xref: /linux/mm/slub.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 /* Structure holding parameters for get_partial() call chain */
222 struct partial_context {
223 	gfp_t flags;
224 	unsigned int orig_size;
225 	void *object;
226 };
227 
228 static inline bool kmem_cache_debug(struct kmem_cache *s)
229 {
230 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
231 }
232 
233 static inline bool slub_debug_orig_size(struct kmem_cache *s)
234 {
235 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
236 			(s->flags & SLAB_KMALLOC));
237 }
238 
239 void *fixup_red_left(struct kmem_cache *s, void *p)
240 {
241 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
242 		p += s->red_left_pad;
243 
244 	return p;
245 }
246 
247 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
248 {
249 #ifdef CONFIG_SLUB_CPU_PARTIAL
250 	return !kmem_cache_debug(s);
251 #else
252 	return false;
253 #endif
254 }
255 
256 /*
257  * Issues still to be resolved:
258  *
259  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
260  *
261  * - Variable sizing of the per node arrays
262  */
263 
264 /* Enable to log cmpxchg failures */
265 #undef SLUB_DEBUG_CMPXCHG
266 
267 #ifndef CONFIG_SLUB_TINY
268 /*
269  * Minimum number of partial slabs. These will be left on the partial
270  * lists even if they are empty. kmem_cache_shrink may reclaim them.
271  */
272 #define MIN_PARTIAL 5
273 
274 /*
275  * Maximum number of desirable partial slabs.
276  * The existence of more partial slabs makes kmem_cache_shrink
277  * sort the partial list by the number of objects in use.
278  */
279 #define MAX_PARTIAL 10
280 #else
281 #define MIN_PARTIAL 0
282 #define MAX_PARTIAL 0
283 #endif
284 
285 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
286 				SLAB_POISON | SLAB_STORE_USER)
287 
288 /*
289  * These debug flags cannot use CMPXCHG because there might be consistency
290  * issues when checking or reading debug information
291  */
292 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
293 				SLAB_TRACE)
294 
295 
296 /*
297  * Debugging flags that require metadata to be stored in the slab.  These get
298  * disabled when slab_debug=O is used and a cache's min order increases with
299  * metadata.
300  */
301 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
302 
303 #define OO_SHIFT	16
304 #define OO_MASK		((1 << OO_SHIFT) - 1)
305 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
306 
307 /* Internal SLUB flags */
308 /* Poison object */
309 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
310 /* Use cmpxchg_double */
311 
312 #ifdef system_has_freelist_aba
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
314 #else
315 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
316 #endif
317 
318 /*
319  * Tracking user of a slab.
320  */
321 #define TRACK_ADDRS_COUNT 16
322 struct track {
323 	unsigned long addr;	/* Called from address */
324 #ifdef CONFIG_STACKDEPOT
325 	depot_stack_handle_t handle;
326 #endif
327 	int cpu;		/* Was running on cpu */
328 	int pid;		/* Pid context */
329 	unsigned long when;	/* When did the operation occur */
330 };
331 
332 enum track_item { TRACK_ALLOC, TRACK_FREE };
333 
334 #ifdef SLAB_SUPPORTS_SYSFS
335 static int sysfs_slab_add(struct kmem_cache *);
336 static int sysfs_slab_alias(struct kmem_cache *, const char *);
337 #else
338 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
339 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
340 							{ return 0; }
341 #endif
342 
343 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
344 static void debugfs_slab_add(struct kmem_cache *);
345 #else
346 static inline void debugfs_slab_add(struct kmem_cache *s) { }
347 #endif
348 
349 enum stat_item {
350 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
351 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
352 	FREE_FASTPATH,		/* Free to cpu slab */
353 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
354 	FREE_FROZEN,		/* Freeing to frozen slab */
355 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
356 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
357 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
358 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
359 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
360 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
361 	FREE_SLAB,		/* Slab freed to the page allocator */
362 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
363 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
364 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
365 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
366 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
367 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
368 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
369 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
370 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
371 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
372 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
373 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
374 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
375 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
376 	NR_SLUB_STAT_ITEMS
377 };
378 
379 #ifndef CONFIG_SLUB_TINY
380 /*
381  * When changing the layout, make sure freelist and tid are still compatible
382  * with this_cpu_cmpxchg_double() alignment requirements.
383  */
384 struct kmem_cache_cpu {
385 	union {
386 		struct {
387 			void **freelist;	/* Pointer to next available object */
388 			unsigned long tid;	/* Globally unique transaction id */
389 		};
390 		freelist_aba_t freelist_tid;
391 	};
392 	struct slab *slab;	/* The slab from which we are allocating */
393 #ifdef CONFIG_SLUB_CPU_PARTIAL
394 	struct slab *partial;	/* Partially allocated slabs */
395 #endif
396 	local_lock_t lock;	/* Protects the fields above */
397 #ifdef CONFIG_SLUB_STATS
398 	unsigned int stat[NR_SLUB_STAT_ITEMS];
399 #endif
400 };
401 #endif /* CONFIG_SLUB_TINY */
402 
403 static inline void stat(const struct kmem_cache *s, enum stat_item si)
404 {
405 #ifdef CONFIG_SLUB_STATS
406 	/*
407 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
408 	 * avoid this_cpu_add()'s irq-disable overhead.
409 	 */
410 	raw_cpu_inc(s->cpu_slab->stat[si]);
411 #endif
412 }
413 
414 static inline
415 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
416 {
417 #ifdef CONFIG_SLUB_STATS
418 	raw_cpu_add(s->cpu_slab->stat[si], v);
419 #endif
420 }
421 
422 /*
423  * The slab lists for all objects.
424  */
425 struct kmem_cache_node {
426 	spinlock_t list_lock;
427 	unsigned long nr_partial;
428 	struct list_head partial;
429 #ifdef CONFIG_SLUB_DEBUG
430 	atomic_long_t nr_slabs;
431 	atomic_long_t total_objects;
432 	struct list_head full;
433 #endif
434 };
435 
436 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
437 {
438 	return s->node[node];
439 }
440 
441 /*
442  * Iterator over all nodes. The body will be executed for each node that has
443  * a kmem_cache_node structure allocated (which is true for all online nodes)
444  */
445 #define for_each_kmem_cache_node(__s, __node, __n) \
446 	for (__node = 0; __node < nr_node_ids; __node++) \
447 		 if ((__n = get_node(__s, __node)))
448 
449 /*
450  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
451  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
452  * differ during memory hotplug/hotremove operations.
453  * Protected by slab_mutex.
454  */
455 static nodemask_t slab_nodes;
456 
457 #ifndef CONFIG_SLUB_TINY
458 /*
459  * Workqueue used for flush_cpu_slab().
460  */
461 static struct workqueue_struct *flushwq;
462 #endif
463 
464 /********************************************************************
465  * 			Core slab cache functions
466  *******************************************************************/
467 
468 /*
469  * Returns freelist pointer (ptr). With hardening, this is obfuscated
470  * with an XOR of the address where the pointer is held and a per-cache
471  * random number.
472  */
473 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
474 					    void *ptr, unsigned long ptr_addr)
475 {
476 	unsigned long encoded;
477 
478 #ifdef CONFIG_SLAB_FREELIST_HARDENED
479 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
480 #else
481 	encoded = (unsigned long)ptr;
482 #endif
483 	return (freeptr_t){.v = encoded};
484 }
485 
486 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
487 					freeptr_t ptr, unsigned long ptr_addr)
488 {
489 	void *decoded;
490 
491 #ifdef CONFIG_SLAB_FREELIST_HARDENED
492 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
493 #else
494 	decoded = (void *)ptr.v;
495 #endif
496 	return decoded;
497 }
498 
499 static inline void *get_freepointer(struct kmem_cache *s, void *object)
500 {
501 	unsigned long ptr_addr;
502 	freeptr_t p;
503 
504 	object = kasan_reset_tag(object);
505 	ptr_addr = (unsigned long)object + s->offset;
506 	p = *(freeptr_t *)(ptr_addr);
507 	return freelist_ptr_decode(s, p, ptr_addr);
508 }
509 
510 #ifndef CONFIG_SLUB_TINY
511 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
512 {
513 	prefetchw(object + s->offset);
514 }
515 #endif
516 
517 /*
518  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
519  * pointer value in the case the current thread loses the race for the next
520  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
521  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
522  * KMSAN will still check all arguments of cmpxchg because of imperfect
523  * handling of inline assembly.
524  * To work around this problem, we apply __no_kmsan_checks to ensure that
525  * get_freepointer_safe() returns initialized memory.
526  */
527 __no_kmsan_checks
528 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
529 {
530 	unsigned long freepointer_addr;
531 	freeptr_t p;
532 
533 	if (!debug_pagealloc_enabled_static())
534 		return get_freepointer(s, object);
535 
536 	object = kasan_reset_tag(object);
537 	freepointer_addr = (unsigned long)object + s->offset;
538 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
539 	return freelist_ptr_decode(s, p, freepointer_addr);
540 }
541 
542 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
543 {
544 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
545 
546 #ifdef CONFIG_SLAB_FREELIST_HARDENED
547 	BUG_ON(object == fp); /* naive detection of double free or corruption */
548 #endif
549 
550 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
551 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
552 }
553 
554 /*
555  * See comment in calculate_sizes().
556  */
557 static inline bool freeptr_outside_object(struct kmem_cache *s)
558 {
559 	return s->offset >= s->inuse;
560 }
561 
562 /*
563  * Return offset of the end of info block which is inuse + free pointer if
564  * not overlapping with object.
565  */
566 static inline unsigned int get_info_end(struct kmem_cache *s)
567 {
568 	if (freeptr_outside_object(s))
569 		return s->inuse + sizeof(void *);
570 	else
571 		return s->inuse;
572 }
573 
574 /* Loop over all objects in a slab */
575 #define for_each_object(__p, __s, __addr, __objects) \
576 	for (__p = fixup_red_left(__s, __addr); \
577 		__p < (__addr) + (__objects) * (__s)->size; \
578 		__p += (__s)->size)
579 
580 static inline unsigned int order_objects(unsigned int order, unsigned int size)
581 {
582 	return ((unsigned int)PAGE_SIZE << order) / size;
583 }
584 
585 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
586 		unsigned int size)
587 {
588 	struct kmem_cache_order_objects x = {
589 		(order << OO_SHIFT) + order_objects(order, size)
590 	};
591 
592 	return x;
593 }
594 
595 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
596 {
597 	return x.x >> OO_SHIFT;
598 }
599 
600 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
601 {
602 	return x.x & OO_MASK;
603 }
604 
605 #ifdef CONFIG_SLUB_CPU_PARTIAL
606 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
607 {
608 	unsigned int nr_slabs;
609 
610 	s->cpu_partial = nr_objects;
611 
612 	/*
613 	 * We take the number of objects but actually limit the number of
614 	 * slabs on the per cpu partial list, in order to limit excessive
615 	 * growth of the list. For simplicity we assume that the slabs will
616 	 * be half-full.
617 	 */
618 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
619 	s->cpu_partial_slabs = nr_slabs;
620 }
621 
622 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
623 {
624 	return s->cpu_partial_slabs;
625 }
626 #else
627 static inline void
628 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
629 {
630 }
631 
632 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
633 {
634 	return 0;
635 }
636 #endif /* CONFIG_SLUB_CPU_PARTIAL */
637 
638 /*
639  * Per slab locking using the pagelock
640  */
641 static __always_inline void slab_lock(struct slab *slab)
642 {
643 	bit_spin_lock(PG_locked, &slab->__page_flags);
644 }
645 
646 static __always_inline void slab_unlock(struct slab *slab)
647 {
648 	bit_spin_unlock(PG_locked, &slab->__page_flags);
649 }
650 
651 static inline bool
652 __update_freelist_fast(struct slab *slab,
653 		      void *freelist_old, unsigned long counters_old,
654 		      void *freelist_new, unsigned long counters_new)
655 {
656 #ifdef system_has_freelist_aba
657 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
658 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
659 
660 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
661 #else
662 	return false;
663 #endif
664 }
665 
666 static inline bool
667 __update_freelist_slow(struct slab *slab,
668 		      void *freelist_old, unsigned long counters_old,
669 		      void *freelist_new, unsigned long counters_new)
670 {
671 	bool ret = false;
672 
673 	slab_lock(slab);
674 	if (slab->freelist == freelist_old &&
675 	    slab->counters == counters_old) {
676 		slab->freelist = freelist_new;
677 		slab->counters = counters_new;
678 		ret = true;
679 	}
680 	slab_unlock(slab);
681 
682 	return ret;
683 }
684 
685 /*
686  * Interrupts must be disabled (for the fallback code to work right), typically
687  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
688  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
689  * allocation/ free operation in hardirq context. Therefore nothing can
690  * interrupt the operation.
691  */
692 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
693 		void *freelist_old, unsigned long counters_old,
694 		void *freelist_new, unsigned long counters_new,
695 		const char *n)
696 {
697 	bool ret;
698 
699 	if (USE_LOCKLESS_FAST_PATH())
700 		lockdep_assert_irqs_disabled();
701 
702 	if (s->flags & __CMPXCHG_DOUBLE) {
703 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
704 				            freelist_new, counters_new);
705 	} else {
706 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
707 				            freelist_new, counters_new);
708 	}
709 	if (likely(ret))
710 		return true;
711 
712 	cpu_relax();
713 	stat(s, CMPXCHG_DOUBLE_FAIL);
714 
715 #ifdef SLUB_DEBUG_CMPXCHG
716 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
717 #endif
718 
719 	return false;
720 }
721 
722 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
723 		void *freelist_old, unsigned long counters_old,
724 		void *freelist_new, unsigned long counters_new,
725 		const char *n)
726 {
727 	bool ret;
728 
729 	if (s->flags & __CMPXCHG_DOUBLE) {
730 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
731 				            freelist_new, counters_new);
732 	} else {
733 		unsigned long flags;
734 
735 		local_irq_save(flags);
736 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
737 				            freelist_new, counters_new);
738 		local_irq_restore(flags);
739 	}
740 	if (likely(ret))
741 		return true;
742 
743 	cpu_relax();
744 	stat(s, CMPXCHG_DOUBLE_FAIL);
745 
746 #ifdef SLUB_DEBUG_CMPXCHG
747 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
748 #endif
749 
750 	return false;
751 }
752 
753 /*
754  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
755  * family will round up the real request size to these fixed ones, so
756  * there could be an extra area than what is requested. Save the original
757  * request size in the meta data area, for better debug and sanity check.
758  */
759 static inline void set_orig_size(struct kmem_cache *s,
760 				void *object, unsigned int orig_size)
761 {
762 	void *p = kasan_reset_tag(object);
763 	unsigned int kasan_meta_size;
764 
765 	if (!slub_debug_orig_size(s))
766 		return;
767 
768 	/*
769 	 * KASAN can save its free meta data inside of the object at offset 0.
770 	 * If this meta data size is larger than 'orig_size', it will overlap
771 	 * the data redzone in [orig_size+1, object_size]. Thus, we adjust
772 	 * 'orig_size' to be as at least as big as KASAN's meta data.
773 	 */
774 	kasan_meta_size = kasan_metadata_size(s, true);
775 	if (kasan_meta_size > orig_size)
776 		orig_size = kasan_meta_size;
777 
778 	p += get_info_end(s);
779 	p += sizeof(struct track) * 2;
780 
781 	*(unsigned int *)p = orig_size;
782 }
783 
784 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
785 {
786 	void *p = kasan_reset_tag(object);
787 
788 	if (!slub_debug_orig_size(s))
789 		return s->object_size;
790 
791 	p += get_info_end(s);
792 	p += sizeof(struct track) * 2;
793 
794 	return *(unsigned int *)p;
795 }
796 
797 #ifdef CONFIG_SLUB_DEBUG
798 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
799 static DEFINE_SPINLOCK(object_map_lock);
800 
801 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
802 		       struct slab *slab)
803 {
804 	void *addr = slab_address(slab);
805 	void *p;
806 
807 	bitmap_zero(obj_map, slab->objects);
808 
809 	for (p = slab->freelist; p; p = get_freepointer(s, p))
810 		set_bit(__obj_to_index(s, addr, p), obj_map);
811 }
812 
813 #if IS_ENABLED(CONFIG_KUNIT)
814 static bool slab_add_kunit_errors(void)
815 {
816 	struct kunit_resource *resource;
817 
818 	if (!kunit_get_current_test())
819 		return false;
820 
821 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
822 	if (!resource)
823 		return false;
824 
825 	(*(int *)resource->data)++;
826 	kunit_put_resource(resource);
827 	return true;
828 }
829 
830 bool slab_in_kunit_test(void)
831 {
832 	struct kunit_resource *resource;
833 
834 	if (!kunit_get_current_test())
835 		return false;
836 
837 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
838 	if (!resource)
839 		return false;
840 
841 	kunit_put_resource(resource);
842 	return true;
843 }
844 #else
845 static inline bool slab_add_kunit_errors(void) { return false; }
846 #endif
847 
848 static inline unsigned int size_from_object(struct kmem_cache *s)
849 {
850 	if (s->flags & SLAB_RED_ZONE)
851 		return s->size - s->red_left_pad;
852 
853 	return s->size;
854 }
855 
856 static inline void *restore_red_left(struct kmem_cache *s, void *p)
857 {
858 	if (s->flags & SLAB_RED_ZONE)
859 		p -= s->red_left_pad;
860 
861 	return p;
862 }
863 
864 /*
865  * Debug settings:
866  */
867 #if defined(CONFIG_SLUB_DEBUG_ON)
868 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
869 #else
870 static slab_flags_t slub_debug;
871 #endif
872 
873 static char *slub_debug_string;
874 static int disable_higher_order_debug;
875 
876 /*
877  * slub is about to manipulate internal object metadata.  This memory lies
878  * outside the range of the allocated object, so accessing it would normally
879  * be reported by kasan as a bounds error.  metadata_access_enable() is used
880  * to tell kasan that these accesses are OK.
881  */
882 static inline void metadata_access_enable(void)
883 {
884 	kasan_disable_current();
885 	kmsan_disable_current();
886 }
887 
888 static inline void metadata_access_disable(void)
889 {
890 	kmsan_enable_current();
891 	kasan_enable_current();
892 }
893 
894 /*
895  * Object debugging
896  */
897 
898 /* Verify that a pointer has an address that is valid within a slab page */
899 static inline int check_valid_pointer(struct kmem_cache *s,
900 				struct slab *slab, void *object)
901 {
902 	void *base;
903 
904 	if (!object)
905 		return 1;
906 
907 	base = slab_address(slab);
908 	object = kasan_reset_tag(object);
909 	object = restore_red_left(s, object);
910 	if (object < base || object >= base + slab->objects * s->size ||
911 		(object - base) % s->size) {
912 		return 0;
913 	}
914 
915 	return 1;
916 }
917 
918 static void print_section(char *level, char *text, u8 *addr,
919 			  unsigned int length)
920 {
921 	metadata_access_enable();
922 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
923 			16, 1, kasan_reset_tag((void *)addr), length, 1);
924 	metadata_access_disable();
925 }
926 
927 static struct track *get_track(struct kmem_cache *s, void *object,
928 	enum track_item alloc)
929 {
930 	struct track *p;
931 
932 	p = object + get_info_end(s);
933 
934 	return kasan_reset_tag(p + alloc);
935 }
936 
937 #ifdef CONFIG_STACKDEPOT
938 static noinline depot_stack_handle_t set_track_prepare(void)
939 {
940 	depot_stack_handle_t handle;
941 	unsigned long entries[TRACK_ADDRS_COUNT];
942 	unsigned int nr_entries;
943 
944 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
945 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
946 
947 	return handle;
948 }
949 #else
950 static inline depot_stack_handle_t set_track_prepare(void)
951 {
952 	return 0;
953 }
954 #endif
955 
956 static void set_track_update(struct kmem_cache *s, void *object,
957 			     enum track_item alloc, unsigned long addr,
958 			     depot_stack_handle_t handle)
959 {
960 	struct track *p = get_track(s, object, alloc);
961 
962 #ifdef CONFIG_STACKDEPOT
963 	p->handle = handle;
964 #endif
965 	p->addr = addr;
966 	p->cpu = smp_processor_id();
967 	p->pid = current->pid;
968 	p->when = jiffies;
969 }
970 
971 static __always_inline void set_track(struct kmem_cache *s, void *object,
972 				      enum track_item alloc, unsigned long addr)
973 {
974 	depot_stack_handle_t handle = set_track_prepare();
975 
976 	set_track_update(s, object, alloc, addr, handle);
977 }
978 
979 static void init_tracking(struct kmem_cache *s, void *object)
980 {
981 	struct track *p;
982 
983 	if (!(s->flags & SLAB_STORE_USER))
984 		return;
985 
986 	p = get_track(s, object, TRACK_ALLOC);
987 	memset(p, 0, 2*sizeof(struct track));
988 }
989 
990 static void print_track(const char *s, struct track *t, unsigned long pr_time)
991 {
992 	depot_stack_handle_t handle __maybe_unused;
993 
994 	if (!t->addr)
995 		return;
996 
997 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
998 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
999 #ifdef CONFIG_STACKDEPOT
1000 	handle = READ_ONCE(t->handle);
1001 	if (handle)
1002 		stack_depot_print(handle);
1003 	else
1004 		pr_err("object allocation/free stack trace missing\n");
1005 #endif
1006 }
1007 
1008 void print_tracking(struct kmem_cache *s, void *object)
1009 {
1010 	unsigned long pr_time = jiffies;
1011 	if (!(s->flags & SLAB_STORE_USER))
1012 		return;
1013 
1014 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1015 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1016 }
1017 
1018 static void print_slab_info(const struct slab *slab)
1019 {
1020 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1021 	       slab, slab->objects, slab->inuse, slab->freelist,
1022 	       &slab->__page_flags);
1023 }
1024 
1025 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1026 {
1027 	set_orig_size(s, (void *)object, s->object_size);
1028 }
1029 
1030 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1031 {
1032 	struct va_format vaf;
1033 	va_list args;
1034 
1035 	va_start(args, fmt);
1036 	vaf.fmt = fmt;
1037 	vaf.va = &args;
1038 	pr_err("=============================================================================\n");
1039 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1040 	pr_err("-----------------------------------------------------------------------------\n\n");
1041 	va_end(args);
1042 }
1043 
1044 __printf(2, 3)
1045 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1046 {
1047 	struct va_format vaf;
1048 	va_list args;
1049 
1050 	if (slab_add_kunit_errors())
1051 		return;
1052 
1053 	va_start(args, fmt);
1054 	vaf.fmt = fmt;
1055 	vaf.va = &args;
1056 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1057 	va_end(args);
1058 }
1059 
1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1061 {
1062 	unsigned int off;	/* Offset of last byte */
1063 	u8 *addr = slab_address(slab);
1064 
1065 	print_tracking(s, p);
1066 
1067 	print_slab_info(slab);
1068 
1069 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1070 	       p, p - addr, get_freepointer(s, p));
1071 
1072 	if (s->flags & SLAB_RED_ZONE)
1073 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1074 			      s->red_left_pad);
1075 	else if (p > addr + 16)
1076 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1077 
1078 	print_section(KERN_ERR,         "Object   ", p,
1079 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1080 	if (s->flags & SLAB_RED_ZONE)
1081 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1082 			s->inuse - s->object_size);
1083 
1084 	off = get_info_end(s);
1085 
1086 	if (s->flags & SLAB_STORE_USER)
1087 		off += 2 * sizeof(struct track);
1088 
1089 	if (slub_debug_orig_size(s))
1090 		off += sizeof(unsigned int);
1091 
1092 	off += kasan_metadata_size(s, false);
1093 
1094 	if (off != size_from_object(s))
1095 		/* Beginning of the filler is the free pointer */
1096 		print_section(KERN_ERR, "Padding  ", p + off,
1097 			      size_from_object(s) - off);
1098 
1099 	dump_stack();
1100 }
1101 
1102 static void object_err(struct kmem_cache *s, struct slab *slab,
1103 			u8 *object, char *reason)
1104 {
1105 	if (slab_add_kunit_errors())
1106 		return;
1107 
1108 	slab_bug(s, "%s", reason);
1109 	print_trailer(s, slab, object);
1110 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1111 }
1112 
1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1114 			       void **freelist, void *nextfree)
1115 {
1116 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1117 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1118 		object_err(s, slab, *freelist, "Freechain corrupt");
1119 		*freelist = NULL;
1120 		slab_fix(s, "Isolate corrupted freechain");
1121 		return true;
1122 	}
1123 
1124 	return false;
1125 }
1126 
1127 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1128 			const char *fmt, ...)
1129 {
1130 	va_list args;
1131 	char buf[100];
1132 
1133 	if (slab_add_kunit_errors())
1134 		return;
1135 
1136 	va_start(args, fmt);
1137 	vsnprintf(buf, sizeof(buf), fmt, args);
1138 	va_end(args);
1139 	slab_bug(s, "%s", buf);
1140 	print_slab_info(slab);
1141 	dump_stack();
1142 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1143 }
1144 
1145 static void init_object(struct kmem_cache *s, void *object, u8 val)
1146 {
1147 	u8 *p = kasan_reset_tag(object);
1148 	unsigned int poison_size = s->object_size;
1149 
1150 	if (s->flags & SLAB_RED_ZONE) {
1151 		/*
1152 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1153 		 * the shadow makes it possible to distinguish uninit-value
1154 		 * from use-after-free.
1155 		 */
1156 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1157 					  s->red_left_pad);
1158 
1159 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1160 			/*
1161 			 * Redzone the extra allocated space by kmalloc than
1162 			 * requested, and the poison size will be limited to
1163 			 * the original request size accordingly.
1164 			 */
1165 			poison_size = get_orig_size(s, object);
1166 		}
1167 	}
1168 
1169 	if (s->flags & __OBJECT_POISON) {
1170 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1171 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1172 	}
1173 
1174 	if (s->flags & SLAB_RED_ZONE)
1175 		memset_no_sanitize_memory(p + poison_size, val,
1176 					  s->inuse - poison_size);
1177 }
1178 
1179 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1180 						void *from, void *to)
1181 {
1182 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1183 	memset(from, data, to - from);
1184 }
1185 
1186 #ifdef CONFIG_KMSAN
1187 #define pad_check_attributes noinline __no_kmsan_checks
1188 #else
1189 #define pad_check_attributes
1190 #endif
1191 
1192 static pad_check_attributes int
1193 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1194 		       u8 *object, char *what,
1195 		       u8 *start, unsigned int value, unsigned int bytes)
1196 {
1197 	u8 *fault;
1198 	u8 *end;
1199 	u8 *addr = slab_address(slab);
1200 
1201 	metadata_access_enable();
1202 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1203 	metadata_access_disable();
1204 	if (!fault)
1205 		return 1;
1206 
1207 	end = start + bytes;
1208 	while (end > fault && end[-1] == value)
1209 		end--;
1210 
1211 	if (slab_add_kunit_errors())
1212 		goto skip_bug_print;
1213 
1214 	slab_bug(s, "%s overwritten", what);
1215 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1216 					fault, end - 1, fault - addr,
1217 					fault[0], value);
1218 
1219 skip_bug_print:
1220 	restore_bytes(s, what, value, fault, end);
1221 	return 0;
1222 }
1223 
1224 /*
1225  * Object layout:
1226  *
1227  * object address
1228  * 	Bytes of the object to be managed.
