1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kmemcheck.h> 24 #include <linux/cpu.h> 25 #include <linux/cpuset.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ctype.h> 28 #include <linux/debugobjects.h> 29 #include <linux/kallsyms.h> 30 #include <linux/memory.h> 31 #include <linux/math64.h> 32 #include <linux/fault-inject.h> 33 #include <linux/stacktrace.h> 34 #include <linux/prefetch.h> 35 #include <linux/memcontrol.h> 36 37 #include <trace/events/kmem.h> 38 39 #include "internal.h" 40 41 /* 42 * Lock order: 43 * 1. slab_mutex (Global Mutex) 44 * 2. node->list_lock 45 * 3. slab_lock(page) (Only on some arches and for debugging) 46 * 47 * slab_mutex 48 * 49 * The role of the slab_mutex is to protect the list of all the slabs 50 * and to synchronize major metadata changes to slab cache structures. 51 * 52 * The slab_lock is only used for debugging and on arches that do not 53 * have the ability to do a cmpxchg_double. It only protects the second 54 * double word in the page struct. Meaning 55 * A. page->freelist -> List of object free in a page 56 * B. page->counters -> Counters of objects 57 * C. page->frozen -> frozen state 58 * 59 * If a slab is frozen then it is exempt from list management. It is not 60 * on any list. The processor that froze the slab is the one who can 61 * perform list operations on the page. Other processors may put objects 62 * onto the freelist but the processor that froze the slab is the only 63 * one that can retrieve the objects from the page's freelist. 64 * 65 * The list_lock protects the partial and full list on each node and 66 * the partial slab counter. If taken then no new slabs may be added or 67 * removed from the lists nor make the number of partial slabs be modified. 68 * (Note that the total number of slabs is an atomic value that may be 69 * modified without taking the list lock). 70 * 71 * The list_lock is a centralized lock and thus we avoid taking it as 72 * much as possible. As long as SLUB does not have to handle partial 73 * slabs, operations can continue without any centralized lock. F.e. 74 * allocating a long series of objects that fill up slabs does not require 75 * the list lock. 76 * Interrupts are disabled during allocation and deallocation in order to 77 * make the slab allocator safe to use in the context of an irq. In addition 78 * interrupts are disabled to ensure that the processor does not change 79 * while handling per_cpu slabs, due to kernel preemption. 80 * 81 * SLUB assigns one slab for allocation to each processor. 82 * Allocations only occur from these slabs called cpu slabs. 83 * 84 * Slabs with free elements are kept on a partial list and during regular 85 * operations no list for full slabs is used. If an object in a full slab is 86 * freed then the slab will show up again on the partial lists. 87 * We track full slabs for debugging purposes though because otherwise we 88 * cannot scan all objects. 89 * 90 * Slabs are freed when they become empty. Teardown and setup is 91 * minimal so we rely on the page allocators per cpu caches for 92 * fast frees and allocs. 93 * 94 * Overloading of page flags that are otherwise used for LRU management. 95 * 96 * PageActive The slab is frozen and exempt from list processing. 97 * This means that the slab is dedicated to a purpose 98 * such as satisfying allocations for a specific 99 * processor. Objects may be freed in the slab while 100 * it is frozen but slab_free will then skip the usual 101 * list operations. It is up to the processor holding 102 * the slab to integrate the slab into the slab lists 103 * when the slab is no longer needed. 104 * 105 * One use of this flag is to mark slabs that are 106 * used for allocations. Then such a slab becomes a cpu 107 * slab. The cpu slab may be equipped with an additional 108 * freelist that allows lockless access to 109 * free objects in addition to the regular freelist 110 * that requires the slab lock. 111 * 112 * PageError Slab requires special handling due to debug 113 * options set. This moves slab handling out of 114 * the fast path and disables lockless freelists. 115 */ 116 117 static inline int kmem_cache_debug(struct kmem_cache *s) 118 { 119 #ifdef CONFIG_SLUB_DEBUG 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 121 #else 122 return 0; 123 #endif 124 } 125 126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 127 { 128 #ifdef CONFIG_SLUB_CPU_PARTIAL 129 return !kmem_cache_debug(s); 130 #else 131 return false; 132 #endif 133 } 134 135 /* 136 * Issues still to be resolved: 137 * 138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 139 * 140 * - Variable sizing of the per node arrays 141 */ 142 143 /* Enable to test recovery from slab corruption on boot */ 144 #undef SLUB_RESILIENCY_TEST 145 146 /* Enable to log cmpxchg failures */ 147 #undef SLUB_DEBUG_CMPXCHG 148 149 /* 150 * Mininum number of partial slabs. These will be left on the partial 151 * lists even if they are empty. kmem_cache_shrink may reclaim them. 152 */ 153 #define MIN_PARTIAL 5 154 155 /* 156 * Maximum number of desirable partial slabs. 157 * The existence of more partial slabs makes kmem_cache_shrink 158 * sort the partial list by the number of objects in use. 159 */ 160 #define MAX_PARTIAL 10 161 162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ 163 SLAB_POISON | SLAB_STORE_USER) 164 165 /* 166 * Debugging flags that require metadata to be stored in the slab. These get 167 * disabled when slub_debug=O is used and a cache's min order increases with 168 * metadata. 169 */ 170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 171 172 /* 173 * Set of flags that will prevent slab merging 174 */ 175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \ 177 SLAB_FAILSLAB) 178 179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ 180 SLAB_CACHE_DMA | SLAB_NOTRACK) 181 182 #define OO_SHIFT 16 183 #define OO_MASK ((1 << OO_SHIFT) - 1) 184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 185 186 /* Internal SLUB flags */ 187 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 189 190 #ifdef CONFIG_SMP 191 static struct notifier_block slab_notifier; 192 #endif 193 194 /* 195 * Tracking user of a slab. 196 */ 197 #define TRACK_ADDRS_COUNT 16 198 struct track { 199 unsigned long addr; /* Called from address */ 200 #ifdef CONFIG_STACKTRACE 201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 202 #endif 203 int cpu; /* Was running on cpu */ 204 int pid; /* Pid context */ 205 unsigned long when; /* When did the operation occur */ 206 }; 207 208 enum track_item { TRACK_ALLOC, TRACK_FREE }; 209 210 #ifdef CONFIG_SYSFS 211 static int sysfs_slab_add(struct kmem_cache *); 212 static int sysfs_slab_alias(struct kmem_cache *, const char *); 213 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 214 #else 215 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 216 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 217 { return 0; } 218 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 219 #endif 220 221 static inline void stat(const struct kmem_cache *s, enum stat_item si) 222 { 223 #ifdef CONFIG_SLUB_STATS 224 /* 225 * The rmw is racy on a preemptible kernel but this is acceptable, so 226 * avoid this_cpu_add()'s irq-disable overhead. 227 */ 228 raw_cpu_inc(s->cpu_slab->stat[si]); 229 #endif 230 } 231 232 /******************************************************************** 233 * Core slab cache functions 234 *******************************************************************/ 235 236 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) 237 { 238 return s->node[node]; 239 } 240 241 /* Verify that a pointer has an address that is valid within a slab page */ 242 static inline int check_valid_pointer(struct kmem_cache *s, 243 struct page *page, const void *object) 244 { 245 void *base; 246 247 if (!object) 248 return 1; 249 250 base = page_address(page); 251 if (object < base || object >= base + page->objects * s->size || 252 (object - base) % s->size) { 253 return 0; 254 } 255 256 return 1; 257 } 258 259 static inline void *get_freepointer(struct kmem_cache *s, void *object) 260 { 261 return *(void **)(object + s->offset); 262 } 263 264 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 265 { 266 prefetch(object + s->offset); 267 } 268 269 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 270 { 271 void *p; 272 273 #ifdef CONFIG_DEBUG_PAGEALLOC 274 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 275 #else 276 p = get_freepointer(s, object); 277 #endif 278 return p; 279 } 280 281 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 282 { 283 *(void **)(object + s->offset) = fp; 284 } 285 286 /* Loop over all objects in a slab */ 287 #define for_each_object(__p, __s, __addr, __objects) \ 288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ 289 __p += (__s)->size) 290 291 /* Determine object index from a given position */ 292 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 293 { 294 return (p - addr) / s->size; 295 } 296 297 static inline size_t slab_ksize(const struct kmem_cache *s) 298 { 299 #ifdef CONFIG_SLUB_DEBUG 300 /* 301 * Debugging requires use of the padding between object 302 * and whatever may come after it. 303 */ 304 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) 305 return s->object_size; 306 307 #endif 308 /* 309 * If we have the need to store the freelist pointer 310 * back there or track user information then we can 311 * only use the space before that information. 312 */ 313 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) 314 return s->inuse; 315 /* 316 * Else we can use all the padding etc for the allocation 317 */ 318 return s->size; 319 } 320 321 static inline int order_objects(int order, unsigned long size, int reserved) 322 { 323 return ((PAGE_SIZE << order) - reserved) / size; 324 } 325 326 static inline struct kmem_cache_order_objects oo_make(int order, 327 unsigned long size, int reserved) 328 { 329 struct kmem_cache_order_objects x = { 330 (order << OO_SHIFT) + order_objects(order, size, reserved) 331 }; 332 333 return x; 334 } 335 336 static inline int oo_order(struct kmem_cache_order_objects x) 337 { 338 return x.x >> OO_SHIFT; 339 } 340 341 static inline int oo_objects(struct kmem_cache_order_objects x) 342 { 343 return x.x & OO_MASK; 344 } 345 346 /* 347 * Per slab locking using the pagelock 348 */ 349 static __always_inline void slab_lock(struct page *page) 350 { 351 bit_spin_lock(PG_locked, &page->flags); 352 } 353 354 static __always_inline void slab_unlock(struct page *page) 355 { 356 __bit_spin_unlock(PG_locked, &page->flags); 357 } 358 359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 360 { 361 struct page tmp; 362 tmp.counters = counters_new; 363 /* 364 * page->counters can cover frozen/inuse/objects as well 365 * as page->_count. If we assign to ->counters directly 366 * we run the risk of losing updates to page->_count, so 367 * be careful and only assign to the fields we need. 368 */ 369 page->frozen = tmp.frozen; 370 page->inuse = tmp.inuse; 371 page->objects = tmp.objects; 372 } 373 374 /* Interrupts must be disabled (for the fallback code to work right) */ 375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 376 void *freelist_old, unsigned long counters_old, 377 void *freelist_new, unsigned long counters_new, 378 const char *n) 379 { 380 VM_BUG_ON(!irqs_disabled()); 381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 383 if (s->flags & __CMPXCHG_DOUBLE) { 384 if (cmpxchg_double(&page->freelist, &page->counters, 385 freelist_old, counters_old, 386 freelist_new, counters_new)) 387 return 1; 388 } else 389 #endif 390 { 391 slab_lock(page); 392 if (page->freelist == freelist_old && 393 page->counters == counters_old) { 394 page->freelist = freelist_new; 395 set_page_slub_counters(page, counters_new); 396 slab_unlock(page); 397 return 1; 398 } 399 slab_unlock(page); 400 } 401 402 cpu_relax(); 403 stat(s, CMPXCHG_DOUBLE_FAIL); 404 405 #ifdef SLUB_DEBUG_CMPXCHG 406 pr_info("%s %s: cmpxchg double redo ", n, s->name); 407 #endif 408 409 return 0; 410 } 411 412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 413 void *freelist_old, unsigned long counters_old, 414 void *freelist_new, unsigned long counters_new, 415 const char *n) 416 { 417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 419 if (s->flags & __CMPXCHG_DOUBLE) { 420 if (cmpxchg_double(&page->freelist, &page->counters, 421 freelist_old, counters_old, 422 freelist_new, counters_new)) 423 return 1; 424 } else 425 #endif 426 { 427 unsigned long flags; 428 429 local_irq_save(flags); 430 slab_lock(page); 431 if (page->freelist == freelist_old && 432 page->counters == counters_old) { 433 page->freelist = freelist_new; 434 set_page_slub_counters(page, counters_new); 435 slab_unlock(page); 436 local_irq_restore(flags); 437 return 1; 438 } 439 slab_unlock(page); 440 local_irq_restore(flags); 441 } 442 443 cpu_relax(); 444 stat(s, CMPXCHG_DOUBLE_FAIL); 445 446 #ifdef SLUB_DEBUG_CMPXCHG 447 pr_info("%s %s: cmpxchg double redo ", n, s->name); 448 #endif 449 450 return 0; 451 } 452 453 #ifdef CONFIG_SLUB_DEBUG 454 /* 455 * Determine a map of object in use on a page. 456 * 457 * Node listlock must be held to guarantee that the page does 458 * not vanish from under us. 459 */ 460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 461 { 462 void *p; 463 void *addr = page_address(page); 464 465 for (p = page->freelist; p; p = get_freepointer(s, p)) 466 set_bit(slab_index(p, s, addr), map); 467 } 468 469 /* 470 * Debug settings: 471 */ 472 #ifdef CONFIG_SLUB_DEBUG_ON 473 static int slub_debug = DEBUG_DEFAULT_FLAGS; 474 #else 475 static int slub_debug; 476 #endif 477 478 static char *slub_debug_slabs; 479 static int disable_higher_order_debug; 480 481 /* 482 * Object debugging 483 */ 484 static void print_section(char *text, u8 *addr, unsigned int length) 485 { 486 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 487 length, 1); 488 } 489 490 static struct track *get_track(struct kmem_cache *s, void *object, 491 enum track_item alloc) 492 { 493 struct track *p; 494 495 if (s->offset) 496 p = object + s->offset + sizeof(void *); 497 else 498 p = object + s->inuse; 499 500 return p + alloc; 501 } 502 503 static void set_track(struct kmem_cache *s, void *object, 504 enum track_item alloc, unsigned long addr) 505 { 506 struct track *p = get_track(s, object, alloc); 507 508 if (addr) { 509 #ifdef CONFIG_STACKTRACE 510 struct stack_trace trace; 511 int i; 512 513 trace.nr_entries = 0; 514 trace.max_entries = TRACK_ADDRS_COUNT; 515 trace.entries = p->addrs; 516 trace.skip = 3; 517 save_stack_trace(&trace); 518 519 /* See rant in lockdep.c */ 520 if (trace.nr_entries != 0 && 521 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 522 trace.nr_entries--; 523 524 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 525 p->addrs[i] = 0; 526 #endif 527 p->addr = addr; 528 p->cpu = smp_processor_id(); 529 p->pid = current->pid; 530 p->when = jiffies; 531 } else 532 memset(p, 0, sizeof(struct track)); 533 } 534 535 static void init_tracking(struct kmem_cache *s, void *object) 536 { 537 if (!(s->flags & SLAB_STORE_USER)) 538 return; 539 540 set_track(s, object, TRACK_FREE, 0UL); 541 set_track(s, object, TRACK_ALLOC, 0UL); 542 } 543 544 static void print_track(const char *s, struct track *t) 545 { 546 if (!t->addr) 547 return; 548 549 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 550 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 551 #ifdef CONFIG_STACKTRACE 552 { 553 int i; 554 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 555 if (t->addrs[i]) 556 pr_err("\t%pS\n", (void *)t->addrs[i]); 557 else 558 break; 559 } 560 #endif 561 } 562 563 static void print_tracking(struct kmem_cache *s, void *object) 564 { 565 if (!(s->flags & SLAB_STORE_USER)) 566 return; 567 568 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 569 print_track("Freed", get_track(s, object, TRACK_FREE)); 570 } 571 572 static void print_page_info(struct page *page) 573 { 574 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 575 page, page->objects, page->inuse, page->freelist, page->flags); 576 577 } 578 579 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 580 { 581 struct va_format vaf; 582 va_list args; 583 584 va_start(args, fmt); 585 vaf.fmt = fmt; 586 vaf.va = &args; 587 pr_err("=============================================================================\n"); 588 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 589 pr_err("-----------------------------------------------------------------------------\n\n"); 590 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 592 va_end(args); 593 } 594 595 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 596 { 597 struct va_format vaf; 598 va_list args; 599 600 va_start(args, fmt); 601 vaf.fmt = fmt; 602 vaf.va = &args; 603 pr_err("FIX %s: %pV\n", s->name, &vaf); 604 va_end(args); 605 } 606 607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 608 { 609 unsigned int off; /* Offset of last byte */ 610 u8 *addr = page_address(page); 611 612 print_tracking(s, p); 613 614 print_page_info(page); 615 616 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 617 p, p - addr, get_freepointer(s, p)); 618 619 if (p > addr + 16) 620 print_section("Bytes b4 ", p - 16, 16); 621 622 print_section("Object ", p, min_t(unsigned long, s->object_size, 623 PAGE_SIZE)); 624 if (s->flags & SLAB_RED_ZONE) 625 print_section("Redzone ", p + s->object_size, 626 s->inuse - s->object_size); 627 628 if (s->offset) 629 off = s->offset + sizeof(void *); 630 else 631 off = s->inuse; 632 633 if (s->flags & SLAB_STORE_USER) 634 off += 2 * sizeof(struct track); 635 636 if (off != s->size) 637 /* Beginning of the filler is the free pointer */ 638 print_section("Padding ", p + off, s->size - off); 639 640 dump_stack(); 641 } 642 643 static void object_err(struct kmem_cache *s, struct page *page, 644 u8 *object, char *reason) 645 { 646 slab_bug(s, "%s", reason); 647 print_trailer(s, page, object); 648 } 649 650 static void slab_err(struct kmem_cache *s, struct page *page, 651 const char *fmt, ...) 