE_FROZEN, free_frozen);
4876 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4877 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4878 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4879 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4880 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4881 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4882 STAT_ATTR(FREE_SLAB, free_slab);
4883 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4884 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4885 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4886 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4887 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4888 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4889 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4890 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4891 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4892 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4893 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4894 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4895 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4896 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4897 #endif
4898 
4899 static struct attribute *slab_attrs[] = {
4900 	&slab_size_attr.attr,
4901 	&object_size_attr.attr,
4902 	&objs_per_slab_attr.attr,
4903 	&order_attr.attr,
4904 	&min_partial_attr.attr,
4905 	&cpu_partial_attr.attr,
4906 	&objects_attr.attr,
4907 	&objects_partial_attr.attr,
4908 	&partial_attr.attr,
4909 	&cpu_slabs_attr.attr,
4910 	&ctor_attr.attr,
4911 	&aliases_attr.attr,
4912 	&align_attr.attr,
4913 	&hwcache_align_attr.attr,
4914 	&reclaim_account_attr.attr,
4915 	&destroy_by_rcu_attr.attr,
4916 	&shrink_attr.attr,
4917 	&reserved_attr.attr,
4918 	&slabs_cpu_partial_attr.attr,
4919 #ifdef CONFIG_SLUB_DEBUG
4920 	&total_objects_attr.attr,
4921 	&slabs_attr.attr,
4922 	&sanity_checks_attr.attr,
4923 	&trace_attr.attr,
4924 	&red_zone_attr.attr,
4925 	&poison_attr.attr,
4926 	&store_user_attr.attr,
4927 	&validate_attr.attr,
4928 	&alloc_calls_attr.attr,
4929 	&free_calls_attr.attr,
4930 #endif
4931 #ifdef CONFIG_ZONE_DMA
4932 	&cache_dma_attr.attr,
4933 #endif
4934 #ifdef CONFIG_NUMA
4935 	&remote_node_defrag_ratio_attr.attr,
4936 #endif
4937 #ifdef CONFIG_SLUB_STATS
4938 	&alloc_fastpath_attr.attr,
4939 	&alloc_slowpath_attr.attr,
4940 	&free_fastpath_attr.attr,
4941 	&free_slowpath_attr.attr,
4942 	&free_frozen_attr.attr,
4943 	&free_add_partial_attr.attr,
4944 	&free_remove_partial_attr.attr,
4945 	&alloc_from_partial_attr.attr,
4946 	&alloc_slab_attr.attr,
4947 	&alloc_refill_attr.attr,
4948 	&alloc_node_mismatch_attr.attr,
4949 	&free_slab_attr.attr,
4950 	&cpuslab_flush_attr.attr,
4951 	&deactivate_full_attr.attr,
4952 	&deactivate_empty_attr.attr,
4953 	&deactivate_to_head_attr.attr,
4954 	&deactivate_to_tail_attr.attr,
4955 	&deactivate_remote_frees_attr.attr,
4956 	&deactivate_bypass_attr.attr,
4957 	&order_fallback_attr.attr,
4958 	&cmpxchg_double_fail_attr.attr,
4959 	&cmpxchg_double_cpu_fail_attr.attr,
4960 	&cpu_partial_alloc_attr.attr,
4961 	&cpu_partial_free_attr.attr,
4962 	&cpu_partial_node_attr.attr,
4963 	&cpu_partial_drain_attr.attr,
4964 #endif
4965 #ifdef CONFIG_FAILSLAB
4966 	&failslab_attr.attr,
4967 #endif
4968 
4969 	NULL
4970 };
4971 
4972 static struct attribute_group slab_attr_group = {
4973 	.attrs = slab_attrs,
4974 };
4975 
4976 static ssize_t slab_attr_show(struct kobject *kobj,
4977 				struct attribute *attr,
4978 				char *buf)
4979 {
4980 	struct slab_attribute *attribute;
4981 	struct kmem_cache *s;
4982 	int err;
4983 
4984 	attribute = to_slab_attr(attr);
4985 	s = to_slab(kobj);
4986 
4987 	if (!attribute->show)
4988 		return -EIO;
4989 
4990 	err = attribute->show(s, buf);
4991 
4992 	return err;
4993 }
4994 
4995 static ssize_t slab_attr_store(struct kobject *kobj,
4996 				struct attribute *attr,
4997 				const char *buf, size_t len)
4998 {
4999 	struct slab_attribute *attribute;
5000 	struct kmem_cache *s;
5001 	int err;
5002 
5003 	attribute = to_slab_attr(attr);
5004 	s = to_slab(kobj);
5005 
5006 	if (!attribute->store)
5007 		return -EIO;
5008 
5009 	err = attribute->store(s, buf, len);
5010 #ifdef CONFIG_MEMCG_KMEM
5011 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5012 		int i;
5013 
5014 		mutex_lock(&slab_mutex);
5015 		if (s->max_attr_size < len)
5016 			s->max_attr_size = len;
5017 
5018 		/*
5019 		 * This is a best effort propagation, so this function's return
5020 		 * value will be determined by the parent cache only. This is
5021 		 * basically because not all attributes will have a well
5022 		 * defined semantics for rollbacks - most of the actions will
5023 		 * have permanent effects.