1229  * 	If the freepointer may overlay the object then the free
1230  *	pointer is at the middle of the object.
1231  *
1232  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1233  * 	0xa5 (POISON_END)
1234  *
1235  * object + s->object_size
1236  * 	Padding to reach word boundary. This is also used for Redzoning.
1237  * 	Padding is extended by another word if Redzoning is enabled and
1238  * 	object_size == inuse.
1239  *
1240  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1241  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1242  *
1243  * object + s->inuse
1244  * 	Meta data starts here.
1245  *
1246  * 	A. Free pointer (if we cannot overwrite object on free)
1247  * 	B. Tracking data for SLAB_STORE_USER
1248  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1249  *	D. Padding to reach required alignment boundary or at minimum
1250  * 		one word if debugging is on to be able to detect writes
1251  * 		before the word boundary.
1252  *
1253  *	Padding is done using 0x5a (POISON_INUSE)
1254  *
1255  * object + s->size
1256  * 	Nothing is used beyond s->size.
1257  *
1258  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1259  * ignored. And therefore no slab options that rely on these boundaries
1260  * may be used with merged slabcaches.
1261  */
1262 
1263 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1264 {
1265 	unsigned long off = get_info_end(s);	/* The end of info */
1266 
1267 	if (s->flags & SLAB_STORE_USER) {
1268 		/* We also have user information there */
1269 		off += 2 * sizeof(struct track);
1270 
1271 		if (s->flags & SLAB_KMALLOC)
1272 			off += sizeof(unsigned int);
1273 	}
1274 
1275 	off += kasan_metadata_size(s, false);
1276 
1277 	if (size_from_object(s) == off)
1278 		return 1;
1279 
1280 	return check_bytes_and_report(s, slab, p, "Object padding",
1281 			p + off, POISON_INUSE, size_from_object(s) - off);
1282 }
1283 
1284 /* Check the pad bytes at the end of a slab page */
1285 static pad_check_attributes void
1286 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1287 {
1288 	u8 *start;
1289 	u8 *fault;
1290 	u8 *end;
1291 	u8 *pad;
1292 	int length;
1293 	int remainder;
1294 
1295 	if (!(s->flags & SLAB_POISON))
1296 		return;
1297 
1298 	start = slab_address(slab);
1299 	length = slab_size(slab);
1300 	end = start + length;
1301 	remainder = length % s->size;
1302 	if (!remainder)
1303 		return;
1304 
1305 	pad = end - remainder;
1306 	metadata_access_enable();
1307 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1308 	metadata_access_disable();
1309 	if (!fault)
1310 		return;
1311 	while (end > fault && end[-1] == POISON_INUSE)
1312 		end--;
1313 
1314 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1315 			fault, end - 1, fault - start);
1316 	print_section(KERN_ERR, "Padding ", pad, remainder);
1317 
1318 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1319 }
1320 
1321 static int check_object(struct kmem_cache *s, struct slab *slab,
1322 					void *object, u8 val)
1323 {
1324 	u8 *p = object;
1325 	u8 *endobject = object + s->object_size;
1326 	unsigned int orig_size, kasan_meta_size;
1327 	int ret = 1;
1328 
1329 	if (s->flags & SLAB_RED_ZONE) {
1330 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1331 			object - s->red_left_pad, val, s->red_left_pad))
1332 			ret = 0;
1333 
1334 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1335 			endobject, val, s->inuse - s->object_size))
1336 			ret = 0;
1337 
1338 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1339 			orig_size = get_orig_size(s, object);
1340 
1341 			if (s->object_size > orig_size  &&
1342 				!check_bytes_and_report(s, slab, object,
1343 					"kmalloc Redzone", p + orig_size,
1344 					val, s->object_size - orig_size)) {
1345 				ret = 0;
1346 			}
1347 		}
1348 	} else {
1349 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1350 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1351 				endobject, POISON_INUSE,
1352 				s->inuse - s->object_size))
1353 				ret = 0;
1354 		}
1355 	}
1356 
1357 	if (s->flags & SLAB_POISON) {
1358 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1359 			/*
1360 			 * KASAN can save its free meta data inside of the
1361 			 * object at offset 0. Thus, skip checking the part of
1362 			 * the redzone that overlaps with the meta data.
1363 			 */
1364 			kasan_meta_size = kasan_metadata_size(s, true);
1365 			if (kasan_meta_size < s->object_size - 1 &&
1366 			    !check_bytes_and_report(s, slab, p, "Poison",
1367 					p + kasan_meta_size, POISON_FREE,
1368 					s->object_size - kasan_meta_size - 1))
1369 				ret = 0;
1370 			if (kasan_meta_size < s->object_size &&
1371 			    !check_bytes_and_report(s, slab, p, "End Poison",
1372 					p + s->object_size - 1, POISON_END, 1))
1373 				ret = 0;
1374 		}
1375 		/*
1376 		 * check_pad_bytes cleans up on its own.
1377 		 */
1378 		if (!check_pad_bytes(s, slab, p))
1379 			ret = 0;
1380 	}
1381 
1382 	/*
1383 	 * Cannot check freepointer while object is allocated if
1384 	 * object and freepointer overlap.
1385 	 */
1386 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1387 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1388 		object_err(s, slab, p, "Freepointer corrupt");
1389 		/*
1390 		 * No choice but to zap it and thus lose the remainder
1391 		 * of the free objects in this slab. May cause
1392 		 * another error because the object count is now wrong.
1393 		 */
1394 		set_freepointer(s, p, NULL);
1395 		ret = 0;
1396 	}
1397 
1398 	if (!ret && !slab_in_kunit_test()) {
1399 		print_trailer(s, slab, object);
1400 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1401 	}
1402 
1403 	return ret;
1404 }
1405 
1406 static int check_slab(struct kmem_cache *s, struct slab *slab)
1407 {
1408 	int maxobj;
1409 
1410 	if (!folio_test_slab(slab_folio(slab))) {
1411 		slab_err(s, slab, "Not a valid slab page");
1412 		return 0;
1413 	}
1414 
1415 	maxobj = order_objects(slab_order(slab), s->size);
1416 	if (slab->objects > maxobj) {
1417 		slab_err(s, slab, "objects %u > max %u",
1418 			slab->objects, maxobj);
1419 		return 0;
1420 	}
1421 	if (slab->inuse > slab->objects) {
1422 		slab_err(s, slab, "inuse %u > max %u",
1423 			slab->inuse, slab->objects);
1424 		return 0;
1425 	}
1426 	/* Slab_pad_check fixes things up after itself */
1427 	slab_pad_check(s, slab);
1428 	return 1;
1429 }
1430 
1431 /*
1432  * Determine if a certain object in a slab is on the freelist. Must hold the
1433  * slab lock to guarantee that the chains are in a consistent state.
1434  */
1435 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1436 {
1437 	int nr = 0;
1438 	void *fp;
1439 	void *object = NULL;
1440 	int max_objects;
1441 
1442 	fp = slab->freelist;
1443 	while (fp && nr <= slab->objects) {
1444 		if (fp == search)
1445 			return 1;
1446 		if (!check_valid_pointer(s, slab, fp)) {
1447 			if (object) {
1448 				object_err(s, slab, object,
1449 					"Freechain corrupt");
1450 				set_freepointer(s, object, NULL);
1451 			} else {
1452 				slab_err(s, slab, "Freepointer corrupt");
1453 				slab->freelist = NULL;
1454 				slab->inuse = slab->objects;
1455 				slab_fix(s, "Freelist cleared");
1456 				return 0;
1457 			}
1458 			break;
1459 		}
1460 		object = fp;
1461 		fp = get_freepointer(s, object);
1462 		nr++;
1463 	}
1464 
1465 	max_objects = order_objects(slab_order(slab), s->size);
1466 	if (max_objects > MAX_OBJS_PER_PAGE)
1467 		max_objects = MAX_OBJS_PER_PAGE;
1468 
1469 	if (slab->objects != max_objects) {
1470 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1471 			 slab->objects, max_objects);
1472 		slab->objects = max_objects;
1473 		slab_fix(s, "Number of objects adjusted");
1474 	}
1475 	if (slab->inuse != slab->objects - nr) {
1476 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1477 			 slab->inuse, slab->objects - nr);
1478 		slab->inuse = slab->objects - nr;
1479 		slab_fix(s, "Object count adjusted");
1480 	}
1481 	return search == NULL;
1482 }
1483 
1484 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1485 								int alloc)
1486 {
1487 	if (s->flags & SLAB_TRACE) {
1488 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1489 			s->name,
1490 			alloc ? "alloc" : "free",
1491 			object, slab->inuse,
1492 			slab->freelist);
1493 
1494 		if (!alloc)
1495 			print_section(KERN_INFO, "Object ", (void *)object,
1496 					s->object_size);
1497 
1498 		dump_stack();
1499 	}
1500 }
1501 
1502 /*
1503  * Tracking of fully allocated slabs for debugging purposes.
1504  */
1505 static void add_full(struct kmem_cache *s,
1506 	struct kmem_cache_node *n, struct slab *slab)
1507 {
1508 	if (!(s->flags & SLAB_STORE_USER))
1509 		return;
1510 
1511 	lockdep_assert_held(&n->list_lock);
1512 	list_add(&slab->slab_list, &n->full);
1513 }
1514 
1515 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1516 {
1517 	if (!(s->flags & SLAB_STORE_USER))
1518 		return;
1519 
1520 	lockdep_assert_held(&n->list_lock);
1521 	list_del(&slab->slab_list);
1522 }
1523 
1524 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1525 {
1526 	return atomic_long_read(&n->nr_slabs);
1527 }
1528 
1529 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1530 {
1531 	struct kmem_cache_node *n = get_node(s, node);
1532 
1533 	atomic_long_inc(&n->nr_slabs);
1534 	atomic_long_add(objects, &n->total_objects);
1535 }
1536 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1537 {
1538 	struct kmem_cache_node *n = get_node(s, node);
1539 
1540 	atomic_long_dec(&n->nr_slabs);
1541 	atomic_long_sub(objects, &n->total_objects);
1542 }
1543 
1544 /* Object debug checks for alloc/free paths */
1545 static void setup_object_debug(struct kmem_cache *s, void *object)
1546 {
1547 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1548 		return;
1549 
1550 	init_object(s, object, SLUB_RED_INACTIVE);
1551 	init_tracking(s, object);
1552 }
1553 
1554 static
1555 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1556 {
1557 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1558 		return;
1559 
1560 	metadata_access_enable();
1561 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1562 	metadata_access_disable();
1563 }
1564 
1565 static inline int alloc_consistency_checks(struct kmem_cache *s,
1566 					struct slab *slab, void *object)
1567 {
1568 	if (!check_slab(s, slab))
1569 		return 0;
1570 
1571 	if (!check_valid_pointer(s, slab, object)) {
1572 		object_err(s, slab, object, "Freelist Pointer check fails");
1573 		return 0;
1574 	}
1575 
1576 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1577 		return 0;
1578 
1579 	return 1;
1580 }
1581 
1582 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1583 			struct slab *slab, void *object, int orig_size)
1584 {
1585 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1586 		if (!alloc_consistency_checks(s, slab, object))
1587 			goto bad;
1588 	}
1589 
1590 	/* Success. Perform special debug activities for allocs */
1591 	trace(s, slab, object, 1);
1592 	set_orig_size(s, object, orig_size);
1593 	init_object(s, object, SLUB_RED_ACTIVE);
1594 	return true;
1595 
1596 bad:
1597 	if (folio_test_slab(slab_folio(slab))) {
1598 		/*
1599 		 * If this is a slab page then lets do the best we can
1600 		 * to avoid issues in the future. Marking all objects
1601 		 * as used avoids touching the remaining objects.
1602 		 */
1603 		slab_fix(s, "Marking all objects used");
1604 		slab->inuse = slab->objects;
1605 		slab->freelist = NULL;
1606 	}
1607 	return false;
1608 }
1609 
1610 static inline int free_consistency_checks(struct kmem_cache *s,
1611 		struct slab *slab, void *object, unsigned long addr)
1612 {
1613 	if (!check_valid_pointer(s, slab, object)) {
1614 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1615 		return 0;
1616 	}
1617 
1618 	if (on_freelist(s, slab, object)) {
1619 		object_err(s, slab, object, "Object already free");
1620 		return 0;
1621 	}
1622 
1623 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1624 		return 0;
1625 
1626 	if (unlikely(s != slab->slab_cache)) {
1627 		if (!folio_test_slab(slab_folio(slab))) {
1628 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1629 				 object);
1630 		} else if (!slab->slab_cache) {
1631 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1632 			       object);
1633 			dump_stack();
1634 		} else
1635 			object_err(s, slab, object,
1636 					"page slab pointer corrupt.");
1637 		return 0;
1638 	}
1639 	return 1;
1640 }
1641 
1642 /*
1643  * Parse a block of slab_debug options. Blocks are delimited by ';'
1644  *
1645  * @str:    start of block
1646  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1647  * @slabs:  return start of list of slabs, or NULL when there's no list
1648  * @init:   assume this is initial parsing and not per-kmem-create parsing
1649  *
1650  * returns the start of next block if there's any, or NULL
1651  */
1652 static char *
1653 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1654 {
1655 	bool higher_order_disable = false;
1656 
1657 	/* Skip any completely empty blocks */
1658 	while (*str && *str == ';')
1659 		str++;
1660 
1661 	if (*str == ',') {
1662 		/*
1663 		 * No options but restriction on slabs. This means full
1664 		 * debugging for slabs matching a pattern.
1665 		 */
1666 		*flags = DEBUG_DEFAULT_FLAGS;
1667 		goto check_slabs;
1668 	}
1669 	*flags = 0;
1670 
1671 	/* Determine which debug features should be switched on */
1672 	for (; *str && *str != ',' && *str != ';'; str++) {
1673 		switch (tolower(*str)) {
1674 		case '-':
1675 			*flags = 0;
1676 			break;
1677 		case 'f':
1678 			*flags |= SLAB_CONSISTENCY_CHECKS;
1679 			break;
1680 		case 'z':
1681 			*flags |= SLAB_RED_ZONE;
1682 			break;
1683 		case 'p':
1684 			*flags |= SLAB_POISON;
1685 			break;
1686 		case 'u':
1687 			*flags |= SLAB_STORE_USER;
1688 			break;
1689 		case 't':
1690 			*flags |= SLAB_TRACE;
1691 			break;
1692 		case 'a':
1693 			*flags |= SLAB_FAILSLAB;
1694 			break;
1695 		case 'o':
1696 			/*
1697 			 * Avoid enabling debugging on caches if its minimum
1698 			 * order would increase as a result.
1699 			 */
1700 			higher_order_disable = true;
1701 			break;
1702 		default:
1703 			if (init)
1704 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1705 		}
1706 	}
1707 check_slabs:
1708 	if (*str == ',')
1709 		*slabs = ++str;
1710 	else
1711 		*slabs = NULL;
1712 
1713 	/* Skip over the slab list */
1714 	while (*str && *str != ';')
1715 		str++;
1716 
1717 	/* Skip any completely empty blocks */
1718 	while (*str && *str == ';')
1719 		str++;
1720 
1721 	if (init && higher_order_disable)
1722 		disable_higher_order_debug = 1;
1723 
1724 	if (*str)
1725 		return str;
1726 	else
1727 		return NULL;
1728 }
1729 
1730 static int __init setup_slub_debug(char *str)
1731 {
1732 	slab_flags_t flags;
1733 	slab_flags_t global_flags;
1734 	char *saved_str;
1735 	char *slab_list;
1736 	bool global_slub_debug_changed = false;
1737 	bool slab_list_specified = false;
1738 
1739 	global_flags = DEBUG_DEFAULT_FLAGS;
1740 	if (*str++ != '=' || !*str)
1741 		/*
1742 		 * No options specified. Switch on full debugging.
1743 		 */
1744 		goto out;
1745 
1746 	saved_str = str;
1747 	while (str) {
1748 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1749 
1750 		if (!slab_list) {
1751 			global_flags = flags;
1752 			global_slub_debug_changed = true;
1753 		} else {
1754 			slab_list_specified = true;
1755 			if (flags & SLAB_STORE_USER)
1756 				stack_depot_request_early_init();
1757 		}
1758 	}
1759 
1760 	/*
1761 	 * For backwards compatibility, a single list of flags with list of
1762 	 * slabs means debugging is only changed for those slabs, so the global
1763 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1764 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1765 	 * long as there is no option specifying flags without a slab list.
1766 	 */
1767 	if (slab_list_specified) {
1768 		if (!global_slub_debug_changed)
1769 			global_flags = slub_debug;
1770 		slub_debug_string = saved_str;
1771 	}
1772 out:
1773 	slub_debug = global_flags;
1774 	if (slub_debug & SLAB_STORE_USER)
1775 		stack_depot_request_early_init();
1776 	if (slub_debug != 0 || slub_debug_string)
1777 		static_branch_enable(&slub_debug_enabled);
1778 	else
1779 		static_branch_disable(&slub_debug_enabled);
1780 	if ((static_branch_unlikely(&init_on_alloc) ||
1781 	     static_branch_unlikely(&init_on_free)) &&
1782 	    (slub_debug & SLAB_POISON))
1783 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1784 	return 1;
1785 }
1786 
1787 __setup("slab_debug", setup_slub_debug);
1788 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1789 
1790 /*
1791  * kmem_cache_flags - apply debugging options to the cache
1792  * @flags:		flags to set
1793  * @name:		name of the cache
1794  *
1795  * Debug option(s) are applied to @flags. In addition to the debug
1796  * option(s), if a slab name (or multiple) is specified i.e.
1797  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1798  * then only the select slabs will receive the debug option(s).
1799  */
1800 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1801 {
1802 	char *iter;
1803 	size_t len;
1804 	char *next_block;
1805 	slab_flags_t block_flags;
1806 	slab_flags_t slub_debug_local = slub_debug;
1807 
1808 	if (flags & SLAB_NO_USER_FLAGS)
1809 		return flags;
1810 
1811 	/*
1812 	 * If the slab cache is for debugging (e.g. kmemleak) then
1813 	 * don't store user (stack trace) information by default,
1814 	 * but let the user enable it via the command line below.
1815 	 */
1816 	if (flags & SLAB_NOLEAKTRACE)
1817 		slub_debug_local &= ~SLAB_STORE_USER;
1818 
1819 	len = strlen(name);
1820 	next_block = slub_debug_string;
1821 	/* Go through all blocks of debug options, see if any matches our slab's name */
1822 	while (next_block) {
1823 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1824 		if (!iter)
1825 			continue;
1826 		/* Found a block that has a slab list, search it */
1827 		while (*iter) {
1828 			char *end, *glob;
1829 			size_t cmplen;
1830 
1831 			end = strchrnul(iter, ',');
1832 			if (next_block && next_block < end)
1833 				end = next_block - 1;
1834 
1835 			glob = strnchr(iter, end - iter, '*');
1836 			if (glob)
1837 				cmplen = glob - iter;
1838 			else
1839 				cmplen = max_t(size_t, len, (end - iter));
1840 
1841 			if (!strncmp(name, iter, cmplen)) {
1842 				flags |= block_flags;
1843 				return flags;
1844 			}
1845 
1846 			if (!*end || *end == ';')
1847 				break;
1848 			iter = end + 1;
1849 		}
1850 	}
1851 
1852 	return flags | slub_debug_local;
1853 }
1854 #else /* !CONFIG_SLUB_DEBUG */
1855 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1856 static inline
1857 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1858 
1859 static inline bool alloc_debug_processing(struct kmem_cache *s,
1860 	struct slab *slab, void *object, int orig_size) { return true; }
1861 
1862 static inline bool free_debug_processing(struct kmem_cache *s,
1863 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1864 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1865 
1866 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1867 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1868 			void *object, u8 val) { return 1; }
1869 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1870 static inline void set_track(struct kmem_cache *s, void *object,
1871 			     enum track_item alloc, unsigned long addr) {}
1872 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1873 					struct slab *slab) {}
1874 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1875 					struct slab *slab) {}
1876 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1877 {
1878 	return flags;
1879 }
1880 #define slub_debug 0
1881 
1882 #define disable_higher_order_debug 0
1883 
1884 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1885 							{ return 0; }
1886 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1887 							int objects) {}
1888 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1889 							int objects) {}
1890 #ifndef CONFIG_SLUB_TINY
1891 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1892 			       void **freelist, void *nextfree)
1893 {
1894 	return false;
1895 }
1896 #endif
1897 #endif /* CONFIG_SLUB_DEBUG */
1898 
1899 #ifdef CONFIG_SLAB_OBJ_EXT
1900 
1901 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1902 
1903 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1904 {
1905 	struct slabobj_ext *slab_exts;
1906 	struct slab *obj_exts_slab;
1907 
1908 	obj_exts_slab = virt_to_slab(obj_exts);
1909 	slab_exts = slab_obj_exts(obj_exts_slab);
1910 	if (slab_exts) {
1911 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1912 						 obj_exts_slab, obj_exts);
1913 		/* codetag should be NULL */
1914 		WARN_ON(slab_exts[offs].ref.ct);
1915 		set_codetag_empty(&slab_exts[offs].ref);
1916 	}
1917 }
1918 
1919 static inline void mark_failed_objexts_alloc(struct slab *slab)
1920 {
1921 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1922 }
1923 
1924 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1925 			struct slabobj_ext *vec, unsigned int objects)
1926 {
1927 	/*
1928 	 * If vector previously failed to allocate then we have live
1929 	 * objects with no tag reference. Mark all references in this
1930 	 * vector as empty to avoid warnings later on.
1931 	 */
1932 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1933 		unsigned int i;
1934 
1935 		for (i = 0; i < objects; i++)
1936 			set_codetag_empty(&vec[i].ref);
1937 	}
1938 }
1939 
1940 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1941 
1942 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1943 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1944 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1945 			struct slabobj_ext *vec, unsigned int objects) {}
1946 
1947 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1948 
1949 /*
1950  * The allocated objcg pointers array is not accounted directly.
1951  * Moreover, it should not come from DMA buffer and is not readily
1952  * reclaimable. So those GFP bits should be masked off.
1953  */
1954 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1955 				__GFP_ACCOUNT | __GFP_NOFAIL)
1956 
1957 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1958 		        gfp_t gfp, bool new_slab)
1959 {
1960 	unsigned int objects = objs_per_slab(s, slab);
1961 	unsigned long new_exts;
1962 	unsigned long old_exts;
1963 	struct slabobj_ext *vec;
1964 
1965 	gfp &= ~OBJCGS_CLEAR_MASK;
1966 	/* Prevent recursive extension vector allocation */
1967 	gfp |= __GFP_NO_OBJ_EXT;
1968 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1969 			   slab_nid(slab));
1970 	if (!vec) {
1971 		/* Mark vectors which failed to allocate */
1972 		if (new_slab)
1973 			mark_failed_objexts_alloc(slab);
1974 
1975 		return -ENOMEM;
1976 	}
1977 
1978 	new_exts = (unsigned long)vec;
1979 #ifdef CONFIG_MEMCG
1980 	new_exts |= MEMCG_DATA_OBJEXTS;
1981 #endif
1982 	old_exts = READ_ONCE(slab->obj_exts);
1983 	handle_failed_objexts_alloc(old_exts, vec, objects);
1984 	if (new_slab) {
1985 		/*
1986 		 * If the slab is brand new and nobody can yet access its
1987 		 * obj_exts, no synchronization is required and obj_exts can
1988 		 * be simply assigned.
1989 		 */
1990 		slab->obj_exts = new_exts;
1991 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1992 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1993 		/*
1994 		 * If the slab is already in use, somebody can allocate and
1995 		 * assign slabobj_exts in parallel. In this case the existing
1996 		 * objcg vector should be reused.
1997 		 */
1998 		mark_objexts_empty(vec);
1999 		kfree(vec);
2000 		return 0;
2001 	}
2002 
2003 	kmemleak_not_leak(vec);
2004 	return 0;
2005 }
2006 
2007 static inline void free_slab_obj_exts(struct slab *slab)
2008 {
2009 	struct slabobj_ext *obj_exts;
2010 
2011 	obj_exts = slab_obj_exts(slab);
2012 	if (!obj_exts)
2013 		return;
2014 
2015 	/*
2016 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2017 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2018 	 * warning if slab has extensions but the extension of an object is
2019 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2020 	 * the extension for obj_exts is expected to be NULL.
2021 	 */
2022 	mark_objexts_empty(obj_exts);
2023 	kfree(obj_exts);
2024 	slab->obj_exts = 0;
2025 }
2026 
2027 static inline bool need_slab_obj_ext(void)
2028 {
2029 	if (mem_alloc_profiling_enabled())
2030 		return true;
2031 
2032 	/*
2033 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2034 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2035 	 */
2036 	return false;
2037 }
2038 
2039 #else /* CONFIG_SLAB_OBJ_EXT */
2040 
2041 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2042 			       gfp_t gfp, bool new_slab)
2043 {
2044 	return 0;
2045 }
2046 
2047 static inline void free_slab_obj_exts(struct slab *slab)
2048 {
2049 }
2050 
2051 static inline bool need_slab_obj_ext(void)
2052 {
2053 	return false;
2054 }
2055 
2056 #endif /* CONFIG_SLAB_OBJ_EXT */
2057 
2058 #ifdef CONFIG_MEM_ALLOC_PROFILING
2059 
2060 static inline struct slabobj_ext *
2061 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2062 {
2063 	struct slab *slab;
2064 
2065 	if (!p)
2066 		return NULL;
2067 
2068 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2069 		return NULL;
2070 
2071 	if (flags & __GFP_NO_OBJ_EXT)
2072 		return NULL;
2073 
2074 	slab = virt_to_slab(p);
2075 	if (!slab_obj_exts(slab) &&
2076 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2077 		 "%s, %s: Failed to create slab extension vector!\n",
2078 		 __func__, s->name))
2079 		return NULL;
2080 
2081 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2082 }
2083 
2084 static inline void
2085 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2086 {
2087 	if (need_slab_obj_ext()) {
2088 		struct slabobj_ext *obj_exts;
2089 
2090 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2091 		/*
2092 		 * Currently obj_exts is used only for allocation profiling.
2093 		 * If other users appear then mem_alloc_profiling_enabled()
2094 		 * check should be added before alloc_tag_add().