652 { 653 va_list args; 654 char buf[100]; 655 656 va_start(args, fmt); 657 vsnprintf(buf, sizeof(buf), fmt, args); 658 va_end(args); 659 slab_bug(s, "%s", buf); 660 print_page_info(page); 661 dump_stack(); 662 } 663 664 static void init_object(struct kmem_cache *s, void *object, u8 val) 665 { 666 u8 *p = object; 667 668 if (s->flags & __OBJECT_POISON) { 669 memset(p, POISON_FREE, s->object_size - 1); 670 p[s->object_size - 1] = POISON_END; 671 } 672 673 if (s->flags & SLAB_RED_ZONE) 674 memset(p + s->object_size, val, s->inuse - s->object_size); 675 } 676 677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 678 void *from, void *to) 679 { 680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 681 memset(from, data, to - from); 682 } 683 684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 685 u8 *object, char *what, 686 u8 *start, unsigned int value, unsigned int bytes) 687 { 688 u8 *fault; 689 u8 *end; 690 691 fault = memchr_inv(start, value, bytes); 692 if (!fault) 693 return 1; 694 695 end = start + bytes; 696 while (end > fault && end[-1] == value) 697 end--; 698 699 slab_bug(s, "%s overwritten", what); 700 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 701 fault, end - 1, fault[0], value); 702 print_trailer(s, page, object); 703 704 restore_bytes(s, what, value, fault, end); 705 return 0; 706 } 707 708 /* 709 * Object layout: 710 * 711 * object address 712 * Bytes of the object to be managed. 713 * If the freepointer may overlay the object then the free 714 * pointer is the first word of the object. 715 * 716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 717 * 0xa5 (POISON_END) 718 * 719 * object + s->object_size 720 * Padding to reach word boundary. This is also used for Redzoning. 721 * Padding is extended by another word if Redzoning is enabled and 722 * object_size == inuse. 723 * 724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 725 * 0xcc (RED_ACTIVE) for objects in use. 726 * 727 * object + s->inuse 728 * Meta data starts here. 729 * 730 * A. Free pointer (if we cannot overwrite object on free) 731 * B. Tracking data for SLAB_STORE_USER 732 * C. Padding to reach required alignment boundary or at mininum 733 * one word if debugging is on to be able to detect writes 734 * before the word boundary. 735 * 736 * Padding is done using 0x5a (POISON_INUSE) 737 * 738 * object + s->size 739 * Nothing is used beyond s->size. 740 * 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly 742 * ignored. And therefore no slab options that rely on these boundaries 743 * may be used with merged slabcaches. 744 */ 745 746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 747 { 748 unsigned long off = s->inuse; /* The end of info */ 749 750 if (s->offset) 751 /* Freepointer is placed after the object. */ 752 off += sizeof(void *); 753 754 if (s->flags & SLAB_STORE_USER) 755 /* We also have user information there */ 756 off += 2 * sizeof(struct track); 757 758 if (s->size == off) 759 return 1; 760 761 return check_bytes_and_report(s, page, p, "Object padding", 762 p + off, POISON_INUSE, s->size - off); 763 } 764 765 /* Check the pad bytes at the end of a slab page */ 766 static int slab_pad_check(struct kmem_cache *s, struct page *page) 767 { 768 u8 *start; 769 u8 *fault; 770 u8 *end; 771 int length; 772 int remainder; 773 774 if (!(s->flags & SLAB_POISON)) 775 return 1; 776 777 start = page_address(page); 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 779 end = start + length; 780 remainder = length % s->size; 781 if (!remainder) 782 return 1; 783 784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 785 if (!fault) 786 return 1; 787 while (end > fault && end[-1] == POISON_INUSE) 788 end--; 789 790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 791 print_section("Padding ", end - remainder, remainder); 792 793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 794 return 0; 795 } 796 797 static int check_object(struct kmem_cache *s, struct page *page, 798 void *object, u8 val) 799 { 800 u8 *p = object; 801 u8 *endobject = object + s->object_size; 802 803 if (s->flags & SLAB_RED_ZONE) { 804 if (!check_bytes_and_report(s, page, object, "Redzone", 805 endobject, val, s->inuse - s->object_size)) 806 return 0; 807 } else { 808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 809 check_bytes_and_report(s, page, p, "Alignment padding", 810 endobject, POISON_INUSE, 811 s->inuse - s->object_size); 812 } 813 } 814 815 if (s->flags & SLAB_POISON) { 816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 817 (!check_bytes_and_report(s, page, p, "Poison", p, 818 POISON_FREE, s->object_size - 1) || 819 !check_bytes_and_report(s, page, p, "Poison", 820 p + s->object_size - 1, POISON_END, 1))) 821 return 0; 822 /* 823 * check_pad_bytes cleans up on its own. 824 */ 825 check_pad_bytes(s, page, p); 826 } 827 828 if (!s->offset && val == SLUB_RED_ACTIVE) 829 /* 830 * Object and freepointer overlap. Cannot check 831 * freepointer while object is allocated. 832 */ 833 return 1; 834 835 /* Check free pointer validity */ 836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 837 object_err(s, page, p, "Freepointer corrupt"); 838 /* 839 * No choice but to zap it and thus lose the remainder 840 * of the free objects in this slab. May cause 841 * another error because the object count is now wrong. 842 */ 843 set_freepointer(s, p, NULL); 844 return 0; 845 } 846 return 1; 847 } 848 849 static int check_slab(struct kmem_cache *s, struct page *page) 850 { 851 int maxobj; 852 853 VM_BUG_ON(!irqs_disabled()); 854 855 if (!PageSlab(page)) { 856 slab_err(s, page, "Not a valid slab page"); 857 return 0; 858 } 859 860 maxobj = order_objects(compound_order(page), s->size, s->reserved); 861 if (page->objects > maxobj) { 862 slab_err(s, page, "objects %u > max %u", 863 s->name, page->objects, maxobj); 864 return 0; 865 } 866 if (page->inuse > page->objects) { 867 slab_err(s, page, "inuse %u > max %u", 868 s->name, page->inuse, page->objects); 869 return 0; 870 } 871 /* Slab_pad_check fixes things up after itself */ 872 slab_pad_check(s, page); 873 return 1; 874 } 875 876 /* 877 * Determine if a certain object on a page is on the freelist. Must hold the 878 * slab lock to guarantee that the chains are in a consistent state. 879 */ 880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 881 { 882 int nr = 0; 883 void *fp; 884 void *object = NULL; 885 unsigned long max_objects; 886 887 fp = page->freelist; 888 while (fp && nr <= page->objects) { 889 if (fp == search) 890 return 1; 891 if (!check_valid_pointer(s, page, fp)) { 892 if (object) { 893 object_err(s, page, object, 894 "Freechain corrupt"); 895 set_freepointer(s, object, NULL); 896 } else { 897 slab_err(s, page, "Freepointer corrupt"); 898 page->freelist = NULL; 899 page->inuse = page->objects; 900 slab_fix(s, "Freelist cleared"); 901 return 0; 902 } 903 break; 904 } 905 object = fp; 906 fp = get_freepointer(s, object); 907 nr++; 908 } 909 910 max_objects = order_objects(compound_order(page), s->size, s->reserved); 911 if (max_objects > MAX_OBJS_PER_PAGE) 912 max_objects = MAX_OBJS_PER_PAGE; 913 914 if (page->objects != max_objects) { 915 slab_err(s, page, "Wrong number of objects. Found %d but " 916 "should be %d", page->objects, max_objects); 917 page->objects = max_objects; 918 slab_fix(s, "Number of objects adjusted."); 919 } 920 if (page->inuse != page->objects - nr) { 921 slab_err(s, page, "Wrong object count. Counter is %d but " 922 "counted were %d", page->inuse, page->objects - nr); 923 page->inuse = page->objects - nr; 924 slab_fix(s, "Object count adjusted."); 925 } 926 return search == NULL; 927 } 928 929 static void trace(struct kmem_cache *s, struct page *page, void *object, 930 int alloc) 931 { 932 if (s->flags & SLAB_TRACE) { 933 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 934 s->name, 935 alloc ? "alloc" : "free", 936 object, page->inuse, 937 page->freelist); 938 939 if (!alloc) 940 print_section("Object ", (void *)object, 941 s->object_size); 942 943 dump_stack(); 944 } 945 } 946 947 /* 948 * Hooks for other subsystems that check memory allocations. In a typical 949 * production configuration these hooks all should produce no code at all. 950 */ 951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 952 { 953 kmemleak_alloc(ptr, size, 1, flags); 954 } 955 956 static inline void kfree_hook(const void *x) 957 { 958 kmemleak_free(x); 959 } 960 961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 962 { 963 flags &= gfp_allowed_mask; 964 lockdep_trace_alloc(flags); 965 might_sleep_if(flags & __GFP_WAIT); 966 967 return should_failslab(s->object_size, flags, s->flags); 968 } 969 970 static inline void slab_post_alloc_hook(struct kmem_cache *s, 971 gfp_t flags, void *object) 972 { 973 flags &= gfp_allowed_mask; 974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); 975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags); 976 } 977 978 static inline void slab_free_hook(struct kmem_cache *s, void *x) 979 { 980 kmemleak_free_recursive(x, s->flags); 981 982 /* 983 * Trouble is that we may no longer disable interrupts in the fast path 984 * So in order to make the debug calls that expect irqs to be 985 * disabled we need to disable interrupts temporarily. 986 */ 987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 988 { 989 unsigned long flags; 990 991 local_irq_save(flags); 992 kmemcheck_slab_free(s, x, s->object_size); 993 debug_check_no_locks_freed(x, s->object_size); 994 local_irq_restore(flags); 995 } 996 #endif 997 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 998 debug_check_no_obj_freed(x, s->object_size); 999 } 1000 1001 /* 1002 * Tracking of fully allocated slabs for debugging purposes. 1003 */ 1004 static void add_full(struct kmem_cache *s, 1005 struct kmem_cache_node *n, struct page *page) 1006 { 1007 if (!(s->flags & SLAB_STORE_USER)) 1008 return; 1009 1010 lockdep_assert_held(&n->list_lock); 1011 list_add(&page->lru, &n->full); 1012 } 1013 1014 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1015 { 1016 if (!(s->flags & SLAB_STORE_USER)) 1017 return; 1018 1019 lockdep_assert_held(&n->list_lock); 1020 list_del(&page->lru); 1021 } 1022 1023 /* Tracking of the number of slabs for debugging purposes */ 1024 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1025 { 1026 struct kmem_cache_node *n = get_node(s, node); 1027 1028 return atomic_long_read(&n->nr_slabs); 1029 } 1030 1031 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1032 { 1033 return atomic_long_read(&n->nr_slabs); 1034 } 1035 1036 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1037 { 1038 struct kmem_cache_node *n = get_node(s, node); 1039 1040 /* 1041 * May be called early in order to allocate a slab for the 1042 * kmem_cache_node structure. Solve the chicken-egg 1043 * dilemma by deferring the increment of the count during 1044 * bootstrap (see early_kmem_cache_node_alloc). 1045 */ 1046 if (likely(n)) { 1047 atomic_long_inc(&n->nr_slabs); 1048 atomic_long_add(objects, &n->total_objects); 1049 } 1050 } 1051 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1052 { 1053 struct kmem_cache_node *n = get_node(s, node); 1054 1055 atomic_long_dec(&n->nr_slabs); 1056 atomic_long_sub(objects, &n->total_objects); 1057 } 1058 1059 /* Object debug checks for alloc/free paths */ 1060 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1061 void *object) 1062 { 1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1064 return; 1065 1066 init_object(s, object, SLUB_RED_INACTIVE); 1067 init_tracking(s, object); 1068 } 1069 1070 static noinline int alloc_debug_processing(struct kmem_cache *s, 1071 struct page *page, 1072 void *object, unsigned long addr) 1073 { 1074 if (!check_slab(s, page)) 1075 goto bad; 1076 1077 if (!check_valid_pointer(s, page, object)) { 1078 object_err(s, page, object, "Freelist Pointer check fails"); 1079 goto bad; 1080 } 1081 1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1083 goto bad; 1084 1085 /* Success perform special debug activities for allocs */ 1086 if (s->flags & SLAB_STORE_USER) 1087 set_track(s, object, TRACK_ALLOC, addr); 1088 trace(s, page, object, 1); 1089 init_object(s, object, SLUB_RED_ACTIVE); 1090 return 1; 1091 1092 bad: 1093 if (PageSlab(page)) { 1094 /* 1095 * If this is a slab page then lets do the best we can 1096 * to avoid issues in the future. Marking all objects 1097 * as used avoids touching the remaining objects. 1098 */ 1099 slab_fix(s, "Marking all objects used"); 1100 page->inuse = page->objects; 1101 page->freelist = NULL; 1102 } 1103 return 0; 1104 } 1105 1106 static noinline struct kmem_cache_node *free_debug_processing( 1107 struct kmem_cache *s, struct page *page, void *object, 1108 unsigned long addr, unsigned long *flags) 1109 { 1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1111 1112 spin_lock_irqsave(&n->list_lock, *flags); 1113 slab_lock(page); 1114 1115 if (!check_slab(s, page)) 1116 goto fail; 1117 1118 if (!check_valid_pointer(s, page, object)) { 1119 slab_err(s, page, "Invalid object pointer 0x%p", object); 1120 goto fail; 1121 } 1122 1123 if (on_freelist(s, page, object)) { 1124 object_err(s, page, object, "Object already free"); 1125 goto fail; 1126 } 1127 1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1129 goto out; 1130 1131 if (unlikely(s != page->slab_cache)) { 1132 if (!PageSlab(page)) { 1133 slab_err(s, page, "Attempt to free object(0x%p) " 1134 "outside of slab", object); 1135 } else if (!page->slab_cache) { 1136 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1137 object); 1138 dump_stack(); 1139 } else 1140 object_err(s, page, object, 1141 "page slab pointer corrupt."); 1142 goto fail; 1143 } 1144 1145 if (s->flags & SLAB_STORE_USER) 1146 set_track(s, object, TRACK_FREE, addr); 1147 trace(s, page, object, 0); 1148 init_object(s, object, SLUB_RED_INACTIVE); 1149 out: 1150 slab_unlock(page); 1151 /* 1152 * Keep node_lock to preserve integrity 1153 * until the object is actually freed 1154 */ 1155 return n; 1156 1157 fail: 1158 slab_unlock(page); 1159 spin_unlock_irqrestore(&n->list_lock, *flags); 1160 slab_fix(s, "Object at 0x%p not freed", object); 1161 return NULL; 1162 } 1163 1164 static int __init setup_slub_debug(char *str) 1165 { 1166 slub_debug = DEBUG_DEFAULT_FLAGS; 1167 if (*str++ != '=' || !*str) 1168 /* 1169 * No options specified. Switch on full debugging. 1170 */ 1171 goto out; 1172 1173 if (*str == ',') 1174 /* 1175 * No options but restriction on slabs. This means full 1176 * debugging for slabs matching a pattern. 1177 */ 1178 goto check_slabs; 1179 1180 if (tolower(*str) == 'o') { 1181 /* 1182 * Avoid enabling debugging on caches if its minimum order 1183 * would increase as a result. 1184 */ 1185 disable_higher_order_debug = 1; 1186 goto out; 1187 } 1188 1189 slub_debug = 0; 1190 if (*str == '-') 1191 /* 1192 * Switch off all debugging measures. 1193 */ 1194 goto out; 1195 1196 /* 1197 * Determine which debug features should be switched on 1198 */ 1199 for (; *str && *str != ','; str++) { 1200 switch (tolower(*str)) { 1201 case 'f': 1202 slub_debug |= SLAB_DEBUG_FREE; 1203 break; 1204 case 'z': 1205 slub_debug |= SLAB_RED_ZONE; 1206 break; 1207 case 'p': 1208 slub_debug |= SLAB_POISON; 1209 break; 1210 case 'u': 1211 slub_debug |= SLAB_STORE_USER; 1212 break; 1213 case 't': 1214 slub_debug |= SLAB_TRACE; 1215 break; 1216 case 'a': 1217 slub_debug |= SLAB_FAILSLAB; 1218 break; 1219 default: 1220 pr_err("slub_debug option '%c' unknown. skipped\n", 1221 *str); 1222 } 1223 } 1224 1225 check_slabs: 1226 if (*str == ',') 1227 slub_debug_slabs = str + 1; 1228 out: 1229 return 1; 1230 } 1231 1232 __setup("slub_debug", setup_slub_debug); 1233 1234 static unsigned long kmem_cache_flags(unsigned long object_size, 1235 unsigned long flags, const char *name, 1236 void (*ctor)(void *)) 1237 { 1238 /* 1239 * Enable debugging if selected on the kernel commandline. 1240 */ 1241 if (slub_debug && (!slub_debug_slabs || (name && 1242 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1243 flags |= slub_debug; 1244 1245 return flags; 1246 } 1247 #else 1248 static inline void setup_object_debug(struct kmem_cache *s, 1249 struct page *page, void *object) {} 1250 1251 static inline int alloc_debug_processing(struct kmem_cache *s, 1252 struct page *page, void *object, unsigned long addr) { return 0; } 1253 1254 static inline struct kmem_cache_node *free_debug_processing( 1255 struct kmem_cache *s, struct page *page, void *object, 1256 unsigned long addr, unsigned long *flags) { return NULL; } 1257 1258 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1259 { return 1; } 1260 static inline int check_object(struct kmem_cache *s, struct page *page, 1261 void *object, u8 val) { return 1; } 1262 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1263 struct page *page) {} 1264 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1265 struct page *page) {} 1266 static inline unsigned long kmem_cache_flags(unsigned long object_size, 1267 unsigned long flags, const char *name, 1268 void (*ctor)(void *)) 1269 { 1270 return flags; 1271 } 1272 #define slub_debug 0 1273 1274 #define disable_higher_order_debug 0 1275 1276 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1277 { return 0; } 1278 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1279 { return 0; } 1280 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1281 int objects) {} 1282 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1283 int objects) {} 1284 1285 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1286 { 1287 kmemleak_alloc(ptr, size, 1, flags); 1288 } 1289 1290 static inline void kfree_hook(const void *x) 1291 { 1292 kmemleak_free(x); 1293 } 1294 1295 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) 1296 { return 0; } 1297 1298 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, 1299 void *object) 1300 { 1301 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, 1302 flags & gfp_allowed_mask); 1303 } 1304 1305 static inline void slab_free_hook(struct kmem_cache *s, void *x) 1306 { 1307 kmemleak_free_recursive(x, s->flags); 1308 } 1309 1310 #endif /* CONFIG_SLUB_DEBUG */ 1311 1312 /* 1313 * Slab allocation and freeing 1314 */ 1315 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1316 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1317 { 1318 struct page *page; 1319 int order = oo_order(oo); 1320 1321 flags |= __GFP_NOTRACK; 1322 1323 if (memcg_charge_slab(s, flags, order)) 1324 return NULL; 1325 1326 if (node == NUMA_NO_NODE) 1327 page = alloc_pages(flags, order); 1328 else 1329 page = alloc_pages_exact_node(node, flags, order); 1330 1331 if (!page) 1332 memcg_uncharge_slab(s, order); 1333 1334 return page; 1335 } 1336 1337 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1338 { 1339 struct page *page; 1340 struct kmem_cache_order_objects oo = s->oo; 1341 gfp_t alloc_gfp; 1342 1343 flags &= gfp_allowed_mask; 1344 1345 if (flags & __GFP_WAIT) 1346 local_irq_enable(); 1347 1348 flags |= s->allocflags; 1349 1350 /* 1351 * Let the initial higher-order allocation fail under memory pressure 1352 * so we fall-back to the minimum order allocation. 