5024 		 *
5025 		 * Returning the error value of any of the children that fail
5026 		 * is not 100 % defined, in the sense that users seeing the
5027 		 * error code won't be able to know anything about the state of
5028 		 * the cache.
5029 		 *
5030 		 * Only returning the error code for the parent cache at least
5031 		 * has well defined semantics. The cache being written to
5032 		 * directly either failed or succeeded, in which case we loop
5033 		 * through the descendants with best-effort propagation.
5034 		 */
5035 		for_each_memcg_cache_index(i) {
5036 			struct kmem_cache *c = cache_from_memcg_idx(s, i);
5037 			if (c)
5038 				attribute->store(c, buf, len);
5039 		}
5040 		mutex_unlock(&slab_mutex);
5041 	}
5042 #endif
5043 	return err;
5044 }
5045 
5046 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5047 {
5048 #ifdef CONFIG_MEMCG_KMEM
5049 	int i;
5050 	char *buffer = NULL;
5051 	struct kmem_cache *root_cache;
5052 
5053 	if (is_root_cache(s))
5054 		return;
5055 
5056 	root_cache = s->memcg_params->root_cache;
5057 
5058 	/*
5059 	 * This mean this cache had no attribute written. Therefore, no point
5060 	 * in copying default values around
5061 	 */
5062 	if (!root_cache->max_attr_size)
5063 		return;
5064 
5065 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5066 		char mbuf[64];
5067 		char *buf;
5068 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5069 
5070 		if (!attr || !attr->store || !attr->show)
5071 			continue;
5072 
5073 		/*
5074 		 * It is really bad that we have to allocate here, so we will
5075 		 * do it only as a fallback. If we actually allocate, though,
5076 		 * we can just use the allocated buffer until the end.
5077 		 *
5078 		 * Most of the slub attributes will tend to be very small in
5079 		 * size, but sysfs allows buffers up to a page, so they can
5080 		 * theoretically happen.