2095 		 */
2096 		if (likely(obj_exts))
2097 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2098 	}
2099 }
2100 
2101 static inline void
2102 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2103 			     int objects)
2104 {
2105 	struct slabobj_ext *obj_exts;
2106 	int i;
2107 
2108 	if (!mem_alloc_profiling_enabled())
2109 		return;
2110 
2111 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2112 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2113 		return;
2114 
2115 	obj_exts = slab_obj_exts(slab);
2116 	if (!obj_exts)
2117 		return;
2118 
2119 	for (i = 0; i < objects; i++) {
2120 		unsigned int off = obj_to_index(s, slab, p[i]);
2121 
2122 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2123 	}
2124 }
2125 
2126 #else /* CONFIG_MEM_ALLOC_PROFILING */
2127 
2128 static inline void
2129 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2130 {
2131 }
2132 
2133 static inline void
2134 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2135 			     int objects)
2136 {
2137 }
2138 
2139 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2140 
2141 
2142 #ifdef CONFIG_MEMCG
2143 
2144 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2145 
2146 static __fastpath_inline
2147 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2148 				gfp_t flags, size_t size, void **p)
2149 {
2150 	if (likely(!memcg_kmem_online()))
2151 		return true;
2152 
2153 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2154 		return true;
2155 
2156 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2157 		return true;
2158 
2159 	if (likely(size == 1)) {
2160 		memcg_alloc_abort_single(s, *p);
2161 		*p = NULL;
2162 	} else {
2163 		kmem_cache_free_bulk(s, size, p);
2164 	}
2165 
2166 	return false;
2167 }
2168 
2169 static __fastpath_inline
2170 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2171 			  int objects)
2172 {
2173 	struct slabobj_ext *obj_exts;
2174 
2175 	if (!memcg_kmem_online())
2176 		return;
2177 
2178 	obj_exts = slab_obj_exts(slab);
2179 	if (likely(!obj_exts))
2180 		return;
2181 
2182 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2183 }
2184 
2185 static __fastpath_inline
2186 bool memcg_slab_post_charge(void *p, gfp_t flags)
2187 {
2188 	struct slabobj_ext *slab_exts;
2189 	struct kmem_cache *s;
2190 	struct folio *folio;
2191 	struct slab *slab;
2192 	unsigned long off;
2193 
2194 	folio = virt_to_folio(p);
2195 	if (!folio_test_slab(folio)) {
2196 		return folio_memcg_kmem(folio) ||
2197 			(__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2198 						  folio_order(folio)) == 0);
2199 	}
2200 
2201 	slab = folio_slab(folio);
2202 	s = slab->slab_cache;
2203 
2204 	/*
2205 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2206 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2207 	 * becoming effectively unfreeable.
2208 	 */
2209 	if (is_kmalloc_normal(s))
2210 		return true;
2211 
2212 	/* Ignore already charged objects. */
2213 	slab_exts = slab_obj_exts(slab);
2214 	if (slab_exts) {
2215 		off = obj_to_index(s, slab, p);
2216 		if (unlikely(slab_exts[off].objcg))
2217 			return true;
2218 	}
2219 
2220 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2221 }
2222 
2223 #else /* CONFIG_MEMCG */
2224 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2225 					      struct list_lru *lru,
2226 					      gfp_t flags, size_t size,
2227 					      void **p)
2228 {
2229 	return true;
2230 }
2231 
2232 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2233 					void **p, int objects)
2234 {
2235 }
2236 
2237 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2238 {
2239 	return true;
2240 }
2241 #endif /* CONFIG_MEMCG */
2242 
2243 #ifdef CONFIG_SLUB_RCU_DEBUG
2244 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2245 
2246 struct rcu_delayed_free {
2247 	struct rcu_head head;
2248 	void *object;
2249 };
2250 #endif
2251 
2252 /*
2253  * Hooks for other subsystems that check memory allocations. In a typical
2254  * production configuration these hooks all should produce no code at all.
2255  *
2256  * Returns true if freeing of the object can proceed, false if its reuse
2257  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2258  * to KFENCE.
2259  */
2260 static __always_inline
2261 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2262 		    bool after_rcu_delay)
2263 {
2264 	/* Are the object contents still accessible? */
2265 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2266 
2267 	kmemleak_free_recursive(x, s->flags);
2268 	kmsan_slab_free(s, x);
2269 
2270 	debug_check_no_locks_freed(x, s->object_size);
2271 
2272 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2273 		debug_check_no_obj_freed(x, s->object_size);
2274 
2275 	/* Use KCSAN to help debug racy use-after-free. */
2276 	if (!still_accessible)
2277 		__kcsan_check_access(x, s->object_size,
2278 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2279 
2280 	if (kfence_free(x))
2281 		return false;
2282 
2283 	/*
2284 	 * Give KASAN a chance to notice an invalid free operation before we
2285 	 * modify the object.
2286 	 */
2287 	if (kasan_slab_pre_free(s, x))
2288 		return false;
2289 
2290 #ifdef CONFIG_SLUB_RCU_DEBUG
2291 	if (still_accessible) {
2292 		struct rcu_delayed_free *delayed_free;
2293 
2294 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2295 		if (delayed_free) {
2296 			/*
2297 			 * Let KASAN track our call stack as a "related work
2298 			 * creation", just like if the object had been freed
2299 			 * normally via kfree_rcu().
2300 			 * We have to do this manually because the rcu_head is
2301 			 * not located inside the object.
2302 			 */
2303 			kasan_record_aux_stack_noalloc(x);
2304 
2305 			delayed_free->object = x;
2306 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2307 			return false;
2308 		}
2309 	}
2310 #endif /* CONFIG_SLUB_RCU_DEBUG */
2311 
2312 	/*
2313 	 * As memory initialization might be integrated into KASAN,
2314 	 * kasan_slab_free and initialization memset's must be
2315 	 * kept together to avoid discrepancies in behavior.
2316 	 *
2317 	 * The initialization memset's clear the object and the metadata,
2318 	 * but don't touch the SLAB redzone.
2319 	 *
2320 	 * The object's freepointer is also avoided if stored outside the
2321 	 * object.
2322 	 */
2323 	if (unlikely(init)) {
2324 		int rsize;
2325 		unsigned int inuse, orig_size;
2326 
2327 		inuse = get_info_end(s);
2328 		orig_size = get_orig_size(s, x);
2329 		if (!kasan_has_integrated_init())
2330 			memset(kasan_reset_tag(x), 0, orig_size);
2331 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2332 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2333 		       s->size - inuse - rsize);
2334 		/*
2335 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2336 		 * would be reported
2337 		 */
2338 		set_orig_size(s, x, orig_size);
2339 
2340 	}
2341 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2342 	return !kasan_slab_free(s, x, init, still_accessible);
2343 }
2344 
2345 static __fastpath_inline
2346 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2347 			     int *cnt)
2348 {
2349 
2350 	void *object;
2351 	void *next = *head;
2352 	void *old_tail = *tail;
2353 	bool init;
2354 
2355 	if (is_kfence_address(next)) {
2356 		slab_free_hook(s, next, false, false);
2357 		return false;
2358 	}
2359 
2360 	/* Head and tail of the reconstructed freelist */
2361 	*head = NULL;
2362 	*tail = NULL;
2363 
2364 	init = slab_want_init_on_free(s);
2365 
2366 	do {
2367 		object = next;
2368 		next = get_freepointer(s, object);
2369 
2370 		/* If object's reuse doesn't have to be delayed */
2371 		if (likely(slab_free_hook(s, object, init, false))) {
2372 			/* Move object to the new freelist */
2373 			set_freepointer(s, object, *head);
2374 			*head = object;
2375 			if (!*tail)
2376 				*tail = object;
2377 		} else {
2378 			/*
2379 			 * Adjust the reconstructed freelist depth
2380 			 * accordingly if object's reuse is delayed.
2381 			 */
2382 			--(*cnt);
2383 		}
2384 	} while (object != old_tail);
2385 
2386 	return *head != NULL;
2387 }
2388 
2389 static void *setup_object(struct kmem_cache *s, void *object)
2390 {
2391 	setup_object_debug(s, object);
2392 	object = kasan_init_slab_obj(s, object);
2393 	if (unlikely(s->ctor)) {
2394 		kasan_unpoison_new_object(s, object);
2395 		s->ctor(object);
2396 		kasan_poison_new_object(s, object);
2397 	}
2398 	return object;
2399 }
2400 
2401 /*
2402  * Slab allocation and freeing
2403  */
2404 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2405 		struct kmem_cache_order_objects oo)
2406 {
2407 	struct folio *folio;
2408 	struct slab *slab;
2409 	unsigned int order = oo_order(oo);
2410 
2411 	if (node == NUMA_NO_NODE)
2412 		folio = (struct folio *)alloc_pages(flags, order);
2413 	else
2414 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
2415 
2416 	if (!folio)
2417 		return NULL;
2418 
2419 	slab = folio_slab(folio);
2420 	__folio_set_slab(folio);
2421 	/* Make the flag visible before any changes to folio->mapping */
2422 	smp_wmb();
2423 	if (folio_is_pfmemalloc(folio))
2424 		slab_set_pfmemalloc(slab);
2425 
2426 	return slab;
2427 }
2428 
2429 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2430 /* Pre-initialize the random sequence cache */
2431 static int init_cache_random_seq(struct kmem_cache *s)
2432 {
2433 	unsigned int count = oo_objects(s->oo);
2434 	int err;
2435 
2436 	/* Bailout if already initialised */
2437 	if (s->random_seq)
2438 		return 0;
2439 
2440 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2441 	if (err) {
2442 		pr_err("SLUB: Unable to initialize free list for %s\n",
2443 			s->name);
2444 		return err;
2445 	}
2446 
2447 	/* Transform to an offset on the set of pages */
2448 	if (s->random_seq) {
2449 		unsigned int i;
2450 
2451 		for (i = 0; i < count; i++)
2452 			s->random_seq[i] *= s->size;
2453 	}
2454 	return 0;
2455 }
2456 
2457 /* Initialize each random sequence freelist per cache */
2458 static void __init init_freelist_randomization(void)
2459 {
2460 	struct kmem_cache *s;
2461 
2462 	mutex_lock(&slab_mutex);
2463 
2464 	list_for_each_entry(s, &slab_caches, list)
2465 		init_cache_random_seq(s);
2466 
2467 	mutex_unlock(&slab_mutex);
2468 }
2469 
2470 /* Get the next entry on the pre-computed freelist randomized */
2471 static void *next_freelist_entry(struct kmem_cache *s,
2472 				unsigned long *pos, void *start,
2473 				unsigned long page_limit,
2474 				unsigned long freelist_count)
2475 {
2476 	unsigned int idx;
2477 
2478 	/*
2479 	 * If the target page allocation failed, the number of objects on the
2480 	 * page might be smaller than the usual size defined by the cache.
2481 	 */
2482 	do {
2483 		idx = s->random_seq[*pos];
2484 		*pos += 1;
2485 		if (*pos >= freelist_count)
2486 			*pos = 0;
2487 	} while (unlikely(idx >= page_limit));
2488 
2489 	return (char *)start + idx;
2490 }
2491 
2492 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2493 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2494 {
2495 	void *start;
2496 	void *cur;
2497 	void *next;
2498 	unsigned long idx, pos, page_limit, freelist_count;
2499 
2500 	if (slab->objects < 2 || !s->random_seq)
2501 		return false;
2502 
2503 	freelist_count = oo_objects(s->oo);
2504 	pos = get_random_u32_below(freelist_count);
2505 
2506 	page_limit = slab->objects * s->size;
2507 	start = fixup_red_left(s, slab_address(slab));
2508 
2509 	/* First entry is used as the base of the freelist */
2510 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2511 	cur = setup_object(s, cur);
2512 	slab->freelist = cur;
2513 
2514 	for (idx = 1; idx < slab->objects; idx++) {
2515 		next = next_freelist_entry(s, &pos, start, page_limit,
2516 			freelist_count);
2517 		next = setup_object(s, next);
2518 		set_freepointer(s, cur, next);
2519 		cur = next;
2520 	}
2521 	set_freepointer(s, cur, NULL);
2522 
2523 	return true;
2524 }
2525 #else
2526 static inline int init_cache_random_seq(struct kmem_cache *s)
2527 {
2528 	return 0;
2529 }
2530 static inline void init_freelist_randomization(void) { }
2531 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2532 {
2533 	return false;
2534 }
2535 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2536 
2537 static __always_inline void account_slab(struct slab *slab, int order,
2538 					 struct kmem_cache *s, gfp_t gfp)
2539 {
2540 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2541 		alloc_slab_obj_exts(slab, s, gfp, true);
2542 
2543 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2544 			    PAGE_SIZE << order);
2545 }
2546 
2547 static __always_inline void unaccount_slab(struct slab *slab, int order,
2548 					   struct kmem_cache *s)
2549 {
2550 	if (memcg_kmem_online() || need_slab_obj_ext())
2551 		free_slab_obj_exts(slab);
2552 
2553 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2554 			    -(PAGE_SIZE << order));
2555 }
2556 
2557 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2558 {
2559 	struct slab *slab;
2560 	struct kmem_cache_order_objects oo = s->oo;
2561 	gfp_t alloc_gfp;
2562 	void *start, *p, *next;
2563 	int idx;
2564 	bool shuffle;
2565 
2566 	flags &= gfp_allowed_mask;
2567 
2568 	flags |= s->allocflags;
2569 
2570 	/*
2571 	 * Let the initial higher-order allocation fail under memory pressure
2572 	 * so we fall-back to the minimum order allocation.
2573 	 */
2574 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2575 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2576 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2577 
2578 	slab = alloc_slab_page(alloc_gfp, node, oo);
2579 	if (unlikely(!slab)) {
2580 		oo = s->min;
2581 		alloc_gfp = flags;
2582 		/*
2583 		 * Allocation may have failed due to fragmentation.
2584 		 * Try a lower order alloc if possible
2585 		 */
2586 		slab = alloc_slab_page(alloc_gfp, node, oo);
2587 		if (unlikely(!slab))
2588 			return NULL;
2589 		stat(s, ORDER_FALLBACK);
2590 	}
2591 
2592 	slab->objects = oo_objects(oo);
2593 	slab->inuse = 0;
2594 	slab->frozen = 0;
2595 
2596 	account_slab(slab, oo_order(oo), s, flags);
2597 
2598 	slab->slab_cache = s;
2599 
2600 	kasan_poison_slab(slab);
2601 
2602 	start = slab_address(slab);
2603 
2604 	setup_slab_debug(s, slab, start);
2605 
2606 	shuffle = shuffle_freelist(s, slab);
2607 
2608 	if (!shuffle) {
2609 		start = fixup_red_left(s, start);
2610 		start = setup_object(s, start);
2611 		slab->freelist = start;
2612 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2613 			next = p + s->size;
2614 			next = setup_object(s, next);
2615 			set_freepointer(s, p, next);
2616 			p = next;
2617 		}
2618 		set_freepointer(s, p, NULL);
2619 	}
2620 
2621 	return slab;
2622 }
2623 
2624 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2625 {
2626 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2627 		flags = kmalloc_fix_flags(flags);
2628 
2629 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2630 
2631 	return allocate_slab(s,
2632 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2633 }
2634 
2635 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2636 {
2637 	struct folio *folio = slab_folio(slab);
2638 	int order = folio_order(folio);
2639 	int pages = 1 << order;
2640 
2641 	__slab_clear_pfmemalloc(slab);
2642 	folio->mapping = NULL;
2643 	/* Make the mapping reset visible before clearing the flag */
2644 	smp_wmb();
2645 	__folio_clear_slab(folio);
2646 	mm_account_reclaimed_pages(pages);
2647 	unaccount_slab(slab, order, s);
2648 	__free_pages(&folio->page, order);
2649 }
2650 
2651 static void rcu_free_slab(struct rcu_head *h)
2652 {
2653 	struct slab *slab = container_of(h, struct slab, rcu_head);
2654 
2655 	__free_slab(slab->slab_cache, slab);
2656 }
2657 
2658 static void free_slab(struct kmem_cache *s, struct slab *slab)
2659 {
2660 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2661 		void *p;
2662 
2663 		slab_pad_check(s, slab);
2664 		for_each_object(p, s, slab_address(slab), slab->objects)
2665 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2666 	}
2667 
2668 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2669 		call_rcu(&slab->rcu_head, rcu_free_slab);
2670 	else
2671 		__free_slab(s, slab);
2672 }
2673 
2674 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2675 {
2676 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2677 	free_slab(s, slab);
2678 }
2679 
2680 /*
2681  * SLUB reuses PG_workingset bit to keep track of whether it's on
2682  * the per-node partial list.
2683  */
2684 static inline bool slab_test_node_partial(const struct slab *slab)
2685 {
2686 	return folio_test_workingset(slab_folio(slab));
2687 }
2688 
2689 static inline void slab_set_node_partial(struct slab *slab)
2690 {
2691 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2692 }
2693 
2694 static inline void slab_clear_node_partial(struct slab *slab)
2695 {
2696 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2697 }
2698 
2699 /*
2700  * Management of partially allocated slabs.
2701  */
2702 static inline void
2703 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2704 {
2705 	n->nr_partial++;
2706 	if (tail == DEACTIVATE_TO_TAIL)
2707 		list_add_tail(&slab->slab_list, &n->partial);
2708 	else
2709 		list_add(&slab->slab_list, &n->partial);
2710 	slab_set_node_partial(slab);
2711 }
2712 
2713 static inline void add_partial(struct kmem_cache_node *n,
2714 				struct slab *slab, int tail)
2715 {
2716 	lockdep_assert_held(&n->list_lock);
2717 	__add_partial(n, slab, tail);
2718 }
2719 
2720 static inline void remove_partial(struct kmem_cache_node *n,
2721 					struct slab *slab)
2722 {
2723 	lockdep_assert_held(&n->list_lock);
2724 	list_del(&slab->slab_list);
2725 	slab_clear_node_partial(slab);
2726 	n->nr_partial--;
2727 }
2728 
2729 /*
2730  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2731  * slab from the n->partial list. Remove only a single object from the slab, do
2732  * the alloc_debug_processing() checks and leave the slab on the list, or move
2733  * it to full list if it was the last free object.
2734  */
2735 static void *alloc_single_from_partial(struct kmem_cache *s,
2736 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2737 {
2738 	void *object;
2739 
2740 	lockdep_assert_held(&n->list_lock);
2741 
2742 	object = slab->freelist;
2743 	slab->freelist = get_freepointer(s, object);
2744 	slab->inuse++;
2745 
2746 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2747 		remove_partial(n, slab);
2748 		return NULL;
2749 	}
2750 
2751 	if (slab->inuse == slab->objects) {
2752 		remove_partial(n, slab);
2753 		add_full(s, n, slab);
2754 	}
2755 
2756 	return object;
2757 }
2758 
2759 /*
2760  * Called only for kmem_cache_debug() caches to allocate from a freshly
2761  * allocated slab. Allocate a single object instead of whole freelist
2762  * and put the slab to the partial (or full) list.
2763  */
2764 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2765 					struct slab *slab, int orig_size)
2766 {
2767 	int nid = slab_nid(slab);
2768 	struct kmem_cache_node *n = get_node(s, nid);
2769 	unsigned long flags;
2770 	void *object;
2771 
2772 
2773 	object = slab->freelist;
2774 	slab->freelist = get_freepointer(s, object);
2775 	slab->inuse = 1;
2776 
2777 	if (!alloc_debug_processing(s, slab, object, orig_size))
2778 		/*
2779 		 * It's not really expected that this would fail on a
2780 		 * freshly allocated slab, but a concurrent memory
2781 		 * corruption in theory could cause that.
2782 		 */
2783 		return NULL;
2784 
2785 	spin_lock_irqsave(&n->list_lock, flags);
2786 
2787 	if (slab->inuse == slab->objects)
2788 		add_full(s, n, slab);
2789 	else
2790 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2791 
2792 	inc_slabs_node(s, nid, slab->objects);
2793 	spin_unlock_irqrestore(&n->list_lock, flags);
2794 
2795 	return object;
2796 }
2797 
2798 #ifdef CONFIG_SLUB_CPU_PARTIAL
2799 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2800 #else
2801 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2802 				   int drain) { }
2803 #endif
2804 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2805 
2806 /*
2807  * Try to allocate a partial slab from a specific node.
2808  */
2809 static struct slab *get_partial_node(struct kmem_cache *s,
2810 				     struct kmem_cache_node *n,
2811 				     struct partial_context *pc)
2812 {
2813 	struct slab *slab, *slab2, *partial = NULL;
2814 	unsigned long flags;
2815 	unsigned int partial_slabs = 0;
2816 
2817 	/*
2818 	 * Racy check. If we mistakenly see no partial slabs then we
2819 	 * just allocate an empty slab. If we mistakenly try to get a
2820 	 * partial slab and there is none available then get_partial()
2821 	 * will return NULL.
2822 	 */
2823 	if (!n || !n->nr_partial)
2824 		return NULL;
2825 
2826 	spin_lock_irqsave(&n->list_lock, flags);
2827 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2828 		if (!pfmemalloc_match(slab, pc->flags))
2829 			continue;
2830 
2831 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2832 			void *object = alloc_single_from_partial(s, n, slab,
2833 							pc->orig_size);
2834 			if (object) {
2835 				partial = slab;
2836 				pc->object = object;
2837 				break;
2838 			}
2839 			continue;
2840 		}
2841 
2842 		remove_partial(n, slab);
2843 
2844 		if (!partial) {
2845 			partial = slab;
2846 			stat(s, ALLOC_FROM_PARTIAL);
2847 
2848 			if ((slub_get_cpu_partial(s) == 0)) {
2849 				break;
2850 			}
2851 		} else {
2852 			put_cpu_partial(s, slab, 0);
2853 			stat(s, CPU_PARTIAL_NODE);
2854 
2855 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2856 				break;
2857 			}
2858 		}
2859 	}
2860 	spin_unlock_irqrestore(&n->list_lock, flags);
2861 	return partial;
2862 }
2863 
2864 /*
2865  * Get a slab from somewhere. Search in increasing NUMA distances.
2866  */
2867 static struct slab *get_any_partial(struct kmem_cache *s,
2868 				    struct partial_context *pc)
2869 {
2870 #ifdef CONFIG_NUMA
2871 	struct zonelist *zonelist;
2872 	struct zoneref *z;
2873 	struct zone *zone;
2874 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2875 	struct slab *slab;
2876 	unsigned int cpuset_mems_cookie;
2877 
2878 	/*
2879 	 * The defrag ratio allows a configuration of the tradeoffs between
2880 	 * inter node defragmentation and node local allocations. A lower
2881 	 * defrag_ratio increases the tendency to do local allocations
2882 	 * instead of attempting to obtain partial slabs from other nodes.
2883 	 *
2884 	 * If the defrag_ratio is set to 0 then kmalloc() always
2885 	 * returns node local objects. If the ratio is higher then kmalloc()
2886 	 * may return off node objects because partial slabs are obtained
2887 	 * from other nodes and filled up.
2888 	 *
2889 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2890 	 * (which makes defrag_ratio = 1000) then every (well almost)
2891 	 * allocation will first attempt to defrag slab caches on other nodes.
2892 	 * This means scanning over all nodes to look for partial slabs which
2893 	 * may be expensive if we do it every time we are trying to find a slab
2894 	 * with available objects.
2895 	 */
2896 	if (!s->remote_node_defrag_ratio ||
2897 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2898 		return NULL;
2899 
2900 	do {
2901 		cpuset_mems_cookie = read_mems_allowed_begin();
2902 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2903 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2904 			struct kmem_cache_node *n;
2905 
2906 			n = get_node(s, zone_to_nid(zone));
2907 
2908 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2909 					n->nr_partial > s->min_partial) {
2910 				slab = get_partial_node(s, n, pc);
2911 				if (slab) {
2912 					/*
2913 					 * Don't check read_mems_allowed_retry()
2914 					 * here - if mems_allowed was updated in
2915 					 * parallel, that was a harmless race
2916 					 * between allocation and the cpuset
2917 					 * update
2918 					 */
2919 					return slab;
2920 				}
2921 			}
2922 		}
2923 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2924 #endif	/* CONFIG_NUMA */
2925 	return NULL;
2926 }
2927 
2928 /*
2929  * Get a partial slab, lock it and return it.
2930  */
2931 static struct slab *get_partial(struct kmem_cache *s, int node,
2932 				struct partial_context *pc)
2933 {
2934 	struct slab *slab;
2935 	int searchnode = node;
2936 
2937 	if (node == NUMA_NO_NODE)
2938 		searchnode = numa_mem_id();
2939 
2940 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2941 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2942 		return slab;
2943 
2944 	return get_any_partial(s, pc);
2945 }
2946 
2947 #ifndef CONFIG_SLUB_TINY
2948 
2949 #ifdef CONFIG_PREEMPTION
2950 /*
2951  * Calculate the next globally unique transaction for disambiguation
2952  * during cmpxchg. The transactions start with the cpu number and are then
2953  * incremented by CONFIG_NR_CPUS.
2954  */
2955 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2956 #else
2957 /*
2958  * No preemption supported therefore also no need to check for
2959  * different cpus.
2960  */
2961 #define TID_STEP 1
2962 #endif /* CONFIG_PREEMPTION */
2963 
2964 static inline unsigned long next_tid(unsigned long tid)
2965 {
2966 	return tid + TID_STEP;
2967 }
2968 
2969 #ifdef SLUB_DEBUG_CMPXCHG
2970 static inline unsigned int tid_to_cpu(unsigned long tid)
2971 {
2972 	return tid % TID_STEP;
2973 }
2974 
2975 static inline unsigned long tid_to_event(unsigned long tid)
2976 {
2977 	return tid / TID_STEP;
2978 }
2979 #endif
2980 
2981 static inline unsigned int init_tid(int cpu)
2982 {
2983 	return cpu;
2984 }
2985 
2986 static inline void note_cmpxchg_failure(const char *n,
2987 		const struct kmem_cache *s, unsigned long tid)
2988 {
2989 #ifdef SLUB_DEBUG_CMPXCHG
2990 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2991 
2992 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2993 
2994 #ifdef CONFIG_PREEMPTION
2995 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2996 		pr_warn("due to cpu change %d -> %d\n",
2997 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2998 	else
2999 #endif
3000 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3001 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3002 			tid_to_event(tid), tid_to_event(actual_tid));
3003 	else
3004 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3005 			actual_tid, tid, next_tid(tid));
3006 #endif
3007 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3008 }
3009 
3010 static void init_kmem_cache_cpus(struct kmem_cache *s)
3011 {
3012 	int cpu;
3013 	struct kmem_cache_cpu *c;
3014 
3015 	for_each_possible_cpu(cpu) {
3016 		c = per_cpu_ptr(s->cpu_slab, cpu);
3017 		local_lock_init(&c->lock);
3018 		c->tid = init_tid(cpu);
3019 	}
3020 }
3021 
3022 /*
3023  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3024  * unfreezes the slabs and puts it on the proper list.