1353 */ 1354 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1355 1356 page = alloc_slab_page(s, alloc_gfp, node, oo); 1357 if (unlikely(!page)) { 1358 oo = s->min; 1359 alloc_gfp = flags; 1360 /* 1361 * Allocation may have failed due to fragmentation. 1362 * Try a lower order alloc if possible 1363 */ 1364 page = alloc_slab_page(s, alloc_gfp, node, oo); 1365 1366 if (page) 1367 stat(s, ORDER_FALLBACK); 1368 } 1369 1370 if (kmemcheck_enabled && page 1371 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1372 int pages = 1 << oo_order(oo); 1373 1374 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1375 1376 /* 1377 * Objects from caches that have a constructor don't get 1378 * cleared when they're allocated, so we need to do it here. 1379 */ 1380 if (s->ctor) 1381 kmemcheck_mark_uninitialized_pages(page, pages); 1382 else 1383 kmemcheck_mark_unallocated_pages(page, pages); 1384 } 1385 1386 if (flags & __GFP_WAIT) 1387 local_irq_disable(); 1388 if (!page) 1389 return NULL; 1390 1391 page->objects = oo_objects(oo); 1392 mod_zone_page_state(page_zone(page), 1393 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1394 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1395 1 << oo_order(oo)); 1396 1397 return page; 1398 } 1399 1400 static void setup_object(struct kmem_cache *s, struct page *page, 1401 void *object) 1402 { 1403 setup_object_debug(s, page, object); 1404 if (unlikely(s->ctor)) 1405 s->ctor(object); 1406 } 1407 1408 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1409 { 1410 struct page *page; 1411 void *start; 1412 void *last; 1413 void *p; 1414 int order; 1415 1416 BUG_ON(flags & GFP_SLAB_BUG_MASK); 1417 1418 page = allocate_slab(s, 1419 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1420 if (!page) 1421 goto out; 1422 1423 order = compound_order(page); 1424 inc_slabs_node(s, page_to_nid(page), page->objects); 1425 page->slab_cache = s; 1426 __SetPageSlab(page); 1427 if (page->pfmemalloc) 1428 SetPageSlabPfmemalloc(page); 1429 1430 start = page_address(page); 1431 1432 if (unlikely(s->flags & SLAB_POISON)) 1433 memset(start, POISON_INUSE, PAGE_SIZE << order); 1434 1435 last = start; 1436 for_each_object(p, s, start, page->objects) { 1437 setup_object(s, page, last); 1438 set_freepointer(s, last, p); 1439 last = p; 1440 } 1441 setup_object(s, page, last); 1442 set_freepointer(s, last, NULL); 1443 1444 page->freelist = start; 1445 page->inuse = page->objects; 1446 page->frozen = 1; 1447 out: 1448 return page; 1449 } 1450 1451 static void __free_slab(struct kmem_cache *s, struct page *page) 1452 { 1453 int order = compound_order(page); 1454 int pages = 1 << order; 1455 1456 if (kmem_cache_debug(s)) { 1457 void *p; 1458 1459 slab_pad_check(s, page); 1460 for_each_object(p, s, page_address(page), 1461 page->objects) 1462 check_object(s, page, p, SLUB_RED_INACTIVE); 1463 } 1464 1465 kmemcheck_free_shadow(page, compound_order(page)); 1466 1467 mod_zone_page_state(page_zone(page), 1468 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1469 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1470 -pages); 1471 1472 __ClearPageSlabPfmemalloc(page); 1473 __ClearPageSlab(page); 1474 1475 page_mapcount_reset(page); 1476 if (current->reclaim_state) 1477 current->reclaim_state->reclaimed_slab += pages; 1478 __free_pages(page, order); 1479 memcg_uncharge_slab(s, order); 1480 } 1481 1482 #define need_reserve_slab_rcu \ 1483 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1484 1485 static void rcu_free_slab(struct rcu_head *h) 1486 { 1487 struct page *page; 1488 1489 if (need_reserve_slab_rcu) 1490 page = virt_to_head_page(h); 1491 else 1492 page = container_of((struct list_head *)h, struct page, lru); 1493 1494 __free_slab(page->slab_cache, page); 1495 } 1496 1497 static void free_slab(struct kmem_cache *s, struct page *page) 1498 { 1499 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1500 struct rcu_head *head; 1501 1502 if (need_reserve_slab_rcu) { 1503 int order = compound_order(page); 1504 int offset = (PAGE_SIZE << order) - s->reserved; 1505 1506 VM_BUG_ON(s->reserved != sizeof(*head)); 1507 head = page_address(page) + offset; 1508 } else { 1509 /* 1510 * RCU free overloads the RCU head over the LRU 1511 */ 1512 head = (void *)&page->lru; 1513 } 1514 1515 call_rcu(head, rcu_free_slab); 1516 } else 1517 __free_slab(s, page); 1518 } 1519 1520 static void discard_slab(struct kmem_cache *s, struct page *page) 1521 { 1522 dec_slabs_node(s, page_to_nid(page), page->objects); 1523 free_slab(s, page); 1524 } 1525 1526 /* 1527 * Management of partially allocated slabs. 1528 */ 1529 static inline void 1530 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1531 { 1532 n->nr_partial++; 1533 if (tail == DEACTIVATE_TO_TAIL) 1534 list_add_tail(&page->lru, &n->partial); 1535 else 1536 list_add(&page->lru, &n->partial); 1537 } 1538 1539 static inline void add_partial(struct kmem_cache_node *n, 1540 struct page *page, int tail) 1541 { 1542 lockdep_assert_held(&n->list_lock); 1543 __add_partial(n, page, tail); 1544 } 1545 1546 static inline void 1547 __remove_partial(struct kmem_cache_node *n, struct page *page) 1548 { 1549 list_del(&page->lru); 1550 n->nr_partial--; 1551 } 1552 1553 static inline void remove_partial(struct kmem_cache_node *n, 1554 struct page *page) 1555 { 1556 lockdep_assert_held(&n->list_lock); 1557 __remove_partial(n, page); 1558 } 1559 1560 /* 1561 * Remove slab from the partial list, freeze it and 1562 * return the pointer to the freelist. 1563 * 1564 * Returns a list of objects or NULL if it fails. 1565 */ 1566 static inline void *acquire_slab(struct kmem_cache *s, 1567 struct kmem_cache_node *n, struct page *page, 1568 int mode, int *objects) 1569 { 1570 void *freelist; 1571 unsigned long counters; 1572 struct page new; 1573 1574 lockdep_assert_held(&n->list_lock); 1575 1576 /* 1577 * Zap the freelist and set the frozen bit. 1578 * The old freelist is the list of objects for the 1579 * per cpu allocation list. 1580 */ 1581 freelist = page->freelist; 1582 counters = page->counters; 1583 new.counters = counters; 1584 *objects = new.objects - new.inuse; 1585 if (mode) { 1586 new.inuse = page->objects; 1587 new.freelist = NULL; 1588 } else { 1589 new.freelist = freelist; 1590 } 1591 1592 VM_BUG_ON(new.frozen); 1593 new.frozen = 1; 1594 1595 if (!__cmpxchg_double_slab(s, page, 1596 freelist, counters, 1597 new.freelist, new.counters, 1598 "acquire_slab")) 1599 return NULL; 1600 1601 remove_partial(n, page); 1602 WARN_ON(!freelist); 1603 return freelist; 1604 } 1605 1606 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1607 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1608 1609 /* 1610 * Try to allocate a partial slab from a specific node. 1611 */ 1612 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1613 struct kmem_cache_cpu *c, gfp_t flags) 1614 { 1615 struct page *page, *page2; 1616 void *object = NULL; 1617 int available = 0; 1618 int objects; 1619 1620 /* 1621 * Racy check. If we mistakenly see no partial slabs then we 1622 * just allocate an empty slab. If we mistakenly try to get a 1623 * partial slab and there is none available then get_partials() 1624 * will return NULL. 1625 */ 1626 if (!n || !n->nr_partial) 1627 return NULL; 1628 1629 spin_lock(&n->list_lock); 1630 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1631 void *t; 1632 1633 if (!pfmemalloc_match(page, flags)) 1634 continue; 1635 1636 t = acquire_slab(s, n, page, object == NULL, &objects); 1637 if (!t) 1638 break; 1639 1640 available += objects; 1641 if (!object) { 1642 c->page = page; 1643 stat(s, ALLOC_FROM_PARTIAL); 1644 object = t; 1645 } else { 1646 put_cpu_partial(s, page, 0); 1647 stat(s, CPU_PARTIAL_NODE); 1648 } 1649 if (!kmem_cache_has_cpu_partial(s) 1650 || available > s->cpu_partial / 2) 1651 break; 1652 1653 } 1654 spin_unlock(&n->list_lock); 1655 return object; 1656 } 1657 1658 /* 1659 * Get a page from somewhere. Search in increasing NUMA distances. 1660 */ 1661 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1662 struct kmem_cache_cpu *c) 1663 { 1664 #ifdef CONFIG_NUMA 1665 struct zonelist *zonelist; 1666 struct zoneref *z; 1667 struct zone *zone; 1668 enum zone_type high_zoneidx = gfp_zone(flags); 1669 void *object; 1670 unsigned int cpuset_mems_cookie; 1671 1672 /* 1673 * The defrag ratio allows a configuration of the tradeoffs between 1674 * inter node defragmentation and node local allocations. A lower 1675 * defrag_ratio increases the tendency to do local allocations 1676 * instead of attempting to obtain partial slabs from other nodes. 1677 * 1678 * If the defrag_ratio is set to 0 then kmalloc() always 1679 * returns node local objects. If the ratio is higher then kmalloc() 1680 * may return off node objects because partial slabs are obtained 1681 * from other nodes and filled up. 1682 * 1683 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes 1684 * defrag_ratio = 1000) then every (well almost) allocation will 1685 * first attempt to defrag slab caches on other nodes. This means 1686 * scanning over all nodes to look for partial slabs which may be 1687 * expensive if we do it every time we are trying to find a slab 1688 * with available objects. 1689 */ 1690 if (!s->remote_node_defrag_ratio || 1691 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1692 return NULL; 1693 1694 do { 1695 cpuset_mems_cookie = read_mems_allowed_begin(); 1696 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1697 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1698 struct kmem_cache_node *n; 1699 1700 n = get_node(s, zone_to_nid(zone)); 1701 1702 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1703 n->nr_partial > s->min_partial) { 1704 object = get_partial_node(s, n, c, flags); 1705 if (object) { 1706 /* 1707 * Don't check read_mems_allowed_retry() 1708 * here - if mems_allowed was updated in 1709 * parallel, that was a harmless race 1710 * between allocation and the cpuset 1711 * update 1712 */ 1713 return object; 1714 } 1715 } 1716 } 1717 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1718 #endif 1719 return NULL; 1720 } 1721 1722 /* 1723 * Get a partial page, lock it and return it. 1724 */ 1725 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1726 struct kmem_cache_cpu *c) 1727 { 1728 void *object; 1729 int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node; 1730 1731 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1732 if (object || node != NUMA_NO_NODE) 1733 return object; 1734 1735 return get_any_partial(s, flags, c); 1736 } 1737 1738 #ifdef CONFIG_PREEMPT 1739 /* 1740 * Calculate the next globally unique transaction for disambiguiation 1741 * during cmpxchg. The transactions start with the cpu number and are then 1742 * incremented by CONFIG_NR_CPUS. 1743 */ 1744 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1745 #else 1746 /* 1747 * No preemption supported therefore also no need to check for 1748 * different cpus. 1749 */ 1750 #define TID_STEP 1 1751 #endif 1752 1753 static inline unsigned long next_tid(unsigned long tid) 1754 { 1755 return tid + TID_STEP; 1756 } 1757 1758 static inline unsigned int tid_to_cpu(unsigned long tid) 1759 { 1760 return tid % TID_STEP; 1761 } 1762 1763 static inline unsigned long tid_to_event(unsigned long tid) 1764 { 1765 return tid / TID_STEP; 1766 } 1767 1768 static inline unsigned int init_tid(int cpu) 1769 { 1770 return cpu; 1771 } 1772 1773 static inline void note_cmpxchg_failure(const char *n, 1774 const struct kmem_cache *s, unsigned long tid) 1775 { 1776 #ifdef SLUB_DEBUG_CMPXCHG 1777 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1778 1779 pr_info("%s %s: cmpxchg redo ", n, s->name); 1780 1781 #ifdef CONFIG_PREEMPT 1782 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1783 pr_warn("due to cpu change %d -> %d\n", 1784 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1785 else 1786 #endif 1787 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1788 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1789 tid_to_event(tid), tid_to_event(actual_tid)); 1790 else 1791 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1792 actual_tid, tid, next_tid(tid)); 1793 #endif 1794 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1795 } 1796 1797 static void init_kmem_cache_cpus(struct kmem_cache *s) 1798 { 1799 int cpu; 1800 1801 for_each_possible_cpu(cpu) 1802 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1803 } 1804 1805 /* 1806 * Remove the cpu slab 1807 */ 1808 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1809 void *freelist) 1810 { 1811 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1812 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1813 int lock = 0; 1814 enum slab_modes l = M_NONE, m = M_NONE; 1815 void *nextfree; 1816 int tail = DEACTIVATE_TO_HEAD; 1817 struct page new; 1818 struct page old; 1819 1820 if (page->freelist) { 1821 stat(s, DEACTIVATE_REMOTE_FREES); 1822 tail = DEACTIVATE_TO_TAIL; 1823 } 1824 1825 /* 1826 * Stage one: Free all available per cpu objects back 1827 * to the page freelist while it is still frozen. Leave the 1828 * last one. 1829 * 1830 * There is no need to take the list->lock because the page 1831 * is still frozen. 1832 */ 1833 while (freelist && (nextfree = get_freepointer(s, freelist))) { 1834 void *prior; 1835 unsigned long counters; 1836 1837 do { 1838 prior = page->freelist; 1839 counters = page->counters; 1840 set_freepointer(s, freelist, prior); 1841 new.counters = counters; 1842 new.inuse--; 1843 VM_BUG_ON(!new.frozen); 1844 1845 } while (!__cmpxchg_double_slab(s, page, 1846 prior, counters, 1847 freelist, new.counters, 1848 "drain percpu freelist")); 1849 1850 freelist = nextfree; 1851 } 1852 1853 /* 1854 * Stage two: Ensure that the page is unfrozen while the 1855 * list presence reflects the actual number of objects 1856 * during unfreeze. 1857 * 1858 * We setup the list membership and then perform a cmpxchg 1859 * with the count. If there is a mismatch then the page 1860 * is not unfrozen but the page is on the wrong list. 1861 * 1862 * Then we restart the process which may have to remove 1863 * the page from the list that we just put it on again 1864 * because the number of objects in the slab may have 1865 * changed. 1866 */ 1867 redo: 1868 1869 old.freelist = page->freelist; 1870 old.counters = page->counters; 1871 VM_BUG_ON(!old.frozen); 1872 1873 /* Determine target state of the slab */ 1874 new.counters = old.counters; 1875 if (freelist) { 1876 new.inuse--; 1877 set_freepointer(s, freelist, old.freelist); 1878 new.freelist = freelist; 1879 } else 1880 new.freelist = old.freelist; 1881 1882 new.frozen = 0; 1883 1884 if (!new.inuse && n->nr_partial > s->min_partial) 1885 m = M_FREE; 1886 else if (new.freelist) { 1887 m = M_PARTIAL; 1888 if (!lock) { 1889 lock = 1; 1890 /* 1891 * Taking the spinlock removes the possiblity 1892 * that acquire_slab() will see a slab page that 1893 * is frozen 1894 */ 1895 spin_lock(&n->list_lock); 1896 } 1897 } else { 1898 m = M_FULL; 1899 if (kmem_cache_debug(s) && !lock) { 1900 lock = 1; 1901 /* 1902 * This also ensures that the scanning of full 1903 * slabs from diagnostic functions will not see 1904 * any frozen slabs. 1905 */ 1906 spin_lock(&n->list_lock); 1907 } 1908 } 1909 1910 if (l != m) { 1911 1912 if (l == M_PARTIAL) 1913 1914 remove_partial(n, page); 1915 1916 else if (l == M_FULL) 1917 1918 remove_full(s, n, page); 1919 1920 if (m == M_PARTIAL) { 1921 1922 add_partial(n, page, tail); 1923 stat(s, tail); 1924 1925 } else if (m == M_FULL) { 1926 1927 stat(s, DEACTIVATE_FULL); 1928 add_full(s, n, page); 1929 1930 } 1931 } 1932 1933 l = m; 1934 if (!__cmpxchg_double_slab(s, page, 1935 old.freelist, old.counters, 1936 new.freelist, new.counters, 1937 "unfreezing slab")) 1938 goto redo; 1939 1940 if (lock) 1941 spin_unlock(&n->list_lock); 1942 1943 if (m == M_FREE) { 1944 stat(s, DEACTIVATE_EMPTY); 1945 discard_slab(s, page); 1946 stat(s, FREE_SLAB); 1947 } 1948 } 1949 1950 /* 1951 * Unfreeze all the cpu partial slabs. 1952 * 1953 * This function must be called with interrupts disabled 1954 * for the cpu using c (or some other guarantee must be there 1955 * to guarantee no concurrent accesses). 1956 */ 1957 static void unfreeze_partials(struct kmem_cache *s, 1958 struct kmem_cache_cpu *c) 1959 { 1960 #ifdef CONFIG_SLUB_CPU_PARTIAL 1961 struct kmem_cache_node *n = NULL, *n2 = NULL; 1962 struct page *page, *discard_page = NULL; 1963 1964 while ((page = c->partial)) { 1965 struct page new; 1966 struct page old; 1967 1968 c->partial = page->next; 1969 1970 n2 = get_node(s, page_to_nid(page)); 1971 if (n != n2) { 1972 if (n) 1973 spin_unlock(&n->list_lock); 1974 1975 n = n2; 1976 spin_lock(&n->list_lock); 1977 } 1978 1979 do { 1980 1981 old.freelist = page->freelist; 1982 old.counters = page->counters; 1983 VM_BUG_ON(!old.frozen); 1984 1985 new.counters = old.counters; 1986 new.freelist = old.freelist; 1987 1988 new.frozen = 0; 1989 1990 } while (!