5081 		 */
5082 		if (buffer)
5083 			buf = buffer;
5084 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5085 			buf = mbuf;
5086 		else {
5087 			buffer = (char *) get_zeroed_page(GFP_KERNEL);
5088 			if (WARN_ON(!buffer))
5089 				continue;
5090 			buf = buffer;
5091 		}
5092 
5093 		attr->show(root_cache, buf);
5094 		attr->store(s, buf, strlen(buf));
5095 	}
5096 
5097 	if (buffer)
5098 		free_page((unsigned long)buffer);
5099 #endif
5100 }
5101 
5102 static void kmem_cache_release(struct kobject *k)
5103 {
5104 	slab_kmem_cache_release(to_slab(k));
5105 }
5106 
5107 static const struct sysfs_ops slab_sysfs_ops = {
5108 	.show = slab_attr_show,
5109 	.store = slab_attr_store,
5110 };
5111 
5112 static struct kobj_type slab_ktype = {
5113 	.sysfs_ops = &slab_sysfs_ops,
5114 	.release = kmem_cache_release,
5115 };
5116 
5117 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5118 {
5119 	struct kobj_type *ktype = get_ktype(kobj);
5120 
5121 	if (ktype == &slab_ktype)
5122 		return 1;
5123 	return 0;
5124 }
5125 
5126 static const struct kset_uevent_ops slab_uevent_ops = {
5127 	.filter = uevent_filter,
5128 };
5129 
5130 static struct kset *slab_kset;
5131 
5132 static inline struct kset *cache_kset(struct kmem_cache *s)
5133 {
5134 #ifdef CONFIG_MEMCG_KMEM
5135 	if (!is_root_cache(s))
5136 		return s->memcg_params->root_cache->memcg_kset;
5137 #endif
5138 	return slab_kset;
5139 }
5140 
5141 #define ID_STR_LENGTH 64
5142 
5143 /* Create a unique string id for a slab cache:
5144  *
5145  * Format	:[flags-]size
5146  */
5147 static char *create_unique_id(struct kmem_cache *s)
5148 {
5149 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5150 	char *p = name;
5151 
5152 	BUG_ON(!name);
5153 
5154 	*p++ = ':';
5155 	/*
5156 	 * First flags affecting slabcache operations. We will only
5157 	 * get here for aliasable slabs so we do not need to support
5158 	 * too many flags. The flags here must cover all flags that
5159 	 * are matched during merging to guarantee that the id is
5160 	 * unique.
5161 	 */
5162 	if (s->flags & SLAB_CACHE_DMA)
5163 		*p++ = 'd';
5164 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5165 		*p++ = 'a';
5166 	if (s->flags & SLAB_DEBUG_FREE)
5167 		*p++ = 'F';
5168 	if (!(s->flags & SLAB_NOTRACK))
5169 		*p++ = 't';
5170 	if (p != name + 1)
5171 		*p++ = '-';
5172 	p += sprintf(p, "%07d", s->size);
5173 
5174 #ifdef CONFIG_MEMCG_KMEM
5175 	if (!is_root_cache(s))
5176 		p += sprintf(p, "-%08d",
5177 				memcg_cache_id(s->memcg_params->memcg));
5178 #endif
5179 
5180 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5181 	return name;
5182 }
5183 
5184 static int sysfs_slab_add(struct kmem_cache *s)
5185 {
5186 	int err;
5187 	const char *name;
5188 	int unmergeable = slab_unmergeable(s);
5189 
5190 	if (unmergeable) {
5191 		/*
5192 		 * Slabcache can never be merged so we can use the name proper.
5193 		 * This is typically the case for debug situations. In that
5194 		 * case we can catch duplicate names easily.
5195 		 */
5196 		sysfs_remove_link(&slab_kset->kobj, s->name);
5197 		name = s->name;
5198 	} else {
5199 		/*
5200 		 * Create a unique name for the slab as a target
5201 		 * for the symlinks.
5202 		 */
5203 		name = create_unique_id(s);
5204 	}
5205 
5206 	s->kobj.kset = cache_kset(s);
5207 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5208 	if (err)
5209 		goto out_put_kobj;
5210 
5211 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5212 	if (err)
5213 		goto out_del_kobj;
5214 
5215 #ifdef CONFIG_MEMCG_KMEM
5216 	if (is_root_cache(s)) {
5217 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5218 		if (!s->memcg_kset) {
5219 			err = -ENOMEM;
5220 			goto out_del_kobj;
5221 		}
5222 	}
5223 #endif
5224 
5225 	kobject_uevent(&s->kobj, KOBJ_ADD);
5226 	if (!unmergeable) {
5227 		/* Setup first alias */
5228 		sysfs_slab_alias(s, s->name);
5229 	}
5230 out:
5231 	if (!unmergeable)
5232 		kfree(name);
5233 	return err;
5234 out_del_kobj:
5235 	kobject_del(&s->kobj);
5236 out_put_kobj:
5237 	kobject_put(&s->kobj);
5238 	goto out;
5239 }
5240 
5241 void sysfs_slab_remove(struct kmem_cache *s)
5242 {
5243 	if (slab_state < FULL)
5244 		/*
5245 		 * Sysfs has not been setup yet so no need to remove the
5246 		 * cache from sysfs.