3025  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3026  * by the caller.
3027  */
3028 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3029 			    void *freelist)
3030 {
3031 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3032 	int free_delta = 0;
3033 	void *nextfree, *freelist_iter, *freelist_tail;
3034 	int tail = DEACTIVATE_TO_HEAD;
3035 	unsigned long flags = 0;
3036 	struct slab new;
3037 	struct slab old;
3038 
3039 	if (READ_ONCE(slab->freelist)) {
3040 		stat(s, DEACTIVATE_REMOTE_FREES);
3041 		tail = DEACTIVATE_TO_TAIL;
3042 	}
3043 
3044 	/*
3045 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3046 	 * remember the last object in freelist_tail for later splicing.
3047 	 */
3048 	freelist_tail = NULL;
3049 	freelist_iter = freelist;
3050 	while (freelist_iter) {
3051 		nextfree = get_freepointer(s, freelist_iter);
3052 
3053 		/*
3054 		 * If 'nextfree' is invalid, it is possible that the object at
3055 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3056 		 * starting at 'freelist_iter' by skipping them.
3057 		 */
3058 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3059 			break;
3060 
3061 		freelist_tail = freelist_iter;
3062 		free_delta++;
3063 
3064 		freelist_iter = nextfree;
3065 	}
3066 
3067 	/*
3068 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3069 	 * freelist to the head of slab's freelist.
3070 	 */
3071 	do {
3072 		old.freelist = READ_ONCE(slab->freelist);
3073 		old.counters = READ_ONCE(slab->counters);
3074 		VM_BUG_ON(!old.frozen);
3075 
3076 		/* Determine target state of the slab */
3077 		new.counters = old.counters;
3078 		new.frozen = 0;
3079 		if (freelist_tail) {
3080 			new.inuse -= free_delta;
3081 			set_freepointer(s, freelist_tail, old.freelist);
3082 			new.freelist = freelist;
3083 		} else {
3084 			new.freelist = old.freelist;
3085 		}
3086 	} while (!slab_update_freelist(s, slab,
3087 		old.freelist, old.counters,
3088 		new.freelist, new.counters,
3089 		"unfreezing slab"));
3090 
3091 	/*
3092 	 * Stage three: Manipulate the slab list based on the updated state.
3093 	 */
3094 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3095 		stat(s, DEACTIVATE_EMPTY);
3096 		discard_slab(s, slab);
3097 		stat(s, FREE_SLAB);
3098 	} else if (new.freelist) {
3099 		spin_lock_irqsave(&n->list_lock, flags);
3100 		add_partial(n, slab, tail);
3101 		spin_unlock_irqrestore(&n->list_lock, flags);
3102 		stat(s, tail);
3103 	} else {
3104 		stat(s, DEACTIVATE_FULL);
3105 	}
3106 }
3107 
3108 #ifdef CONFIG_SLUB_CPU_PARTIAL
3109 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3110 {
3111 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3112 	struct slab *slab, *slab_to_discard = NULL;
3113 	unsigned long flags = 0;
3114 
3115 	while (partial_slab) {
3116 		slab = partial_slab;
3117 		partial_slab = slab->next;
3118 
3119 		n2 = get_node(s, slab_nid(slab));
3120 		if (n != n2) {
3121 			if (n)
3122 				spin_unlock_irqrestore(&n->list_lock, flags);
3123 
3124 			n = n2;
3125 			spin_lock_irqsave(&n->list_lock, flags);
3126 		}
3127 
3128 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3129 			slab->next = slab_to_discard;
3130 			slab_to_discard = slab;
3131 		} else {
3132 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3133 			stat(s, FREE_ADD_PARTIAL);
3134 		}
3135 	}
3136 
3137 	if (n)
3138 		spin_unlock_irqrestore(&n->list_lock, flags);
3139 
3140 	while (slab_to_discard) {
3141 		slab = slab_to_discard;
3142 		slab_to_discard = slab_to_discard->next;
3143 
3144 		stat(s, DEACTIVATE_EMPTY);
3145 		discard_slab(s, slab);
3146 		stat(s, FREE_SLAB);
3147 	}
3148 }
3149 
3150 /*
3151  * Put all the cpu partial slabs to the node partial list.
3152  */
3153 static void put_partials(struct kmem_cache *s)
3154 {
3155 	struct slab *partial_slab;
3156 	unsigned long flags;
3157 
3158 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3159 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3160 	this_cpu_write(s->cpu_slab->partial, NULL);
3161 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3162 
3163 	if (partial_slab)
3164 		__put_partials(s, partial_slab);
3165 }
3166 
3167 static void put_partials_cpu(struct kmem_cache *s,
3168 			     struct kmem_cache_cpu *c)
3169 {
3170 	struct slab *partial_slab;
3171 
3172 	partial_slab = slub_percpu_partial(c);
3173 	c->partial = NULL;
3174 
3175 	if (partial_slab)
3176 		__put_partials(s, partial_slab);
3177 }
3178 
3179 /*
3180  * Put a slab into a partial slab slot if available.
3181  *
3182  * If we did not find a slot then simply move all the partials to the
3183  * per node partial list.
3184  */
3185 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3186 {
3187 	struct slab *oldslab;
3188 	struct slab *slab_to_put = NULL;
3189 	unsigned long flags;
3190 	int slabs = 0;
3191 
3192 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3193 
3194 	oldslab = this_cpu_read(s->cpu_slab->partial);
3195 
3196 	if (oldslab) {
3197 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3198 			/*
3199 			 * Partial array is full. Move the existing set to the
3200 			 * per node partial list. Postpone the actual unfreezing
3201 			 * outside of the critical section.
3202 			 */
3203 			slab_to_put = oldslab;
3204 			oldslab = NULL;
3205 		} else {
3206 			slabs = oldslab->slabs;
3207 		}
3208 	}
3209 
3210 	slabs++;
3211 
3212 	slab->slabs = slabs;
3213 	slab->next = oldslab;
3214 
3215 	this_cpu_write(s->cpu_slab->partial, slab);
3216 
3217 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3218 
3219 	if (slab_to_put) {
3220 		__put_partials(s, slab_to_put);
3221 		stat(s, CPU_PARTIAL_DRAIN);
3222 	}
3223 }
3224 
3225 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3226 
3227 static inline void put_partials(struct kmem_cache *s) { }
3228 static inline void put_partials_cpu(struct kmem_cache *s,
3229 				    struct kmem_cache_cpu *c) { }
3230 
3231 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3232 
3233 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3234 {
3235 	unsigned long flags;
3236 	struct slab *slab;
3237 	void *freelist;
3238 
3239 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3240 
3241 	slab = c->slab;
3242 	freelist = c->freelist;
3243 
3244 	c->slab = NULL;
3245 	c->freelist = NULL;
3246 	c->tid = next_tid(c->tid);
3247 
3248 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3249 
3250 	if (slab) {
3251 		deactivate_slab(s, slab, freelist);
3252 		stat(s, CPUSLAB_FLUSH);
3253 	}
3254 }
3255 
3256 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3257 {
3258 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3259 	void *freelist = c->freelist;
3260 	struct slab *slab = c->slab;
3261 
3262 	c->slab = NULL;
3263 	c->freelist = NULL;
3264 	c->tid = next_tid(c->tid);
3265 
3266 	if (slab) {
3267 		deactivate_slab(s, slab, freelist);
3268 		stat(s, CPUSLAB_FLUSH);
3269 	}
3270 
3271 	put_partials_cpu(s, c);
3272 }
3273 
3274 struct slub_flush_work {
3275 	struct work_struct work;
3276 	struct kmem_cache *s;
3277 	bool skip;
3278 };
3279 
3280 /*
3281  * Flush cpu slab.
3282  *
3283  * Called from CPU work handler with migration disabled.
3284  */
3285 static void flush_cpu_slab(struct work_struct *w)
3286 {
3287 	struct kmem_cache *s;
3288 	struct kmem_cache_cpu *c;
3289 	struct slub_flush_work *sfw;
3290 
3291 	sfw = container_of(w, struct slub_flush_work, work);
3292 
3293 	s = sfw->s;
3294 	c = this_cpu_ptr(s->cpu_slab);
3295 
3296 	if (c->slab)
3297 		flush_slab(s, c);
3298 
3299 	put_partials(s);
3300 }
3301 
3302 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3303 {
3304 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3305 
3306 	return c->slab || slub_percpu_partial(c);
3307 }
3308 
3309 static DEFINE_MUTEX(flush_lock);
3310 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3311 
3312 static void flush_all_cpus_locked(struct kmem_cache *s)
3313 {
3314 	struct slub_flush_work *sfw;
3315 	unsigned int cpu;
3316 
3317 	lockdep_assert_cpus_held();
3318 	mutex_lock(&flush_lock);
3319 
3320 	for_each_online_cpu(cpu) {
3321 		sfw = &per_cpu(slub_flush, cpu);
3322 		if (!has_cpu_slab(cpu, s)) {
3323 			sfw->skip = true;
3324 			continue;
3325 		}
3326 		INIT_WORK(&sfw->work, flush_cpu_slab);
3327 		sfw->skip = false;
3328 		sfw->s = s;
3329 		queue_work_on(cpu, flushwq, &sfw->work);
3330 	}
3331 
3332 	for_each_online_cpu(cpu) {
3333 		sfw = &per_cpu(slub_flush, cpu);
3334 		if (sfw->skip)
3335 			continue;
3336 		flush_work(&sfw->work);
3337 	}
3338 
3339 	mutex_unlock(&flush_lock);
3340 }
3341 
3342 static void flush_all(struct kmem_cache *s)
3343 {
3344 	cpus_read_lock();
3345 	flush_all_cpus_locked(s);
3346 	cpus_read_unlock();
3347 }
3348 
3349 /*
3350  * Use the cpu notifier to insure that the cpu slabs are flushed when
3351  * necessary.
3352  */
3353 static int slub_cpu_dead(unsigned int cpu)
3354 {
3355 	struct kmem_cache *s;
3356 
3357 	mutex_lock(&slab_mutex);
3358 	list_for_each_entry(s, &slab_caches, list)
3359 		__flush_cpu_slab(s, cpu);
3360 	mutex_unlock(&slab_mutex);
3361 	return 0;
3362 }
3363 
3364 #else /* CONFIG_SLUB_TINY */
3365 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3366 static inline void flush_all(struct kmem_cache *s) { }
3367 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3368 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3369 #endif /* CONFIG_SLUB_TINY */
3370 
3371 /*
3372  * Check if the objects in a per cpu structure fit numa
3373  * locality expectations.
3374  */
3375 static inline int node_match(struct slab *slab, int node)
3376 {
3377 #ifdef CONFIG_NUMA
3378 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3379 		return 0;
3380 #endif
3381 	return 1;
3382 }
3383 
3384 #ifdef CONFIG_SLUB_DEBUG
3385 static int count_free(struct slab *slab)
3386 {
3387 	return slab->objects - slab->inuse;
3388 }
3389 
3390 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3391 {
3392 	return atomic_long_read(&n->total_objects);
3393 }
3394 
3395 /* Supports checking bulk free of a constructed freelist */
3396 static inline bool free_debug_processing(struct kmem_cache *s,
3397 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3398 	unsigned long addr, depot_stack_handle_t handle)
3399 {
3400 	bool checks_ok = false;
3401 	void *object = head;
3402 	int cnt = 0;
3403 
3404 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3405 		if (!check_slab(s, slab))
3406 			goto out;
3407 	}
3408 
3409 	if (slab->inuse < *bulk_cnt) {
3410 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3411 			 slab->inuse, *bulk_cnt);
3412 		goto out;
3413 	}
3414 
3415 next_object:
3416 
3417 	if (++cnt > *bulk_cnt)
3418 		goto out_cnt;
3419 
3420 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3421 		if (!free_consistency_checks(s, slab, object, addr))
3422 			goto out;
3423 	}
3424 
3425 	if (s->flags & SLAB_STORE_USER)
3426 		set_track_update(s, object, TRACK_FREE, addr, handle);
3427 	trace(s, slab, object, 0);
3428 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3429 	init_object(s, object, SLUB_RED_INACTIVE);
3430 
3431 	/* Reached end of constructed freelist yet? */
3432 	if (object != tail) {
3433 		object = get_freepointer(s, object);
3434 		goto next_object;
3435 	}
3436 	checks_ok = true;
3437 
3438 out_cnt:
3439 	if (cnt != *bulk_cnt) {
3440 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3441 			 *bulk_cnt, cnt);
3442 		*bulk_cnt = cnt;
3443 	}
3444 
3445 out:
3446 
3447 	if (!checks_ok)
3448 		slab_fix(s, "Object at 0x%p not freed", object);
3449 
3450 	return checks_ok;
3451 }
3452 #endif /* CONFIG_SLUB_DEBUG */
3453 
3454 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3455 static unsigned long count_partial(struct kmem_cache_node *n,
3456 					int (*get_count)(struct slab *))
3457 {
3458 	unsigned long flags;
3459 	unsigned long x = 0;
3460 	struct slab *slab;
3461 
3462 	spin_lock_irqsave(&n->list_lock, flags);
3463 	list_for_each_entry(slab, &n->partial, slab_list)
3464 		x += get_count(slab);
3465 	spin_unlock_irqrestore(&n->list_lock, flags);
3466 	return x;
3467 }
3468 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3469 
3470 #ifdef CONFIG_SLUB_DEBUG
3471 #define MAX_PARTIAL_TO_SCAN 10000
3472 
3473 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3474 {
3475 	unsigned long flags;
3476 	unsigned long x = 0;
3477 	struct slab *slab;
3478 
3479 	spin_lock_irqsave(&n->list_lock, flags);
3480 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3481 		list_for_each_entry(slab, &n->partial, slab_list)
3482 			x += slab->objects - slab->inuse;
3483 	} else {
3484 		/*
3485 		 * For a long list, approximate the total count of objects in
3486 		 * it to meet the limit on the number of slabs to scan.
3487 		 * Scan from both the list's head and tail for better accuracy.
3488 		 */
3489 		unsigned long scanned = 0;
3490 
3491 		list_for_each_entry(slab, &n->partial, slab_list) {
3492 			x += slab->objects - slab->inuse;
3493 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3494 				break;
3495 		}
3496 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3497 			x += slab->objects - slab->inuse;
3498 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3499 				break;
3500 		}
3501 		x = mult_frac(x, n->nr_partial, scanned);
3502 		x = min(x, node_nr_objs(n));
3503 	}
3504 	spin_unlock_irqrestore(&n->list_lock, flags);
3505 	return x;
3506 }
3507 
3508 static noinline void
3509 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3510 {
3511 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3512 				      DEFAULT_RATELIMIT_BURST);
3513 	int cpu = raw_smp_processor_id();
3514 	int node;
3515 	struct kmem_cache_node *n;
3516 
3517 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3518 		return;
3519 
3520 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3521 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3522 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3523 		s->name, s->object_size, s->size, oo_order(s->oo),
3524 		oo_order(s->min));
3525 
3526 	if (oo_order(s->min) > get_order(s->object_size))
3527 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3528 			s->name);
3529 
3530 	for_each_kmem_cache_node(s, node, n) {
3531 		unsigned long nr_slabs;
3532 		unsigned long nr_objs;
3533 		unsigned long nr_free;
3534 
3535 		nr_free  = count_partial_free_approx(n);
3536 		nr_slabs = node_nr_slabs(n);
3537 		nr_objs  = node_nr_objs(n);
3538 
3539 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3540 			node, nr_slabs, nr_objs, nr_free);
3541 	}
3542 }
3543 #else /* CONFIG_SLUB_DEBUG */
3544 static inline void
3545 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3546 #endif
3547 
3548 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3549 {
3550 	if (unlikely(slab_test_pfmemalloc(slab)))
3551 		return gfp_pfmemalloc_allowed(gfpflags);
3552 
3553 	return true;
3554 }
3555 
3556 #ifndef CONFIG_SLUB_TINY
3557 static inline bool
3558 __update_cpu_freelist_fast(struct kmem_cache *s,
3559 			   void *freelist_old, void *freelist_new,
3560 			   unsigned long tid)
3561 {
3562 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3563 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3564 
3565 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3566 					     &old.full, new.full);
3567 }
3568 
3569 /*
3570  * Check the slab->freelist and either transfer the freelist to the
3571  * per cpu freelist or deactivate the slab.
3572  *
3573  * The slab is still frozen if the return value is not NULL.
3574  *
3575  * If this function returns NULL then the slab has been unfrozen.
3576  */
3577 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3578 {
3579 	struct slab new;
3580 	unsigned long counters;
3581 	void *freelist;
3582 
3583 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3584 
3585 	do {
3586 		freelist = slab->freelist;
3587 		counters = slab->counters;
3588 
3589 		new.counters = counters;
3590 
3591 		new.inuse = slab->objects;
3592 		new.frozen = freelist != NULL;
3593 
3594 	} while (!__slab_update_freelist(s, slab,
3595 		freelist, counters,
3596 		NULL, new.counters,
3597 		"get_freelist"));
3598 
3599 	return freelist;
3600 }
3601 
3602 /*
3603  * Freeze the partial slab and return the pointer to the freelist.
3604  */
3605 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3606 {
3607 	struct slab new;
3608 	unsigned long counters;
3609 	void *freelist;
3610 
3611 	do {
3612 		freelist = slab->freelist;
3613 		counters = slab->counters;
3614 
3615 		new.counters = counters;
3616 		VM_BUG_ON(new.frozen);
3617 
3618 		new.inuse = slab->objects;
3619 		new.frozen = 1;
3620 
3621 	} while (!slab_update_freelist(s, slab,
3622 		freelist, counters,
3623 		NULL, new.counters,
3624 		"freeze_slab"));
3625 
3626 	return freelist;
3627 }
3628 
3629 /*
3630  * Slow path. The lockless freelist is empty or we need to perform
3631  * debugging duties.
3632  *
3633  * Processing is still very fast if new objects have been freed to the
3634  * regular freelist. In that case we simply take over the regular freelist
3635  * as the lockless freelist and zap the regular freelist.
3636  *
3637  * If that is not working then we fall back to the partial lists. We take the
3638  * first element of the freelist as the object to allocate now and move the
3639  * rest of the freelist to the lockless freelist.
3640  *
3641  * And if we were unable to get a new slab from the partial slab lists then
3642  * we need to allocate a new slab. This is the slowest path since it involves
3643  * a call to the page allocator and the setup of a new slab.
3644  *
3645  * Version of __slab_alloc to use when we know that preemption is
3646  * already disabled (which is the case for bulk allocation).
3647  */
3648 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3649 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3650 {
3651 	void *freelist;
3652 	struct slab *slab;
3653 	unsigned long flags;
3654 	struct partial_context pc;
3655 	bool try_thisnode = true;
3656 
3657 	stat(s, ALLOC_SLOWPATH);
3658 
3659 reread_slab:
3660 
3661 	slab = READ_ONCE(c->slab);
3662 	if (!slab) {
3663 		/*
3664 		 * if the node is not online or has no normal memory, just
3665 		 * ignore the node constraint
3666 		 */
3667 		if (unlikely(node != NUMA_NO_NODE &&
3668 			     !node_isset(node, slab_nodes)))
3669 			node = NUMA_NO_NODE;
3670 		goto new_slab;
3671 	}
3672 
3673 	if (unlikely(!node_match(slab, node))) {
3674 		/*
3675 		 * same as above but node_match() being false already
3676 		 * implies node != NUMA_NO_NODE
3677 		 */
3678 		if (!node_isset(node, slab_nodes)) {
3679 			node = NUMA_NO_NODE;
3680 		} else {
3681 			stat(s, ALLOC_NODE_MISMATCH);
3682 			goto deactivate_slab;
3683 		}
3684 	}
3685 
3686 	/*
3687 	 * By rights, we should be searching for a slab page that was
3688 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3689 	 * information when the page leaves the per-cpu allocator
3690 	 */
3691 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3692 		goto deactivate_slab;
3693 
3694 	/* must check again c->slab in case we got preempted and it changed */
3695 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3696 	if (unlikely(slab != c->slab)) {
3697 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3698 		goto reread_slab;
3699 	}
3700 	freelist = c->freelist;
3701 	if (freelist)
3702 		goto load_freelist;
3703 
3704 	freelist = get_freelist(s, slab);
3705 
3706 	if (!freelist) {
3707 		c->slab = NULL;
3708 		c->tid = next_tid(c->tid);
3709 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3710 		stat(s, DEACTIVATE_BYPASS);
3711 		goto new_slab;
3712 	}
3713 
3714 	stat(s, ALLOC_REFILL);
3715 
3716 load_freelist:
3717 
3718 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3719 
3720 	/*
3721 	 * freelist is pointing to the list of objects to be used.
3722 	 * slab is pointing to the slab from which the objects are obtained.
3723 	 * That slab must be frozen for per cpu allocations to work.
3724 	 */
3725 	VM_BUG_ON(!c->slab->frozen);
3726 	c->freelist = get_freepointer(s, freelist);
3727 	c->tid = next_tid(c->tid);
3728 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3729 	return freelist;
3730 
3731 deactivate_slab:
3732 
3733 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3734 	if (slab != c->slab) {
3735 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3736 		goto reread_slab;
3737 	}
3738 	freelist = c->freelist;
3739 	c->slab = NULL;
3740 	c->freelist = NULL;
3741 	c->tid = next_tid(c->tid);
3742 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3743 	deactivate_slab(s, slab, freelist);
3744 
3745 new_slab:
3746 
3747 #ifdef CONFIG_SLUB_CPU_PARTIAL
3748 	while (slub_percpu_partial(c)) {
3749 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3750 		if (unlikely(c->slab)) {
3751 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3752 			goto reread_slab;
3753 		}
3754 		if (unlikely(!slub_percpu_partial(c))) {
3755 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3756 			/* we were preempted and partial list got empty */
3757 			goto new_objects;
3758 		}
3759 
3760 		slab = slub_percpu_partial(c);
3761 		slub_set_percpu_partial(c, slab);
3762 
3763 		if (likely(node_match(slab, node) &&
3764 			   pfmemalloc_match(slab, gfpflags))) {
3765 			c->slab = slab;
3766 			freelist = get_freelist(s, slab);
3767 			VM_BUG_ON(!freelist);
3768 			stat(s, CPU_PARTIAL_ALLOC);
3769 			goto load_freelist;
3770 		}
3771 
3772 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3773 
3774 		slab->next = NULL;
3775 		__put_partials(s, slab);
3776 	}
3777 #endif
3778 
3779 new_objects:
3780 
3781 	pc.flags = gfpflags;
3782 	/*
3783 	 * When a preferred node is indicated but no __GFP_THISNODE
3784 	 *
3785 	 * 1) try to get a partial slab from target node only by having
3786 	 *    __GFP_THISNODE in pc.flags for get_partial()
3787 	 * 2) if 1) failed, try to allocate a new slab from target node with
3788 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3789 	 * 3) if 2) failed, retry with original gfpflags which will allow
3790 	 *    get_partial() try partial lists of other nodes before potentially
3791 	 *    allocating new page from other nodes
3792 	 */
3793 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3794 		     && try_thisnode))
3795 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3796 
3797 	pc.orig_size = orig_size;
3798 	slab = get_partial(s, node, &pc);
3799 	if (slab) {
3800 		if (kmem_cache_debug(s)) {
3801 			freelist = pc.object;
3802 			/*
3803 			 * For debug caches here we had to go through
3804 			 * alloc_single_from_partial() so just store the
3805 			 * tracking info and return the object.
3806 			 */
3807 			if (s->flags & SLAB_STORE_USER)
3808 				set_track(s, freelist, TRACK_ALLOC, addr);
3809 
3810 			return freelist;
3811 		}
3812 
3813 		freelist = freeze_slab(s, slab);
3814 		goto retry_load_slab;
3815 	}
3816 
3817 	slub_put_cpu_ptr(s->cpu_slab);
3818 	slab = new_slab(s, pc.flags, node);
3819 	c = slub_get_cpu_ptr(s->cpu_slab);
3820 
3821 	if (unlikely(!slab)) {
3822 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3823 		    && try_thisnode) {
3824 			try_thisnode = false;
3825 			goto new_objects;
3826 		}
3827 		slab_out_of_memory(s, gfpflags, node);
3828 		return NULL;
3829 	}
3830 
3831 	stat(s, ALLOC_SLAB);
3832 
3833 	if (kmem_cache_debug(s)) {
3834 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3835 
3836 		if (unlikely(!freelist))
3837 			goto new_objects;
3838 
3839 		if (s->flags & SLAB_STORE_USER)
3840 			set_track(s, freelist, TRACK_ALLOC, addr);
3841 
3842 		return freelist;
3843 	}
3844 
3845 	/*
3846 	 * No other reference to the slab yet so we can
3847 	 * muck around with it freely without cmpxchg
3848 	 */
3849 	freelist = slab->freelist;
3850 	slab->freelist = NULL;
3851 	slab->inuse = slab->objects;
3852 	slab->frozen = 1;
3853 
3854 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3855 
3856 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3857 		/*
3858 		 * For !pfmemalloc_match() case we don't load freelist so that
3859 		 * we don't make further mismatched allocations easier.
3860 		 */
3861 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3862 		return freelist;
3863 	}
3864 
3865 retry_load_slab:
3866 
3867 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3868 	if (unlikely(c->slab)) {
3869 		void *flush_freelist = c->freelist;
3870 		struct slab *flush_slab = c->slab;
3871 
3872 		c->slab = NULL;
3873 		c->freelist = NULL;
3874 		c->tid = next_tid(c->tid);
3875 
3876 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3877 
3878 		deactivate_slab(s, flush_slab, flush_freelist);
3879 
3880 		stat(s, CPUSLAB_FLUSH);
3881 
3882 		goto retry_load_slab;
3883 	}
3884 	c->slab = slab;
3885 
3886 	goto load_freelist;
3887 }
3888 
3889 /*
3890  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3891  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3892  * pointer.
3893  */
3894 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3895 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3896 {
3897 	void *p;
3898 
3899 #ifdef CONFIG_PREEMPT_COUNT
3900 	/*
3901 	 * We may have been preempted and rescheduled on a different
3902 	 * cpu before disabling preemption. Need to reload cpu area
3903 	 * pointer.
3904 	 */
3905 	c = slub_get_cpu_ptr(s->cpu_slab);
3906 #endif
3907 
3908 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3909 #ifdef CONFIG_PREEMPT_COUNT
3910 	slub_put_cpu_ptr(s->cpu_slab);
3911 #endif
3912 	return p;
3913 }
3914 
3915 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3916 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3917 {
3918 	struct kmem_cache_cpu *c;
3919 	struct slab *slab;
3920 	unsigned long tid;
3921 	void *object;
3922 
3923 redo:
3924 	/*
3925 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3926 	 * enabled. We may switch back and forth between cpus while
3927 	 * reading from one cpu area. That does not matter as long
3928 	 * as we end up on the original cpu again when doing the cmpxchg.