__cmpxchg_double_slab(s, page, 1991 old.freelist, old.counters, 1992 new.freelist, new.counters, 1993 "unfreezing slab")); 1994 1995 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) { 1996 page->next = discard_page; 1997 discard_page = page; 1998 } else { 1999 add_partial(n, page, DEACTIVATE_TO_TAIL); 2000 stat(s, FREE_ADD_PARTIAL); 2001 } 2002 } 2003 2004 if (n) 2005 spin_unlock(&n->list_lock); 2006 2007 while (discard_page) { 2008 page = discard_page; 2009 discard_page = discard_page->next; 2010 2011 stat(s, DEACTIVATE_EMPTY); 2012 discard_slab(s, page); 2013 stat(s, FREE_SLAB); 2014 } 2015 #endif 2016 } 2017 2018 /* 2019 * Put a page that was just frozen (in __slab_free) into a partial page 2020 * slot if available. This is done without interrupts disabled and without 2021 * preemption disabled. The cmpxchg is racy and may put the partial page 2022 * onto a random cpus partial slot. 2023 * 2024 * If we did not find a slot then simply move all the partials to the 2025 * per node partial list. 2026 */ 2027 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2028 { 2029 #ifdef CONFIG_SLUB_CPU_PARTIAL 2030 struct page *oldpage; 2031 int pages; 2032 int pobjects; 2033 2034 do { 2035 pages = 0; 2036 pobjects = 0; 2037 oldpage = this_cpu_read(s->cpu_slab->partial); 2038 2039 if (oldpage) { 2040 pobjects = oldpage->pobjects; 2041 pages = oldpage->pages; 2042 if (drain && pobjects > s->cpu_partial) { 2043 unsigned long flags; 2044 /* 2045 * partial array is full. Move the existing 2046 * set to the per node partial list. 2047 */ 2048 local_irq_save(flags); 2049 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2050 local_irq_restore(flags); 2051 oldpage = NULL; 2052 pobjects = 0; 2053 pages = 0; 2054 stat(s, CPU_PARTIAL_DRAIN); 2055 } 2056 } 2057 2058 pages++; 2059 pobjects += page->objects - page->inuse; 2060 2061 page->pages = pages; 2062 page->pobjects = pobjects; 2063 page->next = oldpage; 2064 2065 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2066 != oldpage); 2067 #endif 2068 } 2069 2070 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2071 { 2072 stat(s, CPUSLAB_FLUSH); 2073 deactivate_slab(s, c->page, c->freelist); 2074 2075 c->tid = next_tid(c->tid); 2076 c->page = NULL; 2077 c->freelist = NULL; 2078 } 2079 2080 /* 2081 * Flush cpu slab. 2082 * 2083 * Called from IPI handler with interrupts disabled. 2084 */ 2085 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2086 { 2087 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2088 2089 if (likely(c)) { 2090 if (c->page) 2091 flush_slab(s, c); 2092 2093 unfreeze_partials(s, c); 2094 } 2095 } 2096 2097 static void flush_cpu_slab(void *d) 2098 { 2099 struct kmem_cache *s = d; 2100 2101 __flush_cpu_slab(s, smp_processor_id()); 2102 } 2103 2104 static bool has_cpu_slab(int cpu, void *info) 2105 { 2106 struct kmem_cache *s = info; 2107 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2108 2109 return c->page || c->partial; 2110 } 2111 2112 static void flush_all(struct kmem_cache *s) 2113 { 2114 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2115 } 2116 2117 /* 2118 * Check if the objects in a per cpu structure fit numa 2119 * locality expectations. 2120 */ 2121 static inline int node_match(struct page *page, int node) 2122 { 2123 #ifdef CONFIG_NUMA 2124 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2125 return 0; 2126 #endif 2127 return 1; 2128 } 2129 2130 #ifdef CONFIG_SLUB_DEBUG 2131 static int count_free(struct page *page) 2132 { 2133 return page->objects - page->inuse; 2134 } 2135 2136 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2137 { 2138 return atomic_long_read(&n->total_objects); 2139 } 2140 #endif /* CONFIG_SLUB_DEBUG */ 2141 2142 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2143 static unsigned long count_partial(struct kmem_cache_node *n, 2144 int (*get_count)(struct page *)) 2145 { 2146 unsigned long flags; 2147 unsigned long x = 0; 2148 struct page *page; 2149 2150 spin_lock_irqsave(&n->list_lock, flags); 2151 list_for_each_entry(page, &n->partial, lru) 2152 x += get_count(page); 2153 spin_unlock_irqrestore(&n->list_lock, flags); 2154 return x; 2155 } 2156 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2157 2158 static noinline void 2159 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2160 { 2161 #ifdef CONFIG_SLUB_DEBUG 2162 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2163 DEFAULT_RATELIMIT_BURST); 2164 int node; 2165 2166 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2167 return; 2168 2169 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n", 2170 nid, gfpflags); 2171 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2172 s->name, s->object_size, s->size, oo_order(s->oo), 2173 oo_order(s->min)); 2174 2175 if (oo_order(s->min) > get_order(s->object_size)) 2176 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2177 s->name); 2178 2179 for_each_online_node(node) { 2180 struct kmem_cache_node *n = get_node(s, node); 2181 unsigned long nr_slabs; 2182 unsigned long nr_objs; 2183 unsigned long nr_free; 2184 2185 if (!n) 2186 continue; 2187 2188 nr_free = count_partial(n, count_free); 2189 nr_slabs = node_nr_slabs(n); 2190 nr_objs = node_nr_objs(n); 2191 2192 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2193 node, nr_slabs, nr_objs, nr_free); 2194 } 2195 #endif 2196 } 2197 2198 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2199 int node, struct kmem_cache_cpu **pc) 2200 { 2201 void *freelist; 2202 struct kmem_cache_cpu *c = *pc; 2203 struct page *page; 2204 2205 freelist = get_partial(s, flags, node, c); 2206 2207 if (freelist) 2208 return freelist; 2209 2210 page = new_slab(s, flags, node); 2211 if (page) { 2212 c = raw_cpu_ptr(s->cpu_slab); 2213 if (c->page) 2214 flush_slab(s, c); 2215 2216 /* 2217 * No other reference to the page yet so we can 2218 * muck around with it freely without cmpxchg 2219 */ 2220 freelist = page->freelist; 2221 page->freelist = NULL; 2222 2223 stat(s, ALLOC_SLAB); 2224 c->page = page; 2225 *pc = c; 2226 } else 2227 freelist = NULL; 2228 2229 return freelist; 2230 } 2231 2232 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2233 { 2234 if (unlikely(PageSlabPfmemalloc(page))) 2235 return gfp_pfmemalloc_allowed(gfpflags); 2236 2237 return true; 2238 } 2239 2240 /* 2241 * Check the page->freelist of a page and either transfer the freelist to the 2242 * per cpu freelist or deactivate the page. 2243 * 2244 * The page is still frozen if the return value is not NULL. 2245 * 2246 * If this function returns NULL then the page has been unfrozen. 2247 * 2248 * This function must be called with interrupt disabled. 2249 */ 2250 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2251 { 2252 struct page new; 2253 unsigned long counters; 2254 void *freelist; 2255 2256 do { 2257 freelist = page->freelist; 2258 counters = page->counters; 2259 2260 new.counters = counters; 2261 VM_BUG_ON(!new.frozen); 2262 2263 new.inuse = page->objects; 2264 new.frozen = freelist != NULL; 2265 2266 } while (!__cmpxchg_double_slab(s, page, 2267 freelist, counters, 2268 NULL, new.counters, 2269 "get_freelist")); 2270 2271 return freelist; 2272 } 2273 2274 /* 2275 * Slow path. The lockless freelist is empty or we need to perform 2276 * debugging duties. 2277 * 2278 * Processing is still very fast if new objects have been freed to the 2279 * regular freelist. In that case we simply take over the regular freelist 2280 * as the lockless freelist and zap the regular freelist. 2281 * 2282 * If that is not working then we fall back to the partial lists. We take the 2283 * first element of the freelist as the object to allocate now and move the 2284 * rest of the freelist to the lockless freelist. 2285 * 2286 * And if we were unable to get a new slab from the partial slab lists then 2287 * we need to allocate a new slab. This is the slowest path since it involves 2288 * a call to the page allocator and the setup of a new slab. 2289 */ 2290 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2291 unsigned long addr, struct kmem_cache_cpu *c) 2292 { 2293 void *freelist; 2294 struct page *page; 2295 unsigned long flags; 2296 2297 local_irq_save(flags); 2298 #ifdef CONFIG_PREEMPT 2299 /* 2300 * We may have been preempted and rescheduled on a different 2301 * cpu before disabling interrupts. Need to reload cpu area 2302 * pointer. 2303 */ 2304 c = this_cpu_ptr(s->cpu_slab); 2305 #endif 2306 2307 page = c->page; 2308 if (!page) 2309 goto new_slab; 2310 redo: 2311 2312 if (unlikely(!node_match(page, node))) { 2313 stat(s, ALLOC_NODE_MISMATCH); 2314 deactivate_slab(s, page, c->freelist); 2315 c->page = NULL; 2316 c->freelist = NULL; 2317 goto new_slab; 2318 } 2319 2320 /* 2321 * By rights, we should be searching for a slab page that was 2322 * PFMEMALLOC but right now, we are losing the pfmemalloc 2323 * information when the page leaves the per-cpu allocator 2324 */ 2325 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2326 deactivate_slab(s, page, c->freelist); 2327 c->page = NULL; 2328 c->freelist = NULL; 2329 goto new_slab; 2330 } 2331 2332 /* must check again c->freelist in case of cpu migration or IRQ */ 2333 freelist = c->freelist; 2334 if (freelist) 2335 goto load_freelist; 2336 2337 freelist = get_freelist(s, page); 2338 2339 if (!freelist) { 2340 c->page = NULL; 2341 stat(s, DEACTIVATE_BYPASS); 2342 goto new_slab; 2343 } 2344 2345 stat(s, ALLOC_REFILL); 2346 2347 load_freelist: 2348 /* 2349 * freelist is pointing to the list of objects to be used. 2350 * page is pointing to the page from which the objects are obtained. 2351 * That page must be frozen for per cpu allocations to work. 2352 */ 2353 VM_BUG_ON(!c->page->frozen); 2354 c->freelist = get_freepointer(s, freelist); 2355 c->tid = next_tid(c->tid); 2356 local_irq_restore(flags); 2357 return freelist; 2358 2359 new_slab: 2360 2361 if (c->partial) { 2362 page = c->page = c->partial; 2363 c->partial = page->next; 2364 stat(s, CPU_PARTIAL_ALLOC); 2365 c->freelist = NULL; 2366 goto redo; 2367 } 2368 2369 freelist = new_slab_objects(s, gfpflags, node, &c); 2370 2371 if (unlikely(!freelist)) { 2372 slab_out_of_memory(s, gfpflags, node); 2373 local_irq_restore(flags); 2374 return NULL; 2375 } 2376 2377 page = c->page; 2378 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2379 goto load_freelist; 2380 2381 /* Only entered in the debug case */ 2382 if (kmem_cache_debug(s) && 2383 !alloc_debug_processing(s, page, freelist, addr)) 2384 goto new_slab; /* Slab failed checks. Next slab needed */ 2385 2386 deactivate_slab(s, page, get_freepointer(s, freelist)); 2387 c->page = NULL; 2388 c->freelist = NULL; 2389 local_irq_restore(flags); 2390 return freelist; 2391 } 2392 2393 /* 2394 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2395 * have the fastpath folded into their functions. So no function call 2396 * overhead for requests that can be satisfied on the fastpath. 2397 * 2398 * The fastpath works by first checking if the lockless freelist can be used. 2399 * If not then __slab_alloc is called for slow processing. 2400 * 2401 * Otherwise we can simply pick the next object from the lockless free list. 2402 */ 2403 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2404 gfp_t gfpflags, int node, unsigned long addr) 2405 { 2406 void **object; 2407 struct kmem_cache_cpu *c; 2408 struct page *page; 2409 unsigned long tid; 2410 2411 if (slab_pre_alloc_hook(s, gfpflags)) 2412 return NULL; 2413 2414 s = memcg_kmem_get_cache(s, gfpflags); 2415 redo: 2416 /* 2417 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2418 * enabled. We may switch back and forth between cpus while 2419 * reading from one cpu area. That does not matter as long 2420 * as we end up on the original cpu again when doing the cmpxchg. 2421 * 2422 * Preemption is disabled for the retrieval of the tid because that 2423 * must occur from the current processor. We cannot allow rescheduling 2424 * on a different processor between the determination of the pointer 2425 * and the retrieval of the tid. 2426 */ 2427 preempt_disable(); 2428 c = this_cpu_ptr(s->cpu_slab); 2429 2430 /* 2431 * The transaction ids are globally unique per cpu and per operation on 2432 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2433 * occurs on the right processor and that there was no operation on the 2434 * linked list in between. 2435 */ 2436 tid = c->tid; 2437 preempt_enable(); 2438 2439 object = c->freelist; 2440 page = c->page; 2441 if (unlikely(!object || !node_match(page, node))) { 2442 object = __slab_alloc(s, gfpflags, node, addr, c); 2443 stat(s, ALLOC_SLOWPATH); 2444 } else { 2445 void *next_object = get_freepointer_safe(s, object); 2446 2447 /* 2448 * The cmpxchg will only match if there was no additional 2449 * operation and if we are on the right processor. 2450 * 2451 * The cmpxchg does the following atomically (without lock 2452 * semantics!) 2453 * 1. Relocate first pointer to the current per cpu area. 2454 * 2. Verify that tid and freelist have not been changed 2455 * 3. If they were not changed replace tid and freelist 2456 * 2457 * Since this is without lock semantics the protection is only 2458 * against code executing on this cpu *not* from access by 2459 * other cpus. 2460 */ 2461 if (unlikely(!this_cpu_cmpxchg_double( 2462 s->cpu_slab->freelist, s->cpu_slab->tid, 2463 object, tid, 2464 next_object, next_tid(tid)))) { 2465 2466 note_cmpxchg_failure("slab_alloc", s, tid); 2467 goto redo; 2468 } 2469 prefetch_freepointer(s, next_object); 2470 stat(s, ALLOC_FASTPATH); 2471 } 2472 2473 if (unlikely(gfpflags & __GFP_ZERO) && object) 2474 memset(object, 0, s->object_size); 2475 2476 slab_post_alloc_hook(s, gfpflags, object); 2477 2478 return object; 2479 } 2480 2481 static __always_inline void *slab_alloc(struct kmem_cache *s, 2482 gfp_t gfpflags, unsigned long addr) 2483 { 2484 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2485 } 2486 2487 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2488 { 2489 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2490 2491 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2492 s->size, gfpflags); 2493 2494 return ret; 2495 } 2496 EXPORT_SYMBOL(kmem_cache_alloc); 2497 2498 #ifdef CONFIG_TRACING 2499 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2500 { 2501 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2502 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2503 return ret; 2504 } 2505 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2506 #endif 2507 2508 #ifdef CONFIG_NUMA 2509 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2510 { 2511 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2512 2513 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2514 s->object_size, s->size, gfpflags, node); 2515 2516 return ret; 2517 } 2518 EXPORT_SYMBOL(kmem_cache_alloc_node); 2519 2520 #ifdef CONFIG_TRACING 2521 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2522 gfp_t gfpflags, 2523 int node, size_t size) 2524 { 2525 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2526 2527 trace_kmalloc_node(_RET_IP_, ret, 2528 size, s->size, gfpflags, node); 2529 return ret; 2530 } 2531 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2532 #endif 2533 #endif 2534 2535 /* 2536 * Slow patch handling. This may still be called frequently since objects 2537 * have a longer lifetime than the cpu slabs in most processing loads. 2538 * 2539 * So we still attempt to reduce cache line usage. Just take the slab 2540 * lock and free the item. If there is no additional partial page 2541 * handling required then we can return immediately. 2542 */ 2543 static void __slab_free(struct kmem_cache *s, struct page *page, 2544 void *x, unsigned long addr) 2545 { 2546 void *prior; 2547 void **object = (void *)x; 2548 int was_frozen; 2549 struct page new; 2550 unsigned long counters; 2551 struct kmem_cache_node *n = NULL; 2552 unsigned long uninitialized_var(flags); 2553 2554 stat(s, FREE_SLOWPATH); 2555 2556 if (kmem_cache_debug(s) && 2557 !(n = free_debug_processing(s, page, x, addr, &flags))) 2558 return; 2559 2560 do { 2561 if (unlikely(n)) { 2562 spin_unlock_irqrestore(&n->list_lock, flags); 2563 n = NULL; 2564 } 2565 prior = page->freelist; 2566 counters = page->counters; 2567 set_freepointer(s, object, prior); 2568 new.counters = counters; 2569 was_frozen = new.frozen; 2570 new.inuse--; 2571 if ((!new.inuse || !prior) && !was_frozen) { 2572 2573 if (kmem_cache_has_cpu_partial(s) && !prior) { 2574 2575 /* 2576 * Slab was on no list before and will be 2577 * partially empty 2578 * We can defer the list move and instead 2579 * freeze it. 2580 */ 2581 new.frozen = 1; 2582 2583 } else { /* Needs to be taken off a list */ 2584 2585 n = get_node(s, page_to_nid(page)); 2586 /* 2587 * Speculatively acquire the list_lock. 2588 * If the cmpxchg does not succeed then we may 2589 * drop the list_lock without any processing. 2590 * 2591 * Otherwise the list_lock will synchronize with 2592 * other processors updating the list of slabs. 2593 */ 2594 spin_lock_irqsave(&n->list_lock, flags); 2595 2596 } 2597 } 2598 2599 } while (!cmpxchg_double_slab(s, page, 2600 prior, counters, 2601 object, new.counters, 2602 "__slab_free")); 2603 2604 if (likely(!n)) { 2605 2606 /* 2607 * If we just froze the page then put it onto the 2608 * per cpu partial list. 2609 */ 2610 if (new.frozen && !was_frozen) { 2611 put_cpu_partial(s, page, 1); 2612 stat(s, CPU_PARTIAL_FREE); 2613 } 2614 /* 2615 * The list lock was not taken therefore no list 2616 * activity can be necessary. 2617 */ 2618 if (was_frozen) 2619 stat(s, FREE_FROZEN); 2620 return; 2621 } 2622 2623 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) 2624 goto slab_empty; 2625 2626 /* 2627 * Objects left in the slab. If it was not on the partial list before 2628 * then add it. 2629 */ 2630 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2631 if (kmem_cache_debug(s)) 2632 remove_full(s, n, page); 2633 add_partial(n, page, DEACTIVATE_TO_TAIL); 2634 stat(s, FREE_ADD_PARTIAL); 2635 } 2636 spin_unlock_irqrestore(&n->list_lock, flags); 2637 return; 2638 2639 slab_empty: 2640 if (prior) { 2641 /* 2642 * Slab on the partial list. 2643 */ 2644 remove_partial(n, page); 2645 stat(s, FREE_REMOVE_PARTIAL); 2646 } else { 2647 /* Slab must be on the full list */ 2648 remove_full(s, n, page); 2649 } 2650 2651 spin_unlock_irqrestore(&n->list_lock, flags); 2652 stat(s, FREE_SLAB); 2653 discard_slab(s, page); 2654 } 2655 2656 /* 2657 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2658 * can perform fastpath freeing without additional function calls. 