5247 		 */
5248 		return;
5249 
5250 #ifdef CONFIG_MEMCG_KMEM
5251 	kset_unregister(s->memcg_kset);
5252 #endif
5253 	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5254 	kobject_del(&s->kobj);
5255 	kobject_put(&s->kobj);
5256 }
5257 
5258 /*
5259  * Need to buffer aliases during bootup until sysfs becomes
5260  * available lest we lose that information.
5261  */
5262 struct saved_alias {
5263 	struct kmem_cache *s;
5264 	const char *name;
5265 	struct saved_alias *next;
5266 };
5267 
5268 static struct saved_alias *alias_list;
5269 
5270 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5271 {
5272 	struct saved_alias *al;
5273 
5274 	if (slab_state == FULL) {
5275 		/*
5276 		 * If we have a leftover link then remove it.
5277 		 */
5278 		sysfs_remove_link(&slab_kset->kobj, name);
5279 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5280 	}
5281 
5282 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5283 	if (!al)
5284 		return -ENOMEM;
5285 
5286 	al->s = s;
5287 	al->name = name;
5288 	al->next = alias_list;
5289 	alias_list = al;
5290 	return 0;
5291 }
5292 
5293 static int __init slab_sysfs_init(void)
5294 {
5295 	struct kmem_cache *s;
5296 	int err;
5297 
5298 	mutex_lock(&slab_mutex);
5299 
5300 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5301 	if (!slab_kset) {
5302 		mutex_unlock(&slab_mutex);
5303 		pr_err("Cannot register slab subsystem.\n");
5304 		return -ENOSYS;
5305 	}
5306 
5307 	slab_state = FULL;
5308 
5309 	list_for_each_entry(s, &slab_caches, list) {
5310 		err = sysfs_slab_add(s);
5311 		if (err)
5312 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5313 			       s->name);
5314 	}
5315 
5316 	while (alias_list) {
5317 		struct saved_alias *al = alias_list;
5318 
5319 		alias_list = alias_list->next;
5320 		err = sysfs_slab_alias(al->s, al->name);
5321 		if (err)
5322 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5323 			       al->name);
5324 		kfree(al);
5325 	}
5326 
5327 	mutex_unlock(&slab_mutex);
5328 	resiliency_test();
5329 	return 0;
5330 }
5331 
5332 __initcall(slab_sysfs_init);
5333 #endif /* CONFIG_SYSFS */
5334 
5335 /*
5336  * The /proc/slabinfo ABI
5337  */
5338 #ifdef CONFIG_SLABINFO
5339 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5340 {
5341 	unsigned long nr_slabs = 0;
5342 	unsigned long nr_objs = 0;
5343 	unsigned long nr_free = 0;
5344 	int node;
5345 
5346 	for_each_online_node(node) {
5347 		struct kmem_cache_node *n = get_node(s, node);
5348 
5349 		if (!n)
5350 			continue;
5351 
5352 		nr_slabs += node_nr_slabs(n);
5353 		nr_objs += node_nr_objs(n);
5354 		nr_free += count_partial(n, count_free);
5355 	}
5356 
5357 	sinfo->active_objs = nr_objs - nr_free;
5358 	sinfo->num_objs = nr_objs;
5359 	sinfo->active_slabs = nr_slabs;
5360 	sinfo->num_slabs = nr_slabs;
5361 	sinfo->objects_per_slab = oo_objects(s->oo);
5362 	sinfo->cache_order = oo_order(s->oo);
5363 }
5364 
5365 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5366 {
5367 }
5368 
5369 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5370 		       size_t count, loff_t *ppos)
5371 {
5372 	return -EIO;
5373 }
5374 #endif /* CONFIG_SLABINFO */
5375