3929 	 *
3930 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3931 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3932 	 * the tid. If we are preempted and switched to another cpu between the
3933 	 * two reads, it's OK as the two are still associated with the same cpu
3934 	 * and cmpxchg later will validate the cpu.
3935 	 */
3936 	c = raw_cpu_ptr(s->cpu_slab);
3937 	tid = READ_ONCE(c->tid);
3938 
3939 	/*
3940 	 * Irqless object alloc/free algorithm used here depends on sequence
3941 	 * of fetching cpu_slab's data. tid should be fetched before anything
3942 	 * on c to guarantee that object and slab associated with previous tid
3943 	 * won't be used with current tid. If we fetch tid first, object and
3944 	 * slab could be one associated with next tid and our alloc/free
3945 	 * request will be failed. In this case, we will retry. So, no problem.
3946 	 */
3947 	barrier();
3948 
3949 	/*
3950 	 * The transaction ids are globally unique per cpu and per operation on
3951 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3952 	 * occurs on the right processor and that there was no operation on the
3953 	 * linked list in between.
3954 	 */
3955 
3956 	object = c->freelist;
3957 	slab = c->slab;
3958 
3959 	if (!USE_LOCKLESS_FAST_PATH() ||
3960 	    unlikely(!object || !slab || !node_match(slab, node))) {
3961 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3962 	} else {
3963 		void *next_object = get_freepointer_safe(s, object);
3964 
3965 		/*
3966 		 * The cmpxchg will only match if there was no additional
3967 		 * operation and if we are on the right processor.
3968 		 *
3969 		 * The cmpxchg does the following atomically (without lock
3970 		 * semantics!)
3971 		 * 1. Relocate first pointer to the current per cpu area.
3972 		 * 2. Verify that tid and freelist have not been changed
3973 		 * 3. If they were not changed replace tid and freelist
3974 		 *
3975 		 * Since this is without lock semantics the protection is only
3976 		 * against code executing on this cpu *not* from access by
3977 		 * other cpus.
3978 		 */
3979 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3980 			note_cmpxchg_failure("slab_alloc", s, tid);
3981 			goto redo;
3982 		}
3983 		prefetch_freepointer(s, next_object);
3984 		stat(s, ALLOC_FASTPATH);
3985 	}
3986 
3987 	return object;
3988 }
3989 #else /* CONFIG_SLUB_TINY */
3990 static void *__slab_alloc_node(struct kmem_cache *s,
3991 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3992 {
3993 	struct partial_context pc;
3994 	struct slab *slab;
3995 	void *object;
3996 
3997 	pc.flags = gfpflags;
3998 	pc.orig_size = orig_size;
3999 	slab = get_partial(s, node, &pc);
4000 
4001 	if (slab)
4002 		return pc.object;
4003 
4004 	slab = new_slab(s, gfpflags, node);
4005 	if (unlikely(!slab)) {
4006 		slab_out_of_memory(s, gfpflags, node);
4007 		return NULL;
4008 	}
4009 
4010 	object = alloc_single_from_new_slab(s, slab, orig_size);
4011 
4012 	return object;
4013 }
4014 #endif /* CONFIG_SLUB_TINY */
4015 
4016 /*
4017  * If the object has been wiped upon free, make sure it's fully initialized by
4018  * zeroing out freelist pointer.
4019  *
4020  * Note that we also wipe custom freelist pointers.
4021  */
4022 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4023 						   void *obj)
4024 {
4025 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4026 	    !freeptr_outside_object(s))
4027 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4028 			0, sizeof(void *));
4029 }
4030 
4031 static __fastpath_inline
4032 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4033 {
4034 	flags &= gfp_allowed_mask;
4035 
4036 	might_alloc(flags);
4037 
4038 	if (unlikely(should_failslab(s, flags)))
4039 		return NULL;
4040 
4041 	return s;
4042 }
4043 
4044 static __fastpath_inline
4045 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4046 			  gfp_t flags, size_t size, void **p, bool init,
4047 			  unsigned int orig_size)
4048 {
4049 	unsigned int zero_size = s->object_size;
4050 	bool kasan_init = init;
4051 	size_t i;
4052 	gfp_t init_flags = flags & gfp_allowed_mask;
4053 
4054 	/*
4055 	 * For kmalloc object, the allocated memory size(object_size) is likely
4056 	 * larger than the requested size(orig_size). If redzone check is
4057 	 * enabled for the extra space, don't zero it, as it will be redzoned
4058 	 * soon. The redzone operation for this extra space could be seen as a
4059 	 * replacement of current poisoning under certain debug option, and
4060 	 * won't break other sanity checks.
4061 	 */
4062 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4063 	    (s->flags & SLAB_KMALLOC))
4064 		zero_size = orig_size;
4065 
4066 	/*
4067 	 * When slab_debug is enabled, avoid memory initialization integrated
4068 	 * into KASAN and instead zero out the memory via the memset below with
4069 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4070 	 * cause false-positive reports. This does not lead to a performance
4071 	 * penalty on production builds, as slab_debug is not intended to be
4072 	 * enabled there.
4073 	 */
4074 	if (__slub_debug_enabled())
4075 		kasan_init = false;
4076 
4077 	/*
4078 	 * As memory initialization might be integrated into KASAN,
4079 	 * kasan_slab_alloc and initialization memset must be
4080 	 * kept together to avoid discrepancies in behavior.
4081 	 *
4082 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4083 	 */
4084 	for (i = 0; i < size; i++) {
4085 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4086 		if (p[i] && init && (!kasan_init ||
4087 				     !kasan_has_integrated_init()))
4088 			memset(p[i], 0, zero_size);
4089 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4090 					 s->flags, init_flags);
4091 		kmsan_slab_alloc(s, p[i], init_flags);
4092 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4093 	}
4094 
4095 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4096 }
4097 
4098 /*
4099  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4100  * have the fastpath folded into their functions. So no function call
4101  * overhead for requests that can be satisfied on the fastpath.
4102  *
4103  * The fastpath works by first checking if the lockless freelist can be used.
4104  * If not then __slab_alloc is called for slow processing.
4105  *
4106  * Otherwise we can simply pick the next object from the lockless free list.
4107  */
4108 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4109 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4110 {
4111 	void *object;
4112 	bool init = false;
4113 
4114 	s = slab_pre_alloc_hook(s, gfpflags);
4115 	if (unlikely(!s))
4116 		return NULL;
4117 
4118 	object = kfence_alloc(s, orig_size, gfpflags);
4119 	if (unlikely(object))
4120 		goto out;
4121 
4122 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4123 
4124 	maybe_wipe_obj_freeptr(s, object);
4125 	init = slab_want_init_on_alloc(gfpflags, s);
4126 
4127 out:
4128 	/*
4129 	 * When init equals 'true', like for kzalloc() family, only
4130 	 * @orig_size bytes might be zeroed instead of s->object_size
4131 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4132 	 * object is set to NULL
4133 	 */
4134 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4135 
4136 	return object;
4137 }
4138 
4139 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4140 {
4141 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4142 				    s->object_size);
4143 
4144 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4145 
4146 	return ret;
4147 }
4148 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4149 
4150 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4151 			   gfp_t gfpflags)
4152 {
4153 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4154 				    s->object_size);
4155 
4156 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4157 
4158 	return ret;
4159 }
4160 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4161 
4162 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4163 {
4164 	if (!memcg_kmem_online())
4165 		return true;
4166 
4167 	return memcg_slab_post_charge(objp, gfpflags);
4168 }
4169 EXPORT_SYMBOL(kmem_cache_charge);
4170 
4171 /**
4172  * kmem_cache_alloc_node - Allocate an object on the specified node
4173  * @s: The cache to allocate from.
4174  * @gfpflags: See kmalloc().
4175  * @node: node number of the target node.
4176  *
4177  * Identical to kmem_cache_alloc but it will allocate memory on the given
4178  * node, which can improve the performance for cpu bound structures.
4179  *
4180  * Fallback to other node is possible if __GFP_THISNODE is not set.
4181  *
4182  * Return: pointer to the new object or %NULL in case of error
4183  */
4184 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4185 {
4186 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4187 
4188 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4189 
4190 	return ret;
4191 }
4192 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4193 
4194 /*
4195  * To avoid unnecessary overhead, we pass through large allocation requests
4196  * directly to the page allocator. We use __GFP_COMP, because we will need to
4197  * know the allocation order to free the pages properly in kfree.
4198  */
4199 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4200 {
4201 	struct folio *folio;
4202 	void *ptr = NULL;
4203 	unsigned int order = get_order(size);
4204 
4205 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4206 		flags = kmalloc_fix_flags(flags);
4207 
4208 	flags |= __GFP_COMP;
4209 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4210 	if (folio) {
4211 		ptr = folio_address(folio);
4212 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4213 				      PAGE_SIZE << order);
4214 	}
4215 
4216 	ptr = kasan_kmalloc_large(ptr, size, flags);
4217 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4218 	kmemleak_alloc(ptr, size, 1, flags);
4219 	kmsan_kmalloc_large(ptr, size, flags);
4220 
4221 	return ptr;
4222 }
4223 
4224 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4225 {
4226 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4227 
4228 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4229 		      flags, NUMA_NO_NODE);
4230 	return ret;
4231 }
4232 EXPORT_SYMBOL(__kmalloc_large_noprof);
4233 
4234 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4235 {
4236 	void *ret = ___kmalloc_large_node(size, flags, node);
4237 
4238 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4239 		      flags, node);
4240 	return ret;
4241 }
4242 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4243 
4244 static __always_inline
4245 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4246 			unsigned long caller)
4247 {
4248 	struct kmem_cache *s;
4249 	void *ret;
4250 
4251 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4252 		ret = __kmalloc_large_node_noprof(size, flags, node);
4253 		trace_kmalloc(caller, ret, size,
4254 			      PAGE_SIZE << get_order(size), flags, node);
4255 		return ret;
4256 	}
4257 
4258 	if (unlikely(!size))
4259 		return ZERO_SIZE_PTR;
4260 
4261 	s = kmalloc_slab(size, b, flags, caller);
4262 
4263 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4264 	ret = kasan_kmalloc(s, ret, size, flags);
4265 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4266 	return ret;
4267 }
4268 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4269 {
4270 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4271 }
4272 EXPORT_SYMBOL(__kmalloc_node_noprof);
4273 
4274 void *__kmalloc_noprof(size_t size, gfp_t flags)
4275 {
4276 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4277 }
4278 EXPORT_SYMBOL(__kmalloc_noprof);
4279 
4280 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4281 					 int node, unsigned long caller)
4282 {
4283 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4284 
4285 }
4286 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4287 
4288 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4289 {
4290 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4291 					    _RET_IP_, size);
4292 
4293 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4294 
4295 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4296 	return ret;
4297 }
4298 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4299 
4300 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4301 				  int node, size_t size)
4302 {
4303 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4304 
4305 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4306 
4307 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4308 	return ret;
4309 }
4310 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4311 
4312 static noinline void free_to_partial_list(
4313 	struct kmem_cache *s, struct slab *slab,
4314 	void *head, void *tail, int bulk_cnt,
4315 	unsigned long addr)
4316 {
4317 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4318 	struct slab *slab_free = NULL;
4319 	int cnt = bulk_cnt;
4320 	unsigned long flags;
4321 	depot_stack_handle_t handle = 0;
4322 
4323 	if (s->flags & SLAB_STORE_USER)
4324 		handle = set_track_prepare();
4325 
4326 	spin_lock_irqsave(&n->list_lock, flags);
4327 
4328 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4329 		void *prior = slab->freelist;
4330 
4331 		/* Perform the actual freeing while we still hold the locks */
4332 		slab->inuse -= cnt;
4333 		set_freepointer(s, tail, prior);
4334 		slab->freelist = head;
4335 
4336 		/*
4337 		 * If the slab is empty, and node's partial list is full,
4338 		 * it should be discarded anyway no matter it's on full or
4339 		 * partial list.
4340 		 */
4341 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4342 			slab_free = slab;
4343 
4344 		if (!prior) {
4345 			/* was on full list */
4346 			remove_full(s, n, slab);
4347 			if (!slab_free) {
4348 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4349 				stat(s, FREE_ADD_PARTIAL);
4350 			}
4351 		} else if (slab_free) {
4352 			remove_partial(n, slab);
4353 			stat(s, FREE_REMOVE_PARTIAL);
4354 		}
4355 	}
4356 
4357 	if (slab_free) {
4358 		/*
4359 		 * Update the counters while still holding n->list_lock to
4360 		 * prevent spurious validation warnings
4361 		 */
4362 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4363 	}
4364 
4365 	spin_unlock_irqrestore(&n->list_lock, flags);
4366 
4367 	if (slab_free) {
4368 		stat(s, FREE_SLAB);
4369 		free_slab(s, slab_free);
4370 	}
4371 }
4372 
4373 /*
4374  * Slow path handling. This may still be called frequently since objects
4375  * have a longer lifetime than the cpu slabs in most processing loads.
4376  *
4377  * So we still attempt to reduce cache line usage. Just take the slab
4378  * lock and free the item. If there is no additional partial slab
4379  * handling required then we can return immediately.
4380  */
4381 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4382 			void *head, void *tail, int cnt,
4383 			unsigned long addr)
4384 
4385 {
4386 	void *prior;
4387 	int was_frozen;
4388 	struct slab new;
4389 	unsigned long counters;
4390 	struct kmem_cache_node *n = NULL;
4391 	unsigned long flags;
4392 	bool on_node_partial;
4393 
4394 	stat(s, FREE_SLOWPATH);
4395 
4396 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4397 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4398 		return;
4399 	}
4400 
4401 	do {
4402 		if (unlikely(n)) {
4403 			spin_unlock_irqrestore(&n->list_lock, flags);
4404 			n = NULL;
4405 		}
4406 		prior = slab->freelist;
4407 		counters = slab->counters;
4408 		set_freepointer(s, tail, prior);
4409 		new.counters = counters;
4410 		was_frozen = new.frozen;
4411 		new.inuse -= cnt;
4412 		if ((!new.inuse || !prior) && !was_frozen) {
4413 			/* Needs to be taken off a list */
4414 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4415 
4416 				n = get_node(s, slab_nid(slab));
4417 				/*
4418 				 * Speculatively acquire the list_lock.
4419 				 * If the cmpxchg does not succeed then we may
4420 				 * drop the list_lock without any processing.
4421 				 *
4422 				 * Otherwise the list_lock will synchronize with
4423 				 * other processors updating the list of slabs.
4424 				 */
4425 				spin_lock_irqsave(&n->list_lock, flags);
4426 
4427 				on_node_partial = slab_test_node_partial(slab);
4428 			}
4429 		}
4430 
4431 	} while (!slab_update_freelist(s, slab,
4432 		prior, counters,
4433 		head, new.counters,
4434 		"__slab_free"));
4435 
4436 	if (likely(!n)) {
4437 
4438 		if (likely(was_frozen)) {
4439 			/*
4440 			 * The list lock was not taken therefore no list
4441 			 * activity can be necessary.
4442 			 */
4443 			stat(s, FREE_FROZEN);
4444 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4445 			/*
4446 			 * If we started with a full slab then put it onto the
4447 			 * per cpu partial list.
4448 			 */
4449 			put_cpu_partial(s, slab, 1);
4450 			stat(s, CPU_PARTIAL_FREE);
4451 		}
4452 
4453 		return;
4454 	}
4455 
4456 	/*
4457 	 * This slab was partially empty but not on the per-node partial list,
4458 	 * in which case we shouldn't manipulate its list, just return.
4459 	 */
4460 	if (prior && !on_node_partial) {
4461 		spin_unlock_irqrestore(&n->list_lock, flags);
4462 		return;
4463 	}
4464 
4465 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4466 		goto slab_empty;
4467 
4468 	/*
4469 	 * Objects left in the slab. If it was not on the partial list before
4470 	 * then add it.
4471 	 */
4472 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4473 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4474 		stat(s, FREE_ADD_PARTIAL);
4475 	}
4476 	spin_unlock_irqrestore(&n->list_lock, flags);
4477 	return;
4478 
4479 slab_empty:
4480 	if (prior) {
4481 		/*
4482 		 * Slab on the partial list.
4483 		 */
4484 		remove_partial(n, slab);
4485 		stat(s, FREE_REMOVE_PARTIAL);
4486 	}
4487 
4488 	spin_unlock_irqrestore(&n->list_lock, flags);
4489 	stat(s, FREE_SLAB);
4490 	discard_slab(s, slab);
4491 }
4492 
4493 #ifndef CONFIG_SLUB_TINY
4494 /*
4495  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4496  * can perform fastpath freeing without additional function calls.
4497  *
4498  * The fastpath is only possible if we are freeing to the current cpu slab
4499  * of this processor. This typically the case if we have just allocated
4500  * the item before.
4501  *
4502  * If fastpath is not possible then fall back to __slab_free where we deal
4503  * with all sorts of special processing.
4504  *
4505  * Bulk free of a freelist with several objects (all pointing to the
4506  * same slab) possible by specifying head and tail ptr, plus objects
4507  * count (cnt). Bulk free indicated by tail pointer being set.
4508  */
4509 static __always_inline void do_slab_free(struct kmem_cache *s,
4510 				struct slab *slab, void *head, void *tail,
4511 				int cnt, unsigned long addr)
4512 {
4513 	struct kmem_cache_cpu *c;
4514 	unsigned long tid;
4515 	void **freelist;
4516 
4517 redo:
4518 	/*
4519 	 * Determine the currently cpus per cpu slab.
4520 	 * The cpu may change afterward. However that does not matter since
4521 	 * data is retrieved via this pointer. If we are on the same cpu
4522 	 * during the cmpxchg then the free will succeed.
4523 	 */
4524 	c = raw_cpu_ptr(s->cpu_slab);
4525 	tid = READ_ONCE(c->tid);
4526 
4527 	/* Same with comment on barrier() in __slab_alloc_node() */
4528 	barrier();
4529 
4530 	if (unlikely(slab != c->slab)) {
4531 		__slab_free(s, slab, head, tail, cnt, addr);
4532 		return;
4533 	}
4534 
4535 	if (USE_LOCKLESS_FAST_PATH()) {
4536 		freelist = READ_ONCE(c->freelist);
4537 
4538 		set_freepointer(s, tail, freelist);
4539 
4540 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4541 			note_cmpxchg_failure("slab_free", s, tid);
4542 			goto redo;
4543 		}
4544 	} else {
4545 		/* Update the free list under the local lock */
4546 		local_lock(&s->cpu_slab->lock);
4547 		c = this_cpu_ptr(s->cpu_slab);
4548 		if (unlikely(slab != c->slab)) {
4549 			local_unlock(&s->cpu_slab->lock);
4550 			goto redo;
4551 		}
4552 		tid = c->tid;
4553 		freelist = c->freelist;
4554 
4555 		set_freepointer(s, tail, freelist);
4556 		c->freelist = head;
4557 		c->tid = next_tid(tid);
4558 
4559 		local_unlock(&s->cpu_slab->lock);
4560 	}
4561 	stat_add(s, FREE_FASTPATH, cnt);
4562 }
4563 #else /* CONFIG_SLUB_TINY */
4564 static void do_slab_free(struct kmem_cache *s,
4565 				struct slab *slab, void *head, void *tail,
4566 				int cnt, unsigned long addr)
4567 {
4568 	__slab_free(s, slab, head, tail, cnt, addr);
4569 }
4570 #endif /* CONFIG_SLUB_TINY */
4571 
4572 static __fastpath_inline
4573 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4574 	       unsigned long addr)
4575 {
4576 	memcg_slab_free_hook(s, slab, &object, 1);
4577 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4578 
4579 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4580 		do_slab_free(s, slab, object, object, 1, addr);
4581 }
4582 
4583 #ifdef CONFIG_MEMCG
4584 /* Do not inline the rare memcg charging failed path into the allocation path */
4585 static noinline
4586 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4587 {
4588 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4589 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4590 }
4591 #endif
4592 
4593 static __fastpath_inline
4594 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4595 		    void *tail, void **p, int cnt, unsigned long addr)
4596 {
4597 	memcg_slab_free_hook(s, slab, p, cnt);
4598 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4599 	/*
4600 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4601 	 * to remove objects, whose reuse must be delayed.
4602 	 */
4603 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4604 		do_slab_free(s, slab, head, tail, cnt, addr);
4605 }
4606 
4607 #ifdef CONFIG_SLUB_RCU_DEBUG
4608 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4609 {
4610 	struct rcu_delayed_free *delayed_free =
4611 			container_of(rcu_head, struct rcu_delayed_free, head);
4612 	void *object = delayed_free->object;
4613 	struct slab *slab = virt_to_slab(object);
4614 	struct kmem_cache *s;
4615 
4616 	kfree(delayed_free);
4617 
4618 	if (WARN_ON(is_kfence_address(object)))
4619 		return;
4620 
4621 	/* find the object and the cache again */
4622 	if (WARN_ON(!slab))
4623 		return;
4624 	s = slab->slab_cache;
4625 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4626 		return;
4627 
4628 	/* resume freeing */
4629 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4630 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4631 }
4632 #endif /* CONFIG_SLUB_RCU_DEBUG */
4633 
4634 #ifdef CONFIG_KASAN_GENERIC
4635 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4636 {
4637 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4638 }
4639 #endif
4640 
4641 static inline struct kmem_cache *virt_to_cache(const void *obj)
4642 {
4643 	struct slab *slab;
4644 
4645 	slab = virt_to_slab(obj);
4646 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4647 		return NULL;
4648 	return slab->slab_cache;
4649 }
4650 
4651 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4652 {
4653 	struct kmem_cache *cachep;
4654 
4655 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4656 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4657 		return s;
4658 
4659 	cachep = virt_to_cache(x);
4660 	if (WARN(cachep && cachep != s,
4661 		 "%s: Wrong slab cache. %s but object is from %s\n",
4662 		 __func__, s->name, cachep->name))
4663 		print_tracking(cachep, x);
4664 	return cachep;
4665 }
4666 
4667 /**
4668  * kmem_cache_free - Deallocate an object
4669  * @s: The cache the allocation was from.
4670  * @x: The previously allocated object.
4671  *
4672  * Free an object which was previously allocated from this
4673  * cache.
4674  */
4675 void kmem_cache_free(struct kmem_cache *s, void *x)
4676 {
4677 	s = cache_from_obj(s, x);
4678 	if (!s)
4679 		return;
4680 	trace_kmem_cache_free(_RET_IP_, x, s);
4681 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4682 }
4683 EXPORT_SYMBOL(kmem_cache_free);
4684 
4685 static void free_large_kmalloc(struct folio *folio, void *object)
4686 {
4687 	unsigned int order = folio_order(folio);
4688 
4689 	if (WARN_ON_ONCE(order == 0))
4690 		pr_warn_once("object pointer: 0x%p\n", object);
4691 
4692 	kmemleak_free(object);
4693 	kasan_kfree_large(object);
4694 	kmsan_kfree_large(object);
4695 
4696 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4697 			      -(PAGE_SIZE << order));
4698 	folio_put(folio);
4699 }
4700 
4701 /**
4702  * kfree - free previously allocated memory
4703  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4704  *
4705  * If @object is NULL, no operation is performed.
4706  */
4707 void kfree(const void *object)
4708 {
4709 	struct folio *folio;
4710 	struct slab *slab;
4711 	struct kmem_cache *s;
4712 	void *x = (void *)object;
4713 
4714 	trace_kfree(_RET_IP_, object);
4715 
4716 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4717 		return;
4718 
4719 	folio = virt_to_folio(object);
4720 	if (unlikely(!folio_test_slab(folio))) {
4721 		free_large_kmalloc(folio, (void *)object);
4722 		return;
4723 	}
4724 
4725 	slab = folio_slab(folio);
4726 	s = slab->slab_cache;
4727 	slab_free(s, slab, x, _RET_IP_);
4728 }
4729 EXPORT_SYMBOL(kfree);
4730 
4731 struct detached_freelist {
4732 	struct slab *slab;
4733 	void *tail;
4734 	void *freelist;
4735 	int cnt;
4736 	struct kmem_cache *s;
4737 };
4738 
4739 /*
4740  * This function progressively scans the array with free objects (with
4741  * a limited look ahead) and extract objects belonging to the same
4742  * slab.  It builds a detached freelist directly within the given
4743  * slab/objects.  This can happen without any need for
4744  * synchronization, because the objects are owned by running process.
4745  * The freelist is build up as a single linked list in the objects.
4746  * The idea is, that this detached freelist can then be bulk
4747  * transferred to the real freelist(s), but only requiring a single
4748  * synchronization primitive.  Look ahead in the array is limited due
4749  * to performance reasons.
4750  */
4751 static inline
4752 int build_detached_freelist(struct kmem_cache *s, size_t size,
4753 			    void **p, struct detached_freelist *df)
4754 {
4755 	int lookahead = 3;
4756 	void *object;
4757 	struct folio *folio;
4758 	size_t same;
4759 
4760 	object = p[--size];
4761 	folio = virt_to_folio(object);
4762 	if (!s) {
4763 		/* Handle kalloc'ed objects */
4764 		if (unlikely(!folio_test_slab(folio))) {
4765 			free_large_kmalloc(folio, object);
4766 			df->slab = NULL;
4767 			return size;
4768 		}
4769 		/* Derive kmem_cache from object */
4770 		df->slab = folio_slab(folio);
4771 		df->s = df->slab->slab_cache;
4772 	} else {
4773 		df->slab = folio_slab(folio);
4774 		df->s = cache_from_obj(s, object); /* Support for memcg */
4775 	}
4776 
4777 	/* Start new detached freelist */
4778 	df->tail = object;
4779 	df->freelist = object;
4780 	df->cnt = 1;
4781 
4782 	if (is_kfence_address(object))
4783 		return size;
4784 
4785 	set_freepointer(df->s, object, NULL);
4786 
4787 	same = size;
4788 	while (size) {
4789 		object = p[--size];
4790 		/* df->slab is always set at this point */
4791 		if (df->slab == virt_to_slab(object)) {
4792 			/* Opportunity build freelist */
4793 			set_freepointer(df->s, object, df->freelist);
4794 			df->freelist = object;
4795 			df->cnt++;
4796 			same--;
4797 			if (size != same)
4798 				swap(p[size], p[same]);
4799 			continue;
4800 		}
4801 
4802 		/* Limit look ahead search */
4803 		if (!--lookahead)
4804 			break;
4805 	}
4806 
4807 	return same;
4808 }
4809 
4810 /*
4811  * Internal bulk free of objects that were not initialised by the post alloc
4812  * hooks and thus should not be processed by the free hooks
4813  */
4814 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4815 {
4816 	if (!size)
4817 		return;
4818 
4819 	do {
4820 		struct detached_freelist df;
4821 
4822 		size = build_detached_freelist(s, size, p, &df);
4823 		if (!df.slab)
4824 			continue;
4825 
4826 		if (kfence_free(df.freelist))
4827 			continue;
4828 
4829 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4830 			     _RET_IP_);
4831 	} while (likely(size));
4832 }
4833 
4834 /* Note that interrupts must be enabled when calling this function. */
4835 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4836 {
4837 	if (!size)
4838 		return;
4839 
4840 	do {
4841 		struct detached_freelist df;
4842 
4843 		size = build_detached_freelist(s, size, p, &df);
4844 		if (!df.slab)
4845 			continue;
4846 
4847 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
4848 			       df.cnt, _RET_IP_);
4849 	} while (likely(size));
4850 }
4851 EXPORT_SYMBOL(kmem_cache_free_bulk);
4852 
4853 #ifndef CONFIG_SLUB_TINY
4854 static inline
4855 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4856 			    void **p)
4857 {
4858 	struct kmem_cache_cpu *c;
4859 	unsigned long irqflags;
4860 	int i;
4861 
4862 	/*
4863 	 * Drain objects in the per cpu slab, while disabling local
4864 	 * IRQs, which protects against PREEMPT and interrupts
4865 	 * handlers invoking normal fastpath.