2659 * 2660 * The fastpath is only possible if we are freeing to the current cpu slab 2661 * of this processor. This typically the case if we have just allocated 2662 * the item before. 2663 * 2664 * If fastpath is not possible then fall back to __slab_free where we deal 2665 * with all sorts of special processing. 2666 */ 2667 static __always_inline void slab_free(struct kmem_cache *s, 2668 struct page *page, void *x, unsigned long addr) 2669 { 2670 void **object = (void *)x; 2671 struct kmem_cache_cpu *c; 2672 unsigned long tid; 2673 2674 slab_free_hook(s, x); 2675 2676 redo: 2677 /* 2678 * Determine the currently cpus per cpu slab. 2679 * The cpu may change afterward. However that does not matter since 2680 * data is retrieved via this pointer. If we are on the same cpu 2681 * during the cmpxchg then the free will succedd. 2682 */ 2683 preempt_disable(); 2684 c = this_cpu_ptr(s->cpu_slab); 2685 2686 tid = c->tid; 2687 preempt_enable(); 2688 2689 if (likely(page == c->page)) { 2690 set_freepointer(s, object, c->freelist); 2691 2692 if (unlikely(!this_cpu_cmpxchg_double( 2693 s->cpu_slab->freelist, s->cpu_slab->tid, 2694 c->freelist, tid, 2695 object, next_tid(tid)))) { 2696 2697 note_cmpxchg_failure("slab_free", s, tid); 2698 goto redo; 2699 } 2700 stat(s, FREE_FASTPATH); 2701 } else 2702 __slab_free(s, page, x, addr); 2703 2704 } 2705 2706 void kmem_cache_free(struct kmem_cache *s, void *x) 2707 { 2708 s = cache_from_obj(s, x); 2709 if (!s) 2710 return; 2711 slab_free(s, virt_to_head_page(x), x, _RET_IP_); 2712 trace_kmem_cache_free(_RET_IP_, x); 2713 } 2714 EXPORT_SYMBOL(kmem_cache_free); 2715 2716 /* 2717 * Object placement in a slab is made very easy because we always start at 2718 * offset 0. If we tune the size of the object to the alignment then we can 2719 * get the required alignment by putting one properly sized object after 2720 * another. 2721 * 2722 * Notice that the allocation order determines the sizes of the per cpu 2723 * caches. Each processor has always one slab available for allocations. 2724 * Increasing the allocation order reduces the number of times that slabs 2725 * must be moved on and off the partial lists and is therefore a factor in 2726 * locking overhead. 2727 */ 2728 2729 /* 2730 * Mininum / Maximum order of slab pages. This influences locking overhead 2731 * and slab fragmentation. A higher order reduces the number of partial slabs 2732 * and increases the number of allocations possible without having to 2733 * take the list_lock. 2734 */ 2735 static int slub_min_order; 2736 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 2737 static int slub_min_objects; 2738 2739 /* 2740 * Merge control. If this is set then no merging of slab caches will occur. 2741 * (Could be removed. This was introduced to pacify the merge skeptics.) 2742 */ 2743 static int slub_nomerge; 2744 2745 /* 2746 * Calculate the order of allocation given an slab object size. 2747 * 2748 * The order of allocation has significant impact on performance and other 2749 * system components. Generally order 0 allocations should be preferred since 2750 * order 0 does not cause fragmentation in the page allocator. Larger objects 2751 * be problematic to put into order 0 slabs because there may be too much 2752 * unused space left. We go to a higher order if more than 1/16th of the slab 2753 * would be wasted. 2754 * 2755 * In order to reach satisfactory performance we must ensure that a minimum 2756 * number of objects is in one slab. Otherwise we may generate too much 2757 * activity on the partial lists which requires taking the list_lock. This is 2758 * less a concern for large slabs though which are rarely used. 2759 * 2760 * slub_max_order specifies the order where we begin to stop considering the 2761 * number of objects in a slab as critical. If we reach slub_max_order then 2762 * we try to keep the page order as low as possible. So we accept more waste 2763 * of space in favor of a small page order. 2764 * 2765 * Higher order allocations also allow the placement of more objects in a 2766 * slab and thereby reduce object handling overhead. If the user has 2767 * requested a higher mininum order then we start with that one instead of 2768 * the smallest order which will fit the object. 2769 */ 2770 static inline int slab_order(int size, int min_objects, 2771 int max_order, int fract_leftover, int reserved) 2772 { 2773 int order; 2774 int rem; 2775 int min_order = slub_min_order; 2776 2777 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 2778 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 2779 2780 for (order = max(min_order, 2781 fls(min_objects * size - 1) - PAGE_SHIFT); 2782 order <= max_order; order++) { 2783 2784 unsigned long slab_size = PAGE_SIZE << order; 2785 2786 if (slab_size < min_objects * size + reserved) 2787 continue; 2788 2789 rem = (slab_size - reserved) % size; 2790 2791 if (rem <= slab_size / fract_leftover) 2792 break; 2793 2794 } 2795 2796 return order; 2797 } 2798 2799 static inline int calculate_order(int size, int reserved) 2800 { 2801 int order; 2802 int min_objects; 2803 int fraction; 2804 int max_objects; 2805 2806 /* 2807 * Attempt to find best configuration for a slab. This 2808 * works by first attempting to generate a layout with 2809 * the best configuration and backing off gradually. 2810 * 2811 * First we reduce the acceptable waste in a slab. Then 2812 * we reduce the minimum objects required in a slab. 2813 */ 2814 min_objects = slub_min_objects; 2815 if (!min_objects) 2816 min_objects = 4 * (fls(nr_cpu_ids) + 1); 2817 max_objects = order_objects(slub_max_order, size, reserved); 2818 min_objects = min(min_objects, max_objects); 2819 2820 while (min_objects > 1) { 2821 fraction = 16; 2822 while (fraction >= 4) { 2823 order = slab_order(size, min_objects, 2824 slub_max_order, fraction, reserved); 2825 if (order <= slub_max_order) 2826 return order; 2827 fraction /= 2; 2828 } 2829 min_objects--; 2830 } 2831 2832 /* 2833 * We were unable to place multiple objects in a slab. Now 2834 * lets see if we can place a single object there. 2835 */ 2836 order = slab_order(size, 1, slub_max_order, 1, reserved); 2837 if (order <= slub_max_order) 2838 return order; 2839 2840 /* 2841 * Doh this slab cannot be placed using slub_max_order. 2842 */ 2843 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 2844 if (order < MAX_ORDER) 2845 return order; 2846 return -ENOSYS; 2847 } 2848 2849 static void 2850 init_kmem_cache_node(struct kmem_cache_node *n) 2851 { 2852 n->nr_partial = 0; 2853 spin_lock_init(&n->list_lock); 2854 INIT_LIST_HEAD(&n->partial); 2855 #ifdef CONFIG_SLUB_DEBUG 2856 atomic_long_set(&n->nr_slabs, 0); 2857 atomic_long_set(&n->total_objects, 0); 2858 INIT_LIST_HEAD(&n->full); 2859 #endif 2860 } 2861 2862 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 2863 { 2864 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 2865 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 2866 2867 /* 2868 * Must align to double word boundary for the double cmpxchg 2869 * instructions to work; see __pcpu_double_call_return_bool(). 2870 */ 2871 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2872 2 * sizeof(void *)); 2873 2874 if (!s->cpu_slab) 2875 return 0; 2876 2877 init_kmem_cache_cpus(s); 2878 2879 return 1; 2880 } 2881 2882 static struct kmem_cache *kmem_cache_node; 2883 2884 /* 2885 * No kmalloc_node yet so do it by hand. We know that this is the first 2886 * slab on the node for this slabcache. There are no concurrent accesses 2887 * possible. 2888 * 2889 * Note that this function only works on the kmem_cache_node 2890 * when allocating for the kmem_cache_node. This is used for bootstrapping 2891 * memory on a fresh node that has no slab structures yet. 2892 */ 2893 static void early_kmem_cache_node_alloc(int node) 2894 { 2895 struct page *page; 2896 struct kmem_cache_node *n; 2897 2898 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2899 2900 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 2901 2902 BUG_ON(!page); 2903 if (page_to_nid(page) != node) { 2904 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 2905 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 2906 } 2907 2908 n = page->freelist; 2909 BUG_ON(!n); 2910 page->freelist = get_freepointer(kmem_cache_node, n); 2911 page->inuse = 1; 2912 page->frozen = 0; 2913 kmem_cache_node->node[node] = n; 2914 #ifdef CONFIG_SLUB_DEBUG 2915 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 2916 init_tracking(kmem_cache_node, n); 2917 #endif 2918 init_kmem_cache_node(n); 2919 inc_slabs_node(kmem_cache_node, node, page->objects); 2920 2921 /* 2922 * No locks need to be taken here as it has just been 2923 * initialized and there is no concurrent access. 2924 */ 2925 __add_partial(n, page, DEACTIVATE_TO_HEAD); 2926 } 2927 2928 static void free_kmem_cache_nodes(struct kmem_cache *s) 2929 { 2930 int node; 2931 2932 for_each_node_state(node, N_NORMAL_MEMORY) { 2933 struct kmem_cache_node *n = s->node[node]; 2934 2935 if (n) 2936 kmem_cache_free(kmem_cache_node, n); 2937 2938 s->node[node] = NULL; 2939 } 2940 } 2941 2942 static int init_kmem_cache_nodes(struct kmem_cache *s) 2943 { 2944 int node; 2945 2946 for_each_node_state(node, N_NORMAL_MEMORY) { 2947 struct kmem_cache_node *n; 2948 2949 if (slab_state == DOWN) { 2950 early_kmem_cache_node_alloc(node); 2951 continue; 2952 } 2953 n = kmem_cache_alloc_node(kmem_cache_node, 2954 GFP_KERNEL, node); 2955 2956 if (!n) { 2957 free_kmem_cache_nodes(s); 2958 return 0; 2959 } 2960 2961 s->node[node] = n; 2962 init_kmem_cache_node(n); 2963 } 2964 return 1; 2965 } 2966 2967 static void set_min_partial(struct kmem_cache *s, unsigned long min) 2968 { 2969 if (min < MIN_PARTIAL) 2970 min = MIN_PARTIAL; 2971 else if (min > MAX_PARTIAL) 2972 min = MAX_PARTIAL; 2973 s->min_partial = min; 2974 } 2975 2976 /* 2977 * calculate_sizes() determines the order and the distribution of data within 2978 * a slab object. 2979 */ 2980 static int calculate_sizes(struct kmem_cache *s, int forced_order) 2981 { 2982 unsigned long flags = s->flags; 2983 unsigned long size = s->object_size; 2984 int order; 2985 2986 /* 2987 * Round up object size to the next word boundary. We can only 2988 * place the free pointer at word boundaries and this determines 2989 * the possible location of the free pointer. 2990 */ 2991 size = ALIGN(size, sizeof(void *)); 2992 2993 #ifdef CONFIG_SLUB_DEBUG 2994 /* 2995 * Determine if we can poison the object itself. If the user of 2996 * the slab may touch the object after free or before allocation 2997 * then we should never poison the object itself. 2998 */ 2999 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3000 !s->ctor) 3001 s->flags |= __OBJECT_POISON; 3002 else 3003 s->flags &= ~__OBJECT_POISON; 3004 3005 3006 /* 3007 * If we are Redzoning then check if there is some space between the 3008 * end of the object and the free pointer. If not then add an 3009 * additional word to have some bytes to store Redzone information. 3010 */ 3011 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3012 size += sizeof(void *); 3013 #endif 3014 3015 /* 3016 * With that we have determined the number of bytes in actual use 3017 * by the object. This is the potential offset to the free pointer. 3018 */ 3019 s->inuse = size; 3020 3021 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3022 s->ctor)) { 3023 /* 3024 * Relocate free pointer after the object if it is not 3025 * permitted to overwrite the first word of the object on 3026 * kmem_cache_free. 3027 * 3028 * This is the case if we do RCU, have a constructor or 3029 * destructor or are poisoning the objects. 3030 */ 3031 s->offset = size; 3032 size += sizeof(void *); 3033 } 3034 3035 #ifdef CONFIG_SLUB_DEBUG 3036 if (flags & SLAB_STORE_USER) 3037 /* 3038 * Need to store information about allocs and frees after 3039 * the object. 3040 */ 3041 size += 2 * sizeof(struct track); 3042 3043 if (flags & SLAB_RED_ZONE) 3044 /* 3045 * Add some empty padding so that we can catch 3046 * overwrites from earlier objects rather than let 3047 * tracking information or the free pointer be 3048 * corrupted if a user writes before the start 3049 * of the object. 3050 */ 3051 size += sizeof(void *); 3052 #endif 3053 3054 /* 3055 * SLUB stores one object immediately after another beginning from 3056 * offset 0. In order to align the objects we have to simply size 3057 * each object to conform to the alignment. 3058 */ 3059 size = ALIGN(size, s->align); 3060 s->size = size; 3061 if (forced_order >= 0) 3062 order = forced_order; 3063 else 3064 order = calculate_order(size, s->reserved); 3065 3066 if (order < 0) 3067 return 0; 3068 3069 s->allocflags = 0; 3070 if (order) 3071 s->allocflags |= __GFP_COMP; 3072 3073 if (s->flags & SLAB_CACHE_DMA) 3074 s->allocflags |= GFP_DMA; 3075 3076 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3077 s->allocflags |= __GFP_RECLAIMABLE; 3078 3079 /* 3080 * Determine the number of objects per slab 3081 */ 3082 s->oo = oo_make(order, size, s->reserved); 3083 s->min = oo_make(get_order(size), size, s->reserved); 3084 if (oo_objects(s->oo) > oo_objects(s->max)) 3085 s->max = s->oo; 3086 3087 return !!oo_objects(s->oo); 3088 } 3089 3090 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3091 { 3092 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3093 s->reserved = 0; 3094 3095 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3096 s->reserved = sizeof(struct rcu_head); 3097 3098 if (!calculate_sizes(s, -1)) 3099 goto error; 3100 if (disable_higher_order_debug) { 3101 /* 3102 * Disable debugging flags that store metadata if the min slab 3103 * order increased. 3104 */ 3105 if (get_order(s->size) > get_order(s->object_size)) { 3106 s->flags &= ~DEBUG_METADATA_FLAGS; 3107 s->offset = 0; 3108 if (!calculate_sizes(s, -1)) 3109 goto error; 3110 } 3111 } 3112 3113 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3114 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3115 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0) 3116 /* Enable fast mode */ 3117 s->flags |= __CMPXCHG_DOUBLE; 3118 #endif 3119 3120 /* 3121 * The larger the object size is, the more pages we want on the partial 3122 * list to avoid pounding the page allocator excessively. 3123 */ 3124 set_min_partial(s, ilog2(s->size) / 2); 3125 3126 /* 3127 * cpu_partial determined the maximum number of objects kept in the 3128 * per cpu partial lists of a processor. 3129 * 3130 * Per cpu partial lists mainly contain slabs that just have one 3131 * object freed. If they are used for allocation then they can be 3132 * filled up again with minimal effort. The slab will never hit the 3133 * per node partial lists and therefore no locking will be required. 3134 * 3135 * This setting also determines 3136 * 3137 * A) The number of objects from per cpu partial slabs dumped to the 3138 * per node list when we reach the limit. 3139 * B) The number of objects in cpu partial slabs to extract from the 3140 * per node list when we run out of per cpu objects. We only fetch 3141 * 50% to keep some capacity around for frees. 3142 */ 3143 if (!kmem_cache_has_cpu_partial(s)) 3144 s->cpu_partial = 0; 3145 else if (s->size >= PAGE_SIZE) 3146 s->cpu_partial = 2; 3147 else if (s->size >= 1024) 3148 s->cpu_partial = 6; 3149 else if (s->size >= 256) 3150 s->cpu_partial = 13; 3151 else 3152 s->cpu_partial = 30; 3153 3154 #ifdef CONFIG_NUMA 3155 s->remote_node_defrag_ratio = 1000; 3156 #endif 3157 if (!init_kmem_cache_nodes(s)) 3158 goto error; 3159 3160 if (alloc_kmem_cache_cpus(s)) 3161 return 0; 3162 3163 free_kmem_cache_nodes(s); 3164 error: 3165 if (flags & SLAB_PANIC) 3166 panic("Cannot create slab %s size=%lu realsize=%u " 3167 "order=%u offset=%u flags=%lx\n", 3168 s->name, (unsigned long)s->size, s->size, 3169 oo_order(s->oo), s->offset, flags); 3170 return -EINVAL; 3171 } 3172 3173 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3174 const char *text) 3175 { 3176 #ifdef CONFIG_SLUB_DEBUG 3177 void *addr = page_address(page); 3178 void *p; 3179 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3180 sizeof(long), GFP_ATOMIC); 3181 if (!map) 3182 return; 3183 slab_err(s, page, text, s->name); 3184 slab_lock(page); 3185 3186 get_map(s, page, map); 3187 for_each_object(p, s, addr, page->objects) { 3188 3189 if (!test_bit(slab_index(p, s, addr), map)) { 3190 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3191 print_tracking(s, p); 3192 } 3193 } 3194 slab_unlock(page); 3195 kfree(map); 3196 #endif 3197 } 3198 3199 /* 3200 * Attempt to free all partial slabs on a node. 3201 * This is called from kmem_cache_close(). We must be the last thread 3202 * using the cache and therefore we do not need to lock anymore. 3203 */ 3204 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3205 { 3206 struct page *page, *h; 3207 3208 list_for_each_entry_safe(page, h, &n->partial, lru) { 3209 if (!page->inuse) { 3210 __remove_partial(n, page); 3211 discard_slab(s, page); 3212 } else { 3213 list_slab_objects(s, page, 3214 "Objects remaining in %s on kmem_cache_close()"); 3215 } 3216 } 3217 } 3218 3219 /* 3220 * Release all resources used by a slab cache. 