4866 	 */
4867 	c = slub_get_cpu_ptr(s->cpu_slab);
4868 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4869 
4870 	for (i = 0; i < size; i++) {
4871 		void *object = kfence_alloc(s, s->object_size, flags);
4872 
4873 		if (unlikely(object)) {
4874 			p[i] = object;
4875 			continue;
4876 		}
4877 
4878 		object = c->freelist;
4879 		if (unlikely(!object)) {
4880 			/*
4881 			 * We may have removed an object from c->freelist using
4882 			 * the fastpath in the previous iteration; in that case,
4883 			 * c->tid has not been bumped yet.
4884 			 * Since ___slab_alloc() may reenable interrupts while
4885 			 * allocating memory, we should bump c->tid now.
4886 			 */
4887 			c->tid = next_tid(c->tid);
4888 
4889 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4890 
4891 			/*
4892 			 * Invoking slow path likely have side-effect
4893 			 * of re-populating per CPU c->freelist
4894 			 */
4895 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
4896 					    _RET_IP_, c, s->object_size);
4897 			if (unlikely(!p[i]))
4898 				goto error;
4899 
4900 			c = this_cpu_ptr(s->cpu_slab);
4901 			maybe_wipe_obj_freeptr(s, p[i]);
4902 
4903 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
4904 
4905 			continue; /* goto for-loop */
4906 		}
4907 		c->freelist = get_freepointer(s, object);
4908 		p[i] = object;
4909 		maybe_wipe_obj_freeptr(s, p[i]);
4910 		stat(s, ALLOC_FASTPATH);
4911 	}
4912 	c->tid = next_tid(c->tid);
4913 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
4914 	slub_put_cpu_ptr(s->cpu_slab);
4915 
4916 	return i;
4917 
4918 error:
4919 	slub_put_cpu_ptr(s->cpu_slab);
4920 	__kmem_cache_free_bulk(s, i, p);
4921 	return 0;
4922 
4923 }
4924 #else /* CONFIG_SLUB_TINY */
4925 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4926 				   size_t size, void **p)
4927 {
4928 	int i;
4929 
4930 	for (i = 0; i < size; i++) {
4931 		void *object = kfence_alloc(s, s->object_size, flags);
4932 
4933 		if (unlikely(object)) {
4934 			p[i] = object;
4935 			continue;
4936 		}
4937 
4938 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4939 					 _RET_IP_, s->object_size);
4940 		if (unlikely(!p[i]))
4941 			goto error;
4942 
4943 		maybe_wipe_obj_freeptr(s, p[i]);
4944 	}
4945 
4946 	return i;
4947 
4948 error:
4949 	__kmem_cache_free_bulk(s, i, p);
4950 	return 0;
4951 }
4952 #endif /* CONFIG_SLUB_TINY */
4953 
4954 /* Note that interrupts must be enabled when calling this function. */
4955 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
4956 				 void **p)
4957 {
4958 	int i;
4959 
4960 	if (!size)
4961 		return 0;
4962 
4963 	s = slab_pre_alloc_hook(s, flags);
4964 	if (unlikely(!s))
4965 		return 0;
4966 
4967 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
4968 	if (unlikely(i == 0))
4969 		return 0;
4970 
4971 	/*
4972 	 * memcg and kmem_cache debug support and memory initialization.
4973 	 * Done outside of the IRQ disabled fastpath loop.
4974 	 */
4975 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
4976 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
4977 		return 0;
4978 	}
4979 	return i;
4980 }
4981 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
4982 
4983 
4984 /*
4985  * Object placement in a slab is made very easy because we always start at
4986  * offset 0. If we tune the size of the object to the alignment then we can
4987  * get the required alignment by putting one properly sized object after
4988  * another.
4989  *
4990  * Notice that the allocation order determines the sizes of the per cpu
4991  * caches. Each processor has always one slab available for allocations.
4992  * Increasing the allocation order reduces the number of times that slabs
4993  * must be moved on and off the partial lists and is therefore a factor in
4994  * locking overhead.
4995  */
4996 
4997 /*
4998  * Minimum / Maximum order of slab pages. This influences locking overhead
4999  * and slab fragmentation. A higher order reduces the number of partial slabs
5000  * and increases the number of allocations possible without having to
5001  * take the list_lock.
5002  */
5003 static unsigned int slub_min_order;
5004 static unsigned int slub_max_order =
5005 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5006 static unsigned int slub_min_objects;
5007 
5008 /*
5009  * Calculate the order of allocation given an slab object size.
5010  *
5011  * The order of allocation has significant impact on performance and other
5012  * system components. Generally order 0 allocations should be preferred since
5013  * order 0 does not cause fragmentation in the page allocator. Larger objects
5014  * be problematic to put into order 0 slabs because there may be too much
5015  * unused space left. We go to a higher order if more than 1/16th of the slab
5016  * would be wasted.
5017  *
5018  * In order to reach satisfactory performance we must ensure that a minimum
5019  * number of objects is in one slab. Otherwise we may generate too much
5020  * activity on the partial lists which requires taking the list_lock. This is
5021  * less a concern for large slabs though which are rarely used.
5022  *
5023  * slab_max_order specifies the order where we begin to stop considering the
5024  * number of objects in a slab as critical. If we reach slab_max_order then
5025  * we try to keep the page order as low as possible. So we accept more waste
5026  * of space in favor of a small page order.
5027  *
5028  * Higher order allocations also allow the placement of more objects in a
5029  * slab and thereby reduce object handling overhead. If the user has
5030  * requested a higher minimum order then we start with that one instead of
5031  * the smallest order which will fit the object.
5032  */
5033 static inline unsigned int calc_slab_order(unsigned int size,
5034 		unsigned int min_order, unsigned int max_order,
5035 		unsigned int fract_leftover)
5036 {
5037 	unsigned int order;
5038 
5039 	for (order = min_order; order <= max_order; order++) {
5040 
5041 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5042 		unsigned int rem;
5043 
5044 		rem = slab_size % size;
5045 
5046 		if (rem <= slab_size / fract_leftover)
5047 			break;
5048 	}
5049 
5050 	return order;
5051 }
5052 
5053 static inline int calculate_order(unsigned int size)
5054 {
5055 	unsigned int order;
5056 	unsigned int min_objects;
5057 	unsigned int max_objects;
5058 	unsigned int min_order;
5059 
5060 	min_objects = slub_min_objects;
5061 	if (!min_objects) {
5062 		/*
5063 		 * Some architectures will only update present cpus when
5064 		 * onlining them, so don't trust the number if it's just 1. But
5065 		 * we also don't want to use nr_cpu_ids always, as on some other
5066 		 * architectures, there can be many possible cpus, but never
5067 		 * onlined. Here we compromise between trying to avoid too high
5068 		 * order on systems that appear larger than they are, and too
5069 		 * low order on systems that appear smaller than they are.
5070 		 */
5071 		unsigned int nr_cpus = num_present_cpus();
5072 		if (nr_cpus <= 1)
5073 			nr_cpus = nr_cpu_ids;
5074 		min_objects = 4 * (fls(nr_cpus) + 1);
5075 	}
5076 	/* min_objects can't be 0 because get_order(0) is undefined */
5077 	max_objects = max(order_objects(slub_max_order, size), 1U);
5078 	min_objects = min(min_objects, max_objects);
5079 
5080 	min_order = max_t(unsigned int, slub_min_order,
5081 			  get_order(min_objects * size));
5082 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5083 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5084 
5085 	/*
5086 	 * Attempt to find best configuration for a slab. This works by first
5087 	 * attempting to generate a layout with the best possible configuration
5088 	 * and backing off gradually.
5089 	 *
5090 	 * We start with accepting at most 1/16 waste and try to find the
5091 	 * smallest order from min_objects-derived/slab_min_order up to
5092 	 * slab_max_order that will satisfy the constraint. Note that increasing
5093 	 * the order can only result in same or less fractional waste, not more.
5094 	 *
5095 	 * If that fails, we increase the acceptable fraction of waste and try
5096 	 * again. The last iteration with fraction of 1/2 would effectively
5097 	 * accept any waste and give us the order determined by min_objects, as
5098 	 * long as at least single object fits within slab_max_order.
5099 	 */
5100 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5101 		order = calc_slab_order(size, min_order, slub_max_order,
5102 					fraction);
5103 		if (order <= slub_max_order)
5104 			return order;
5105 	}
5106 
5107 	/*
5108 	 * Doh this slab cannot be placed using slab_max_order.
5109 	 */
5110 	order = get_order(size);
5111 	if (order <= MAX_PAGE_ORDER)
5112 		return order;
5113 	return -ENOSYS;
5114 }
5115 
5116 static void
5117 init_kmem_cache_node(struct kmem_cache_node *n)
5118 {
5119 	n->nr_partial = 0;
5120 	spin_lock_init(&n->list_lock);
5121 	INIT_LIST_HEAD(&n->partial);
5122 #ifdef CONFIG_SLUB_DEBUG
5123 	atomic_long_set(&n->nr_slabs, 0);
5124 	atomic_long_set(&n->total_objects, 0);
5125 	INIT_LIST_HEAD(&n->full);
5126 #endif
5127 }
5128 
5129 #ifndef CONFIG_SLUB_TINY
5130 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5131 {
5132 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5133 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5134 			sizeof(struct kmem_cache_cpu));
5135 
5136 	/*
5137 	 * Must align to double word boundary for the double cmpxchg
5138 	 * instructions to work; see __pcpu_double_call_return_bool().
5139 	 */
5140 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5141 				     2 * sizeof(void *));
5142 
5143 	if (!s->cpu_slab)
5144 		return 0;
5145 
5146 	init_kmem_cache_cpus(s);
5147 
5148 	return 1;
5149 }
5150 #else
5151 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5152 {
5153 	return 1;
5154 }
5155 #endif /* CONFIG_SLUB_TINY */
5156 
5157 static struct kmem_cache *kmem_cache_node;
5158 
5159 /*
5160  * No kmalloc_node yet so do it by hand. We know that this is the first
5161  * slab on the node for this slabcache. There are no concurrent accesses
5162  * possible.
5163  *
5164  * Note that this function only works on the kmem_cache_node
5165  * when allocating for the kmem_cache_node. This is used for bootstrapping
5166  * memory on a fresh node that has no slab structures yet.
5167  */
5168 static void early_kmem_cache_node_alloc(int node)
5169 {
5170 	struct slab *slab;
5171 	struct kmem_cache_node *n;
5172 
5173 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5174 
5175 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5176 
5177 	BUG_ON(!slab);
5178 	if (slab_nid(slab) != node) {
5179 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5180 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5181 	}
5182 
5183 	n = slab->freelist;
5184 	BUG_ON(!n);
5185 #ifdef CONFIG_SLUB_DEBUG
5186 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5187 #endif
5188 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5189 	slab->freelist = get_freepointer(kmem_cache_node, n);
5190 	slab->inuse = 1;
5191 	kmem_cache_node->node[node] = n;
5192 	init_kmem_cache_node(n);
5193 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5194 
5195 	/*
5196 	 * No locks need to be taken here as it has just been
5197 	 * initialized and there is no concurrent access.
5198 	 */
5199 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5200 }
5201 
5202 static void free_kmem_cache_nodes(struct kmem_cache *s)
5203 {
5204 	int node;
5205 	struct kmem_cache_node *n;
5206 
5207 	for_each_kmem_cache_node(s, node, n) {
5208 		s->node[node] = NULL;
5209 		kmem_cache_free(kmem_cache_node, n);
5210 	}
5211 }
5212 
5213 void __kmem_cache_release(struct kmem_cache *s)
5214 {
5215 	cache_random_seq_destroy(s);
5216 #ifndef CONFIG_SLUB_TINY
5217 	free_percpu(s->cpu_slab);
5218 #endif
5219 	free_kmem_cache_nodes(s);
5220 }
5221 
5222 static int init_kmem_cache_nodes(struct kmem_cache *s)
5223 {
5224 	int node;
5225 
5226 	for_each_node_mask(node, slab_nodes) {
5227 		struct kmem_cache_node *n;
5228 
5229 		if (slab_state == DOWN) {
5230 			early_kmem_cache_node_alloc(node);
5231 			continue;
5232 		}
5233 		n = kmem_cache_alloc_node(kmem_cache_node,
5234 						GFP_KERNEL, node);
5235 
5236 		if (!n) {
5237 			free_kmem_cache_nodes(s);
5238 			return 0;
5239 		}
5240 
5241 		init_kmem_cache_node(n);
5242 		s->node[node] = n;
5243 	}
5244 	return 1;
5245 }
5246 
5247 static void set_cpu_partial(struct kmem_cache *s)
5248 {
5249 #ifdef CONFIG_SLUB_CPU_PARTIAL
5250 	unsigned int nr_objects;
5251 
5252 	/*
5253 	 * cpu_partial determined the maximum number of objects kept in the
5254 	 * per cpu partial lists of a processor.
5255 	 *
5256 	 * Per cpu partial lists mainly contain slabs that just have one
5257 	 * object freed. If they are used for allocation then they can be
5258 	 * filled up again with minimal effort. The slab will never hit the
5259 	 * per node partial lists and therefore no locking will be required.
5260 	 *
5261 	 * For backwards compatibility reasons, this is determined as number
5262 	 * of objects, even though we now limit maximum number of pages, see
5263 	 * slub_set_cpu_partial()
5264 	 */
5265 	if (!kmem_cache_has_cpu_partial(s))
5266 		nr_objects = 0;
5267 	else if (s->size >= PAGE_SIZE)
5268 		nr_objects = 6;
5269 	else if (s->size >= 1024)
5270 		nr_objects = 24;
5271 	else if (s->size >= 256)
5272 		nr_objects = 52;
5273 	else
5274 		nr_objects = 120;
5275 
5276 	slub_set_cpu_partial(s, nr_objects);
5277 #endif
5278 }
5279 
5280 /*
5281  * calculate_sizes() determines the order and the distribution of data within
5282  * a slab object.
5283  */
5284 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5285 {
5286 	slab_flags_t flags = s->flags;
5287 	unsigned int size = s->object_size;
5288 	unsigned int order;
5289 
5290 	/*
5291 	 * Round up object size to the next word boundary. We can only
5292 	 * place the free pointer at word boundaries and this determines
5293 	 * the possible location of the free pointer.
5294 	 */
5295 	size = ALIGN(size, sizeof(void *));
5296 
5297 #ifdef CONFIG_SLUB_DEBUG
5298 	/*
5299 	 * Determine if we can poison the object itself. If the user of
5300 	 * the slab may touch the object after free or before allocation
5301 	 * then we should never poison the object itself.
5302 	 */
5303 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5304 			!s->ctor)
5305 		s->flags |= __OBJECT_POISON;
5306 	else
5307 		s->flags &= ~__OBJECT_POISON;
5308 
5309 
5310 	/*
5311 	 * If we are Redzoning then check if there is some space between the
5312 	 * end of the object and the free pointer. If not then add an
5313 	 * additional word to have some bytes to store Redzone information.
5314 	 */
5315 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5316 		size += sizeof(void *);
5317 #endif
5318 
5319 	/*
5320 	 * With that we have determined the number of bytes in actual use
5321 	 * by the object and redzoning.
5322 	 */
5323 	s->inuse = size;
5324 
5325 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5326 	    (flags & SLAB_POISON) || s->ctor ||
5327 	    ((flags & SLAB_RED_ZONE) &&
5328 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5329 		/*
5330 		 * Relocate free pointer after the object if it is not
5331 		 * permitted to overwrite the first word of the object on
5332 		 * kmem_cache_free.
5333 		 *
5334 		 * This is the case if we do RCU, have a constructor or
5335 		 * destructor, are poisoning the objects, or are
5336 		 * redzoning an object smaller than sizeof(void *) or are
5337 		 * redzoning an object with slub_debug_orig_size() enabled,
5338 		 * in which case the right redzone may be extended.
5339 		 *
5340 		 * The assumption that s->offset >= s->inuse means free
5341 		 * pointer is outside of the object is used in the
5342 		 * freeptr_outside_object() function. If that is no
5343 		 * longer true, the function needs to be modified.
5344 		 */
5345 		s->offset = size;
5346 		size += sizeof(void *);
5347 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5348 		s->offset = args->freeptr_offset;
5349 	} else {
5350 		/*
5351 		 * Store freelist pointer near middle of object to keep
5352 		 * it away from the edges of the object to avoid small
5353 		 * sized over/underflows from neighboring allocations.
5354 		 */
5355 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5356 	}
5357 
5358 #ifdef CONFIG_SLUB_DEBUG
5359 	if (flags & SLAB_STORE_USER) {
5360 		/*
5361 		 * Need to store information about allocs and frees after
5362 		 * the object.
5363 		 */
5364 		size += 2 * sizeof(struct track);
5365 
5366 		/* Save the original kmalloc request size */
5367 		if (flags & SLAB_KMALLOC)
5368 			size += sizeof(unsigned int);
5369 	}
5370 #endif
5371 
5372 	kasan_cache_create(s, &size, &s->flags);
5373 #ifdef CONFIG_SLUB_DEBUG
5374 	if (flags & SLAB_RED_ZONE) {
5375 		/*
5376 		 * Add some empty padding so that we can catch
5377 		 * overwrites from earlier objects rather than let
5378 		 * tracking information or the free pointer be
5379 		 * corrupted if a user writes before the start
5380 		 * of the object.
5381 		 */
5382 		size += sizeof(void *);
5383 
5384 		s->red_left_pad = sizeof(void *);
5385 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5386 		size += s->red_left_pad;
5387 	}
5388 #endif
5389 
5390 	/*
5391 	 * SLUB stores one object immediately after another beginning from
5392 	 * offset 0. In order to align the objects we have to simply size
5393 	 * each object to conform to the alignment.
5394 	 */
5395 	size = ALIGN(size, s->align);
5396 	s->size = size;
5397 	s->reciprocal_size = reciprocal_value(size);
5398 	order = calculate_order(size);
5399 
5400 	if ((int)order < 0)
5401 		return 0;
5402 
5403 	s->allocflags = __GFP_COMP;
5404 
5405 	if (s->flags & SLAB_CACHE_DMA)
5406 		s->allocflags |= GFP_DMA;
5407 
5408 	if (s->flags & SLAB_CACHE_DMA32)
5409 		s->allocflags |= GFP_DMA32;
5410 
5411 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5412 		s->allocflags |= __GFP_RECLAIMABLE;
5413 
5414 	/*
5415 	 * Determine the number of objects per slab
5416 	 */
5417 	s->oo = oo_make(order, size);
5418 	s->min = oo_make(get_order(size), size);
5419 
5420 	return !!oo_objects(s->oo);
5421 }
5422 
5423 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5424 			      const char *text)
5425 {
5426 #ifdef CONFIG_SLUB_DEBUG
5427 	void *addr = slab_address(slab);
5428 	void *p;
5429 
5430 	slab_err(s, slab, text, s->name);
5431 
5432 	spin_lock(&object_map_lock);
5433 	__fill_map(object_map, s, slab);
5434 
5435 	for_each_object(p, s, addr, slab->objects) {
5436 
5437 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5438 			if (slab_add_kunit_errors())
5439 				continue;
5440 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5441 			print_tracking(s, p);
5442 		}
5443 	}
5444 	spin_unlock(&object_map_lock);
5445 #endif
5446 }
5447 
5448 /*
5449  * Attempt to free all partial slabs on a node.
5450  * This is called from __kmem_cache_shutdown(). We must take list_lock
5451  * because sysfs file might still access partial list after the shutdowning.
5452  */
5453 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5454 {
5455 	LIST_HEAD(discard);
5456 	struct slab *slab, *h;
5457 
5458 	BUG_ON(irqs_disabled());
5459 	spin_lock_irq(&n->list_lock);
5460 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5461 		if (!slab->inuse) {
5462 			remove_partial(n, slab);
5463 			list_add(&slab->slab_list, &discard);
5464 		} else {
5465 			list_slab_objects(s, slab,
5466 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5467 		}
5468 	}
5469 	spin_unlock_irq(&n->list_lock);
5470 
5471 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5472 		discard_slab(s, slab);
5473 }
5474 
5475 bool __kmem_cache_empty(struct kmem_cache *s)
5476 {
5477 	int node;
5478 	struct kmem_cache_node *n;
5479 
5480 	for_each_kmem_cache_node(s, node, n)
5481 		if (n->nr_partial || node_nr_slabs(n))
5482 			return false;
5483 	return true;
5484 }
5485 
5486 /*
5487  * Release all resources used by a slab cache.
5488  */
5489 int __kmem_cache_shutdown(struct kmem_cache *s)
5490 {
5491 	int node;
5492 	struct kmem_cache_node *n;
5493 
5494 	flush_all_cpus_locked(s);
5495 	/* Attempt to free all objects */
5496 	for_each_kmem_cache_node(s, node, n) {
5497 		free_partial(s, n);
5498 		if (n->nr_partial || node_nr_slabs(n))
5499 			return 1;
5500 	}
5501 	return 0;
5502 }
5503 
5504 #ifdef CONFIG_PRINTK
5505 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5506 {
5507 	void *base;
5508 	int __maybe_unused i;
5509 	unsigned int objnr;
5510 	void *objp;
5511 	void *objp0;
5512 	struct kmem_cache *s = slab->slab_cache;
5513 	struct track __maybe_unused *trackp;
5514 
5515 	kpp->kp_ptr = object;
5516 	kpp->kp_slab = slab;
5517 	kpp->kp_slab_cache = s;
5518 	base = slab_address(slab);
5519 	objp0 = kasan_reset_tag(object);
5520 #ifdef CONFIG_SLUB_DEBUG
5521 	objp = restore_red_left(s, objp0);
5522 #else
5523 	objp = objp0;
5524 #endif
5525 	objnr = obj_to_index(s, slab, objp);
5526 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5527 	objp = base + s->size * objnr;
5528 	kpp->kp_objp = objp;
5529 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5530 			 || (objp - base) % s->size) ||
5531 	    !(s->flags & SLAB_STORE_USER))
5532 		return;
5533 #ifdef CONFIG_SLUB_DEBUG
5534 	objp = fixup_red_left(s, objp);
5535 	trackp = get_track(s, objp, TRACK_ALLOC);
5536 	kpp->kp_ret = (void *)trackp->addr;
5537 #ifdef CONFIG_STACKDEPOT
5538 	{
5539 		depot_stack_handle_t handle;
5540 		unsigned long *entries;
5541 		unsigned int nr_entries;
5542 
5543 		handle = READ_ONCE(trackp->handle);
5544 		if (handle) {
5545 			nr_entries = stack_depot_fetch(handle, &entries);
5546 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5547 				kpp->kp_stack[i] = (void *)entries[i];
5548 		}
5549 
5550 		trackp = get_track(s, objp, TRACK_FREE);
5551 		handle = READ_ONCE(trackp->handle);
5552 		if (handle) {
5553 			nr_entries = stack_depot_fetch(handle, &entries);
5554 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5555 				kpp->kp_free_stack[i] = (void *)entries[i];
5556 		}
5557 	}
5558 #endif
5559 #endif
5560 }
5561 #endif
5562 
5563 /********************************************************************
5564  *		Kmalloc subsystem
5565  *******************************************************************/
5566 
5567 static int __init setup_slub_min_order(char *str)
5568 {
5569 	get_option(&str, (int *)&slub_min_order);
5570 
5571 	if (slub_min_order > slub_max_order)
5572 		slub_max_order = slub_min_order;
5573 
5574 	return 1;
5575 }
5576 
5577 __setup("slab_min_order=", setup_slub_min_order);
5578 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5579 
5580 
5581 static int __init setup_slub_max_order(char *str)
5582 {
5583 	get_option(&str, (int *)&slub_max_order);
5584 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5585 
5586 	if (slub_min_order > slub_max_order)
5587 		slub_min_order = slub_max_order;
5588 
5589 	return 1;
5590 }
5591 
5592 __setup("slab_max_order=", setup_slub_max_order);
5593 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5594 
5595 static int __init setup_slub_min_objects(char *str)
5596 {
5597 	get_option(&str, (int *)&slub_min_objects);
5598 
5599 	return 1;
5600 }
5601 
5602 __setup("slab_min_objects=", setup_slub_min_objects);
5603 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5604 
5605 #ifdef CONFIG_HARDENED_USERCOPY
5606 /*
5607  * Rejects incorrectly sized objects and objects that are to be copied
5608  * to/from userspace but do not fall entirely within the containing slab
5609  * cache's usercopy region.
5610  *
5611  * Returns NULL if check passes, otherwise const char * to name of cache
5612  * to indicate an error.
5613  */
5614 void __check_heap_object(const void *ptr, unsigned long n,
5615 			 const struct slab *slab, bool to_user)
5616 {
5617 	struct kmem_cache *s;
5618 	unsigned int offset;
5619 	bool is_kfence = is_kfence_address(ptr);
5620 
5621 	ptr = kasan_reset_tag(ptr);
5622 
5623 	/* Find object and usable object size. */
5624 	s = slab->slab_cache;
5625 
5626 	/* Reject impossible pointers. */
5627 	if (ptr < slab_address(slab))
5628 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5629 			       to_user, 0, n);
5630 
5631 	/* Find offset within object. */
5632 	if (is_kfence)
5633 		offset = ptr - kfence_object_start(ptr);
5634 	else
5635 		offset = (ptr - slab_address(slab)) % s->size;
5636 
5637 	/* Adjust for redzone and reject if within the redzone. */
5638 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5639 		if (offset < s->red_left_pad)
5640 			usercopy_abort("SLUB object in left red zone",
5641 				       s->name, to_user, offset, n);
5642 		offset -= s->red_left_pad;
5643 	}
5644 
5645 	/* Allow address range falling entirely within usercopy region. */
5646 	if (offset >= s->useroffset &&
5647 	    offset - s->useroffset <= s->usersize &&
5648 	    n <= s->useroffset - offset + s->usersize)
5649 		return;
5650 
5651 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5652 }
5653 #endif /* CONFIG_HARDENED_USERCOPY */
5654 
5655 #define SHRINK_PROMOTE_MAX 32
5656 
5657 /*
5658  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5659  * up most to the head of the partial lists. New allocations will then
5660  * fill those up and thus they can be removed from the partial lists.
5661  *
5662  * The slabs with the least items are placed last. This results in them
5663  * being allocated from last increasing the chance that the last objects
5664  * are freed in them.
5665  */
5666 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5667 {
5668 	int node;
5669 	int i;
5670 	struct kmem_cache_node *n;
5671 	struct slab *slab;
5672 	struct slab *t;
5673 	struct list_head discard;
5674 	struct list_head promote[SHRINK_PROMOTE_MAX];
5675 	unsigned long flags;
5676 	int ret = 0;
5677 
5678 	for_each_kmem_cache_node(s, node, n) {
5679 		INIT_LIST_HEAD(&discard);
5680 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5681 			INIT_LIST_HEAD(promote + i);
5682 
5683 		spin_lock_irqsave(&n->list_lock, flags);
5684 
5685 		/*
5686 		 * Build lists of slabs to discard or promote.
5687 		 *
5688 		 * Note that concurrent frees may occur while we hold the
5689 		 * list_lock. slab->inuse here is the upper limit.
5690 		 */
5691 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5692 			int free = slab->objects - slab->inuse;
5693 
5694 			/* Do not reread slab->inuse */
5695 			barrier();
5696 
5697 			/* We do not keep full slabs on the list */
5698 			BUG_ON(free <= 0);
5699 
5700 			if (free == slab->objects) {
5701 				list_move(&slab->slab_list, &discard);
5702 				slab_clear_node_partial(slab);
5703 				n->nr_partial--;
5704 				dec_slabs_node(s, node, slab->objects);
5705 			} else if (free <= SHRINK_PROMOTE_MAX)
5706 				list_move(&slab->slab_list, promote + free - 1);
5707 		}
5708 
5709 		/*
5710 		 * Promote the slabs filled up most to the head of the
5711 		 * partial list.
5712 		 */
5713 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5714 			list_splice(promote + i, &n->partial);
5715 
5716 		spin_unlock_irqrestore(&n->list_lock, flags);
5717 
5718 		/* Release empty slabs */
5719 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5720 			free_slab(s, slab);
5721 
5722 		if (node_nr_slabs(n))
5723 			ret = 1;
5724 	}
5725 
5726 	return ret;
5727 }
5728 
5729 int __kmem_cache_shrink(struct kmem_cache *s)
5730 {
5731 	flush_all(s);
5732 	return __kmem_cache_do_shrink(s);
5733 }
5734 
5735 static int slab_mem_going_offline_callback(void *arg)
5736 {
5737 	struct kmem_cache *s;
5738 
5739 	mutex_lock(&slab_mutex);
5740 	list_for_each_entry(s, &slab_caches, list) {
5741 		flush_all_cpus_locked(s);
5742 		__kmem_cache_do_shrink(s);
5743 	}
5744 	mutex_unlock(&slab_mutex);
5745 
5746 	return 0;
5747 }
5748 
5749 static void slab_mem_offline_callback(void *arg)
5750 {
5751 	struct memory_notify *marg = arg;
5752 	int offline_node;
5753 
5754 	offline_node = marg->status_change_nid_normal;
5755 
5756 	/*
5757 	 * If the node still has available memory. we need kmem_cache_node
5758 	 * for it yet.
5759 	 */
5760 	if (offline_node < 0)
5761 		return;
5762 
5763 	mutex_lock(&slab_mutex);
5764 	node_clear(offline_node, slab_nodes);
5765 	/*
5766 	 * We no longer free kmem_cache_node structures here, as it would be
5767 	 * racy with all get_node() users, and infeasible to protect them with
5768 	 * slab_mutex.
5769 	 */
5770 	mutex_unlock(&slab_mutex);
5771 }
5772 
5773 static int slab_mem_going_online_callback(void *arg)
5774 {
5775 	struct kmem_cache_node *n;
5776 	struct kmem_cache *s;
5777 	struct memory_notify *marg = arg;
5778 	int nid = marg->status_change_nid_normal;
5779 	int ret = 0;
5780 
5781 	/*
5782 	 * If the node's memory is already available, then kmem_cache_node is
5783 	 * already created. Nothing to do.
5784 	 */
5785 	if (nid < 0)
5786 		return 0;
5787 
5788 	/*
5789 	 * We are bringing a node online. No memory is available yet. We must
5790 	 * allocate a kmem_cache_node structure in order to bring the node
5791 	 * online.
5792 	 */
5793 	mutex_lock(&slab_mutex);
5794 	list_for_each_entry(s, &slab_caches, list) {
5795 		/*
5796 		 * The structure may already exist if the node was previously
5797 		 * onlined and offlined.
5798 		 */
5799 		if (get_node(s, nid))
5800 			continue;
5801 		/*
5802 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5803 		 *      since memory is not yet available from the node that
5804 		 *      is brought up.
5805 		 */
5806 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5807 		if (!n) {
5808 			ret = -ENOMEM;
5809 			goto out;
5810 		}
5811 		init_kmem_cache_node(n);
5812 		s->node[nid] = n;
5813 	}
5814 	/*
5815 	 * Any cache created after this point will also have kmem_cache_node
5816 	 * initialized for the new node.
5817 	 */
5818 	node_set(nid, slab_nodes);
5819 out:
5820 	mutex_unlock(&slab_mutex);
5821 	return ret;
5822 }
5823 
5824 static int slab_memory_callback(struct notifier_block *self,
5825 				unsigned long action, void *arg)
5826 {
5827 	int ret = 0;
5828 
5829 	switch (action) {
5830 	case MEM_GOING_ONLINE:
5831 		ret = slab_mem_going_online_callback(arg);
5832 		break;
5833 	case MEM_GOING_OFFLINE:
5834 		ret = slab_mem_going_offline_callback(arg);
5835 		break;
5836 	case MEM_OFFLINE:
5837 	case MEM_CANCEL_ONLINE:
5838 		slab_mem_offline_callback(arg);
5839 		break;
5840 	case MEM_ONLINE:
5841 	case MEM_CANCEL_OFFLINE:
5842 		break;
5843 	}
5844 	if (ret)
5845 		ret = notifier_from_errno(ret);
5846 	else
5847 		ret = NOTIFY_OK;
5848 	return ret;
5849 }
5850 
5851 /********************************************************************
5852  *			Basic setup of slabs
5853  *******************************************************************/
5854 
5855 /*
5856  * Used for early kmem_cache structures that were allocated using
5857  * the page allocator. Allocate them properly then fix up the pointers
5858  * that may be pointing to the wrong kmem_cache structure.
5859  */
5860 
5861 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
5862 {
5863 	int node;
5864 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
5865 	struct kmem_cache_node *n;
5866 
5867 	memcpy(s, static_cache, kmem_cache->object_size);
5868 
5869 	/*
5870 	 * This runs very early, and only the boot processor is supposed to be
5871 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
5872 	 * IPIs around.
5873 	 */
5874 	__flush_cpu_slab(s, smp_processor_id());
5875 	for_each_kmem_cache_node(s, node, n) {
5876 		struct slab *p;
5877 
5878 		list_for_each_entry(p, &n->partial, slab_list)
5879 			p->slab_cache = s;
5880 
5881 #ifdef CONFIG_SLUB_DEBUG
5882 		list_for_each_entry(p, &n->full, slab_list)
5883 			p->slab_cache = s;
5884 #endif
5885 	}
5886 	list_add(&s->list, &slab_caches);
5887 	return s;
5888 }
5889 
5890 void __init kmem_cache_init(void)
5891 {
5892 	static __initdata struct kmem_cache boot_kmem_cache,
5893 		boot_kmem_cache_node;
5894 	int node;
5895 
5896 	if (debug_guardpage_minorder())
5897 		slub_max_order = 0;
5898 
5899 	/* Print slub debugging pointers without hashing */
5900 	if (__slub_debug_enabled())
5901 		no_hash_pointers_enable(NULL);
5902 
5903 	kmem_cache_node = &boot_kmem_cache_node;
5904 	kmem_cache = &boot_kmem_cache;
5905 
5906 	/*
5907 	 * Initialize the nodemask for which we will allocate per node
5908 	 * structures. Here we don't need taking slab_mutex yet.
5909 	 */
5910 	for_each_node_state(node, N_NORMAL_MEMORY)
5911 		node_set(node, slab_nodes);
5912 
5913 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5914 			sizeof(struct kmem_cache_node),
5915 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5916 
5917 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5918 
5919 	/* Able to allocate the per node structures */
5920 	slab_state = PARTIAL;
5921 
5922 	create_boot_cache(kmem_cache, "kmem_cache",
5923 			offsetof(struct kmem_cache, node) +
5924 				nr_node_ids * sizeof(struct kmem_cache_node *),
5925 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
5926 
5927 	kmem_cache = bootstrap(&boot_kmem_cache);
5928 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5929 
5930 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5931 	setup_kmalloc_cache_index_table();
5932 	create_kmalloc_caches();
5933 
5934 	/* Setup random freelists for each cache */
5935 	init_freelist_randomization();
5936 
5937 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5938 				  slub_cpu_dead);
5939 
5940 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5941 		cache_line_size(),
5942 		slub_min_order, slub_max_order, slub_min_objects,
5943 		nr_cpu_ids, nr_node_ids);
5944 }
5945 
5946 void __init kmem_cache_init_late(void)
5947 {
5948 #ifndef CONFIG_SLUB_TINY
5949 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5950 	WARN_ON(!flushwq);
5951 #endif
5952 }
5953 
5954 struct kmem_cache *
5955 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5956 		   slab_flags_t flags, void (*ctor)(void *))
5957 {
5958 	struct kmem_cache *s;
5959 
5960 	s = find_mergeable(size, align, flags, name, ctor);
5961 	if (s) {
5962 		if (sysfs_slab_alias(s, name))
5963 			return NULL;
5964 
5965 		s->refcount++;
5966 
5967 		/*
5968 		 * Adjust the object sizes so that we clear
5969 		 * the complete object on kzalloc.
5970 		 */
5971 		s->object_size = max(s->object_size, size);
5972 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5973 	}
5974 
5975 	return s;
5976 }
5977 
5978 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
5979 			 unsigned int size, struct kmem_cache_args *args,
5980 			 slab_flags_t flags)
5981 {
5982 	int err = -EINVAL;
5983 
5984 	s->name = name;
5985 	s->size = s->object_size = size;
5986 
5987 	s->flags = kmem_cache_flags(flags, s->name);
5988 #ifdef CONFIG_SLAB_FREELIST_HARDENED
5989 	s->random = get_random_long();
5990 #endif
5991 	s->align = args->align;
5992 	s->ctor = args->ctor;
5993 #ifdef CONFIG_HARDENED_USERCOPY
5994 	s->useroffset = args->useroffset;
5995 	s->usersize = args->usersize;
5996 #endif
5997 
5998 	if (!calculate_sizes(args, s))
5999 		goto out;
6000 	if (disable_higher_order_debug) {
6001 		/*
6002 		 * Disable debugging flags that store metadata if the min slab
6003 		 * order increased.
6004 		 */
6005 		if (get_order(s->size) > get_order(s->object_size)) {
6006 			s->flags &= ~DEBUG_METADATA_FLAGS;
6007 			s->offset = 0;
6008 			if (!calculate_sizes(args, s))
6009 				goto out;
6010 		}
6011 	}
6012 
6013 #ifdef system_has_freelist_aba
6014 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6015 		/* Enable fast mode */
6016 		s->flags |= __CMPXCHG_DOUBLE;
6017 	}
6018 #endif
6019 
6020 	/*
6021 	 * The larger the object size is, the more slabs we want on the partial
6022 	 * list to avoid pounding the page allocator excessively.
6023 	 */
6024 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6025 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6026 
6027 	set_cpu_partial(s);
6028 
6029 #ifdef CONFIG_NUMA
6030 	s->remote_node_defrag_ratio = 1000;
6031 #endif
6032 
6033 	/* Initialize the pre-computed randomized freelist if slab is up */
6034 	if (slab_state >= UP) {
6035 		if (init_cache_random_seq(s))
6036 			goto out;
6037 	}
6038 
6039 	if (!init_kmem_cache_nodes(s))
6040 		goto out;
6041 
6042 	if (!alloc_kmem_cache_cpus(s))
6043 		goto out;
6044 
6045 	/* Mutex is not taken during early boot */
6046 	if (slab_state <= UP) {
6047 		err = 0;
6048 		goto out;
6049 	}
6050 
6051 	err = sysfs_slab_add(s);
6052 	if (err)
6053 		goto out;
6054 
6055 	if (s->flags & SLAB_STORE_USER)
6056 		debugfs_slab_add(s);
6057 
6058 out:
6059 	if (err)
6060 		__kmem_cache_release(s);
6061 	return err;
6062 }
6063 
6064 #ifdef SLAB_SUPPORTS_SYSFS
6065 static int count_inuse(struct slab *slab)
6066 {
6067 	return slab->inuse;
6068 }
6069 
6070 static int count_total(struct slab *slab)
6071 {
6072 	return slab->objects;
6073 }
6074 #endif
6075 
6076 #ifdef CONFIG_SLUB_DEBUG
6077 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6078 			  unsigned long *obj_map)
6079 {
6080 	void *p;
6081 	void *addr = slab_address(slab);
6082 
6083 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6084 		return;
6085 
6086 	/* Now we know that a valid freelist exists */
6087 	__fill_map(obj_map, s, slab);
6088 	for_each_object(p, s, addr, slab->objects) {
6089 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6090 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6091 
6092 		if (!check_object(s, slab, p, val))
6093 			break;
6094 	}
6095 }
6096 
6097 static int validate_slab_node(struct kmem_cache *s,
6098 		struct kmem_cache_node *n, unsigned long *obj_map)
6099 {
6100 	unsigned long count = 0;
6101 	struct slab *slab;
6102 	unsigned long flags;
6103 
6104 	spin_lock_irqsave(&n->list_lock, flags);
6105 
6106 	list_for_each_entry(slab, &n->partial, slab_list) {
6107 		validate_slab(s, slab, obj_map);
6108 		count++;
6109 	}
6110 	if (count != n->nr_partial) {
6111 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6112 		       s->name, count, n->nr_partial);
6113 		slab_add_kunit_errors();
6114 	}
6115 
6116 	if (!(s->flags & SLAB_STORE_USER))
6117 		goto out;
6118 
6119 	list_for_each_entry(slab, &n->full, slab_list) {
6120 		validate_slab(s, slab, obj_map);
6121 		count++;
6122 	}
6123 	if (count != node_nr_slabs(n)) {
6124 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6125 		       s->name, count, node_nr_slabs(n));
6126 		slab_add_kunit_errors();
6127 	}
6128 
6129 out:
6130 	spin_unlock_irqrestore(&n->list_lock, flags);
6131 	return count;
6132 }
6133 
6134 long validate_slab_cache(struct kmem_cache *s)
6135 {
6136 	int node;
6137 	unsigned long count = 0;
6138 	struct kmem_cache_node *n;
6139 	unsigned long *obj_map;
6140 
6141 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6142 	if (!obj_map)
6143 		return -ENOMEM;
6144 
6145 	flush_all(s);
6146 	for_each_kmem_cache_node(s, node, n)
6147 		count += validate_slab_node(s, n, obj_map);
6148 
6149 	bitmap_free(obj_map);
6150 
6151 	return count;
6152 }
6153 EXPORT_SYMBOL(validate_slab_cache);
6154 
6155 #ifdef CONFIG_DEBUG_FS
6156 /*
6157  * Generate lists of code addresses where slabcache objects are allocated
6158  * and freed.
6159  */
6160 
6161 struct location {
6162 	depot_stack_handle_t handle;
6163 	unsigned long count;
6164 	unsigned long addr;
6165 	unsigned long waste;
6166 	long long sum_time;
6167 	long min_time;
6168 	long max_time;
6169 	long min_pid;
6170 	long max_pid;
6171 	DECLARE_BITMAP(cpus, NR_CPUS);
6172 	nodemask_t nodes;
6173 };
6174 
6175 struct loc_track {
6176 	unsigned long max;
6177 	unsigned long count;
6178 	struct location *loc;
6179 	loff_t idx;
6180 };
6181 
6182 static struct dentry *slab_debugfs_root;
6183 
6184 static void free_loc_track(struct loc_track *t)
6185 {
6186 	if (t->max)
6187 		free_pages((unsigned long)t->loc,
6188 			get_order(sizeof(struct location) * t->max));
6189 }
6190 
6191 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6192 {
6193 	struct location *l;
6194 	int order;
6195 
6196 	order = get_order(sizeof(struct location) * max);
6197 
6198 	l = (void *)__get_free_pages(flags, order);
6199 	if (!l)
6200 		return 0;
6201 
6202 	if (t->count) {
6203 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6204 		free_loc_track(t);
6205 	}
6206 	t->max = max;
6207 	t->loc = l;
6208 	return 1;
6209 }
6210 
6211 static int add_location(struct loc_track *t, struct kmem_cache *s,
6212 				const struct track *track,
6213 				unsigned int orig_size)
6214 {
6215 	long start, end, pos;
6216 	struct location *l;
6217 	unsigned long caddr, chandle, cwaste;
6218 	unsigned long age = jiffies - track->when;
6219 	depot_stack_handle_t handle = 0;
6220 	unsigned int waste = s->object_size - orig_size;
6221 
6222 #ifdef CONFIG_STACKDEPOT
6223 	handle = READ_ONCE(track->handle);
6224 #endif
6225 	start = -1;
6226 	end = t->count;
6227 
6228 	for ( ; ; ) {
6229 		pos = start + (end - start + 1) / 2;
6230 
6231 		/*
6232 		 * There is nothing at "end". If we end up there
6233 		 * we need to add something to before end.
6234 		 */
6235 		if (pos == end)
6236 			break;
6237 
6238 		l = &t->loc[pos];
6239 		caddr = l->addr;
6240 		chandle = l->handle;
6241 		cwaste = l->waste;
6242 		if ((track->addr == caddr) && (handle == chandle) &&
6243 			(waste == cwaste)) {
6244 
6245 			l->count++;
6246 			if (track->when) {
6247 				l->sum_time += age;
6248 				if (age < l->min_time)
6249 					l->min_time = age;
6250 				if (age > l->max_time)
6251 					l->max_time = age;
6252 
6253 				if (track->pid < l->min_pid)
6254 					l->min_pid = track->pid;
6255 				if (track->pid > l->max_pid)
6256 					l->max_pid = track->pid;
6257 
6258 				cpumask_set_cpu(track->cpu,
6259 						to_cpumask(l->cpus));
6260 			}
6261 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6262 			return 1;
6263 		}
6264 
6265 		if (track->addr < caddr)
6266 			end = pos;
6267 		else if (track->addr == caddr && handle < chandle)
6268 			end = pos;
6269 		else if (track->addr == caddr && handle == chandle &&
6270 				waste < cwaste)
6271 			end = pos;
6272 		else
6273 			start = pos;
6274 	}
6275 
6276 	/*
6277 	 * Not found. Insert new tracking element.