3221 */ 3222 static inline int kmem_cache_close(struct kmem_cache *s) 3223 { 3224 int node; 3225 3226 flush_all(s); 3227 /* Attempt to free all objects */ 3228 for_each_node_state(node, N_NORMAL_MEMORY) { 3229 struct kmem_cache_node *n = get_node(s, node); 3230 3231 free_partial(s, n); 3232 if (n->nr_partial || slabs_node(s, node)) 3233 return 1; 3234 } 3235 free_percpu(s->cpu_slab); 3236 free_kmem_cache_nodes(s); 3237 return 0; 3238 } 3239 3240 int __kmem_cache_shutdown(struct kmem_cache *s) 3241 { 3242 return kmem_cache_close(s); 3243 } 3244 3245 /******************************************************************** 3246 * Kmalloc subsystem 3247 *******************************************************************/ 3248 3249 static int __init setup_slub_min_order(char *str) 3250 { 3251 get_option(&str, &slub_min_order); 3252 3253 return 1; 3254 } 3255 3256 __setup("slub_min_order=", setup_slub_min_order); 3257 3258 static int __init setup_slub_max_order(char *str) 3259 { 3260 get_option(&str, &slub_max_order); 3261 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3262 3263 return 1; 3264 } 3265 3266 __setup("slub_max_order=", setup_slub_max_order); 3267 3268 static int __init setup_slub_min_objects(char *str) 3269 { 3270 get_option(&str, &slub_min_objects); 3271 3272 return 1; 3273 } 3274 3275 __setup("slub_min_objects=", setup_slub_min_objects); 3276 3277 static int __init setup_slub_nomerge(char *str) 3278 { 3279 slub_nomerge = 1; 3280 return 1; 3281 } 3282 3283 __setup("slub_nomerge", setup_slub_nomerge); 3284 3285 void *__kmalloc(size_t size, gfp_t flags) 3286 { 3287 struct kmem_cache *s; 3288 void *ret; 3289 3290 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3291 return kmalloc_large(size, flags); 3292 3293 s = kmalloc_slab(size, flags); 3294 3295 if (unlikely(ZERO_OR_NULL_PTR(s))) 3296 return s; 3297 3298 ret = slab_alloc(s, flags, _RET_IP_); 3299 3300 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3301 3302 return ret; 3303 } 3304 EXPORT_SYMBOL(__kmalloc); 3305 3306 #ifdef CONFIG_NUMA 3307 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3308 { 3309 struct page *page; 3310 void *ptr = NULL; 3311 3312 flags |= __GFP_COMP | __GFP_NOTRACK; 3313 page = alloc_kmem_pages_node(node, flags, get_order(size)); 3314 if (page) 3315 ptr = page_address(page); 3316 3317 kmalloc_large_node_hook(ptr, size, flags); 3318 return ptr; 3319 } 3320 3321 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3322 { 3323 struct kmem_cache *s; 3324 void *ret; 3325 3326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3327 ret = kmalloc_large_node(size, flags, node); 3328 3329 trace_kmalloc_node(_RET_IP_, ret, 3330 size, PAGE_SIZE << get_order(size), 3331 flags, node); 3332 3333 return ret; 3334 } 3335 3336 s = kmalloc_slab(size, flags); 3337 3338 if (unlikely(ZERO_OR_NULL_PTR(s))) 3339 return s; 3340 3341 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3342 3343 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3344 3345 return ret; 3346 } 3347 EXPORT_SYMBOL(__kmalloc_node); 3348 #endif 3349 3350 size_t ksize(const void *object) 3351 { 3352 struct page *page; 3353 3354 if (unlikely(object == ZERO_SIZE_PTR)) 3355 return 0; 3356 3357 page = virt_to_head_page(object); 3358 3359 if (unlikely(!PageSlab(page))) { 3360 WARN_ON(!PageCompound(page)); 3361 return PAGE_SIZE << compound_order(page); 3362 } 3363 3364 return slab_ksize(page->slab_cache); 3365 } 3366 EXPORT_SYMBOL(ksize); 3367 3368 void kfree(const void *x) 3369 { 3370 struct page *page; 3371 void *object = (void *)x; 3372 3373 trace_kfree(_RET_IP_, x); 3374 3375 if (unlikely(ZERO_OR_NULL_PTR(x))) 3376 return; 3377 3378 page = virt_to_head_page(x); 3379 if (unlikely(!PageSlab(page))) { 3380 BUG_ON(!PageCompound(page)); 3381 kfree_hook(x); 3382 __free_kmem_pages(page, compound_order(page)); 3383 return; 3384 } 3385 slab_free(page->slab_cache, page, object, _RET_IP_); 3386 } 3387 EXPORT_SYMBOL(kfree); 3388 3389 /* 3390 * kmem_cache_shrink removes empty slabs from the partial lists and sorts 3391 * the remaining slabs by the number of items in use. The slabs with the 3392 * most items in use come first. New allocations will then fill those up 3393 * and thus they can be removed from the partial lists. 3394 * 3395 * The slabs with the least items are placed last. This results in them 3396 * being allocated from last increasing the chance that the last objects 3397 * are freed in them. 3398 */ 3399 int __kmem_cache_shrink(struct kmem_cache *s) 3400 { 3401 int node; 3402 int i; 3403 struct kmem_cache_node *n; 3404 struct page *page; 3405 struct page *t; 3406 int objects = oo_objects(s->max); 3407 struct list_head *slabs_by_inuse = 3408 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); 3409 unsigned long flags; 3410 3411 if (!slabs_by_inuse) 3412 return -ENOMEM; 3413 3414 flush_all(s); 3415 for_each_node_state(node, N_NORMAL_MEMORY) { 3416 n = get_node(s, node); 3417 3418 if (!n->nr_partial) 3419 continue; 3420 3421 for (i = 0; i < objects; i++) 3422 INIT_LIST_HEAD(slabs_by_inuse + i); 3423 3424 spin_lock_irqsave(&n->list_lock, flags); 3425 3426 /* 3427 * Build lists indexed by the items in use in each slab. 3428 * 3429 * Note that concurrent frees may occur while we hold the 3430 * list_lock. page->inuse here is the upper limit. 3431 */ 3432 list_for_each_entry_safe(page, t, &n->partial, lru) { 3433 list_move(&page->lru, slabs_by_inuse + page->inuse); 3434 if (!page->inuse) 3435 n->nr_partial--; 3436 } 3437 3438 /* 3439 * Rebuild the partial list with the slabs filled up most 3440 * first and the least used slabs at the end. 3441 */ 3442 for (i = objects - 1; i > 0; i--) 3443 list_splice(slabs_by_inuse + i, n->partial.prev); 3444 3445 spin_unlock_irqrestore(&n->list_lock, flags); 3446 3447 /* Release empty slabs */ 3448 list_for_each_entry_safe(page, t, slabs_by_inuse, lru) 3449 discard_slab(s, page); 3450 } 3451 3452 kfree(slabs_by_inuse); 3453 return 0; 3454 } 3455 3456 static int slab_mem_going_offline_callback(void *arg) 3457 { 3458 struct kmem_cache *s; 3459 3460 mutex_lock(&slab_mutex); 3461 list_for_each_entry(s, &slab_caches, list) 3462 __kmem_cache_shrink(s); 3463 mutex_unlock(&slab_mutex); 3464 3465 return 0; 3466 } 3467 3468 static void slab_mem_offline_callback(void *arg) 3469 { 3470 struct kmem_cache_node *n; 3471 struct kmem_cache *s; 3472 struct memory_notify *marg = arg; 3473 int offline_node; 3474 3475 offline_node = marg->status_change_nid_normal; 3476 3477 /* 3478 * If the node still has available memory. we need kmem_cache_node 3479 * for it yet. 3480 */ 3481 if (offline_node < 0) 3482 return; 3483 3484 mutex_lock(&slab_mutex); 3485 list_for_each_entry(s, &slab_caches, list) { 3486 n = get_node(s, offline_node); 3487 if (n) { 3488 /* 3489 * if n->nr_slabs > 0, slabs still exist on the node 3490 * that is going down. We were unable to free them, 3491 * and offline_pages() function shouldn't call this 3492 * callback. So, we must fail. 3493 */ 3494 BUG_ON(slabs_node(s, offline_node)); 3495 3496 s->node[offline_node] = NULL; 3497 kmem_cache_free(kmem_cache_node, n); 3498 } 3499 } 3500 mutex_unlock(&slab_mutex); 3501 } 3502 3503 static int slab_mem_going_online_callback(void *arg) 3504 { 3505 struct kmem_cache_node *n; 3506 struct kmem_cache *s; 3507 struct memory_notify *marg = arg; 3508 int nid = marg->status_change_nid_normal; 3509 int ret = 0; 3510 3511 /* 3512 * If the node's memory is already available, then kmem_cache_node is 3513 * already created. Nothing to do. 3514 */ 3515 if (nid < 0) 3516 return 0; 3517 3518 /* 3519 * We are bringing a node online. No memory is available yet. We must 3520 * allocate a kmem_cache_node structure in order to bring the node 3521 * online. 3522 */ 3523 mutex_lock(&slab_mutex); 3524 list_for_each_entry(s, &slab_caches, list) { 3525 /* 3526 * XXX: kmem_cache_alloc_node will fallback to other nodes 3527 * since memory is not yet available from the node that 3528 * is brought up. 3529 */ 3530 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 3531 if (!n) { 3532 ret = -ENOMEM; 3533 goto out; 3534 } 3535 init_kmem_cache_node(n); 3536 s->node[nid] = n; 3537 } 3538 out: 3539 mutex_unlock(&slab_mutex); 3540 return ret; 3541 } 3542 3543 static int slab_memory_callback(struct notifier_block *self, 3544 unsigned long action, void *arg) 3545 { 3546 int ret = 0; 3547 3548 switch (action) { 3549 case MEM_GOING_ONLINE: 3550 ret = slab_mem_going_online_callback(arg); 3551 break; 3552 case MEM_GOING_OFFLINE: 3553 ret = slab_mem_going_offline_callback(arg); 3554 break; 3555 case MEM_OFFLINE: 3556 case MEM_CANCEL_ONLINE: 3557 slab_mem_offline_callback(arg); 3558 break; 3559 case MEM_ONLINE: 3560 case MEM_CANCEL_OFFLINE: 3561 break; 3562 } 3563 if (ret) 3564 ret = notifier_from_errno(ret); 3565 else 3566 ret = NOTIFY_OK; 3567 return ret; 3568 } 3569 3570 static struct notifier_block slab_memory_callback_nb = { 3571 .notifier_call = slab_memory_callback, 3572 .priority = SLAB_CALLBACK_PRI, 3573 }; 3574 3575 /******************************************************************** 3576 * Basic setup of slabs 3577 *******************************************************************/ 3578 3579 /* 3580 * Used for early kmem_cache structures that were allocated using 3581 * the page allocator. Allocate them properly then fix up the pointers 3582 * that may be pointing to the wrong kmem_cache structure. 3583 */ 3584 3585 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 3586 { 3587 int node; 3588 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 3589 3590 memcpy(s, static_cache, kmem_cache->object_size); 3591 3592 /* 3593 * This runs very early, and only the boot processor is supposed to be 3594 * up. Even if it weren't true, IRQs are not up so we couldn't fire 3595 * IPIs around. 3596 */ 3597 __flush_cpu_slab(s, smp_processor_id()); 3598 for_each_node_state(node, N_NORMAL_MEMORY) { 3599 struct kmem_cache_node *n = get_node(s, node); 3600 struct page *p; 3601 3602 if (n) { 3603 list_for_each_entry(p, &n->partial, lru) 3604 p->slab_cache = s; 3605 3606 #ifdef CONFIG_SLUB_DEBUG 3607 list_for_each_entry(p, &n->full, lru) 3608 p->slab_cache = s; 3609 #endif 3610 } 3611 } 3612 list_add(&s->list, &slab_caches); 3613 return s; 3614 } 3615 3616 void __init kmem_cache_init(void) 3617 { 3618 static __initdata struct kmem_cache boot_kmem_cache, 3619 boot_kmem_cache_node; 3620 3621 if (debug_guardpage_minorder()) 3622 slub_max_order = 0; 3623 3624 kmem_cache_node = &boot_kmem_cache_node; 3625 kmem_cache = &boot_kmem_cache; 3626 3627 create_boot_cache(kmem_cache_node, "kmem_cache_node", 3628 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 3629 3630 register_hotmemory_notifier(&slab_memory_callback_nb); 3631 3632 /* Able to allocate the per node structures */ 3633 slab_state = PARTIAL; 3634 3635 create_boot_cache(kmem_cache, "kmem_cache", 3636 offsetof(struct kmem_cache, node) + 3637 nr_node_ids * sizeof(struct kmem_cache_node *), 3638 SLAB_HWCACHE_ALIGN); 3639 3640 kmem_cache = bootstrap(&boot_kmem_cache); 3641 3642 /* 3643 * Allocate kmem_cache_node properly from the kmem_cache slab. 3644 * kmem_cache_node is separately allocated so no need to 3645 * update any list pointers. 3646 */ 3647 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 3648 3649 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 3650 create_kmalloc_caches(0); 3651 3652 #ifdef CONFIG_SMP 3653 register_cpu_notifier(&slab_notifier); 3654 #endif 3655 3656 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 3657 cache_line_size(), 3658 slub_min_order, slub_max_order, slub_min_objects, 3659 nr_cpu_ids, nr_node_ids); 3660 } 3661 3662 void __init kmem_cache_init_late(void) 3663 { 3664 } 3665 3666 /* 3667 * Find a mergeable slab cache 3668 */ 3669 static int slab_unmergeable(struct kmem_cache *s) 3670 { 3671 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) 3672 return 1; 3673 3674 if (!is_root_cache(s)) 3675 return 1; 3676 3677 if (s->ctor) 3678 return 1; 3679 3680 /* 3681 * We may have set a slab to be unmergeable during bootstrap. 3682 */ 3683 if (s->refcount < 0) 3684 return 1; 3685 3686 return 0; 3687 } 3688 3689 static struct kmem_cache *find_mergeable(size_t size, size_t align, 3690 unsigned long flags, const char *name, void (*ctor)(void *)) 3691 { 3692 struct kmem_cache *s; 3693 3694 if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) 3695 return NULL; 3696 3697 if (ctor) 3698 return NULL; 3699 3700 size = ALIGN(size, sizeof(void *)); 3701 align = calculate_alignment(flags, align, size); 3702 size = ALIGN(size, align); 3703 flags = kmem_cache_flags(size, flags, name, NULL); 3704 3705 list_for_each_entry(s, &slab_caches, list) { 3706 if (slab_unmergeable(s)) 3707 continue; 3708 3709 if (size > s->size) 3710 continue; 3711 3712 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) 3713 continue; 3714 /* 3715 * Check if alignment is compatible. 3716 * Courtesy of Adrian Drzewiecki 3717 */ 3718 if ((s->size & ~(align - 1)) != s->size) 3719 continue; 3720 3721 if (s->size - size >= sizeof(void *)) 3722 continue; 3723 3724 return s; 3725 } 3726 return NULL; 3727 } 3728 3729 struct kmem_cache * 3730 __kmem_cache_alias(const char *name, size_t size, size_t align, 3731 unsigned long flags, void (*ctor)(void *)) 3732 { 3733 struct kmem_cache *s; 3734 3735 s = find_mergeable(size, align, flags, name, ctor); 3736 if (s) { 3737 int i; 3738 struct kmem_cache *c; 3739 3740 s->refcount++; 3741 3742 /* 3743 * Adjust the object sizes so that we clear 3744 * the complete object on kzalloc. 3745 */ 3746 s->object_size = max(s->object_size, (int)size); 3747 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 3748 3749 for_each_memcg_cache_index(i) { 3750 c = cache_from_memcg_idx(s, i); 3751 if (!c) 3752 continue; 3753 c->object_size = s->object_size; 3754 c->inuse = max_t(int, c->inuse, 3755 ALIGN(size, sizeof(void *))); 3756 } 3757 3758 if (sysfs_slab_alias(s, name)) { 3759 s->refcount--; 3760 s = NULL; 3761 } 3762 } 3763 3764 return s; 3765 } 3766 3767 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 3768 { 3769 int err; 3770 3771 err = kmem_cache_open(s, flags); 3772 if (err) 3773 return err; 3774 3775 /* Mutex is not taken during early boot */ 3776 if (slab_state <= UP) 3777 return 0; 3778 3779 memcg_propagate_slab_attrs(s); 3780 err = sysfs_slab_add(s); 3781 if (err) 3782 kmem_cache_close(s); 3783 3784 return err; 3785 } 3786 3787 #ifdef CONFIG_SMP 3788 /* 3789 * Use the cpu notifier to insure that the cpu slabs are flushed when 3790 * necessary. 3791 */ 3792 static int slab_cpuup_callback(struct notifier_block *nfb, 3793 unsigned long action, void *hcpu) 3794 { 3795 long cpu = (long)hcpu; 3796 struct kmem_cache *s; 3797 unsigned long flags; 3798 3799 switch (action) { 3800 case CPU_UP_CANCELED: 3801 case CPU_UP_CANCELED_FROZEN: 3802 case CPU_DEAD: 3803 case CPU_DEAD_FROZEN: 3804 mutex_lock(&slab_mutex); 3805 list_for_each_entry(s, &slab_caches, list) { 3806 local_irq_save(flags); 3807 __flush_cpu_slab(s, cpu); 3808 local_irq_restore(flags); 3809 } 3810 mutex_unlock(&slab_mutex); 3811 break; 3812 default: 3813 break; 3814 } 3815 return NOTIFY_OK; 3816 } 3817 3818 static struct notifier_block slab_notifier = { 3819 .notifier_call = slab_cpuup_callback 3820 }; 3821 3822 #endif 3823 3824 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 3825 { 3826 struct kmem_cache *s; 3827 void *ret; 3828 3829 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3830 return kmalloc_large(size, gfpflags); 3831 3832 s = kmalloc_slab(size, gfpflags); 3833 3834 if (unlikely(ZERO_OR_NULL_PTR(s))) 3835 return s; 3836 3837 ret = slab_alloc(s, gfpflags, caller); 3838 3839 /* Honor the call site pointer we received. */ 3840 trace_kmalloc(caller, ret, size, s->size, gfpflags); 3841 3842 return ret; 3843 } 3844 3845 #ifdef CONFIG_NUMA 3846 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 3847 int node, unsigned long caller) 3848 { 3849 struct kmem_cache *s; 3850 void *ret; 3851 3852 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3853 ret = kmalloc_large_node(size, gfpflags, node); 3854 3855 trace_kmalloc_node(caller, ret, 3856 size, PAGE_SIZE << get_order(size), 3857 gfpflags, node); 3858 3859 return ret; 3860 } 3861 3862 s = kmalloc_slab(size, gfpflags); 3863 3864 if (unlikely(ZERO_OR_NULL_PTR(s))) 3865 return s; 3866 3867 ret = slab_alloc_node(s, gfpflags, node, caller); 3868 3869 /* Honor the call site pointer we received. */ 3870 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 3871 3872 return ret; 3873 } 3874 #endif 3875 3876 #ifdef CONFIG_SYSFS 3877 static int count_inuse(struct page *page) 3878 { 3879 return page->inuse; 3880 } 3881 3882 static int count_total(struct page *page) 3883 { 3884 return page->objects; 3885 } 3886 #endif 3887 3888 #ifdef CONFIG_SLUB_DEBUG 3889 static int validate_slab(struct kmem_cache *s, struct page *page, 3890 unsigned long *map) 3891 { 3892 void *p; 3893 void *addr = page_address(page); 3894 3895 if (!check_slab(s, page) || 3896 !on_freelist(s, page, NULL)) 3897 return 0; 3898 3899 /* Now we know that a valid freelist exists */ 3900 bitmap_zero(map, page->objects); 3901 3902 get_map(s, page, map); 3903 for_each_object(p, s, addr, page->objects) { 3904 if (test_bit(slab_index(p, s, addr), map)) 3905 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 3906 return 0; 3907 } 3908 3909 for_each_object(p, s, addr, page->objects) 3910 if (!test_bit(slab_index(p, s, addr), map)) 3911 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 3912 return 0; 3913 return 1; 3914 } 3915 3916 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 3917 unsigned long *map) 3918 { 3919 slab_lock(page); 3920 validate_slab(s, page, map); 3921 slab_unlock(page); 3922 } 3923 3924 static int validate_slab_node(struct kmem_cache *s, 3925 struct kmem_cache_node *n, unsigned long *map) 3926 { 3927 unsigned long count = 0; 3928 struct page *page; 3929 unsigned long flags; 3930 3931 spin_lock_irqsave(&n->list_lock, flags); 3932 3933 list_for_each_entry(page, &n->partial, lru) { 3934 validate_slab_slab(s, page, map); 3935 count++; 3936 } 3937 if (count != n->nr_partial) 3938 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 3939 s->name, count, n->nr_partial); 3940 3941 if (!(s->flags & SLAB_STORE_USER)) 3942 goto out; 3943 3944 list_for_each_entry(page, &n->full, lru) { 3945 validate_slab_slab(s, page, map); 3946 count++; 3947 } 3948 if (count != atomic_long_read(&n->nr_slabs)) 3949 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 3950 s->name, count, atomic_long_read(&n->nr_slabs)); 3951 3952 out: 3953 spin_unlock_irqrestore(&n->list_lock, flags); 3954 return count; 3955 } 3956 3957 static long validate_slab_cache(struct kmem_cache *s) 3958 { 3959 int node; 3960 unsigned long count = 0; 3961 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 3962 sizeof(unsigned long), GFP_KERNEL); 3963 3964 if (!map) 3965 return -ENOMEM; 3966 3967 flush_all(s); 3968 for_each_node_state(node, N_NORMAL_MEMORY) { 3969 struct kmem_cache_node *n = get_node(s, node); 3970 3971 count += validate_slab_node(s, n, map); 3972 } 3973 kfree(map); 3974 return count; 3975 } 3976 /* 3977 * Generate lists of code addresses where slabcache objects are allocated 3978 * and freed. 