6278 	 */
6279 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6280 		return 0;
6281 
6282 	l = t->loc + pos;
6283 	if (pos < t->count)
6284 		memmove(l + 1, l,
6285 			(t->count - pos) * sizeof(struct location));
6286 	t->count++;
6287 	l->count = 1;
6288 	l->addr = track->addr;
6289 	l->sum_time = age;
6290 	l->min_time = age;
6291 	l->max_time = age;
6292 	l->min_pid = track->pid;
6293 	l->max_pid = track->pid;
6294 	l->handle = handle;
6295 	l->waste = waste;
6296 	cpumask_clear(to_cpumask(l->cpus));
6297 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6298 	nodes_clear(l->nodes);
6299 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6300 	return 1;
6301 }
6302 
6303 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6304 		struct slab *slab, enum track_item alloc,
6305 		unsigned long *obj_map)
6306 {
6307 	void *addr = slab_address(slab);
6308 	bool is_alloc = (alloc == TRACK_ALLOC);
6309 	void *p;
6310 
6311 	__fill_map(obj_map, s, slab);
6312 
6313 	for_each_object(p, s, addr, slab->objects)
6314 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6315 			add_location(t, s, get_track(s, p, alloc),
6316 				     is_alloc ? get_orig_size(s, p) :
6317 						s->object_size);
6318 }
6319 #endif  /* CONFIG_DEBUG_FS   */
6320 #endif	/* CONFIG_SLUB_DEBUG */
6321 
6322 #ifdef SLAB_SUPPORTS_SYSFS
6323 enum slab_stat_type {
6324 	SL_ALL,			/* All slabs */
6325 	SL_PARTIAL,		/* Only partially allocated slabs */
6326 	SL_CPU,			/* Only slabs used for cpu caches */
6327 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6328 	SL_TOTAL		/* Determine object capacity not slabs */
6329 };
6330 
6331 #define SO_ALL		(1 << SL_ALL)
6332 #define SO_PARTIAL	(1 << SL_PARTIAL)
6333 #define SO_CPU		(1 << SL_CPU)
6334 #define SO_OBJECTS	(1 << SL_OBJECTS)
6335 #define SO_TOTAL	(1 << SL_TOTAL)
6336 
6337 static ssize_t show_slab_objects(struct kmem_cache *s,
6338 				 char *buf, unsigned long flags)
6339 {
6340 	unsigned long total = 0;
6341 	int node;
6342 	int x;
6343 	unsigned long *nodes;
6344 	int len = 0;
6345 
6346 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6347 	if (!nodes)
6348 		return -ENOMEM;
6349 
6350 	if (flags & SO_CPU) {
6351 		int cpu;
6352 
6353 		for_each_possible_cpu(cpu) {
6354 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6355 							       cpu);
6356 			int node;
6357 			struct slab *slab;
6358 
6359 			slab = READ_ONCE(c->slab);
6360 			if (!slab)
6361 				continue;
6362 
6363 			node = slab_nid(slab);
6364 			if (flags & SO_TOTAL)
6365 				x = slab->objects;
6366 			else if (flags & SO_OBJECTS)
6367 				x = slab->inuse;
6368 			else
6369 				x = 1;
6370 
6371 			total += x;
6372 			nodes[node] += x;
6373 
6374 #ifdef CONFIG_SLUB_CPU_PARTIAL
6375 			slab = slub_percpu_partial_read_once(c);
6376 			if (slab) {
6377 				node = slab_nid(slab);
6378 				if (flags & SO_TOTAL)
6379 					WARN_ON_ONCE(1);
6380 				else if (flags & SO_OBJECTS)
6381 					WARN_ON_ONCE(1);
6382 				else
6383 					x = data_race(slab->slabs);
6384 				total += x;
6385 				nodes[node] += x;
6386 			}
6387 #endif
6388 		}
6389 	}
6390 
6391 	/*
6392 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6393 	 * already held which will conflict with an existing lock order:
6394 	 *
6395 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6396 	 *
6397 	 * We don't really need mem_hotplug_lock (to hold off
6398 	 * slab_mem_going_offline_callback) here because slab's memory hot
6399 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6400 	 */
6401 
6402 #ifdef CONFIG_SLUB_DEBUG
6403 	if (flags & SO_ALL) {
6404 		struct kmem_cache_node *n;
6405 
6406 		for_each_kmem_cache_node(s, node, n) {
6407 
6408 			if (flags & SO_TOTAL)
6409 				x = node_nr_objs(n);
6410 			else if (flags & SO_OBJECTS)
6411 				x = node_nr_objs(n) - count_partial(n, count_free);
6412 			else
6413 				x = node_nr_slabs(n);
6414 			total += x;
6415 			nodes[node] += x;
6416 		}
6417 
6418 	} else
6419 #endif
6420 	if (flags & SO_PARTIAL) {
6421 		struct kmem_cache_node *n;
6422 
6423 		for_each_kmem_cache_node(s, node, n) {
6424 			if (flags & SO_TOTAL)
6425 				x = count_partial(n, count_total);
6426 			else if (flags & SO_OBJECTS)
6427 				x = count_partial(n, count_inuse);
6428 			else
6429 				x = n->nr_partial;
6430 			total += x;
6431 			nodes[node] += x;
6432 		}
6433 	}
6434 
6435 	len += sysfs_emit_at(buf, len, "%lu", total);
6436 #ifdef CONFIG_NUMA
6437 	for (node = 0; node < nr_node_ids; node++) {
6438 		if (nodes[node])
6439 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6440 					     node, nodes[node]);
6441 	}
6442 #endif
6443 	len += sysfs_emit_at(buf, len, "\n");
6444 	kfree(nodes);
6445 
6446 	return len;
6447 }
6448 
6449 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6450 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6451 
6452 struct slab_attribute {
6453 	struct attribute attr;
6454 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6455 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6456 };
6457 
6458 #define SLAB_ATTR_RO(_name) \
6459 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6460 
6461 #define SLAB_ATTR(_name) \
6462 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6463 
6464 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6465 {
6466 	return sysfs_emit(buf, "%u\n", s->size);
6467 }
6468 SLAB_ATTR_RO(slab_size);
6469 
6470 static ssize_t align_show(struct kmem_cache *s, char *buf)
6471 {
6472 	return sysfs_emit(buf, "%u\n", s->align);
6473 }
6474 SLAB_ATTR_RO(align);
6475 
6476 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6477 {
6478 	return sysfs_emit(buf, "%u\n", s->object_size);
6479 }
6480 SLAB_ATTR_RO(object_size);
6481 
6482 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6483 {
6484 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6485 }
6486 SLAB_ATTR_RO(objs_per_slab);
6487 
6488 static ssize_t order_show(struct kmem_cache *s, char *buf)
6489 {
6490 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6491 }
6492 SLAB_ATTR_RO(order);
6493 
6494 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6495 {
6496 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6497 }
6498 
6499 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6500 				 size_t length)
6501 {
6502 	unsigned long min;
6503 	int err;
6504 
6505 	err = kstrtoul(buf, 10, &min);
6506 	if (err)
6507 		return err;
6508 
6509 	s->min_partial = min;
6510 	return length;
6511 }
6512 SLAB_ATTR(min_partial);
6513 
6514 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6515 {
6516 	unsigned int nr_partial = 0;
6517 #ifdef CONFIG_SLUB_CPU_PARTIAL
6518 	nr_partial = s->cpu_partial;
6519 #endif
6520 
6521 	return sysfs_emit(buf, "%u\n", nr_partial);
6522 }
6523 
6524 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6525 				 size_t length)
6526 {
6527 	unsigned int objects;
6528 	int err;
6529 
6530 	err = kstrtouint(buf, 10, &objects);
6531 	if (err)
6532 		return err;
6533 	if (objects && !kmem_cache_has_cpu_partial(s))
6534 		return -EINVAL;
6535 
6536 	slub_set_cpu_partial(s, objects);
6537 	flush_all(s);
6538 	return length;
6539 }
6540 SLAB_ATTR(cpu_partial);
6541 
6542 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6543 {
6544 	if (!s->ctor)
6545 		return 0;
6546 	return sysfs_emit(buf, "%pS\n", s->ctor);
6547 }
6548 SLAB_ATTR_RO(ctor);
6549 
6550 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6551 {
6552 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6553 }
6554 SLAB_ATTR_RO(aliases);
6555 
6556 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6557 {
6558 	return show_slab_objects(s, buf, SO_PARTIAL);
6559 }
6560 SLAB_ATTR_RO(partial);
6561 
6562 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6563 {
6564 	return show_slab_objects(s, buf, SO_CPU);
6565 }
6566 SLAB_ATTR_RO(cpu_slabs);
6567 
6568 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6569 {
6570 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6571 }
6572 SLAB_ATTR_RO(objects_partial);
6573 
6574 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6575 {
6576 	int objects = 0;
6577 	int slabs = 0;
6578 	int cpu __maybe_unused;
6579 	int len = 0;
6580 
6581 #ifdef CONFIG_SLUB_CPU_PARTIAL
6582 	for_each_online_cpu(cpu) {
6583 		struct slab *slab;
6584 
6585 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6586 
6587 		if (slab)
6588 			slabs += data_race(slab->slabs);
6589 	}
6590 #endif
6591 
6592 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6593 	objects = (slabs * oo_objects(s->oo)) / 2;
6594 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6595 
6596 #ifdef CONFIG_SLUB_CPU_PARTIAL
6597 	for_each_online_cpu(cpu) {
6598 		struct slab *slab;
6599 
6600 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6601 		if (slab) {
6602 			slabs = data_race(slab->slabs);
6603 			objects = (slabs * oo_objects(s->oo)) / 2;
6604 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6605 					     cpu, objects, slabs);
6606 		}
6607 	}
6608 #endif
6609 	len += sysfs_emit_at(buf, len, "\n");
6610 
6611 	return len;
6612 }
6613 SLAB_ATTR_RO(slabs_cpu_partial);
6614 
6615 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6616 {
6617 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6618 }
6619 SLAB_ATTR_RO(reclaim_account);
6620 
6621 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6622 {
6623 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6624 }
6625 SLAB_ATTR_RO(hwcache_align);
6626 
6627 #ifdef CONFIG_ZONE_DMA
6628 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6629 {
6630 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6631 }
6632 SLAB_ATTR_RO(cache_dma);
6633 #endif
6634 
6635 #ifdef CONFIG_HARDENED_USERCOPY
6636 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6637 {
6638 	return sysfs_emit(buf, "%u\n", s->usersize);
6639 }
6640 SLAB_ATTR_RO(usersize);
6641 #endif
6642 
6643 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6644 {
6645 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6646 }
6647 SLAB_ATTR_RO(destroy_by_rcu);
6648 
6649 #ifdef CONFIG_SLUB_DEBUG
6650 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6651 {
6652 	return show_slab_objects(s, buf, SO_ALL);
6653 }
6654 SLAB_ATTR_RO(slabs);
6655 
6656 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6657 {
6658 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6659 }
6660 SLAB_ATTR_RO(total_objects);
6661 
6662 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6663 {
6664 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6665 }
6666 SLAB_ATTR_RO(objects);
6667 
6668 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6669 {
6670 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6671 }
6672 SLAB_ATTR_RO(sanity_checks);
6673 
6674 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6675 {
6676 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6677 }
6678 SLAB_ATTR_RO(trace);
6679 
6680 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6681 {
6682 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6683 }
6684 
6685 SLAB_ATTR_RO(red_zone);
6686 
6687 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6688 {
6689 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6690 }
6691 
6692 SLAB_ATTR_RO(poison);
6693 
6694 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6695 {
6696 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6697 }
6698 
6699 SLAB_ATTR_RO(store_user);
6700 
6701 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6702 {
6703 	return 0;
6704 }
6705 
6706 static ssize_t validate_store(struct kmem_cache *s,
6707 			const char *buf, size_t length)
6708 {
6709 	int ret = -EINVAL;
6710 
6711 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6712 		ret = validate_slab_cache(s);
6713 		if (ret >= 0)
6714 			ret = length;
6715 	}
6716 	return ret;
6717 }
6718 SLAB_ATTR(validate);
6719 
6720 #endif /* CONFIG_SLUB_DEBUG */
6721 
6722 #ifdef CONFIG_FAILSLAB
6723 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6724 {
6725 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6726 }
6727 
6728 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6729 				size_t length)
6730 {
6731 	if (s->refcount > 1)
6732 		return -EINVAL;
6733 
6734 	if (buf[0] == '1')
6735 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6736 	else
6737 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6738 
6739 	return length;
6740 }
6741 SLAB_ATTR(failslab);
6742 #endif
6743 
6744 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6745 {
6746 	return 0;
6747 }
6748 
6749 static ssize_t shrink_store(struct kmem_cache *s,
6750 			const char *buf, size_t length)
6751 {
6752 	if (buf[0] == '1')
6753 		kmem_cache_shrink(s);
6754 	else
6755 		return -EINVAL;
6756 	return length;
6757 }
6758 SLAB_ATTR(shrink);
6759 
6760 #ifdef CONFIG_NUMA
6761 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6762 {
6763 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6764 }
6765 
6766 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6767 				const char *buf, size_t length)
6768 {
6769 	unsigned int ratio;
6770 	int err;
6771 
6772 	err = kstrtouint(buf, 10, &ratio);
6773 	if (err)
6774 		return err;
6775 	if (ratio > 100)
6776 		return -ERANGE;
6777 
6778 	s->remote_node_defrag_ratio = ratio * 10;
6779 
6780 	return length;
6781 }
6782 SLAB_ATTR(remote_node_defrag_ratio);
6783 #endif
6784 
6785 #ifdef CONFIG_SLUB_STATS
6786 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6787 {
6788 	unsigned long sum  = 0;
6789 	int cpu;
6790 	int len = 0;
6791 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6792 
6793 	if (!data)
6794 		return -ENOMEM;
6795 
6796 	for_each_online_cpu(cpu) {
6797 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6798 
6799 		data[cpu] = x;
6800 		sum += x;
6801 	}
6802 
6803 	len += sysfs_emit_at(buf, len, "%lu", sum);
6804 
6805 #ifdef CONFIG_SMP
6806 	for_each_online_cpu(cpu) {
6807 		if (data[cpu])
6808 			len += sysfs_emit_at(buf, len, " C%d=%u",
6809 					     cpu, data[cpu]);
6810 	}
6811 #endif
6812 	kfree(data);
6813 	len += sysfs_emit_at(buf, len, "\n");
6814 
6815 	return len;
6816 }
6817 
6818 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6819 {
6820 	int cpu;
6821 
6822 	for_each_online_cpu(cpu)
6823 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
6824 }
6825 
6826 #define STAT_ATTR(si, text) 					\
6827 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
6828 {								\
6829 	return show_stat(s, buf, si);				\
6830 }								\
6831 static ssize_t text##_store(struct kmem_cache *s,		\
6832 				const char *buf, size_t length)	\
6833 {								\
6834 	if (buf[0] != '0')					\
6835 		return -EINVAL;					\
6836 	clear_stat(s, si);					\
6837 	return length;						\
6838 }								\
6839 SLAB_ATTR(text);						\
6840 
6841 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
6842 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
6843 STAT_ATTR(FREE_FASTPATH, free_fastpath);
6844 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
6845 STAT_ATTR(FREE_FROZEN, free_frozen);
6846 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
6847 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
6848 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
6849 STAT_ATTR(ALLOC_SLAB, alloc_slab);
6850 STAT_ATTR(ALLOC_REFILL, alloc_refill);
6851 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
6852 STAT_ATTR(FREE_SLAB, free_slab);
6853 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
6854 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
6855 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
6856 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
6857 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
6858 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
6859 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
6860 STAT_ATTR(ORDER_FALLBACK, order_fallback);
6861 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
6862 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
6863 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
6864 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
6865 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
6866 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6867 #endif	/* CONFIG_SLUB_STATS */
6868 
6869 #ifdef CONFIG_KFENCE
6870 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
6871 {
6872 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
6873 }
6874 
6875 static ssize_t skip_kfence_store(struct kmem_cache *s,
6876 			const char *buf, size_t length)
6877 {
6878 	int ret = length;
6879 
6880 	if (buf[0] == '0')
6881 		s->flags &= ~SLAB_SKIP_KFENCE;
6882 	else if (buf[0] == '1')
6883 		s->flags |= SLAB_SKIP_KFENCE;
6884 	else
6885 		ret = -EINVAL;
6886 
6887 	return ret;
6888 }
6889 SLAB_ATTR(skip_kfence);
6890 #endif
6891 
6892 static struct attribute *slab_attrs[] = {
6893 	&slab_size_attr.attr,
6894 	&object_size_attr.attr,
6895 	&objs_per_slab_attr.attr,
6896 	&order_attr.attr,
6897 	&min_partial_attr.attr,
6898 	&cpu_partial_attr.attr,
6899 	&objects_partial_attr.attr,
6900 	&partial_attr.attr,
6901 	&cpu_slabs_attr.attr,
6902 	&ctor_attr.attr,
6903 	&aliases_attr.attr,
6904 	&align_attr.attr,
6905 	&hwcache_align_attr.attr,
6906 	&reclaim_account_attr.attr,
6907 	&destroy_by_rcu_attr.attr,
6908 	&shrink_attr.attr,
6909 	&slabs_cpu_partial_attr.attr,
6910 #ifdef CONFIG_SLUB_DEBUG
6911 	&total_objects_attr.attr,
6912 	&objects_attr.attr,
6913 	&slabs_attr.attr,
6914 	&sanity_checks_attr.attr,
6915 	&trace_attr.attr,
6916 	&red_zone_attr.attr,
6917 	&poison_attr.attr,
6918 	&store_user_attr.attr,
6919 	&validate_attr.attr,
6920 #endif
6921 #ifdef CONFIG_ZONE_DMA
6922 	&cache_dma_attr.attr,
6923 #endif
6924 #ifdef CONFIG_NUMA
6925 	&remote_node_defrag_ratio_attr.attr,
6926 #endif
6927 #ifdef CONFIG_SLUB_STATS
6928 	&alloc_fastpath_attr.attr,
6929 	&alloc_slowpath_attr.attr,
6930 	&free_fastpath_attr.attr,
6931 	&free_slowpath_attr.attr,
6932 	&free_frozen_attr.attr,
6933 	&free_add_partial_attr.attr,
6934 	&free_remove_partial_attr.attr,
6935 	&alloc_from_partial_attr.attr,
6936 	&alloc_slab_attr.attr,
6937 	&alloc_refill_attr.attr,
6938 	&alloc_node_mismatch_attr.attr,
6939 	&free_slab_attr.attr,
6940 	&cpuslab_flush_attr.attr,
6941 	&deactivate_full_attr.attr,
6942 	&deactivate_empty_attr.attr,
6943 	&deactivate_to_head_attr.attr,
6944 	&deactivate_to_tail_attr.attr,
6945 	&deactivate_remote_frees_attr.attr,
6946 	&deactivate_bypass_attr.attr,
6947 	&order_fallback_attr.attr,
6948 	&cmpxchg_double_fail_attr.attr,
6949 	&cmpxchg_double_cpu_fail_attr.attr,
6950 	&cpu_partial_alloc_attr.attr,
6951 	&cpu_partial_free_attr.attr,
6952 	&cpu_partial_node_attr.attr,
6953 	&cpu_partial_drain_attr.attr,
6954 #endif
6955 #ifdef CONFIG_FAILSLAB
6956 	&failslab_attr.attr,
6957 #endif
6958 #ifdef CONFIG_HARDENED_USERCOPY
6959 	&usersize_attr.attr,
6960 #endif
6961 #ifdef CONFIG_KFENCE
6962 	&skip_kfence_attr.attr,
6963 #endif
6964 
6965 	NULL
6966 };
6967 
6968 static const struct attribute_group slab_attr_group = {
6969 	.attrs = slab_attrs,
6970 };
6971 
6972 static ssize_t slab_attr_show(struct kobject *kobj,
6973 				struct attribute *attr,
6974 				char *buf)
6975 {
6976 	struct slab_attribute *attribute;
6977 	struct kmem_cache *s;
6978 
6979 	attribute = to_slab_attr(attr);
6980 	s = to_slab(kobj);
6981 
6982 	if (!attribute->show)
6983 		return -EIO;
6984 
6985 	return attribute->show(s, buf);
6986 }
6987 
6988 static ssize_t slab_attr_store(struct kobject *kobj,
6989 				struct attribute *attr,
6990 				const char *buf, size_t len)
6991 {
6992 	struct slab_attribute *attribute;
6993 	struct kmem_cache *s;
6994 
6995 	attribute = to_slab_attr(attr);
6996 	s = to_slab(kobj);
6997 
6998 	if (!attribute->store)
6999 		return -EIO;
7000 
7001 	return attribute->store(s, buf, len);
7002 }
7003 
7004 static void kmem_cache_release(struct kobject *k)
7005 {
7006 	slab_kmem_cache_release(to_slab(k));
7007 }
7008 
7009 static const struct sysfs_ops slab_sysfs_ops = {
7010 	.show = slab_attr_show,
7011 	.store = slab_attr_store,
7012 };
7013 
7014 static const struct kobj_type slab_ktype = {
7015 	.sysfs_ops = &slab_sysfs_ops,
7016 	.release = kmem_cache_release,
7017 };
7018 
7019 static struct kset *slab_kset;
7020 
7021 static inline struct kset *cache_kset(struct kmem_cache *s)
7022 {
7023 	return slab_kset;
7024 }
7025 
7026 #define ID_STR_LENGTH 32
7027 
7028 /* Create a unique string id for a slab cache:
7029  *
7030  * Format	:[flags-]size
7031  */
7032 static char *create_unique_id(struct kmem_cache *s)
7033 {
7034 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7035 	char *p = name;
7036 
7037 	if (!name)
7038 		return ERR_PTR(-ENOMEM);
7039 
7040 	*p++ = ':';
7041 	/*
7042 	 * First flags affecting slabcache operations. We will only
7043 	 * get here for aliasable slabs so we do not need to support
7044 	 * too many flags. The flags here must cover all flags that
7045 	 * are matched during merging to guarantee that the id is
7046 	 * unique.
7047 	 */
7048 	if (s->flags & SLAB_CACHE_DMA)
7049 		*p++ = 'd';
7050 	if (s->flags & SLAB_CACHE_DMA32)
7051 		*p++ = 'D';
7052 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7053 		*p++ = 'a';
7054 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7055 		*p++ = 'F';
7056 	if (s->flags & SLAB_ACCOUNT)
7057 		*p++ = 'A';
7058 	if (p != name + 1)
7059 		*p++ = '-';
7060 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7061 
7062 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7063 		kfree(name);
7064 		return ERR_PTR(-EINVAL);
7065 	}
7066 	kmsan_unpoison_memory(name, p - name);
7067 	return name;
7068 }
7069 
7070 static int sysfs_slab_add(struct kmem_cache *s)
7071 {
7072 	int err;
7073 	const char *name;
7074 	struct kset *kset = cache_kset(s);
7075 	int unmergeable = slab_unmergeable(s);
7076 
7077 	if (!unmergeable && disable_higher_order_debug &&
7078 			(slub_debug & DEBUG_METADATA_FLAGS))
7079 		unmergeable = 1;
7080 
7081 	if (unmergeable) {
7082 		/*
7083 		 * Slabcache can never be merged so we can use the name proper.
7084 		 * This is typically the case for debug situations. In that
7085 		 * case we can catch duplicate names easily.
7086 		 */
7087 		sysfs_remove_link(&slab_kset->kobj, s->name);
7088 		name = s->name;
7089 	} else {
7090 		/*
7091 		 * Create a unique name for the slab as a target
7092 		 * for the symlinks.
7093 		 */
7094 		name = create_unique_id(s);
7095 		if (IS_ERR(name))
7096 			return PTR_ERR(name);
7097 	}
7098 
7099 	s->kobj.kset = kset;
7100 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7101 	if (err)
7102 		goto out;
7103 
7104 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7105 	if (err)
7106 		goto out_del_kobj;
7107 
7108 	if (!unmergeable) {
7109 		/* Setup first alias */
7110 		sysfs_slab_alias(s, s->name);
7111 	}
7112 out:
7113 	if (!unmergeable)
7114 		kfree(name);
7115 	return err;
7116 out_del_kobj:
7117 	kobject_del(&s->kobj);
7118 	goto out;
7119 }
7120 
7121 void sysfs_slab_unlink(struct kmem_cache *s)
7122 {
7123 	kobject_del(&s->kobj);
7124 }
7125 
7126 void sysfs_slab_release(struct kmem_cache *s)
7127 {
7128 	kobject_put(&s->kobj);
7129 }
7130 
7131 /*
7132  * Need to buffer aliases during bootup until sysfs becomes
7133  * available lest we lose that information.
7134  */
7135 struct saved_alias {
7136 	struct kmem_cache *s;
7137 	const char *name;
7138 	struct saved_alias *next;
7139 };
7140 
7141 static struct saved_alias *alias_list;
7142 
7143 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7144 {
7145 	struct saved_alias *al;
7146 
7147 	if (slab_state == FULL) {
7148 		/*
7149 		 * If we have a leftover link then remove it.
7150 		 */
7151 		sysfs_remove_link(&slab_kset->kobj, name);
7152 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7153 	}
7154 
7155 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7156 	if (!al)
7157 		return -ENOMEM;
7158 
7159 	al->s = s;
7160 	al->name = name;
7161 	al->next = alias_list;
7162 	alias_list = al;
7163 	kmsan_unpoison_memory(al, sizeof(*al));
7164 	return 0;
7165 }
7166 
7167 static int __init slab_sysfs_init(void)
7168 {
7169 	struct kmem_cache *s;
7170 	int err;
7171 
7172 	mutex_lock(&slab_mutex);
7173 
7174 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7175 	if (!slab_kset) {
7176 		mutex_unlock(&slab_mutex);
7177 		pr_err("Cannot register slab subsystem.\n");
7178 		return -ENOMEM;
7179 	}
7180 
7181 	slab_state = FULL;
7182 
7183 	list_for_each_entry(s, &slab_caches, list) {
7184 		err = sysfs_slab_add(s);
7185 		if (err)
7186 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7187 			       s->name);
7188 	}
7189 
7190 	while (alias_list) {
7191 		struct saved_alias *al = alias_list;
7192 
7193 		alias_list = alias_list->next;
7194 		err = sysfs_slab_alias(al->s, al->name);
7195 		if (err)
7196 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7197 			       al->name);
7198 		kfree(al);
7199 	}
7200 
7201 	mutex_unlock(&slab_mutex);
7202 	return 0;
7203 }
7204 late_initcall(slab_sysfs_init);
7205 #endif /* SLAB_SUPPORTS_SYSFS */
7206 
7207 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7208 static int slab_debugfs_show(struct seq_file *seq, void *v)
7209 {
7210 	struct loc_track *t = seq->private;
7211 	struct location *l;
7212 	unsigned long idx;
7213 
7214 	idx = (unsigned long) t->idx;
7215 	if (idx < t->count) {
7216 		l = &t->loc[idx];
7217 
7218 		seq_printf(seq, "%7ld ", l->count);
7219 
7220 		if (l->addr)
7221 			seq_printf(seq, "%pS", (void *)l->addr);
7222 		else
7223 			seq_puts(seq, "<not-available>");
7224 
7225 		if (l->waste)
7226 			seq_printf(seq, " waste=%lu/%lu",
7227 				l->count * l->waste, l->waste);
7228 
7229 		if (l->sum_time != l->min_time) {
7230 			seq_printf(seq, " age=%ld/%llu/%ld",
7231 				l->min_time, div_u64(l->sum_time, l->count),
7232 				l->max_time);
7233 		} else
7234 			seq_printf(seq, " age=%ld", l->min_time);
7235 
7236 		if (l->min_pid != l->max_pid)
7237 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7238 		else
7239 			seq_printf(seq, " pid=%ld",
7240 				l->min_pid);
7241 
7242 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7243 			seq_printf(seq, " cpus=%*pbl",
7244 				 cpumask_pr_args(to_cpumask(l->cpus)));
7245 
7246 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7247 			seq_printf(seq, " nodes=%*pbl",
7248 				 nodemask_pr_args(&l->nodes));
7249 
7250 #ifdef CONFIG_STACKDEPOT
7251 		{
7252 			depot_stack_handle_t handle;
7253 			unsigned long *entries;
7254 			unsigned int nr_entries, j;
7255 
7256 			handle = READ_ONCE(l->handle);
7257 			if (handle) {
7258 				nr_entries = stack_depot_fetch(handle, &entries);
7259 				seq_puts(seq, "\n");
7260 				for (j = 0; j < nr_entries; j++)
7261 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7262 			}
7263 		}
7264 #endif
7265 		seq_puts(seq, "\n");
7266 	}
7267 
7268 	if (!idx && !t->count)
7269 		seq_puts(seq, "No data\n");
7270 
7271 	return 0;
7272 }
7273 
7274 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7275 {
7276 }
7277 
7278 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7279 {
7280 	struct loc_track *t = seq->private;
7281 
7282 	t->idx = ++(*ppos);
7283 	if (*ppos <= t->count)
7284 		return ppos;
7285 
7286 	return NULL;
7287 }
7288 
7289 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7290 {
7291 	struct location *loc1 = (struct location *)a;
7292 	struct location *loc2 = (struct location *)b;
7293 
7294 	if (loc1->count > loc2->count)
7295 		return -1;
7296 	else
7297 		return 1;
7298 }
7299 
7300 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7301 {
7302 	struct loc_track *t = seq->private;
7303 
7304 	t->idx = *ppos;
7305 	return ppos;
7306 }
7307 
7308 static const struct seq_operations slab_debugfs_sops = {
7309 	.start  = slab_debugfs_start,
7310 	.next   = slab_debugfs_next,
7311 	.stop   = slab_debugfs_stop,
7312 	.show   = slab_debugfs_show,
7313 };
7314 
7315 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7316 {
7317 
7318 	struct kmem_cache_node *n;
7319 	enum track_item alloc;
7320 	int node;
7321 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7322 						sizeof(struct loc_track));
7323 	struct kmem_cache *s = file_inode(filep)->i_private;
7324 	unsigned long *obj_map;
7325 
7326 	if (!t)
7327 		return -ENOMEM;
7328 
7329 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7330 	if (!obj_map) {
7331 		seq_release_private(inode, filep);
7332 		return -ENOMEM;
7333 	}
7334 
7335 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7336 		alloc = TRACK_ALLOC;
7337 	else
7338 		alloc = TRACK_FREE;
7339 
7340 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7341 		bitmap_free(obj_map);
7342 		seq_release_private(inode, filep);
7343 		return -ENOMEM;
7344 	}
7345 
7346 	for_each_kmem_cache_node(s, node, n) {
7347 		unsigned long flags;
7348 		struct slab *slab;
7349 
7350 		if (!node_nr_slabs(n))
7351 			continue;
7352 
7353 		spin_lock_irqsave(&n->list_lock, flags);
7354 		list_for_each_entry(slab, &n->partial, slab_list)
7355 			process_slab(t, s, slab, alloc, obj_map);
7356 		list_for_each_entry(slab, &n->full, slab_list)
7357 			process_slab(t, s, slab, alloc, obj_map);
7358 		spin_unlock_irqrestore(&n->list_lock, flags);
7359 	}
7360 
7361 	/* Sort locations by count */
7362 	sort_r(t->loc, t->count, sizeof(struct location),
7363 		cmp_loc_by_count, NULL, NULL);
7364 
7365 	bitmap_free(obj_map);
7366 	return 0;
7367 }
7368 
7369 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7370 {
7371 	struct seq_file *seq = file->private_data;
7372 	struct loc_track *t = seq->private;
7373 
7374 	free_loc_track(t);
7375 	return seq_release_private(inode, file);
7376 }
7377 
7378 static const struct file_operations slab_debugfs_fops = {
7379 	.open    = slab_debug_trace_open,
7380 	.read    = seq_read,
7381 	.llseek  = seq_lseek,
7382 	.release = slab_debug_trace_release,
7383 };
7384 
7385 static void debugfs_slab_add(struct kmem_cache *s)
7386 {
7387 	struct dentry *slab_cache_dir;
7388 
7389 	if (unlikely(!slab_debugfs_root))
7390 		return;
7391 
7392 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7393 
7394 	debugfs_create_file("alloc_traces", 0400,
7395 		slab_cache_dir, s, &slab_debugfs_fops);
7396 
7397 	debugfs_create_file("free_traces", 0400,
7398 		slab_cache_dir, s, &slab_debugfs_fops);
7399 }
7400 
7401 void debugfs_slab_release(struct kmem_cache *s)
7402 {
7403 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7404 }
7405 
7406 static int __init slab_debugfs_init(void)
7407 {
7408 	struct kmem_cache *s;
7409 
7410 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7411 
7412 	list_for_each_entry(s, &slab_caches, list)
7413 		if (s->flags & SLAB_STORE_USER)
7414 			debugfs_slab_add(s);
7415 
7416 	return 0;
7417 
7418 }
7419 __initcall(slab_debugfs_init);
7420 #endif
7421 /*
7422  * The /proc/slabinfo ABI
7423  */
7424 #ifdef CONFIG_SLUB_DEBUG
7425 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7426 {
7427 	unsigned long nr_slabs = 0;
7428 	unsigned long nr_objs = 0;
7429 	unsigned long nr_free = 0;
7430 	int node;
7431 	struct kmem_cache_node *n;
7432 
7433 	for_each_kmem_cache_node(s, node, n) {
7434 		nr_slabs += node_nr_slabs(n);
7435 		nr_objs += node_nr_objs(n);
7436 		nr_free += count_partial_free_approx(n);
7437 	}
7438 
7439 	sinfo->active_objs = nr_objs - nr_free;
7440 	sinfo->num_objs = nr_objs;
7441 	sinfo->active_slabs = nr_slabs;
7442 	sinfo->num_slabs = nr_slabs;
7443 	sinfo->objects_per_slab = oo_objects(s->oo);
7444 	sinfo->cache_order = oo_order(s->oo);
7445 }
7446 #endif /* CONFIG_SLUB_DEBUG */
7447