3979 */ 3980 3981 struct location { 3982 unsigned long count; 3983 unsigned long addr; 3984 long long sum_time; 3985 long min_time; 3986 long max_time; 3987 long min_pid; 3988 long max_pid; 3989 DECLARE_BITMAP(cpus, NR_CPUS); 3990 nodemask_t nodes; 3991 }; 3992 3993 struct loc_track { 3994 unsigned long max; 3995 unsigned long count; 3996 struct location *loc; 3997 }; 3998 3999 static void free_loc_track(struct loc_track *t) 4000 { 4001 if (t->max) 4002 free_pages((unsigned long)t->loc, 4003 get_order(sizeof(struct location) * t->max)); 4004 } 4005 4006 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4007 { 4008 struct location *l; 4009 int order; 4010 4011 order = get_order(sizeof(struct location) * max); 4012 4013 l = (void *)__get_free_pages(flags, order); 4014 if (!l) 4015 return 0; 4016 4017 if (t->count) { 4018 memcpy(l, t->loc, sizeof(struct location) * t->count); 4019 free_loc_track(t); 4020 } 4021 t->max = max; 4022 t->loc = l; 4023 return 1; 4024 } 4025 4026 static int add_location(struct loc_track *t, struct kmem_cache *s, 4027 const struct track *track) 4028 { 4029 long start, end, pos; 4030 struct location *l; 4031 unsigned long caddr; 4032 unsigned long age = jiffies - track->when; 4033 4034 start = -1; 4035 end = t->count; 4036 4037 for ( ; ; ) { 4038 pos = start + (end - start + 1) / 2; 4039 4040 /* 4041 * There is nothing at "end". If we end up there 4042 * we need to add something to before end. 4043 */ 4044 if (pos == end) 4045 break; 4046 4047 caddr = t->loc[pos].addr; 4048 if (track->addr == caddr) { 4049 4050 l = &t->loc[pos]; 4051 l->count++; 4052 if (track->when) { 4053 l->sum_time += age; 4054 if (age < l->min_time) 4055 l->min_time = age; 4056 if (age > l->max_time) 4057 l->max_time = age; 4058 4059 if (track->pid < l->min_pid) 4060 l->min_pid = track->pid; 4061 if (track->pid > l->max_pid) 4062 l->max_pid = track->pid; 4063 4064 cpumask_set_cpu(track->cpu, 4065 to_cpumask(l->cpus)); 4066 } 4067 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4068 return 1; 4069 } 4070 4071 if (track->addr < caddr) 4072 end = pos; 4073 else 4074 start = pos; 4075 } 4076 4077 /* 4078 * Not found. Insert new tracking element. 4079 */ 4080 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4081 return 0; 4082 4083 l = t->loc + pos; 4084 if (pos < t->count) 4085 memmove(l + 1, l, 4086 (t->count - pos) * sizeof(struct location)); 4087 t->count++; 4088 l->count = 1; 4089 l->addr = track->addr; 4090 l->sum_time = age; 4091 l->min_time = age; 4092 l->max_time = age; 4093 l->min_pid = track->pid; 4094 l->max_pid = track->pid; 4095 cpumask_clear(to_cpumask(l->cpus)); 4096 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4097 nodes_clear(l->nodes); 4098 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4099 return 1; 4100 } 4101 4102 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4103 struct page *page, enum track_item alloc, 4104 unsigned long *map) 4105 { 4106 void *addr = page_address(page); 4107 void *p; 4108 4109 bitmap_zero(map, page->objects); 4110 get_map(s, page, map); 4111 4112 for_each_object(p, s, addr, page->objects) 4113 if (!test_bit(slab_index(p, s, addr), map)) 4114 add_location(t, s, get_track(s, p, alloc)); 4115 } 4116 4117 static int list_locations(struct kmem_cache *s, char *buf, 4118 enum track_item alloc) 4119 { 4120 int len = 0; 4121 unsigned long i; 4122 struct loc_track t = { 0, 0, NULL }; 4123 int node; 4124 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4125 sizeof(unsigned long), GFP_KERNEL); 4126 4127 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4128 GFP_TEMPORARY)) { 4129 kfree(map); 4130 return sprintf(buf, "Out of memory\n"); 4131 } 4132 /* Push back cpu slabs */ 4133 flush_all(s); 4134 4135 for_each_node_state(node, N_NORMAL_MEMORY) { 4136 struct kmem_cache_node *n = get_node(s, node); 4137 unsigned long flags; 4138 struct page *page; 4139 4140 if (!atomic_long_read(&n->nr_slabs)) 4141 continue; 4142 4143 spin_lock_irqsave(&n->list_lock, flags); 4144 list_for_each_entry(page, &n->partial, lru) 4145 process_slab(&t, s, page, alloc, map); 4146 list_for_each_entry(page, &n->full, lru) 4147 process_slab(&t, s, page, alloc, map); 4148 spin_unlock_irqrestore(&n->list_lock, flags); 4149 } 4150 4151 for (i = 0; i < t.count; i++) { 4152 struct location *l = &t.loc[i]; 4153 4154 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4155 break; 4156 len += sprintf(buf + len, "%7ld ", l->count); 4157 4158 if (l->addr) 4159 len += sprintf(buf + len, "%pS", (void *)l->addr); 4160 else 4161 len += sprintf(buf + len, "<not-available>"); 4162 4163 if (l->sum_time != l->min_time) { 4164 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4165 l->min_time, 4166 (long)div_u64(l->sum_time, l->count), 4167 l->max_time); 4168 } else 4169 len += sprintf(buf + len, " age=%ld", 4170 l->min_time); 4171 4172 if (l->min_pid != l->max_pid) 4173 len += sprintf(buf + len, " pid=%ld-%ld", 4174 l->min_pid, l->max_pid); 4175 else 4176 len += sprintf(buf + len, " pid=%ld", 4177 l->min_pid); 4178 4179 if (num_online_cpus() > 1 && 4180 !cpumask_empty(to_cpumask(l->cpus)) && 4181 len < PAGE_SIZE - 60) { 4182 len += sprintf(buf + len, " cpus="); 4183 len += cpulist_scnprintf(buf + len, 4184 PAGE_SIZE - len - 50, 4185 to_cpumask(l->cpus)); 4186 } 4187 4188 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4189 len < PAGE_SIZE - 60) { 4190 len += sprintf(buf + len, " nodes="); 4191 len += nodelist_scnprintf(buf + len, 4192 PAGE_SIZE - len - 50, 4193 l->nodes); 4194 } 4195 4196 len += sprintf(buf + len, "\n"); 4197 } 4198 4199 free_loc_track(&t); 4200 kfree(map); 4201 if (!t.count) 4202 len += sprintf(buf, "No data\n"); 4203 return len; 4204 } 4205 #endif 4206 4207 #ifdef SLUB_RESILIENCY_TEST 4208 static void resiliency_test(void) 4209 { 4210 u8 *p; 4211 4212 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4213 4214 pr_err("SLUB resiliency testing\n"); 4215 pr_err("-----------------------\n"); 4216 pr_err("A. Corruption after allocation\n"); 4217 4218 p = kzalloc(16, GFP_KERNEL); 4219 p[16] = 0x12; 4220 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4221 p + 16); 4222 4223 validate_slab_cache(kmalloc_caches[4]); 4224 4225 /* Hmmm... The next two are dangerous */ 4226 p = kzalloc(32, GFP_KERNEL); 4227 p[32 + sizeof(void *)] = 0x34; 4228 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4229 p); 4230 pr_err("If allocated object is overwritten then not detectable\n\n"); 4231 4232 validate_slab_cache(kmalloc_caches[5]); 4233 p = kzalloc(64, GFP_KERNEL); 4234 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4235 *p = 0x56; 4236 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4237 p); 4238 pr_err("If allocated object is overwritten then not detectable\n\n"); 4239 validate_slab_cache(kmalloc_caches[6]); 4240 4241 pr_err("\nB. Corruption after free\n"); 4242 p = kzalloc(128, GFP_KERNEL); 4243 kfree(p); 4244 *p = 0x78; 4245 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4246 validate_slab_cache(kmalloc_caches[7]); 4247 4248 p = kzalloc(256, GFP_KERNEL); 4249 kfree(p); 4250 p[50] = 0x9a; 4251 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4252 validate_slab_cache(kmalloc_caches[8]); 4253 4254 p = kzalloc(512, GFP_KERNEL); 4255 kfree(p); 4256 p[512] = 0xab; 4257 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4258 validate_slab_cache(kmalloc_caches[9]); 4259 } 4260 #else 4261 #ifdef CONFIG_SYSFS 4262 static void resiliency_test(void) {}; 4263 #endif 4264 #endif 4265 4266 #ifdef CONFIG_SYSFS 4267 enum slab_stat_type { 4268 SL_ALL, /* All slabs */ 4269 SL_PARTIAL, /* Only partially allocated slabs */ 4270 SL_CPU, /* Only slabs used for cpu caches */ 4271 SL_OBJECTS, /* Determine allocated objects not slabs */ 4272 SL_TOTAL /* Determine object capacity not slabs */ 4273 }; 4274 4275 #define SO_ALL (1 << SL_ALL) 4276 #define SO_PARTIAL (1 << SL_PARTIAL) 4277 #define SO_CPU (1 << SL_CPU) 4278 #define SO_OBJECTS (1 << SL_OBJECTS) 4279 #define SO_TOTAL (1 << SL_TOTAL) 4280 4281 static ssize_t show_slab_objects(struct kmem_cache *s, 4282 char *buf, unsigned long flags) 4283 { 4284 unsigned long total = 0; 4285 int node; 4286 int x; 4287 unsigned long *nodes; 4288 4289 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4290 if (!nodes) 4291 return -ENOMEM; 4292 4293 if (flags & SO_CPU) { 4294 int cpu; 4295 4296 for_each_possible_cpu(cpu) { 4297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4298 cpu); 4299 int node; 4300 struct page *page; 4301 4302 page = ACCESS_ONCE(c->page); 4303 if (!page) 4304 continue; 4305 4306 node = page_to_nid(page); 4307 if (flags & SO_TOTAL) 4308 x = page->objects; 4309 else if (flags & SO_OBJECTS) 4310 x = page->inuse; 4311 else 4312 x = 1; 4313 4314 total += x; 4315 nodes[node] += x; 4316 4317 page = ACCESS_ONCE(c->partial); 4318 if (page) { 4319 node = page_to_nid(page); 4320 if (flags & SO_TOTAL) 4321 WARN_ON_ONCE(1); 4322 else if (flags & SO_OBJECTS) 4323 WARN_ON_ONCE(1); 4324 else 4325 x = page->pages; 4326 total += x; 4327 nodes[node] += x; 4328 } 4329 } 4330 } 4331 4332 get_online_mems(); 4333 #ifdef CONFIG_SLUB_DEBUG 4334 if (flags & SO_ALL) { 4335 for_each_node_state(node, N_NORMAL_MEMORY) { 4336 struct kmem_cache_node *n = get_node(s, node); 4337 4338 if (flags & SO_TOTAL) 4339 x = atomic_long_read(&n->total_objects); 4340 else if (flags & SO_OBJECTS) 4341 x = atomic_long_read(&n->total_objects) - 4342 count_partial(n, count_free); 4343 else 4344 x = atomic_long_read(&n->nr_slabs); 4345 total += x; 4346 nodes[node] += x; 4347 } 4348 4349 } else 4350 #endif 4351 if (flags & SO_PARTIAL) { 4352 for_each_node_state(node, N_NORMAL_MEMORY) { 4353 struct kmem_cache_node *n = get_node(s, node); 4354 4355 if (flags & SO_TOTAL) 4356 x = count_partial(n, count_total); 4357 else if (flags & SO_OBJECTS) 4358 x = count_partial(n, count_inuse); 4359 else 4360 x = n->nr_partial; 4361 total += x; 4362 nodes[node] += x; 4363 } 4364 } 4365 x = sprintf(buf, "%lu", total); 4366 #ifdef CONFIG_NUMA 4367 for_each_node_state(node, N_NORMAL_MEMORY) 4368 if (nodes[node]) 4369 x += sprintf(buf + x, " N%d=%lu", 4370 node, nodes[node]); 4371 #endif 4372 put_online_mems(); 4373 kfree(nodes); 4374 return x + sprintf(buf + x, "\n"); 4375 } 4376 4377 #ifdef CONFIG_SLUB_DEBUG 4378 static int any_slab_objects(struct kmem_cache *s) 4379 { 4380 int node; 4381 4382 for_each_online_node(node) { 4383 struct kmem_cache_node *n = get_node(s, node); 4384 4385 if (!n) 4386 continue; 4387 4388 if (atomic_long_read(&n->total_objects)) 4389 return 1; 4390 } 4391 return 0; 4392 } 4393 #endif 4394 4395 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4396 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4397 4398 struct slab_attribute { 4399 struct attribute attr; 4400 ssize_t (*show)(struct kmem_cache *s, char *buf); 4401 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4402 }; 4403 4404 #define SLAB_ATTR_RO(_name) \ 4405 static struct slab_attribute _name##_attr = \ 4406 __ATTR(_name, 0400, _name##_show, NULL) 4407 4408 #define SLAB_ATTR(_name) \ 4409 static struct slab_attribute _name##_attr = \ 4410 __ATTR(_name, 0600, _name##_show, _name##_store) 4411 4412 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4413 { 4414 return sprintf(buf, "%d\n", s->size); 4415 } 4416 SLAB_ATTR_RO(slab_size); 4417 4418 static ssize_t align_show(struct kmem_cache *s, char *buf) 4419 { 4420 return sprintf(buf, "%d\n", s->align); 4421 } 4422 SLAB_ATTR_RO(align); 4423 4424 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4425 { 4426 return sprintf(buf, "%d\n", s->object_size); 4427 } 4428 SLAB_ATTR_RO(object_size); 4429 4430 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4431 { 4432 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4433 } 4434 SLAB_ATTR_RO(objs_per_slab); 4435 4436 static ssize_t order_store(struct kmem_cache *s, 4437 const char *buf, size_t length) 4438 { 4439 unsigned long order; 4440 int err; 4441 4442 err = kstrtoul(buf, 10, &order); 4443 if (err) 4444 return err; 4445 4446 if (order > slub_max_order || order < slub_min_order) 4447 return -EINVAL; 4448 4449 calculate_sizes(s, order); 4450 return length; 4451 } 4452 4453 static ssize_t order_show(struct kmem_cache *s, char *buf) 4454 { 4455 return sprintf(buf, "%d\n", oo_order(s->oo)); 4456 } 4457 SLAB_ATTR(order); 4458 4459 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4460 { 4461 return sprintf(buf, "%lu\n", s->min_partial); 4462 } 4463 4464 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4465 size_t length) 4466 { 4467 unsigned long min; 4468 int err; 4469 4470 err = kstrtoul(buf, 10, &min); 4471 if (err) 4472 return err; 4473 4474 set_min_partial(s, min); 4475 return length; 4476 } 4477 SLAB_ATTR(min_partial); 4478 4479 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4480 { 4481 return sprintf(buf, "%u\n", s->cpu_partial); 4482 } 4483 4484 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4485 size_t length) 4486 { 4487 unsigned long objects; 4488 int err; 4489 4490 err = kstrtoul(buf, 10, &objects); 4491 if (err) 4492 return err; 4493 if (objects && !kmem_cache_has_cpu_partial(s)) 4494 return -EINVAL; 4495 4496 s->cpu_partial = objects; 4497 flush_all(s); 4498 return length; 4499 } 4500 SLAB_ATTR(cpu_partial); 4501 4502 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4503 { 4504 if (!s->ctor) 4505 return 0; 4506 return sprintf(buf, "%pS\n", s->ctor); 4507 } 4508 SLAB_ATTR_RO(ctor); 4509 4510 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4511 { 4512 return sprintf(buf, "%d\n", s->refcount - 1); 4513 } 4514 SLAB_ATTR_RO(aliases); 4515 4516 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4517 { 4518 return show_slab_objects(s, buf, SO_PARTIAL); 4519 } 4520 SLAB_ATTR_RO(partial); 4521 4522 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4523 { 4524 return show_slab_objects(s, buf, SO_CPU); 4525 } 4526 SLAB_ATTR_RO(cpu_slabs); 4527 4528 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4529 { 4530 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4531 } 4532 SLAB_ATTR_RO(objects); 4533 4534 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4535 { 4536 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4537 } 4538 SLAB_ATTR_RO(objects_partial); 4539 4540 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4541 { 4542 int objects = 0; 4543 int pages = 0; 4544 int cpu; 4545 int len; 4546 4547 for_each_online_cpu(cpu) { 4548 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4549 4550 if (page) { 4551 pages += page->pages; 4552 objects += page->pobjects; 4553 } 4554 } 4555 4556 len = sprintf(buf, "%d(%d)", objects, pages); 4557 4558 #ifdef CONFIG_SMP 4559 for_each_online_cpu(cpu) { 4560 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4561 4562 if (page && len < PAGE_SIZE - 20) 4563 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4564 page->pobjects, page->pages); 4565 } 4566 #endif 4567 return len + sprintf(buf + len, "\n"); 4568 } 4569 SLAB_ATTR_RO(slabs_cpu_partial); 4570 4571 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4572 { 4573 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4574 } 4575 4576 static ssize_t reclaim_account_store(struct kmem_cache *s, 4577 const char *buf, size_t length) 4578 { 4579 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4580 if (buf[0] == '1') 4581 s->flags |= SLAB_RECLAIM_ACCOUNT; 4582 return length; 4583 } 4584 SLAB_ATTR(reclaim_account); 4585 4586 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4587 { 4588 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4589 } 4590 SLAB_ATTR_RO(hwcache_align); 4591 4592 #ifdef CONFIG_ZONE_DMA 4593 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4594 { 4595 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4596 } 4597 SLAB_ATTR_RO(cache_dma); 4598 #endif 4599 4600 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4601 { 4602 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4603 } 4604 SLAB_ATTR_RO(destroy_by_rcu); 4605 4606 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4607 { 4608 return sprintf(buf, "%d\n", s->reserved); 4609 } 4610 SLAB_ATTR_RO(reserved); 4611 4612 #ifdef CONFIG_SLUB_DEBUG 4613 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 4614 { 4615 return show_slab_objects(s, buf, SO_ALL); 4616 } 4617 SLAB_ATTR_RO(slabs); 4618 4619 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 4620 { 4621 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 4622 } 4623 SLAB_ATTR_RO(total_objects); 4624 4625 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 4626 { 4627 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); 4628 } 4629 4630 static ssize_t sanity_checks_store(struct kmem_cache *s, 4631 const char *buf, size_t length) 4632 { 4633 s->flags &= ~SLAB_DEBUG_FREE; 4634 if (buf[0] == '1') { 4635 s->flags &= ~__CMPXCHG_DOUBLE; 4636 s->flags |= SLAB_DEBUG_FREE; 4637 } 4638 return length; 4639 } 4640 SLAB_ATTR(sanity_checks); 4641 4642 static ssize_t trace_show(struct kmem_cache *s, char *buf) 4643 { 4644 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 4645 } 4646 4647 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 4648 size_t length) 4649 { 4650 s->flags &= ~SLAB_TRACE; 4651 if (buf[0] == '1') { 4652 s->flags &= ~__CMPXCHG_DOUBLE; 4653 s->flags |= SLAB_TRACE; 4654 } 4655 return length; 4656 } 4657 SLAB_ATTR(trace); 4658 4659 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 4660 { 4661 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 4662 } 4663 4664 static ssize_t red_zone_store(struct kmem_cache *s, 4665 const char *buf, size_t length) 4666 { 4667 if (any_slab_objects(s)) 4668 return -EBUSY; 4669 4670 s->flags &= ~SLAB_RED_ZONE; 4671 if (buf[0] == '1') { 4672 s->flags &= ~__CMPXCHG_DOUBLE; 4673 s->flags |= SLAB_RED_ZONE; 4674 } 4675 calculate_sizes(s, -1); 4676 return length; 4677 } 4678 SLAB_ATTR(red_zone); 4679 4680 static ssize_t poison_show(struct kmem_cache *s, char *buf) 4681 { 4682 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 4683 } 4684 4685 static ssize_t poison_store(struct kmem_cache *s, 4686 const char *buf, size_t length) 4687 { 4688 if (any_slab_objects(s)) 4689 return -EBUSY; 4690 4691 s->flags &= ~SLAB_POISON; 4692 if (buf[0] == '1') { 4693 s->flags &= ~__CMPXCHG_DOUBLE; 4694 s->flags |= SLAB_POISON; 4695 } 4696 calculate_sizes(s, -1); 4697 return length; 4698 } 4699 SLAB_ATTR(poison); 4700 4701 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 4702 { 4703 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 4704 } 4705 4706 static ssize_t store_user_store(struct kmem_cache *s, 4707 const char *buf, size_t length) 4708 { 4709 if (any_slab_objects(s)) 4710 return -EBUSY; 4711 4712 s->flags &= ~SLAB_STORE_USER; 4713 if (buf[0] == '1') { 4714 s->flags &= ~__CMPXCHG_DOUBLE; 4715 s->flags |= SLAB_STORE_USER; 4716 } 4717 calculate_sizes(s, -1); 4718 return length; 4719 } 4720 SLAB_ATTR(store_user); 4721 4722 static ssize_t validate_show(struct kmem_cache *s, char *buf) 4723 { 4724 return 0; 4725 } 4726 4727 static ssize_t validate_store(struct kmem_cache *s, 4728 const char *buf, size_t length) 4729 { 4730 int ret = -EINVAL; 4731 4732 if (buf[0] == '1') { 4733 ret = validate_slab_cache(s); 4734 if (ret >= 0) 4735 ret = length; 4736 } 4737 return ret; 4738 } 4739 SLAB_ATTR(validate); 4740 4741 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 4742 { 4743 if (!(s->flags & SLAB_STORE_USER)) 4744 return -ENOSYS; 4745 return list_locations(s, buf, TRACK_ALLOC); 4746 } 4747 SLAB_ATTR_RO(alloc_calls); 4748 4749 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 4750 { 4751 if (!(s->flags & SLAB_STORE_USER)) 4752 return -ENOSYS; 4753 return list_locations(s, buf, TRACK_FREE); 4754 } 4755 SLAB_ATTR_RO(free_calls); 4756 #endif /* CONFIG_SLUB_DEBUG */ 4757 4758 #ifdef CONFIG_FAILSLAB 4759 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 4760 { 4761 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 4762 } 4763 4764 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 4765 size_t length) 4766 { 4767 s->flags &= ~SLAB_FAILSLAB; 4768 if (buf[0] == '1') 4769 s->flags |= SLAB_FAILSLAB; 4770 return length; 4771 } 4772 SLAB_ATTR(failslab); 4773 #endif 4774 4775 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 4776 { 4777 return 0; 4778 } 4779 4780 static ssize_t shrink_store(struct kmem_cache *s, 4781 const char *buf, size_t length) 4782 { 4783 if (buf[0] == '1') { 4784 int rc = kmem_cache_shrink(s); 4785 4786 if (rc) 4787 return rc; 4788 } else 4789 return -EINVAL; 4790 return length; 4791 } 4792 SLAB_ATTR(shrink); 4793 4794 #ifdef CONFIG_NUMA 4795 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 4796 { 4797 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 4798 } 4799 4800 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 4801 const char *buf, size_t length) 4802 { 4803 unsigned long ratio; 4804 int err; 4805 4806 err = kstrtoul(buf, 10, &ratio); 4807 if (err) 4808 return err; 4809 4810 if (ratio <= 100) 4811 s->remote_node_defrag_ratio = ratio * 10; 4812 4813 return length; 4814 } 4815 SLAB_ATTR(remote_node_defrag_ratio); 4816 #endif 4817 4818 #ifdef CONFIG_SLUB_STATS 4819 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 4820 { 4821 unsigned long sum = 0; 4822 int cpu; 4823 int len; 4824 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 4825 4826 if (!data) 4827 return -ENOMEM; 4828 4829 for_each_online_cpu(cpu) { 4830 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 4831 4832 data[cpu] = x; 4833 sum += x; 4834 } 4835 4836 len = sprintf(buf, "%lu", sum); 4837 4838 #ifdef CONFIG_SMP 4839 for_each_online_cpu(cpu) { 4840 if (data[cpu] && len < PAGE_SIZE - 20) 4841 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 4842 } 4843 #endif 4844 kfree(data); 4845 return len + sprintf(buf + len, "\n"); 4846 } 4847 4848 static void clear_stat(struct kmem_cache *s, enum stat_item si) 4849 { 4850 int cpu; 4851 4852 for_each_online_cpu(cpu) 4853 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 4854 } 4855 4856 #define STAT_ATTR(si, text) \ 4857 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 4858 { \ 4859 return show_stat(s, buf, si); \ 4860 } \ 4861 static ssize_t text##_store(struct kmem_cache *s, \ 4862 const char *buf, size_t length) \ 4863 { \ 4864 if (buf[0] != '0') \ 4865 return -EINVAL; \ 4866 clear_stat(s, si); \ 4867 return length; \ 4868 } \ 4869 SLAB_ATTR(text); \ 4870 4871 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 4872 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 4873 STAT_ATTR(FREE_FASTPATH, free_fastpath); 4874 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 4875 STAT_ATTR(FREE_FROZEN, free_frozen); 4876 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 4877 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 4878 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 4879 STAT_ATTR(ALLOC_SLAB, alloc_slab); 4880 STAT_ATTR(ALLOC_REFILL, alloc_refill); 4881 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 4882 STAT_ATTR(FREE_SLAB, free_slab); 4883 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 4884 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 4885 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 4886 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 4887 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 4888 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 4889 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 4890 STAT_ATTR(ORDER_FALLBACK, order_fallback); 4891 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 4892 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 4893 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 4894 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 4895 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 4896 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 4897 #endif 4898 4899 static struct attribute *slab_attrs[] = { 4900 &slab_size_attr.attr, 4901 &object_size_attr.attr, 4902 &objs_per_slab_attr.attr, 4903 &order_attr.attr, 4904 &min_partial_attr.attr, 4905 &cpu_partial_attr.attr, 4906 &objects_attr.attr, 4907 &objects_partial_attr.attr, 4908 &partial_attr.attr, 4909 &cpu_slabs_attr.attr, 4910 &ctor_attr.attr, 4911 &aliases_attr.attr, 4912 &align_attr.attr, 4913 &hwcache_align_attr.attr, 4914 &reclaim_account_attr.attr, 4915 &destroy_by_rcu_attr.attr, 4916 &shrink_attr.attr, 4917 &reserved_attr.attr, 4918 &slabs_cpu_partial_attr.attr, 4919 #ifdef CONFIG_SLUB_DEBUG 4920 &total_objects_attr.attr, 4921 &slabs_attr.attr, 4922 &sanity_checks_attr.attr, 4923 &trace_attr.attr, 4924 &red_zone_attr.attr, 4925 &poison_attr.attr, 4926 &store_user_attr.attr, 4927 &validate_attr.attr, 4928 &alloc_calls_attr.attr, 4929 &free_calls_attr.attr, 4930 #endif 4931 #ifdef CONFIG_ZONE_DMA 4932 &cache_dma_attr.attr, 4933 #endif 4934 #ifdef CONFIG_NUMA 4935 &remote_node_defrag_ratio_attr.attr, 4936 #endif 4937 #ifdef CONFIG_SLUB_STATS 4938 &alloc_fastpath_attr.attr, 4939 &alloc_slowpath_attr.attr, 4940 &free_fastpath_attr.attr, 4941 &free_slowpath_attr.attr, 4942 &free_frozen_attr.attr, 4943 &free_add_partial_attr.attr, 4944 &free_remove_partial_attr.attr, 4945 &alloc_from_partial_attr.attr, 4946 &alloc_slab_attr.attr, 4947 &alloc_refill_attr.attr, 4948 &alloc_node_mismatch_attr.attr, 4949 &free_slab_attr.attr, 4950 &cpuslab_flush_attr.attr, 4951 &deactivate_full_attr.attr, 4952 &deactivate_empty_attr.attr, 4953 &deactivate_to_head_attr.attr, 4954 &deactivate_to_tail_attr.attr, 4955 &deactivate_remote_frees_attr.attr, 4956 &deactivate_bypass_attr.attr, 4957 &order_fallback_attr.attr, 4958 &cmpxchg_double_fail_attr.attr, 4959 &cmpxchg_double_cpu_fail_attr.attr, 4960 &cpu_partial_alloc_attr.attr, 4961 &cpu_partial_free_attr.attr, 4962 &cpu_partial_node_attr.attr, 4963 &cpu_partial_drain_attr.attr, 4964 #endif 4965 #ifdef CONFIG_FAILSLAB 4966 &failslab_attr.attr, 4967 #endif 4968 4969 NULL 4970 }; 4971 4972 static struct attribute_group slab_attr_group = { 4973 .attrs = slab_attrs, 4974 }; 4975 4976 static ssize_t slab_attr_show(struct kobject *kobj, 4977 struct attribute *attr, 4978 char *buf) 4979 { 4980 struct slab_attribute *attribute; 4981 struct kmem_cache *s; 4982 int err; 4983 4984 attribute = to_slab_attr(attr); 4985 s = to_slab(kobj); 4986 4987 if (!attribute->show) 4988 return -EIO; 4989 4990 err = attribute->show(s, buf); 4991 4992 return err; 4993 } 4994 4995 static ssize_t slab_attr_store(struct kobject *kobj, 4996 struct attribute *attr, 4997 const char *buf, size_t len) 4998 { 4999 struct slab_attribute *attribute; 5000 struct kmem_cache *s; 5001 int err; 5002 5003 attribute = to_slab_attr(attr); 5004 s = to_slab(kobj); 5005 5006 if (!attribute->store) 5007 return -EIO; 5008 5009 err = attribute->store(s, buf, len); 5010 #ifdef CONFIG_MEMCG_KMEM 5011 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5012 int i; 5013 5014 mutex_lock(&slab_mutex); 5015 if (s->max_attr_size < len) 5016 s->max_attr_size = len; 5017 5018 /* 5019 * This is a best effort propagation, so this function's return 5020 * value will be determined by the parent cache only. This is 5021 * basically because not all attributes will have a well 5022 * defined semantics for rollbacks - most of the actions will 5023 * have permanent effects. 5024 * 5025 * Returning the error value of any of the children that fail 5026 * is not 100 % defined, in the sense that users seeing the 5027 * error code won't be able to know anything about the state of 5028 * the cache. 5029 * 5030 * Only returning the error code for the parent cache at least 5031 * has well defined semantics. The cache being written to 5032 * directly either failed or succeeded, in which case we loop 5033 * through the descendants with best-effort propagation. 5034 */ 5035 for_each_memcg_cache_index(i) { 5036 struct kmem_cache *c = cache_from_memcg_idx(s, i); 5037 if (c) 5038 attribute->store(c, buf, len); 5039 } 5040 mutex_unlock(&slab_mutex); 5041 } 5042 #endif 5043 return err; 5044 } 5045 5046 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5047 { 5048 #ifdef CONFIG_MEMCG_KMEM 5049 int i; 5050 char *buffer = NULL; 5051 struct kmem_cache *root_cache; 5052 5053 if (is_root_cache(s)) 5054 return; 5055 5056 root_cache = s->memcg_params->root_cache; 5057 5058 /* 5059 * This mean this cache had no attribute written. Therefore, no point 5060 * in copying default values around 5061 */ 5062 if (!root_cache->max_attr_size) 5063 return; 5064 5065 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5066 char mbuf[64]; 5067 char *buf; 5068 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5069 5070 if (!attr || !attr->store || !attr->show) 5071 continue; 5072 5073 /* 5074 * It is really bad that we have to allocate here, so we will 5075 * do it only as a fallback. If we actually allocate, though, 5076 * we can just use the allocated buffer until the end. 5077 * 5078 * Most of the slub attributes will tend to be very small in 5079 * size, but sysfs allows buffers up to a page, so they can 5080 * theoretically happen. 5081 */ 5082 if (buffer) 5083 buf = buffer; 5084 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5085 buf = mbuf; 5086 else { 5087 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5088 if (WARN_ON(!buffer)) 5089 continue; 5090 buf = buffer; 5091 } 5092 5093 attr->show(root_cache, buf); 5094 attr->store(s, buf, strlen(buf)); 5095 } 5096 5097 if (buffer) 5098 free_page((unsigned long)buffer); 5099 #endif 5100 } 5101 5102 static void kmem_cache_release(struct kobject *k) 5103 { 5104 slab_kmem_cache_release(to_slab(k)); 5105 } 5106 5107 static const struct sysfs_ops slab_sysfs_ops = { 5108 .show = slab_attr_show, 5109 .store = slab_attr_store, 5110 }; 5111 5112 static struct kobj_type slab_ktype = { 5113 .sysfs_ops = &slab_sysfs_ops, 5114 .release = kmem_cache_release, 5115 }; 5116 5117 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5118 { 5119 struct kobj_type *ktype = get_ktype(kobj); 5120 5121 if (ktype == &slab_ktype) 5122 return 1; 5123 return 0; 5124 } 5125 5126 static const struct kset_uevent_ops slab_uevent_ops = { 5127 .filter = uevent_filter, 5128 }; 5129 5130 static struct kset *slab_kset; 5131 5132 static inline struct kset *cache_kset(struct kmem_cache *s) 5133 { 5134 #ifdef CONFIG_MEMCG_KMEM 5135 if (!is_root_cache(s)) 5136 return s->memcg_params->root_cache->memcg_kset; 5137 #endif 5138 return slab_kset; 5139 } 5140 5141 #define ID_STR_LENGTH 64 5142 5143 /* Create a unique string id for a slab cache: 5144 * 5145 * Format :[flags-]size 5146 */ 5147 static char *create_unique_id(struct kmem_cache *s) 5148 { 5149 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5150 char *p = name; 5151 5152 BUG_ON(!name); 5153 5154 *p++ = ':'; 5155 /* 5156 * First flags affecting slabcache operations. We will only 5157 * get here for aliasable slabs so we do not need to support 5158 * too many flags. The flags here must cover all flags that 5159 * are matched during merging to guarantee that the id is 5160 * unique. 5161 */ 5162 if (s->flags & SLAB_CACHE_DMA) 5163 *p++ = 'd'; 5164 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5165 *p++ = 'a'; 5166 if (s->flags & SLAB_DEBUG_FREE) 5167 *p++ = 'F'; 5168 if (!(s->flags & SLAB_NOTRACK)) 5169 *p++ = 't'; 5170 if (p != name + 1) 5171 *p++ = '-'; 5172 p += sprintf(p, "%07d", s->size); 5173 5174 #ifdef CONFIG_MEMCG_KMEM 5175 if (!is_root_cache(s)) 5176 p += sprintf(p, "-%08d", 5177 memcg_cache_id(s->memcg_params->memcg)); 5178 #endif 5179 5180 BUG_ON(p > name + ID_STR_LENGTH - 1); 5181 return name; 5182 } 5183 5184 static int sysfs_slab_add(struct kmem_cache *s) 5185 { 5186 int err; 5187 const char *name; 5188 int unmergeable = slab_unmergeable(s); 5189 5190 if (unmergeable) { 5191 /* 5192 * Slabcache can never be merged so we can use the name proper. 5193 * This is typically the case for debug situations. In that 5194 * case we can catch duplicate names easily. 5195 */ 5196 sysfs_remove_link(&slab_kset->kobj, s->name); 5197 name = s->name; 5198 } else { 5199 /* 5200 * Create a unique name for the slab as a target 5201 * for the symlinks. 5202 */ 5203 name = create_unique_id(s); 5204 } 5205 5206 s->kobj.kset = cache_kset(s); 5207 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5208 if (err) 5209 goto out_put_kobj; 5210 5211 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5212 if (err) 5213 goto out_del_kobj; 5214 5215 #ifdef CONFIG_MEMCG_KMEM 5216 if (is_root_cache(s)) { 5217 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5218 if (!s->memcg_kset) { 5219 err = -ENOMEM; 5220 goto out_del_kobj; 5221 } 5222 } 5223 #endif 5224 5225 kobject_uevent(&s->kobj, KOBJ_ADD); 5226 if (!unmergeable) { 5227 /* Setup first alias */ 5228 sysfs_slab_alias(s, s->name); 5229 } 5230 out: 5231 if (!unmergeable) 5232 kfree(name); 5233 return err; 5234 out_del_kobj: 5235 kobject_del(&s->kobj); 5236 out_put_kobj: 5237 kobject_put(&s->kobj); 5238 goto out; 5239 } 5240 5241 void sysfs_slab_remove(struct kmem_cache *s) 5242 { 5243 if (slab_state < FULL) 5244 /* 5245 * Sysfs has not been setup yet so no need to remove the 5246 * cache from sysfs. 5247 */ 5248 return; 5249 5250 #ifdef CONFIG_MEMCG_KMEM 5251 kset_unregister(s->memcg_kset); 5252 #endif 5253 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5254 kobject_del(&s->kobj); 5255 kobject_put(&s->kobj); 5256 } 5257 5258 /* 5259 * Need to buffer aliases during bootup until sysfs becomes 5260 * available lest we lose that information. 5261 */ 5262 struct saved_alias { 5263 struct kmem_cache *s; 5264 const char *name; 5265 struct saved_alias *next; 5266 }; 5267 5268 static struct saved_alias *alias_list; 5269 5270 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5271 { 5272 struct saved_alias *al; 5273 5274 if (slab_state == FULL) { 5275 /* 5276 * If we have a leftover link then remove it. 5277 */ 5278 sysfs_remove_link(&slab_kset->kobj, name); 5279 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5280 } 5281 5282 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5283 if (!al) 5284 return -ENOMEM; 5285 5286 al->s = s; 5287 al->name = name; 5288 al->next = alias_list; 5289 alias_list = al; 5290 return 0; 5291 } 5292 5293 static int __init slab_sysfs_init(void) 5294 { 5295 struct kmem_cache *s; 5296 int err; 5297 5298 mutex_lock(&slab_mutex); 5299 5300 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5301 if (!slab_kset) { 5302 mutex_unlock(&slab_mutex); 5303 pr_err("Cannot register slab subsystem.\n"); 5304 return -ENOSYS; 5305 } 5306 5307 slab_state = FULL; 5308 5309 list_for_each_entry(s, &slab_caches, list) { 5310 err = sysfs_slab_add(s); 5311 if (err) 5312 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5313 s->name); 5314 } 5315 5316 while (alias_list) { 5317 struct saved_alias *al = alias_list; 5318 5319 alias_list = alias_list->next; 5320 err = sysfs_slab_alias(al->s, al->name); 5321 if (err) 5322 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5323 al->name); 5324 kfree(al); 5325 } 5326 5327 mutex_unlock(&slab_mutex); 5328 resiliency_test(); 5329 return 0; 5330 } 5331 5332 __initcall(slab_sysfs_init); 5333 #endif /* CONFIG_SYSFS */ 5334 5335 /* 5336 * The /proc/slabinfo ABI 5337 */ 5338 #ifdef CONFIG_SLABINFO 5339 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5340 { 5341 unsigned long nr_slabs = 0; 5342 unsigned long nr_objs = 0; 5343 unsigned long nr_free = 0; 5344 int node; 5345 5346 for_each_online_node(node) { 5347 struct kmem_cache_node *n = get_node(s, node); 5348 5349 if (!n) 5350 continue; 5351 5352 nr_slabs += node_nr_slabs(n); 5353 nr_objs += node_nr_objs(n); 5354 nr_free += count_partial(n, count_free); 5355 } 5356 5357 sinfo->active_objs = nr_objs - nr_free; 5358 sinfo->num_objs = nr_objs; 5359 sinfo->active_slabs = nr_slabs; 5360 sinfo->num_slabs = nr_slabs; 5361 sinfo->objects_per_slab = oo_objects(s->oo); 5362 sinfo->cache_order = oo_order(s->oo); 5363 } 5364 5365 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5366 { 5367 } 5368 5369 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5370 size_t count, loff_t *ppos) 5371 { 5372 return -EIO; 5373 } 5374 #endif /* CONFIG_SLABINFO */ 5375